
TM 2 & 2437

Reference

Agilent Spectr	um Anal	yzer - Swe	pt SA									
L <mark>XI</mark>	RF	50 Ω	AC	CORREC		SEN	SE:INT	Aur	ALIGNAUTO Type: Log-Pwr		4 Jul 25, 2018 E 1 2 3 4 5 6	Frequency
				PNO: F IFGain:	∃ast ⊂ Low	Trig: Free Atten: 36		Avg	Type. Log-Fwi	TY		
									Mkr2 2	21.413 1		Auto Tune
10 dB/div Log	Ref	25.00 c	IBm							-27.3	90 dBm	
15.0												Center Freq
5.00												17.50000000 GHz
-5.00												
-15.0											-18 24 d 5 a	
-25.0									2		Ŷ	Start Freq
-35.0								Lucito Maria	None of Contraction	Same and the second second		10.00000000 GHz
-45.0												
-55.0												Stop Freq
-65.0												25.00000000 GHz
-03.0												
Start 10.0										Stop 25	.000 GHz	CF Step
#Res BW	1.0 M	HZ			#VBW	3.0 MHz			Sweep 40	.00 ms (4	0001 pts)	1.500000000 GHz Auto Man
MKR MODE TH			X	6 125 GH		۲ -25.31 dE		ICTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	Auto Mari
2 N 1				6 125 GF 3 125 GF		-25.31 dE -27.90 dE						
3												Freq Offset
5											=	0 Hz
6 7												
8												
10												
<											×	
MSG									STATUS	3		

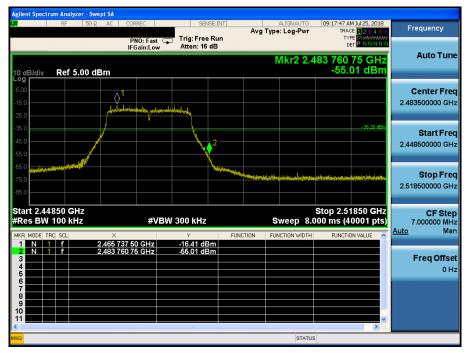
TM 2 & 2462

Reference

High Band-edge

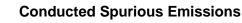
Agilent Spectrum Analyzer - Swept		SENSE: INT	ALIGNAUTO	04:02:22 PM Jul 25, 2018	
	PNO: Fast G		Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 25.00 dB	im		Mk	r2 5.987 7 MHz -55.04 dBm	Auto Tune
15.0 5.00 -5.00					Center Freq 15.004500 MHz
-15.0				-16.36 dBm	Start Freq 9.000 kHz
-45.0	2 รูปพูลประเทศไทร์ มีหน่ารูปหน้ามาระทุมไร้หูรู้	dennegative Alexandre i ban etrefte	กล่องแรง _{มีเ} ก็เห็ชน์ครั้งสือสู่เกาส์ในสร	รมสรีระการขางหนึ่งที่เหร่างขางการที่ม	Stop Freq 30.000000 MHz
Start 9 kHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 5.3	Stop 30.00 MHz 333 ms (40001 pts)	CF Step 2.999100 MHz
MKR MODE TRC SCL 1 N 1 F 2 N 1 F 3 4 4	× 288.7 kHz 5.987 7 MHz	Y FU -48.94 dBm -55.04 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man Freq Offset 0 Hz
6 7 8 9 10 11					
MSG		III	STATUS	DC Coupled	

Agilent Spectrum Analyzer - Swep					
LXI RF 50 Ω	AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:03:37 PM Jul 25, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🕞 IFGain:Low	Trig: Free Run Atten: 36 dB	0 / 0	TYPE MWWWWWW DET P NNNNN	
	IFGain:Low	Atten: 50 dB	D.4 Low		Auto Tune
10 dB/div Ref 25.00 d	3m		IVIKE	3 6.950 92 GHz -37.64 dBm	
Log					
15.0	\ 1				Center Freq
5.00					5.015000000 GHz
-5.00					
-15.0				-18.36 dBm	Start Freq
-25.0			A2 A3		30.000000 MHz
-35.0		at a she was			
-45.0	terio de la constante de la co				Otras Essa
-55.0					Stop Freq 10.00000000 GHz
-65.0					10.000000000 GH2
Start 30 MHz				Stop 10.000 GHz	
#Res BW 1.0 MHz	#VBV	/ 3.0 MHz	Sweep 18	.67 ms (40001 pts)	CF Step 997.000000 MHz
MKB MODE TRC SCL	×	Y FL	INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f	2.456 70 GHz	9.49 dBm			
2 N 1 f 3 N 1 f	5.810 36 GHz 6.950 92 GHz	-37.21 dBm -37.64 dBm			Freq Offset
4					0 Hz
6					
8					
9					
11				~	
K MSG			STATUS		
			STATUS		



TM 2 & 2472

Reference

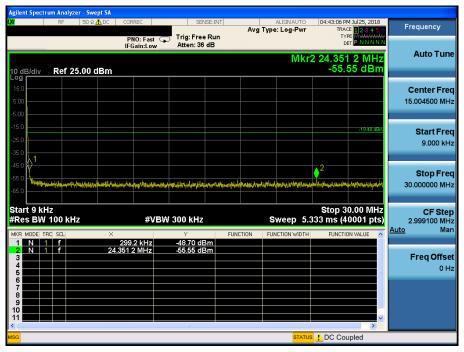


High Band-edge

Agilent Spectrum Analyzer - Swept S							
🕅 RF 50 Ω 🧘 D	C CORREC	SENSE:INT	Ava	ALIGNAUTO Type: Log-Pwr	09:18:31 AM TRACE	Jul 25, 2018	Frequency
	PNO: Fast 🕞 IFGain:Low	Trig: Free Run Atten: 16 dB		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TYPE	PNNNN	
10 dB/div Ref 5.00 dBm				Mk	r2 3.418 -75.1	2 MHz 5 dBm	Auto Tune
							Center Fred
-15.0							15.004500 MH;
-25.0						-36.26 dBm	04
-45.0							Start Fred 9.000 kH;
-55.0							
							Stop Free
-85.0	hteriologik sitted to an anna an a	dunlassitetaraninistraistidas	er menen er feldene	ngalihatstangeptopolatistensetang N	antifician (Minister)	ihendrich haberendet	30.000000 MH
Start 9 kHz #Res BW 100 kHz	#VBV	/ 300 kHz		Sweep 5.3	Stop 30 33 ms (40	.00 MHz 001 pts)	CF Step 2.999100 MH
MKR MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE	<u>Auto</u> Mai
1 N 1 f 2 N 1 f	291.7 kHz 3.418 2 MHz	-69.29 dBm -75.15 dBm					
3							Freq Offse
5						=	011
8							
9 10 10 10 10 10 10 10 10 10 10 10 10 10							
11						~	
<							

