EST

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

United States

Date of Testing: 01/18/16 - 01/28/16 Test Site/Location:

PCTEST Lab, Columbia, MD, USA

Document Serial No.: 0Y1601180100.ZNF

FCC ID: ZNFL81AL

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093

Model(s): LGL81AL, LG-L81AL, LG-K540, LGK540, K540

Permissive Change(s): See FCC Change Document

Date of Original Certification: 01/21/2016

Equipment	Band & Mode	Tx Frequency	SAR			
Class	Balla a Mede	TXTTOquonoy	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	10 gm Phablet (W/kg)
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.40	0.69	0.69	
PCE	GSMGPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.24	0.44	0.44	
PCE	UMTS 850	826.40 - 846.60 MHz	0.34	0.58	0.58	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.42	0.69	0.69	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.42	0.65	0.65	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.23	0.44	0.44	
PCE	LTE Band 17	706.5 - 713.5 MHz				
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.31	0.58	0.58	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.53	0.86	0.86	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.36	0.61	0.61	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.65	0.15	0.15	
DSS/DTS	DSS/DTS Bluetooth 2402 - 2480 MHz			N	/A	
Simultaneous SAR per KDB 690783 D01v01r03:			1.18	1.03	1.01	N/A

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 4 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 1 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	ORMATION	8
3	INTROD	UCTION	9
4	DOSIME	TRIC ASSESSMENT	10
5	DEFINIT	ION OF REFERENCE POINTS	11
6	TEST CO	ONFIGURATION POSITIONS	12
7	RF EXP	OSURE LIMITS	15
8	FCC ME	ASUREMENT PROCEDURES	16
9	RF CON	DUCTED POWERS	20
10	SYSTEM	I VERIFICATION	30
11	SAR DA	TA SUMMARY	32
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	41
13	SAR ME	ASUREMENT VARIABILITY	44
14	EQUIPM	ENT LIST	45
15	MEASUF	REMENT UNCERTAINTIES	46
16	CONCLU	JSION	47
17	REFERE	NCES	48
APPEN	NDIX A:	SAR TEST PLOTS	
APPEN	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	NDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 0 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 2 of 49

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

	Voice	Burst Average GMSK Burst Average 8-PS			age 8-PSK	
Mode / Band		(dBm)	(dE	Bm)	(dBm)	
		1 TX Slot	1 TX Slots	2 TX Slots	1 TX Slots	2 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.0	33.0	31.0	27.7	25.7
GSW/GPRS/EDGE 850	Nominal	32.5	32.5	30.5	27.2	25.2
GSM/GPRS/EDGE 1900	Maximum	29.7	29.7	27.7	26.7	24.7
GSW/GPRS/EDGE 1900	Nominal	29.2	29.2	27.2	26.2	24.2

	Modula	ted Averag	e (dBm)	
Mode / Band	3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	
UMTS Band 5 (850 MHz)	Maximum	23.7	23.7	23.7
Olvi13 Ballu 3 (850 lviH2)	Nominal	23.2	23.2	23.2
LINATE Daniel 4 (1750 NALIE)	Maximum	23.7	23.7	23.7
UMTS Band 4 (1750 MHz)	Nominal	23.2	23.2	23.2
UMTS Band 2 (1900 MHz)	Maximum	23.7	23.7	23.7
01V113 Ballu 2 (1900 IVII12)	Nominal	23.2	23.2	23.2

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 2 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 3 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

Mode / Band	Modulated Average (dBm)	
LTE Band 12	Maximum	24.5
LIE Dallu 12	Nominal	24.0
LTE Band 17	Maximum	24.5
	Nominal	24.0
175 D 15 (0 II)	Maximum	23.7
LTE Band 5 (Cell)	Nominal	23.2
LTE Dand 4 (ANS)	Maximum	24.5
LTE Band 4 (AWS)	Nominal	24.0
LTE D (D.CC.)	Maximum	23.7
LTE Band 2 (PCS)	Nominal	23.2

Mode / Band	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	17.0
TEEE 802.11b (2.4 GHZ)	Nominal	16.0
IEEE 902 11 c /2 4 CHz)	Maximum	15.0
IEEE 802.11g (2.4 GHz)	Nominal	14.0
IFFF 902 115 /2 4 CH-)	Maximum	14.0
IEEE 802.11n (2.4 GHz)	Nominal	13.0
Bluetooth	Maximum	9.0
Bluetooth	Nominal	8.0
Bluetooth LE	Maximum	-0.5

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet".

Table 1-1
Device Edges/Sides for SAR Testing

Device Lages/oldes for OAR Testing								
Mode	Back	Front	Тор	Bottom	Right	Left		
GPRS 850	Yes	Yes	No	Yes	Yes	Yes		
GPRS 1900	Yes	Yes	No	Yes	No	Yes		
UMTS 850	Yes	Yes	No	Yes	Yes	Yes		
UMTS 1750	Yes	Yes	No	Yes	No	Yes		
UMTS 1900	Yes	Yes	No	Yes	No	Yes		
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes		
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes		
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 2 (PCS)	Yes	Yes	No	Yes	No	Yes		
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No		

Note: Particular DUT edges were not required to be evaluated for wireless router SAR SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 4 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 4 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2 Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory		Phablet	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes	
3	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
4	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes	
5	LTE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	*-Pre-installed VOIP applications are considered.
6	LTE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	Yes	*-Pre-installed VOIP applications are considered.
7	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	*-Pre-installed VOIP applications are considered.
8	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	Yes	*-Pre-installed VOIP applications are considered.

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call.
- 5. This device does not support VoLTE.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Dogg F of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16			Page 5 of 49

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; $[(8/10)^* \sqrt{2.480}] = 1.3 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v06, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \le 7.5$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, phablet Bluetooth SAR was not required; $[(8/5)^* \sqrt{2.480}] = 2.5 < 7.5$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for 2.4 GHz WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports both LTE Band 12 and LTE Band 17. Since the supported frequency span for LTE Band 17 falls completely within the supported frequency span for LTE Band 12, both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE Band 12

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for licensed technologies since wireless router 1g SAR was < 1.2 W/kg for these modes.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans C of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 6 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSMGPRS/EDGE 850	03520	03520	03520
GSWGPRS/EDGE 1900	03520	03520	03520
UMTS 850	03520	03520	03520
UMTS 1750	03520	03520	03520
UMTS 1900	03520	03520	03520
LTE Band 12	03546	03538	03538
LTE Band 5 (Cell)	03546	03538	03538
LTE Band 4 (AWS)	03538	03538	03538
LTE Band 2 (PCS)	03538	03538	03538
2.4 GHz WLAN	03553	03553	03553

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT] LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 7 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 7 of 49

2 LTE INFORMATION

	LTE Information			
FCC ID		ZNFL81AL		
Form Factor		Portable Handset		
Frequency Range of each LTE transmission band		Band 12 (699.7 - 715.3 N		
	LTE Band 17 (706.5 - 713.5 MHz)			
		Band 5 (Cell) (824.7 - 848.3		
		nd 4 (AWS) (1710.7 - 1754	· · · · · · · · · · · · · · · · · · ·	
		ind 2 (PCS) (1850.7 - 1909	, , , , , , , , , , , , , , , , , , ,	
Channel Bandwidths		12: 1.4 MHz, 3 MHz, 5 MH		
		TE Band 17: 5 MHz, 10 MI		
	LTE Band 5 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz LTE Band 4 (AWS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20			
		4 MHz, 3 MHz, 5 MHz, 10 4 MHz, 3 MHz, 5 MHz, 10		
Channel Numbers and Frequencies (MHz)	LIE Band 2 (PCS). 1.4	Mid	High	
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)	
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)	
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)	
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)	
LTE Band 17: 5 MHz	706.5 (23755)	710 (23790)	713.5 (23825)	
LTE Band 17: 10 MHz	709 (23780)	710 (23790)	711 (23800)	
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)	
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)	
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)	
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)	
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)	
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)	
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)	
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)	
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)	
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)	
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)	
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)	
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)	
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)	
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)	
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)	
UE Category		4		
Modulations Supported in UL		QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS 36.101		VE0		
section 6.2.3~6.2.5? (manufacturer attestation to be		YES		
provided) A-MPR (Additional MPR) disabled for SAR Testing?		YES		
LTE Release 10 Additional Information	This device describ		2000 Delega - 40 T	
The Notation of Additional Information	following LTE Release 1 Relay, HetNet, Enhan	upport full CA features on 10 Features are not suppor ced MIMO, eICI, WIFI Offic rier Scheduling, Enhanced	ted: Carrier aggregation, pading, MDH, eMBMA,	

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 0 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 8 of 49
016 DCTCCT Engineering Laboratory Inc.		· •		DEV/ 47.0 M

3

INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Dogg 0 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16			Page 9 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

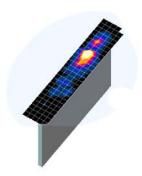


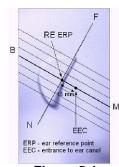
Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6


FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 10 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The "M" is the reference point for the center of the mouth, "LE" is the left ear reference (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The passing through the two ear canals and M is defined as the Reference Plane. The N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

point point the plane line the N-F

Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

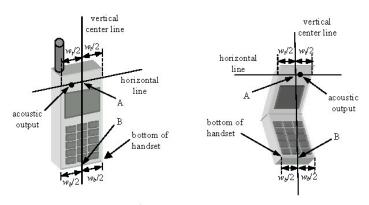


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 44 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 11 of 49

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front. Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 12 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

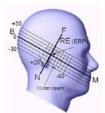


Figure 6-3
Side view w/ relevant markings

6.4 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test

Figure 6-4 Sample Body-Worn Diagram

separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		David 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16		Page 13 of 49	

6.5 **Extremity Exposure Configurations**

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.6 **Wireless Router Configurations**

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.7 **Phablet Configurations**

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-q SAR is required only for the surfaces and edges with hotspot mode 1-q SAR > 1.2 W/kg.

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dans 44 of 40	
0Y1601180100.ZNF		Page 14 of 49			

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)				
Peak Spatial Average SAR Head	1.6	8.0				
Whole Body SAR	0.08	0.4				
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20				

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dans 45 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 15 of 49	

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Danie 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 16 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple $DPDCH_n$ configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or $DPDCH_n$, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dana 47 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 17 of 49	

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 18 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

2.4 GHz SAR Test Requirements 8.6.2

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.3 **OFDM Transmission Mode and SAR Test Channel Selection**

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements. SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.4 **Initial Test Configuration Procedure**

For OFDM, in both 2.4 Ghz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.3).