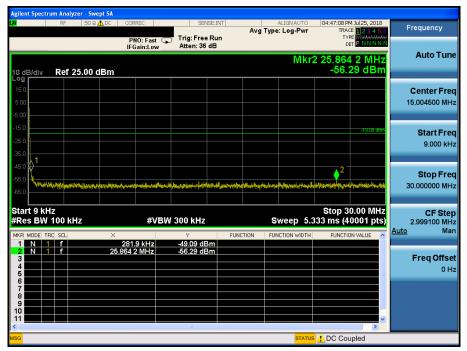
Agilent Spectrum Analyzer - Swep	t SA				
LXU RF 50 Ω	AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	09:19:50 AM Jul 25, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🖵	Trig: Free Run Atten: 16 dB		TYPE MWAAAAAAAA DET P N N N N N	
	IFGain:Low	Atten: 10 db			Auto Tune
10 dB/div Ref 5.00 dB	-		IVIKI	4 8.316 07 GHz -59.28 dBm	
Log					
-5.00	_ <u>Ŷ</u> '				Center Freq
-15.0					5.015000000 GHz
-25.0					
-35.0				-36.26 dBm	Start Freq
-45.0	. 2		2		30.000000 MHz
-55.0	3			4	
-65.0				and and in a particular state of the second st	
-75.0					Stop Freq
-85.0					10.00000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#\/B\A	3.0 MHz	Sween 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	×		OCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N 1 f	2.467 42 GHz	-8.43 dBm	PONCTION WIDTH	FONCTION VALUE	
2 N 1 f 3 N 1 f	5.783 94 GHz 2.611 48 GHz	-57.04 dBm -58.42 dBm			Freq Offset
4 N 1 f	8.316 07 GHz	-59.28 dBm			0 Hz
6					
8					
9					
10				~	
<				<u> </u>	
<mark>MSG</mark>			STATUS	6	




TM 3 & 2412

Reference

Low Band-edge


Agilent Spectrum Analyzer - Swept SA					
LXI RF 50 Ω AC	CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:44:11 PM Jul 25, 2018 TRACE 1 2 3 4 5 6	Frequency
		g: Free Run ten: 36 dB		DET P N N N N N	
	ii Gam.eow		Mkr	9.377 37 GHz	Auto Tune
10 dB/div Ref 25.00 dBm				-39.76 dBm	
Log 15.0					
5.00					Center Freq 5.015000000 GHz
-5.00					3.013000000 GH2
-15.0					
-25.0				-19.48 dBm	Start Freq
-35.0		0²		<mark>4</mark>	30.000000 MHz
-45.0				And the second	
-55.0					Stop Freq
-65.0					10.00000000 GHz
Start 30 MHz				Stop 10.000 GHz	
#Res BW 1.0 MHz	#VBW 3.0	MHz	Sweep 18.	67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL X		Y FUNCTI	ON FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
		3.39 dBm 7.64 dBm			
3 N 1 f 3.1	68 06 GHz -39).65 dBm).76 dBm			Freq Offset
5	-// 3/ GHz	9.76 dBm			0 Hz
6					
8					
10					
<				>	
<mark>MSG</mark>			STATUS		

TM 3 & 2437

Reference

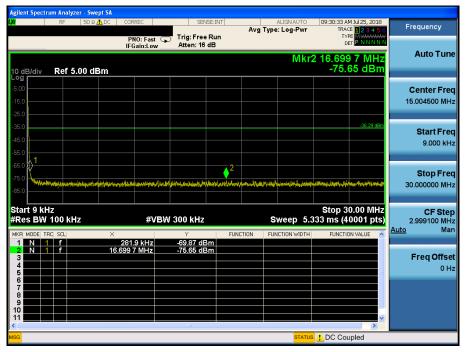
TM 3 & 2462

Reference

High Band-edge

	er - Swept SA							
RF	50 Ω <u>Å</u> DC	CORREC	SENS	E:INT Ave	ALIGNAUTO	04:52:29 PM	Jul 25, 2018	Frequency
		PNO: Fast IFGain:Low	Trig: Free I Atten: 36 d	Run	Trype. Log Thi	TYPE	PNNNN	
0 dB/div Ref 2	5.00 dBm				Mkr	2 27.359 -55.9	3 MHz 4 dBm	Auto Tune
5.00								Center Fred 15.004500 MH;
15.0 25.0 35.0							-19.25 dBm	Start Fred 9.000 kH;
45 n 🗛 '								
55.0	halistopanaharatahatahat	vletare yskiljugi lege	itemperiya bigin tana bayan fajilafi	ungunharakanikadi yanghirahariyate,	Maqualahydiinatirratiinlanteelaity	n An fhathar la sharan an a	2 Instantol in pinetol	
55.0	n na roje i njenik armija kratije.		turing the second s	ม ครูเสร็จร้อง ได้เสร็จ (สิ่งไป เริงกิน	Sweep 5.3	Stop 30	.00 MHz	30.000000 MH CF Ster 2.999100 MH
55.0 65.0 Start 9 kHz				FUNCTION	and the specified sector in the specified sector of the specified sector is a specified sector of the specified sector is a specified sector of the specified sector is a specified sector of the spec	Stop 30	.00 MHz	30.000000 MH CF Ster 2.999100 MH
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		#VE	BW 300 kHz Y	FUNCTION	Sweep 5.3	Stop 30 333 ms (40	.00 MHz	30.000000 MH CF Stej 2.999100 MH <u>Auto</u> Ma Freq Offse
560 0 570 0 571 0 572 0 573 0 1 0 1 1 2 0 3 1 4 5 5 0 7 0 8 0 9 0		#VE	3W 300 kHz -49.48 dBi	FUNCTION	Sweep 5.3	Stop 30 333 ms (40	.00 MHz	30.000000 MH CF Step 2.999100 MH <u>Auto</u> Mai Freq Offse
550 500 550 500 550 500 561 500 562 500 563 500 564 500 565 500 565 500 565 500 565 500 565 500 565 500 565 500 565 500 565 500 565 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560 500 560		#VE	3W 300 kHz -49.48 dBi	FUNCTION	Sweep 5.3	Stop 30 333 ms (40	.00 MHz	Stop Fred 30.00000 MH: 2.999100 MH: <u>Auto</u> Mar Freq Offse 0 H:

Agilent Spectrum Analyzer - Swept SA					
LXI RF 50Ω AC	CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:53:31 PM Jul 25, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 36 dB		TYPE MWWWWWW DET P N N N N N	
	II Gam.cow		Mkı	4 8.142 34 GHz	Auto Tune
10 dB/div Ref 25.00 dBm				-39.49 dBm	
15.0 A	1				Center Freq
5.00					5.015000000 GHz
-5.00					
-15.0				-19:25 dBm	Start Freq
-25.0			. 2		30.000000 MHz
-35.0			24	- ♦ ⁴	
-45.0					Stop Freq
-55.0					10.000000000 GHz
-65.0					
Start 30 MHz				Stop 10.000 GHz	CF Step
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 18	3.67 ms (40001 pts)	997.000000 MHz <u>Auto</u> Man
MKR MODE TRC SCL X	457 70 GHz	Y FL 8.33 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	Adto Mari
2 N 1 f 5.8	318 08 GHz 150 36 GHz	-38.20 dBm -39.45 dBm			Freq Offset
4 N 1 f 8.4	142 34 GHz	-39.49 dBm			0 Hz
5					
8					
9					
11 <				~	
MSG			STATU		


TM 3 & 2472

Reference

High Band-edge

Agilent Spectrum Analyze					
L <mark>XI</mark> RF	50 Ω AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	09:32:11 AM Jul 25, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast	Trig: Free Run Atten: 16 dB		TYPE MWWWWWW DET P N N N N N	
	IFGain:Low	Atten: 16 dB	841		Auto Tune
Dec.	00 JB		IVIKI	2 5.713 65 GHz -57.07 dBm	
10 dB/div Ref 5.0	00 dBm			-07.07 abiii	
-5.00	0 1				Center Freq
-15.0					5.015000000 GHz
-25.0					
-35.0				-36.29 dBm	Ctort From
-45.0					Start Freq 30.000000 MHz
-55.0			2		30.000000 WH2
-65.0	and the second	Same and the second state of the second state		And the state of t	
-75.0					Stop Freq
-85.0					10.00000000 GHz
Start 30 MHz				Stop 10.000 GHz	CF Step
#Res BW 1.0 MHz	2 #V	BW 3.0 MHz	Sweep 18	.67 ms (40001 pts)	997.000000 MHz <u>Auto</u> Man
MKR MODE TRC SCL	×		UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
	2.467 91 GHz 5.713 65 GHz	-8.44 dBm -57.07 dBm			
3					Freq Offset
5				£	0 Hz
6					
8					
10					
				~	
MSG			STATU	1	
				1	

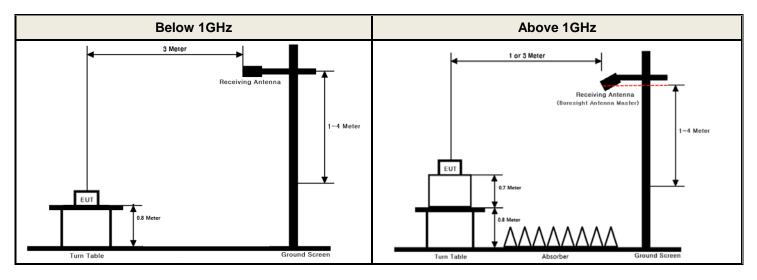
8.5 Radiated spurious emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

• FCC Part 15.209(a) and (b)

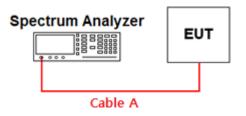
Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3


** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.


Test Configuration

Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.46	15	3.64
1	0.88	20	5.16
2.402 & 2.441 & 2480 (2410 & 2445 & 2475)	1.51	25	5.17
5	2.56	-	-
10	2.61	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test.

Path loss (S/A's correction factor) = Cable A

(Attenuator, Applied only when it was used externally)

Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Peak Measurement

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
>1000 MHz	1 MHz

Average Measurement:

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power. (i.e., RMS)
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
TM 1	1 Mbps	99.76	0.02
TM 2	6 Mbps	99.84	0.01
TM 3	MCS 0	98.90	0.05

Test Results: Comply

Please refer to next page for data table and the appendix I for worst data plots.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.14	V	Z	PK	51.86	2.70	N/A	N/A	54.56	74.00	19.44
2412	2389.25	V	Z	AV	41.80	2.70	N/A	N/A	44.50	54.00	9.50
2412	4823.67	Н	Х	PK	51.47	1.49	N/A	N/A	52.96	74.00	21.04
	4823.88	Н	Х	AV	43.95	1.49	N/A	N/A	45.44	54.00	8.56
2437	4874.21	Н	Х	PK	50.05	1.62	N/A	N/A	51.67	74.00	22.33
2437	4873.91	Н	Х	AV	42.60	1.62	N/A	N/A	44.22	54.00	9.78
	2483.53	Н	Х	PK	53.75	3.10	N/A	N/A	56.85	74.00	17.15
2462	2483.60	Н	Х	AV	42.50	3.10	N/A	N/A	45.60	54.00	8.40
2402	4924.09	Н	Х	PK	50.97	1.78	N/A	N/A	52.75	74.00	21.25
	4923.98	Н	Х	AV	43.33	1.78	N/A	N/A	45.11	54.00	8.89
	2483.66	н	Х	PK	51.41	3.10	N/A	N/A	54.51	74.00	19.49
2472	2483.58	н	Х	AV	42.55	3.10	N/A	N/A	45.65	54.00	8.35
2472	4944.72	Н	Х	PK	50.26	1.83	N/A	N/A	52.09	74.00	21.91
	4943.86	Н	Х	AV	39.25	1.83	N/A	N/A	41.08	54.00	12.92

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 1(TM 1)

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2388.84	V	Z	PK	53.23	2.69	N/A	N/A	55.92	74.00	18.08
2412	2389.75	V	Z	AV	42.80	2.70	N/A	N/A	45.50	54.00	8.50
2412	4824.55	Н	Х	PK	50.59	1.49	N/A	N/A	52.08	74.00	21.92
	4823.68	Н	Х	AV	40.19	1.49	N/A	N/A	41.68	54.00	12.32
0407	4873.44	Н	Х	PK	50.35	1.62	N/A	N/A	51.97	74.00	22.03
2437	4873.32	Н	Х	AV	40.08	1.62	N/A	N/A	41.70	54.00	12.30
	2483.78	Н	Х	PK	60.73	3.10	N/A	N/A	63.83	74.00	10.17
2462	2483.78	Н	Х	AV	46.55	3.10	N/A	N/A	49.65	54.00	4.35
2462	4923.27	Н	Х	PK	49.97	1.78	N/A	N/A	51.75	74.00	22.25
	4923.53	н	Х	AV	39.59	1.78	N/A	N/A	41.37	54.00	12.63
	2483.58	Н	Х	PK	60.10	3.10	N/A	N/A	63.20	74.00	10.80
0.470	2483.63	Н	Х	AV	46.09	3.10	N/A	N/A	49.19	54.00	4.81
2472	4944.05	Н	Х	PK	49.94	1.83	N/A	N/A	51.77	74.00	22.23
	4944.08	Н	Х	AV	39.45	1.83	N/A	N/A	41.28	54.00	12.72

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 2(TM 2)

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.71	V	Z	PK	52.61	2.70	N/A	N/A	55.31	74.00	18.69
2412	2389.28	V	Z	AV	42.59	2.70	N/A	N/A	45.29	54.00	8.71
2412	4823.49	Н	Х	PK	51.14	1.49	N/A	N/A	52.63	74.00	21.37
	4823.02	Н	Х	AV	39.95	1.49	N/A	N/A	41.44	54.00	12.56
2437	4874.59	Н	Х	PK	50.84	1.62	N/A	N/A	52.46	74.00	21.54
2437	4874.46	Н	Х	AV	39.76	1.62	N/A	N/A	41.38	54.00	12.62
	2483.78	Н	Х	PK	59.39	3.10	N/A	N/A	62.49	74.00	11.51
2462	2483.50	Н	Х	AV	46.52	3.10	N/A	N/A	49.62	54.00	4.38
2402	4923.87	Н	Х	PK	50.19	1.78	N/A	N/A	51.97	74.00	22.03
	4923.67	Н	Х	AV	39.80	1.78	N/A	N/A	41.58	54.00	12.42
	2483.52	Н	Х	PK	61.33	3.10	N/A	N/A	64.43	74.00	9.57
2472	2483.51	Н	Х	AV	46.57	3.10	N/A	N/A	49.67	54.00	4.33
2412	4943.59	Н	Х	PK	49.70	1.83	N/A	N/A	51.53	74.00	22.47
	4944.14	Н	Х	AV	39.35	1.83	N/A	N/A	41.18	54.00	12.82

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 3(TM 3)

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

8.6 Power-line conducted emissions

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Test Results: Comply(Refer to next page.)

The worst data was reported.

RESULT PLOTS TM2 & 2437MHz

AC Line Conducted Emissions (Graph)

Results of Conducted Emission

DTNC Date 2018-08-03 Order No. Referrence No. 120V, 60Hz Model No. LET Power Supply Serial No. Temp/Humi. 25'C, 48% Test Condition Operator InHee Bae 2.4G WLAN Memo LIMIT : FCC P15.207 QP FCC P15.207 AV [QP/CAV] [dBuV] PHASE : Ν 90 80 70 60 50 40 30 T n Uchiel والعا منا a 19 Kontilika 14 20 11 100 10 0 20M 30M .15M .2M . 3M . 5M .7M 1M 2M 3M 5M 7M10M Frequency[Hz] [QP/CAV] PHASE : [dBuV] 90 80 70 60 50 40 30 1.14 P φ 20 10 0 .15M .2M .7M 20M 30M . 3M . 5M 1M2M 3M 5M 7M10M Frequency[Hz]

DTNC

9 10

11

0.50072 13.56 4.58 9.99 1.04640 14.82 8.10 9.99 1.84200 13.06 5.27 10.03

12 2.52000 14.03 6.50 10.05

AC Line Conducted Emissions (List)

Results of Conducted Emission

23.5514.57 56.00 46.00 32.4531.43 24.8118.09 56.00 46.00 31.1927.91

23.0915.30 56.00 46.00 32.9130.70

24.0816.55 56.00 46.00 31.9229.45

Date 2018-08-03

L1

L1

L1

L1

L1 L1 L1

Order Model Serial Test C	No.	LET	Referrence No. Power Supply Temp/Humi. Operator	120V, 60Hz 25'C , 48% InHee Bae
Memo	1	2.4G WLAN		
LIMIT	FCC P15 FCC P15			
NO	FREQ	READING C.FACTOR QP CAV [dBuV][dBuV] [dB]	RESULT LIMIT QP CAV QP CAV [dBuV][dBuV] [dBuV][dBuV]	MARGIN PHASE QP CAV [dBuV][dBuV]
1	0.30082	21.2212.77 9.96	31.18 22.73 60.22 50.22 2	9.0427.49 N
2	0.53220	25.1418.01 9.99	35.1328.00 56.00 46.00 2	0.8718.00 N
3		20.6912.31 10.00		5.3123.69 N
4		19.7812.15 10.03		6.1923.82 N
5	3.19800			9.0127.18 N
6	6.48680			4.0932.72 N
7	9.88160			6.4335.06 N
8	0.26378	12.90 6.55 9.95	22.8516.50 61.31 51.31 3	8.4634.81 L1