8.6.5 **Subsequent Test Configuration Procedures**

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	B 40 . f 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16		Page 19 of 49	

9 RF CONDUCTED POWERS

9.1 GSM Conducted Powers

		Maximum Burst-Averaged Output Power							
		Voice	GPRS/EDGE	Data (GMSK)	EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	32.77	32.79	30.67	27.57	25.57			
GSM 850	190	32.82	32.70	30.66	27.63	25.48			
	251	32.80	32.73	30.71	27.53	25.48			
	512	29.50	29.59	27.48	26.63	24.57			
GSM 1900	661	29.53	29.49 27.52		26.61	24.50			
	810	29.52	29.59	27.53	26.50	24.58			
	Calculated Maximum Frame-Averaged Output Power								
		Voice	GPRS/EDGE	Data (GMSK)	EDGE Dat	ta (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	23.74	23.76	24.65	18.54	19.55			
GSM 850	190	23.79	23.67	24.64	18.60	19.46			
	251	23.77	23.70	24.69	18.50	19.46			
	512	20.47	20.56	21.46	17.60	18.55			
GSM 1900	661	20.50	20.46	21.50	17.58	18.48			
	810	20.49	20.56	21.51	17.47	18.56			
GSM 850	Frame	23.47	23.47	24.48	18.17	19.18			
GSM 1900	Avg.Targets:	20.17	20.17	21.18	17.17	18.18			

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 10 (Max 2 Tx uplink slots)
EDGE Multislot class: 10 (Max 2 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-1 Power Measurement Setup

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	G	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dans 00 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 20 of 49	

© 2016 PCTEST Engineering Laboratory, Inc.

9.2 UMTS Conducted Powers

3GPP Release Mode		3GPP 34.121 Subtest	Cellular Band [dBm]		AWS Band [dBm]		PCS Band [dBm]			3GPP MPR [dB]		
Version		Oublest	4132	4183	4233	1312	1412	1513	9262	9400	9538	WII IX [GD]
99	WCDMA	12.2 kbps RMC	23.53	23.51	23.49	23.40	23.48	23.48	23.49	23.46	23.61	-
99	WODIVIA	12.2 kbps AMR	23.61	23.55	23.45	23.45	23.49	23.49	23.50	23.47	23.47	-
6		Subtest 1	23.58	23.55	23.53	23.50	23.47	23.52	23.46	23.47	23.49	0
6	HSDPA	Subtest 2	23.63	23.55	23.54	23.60	23.51	23.56	23.51	23.48	23.56	0
6	HODEA	Subtest 3	22.97	23.00	23.09	23.04	23.10	23.07	23.08	22.99	23.07	0.5
6		Subtest 4	23.02	22.99	23.07	23.03	23.00	23.07	23.00	23.13	23.03	0.5
6		Subtest 1	23.51	23.48	23.61	23.53	23.60	23.57	23.50	23.56	23.52	0
6		Subtest 2	21.56	21.54	21.50	21.42	21.56	21.53	21.61	21.48	21.48	2
6	HSUPA	Subtest 3	22.54	22.59	22.53	22.48	22.50	22.52	22.58	22.51	22.50	1
6		Subtest 4	21.46	21.59	21.57	21.57	21.58	21.52	21.46	21.63	21.49	2
6		Subtest 5	23.62	23.45	23.58	23.48	23.57	23.56	23.56	23.62	23.60	0

This device does not support DC-HSDPA.

Figure 9-2
Power Measurement Setup

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

Table 9-1
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

			LTE Band 12		
			10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	24.29		0
QPSK	1	25	24.32	0	0
	1	49	24.34		0
	25	0	23.26		1
	25	12	23.33	0-1	1
	25	25	23.16	0-1	1
	50	0	23.27		1
	1	0	23.22		1
	1	25	23.22	0-1	1
	1	49	23.33		1
16QAM	25	0	22.24		2
	25	12	22.32	0-2	2
	25	25	22.20	0-2	2
	50	0	22.14		2

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 04 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 21 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

Table 9-2 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

			Sanu 12 Conu	LTE Band 12					
5 MHz Bandwidth									
			Low Channel	annel Mid Channel	High Channel				
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			Conducted Power [dBm]	Conducted Power [dBm]	Conducted Power [dBm]	Conducted Power			
	1	0	24.29	24.26	24.33	0	0		
	1	12	24.35	24.35	24.40		0		
	1	24	24.33	24.34	24.28		0		
QPSK	12	0	22.90	22.88	22.90	0-1	1		
	12	6	23.02	23.06	23.00		1		
	12	13	23.21	23.21	23.19		1		
	25	0	23.10	23.16	23.12		1		
	1	0	23.16	23.16	23.12		1		
	1	12	23.23	23.19	23.25	0-1	1		
	1	24	23.30	23.32	23.31		1		
16QAM	12	0	21.98	21.97	21.96		2		
	12	6	22.11	22.10	22.10	0-2	2		
	12	13	22.32	22.33	22.34	0-2	2		
	25	0	22.08	22.11	22.13		2		

Table 9-3 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

	LIE Ballu 12 Collucted Fowers - 3 MITZ Balluwidtii									
				LTE Band 12						
	3 MHz Bandwidth									
	M. 1 1 5		Low Channel	Mid Channel	High Channel					
Modulation		RB Offset	23025	23095	23165	MPR Allowed per	MDD (4D)			
Wodulation	RB Size	KB Oliset	(700.5 MHz)	(707.5 MHz)	(714.5 MHz)	3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm	1]					
	1	0	24.32	24.13	24.20		0			
	1	7	24.16	24.26	24.22	0	0			
	1	14	24.24	24.24	24.16		0			
QPSK	8	0	23.16	23.32	23.25		1			
	8	4	23.32	23.33	23.22	0-1	1			
	8	7	23.33	23.13	23.13	U-1	1			
	15	0	23.21	23.19	23.20		1			
	1	0	23.29	23.18	23.19		1			
	1	7	23.18	23.29	23.15	0-1	1			
	1	14	23.33	23.34	23.30		1			
16QAM	8	0	22.16	22.17	22.22		2			
	8	4	22.31	22.14	22.33	0-2	2			
	8	7	22.24	22.27	22.19	0-2	2			
	15	0	22.26	22.18	22.30		2			

Table 9-4 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12			
			Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.30	24.16	24.22		0
	1	2	24.16	24.33	24.29	1	0
	1	5	24.21	24.20	24.26	0	0
QPSK	QPSK 3	0	24.32	24.16	24.30		0
	3	2	24.20	24.22	24.25		0
	3	3	24.23	24.27	24.25		0
	6	0	23.30	23.20	23.26	0-1	1
	1	0	23.27	23.34	23.28		1
	1	2	23.15	23.28	23.21		1
	1	5	23.35	23.32	23.28	0-1	1
16QAM	3	0	23.25	23.15	23.31	U-1	1
	3	2	23.27	23.23	23.34	1 1	1
	3	3	23.33	23.30	23.29	1	1
	6	0	22.18	22.31	22.31	0-2	2

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . (40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 22 of 49
16 PCTEST Engineering Laboratory, Inc.				REV 17.0 M

9.3.2 LTE Band 5 (Cell)

Table 9-5
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

		<i></i> ,	LTE Band 5 (Cell)		Janawiath
			10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Size RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	JOI 1 [UD]	
	1	0	23.65		0
	1	25	23.44	0	0
	1	49	23.70		0
QPSK	25	0	22.67		1
	25	12	22.53	0-1	1
	25	25	22.68	0-1	1
	50	0	22.55		1
	1	0	22.57		1
	1	25	22.44	0-1	1
	1	49	22.60		1
16QAM	25	0	21.40		2
	25	12	21.40	0-2	2
	25	25	21.42	0-2	2
-	50	0	21.69		2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-6
LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

				LTE Band 5 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]	_	
	1	0	23.68	23.46	23.68		0
	1	12	23.44	23.51	23.61	0	0
	1	24	23.64	23.46	23.58		0
QPSK	12	0	22.50	22.64	22.46		1
	12	6	22.52	22.44	22.61	1	1
	12	13	22.70	22.51	22.50	0-1	1
	25	0	22.52	22.41	22.49	1	1
	1	0	22.69	22.43	22.46		1
	1	12	22.51	22.43	22.67	0-1	1
	1	24	22.62	22.70	22.65	1	1
16QAM	12	0	21.60	21.61	21.46		2
	12	6	21.69	21.47	21.50	0-2	2
	12	13	21.52	21.50	21.47	U-Z	2
	25	0	21.64	21.61	21.50	1	2

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 00 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 23 of 49

Table 9-7 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

				LTE Band 5 (Cell) 3 MHz Bandwidth			
Modulation RB Size	RB Size	RB Size RB Offset	Low Channel 20415 (825.5 MHz)	Mid Channel 20525 (836.5 MHz)	High Channel 20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBn		-	
	1	0	23.66	23.60	23.60		0
	1	7	23.67	23.46	23.65	0	0
	1	14	23.60	23.59	23.65		0
QPSK	8	0	22.54	22.53	22.59		1
	8	4	22.57	22.62	22.50	0-1	1
	8	7	22.45	22.47	22.52	0-1	1
	15	0	22.40	22.41	22.51	1	1
	1	0	22.42	22.66	22.49		1
	1	7	22.64	22.53	22.43	0-1	1
	1	14	22.69	22.55	22.58	1	1
16QAM	8	0	21.68	21.53	21.42		2
	8	4	21.61	21.63	21.68	0-2	2
	8	7	21.56	21.55	21.51] 0-2	2
	15	0	21.59	21.55	21.57	1	2

Table 9-8 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

			J. J. (2311) J.	LTE Band 5 (Cell)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.54	23.68	23.42		0
	1	2	23.53	23.44	23.58		0
	1	5	23.40	23.62	23.61	0	0
QPSK	3	0	23.47	23.66	23.56		0
	3	2	23.60	23.69	23.41		0
	3	3	23.60	23.68	23.58		0
	6	0	22.48	22.62	22.50	0-1	1
	1	0	22.64	22.68	22.54		1
	1	2	22.66	22.62	22.41		1
	1	5	22.63	22.47	22.61	0-1	1
16QAM	3	0	22.49	22.45	22.61	0-1	1
	3	2	22.45	22.70	22.57]	1
	3	3	22.64	22.59	22.53		1
	6	0	21.50	21.55	21.58	0-2	2

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Day : 04 : 540
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 24 of 49
2016 PCTEST Engineering Laboratory	, Inc.	•		REV 17.0 M

9.3.3 LTE Band 4 (AWS)

Table 9-9
LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

	LTE Band 4 (AWS) 20 MHzBandwidth							
			Mid Channel					
Modulation	RB Size	RB Size RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]					
	1	0	24.27		0			
	1	50	24.25	0	0			
	1	99	24.25		0			
QPSK	50	0	23.19		1			
	50	25	23.28		1			
	50	50	23.23		1			
	100	0	23.21	0-1	1			
	1	0	23.24		1			
	1	50	23.23		1			
	1	99	23.19		1			
16QAM	50	0	22.28		2			
	50	25	22.26	0-2	2			
	50	50	22.25	0-2	2			
	100	0	22.23		2			

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-10
LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

		TE Danc	1 4 (AVV3) CO	nducted Pow	CIS - IS WILL	Danawiath	
				LTE Band 4 (AWS)			
				15 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]	MPR Allowed per 3GPP [dB]	MPR [dB]
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)		
			•	Conducted Power [dBm	1]		
	1	0	24.29	24.20	24.27		0
	1	36	24.28	24.26	24.25	0	0
	1	74	24.21	24.25	24.25		0
QPSK	36	0	23.16	23.28	23.19	0-1	1
	36	18	23.23	23.29	23.28		1
	36	37	23.18	23.18	23.23		1
	75	0	23.16	23.16	23.21	1	1
	1	0	23.15	23.31	23.24		1
	1	36	23.26	23.23	23.23	0-1	1
	1	74	23.21	23.18	23.19	1	1
16QAM	36	0	22.33	22.25	22.28		2
	36	18	22.15	22.29	22.26	1	2
	36	37	22.27	22.31	22.25	0-2	2
	75	0	22.27	22.25	22.23	1	2

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 25 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 25 of 49	

Table 9-11 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

	LTE Ballu 4 (AWS) Collucted Powers - 10 MHZ Balluwidth										
				LTE Band 4 (AWS)							
				10 MHzBandwidth	1						
			Low Channel	Low Channel Mid Channel High Channel							
Modulation	RB Size	RB Offset	20000 (1715.0 MHz)	20175 (1732.5 MHz)	20350 (1750.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm	1]	1					
	1	0	24.30	24.17	24.17		0				
	1	25	24.33	24.21	24.19	0	0				
	1	49	24.30	24.28	24.28		0				
QPSK	25	0	23.24	23.30	23.21		1				
	25	12	23.21	23.31	23.28	0-1	1				
	25	25	23.29	23.15	23.30	0-1	1				
	50	0	23.32	23.28	23.33		1				
	1	0	23.31	23.28	23.30		1				
	1	25	23.20	23.24	23.31	0-1	1				
	1	49	23.20	23.26	23.18		1				
16QAM	25	0	22.31	22.15	22.30		2				
	25	12	22.28	22.22	22.21	0-2	2				
	25	25	22.17	22.32	22.19	0-2	2				
	50	0	22.30	22.28	22.19		2				

Table 9-12 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

			u . (/ tiro) u	LTE Band 4 (AWS)	0.0 0			
				5 MHzBandwidth				
			Low Channel	Mid Channel	High Channel			
					, ,			
Modulation	RB Size	RB Offset	RB Offset	19975		20175 20375	MPR Allowed per	MPR [dB]
			(1712.5 MHz)	(1732.5 MHz)	(1752.5 MHz)	3GPP [dB]	• •	
			(Conducted Power [dBm	1]			
	1	0	24.31	24.29	24.17		0	
	1	12	24.15	24.26	24.26	0	0	
	1	24	24.22	24.29	24.24		0	
QPSK	12	0	23.30	23.29	23.30	- 0-1	1	
	12	6	23.22	23.33	23.18		1	
	12	13	23.17	23.30	23.24		1	
	25	0	23.25	23.27	23.27		1	
	1	0	23.30	23.24	23.17		1	
	1	12	23.32	23.27	23.32	0-1	1	
	1	24	23.22	23.18	23.30		1	
16QAM	12	0	22.29	22.30	22.23		2	
	12	6	22.23	22.32	22.16	0-2	2	
	12	13	22.29	22.30	22.18	0-2	2	
1	25	0	22.30	22.24	22.15		2	

Table 9-13 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

	LTE Band 4 (AWS) S MHzBandwidth									
			Frequency [MHz]	Frequency [MHz]	Frequency [MHz]		MPR [dB]			
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]				
			(Conducted Power [dBm]					
	1	0	24.27	24.33	24.29		0			
	1	7	24.21	24.29	24.28	0	0			
	1	14	24.30	24.31	24.25		0			
QPSK	8	0	23.33	23.31	23.30		1			
	8	4	23.25	23.18	23.30	0-1	1			
	8	7	23.22	23.23	23.28	0-1	1			
	15	0	23.22	23.28	23.33		1			
	1	0	23.16	23.32	23.31		1			
	1	7	23.24	23.30	23.33	0-1	1			
	1	14	23.30	23.32	23.30		1			
16QAM	8	0	22.15	22.32	22.22		2			
	8	4	22.16	22.17	22.30	0-2	2			
	8	7	22.26	22.27	22.19	0-2	2			
ı	15	0	22.22	22.15	22.23		2			

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dama 00 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 26 of 49	

Table 9-14 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

			<u> </u>	LTE Band 4 (AWS)			
				1.4 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBn	1]		
	1	0	24.30	24.30	24.23		0
	1	2	24.16	24.17	24.26	0	0
	1	5	24.15	24.27	24.28		0
QPSK	3	0	24.18	24.33	24.28		0
	3	2	24.16	24.25	24.27		0
	3	3	24.17	24.20	24.24		0
	6	0	23.22	23.21	23.32	0-1	1
	1	0	23.23	23.23	23.29		1
	1	2	23.20	23.27	23.15		1
	1	5	23.19	23.19	23.17	0-1	1
16QAM	3	0	23.18	23.19	23.22	0-1	1
	3	2	23.27	23.29	23.28]	1
	3	3	23.32	23.29	23.22		1
	6	0	22.16	22.32	22.26	0-2	2

LTE Band 2 (PCS) 9.3.4

Table 9-15 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

				LTE Band 2 (PCS)		unumuun	
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	23.60	23.38	23.58		0
	1	50	23.41	23.61	23.70	0	0
	1	99	23.55	23.49	23.51		0
QPSK	50	0	22.51	22.55	22.48		1
	50	25	22.60	22.60	22.44	0-1	1
	50	50	22.66	22.35	22.65		1
	100	0	22.50	22.53	22.40		1
	1	0	22.48	22.51	22.58		1
	1	50	22.57	22.35	22.68	0-1	1
	1	99	22.46	22.69	22.42		1
16QAM	50	0	21.51	21.40	21.49		2
	50	25	21.65	21.56	21.37	0-2	2
	50	50	21.49	21.50	21.44	0-2	2
	100	0	21.53	21.64	21.44		2

Table 9-16 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

		EIL Baile	12 (1 00) 001	ducted Fowe	10 10 111112 2	anawiath	
				LTE Band 2 (PCS)			
				15 MHz Bandwidth		1	
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]	1	
	1	0	23.52	23.36	23.62		0
	1	36	23.58	23.63	23.67	0	0
	1	74	23.45	23.57	23.68		0
QPSK	36	0	22.47	22.47	22.63		1
	36	18	22.35	22.35	22.35	0-1	1
	36	37	22.59	22.66	22.35		1
	75	0	22.51	22.68	22.58		1
	1	0	22.69	22.64	22.61		1
	1	36	22.41	22.42	22.44	0-1	1
	1	74	22.51	22.70	22.41		1
16QAM	36	0	21.41	21.39	21.68		2
	36	18	21.35	21.50	21.51	0-2	2
	36	37	21.60	21.59	21.38	0-2	2
	75	0	21.40	21.65	21.36		2

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dans 07 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 27 of 49	

Table 9-17 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

				LTE Band 2 (PCS)		anaman	
				10 MHz Bandwidth			
			Low Channel	Frequency [MHz]	Frequency [MHz]		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	23.59	23.41	23.35		0
	1	25	23.38	23.67	23.56	0	0
	1	49	23.48	23.57	23.37		0
QPSK	25	0	22.46	22.68	22.69		1
	25	12	22.41	22.69	22.68	0-1	1
	25	25	22.54	22.41	22.36		1
	50	0	22.61	22.54	22.58]	1
	1	0	22.69	22.61	22.61		1
	1	25	22.50	22.61	22.42	0-1	1
	1	49	22.67	22.52	22.40		1
16QAM	25	0	21.40	21.66	21.55		2
	25	12	21.48	21.62	21.48	0.0	2
	25	25	21.68	21.51	21.50	0-2	2
	50	0	21.53	21.51	21.49	1	2

Table 9-18 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

	LTE Ballu 2 (PCS) Collucteu Powers - 5 MHZ Balluwiutii										
				LTE Band 2 (PCS)							
				5 MHz Bandwidth							
			Low Channel	Mid Channel	Frequency [MHz]						
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm	1]						
	1	0	23.53	23.37	23.53		0				
	1	12	23.56	23.66	23.47	0	0				
	1	24	23.40	23.56	23.58		0				
QPSK	12	0	22.43	22.61	22.44		1				
	12	6	22.68	22.56	22.42	0-1	1				
	12	13	22.67	22.35	22.51		1				
	25	0	22.59	22.52	22.62		1				
	1	0	22.66	22.62	22.61		1				
	1	12	22.53	22.43	22.52	0-1	1				
	1	24	22.39	22.66	22.46		1				
16QAM	12	0	21.47	21.54	21.49		2				
	12	6	21.56	21.35	21.67	0.0	2				
	12	13	21.48	21.67	21.63	0-2	2				
	25	0	21.57	21.47	21.67		2				