 13
 3.90600
 12.34
 4.05
 10.07
 22.41
 14.12
 56.00
 46.00
 33.59
 31.88

 14
 6.76060
 9.08
 2.21
 10.13
 19.21
 12.34
 60.00
 50.00
 40.79
 37.66

 15
 12.53460
 8.41
 2.66
 10.25
 18.66
 12.91
 60.00
 50.00
 41.34
 37.09

TRF-RF-236(04)170516

9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	17/12/28	18/12/28	US50200816
Spectrum Analyzer	Agilent Technologies	N9020A	18/01/03	19/01/03	MY48011700
DC Power Supply	Agilent Technologies	66332A	17/12/27	18/12/27	US37473833
Multimeter	FLUKE	17B	17/12/26	18/12/26	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	17/12/27	18/12/27	255571
Signal Generator	ANRITSU	MG3695C	18/02/12	19/02/12	173501
Thermohygrometer	BODYCOM	BJ5478	18/07/09	19/07/09	N/A
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	19/01/30	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	16/08/05	18/08/05	9160-3362
Horn Antenna	ETS-Lindgren	3115	17/01/13	19/01/13	9202-3820
Horn Antenna	Schwarzbeck	BBHA 9120C	17/12/04	19/12/04	9120C-561
Horn Antenna	A.H.Systems Inc.	SAS-574	17/07/31	19/07/31	155
PreAmplifier	tsj	MLA-010K01-B01- 27	18/02/27	19/02/27	1844538
PreAmplifier	tsj	MLA-0118-J01-45	18/02/08	19/02/08	17138
PreAmplifier	tsj	MLA-1840-J02-45	18/07/06	19/07/06	16966-10728
EMI Test Receiver	ROHDE&SCHWARZ	ESR7	18/02/13	19/02/13	101061
Attenuator	SMAJK	SMAJK-2-3	18/07/02	19/07/02	3
Attenuator	Aeroflex/Weinschel	56-3	17/12/27	18/12/27	Y2370
Attenuator	SRTechnology	F01-B0606-01	18/07/02	19/07/02	13092403
Attenuator	Hefei Shunze	SS5T2.92-10-40	17/12/27	18/12/27	16012202
Attenuator	SMAJK	SMAJK-50-10	18/07/04	19/07/04	15081903
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5- 6SS	18/07/02	19/07/02	3
High Pass Filter	Wainwright Instruments	WHKX10-2838-	18/07/02	19/07/02	1
EMI TEST RECEIVER	Rohde Schwarz	3300-18000-60SS ESCI7	18/02/12	19/02/12	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	17/09/29	18/09/29	101333
LISN	SCHWARZBECK	NNLK 8121	18/03/20	19/03/20	06183
		ML2495A	18/04/17	19/04/17	1306007
Power Meter & Wide Bandwidth Sensor	Anritsu	MA2490A	18/04/17	19/04/17	1249001
Cable	DT&C	CABLE	18/03/26	19/03/26	RF-68
Cable	DT&C	CABLE	18/03/26	19/03/26	P-IN
Cable	DT&C	CABLE	18/03/26	19/03/26	RF-71
Cable	DT&C	CABLE	18/06/22	19/06/22	RF-82
Cable	DT&C	CABLE	18/06/22	19/06/22	C-016-4
Cable	DT&C	CABLE	18/06/22	19/06/22	RF-81
Cable	Radiall	TESTPRO3	18/06/22	19/06/22	RF-74
Cable	Radiall	TESTPRO3	18/06/22	19/06/22	RF-66

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX I

Duty cycle plots

Test Procedure

Duty Cycle was measured using section 6.0 b) of KDB558074 D01V04 :