Table 9-19 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

		LIL Duii	a = (. 00) 00.	iducted Fowe	OIO OIVIII IE B	anamatn	
				LTE Band 2 (PCS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm			
	1	0	23.40	23.61	23.49		0
	1	7	23.59	23.49	23.42	0	0
	1	14	23.65	23.52	23.69		0
QPSK	8	0	22.66	22.67	22.38		1
	8	4	22.44	22.56	22.52	0-1	1
	8	7	22.70	22.50	22.67	0-1	1
	15	0	22.49	22.69	22.43		1
	1	0	22.38	22.38	22.39		1
	1	7	22.41	22.39	22.39	0-1	1
	1	14	22.52	22.61	22.47		1
16QAM	8	0	21.41	21.57	21.47		2
	8	4	21.41	21.58	21.65	0-2	2
	8	7	21.42	21.67	21.42	0-2	2
	15	0	21.35	21.62	21.41	1	2

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 00 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 28 of 49

Table 9-20 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

		LIL Dalle	12 (1 00) 001	iducted Fowe	13 -1.4 WILLE	Janawiath	
				LTE Band 2 (PCS)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	DD 0:	RB Offset	18607	18607 18900 19193		MPR Allowed per	MDD (4D)
Wodulation	RB Size	RD Oliset	(1850.7 MHz)	(1880.0 MHz)	(1909.3 MHz)	3GPP [dB]	MPR [dB]
			(Conducted Power [dBm			
	1	0	23.45	23.44	23.47		0
	1	2	23.66	23.66	23.43		0
	1	5	23.48	23.40	23.40	0	0
QPSK	3	0	23.40	23.37	23.64	U	0
	3	2	23.50	23.42	23.59		0
	3	3	23.37	23.63	23.48		0
	6	0	22.47	22.60	22.51	0-1	1
	1	0	22.53	22.43	22.61		1
	1	2	22.68	22.39	22.46		1
	1	5	22.62	22.63	22.53	0-1	1
16QAM	3	0	22.45	22.46	22.42	U-1	1
	3	2	22.53	22.62	22.42		1
	3	3	22.62	22.38	22.46		1
	6	0	21.41	21.62	21.59	0-2	2

9.4 WLAN Conducted Powers

Table 9-21 IEEE 802.11b/g Average RF Power

		2.4GHz Conducted Power [dBm]							
Freq [MHz]	Channel	IEEE Transmission Mode							
		802.11b	802.11g						
2412	1	16.67	14.31						
2437	6	16.66	14.35						
2462	11	16.04	14.23						

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

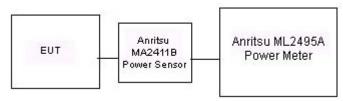


Figure 9-3
Power Measurement Setup for Bandwidths < 50 MHz

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 00 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 29 of 49

10.1 Tissue Verification

Table 10-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			700	0.857	43.427	0.889	42.201	-3.60%	2.91%
1/01/0016	750H	22.4	710	0.866	43.280	0.890	42.149	-2.70%	2.68%
1/21/2016	75011	22.4	740	0.894	42.866	0.893	41.994	0.11%	2.08%
			755	0.908	42.656	0.894	41.916	1.57%	1.77%
			820	0.879	40.405	0.899	41.578	-2.22%	-2.82%
1/18/2016	835H	21.2	835	0.892	40.219	0.900	41.500	-0.89%	-3.09%
			850	0.906	40.031	0.916	41.500	-1.09%	-3.54%
			1710	1.312	38.639	1.348	40.142	-2.67%	-3.74%
1/27/2016	1750H	22.4	1750	1.353	38.344	1.371	40.079	-1.31%	-4.33%
			1790	1.388	38.122	1.394	40.016	-0.43%	-4.73%
			1850	1.390	39.629	1.400	40.000	-0.71%	-0.93%
1/20/2016	1900H	21.5	1880	1.421	39.504	1.400	40.000	1.50%	-1.24%
			1910	1.451	39.374	1.400	40.000	3.64%	-1.56%
			2400	1.786	38.449	1.756	39.289	1.71%	-2.14%
1/19/2016	2450H	21.0	2450	1.840	38.234	1.800	39.200	2.22%	-2.46%
			2500	1.896	38.069	1.855	39.136	2.21%	-2.73%
			700	0.918	57.139	0.959	55.726	-4.28%	2.54%
1/25/2016	750B	21.1	710	0.923	57.029	0.960	55.687	-3.85%	2.41%
1/25/2010	7306	21.1	740	0.954	56.793	0.963	55.570	-0.93%	2.20%
			755	0.969	56.575	0.964	55.512	0.52%	1.91%
			820	0.994	53.669	0.969	55.258	2.58%	-2.88%
1/20/2016	835B	21.5	835	1.009	53.523	0.970	55.200	4.02%	-3.04%
			850	1.024	53.367	0.988	55.154	3.64%	-3.24%
			1710	1.481	52.620	1.463	53.537	1.23%	-1.71%
1/20/2016	1750B	23.0	1750	1.526	52.462	1.488	53.432	2.55%	-1.82%
			1790	1.571	52.319	1.514	53.326	3.76%	-1.89%
			1710	1.421	51.650	1.463	53.537	-2.87%	-3.52%
1/28/2016	1750B	22.5	1750	1.462	51.492	1.488	53.432	-1.75%	-3.63%
			1790	1.505	51.329	1.514	53.326	-0.59%	-3.74%
			1850	1.501	51.647	1.520	53.300	-1.25%	-3.10%
1/25/2016	1900B	23.5	1880	1.532	51.569	1.520	53.300	0.79%	-3.25%
			1910	1.564	51.449	1.520	53.300	2.89%	-3.47%
			2400	1.928	51.750	1.902	52.767	1.37%	-1.93%
1/19/2016	2450B	21.5	2450	1.992	51.567	1.950	52.700	2.15%	-2.15%
			2500	2.058	51.286	2.021	52.636	1.83%	-2.56%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 20 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 30 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-2 System Verification Results

	System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W) Dipole SN SN		Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)		
К	750	HEAD	01/21/2016	24.2	22.7	0.200	1054	3022	1.720	8.280	8.600	3.86%	
G	835	HEAD	01/18/2016	24.0	22.1	0.200	4d119	3334	1.950	9.380	9.750	3.94%	
G	1750	HEAD	01/27/2016	24.4	22.6	0.100	1051	3334	3.820	36.200	38.200	5.52%	
D	1900	HEAD	01/20/2016	23.2	21.1	0.100	5d149	3209	4.300	40.700	43.000	5.65%	
E	2450	HEAD	01/19/2016	22.3	21.0	0.100	719	3351	5.060	54.200	50.600	-6.64%	
К	750	BODY	01/25/2016	23.0	21.4	0.200	1054	3022	1.760	8.530	8.800	3.17%	
E	835	BODY	01/20/2016	23.5	21.5	0.200	4d119	3351	1.950	9.200	9.750	5.98%	
К	1750	BODY	01/20/2016	24.0	23.0	0.100	1051	3022	3.960	37.100	39.600	6.74%	
К	1750	BODY	01/28/2016	23.8	22.5	0.100	1051	3022	3.820	37.100	38.200	2.96%	
I	1900	BODY	01/25/2016	21.5	23.5	0.100	5d141	3333	4.070	40.000	40.700	1.75%	
J	2450	BODY	01/19/2016	21.7	21.5	0.100	797	3319	4.990	51.500	49.900	-3.11%	

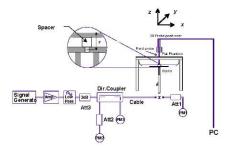


Figure 10-1 **System Verification Setup Diagram**

Figure 10-2 **System Verification Setup Photo**

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 24 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 31 of 49

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

						MEAS	UREMEN	T RESUL	TS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.	mode/Dand	GETVICE	Power [dBm]	Power [dBm]	Drift [dB]	Olde	Position	Number	Slots	Duty Oycie	(W/kg)	ocanny ractor	(W/kg)	1101#
836.60	190	GSM 850	GSM	33.0	32.82	0.07	Right	Cheek	03520	1	1:8.3	0.350	1.042	0.365	
836.60	190	GSM 850	GSM	33.0	32.82	0.19	Right	Tilt	03520	1	1:8.3	0.202	1.042	0.210	
836.60	190	GSM 850	GSM	33.0	32.82	0.16	Left	Cheek	03520	1	1:8.3	0.303	1.042	0.316	
836.60	190	GSM 850	GSM	33.0	32.82	0.10	Left	Tilt	03520	1	1:8.3	0.184	1.042	0.192	
836.60	190	GSM 850	GPRS	31.0	30.66	0.09	Right	Cheek	03520	2	1:4.15	0.365	1.081	0.395	A1
836.60	190	GSM 850	GPRS	31.0	30.66	0.08	Right	Tilt	03520	2	1:4.15	0.206	1.081	0.223	
836.60	190	GSM 850	GPRS	31.0	30.66	-0.02	Left	Cheek	03520	2	1:4.15	0.270	1.081	0.292	
836.60	190	GSM 850	GPRS	31.0	30.66	0.04	Left	Tilt	03520	2	1:4.15	0.169	1.081	0.183	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak		Head 1.6 W/kg (mW/g) averaged over 1 gram									

Table 11-2 GSM 1900 Head SAR

						MEAS	SUREMENT RESULTS								
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.	,		Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	.,	(W/kg)	•	(W/kg)	
1880.00	661	GSM 1900	GSM	29.7	29.53	0.10	Right	Cheek	03520	1	1:8.3	0.107	1.040	0.111	
1880.00	661	GSM 1900	GSM	29.7	29.53	-0.08	Right	Tilt	03520	1	1:8.3	0.107	1.040	0.111	
1880.00	661	GSM 1900	GSM	29.7	29.53	0.06	Left	Cheek	03520	1	1:8.3	0.154	1.040	0.160	
1880.00	661	GSM 1900	GSM	29.7	29.53	0.03	Left	Tilt	03520	1	1:8.3	0.085	1.040	0.088	
1880.00	661	GSM 1900	GPRS	27.7	27.52	0.06	Right	Cheek	03520	2	1:4.15	0.128	1.042	0.133	
1880.00	661	GSM 1900	GPRS	27.7	27.52	-0.01	Right	Tilt	03520	2	1:4.15	0.135	1.042	0.141	
1880.00	661	GSM 1900	GPRS	27.7	27.52	-0.09	Left	Cheek	03520	2	1:4.15	0.234	1.042	0.244	A2
1880.00	661	GSM 1900	GPRS	27.7	27.52	0.00	Left	Tilt	03520	2	1:4.15	0.123	1.042	0.128	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram							