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle

TM 1(1Mbps) & 2437

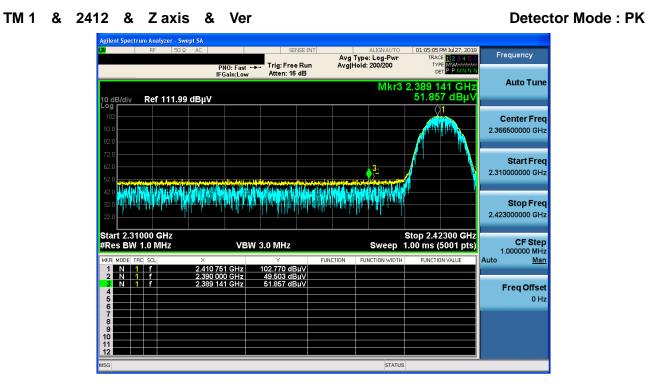
	RF	50 Ω ι	AC CORREC		SENSE: If	TV	ALIGN AUTO		4 Jul 25, 2018	_
			PNO: Fast IFGain:Low		rig: Free Ru Atten: 40 dB		Type: Log-Pwr	TYP	E 123456 E W NNNN F P NNNNN	Frequency
0 dB/di	v Ref	30.00 dB	im				Δ	Mkr3 12	2.25 ms 0.04 dB	Auto Tun
.og 20.0						V		3∆4		Center Fre
10.0						- X <u>a</u>				2.437000000 GH
0.00										
10.0										Start Fre
20.0										2.437000000 GI
30.0										
40.0										Stop Fre
60.0										2.437000000 GI
	0.10700									
		UUUU GH	Z				Sweep 5	S 0 12 ma //	pan 0 Hz	CF Ste
Center Res BV	2.43700 V 8 MHz		#V	BW 50			Sweep 5	u. rə ms (a		
Res BV	V 8 MHZ	A)	X		Y	FUNCTION	FUNCTION WIDTH			
Res BV	V 8 MHz TRC SCL 1 t (, 1 t		× 12.22 ms 30.46 ms	(Δ) ·	Y 0.22 dB 18.01 dBm	FUNCTION				<u>Auto</u> Mi
Res BV 4KR MODE 1 Δ2 2 F 3 Δ4 4 F	V 8 MHz TRC SCL 1 t (, 1 t		× 12.22 ms	(Δ) ·	⊻ 0.22 dB	FUNCTION				Auto Mi Freq Offs
Res BV 1 Δ2 2 F 3 Δ4 4 F 5 6	V 8 MHz TRC SCL 1 t (, 1 t (, 1 t (,		× 12.22 ms 30.46 ms 12.25 ms	(Δ) ·	Y 0.22 dB 18.01 dBm 0.04 dB	FUNCTION				Auto Mi Freq Offs
Res BV 1 A2 2 F 3 A4 4 F 5 6 7 8	V 8 MHz TRC SCL 1 t (, 1 t (, 1 t (,		× 12.22 ms 30.46 ms 12.25 ms	(Δ) ·	Y 0.22 dB 18.01 dBm 0.04 dB	FUNCTION				Auto Ma Freq Offs
Res BW 1 A2 2 F 3 A4 5 6 7 8 9 10	V 8 MHz TRC SCL 1 t (, 1 t (, 1 t (,		× 12.22 ms 30.46 ms 12.25 ms	(Δ) ·	Y 0.22 dB 18.01 dBm 0.04 dB	FUNCTION			IN VALUE	Auto Mi Freq Offs
Res BV 1 A2 2 F 3 A4 4 F 5 6 7 8	V 8 MHz TRC SCL 1 t (, 1 t (, 1 t (,		× 12.22 ms 30.46 ms 12.25 ms	(Δ) ·	Y 0.22 dB 18.01 dBm 0.04 dB	FUNCTION				8.000000 MH Auto Mi Freq Offs 0 H

Dt&C

TM 2(6Mbps) & 2437

Duty Cycle

Agilent Spectr																
L <mark>XI</mark>	RF	50 Ω	AC	CORREC	C		ENSE:IN		Avg		ALIGNAUTO : Log-Pwr	02:04	TRACE	ul 25, 201	6	Frequency
				PNO: IFGair	Fast ← n:Low	Atten:		1			Δ	Mkr	DET	25 m	S N	Auto Tune
10 dB/div 20.0 10.0	Ref	30.00	dBm					>	< <mark>.</mark>				3∆4	.04 u		Center Frec 2.437000000 GHz
-10.0 -20.0 -30.0																Start Fred 2.437000000 GHz
-40.0 -50.0 -60.0																Stop Freq 2.437000000 GHz
Center 2. Res BW 8	3 MHz				#VB\	N 50 MH	z				Sweep 5		ns (8		s)	CF Step 8.000000 MHz Auto Mar
		(Δ)	×		ms (A		4 dB	FUNCT	TON	FUN	CTION WIDTH	FL	JNCTION	VALUE	-	
2 F 3 Δ4 4 F 5		(Δ)		30.21 12.25 30.21	ms (Δ	18.05 0.0 18.05	4 dB								=	Freq Offset 0 Hz
6 7 8 9 10 11														>		
MSG											STATUS	3				

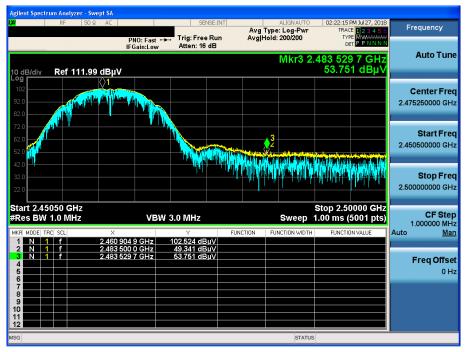

TM 3(MCS0) & 2437

44 PM TRACE TYPE DE1 SENSE:INT ALIGNAUTO Avg Type: Log-Pwr Frequency Trig: Free Run Atten: 40 dB PNO: Fast IFGain:Low ∆Mkr3 1.901 ms -0.12 dB Auto Tune Ref 30.00 dBm 3∆4 Center Freq 2.437000000 GHz Start Freq 2.437000000 GHz Stop Freq 2.437000000 GHz Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz Sweep 10.20 ms (3001 pts) CF Step 8.000000 MHz Man #VBW 50 MHz <u>Auto</u> FUNCTION FUNCTION 1.35 dB 13.50 dBm -0.12 dB 13.50 dBm <u>(Δ)</u> (Δ) $\begin{array}{c|c|c|c|c|c|c|c|c|} \hline F & 1 & t \\ \hline \Delta 4 & 1 & t \\ \hline F & 1 & t \\ \hline \end{array}$ Freq Offset ms (Δ) 4 0 Hz Alignment Completed STATUS