Table 11-3 UMTS 850 Head SAR

					011	1100	o i ica	u san	<u> </u>					
	MEASUREMENT RESULTS													
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.					Drift [dB]		Position	Number	, ,	(W/kg)	J	(W/kg)	
836.60	4183	UMTS 850	RMC	23.7	23.51	0.10	Right	Cheek	03520	1:1	0.326	1.045	0.341	A3
836.60	4183	UMTS 850	RMC	23.7	23.51	0.08	Right	Tilt	03520	1:1	0.178	1.045	0.186	
836.60	4183	UMTS 850	RMC	23.7	23.51	-0.06	Left	Cheek	03520	1:1	0.260	1.045	0.272	
836.60	4183	UMTS 850	RMC	23.7	23.51	0.00	Left	Tilt	03520	1:1	0.160	1.045	0.167	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head			
	Spatial Peak							1.6 W/kg (mW/g)						
	Uncontrolled Exposure/General Population							averaged over 1 gram						

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 32 of 49
16 PCTEST Engineering Laboratory, Inc.				REV 17.0 M

Table 11-4 UMTS 1750 Head SAR

					011	<u> </u>	00 1100	u san						
					М	EASURE	MENT RI	ESULTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, ,	(W/kg)	J	(W/kg)	
1732.40	1412	UMTS 1750	RMC	23.7	23.48	0.14	Right	Cheek	03520	1:1	0.240	1.052	0.252	
1732.40	1412	UMTS 1750	RMC	23.7	23.48	0.03	Right	Tilt	03520	1:1	0.242	1.052	0.255	
1732.40	1412	UMTS 1750	RMC	23.7	23.48	0.01	Left	Cheek	03520	1:1	0.402	1.052	0.423	A4
1732.40	1412	UMTS 1750	RMC	23.7	23.48	-0.09	Left	Tilt	03520	1:1	0.226	1.052	0.238	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т				•		Head	•	•	
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	n		

Table 11-5 UMTS 1900 Head SAR

					М	EASURE	MENT RI	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, ,	(W/kg)		(W/kg)	<u> </u>
1880.00	9400	UMTS 1900	RMC	23.7	23.46	-0.04	Right	Cheek	03520	1:1	0.225	1.057	0.238	
1880.00	9400	UMTS 1900	RMC	23.7	23.46	-0.01	Right	Tilt	03520	1:1	0.246	1.057	0.260	
1880.00	9400	UMTS 1900	RMC	23.7	23.46	-0.02	Left	Cheek	03520	1:1	0.401	1.057	0.424	A5
1880.00	9400	UMTS 1900	RMC	23.7	23.46	0.12	Left	Tilt	03520	1:1	0.216	1.057	0.228	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	n		

Table 11-6 LTE Band 12 Head SAR

							N	MEASU	JREMEN	IT RESU	LTS									
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR	Side	Test	Modulation	RB Size	RB	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#	
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]		Position			Offset	Number	Cycle	(W/kg)	• • •	(W/kg)		
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	0.01	0	Right	Cheek	QPSK	1	49	03546	1:1	0.217	1.038	0.225	A6	
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	0.00													
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	0.01													
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	0.03	1 Right Tilt QPSK 25 12 03546 1:1 0.090 1.040 0.094												
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	0.07	0	Left	Cheek	QPSK	1	49	03546	1:1	0.192	1.038	0.199		
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	0.13	1	Left	Cheek	QPSK	25	12	03546	1:1	0.128	1.040	0.133		
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	-0.11	0	Left	Tilt	QPSK	1	49	03546	1:1	0.123	1.038	0.128		
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	-0.02	1	Left	Tilt	QPSK	25	12	03546	1:1	0.085	1.040	0.088		
			ANSI / IEEE CS												ead					
				patial Peak											g (mW/g)					
			Uncontrolled Ex	posure/Gen	erai Populatio	on								averaged	over 1 gran	n				

FCC ID: ZNFL81AL	SECTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 33 of 49

Table 11-7 LTE Band 5 (Cell) Head SAR

										IT RESU										
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #	
M Hz	CI	n.		[WHZ]	Power [dBm]	Power [dbm]	Drift [db]	[авј		Position			Offset	Number	Cycle	(W/kg)		(W/kg)		
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.13	0	Right	Cheek	QPSK	1	49	03546	1:1	0.305	1.000	0.305	A7	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	-0.06													
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.01	01 0 Right Tilt QPSK 1 49 03546 1:1 0.165 1.000 0.165												
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.17	0 Right Itit QPSK 1 49 03546 1:1 0.165 1,000 0.165 1 Right Tilt QPSK 25 25 03546 1:1 0.121 1.005 0.122												
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.12	0	Left	Cheek	QPSK	1	49	03546	1:1	0.248	1.000	0.248		
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.14	1	Left	Cheek	QPSK	25	25	03546	1:1	0.185	1.005	0.186		
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.11	0	Left	Tilt	QPSK	1	49	03546	1:1	0.157	1.000	0.157		
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	-0.08	1	Left	Tilt	QPSK	25	25	03546	1:1	0.123	1.005	0.124		
			ANSI / IEEE CS S Uncontrolled Ex	patial Peal	(1.6 W/k	ead g (mW/g) over 1 gran					

Table 11-8 LTE Band 4 (AWS) Head SAR

							L Da	ııu -	* (~*	v 3) 11	eau S	∠ !\							
							N	MEASU	JREMEN	IT RESU	LTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
M Hz	CI	h.		[WIFIZ]	Power [dBm]	Fower [ubiii]	Бии (ав)	[ub]		FOSILIOII			Oliset	Number	Cycle	(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	Cheek	QPSK	1	0	03538	1:1	0.312	1.054	0.329							
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	0.05												
1732.50	20175	Mid	LTE Band 4 (AWS)	20	-0.01	0	Right	Tilt	QPSK	1	0	03538	1:1	0.273	1.054	0.288			
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	0.04	1	Right	Tilt	QPSK	50	25	03538	1:1	0.217	1.052	0.228	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	-0.16	0	Left	Cheek	QPSK	1	0	03538	1:1	0.499	1.054	0.526	A8
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	0.06	1	Left	Cheek	QPSK	50	25	03538	1:1	0.358	1.052	0.377	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	0.05	0	Left	Tilt	QPSK	1	0	03538	1:1	0.263	1.054	0.277	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	-0.02	1	Left	Tilt	QPSK	50	25	03538	1:1	0.194	1.052	0.204	
			ANSI / IEEE CS S Uncontrolled Ex	patial Peal	•									1.6 W/k	ead g (mW/g) over 1 gran				

Table 11-9 LTE Band 2 (PCS) Head SAR

									- (. ~	<i>,</i> 0,	Juu O	***							
							N	MEASU	JREMEN	IT RESU	LTS								
FR	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR	Side	Test Position	Modulation	RB Size	RB	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]		Position			Offset	Number	Cycle	(W/kg)		(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.70	-0.07	0	Right	Cheek	QPSK	1	50	03538	1:1	0.208	1.000	0.208	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	0.01	1	1 Right Cheek QPSK 50 50 03538 1:1 0.144 1.009										
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.70	0.08	0	Right	Tilt	QPSK	1	50	03538	1:1	0.254	1.000	0.254	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	0.05	1	Right	Tilt	QPSK	50	50	03538	1:1	0.148	1.009	0.149	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.70	-0.08	0	Left	Cheek	QPSK	1	50	03538	1:1	0.364	1.000	0.364	A9
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	-0.03	1	Left	Cheek	QPSK	50	50	03538	1:1	0.255	1.009	0.257	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.70	0.07	0	Left	Tilt	QPSK	1	50	03538	1:1	0.186	1.000	0.186	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	0.07	1	Left	Tilt	QPSK	50	50	03538	1:1	0.122	1.009	0.123	
			ANSI / IEEE CS S Uncontrolled Ex	patial Peak	τ.									1.6 W/k	ead g (mW/g) over 1 gran				

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 24 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 34 of 49

Table 11-10 DTS Head SAR

							ı	MEASUF	REMENT	RESULT	s							
FREQUE	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	ĺ
2412	1	802.11b	DSSS	22	17.0	16.67	-	Right	Cheek	03553	1	99.5	0.297	-	1.079	1.005		
2412	1	802.11b	DSSS	22	17.0	16.67	-	Right	Tilt	03553	1	99.5	0.284	-	1.079	1.005		
2412	1	802.11b	DSSS	22	17.0	16.67	0.04	Left	Cheek	03553	1	99.5	0.693	0.602	1.079	1.005	0.653	A10
2412	1	802.11b	DSSS	22	17.0	16.67	-0.01	Left	Tilt	03553	1	99.5	0.513	0.429	1.079	1.005	0.465	
		ANSI / IEEE	C95.1 1992	- SAFETY LI	MIT								Hea	ıd				
			Spatial Pe										1.6 W/kg					
		Uncontrolled	Exposure/G	eneral Popu	ılation								averaged ov	er 1 gram				

11.2 Standalone Body-Worn SAR Data

Table 11-11 GSM/UMTS Body-Worn SAR Data

					SIVI/ UIVI	. 0 00	<u>uy !!!</u>	<u> </u>	i v Dui	u					
					МІ	EASURE	MENTR	ESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allowed	Conducted	Power Drift [dB]	Spacing	Device Serial Number	# of Time	Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift (aB)		Number	Siots	Cycle		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	33.0	32.82	-0.14	10 mm	03520	1	1:8.3	back	0.649	1.042	0.676	A11
836.60	190	GSM 850	GPRS	31.0	30.66	-0.05	10 mm	03520	2	1:4.15	back	0.635	1.081	0.686	
1880.00	661	GSM 1900	GSM	29.7	29.53	-0.02	10 mm	03520	1	1:8.3	back	0.342	1.040	0.356	
1880.00	661	GSM 1900	GPRS	27.7	27.52	-0.03	10 mm	03520	2	1:4.15	back	0.417	1.042	0.435	A13
836.60	4183	UMTS 850	RMC	23.7	23.51	-0.10	10 mm	03520	N/A	1:1	back	0.556	1.045	0.581	A14
1732.40	1412	UMTS 1750	RMC	23.7	23.48	0.01	10 mm	03520	N/A	1:1	back	0.660	1.052	0.694	A15
1880.00	9400	UMTS 1900	RMC	23.7	23.46	-0.03	10 mm	03520	N/A	1:1	back	0.618	1.057	0.653	A16
		ANSI / IEE	E C95.1 1992 - SA Spatial Peak	FETY LIMIT								ody g (mW/g)	•		
		Uncontrolled	Spatial Feak I Exposure/Gener	al Population	ı							over 1 gram			