Duty Cycle

APPENDIX II

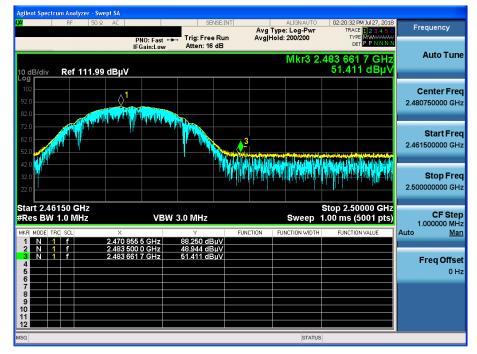
Unwanted Emissions (Radiated) Test Plot



TM 1 & 2412 & Zaxis & Ver

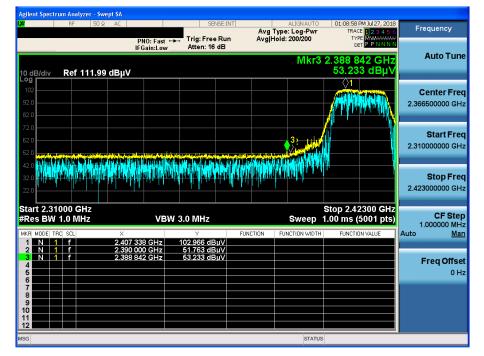
	PNO: Fast ↔	SENSE:INT	ALIGN AUTO Avg Type: RMS Avg Hold: 200/200	01:03:57 PM Jul27, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
0 dB/div Ref 111.99 dE	IFGain:Low	Atten: 16 dB	Mkr3	2.389 254 GHz 41.801 dBµV	Auto Tu
					Center Fr 2.366500000 G
	akta ka alakta ta sha ta shi a		alitan karati antiki s <mark>13</mark>		Start Fr 2.310000000 G
		u milit u al di			Stop Fr 2.423000000 G
				Oton 2 42200 CH-	
tart 2.31000 GHz Res BW 1.0 MHz	VBW	3.0 MHz*	Sweep	Stop 2.42300 GHz 1.00 ms (5001 pts)	CF St
Res BW 1.0 MHz KR MODE TRC SCL 1 N 1 f 2	VBW × 2.410 932 GHz 2.390 000 GHz	Y 99.542 dBµV	Sweep	Stop 2.42300 GHz 1.00 ms (5001 pts) FUNCTION VALUE	CF St 1.000000 M Auto <u>M</u>
Res BW 1.0 MHz KR MODE TRC SCL 1 N 1 f 2 2 N 1 f 2	× 2.410 932 GHz	Y	Sweep	1.00 ms (5001 pts)	CF St 1.000000 M

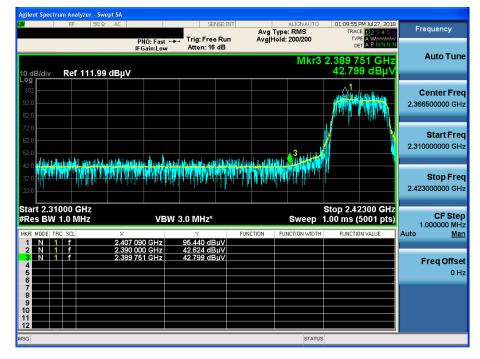
TM 1 & 2462 & X axis & Hor



TM 1 & 2462 & X axis & Hor

Avg Type: RMS Avg|Hold: 200/200 Frequency A WWWA Trig: Free Run Atten: 16 dB TYPE DE1 PNO: Fast IFGain:Low Auto Tune Mkr3 2.483 599 0 GH 42.500 dBµ Ref 111.99 dBµV **Center Freq** 2.475250000 GHz Start Freq 2.450500000 GHz ditter dating dat **MAN** teri i yana ya ter 1,1,1,1,1,1,1 Stop Freq 2.50000000 GHz Start 2.45050 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) CF Step 1.000000 MHz VBW 3.0 MHz* Sweep FUNCTION Auto Man 99.518 dBµ\ 41.784 dBµ\ 42.500 dBµ\ 2.483 500 0 GHz 2.483 599 0 GHz Freq Offset 0 Hz 11 12 STATUS


TM 1 & 2472 & X axis & Hor


TM 1 & 2472 & X axis & Hor

zer - Swept SA Frequency Avg Type: RMS Avg|Hold: 200/200 Trig: Free Run Atten: 16 dB PNO: Fast ↔→ IFGain:Low Mkr3 2.483 577 0 GH: 42.546 dBµ Auto Tune Ref 111.99 dBµV 0 dB/div **Center Freq** Δ1 2.480750000 GHz Start Freq 2.461500000 GHz k rei S³an telekter allerand salaran ak lalaraha Manager ng sara provinsi kalanan ak lalaraha Stop Freq 2.50000000 GHz Start 2.46150 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) **CF Step** 1.000000 MHz <u>Man</u> VBW 3.0 MHz* Sweep Auto 2.483 500 0 GHz 2.483 577 0 GHz 41.968 dBµ 42.546 dBµ N Freq Offset 0 Hz

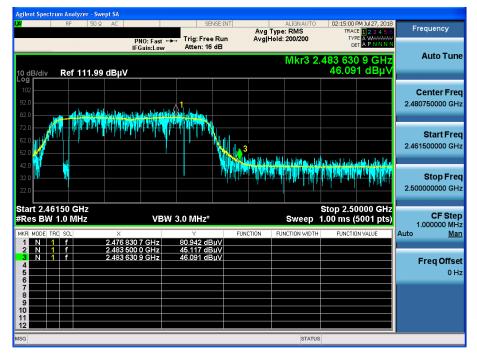
TM 2 & 2412 & Zaxis & Ver



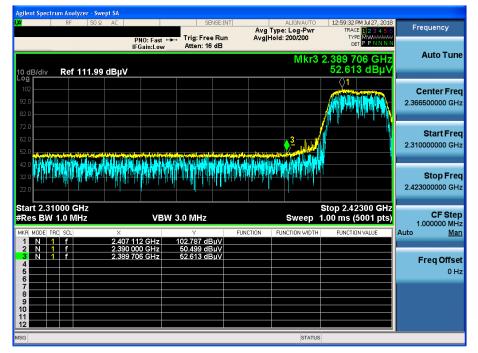
TM 2 & 2412 & Zaxis & Ver

TM 2 & 2462 & X axis & Hor

TM 2 & 2462 & X axis & Hor


er - Swept SA Frequency Avg Type: RMS Avg|Hold: 200/200 Trig: Free Run Atten: 16 dB A WW PNO: Fast +++ IFGain:Low Mkr3 2.483 777 2 GH 46.553 dBµ Auto Tune Ref 111.99 dBµV $\hat{\Omega}_{n}^{1}$ **Center Freq** 2.475250000 GHz Start Freq 2.450500000 GHz ha kan si ka ku shi ku Stop Freq 2.50000000 GHz Start 2.45050 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) **CF Step** 1.000000 MHz <u>Man</u> VBW 3.0 MHz* Sweep Auto 46.197 dBu 46.553 dBu 2.483 500 0 GHz 2.483 777 2 GHz N Freq Offset 0 Hz