Table 11-12 LTE Body-Worn SAR

									uy-vv	0111 07	717								
								MEASU	JREMENT	RESULTS									
FF	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted Power (dBm1	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offs et	Spacing	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power[dBm]	Drift [dB]		Number						Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	-0.08	0	03538	QPSK	1	49	10 mm	back	1:1	0.421	1.038	0.437	A17
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	-0.04	1	03538	QPSK	25	12	10 mm	back	1:1	0.304	1.040	0.316	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.18	0	03538	QPSK	1	49	10 mm	back	1:1	0.576	1.000	0.576	A18
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.02	1	03538	QPSK	25	25	10 mm	back	1:1	0.427	1.005	0.429	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	0.10	0	03538	QPSK	1	0	10 mm	back	1:1	0.816	1.054	0.860	A19
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	0.09	1	03538	QPSK	50	25	10 mm	back	1:1	0.583	1.052	0.613	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.21	0.05	1	03538	QPSK	100	0	10 mm	back	1:1	0.560	1.069	0.599	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	-0.17	0	03538	QPSK	1	0	10 mm	back	1:1	0.704	1.054	0.742	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.70	-0.05	0	03538	QPSK	1	50	10 mm	back	1:1	0.609	1.000	0.609	A20
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	0.00	1	03538	QPSK	50	50	10 mm	back	1:1	0.433	1.009	0.437	
			ANSI / IEEE		SAFETY LIMI	Т									dy				
				Spatial Pea										1.6 W/kg					
			Uncontrolled E	x posure/Ge	neral Populat	tion							а	veraged o	ver 1 gran	1			

Blue entry represents variability data.

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Danie 05 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 35 of 49	
16 DOTECT Engineering Laboratory Inc.			DEV/ 47 O M	

Table 11-13 DTS Body-Worn SAR

	MEASUREMENT RESULTS																	
FREQU	JENCY Mode S		Bandwidth	Maximum Allowed	Conducted		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #	
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.0	16.67	0.00	10 mm	03553	1	back	99.5	0.173	0.135	1.079	1.005	0.147	A21
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body																	
	Spatial Peak																	
Uncontrolled Exposure/General Population					averaged over 1 gram													

11.3 Standalone Hotspot SAR Data

Table 11-14 GPRS/UMTS Hotspot SAR Data

	MEASUREMENT RESULTS														
FREQUE	NCY	Mode	Service	Maxim um Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dbill]	Driit [db]		Number	51015	Сусіе		(W/kg)		(W/kg)	
836.60	190	GSM 850	GPRS	31.0	30.66	-0.05	10 mm	03520	2	1:4.15	back	0.635	1.081	0.686	A12
836.60	190	GSM 850	GPRS	31.0	30.66	-0.01	10 mm	03520	2	1:4.15	front	0.421	1.081	0.455	
836.60	190	GSM 850	GPRS	31.0	30.66	0.15	10 mm	03520	2	1:4.15	bottom	0.407	1.081	0.440	
836.60	190	GSM 850	GPRS	31.0	30.66	-0.01	10 mm	03520	2	1:4.15	right	0.623	1.081	0.673	
836.60	190	GSM 850	GPRS	31.0	30.66	0.03	10 mm	03520	2	1:4.15	left	0.280	1.081	0.303	
1880.00	661	GSM 1900	GPRS	27.7	27.52	-0.03	10 mm	03520	2	1:4.15	back	0.417	1.042	0.435	A13
1880.00	661	GSM 1900	GPRS	27.7	27.52	0.07	10 mm	03520	2	1:4.15	front	0.278	1.042	0.290	
1880.00	661	GSM 1900	GPRS	27.7	27.52	-0.02	10 mm	03520	2	1:4.15	bottom	0.349	1.042	0.364	
1880.00	661	GSM 1900	GPRS	27.7	27.52	0.00	10 mm	03520	2	1:4.15	left	0.264	1.042	0.275	
836.60	4183	UMTS 850	RMC	23.7	23.51	-0.10	10 mm	03520	N/A	1:1	back	0.556	1.045	0.581	A14
836.60	4183	UMTS 850	RMC	23.7	23.51	-0.17	10 mm	03520	N/A	1:1	front	0.408	1.045	0.426	
836.60	4183	UMTS 850	RMC	23.7	23.51	-0.06	10 mm	03520	N/A	1:1	bottom	0.346	1.045	0.362	
836.60	4183	UMTS 850	RMC	23.7	23.51	-0.01	10 mm	03520	N/A	1:1	right	0.552	1.045	0.577	
836.60	4183	UMTS 850	RMC	23.7	23.51	0.04	10 mm	03520	N/A	1:1	left	0.294	1.045	0.307	
1732.40	1412	UMTS 1750	RMC	23.7	23.48	0.01	10 mm	03520	N/A	1:1	back	0.660	1.052	0.694	A15
1732.40	1412	UMTS 1750	RMC	23.7	23.48	-0.02	10 mm	03520	N/A	1:1	front	0.582	1.052	0.612	
1732.40	1412	UMTS 1750	RMC	23.7	23.48	0.03	10 mm	03520	N/A	1:1	bottom	0.499	1.052	0.525	
1732.40	1412	UMTS 1750	RMC	23.7	23.48	-0.03	10 mm	03520	N/A	1:1	left	0.482	1.052	0.507	
1880.00	9400	UMTS 1900	RMC	23.7	23.46	-0.03	10 mm	03520	N/A	1:1	back	0.618	1.057	0.653	A16
1880.00	9400	UMTS 1900	RMC	23.7	23.46	0.00	10 mm	03520	N/A	1:1	front	0.521	1.057	0.551	
1880.00	9400	UMTS 1900	RMC	23.7	23.46	0.05	10 mm	03520	N/A	1:1	bottom	0.594	1.057	0.628	
1880.00	9400	UMTS 1900	RMC	23.7	23.46	-0.05	10 mm	03520	N/A	1:1	left	0.433	1.057	0.458	
		ANSI / IEEI	E C95.1 1992 - SA	FETY LIMIT			Body								
	Spatial Peak										g (mW/g)				
	Uncontrolled Exposure/General Population						averaged over 1 gram								

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager				
Document S/N:	Test Dates:	DUT Type:		D 00 . f 40				
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 36 of 49				
16 DOTECT Engineering Leberatory, Inc.								

Table 11-15 LTE Band 12 Hotspot SAR

									<u> </u>	- 10 р - 1									
							P	MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power		Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	۱.	•	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]	Number			Offiset				(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	-0.08	0	03538	QPSK	1	49	10 mm	back	1:1	0.421	1.038	0.437	A17
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	-0.04	1	03538	QPSK	25	12	10 mm	back	1:1	0.304	1.040	0.316	
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	0.05	0	03538	QPSK	1	49	10 mm	front	1:1	0.265	1.038	0.275	
707.50	7.50 23095 Mid LTE Band 12 10 23.5 23.33							1	03538	QPSK	25	12	10 mm	front	1:1	0.198	1.040	0.206	
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	-0.02	0	03538	QPSK	1	49	10 mm	bottom	1:1	0.147	1.038	0.153	
707.50	707.50 23095 Mid LTE Band 12 10 23.5 23.33							1	03538	QPSK	25	12	10 mm	bottom	1:1	0.112	1.040	0.116	
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	0.14	0	03538	QPSK	1	49	10 mm	right	1:1	0.385	1.038	0.400	
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	0.04	1	03538	QPSK	25	12	10 mm	right	1:1	0.295	1.040	0.307	
707.50	23095	Mid	LTE Band 12	10	24.5	24.34	0.11	0	03538	QPSK	1	49	10 mm	left	1:1	0.175	1.038	0.182	
707.50	23095	Mid	LTE Band 12	10	23.5	23.33	-0.06	1	03538	QPSK	25	12	10 mm	left	1:1	0.124	1.040	0.129	
			ANSI / IEEE C95.		ETY LIMIT			Body											
	Spatial Peak					1.6 W/kg (mW/g) averaged over 1 gram													
	Uncontrolled Exposure/General Population											ave	erayed ow	er ryram					

Table 11-16 LTE Band 5 (Cell) Hotspot SAR

							ı	/IEASI	JREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	n.		[2]	Power [dBm]	rower [aziii]	Dirit [db]	[GD]	140.11.201			0001				(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.18	0	03538	QPSK	1	49	10 mm	back	1:1	0.576	1.000	0.576	A18
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.02	1	03538	QPSK	25	25	10 mm	back	1:1	0.427	1.005	0.429	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.02	0	03538	QPSK	1	49	10 mm	front	1:1	0.403	1.000	0.403	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.04	1	03538	QPSK	25	25	10 mm	front	1:1	0.289	1.005	0.290	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.20	0	03538	QPSK	1	49	10 mm	bottom	1:1	0.338	1.000	0.338	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	-0.08	1	03538	QPSK	25	25	10 mm	bottom	1:1	0.261	1.005	0.262	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.03	0	03538	QPSK	1	49	10 mm	right	1:1	0.520	1.000	0.520	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.01	1	03538	QPSK	25	25	10 mm	right	1:1	0.395	1.005	0.397	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.14	0	03538	QPSK	1	49	10 mm	left	1:1	0.249	1.000	0.249	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.68	0.19	1	03538	QPSK	25	25	10 mm	left	1:1	0.192	1.005	0.193	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												Bod .6 W/kg eraged over	•					

FCC ID: ZNFL81AL	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 07 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 37 of 49

Table 11-17 LTE Band 4 (AWS) Hotspot SAR

									UREMENT										
FRE	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
M Hz	CI	۱.		[MHz]	Power [dBm]	Power [dBm]	Drift [ab]	[авј	Number			Onset				(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	0.10	0	03538	QPSK	1	0	10 mm	back	1:1	0.816	1.054	0.860	A19
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	0.09	1	03538	QPSK	50	25	10 mm	back	1:1	0.583	1.052	0.613	
1732.50	1732.50 20175 Mid LTE Band 4 (AWS) 20 23.5 23.21 0							1	03538	QPSK	100	0	10 mm	back	1:1	0.560	1.069	0.599	
1732.50	732.50 20175 Mid LTE Band 4 (AWS) 20 24.5 24.27							0	03538	QPSK	1	0	10 mm	front	1:1	0.714	1.054	0.753	
1732.50	20175	0175 Mid LTE Band 4 (AWS) 20 23.5 23.28 -0.02 1 03538 QPSK 50 25 10 mm front									1:1	0.513	1.052	0.540					
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	0.00	0.00 0 03538 QPSK 1 0 10 mm bottom 1:1 0.503 1.054 0.530								0.530			
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.5	23.28	0.04	1	03538	QPSK	50	25	10 mm	bottom	1:1	0.423	1.052	0.445	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	-0.14	0	03538	QPSK	1	0	10 mm	left	1:1	0.531	1.054	0.560	
1732.50	732.50 20175 Mid LTE Band 4 (AWS) 20 23.5 23.28 0.0					0.05	1	03538	QPSK	50	25	10 mm	left	1:1	0.415	1.052	0.437		
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.5	24.27	-0.17	0	03538	QPSK	1	0	10 mm	back	1:1	0.704	1.054	0.742	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak											Bod .6 W/kg	(mW/g)						
	Uncontrolled Exposure/General Population											ave	eraged over	er 1 gram					

Blue entry represents variability data.

Table 11-18 LTE Band 2 (PCS) Hotspot SAR

					- Da.	4 2	(1. 00)	11013	JOL !	<u> </u>	•								
							P	MEAS	UREMENT	RESULTS	3								
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[aB]	Number			Offset				(W/kg)		(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.70	-0.05	0	03538	QPSK	1	50	10 mm	back	1:1	0.609	1.000	0.609	A20
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	0.00	1	03538	QPSK	50	50	10 mm	back	1:1	0.433	1.009	0.437	
1900.00									03538	QPSK	1	50	10 mm	front	1:1	0.492	1.000	0.492	
1860.00	160.00 18700 Low LTE Band 2 (PCS) 20 22.7 22.66								03538	QPSK	50	50	10 mm	front	1:1	0.392	1.009	0.396	
1900.00	1900.00 19100 High LTE Band 2 (PCS) 20 23.7 23.70								03538	QPSK	1	50	10 mm	bottom	1:1	0.525	1.000	0.525	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.66	0.03	1	03538	QPSK	50	50	10 mm	bottom	1:1	0.431	1.009	0.435	
1900.00 19100 High LTE Band 2 (PCS) 20 23.7 23.70 -0.0						-0.05	0	03538	QPSK	1	50	10 mm	left	1:1	0.472	1.000	0.472		
1860.00	, , ,						-0.09	1	03538	QPSK	50	50	10 mm	left	1:1	0.349	1.009	0.352	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak						Body 1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population						averaged over 1 gram												

Table 11-19 WLAN Hotspot SAR

							VVL	AN I	ισισμ	JOL 3	<u> </u>							
							M	EASUR	MENT	RESUL	гѕ							
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[INITIZ]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.0	16.67	0.00	10 mm	03553	1	back	99.5	0.173	0.135	1.079	1.005	0.147	A21
2412	1	802.11b	DSSS	22	17.0	16.67	-	10 mm	03553	1	front	99.5	0.144	-	1.079	1.005	-	
2412	1	802.11b	DSSS	22	17.0	16.67	-	10 mm	03553	1	top	99.5	0.087		1.079	1.005	-	
2412	1	802.11b	DSSS	22	17.0	16.67	-	10 mm	03553	1	right	99.5	0.101	-	1.079	1.005	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												В	ody				
	Spatial Peak							1.6 W/kg (mW/g)										
	Uncontrolled Exposure/General Population												averaged	over 1 gram				

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 38 of 49
C DOTEOT Facility of a Laboratory Inc.			DEV 47.0 M

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were required. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.6 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
 GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
 was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
 more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

FCC ID: ZNFL81AL	PCTEST	SAR EVALUATION REPORT	G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 20 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 39 of 49

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.2 for more information. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFL81AL	PCTEST - INCIDENTAL PROPERTY INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	David 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 40 of 49

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	9.00	10	0.168

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

SAR testing was not required for phablet exposure conditions per FCC KDB 648474 D04v01r03. Therefore, no further analysis was required to determine that possible simultaneous scenarios would not exceed the SAR limit.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 44 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 41 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.395	0.653	1.048
	GSM/GPRS 1900	0.244	0.653	0.897
	UMTS 850	0.341	0.653	0.994
	UMTS 1750	0.423	0.653	1.076
Head SAR	UMTS 1900	0.424	0.653	1.077
	LTE Band 12	0.225	0.653	0.878
	LTE Band 5 (Cell)	0.305	0.653	0.958
	LTE Band 4 (AWS)	0.526	0.653	1.179
	LTE Band 2 (PCS)	0.364	0.653	1.017

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.686	0.147	0.833
	GSM/GPRS 1900	0.435	0.147	0.582
	UMTS 850	0.581	0.147	0.728
	UMTS 1750	0.694	0.147	0.841
Body-Worn	UMTS 1900	0.653	0.147	0.800
	LTE Band 12	0.437	0.147	0.584
	LTE Band 5 (Cell)	0.576	0.147	0.723
	LTE Band 4 (AWS)	0.860	0.147	1.007
	LTE Band 2 (PCS)	0.609	0.147	0.756

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 42 of 49

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.686	0.168	0.854
	GSM/GPRS 1900	0.435	0.168	0.603
	UMTS 850	0.581	0.168	0.749
	UMTS 1750	0.694	0.168	0.862
Body-Worn	UMTS 1900	0.653	0.168	0.821
	LTE Band 12	0.437	0.168	0.605
	LTE Band 5 (Cell)	0.576	0.168	0.744
	LTE Band 4 (AWS)	0.860	0.168	1.028
	LTE Band 2 (PCS)	0.609	0.168	0.777

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

12.5 Hotspot SAR Simultaneous Transmission Analysis

Table 12-5 Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	0.686	0.147	0.833
	GPRS 1900	0.435	0.147	0.582
	UMTS 850	0.581	0.147	0.728
	UMTS 1750	0.694	0.147	0.841
Hotspot SAR	UMTS 1900	0.653	0.147	0.800
	LTE Band 12	0.437	0.147	0.584
	LTE Band 5 (Cell)	0.576	0.147	0.723
	LTE Band 4 (AWS)	0.860	0.147	1.007
	LTE Band 2 (PCS)	0.609	0.147	0.756

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 40 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 43 of 49

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS												
Band	FREQUE	NCY	Mode	Service	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1732.50	20175	LTE Band 4 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	back	10 mm	0.816	0.704	1.16	N/A	N/A	N/A	N/A
	ANSI	IEEE C	95.1 1992 - SAFETY	LIMIT					Во	dy			
		5	Spatial Peak						1.6 W/kg	(mW/g)			
	Uncontro	olled Ex	posure/General Po	pulation				a	veraged o	ver 1 gram			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFL81AL	PCTEST"	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 44 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 44 of 49