02:13:55 PM Jul 27, 201 Frequency TRACE 1 2 3 4 TYPE MWWW DET P P N N Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run Atten: 16 dB PNO: Fast + IFGain:Low Auto Tune Mkr3 2.483 577 0 GH 60.097 dBµ Ref 111.99 dBµV 0 dB/div **Center Freq** 0¹ 2.480750000 GHz A PROPERTY AND ANY O أللاطلاب ألال 1 Start Freq 2.461500000 GHz Stop Freq 2.50000000 GHz Start 2.46150 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) CF Step 1.000000 MHz VBW 3.0 MHz Sweep Auto Man FUNCTION FUNCTION VALU FUNCTION W 2.477 700 8 GHz 2.483 500 0 GHz 2.483 577 0 GHz 89.221 dBµ\ 57.768 dBµ\ 60.097 dBµ\ Freq Offset 0 Hz STATUS


TM 2 & 2472 & X axis & Hor

TM 2 & 2472 & X axis & Hor

TM 3 & 2412 & Zaxis & Ver

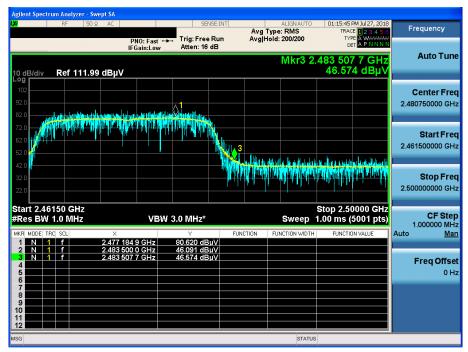
TM 3 & 2412 & Zaxis & Ver

/zer - Swept SA Frequency Avg Type: RMS Avg|Hold: 200/200 Trig: Free Run Atten: 16 dB PNO: Fast IFGain:Low Auto Tune Mkr3 2.389 277 42 586 dBi l0 dB/div .og Ref 111.99 dBµV **Center Freq** 2.366500000 GHz **WALING AND** Start Freq 2.310000000 GHz Stop Freq 2.423000000 GHz Start 2.31000 GHz #Res BW 1.0 MHz Stop 2.42300 GHz 1.00 ms (5001 pts) CF Step 1.000000 MHz VBW 3.0 MHz* Sweep Man Auto 41.474 dBi 42.586 dBi Ň 2 389 277 GH Freq Offset 0 Hz

TM 3 & 2462 & X axis & Hor

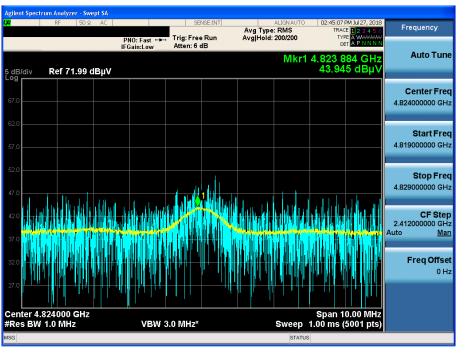
Detector Mode : PK

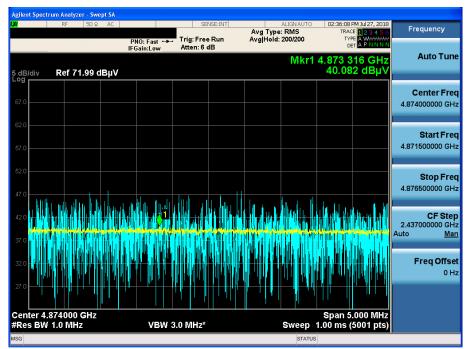
TM 3 & 2462 & X axis & Hor


zer - Swept SA Frequency Avg Type: RMS Avg|Hold: 200/200 TYPE A WANAA DET A P N N Trig: Free Run Atten: 16 dB PNO: Fast ↔→ IFGain:Low Mkr3 2.483 500 0 GH 46.523 dBµ Auto Tune Ref 111.99 dBµV 0 dB/div **Center Freq** 2.475250000 GHz Start Freq 2.450500000 GHz Stop Freq 2.50000000 GHz Start 2.45050 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) **CF Step** 1.000000 MHz <u>Man</u> VBW 3.0 MHz* Sweep Auto 2.483 500 0 GHz 2.483 500 0 GHz 46.523 dBi 46.523 dBi N Freq Offset 0 Hz

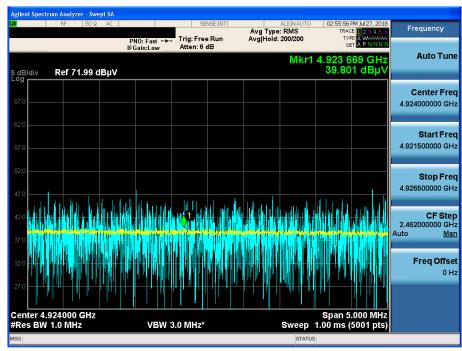
01:14:50 PM Jul 27, 201 Frequency TRACE 1 2 3 4 TYPE MWWW DET P P N N Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run Atten: 16 dB PNO: Fast + IFGain:Low Auto Tune Mkr3 2.483 83 523 1 GH 61.326 dBµ` Ref 111.99 dBµV 0 dB/div **Center Freq** 2.480750000 GHz <mark>, }</mark> Start Freq 2.461500000 GHz Stop Freq 2.50000000 GHz Start 2.46150 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) CF Step 1.000000 MHz VBW 3.0 MHz Sweep Auto Man FUNCTION FUNCTION FUNCTION W 88.170 dBµ\ 57.463 dBµ\ 61.326 dBµ\ 2.473 812 3 GHz 2.483 500 0 GHz 2.483 523 1 GHz Freq Offset 0 Hz STATUS

TM 3 & 2472 & X axis & Hor


TM 3 & 2472 & X axis & Hor


Detector Mode : AV

TM 1 & 2412 & X axis & Hor


TM 2 & 2437 & X axis & Hor

TM 3 & 2462 & X axis & Hor