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	3/15/2015	Annual	3/15/2016	3629U00687
Agilent	8753ES	S-Parameter Network Analyzer	3/12/2015	Annual	3/12/2016	MY40000670
Agilent	8753ES	Network Analyzer	3/20/2015	Annual	3/20/2016	MY40001472
Agilent	E4432B	ESG-D Series Signal Generator	3/16/2015	Annual	3/16/2016	US40053896
Agilent	E4438C	ESG Vector Signal Generator	3/13/2015	Annual	3/13/2016	MY42082385
Agilent	E5515C	Wireless Communications Test Set	11/30/2015	Annual	11/30/2016	GB42361078
Agilent	E5515C	Wireless Communications Test Set	5/22/2015	Annual	5/22/2016	GB43304278
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/15/2015	Annual	3/15/2016	MY45470194
Agilent	N5182A	MXG Vector Signal Generator	3/16/2015	Annual	3/16/2016	MY47420651
Agilent	N5182A	MXG Vector Signal Generator	3/16/2015	Annual	3/16/2016	MY47420800
Agilent	N9020A	MXA Signal Analyzer	11/5/2015	Annual	11/5/2016	US46470561
Amplifier Research	15S1G6	Amplifier	N/A	CBT	N/A	433971
Amplifier Research	15S1G6	Amplifier	N/A	CBT	N/A	433972
Anritsu	MA24106A	USB Power Sensor	5/29/2015	Annual	5/29/2016	1231535
Anritsu	MA24106A	USB Power Sensor	5/29/2015	Annual	5/29/2016	1231538
Anritsu	MA2411B	Pulse Power Sensor	8/3/2015	Annual	8/3/2016	1126066
Anritsu	MA2411B	Pulse Power Sensor	3/13/2015	Annual	3/13/2016	1207470
Anritsu	MA2481A	Power Sensor	3/10/2015	Annual	3/10/2016	2400
Anritsu	MA2481A	Power Sensor	3/11/2015	Annual	3/11/2016	5318
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1328004
Anritsu	ML2496A	Power Meter	3/13/2015	Annual	3/13/2016	1351001
Anritsu	MT8820C	Radio Communication Analyzer	7/24/2015	Annual	7/24/2016	6200901190
Anritsu	MT8820C	Radio Communication Analyzer	11/12/2015	Annual	11/12/2016	6201144418
COMTech	AR85729-5	Solid State Amplifier	N/A	CBT	N/A	M1S5A00-009
Control Company	4040	Digital Thermometer	3/18/2015	Biennial	3/18/2017	150194895
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053029
Keysight	772D	Dual Directional Coupler	N/A	CBT	N/A	MY52180215
MCL	BW-N6W5+	6dB Attenuator	N/A	CBT	N/A	1139
MiniCircuits	SLP-2400+	Low Pass Filter	N/A	CBT	N/A	R8979500903
Mini-Circuits	BW-N20W5	Power Attenuator	N/A	CBT	N/A	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	N/A	CBT	N/A	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	N/A	CBT	N/A	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	N/A	CBT	N/A	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264162
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	N/A	CBT	N/A	N/A
Narda	4772-3	Attenuator (3dB)	N/A	CBT	N/A	9406
Narda	BW-S3W2	Attenuator (3dB)	N/A	CBT	N/A	120
Pasternack			11//1	55	11//1	
Pasternack	NC-100	Torque Wrench	5/21/2015	Riennial	5/21/2017	N/A
	NC-100 NC-100	Torque Wrench	5/21/2015 5/21/2015	Biennial Biennial	5/21/2017 5/21/2017	N/A N/A
	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Pasternack	NC-100 PE2208-6	Torque Wrench Bidirectional Coupler	5/21/2015 N/A	Biennial CBT	5/21/2017 N/A	N/A N/A
Pasternack Pasternack	NC-100 PE2208-6 PE2209-10	Torque Wrench Bidirectional Coupler Bidirectional Coupler	5/21/2015 N/A N/A	Biennial CBT CBT	5/21/2017 N/A N/A	N/A N/A N/A
Pasternack Pasternack Rohde & Schwarz	NC-100 PE2208-6 PE2209-10 CMW500	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester	5/21/2015 N/A N/A 10/13/2015	Biennial CBT CBT Annual	5/21/2017 N/A N/A 10/13/2016	N/A N/A N/A 100976
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz	NC-100 PE2208-6 PE2209-10 CMW500 CMW500	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester	5/21/2015 N/A N/A 10/13/2015 4/22/2015	Biennial CBT CBT Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016	N/A N/A N/A 100976 101699
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014	Biennial CBT CBT Annual Annual Biennial	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016	N/A N/A N/A 100976 101699 22313
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016	N/A N/A N/A 100976 101699 22313 1051
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015	Biennial CBT CBT Annual Annual Biennial Annual Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016	N/A N/A N/A 100976 101699 22313 1051 5d141
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG SPEAG SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015	Biennial CBT CBT Annual Annual Biennial Annual Annual Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG SPEAG SPEAG SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 8/20/2015	Biennial CBT CBT Annual Annual Biennial Annual Annual Annual Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 8/20/2015 10/21/2015	Biennial CBT CBT Annual Annual Biennial Annual Annual Annual Annual Annual Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 8/20/2016 10/21/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D2450V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 8/20/2015 10/21/2015 3/11/2015	Biennial CBT CBT Annual Annual Biennial Annual Annual Annual Annual Annual Annual Annual Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 797 1054
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D2450V2 D750V3 D835V2	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 350 MHz SAR Dipole 835 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 8/20/2015 10/21/2015 3/11/2015 4/13/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 797 1054 4d119
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 3450 MHz DAR Dipole 3450 MHz Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 7/14/2015 7/14/2015 8/20/2015 10/21/2015 3/11/2015 4/13/2015 2/18/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 2/18/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 3900 MHz SAR Dipole 2450 MHz Dipole 350 MHz Dipole 835 MHz SAR Dipole Bass MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 8/20/2015 10/21/2015 3/11/2015 3/11/2015 3/11/2015 2/18/2015 8/24/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 3/11/2016 4/13/2016 2/18/2016 8/24/2016	N/A N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665 1322
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 385 MHz SAR Dipole Basy MHz SAR Dipole Basy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 10/21/2015 3/11/2015 4/13/2015 4/13/2015 8/24/2015 10/27/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 4/13/2016 4/13/2016 8/24/2016 8/24/2016	N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665 1322 1333
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 10/21/2015 3/11/2015 4/13/2015 2/18/2015 10/27/2015 3/13/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 10/21/2016 3/11/2016 4/13/2016 4/13/2016 2/18/2016 10/27/2016 3/13/2016 10/27/2016	N/A N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665 13222 1333 1368
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 3450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz Dipole 355 MHz SAR Dipole Bass MHz SAR Dipole Bass MHz SAR Dipole Bass MHz SAR Dipole Dasy Data Acquisition Electronics	5/21/2015 N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 8/20/2015 10/21/2015 3/11/2015 2/18/2015 8/24/2015 10/27/2015 3/13/2015 4/20/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 4/13/2016 8/24/2016 8/24/2016 3/13/2016 4/20/2016	N/A N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665 1322 1333 1368 1407
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz Dipole 335 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 8/20/2015 10/21/2015 3/11/2015 3/11/2015 2/18/2015 10/27/2015 10/27/2015 10/27/2015 10/27/2015 1/17/2015 1/20/2015 1/20/2015 1/20/2015	Biennial CBT CBT CRT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 2/18/2016 10/27/2016 3/13/2016 4/20/2016 11/11/2016	N/A
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz Dipole 3835 MHz SAR Dipole Basy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 8/20/2015 10/21/2015 3/11/2015 4/13/2015 4/13/2015 10/27/2015 3/13/2015 10/27/2015 3/13/2015 11/11/2015 8/26/2015	Biennial CBT CBT CRT Annual Annual Biennial Annual	5/21/2017 N/A N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 3/11/2016 8/24/2016 10/27/2016 3/13/2016 4/20/2016 11/11/2016 8/26/2016	N/A N/A N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665 1322 1333 1368 1368 1407 1415
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 350 MHz SAR Dipole 2450 MHz SAR Dipole 250 MHz Dipole 835 MHz SAR Dipole Basy Data Acquisition Electronics Dasy Data Acquisition Electronics SAR Probe SAR Probe	5/21/2015 N/A N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 10/21/2015 3/11/2015 3/11/2015 4/13/2015 10/27/2015 3/13/2015 4/20/2015 11/11/2015 8/26/2015 3/19/2015	Biennial CBT CBT CRT Annual Annual Biennial Annual	5/21/2017 N/A N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 4/13/2016 8/24/2016 10/27/2016 3/13/2016 4/20/2016 1/11/2016 8/26/2016 3/19/2016	N/A N/A N/A N/A N/A N/A 100976 101699 22313 1051 5d141 5d149 719 797 1054 4d119 665 1322 1333 1368 1407 1415 3022 3209
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 383 MHz SAR Dipole Basy MHz SAR Dipole T50 MHz Dipole Basy MHz SAR Dipole Dasy Data Acquisition Electronics	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 7/14/2015 10/21/2015 3/11/2015 4/13/2015 2/18/2015 10/27/2015 3/13/2015 4/20/2015 11/11/2015 8/26/2015 3/19/2015 3/19/2015	Biennial CBT CBT Annual Annual Biennial Annual	5/21/2017 N/A N/A N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 4/13/2016 2/18/2016 10/27/2016 3/13/2016 4/20/2016 11/11/2016 8/26/2016 3/19/2016 3/19/2016 3/19/2016	N/A
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 3450 MHz SAR Dipole Bass MHz SAR Dipole Ass MHz SAR Dipole Bass MHz SAR Dipole Bass MHz SAR Dipole Bass MHz SAR Dipole Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 7/14/2015 8/20/2015 10/21/2015 3/11/2015 3/11/2015 8/24/2015 10/27/2015 3/13/2015 10/27/2015 3/13/2015 4/20/2015 11/11/2015 8/26/2015 3/19/2015 3/19/2015	Biennial CBT CBT CRT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 8/24/2016 2/18/2016 10/27/2016 3/13/2016 4/20/2016 11/11/2016 8/26/2016 3/19/2016 3/19/2016 3/19/2016	N/A
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 350 MHz Dipole 750 MHz Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe SAR Probe	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 4/14/2015 4/14/2015 8/20/2015 10/21/2015 3/11/2015 3/11/2015 8/24/2015 10/27/2015 3/13/2015 4/20/2015 11/11/2015 8/26/2015 3/19/2015 10/29/2015 11/17/2015	Biennial CBT CBT CRT Annual Annual Biennial Annual	5/21/2017 N/A N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 4/13/2016 2/18/2016 10/27/2016 3/13/2016 4/20/2016 11/11/2016 8/26/2016 3/19/2016 10/29/2016 10/29/2016	N/A
Pasternack Pasternack Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Seekonk SPEAG	NC-100 PE2208-6 PE2209-10 CMW500 CMW500 NC-100 D1750V2 D1900V2 D1900V2 D2450V2 D2450V2 D750V3 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Torque Wrench Bidirectional Coupler Bidirectional Coupler Radio Communication Tester Radio Communication Tester Radio Communication Tester Torque Wrench 1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 3450 MHz SAR Dipole Bass MHz SAR Dipole Ass MHz SAR Dipole Bass MHz SAR Dipole Bass MHz SAR Dipole Bass MHz SAR Dipole Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe	5/21/2015 N/A N/A N/A 10/13/2015 4/22/2015 3/18/2014 4/15/2015 7/14/2015 8/20/2015 10/21/2015 3/11/2015 3/11/2015 8/24/2015 10/27/2015 3/13/2015 10/27/2015 3/13/2015 4/20/2015 11/11/2015 8/26/2015 3/19/2015 3/19/2015	Biennial CBT CBT CRT Annual Annual Biennial Annual	5/21/2017 N/A N/A 10/13/2016 4/22/2016 3/18/2016 4/15/2016 4/15/2016 4/14/2016 7/14/2016 8/20/2016 10/21/2016 3/11/2016 8/24/2016 2/18/2016 10/27/2016 3/13/2016 4/20/2016 11/11/2016 8/26/2016 3/19/2016 3/19/2016 3/19/2016	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

	*** V SEGINSEES LABORATORY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N:	est Dates:	DUT Type:	D 45 . (40
0Y1601180100.ZNF 01	1/18/16 - 01/28/16	Portable Handset	Page 45 of 49

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
	_ /··/		,	"•		(± %)	(± %)	.,
Measurement System				•				
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	× ×
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1,7	1.4	∞
Combined Standard Uncertainty (k=1)		RSS	- 111 -			11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

FCC ID: ZNFL81AL	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 . f 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 46 of 49
046 DOTECT Engineering Laboratory Inc.			DEV/ 17.0 M

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 47 of 40
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 47 of 49

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFL81AL	PCTEST' INDIVIDUAL LADOCATETY, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Danie 40 of 40	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset		Page 48 of 49	

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFL81AL	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Day 10 of 10	
0Y1601180100.ZNF	01/18/16 - 01/28/16	Portable Handset	Page 49 of 49	

APPENDIX A: SAR TEST DATA

DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

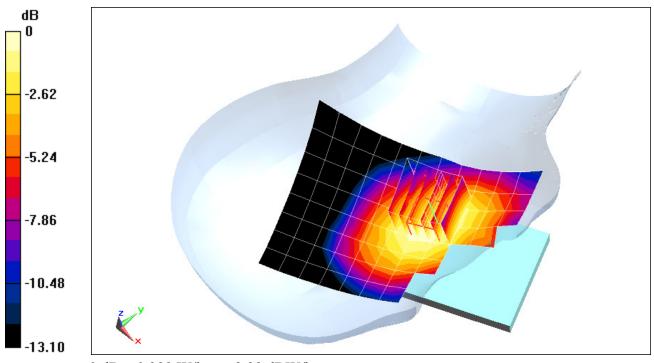
Communication System: UID 0, GSM GPRS; 2 Tx slots (0); Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.199; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-18-2016; Ambient Temp: 24.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8): SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.39 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.474 W/kg

SAR(1 g) = 0.365 W/kg

0 dB = 0.399 W/kg = -3.99 dBW/kg

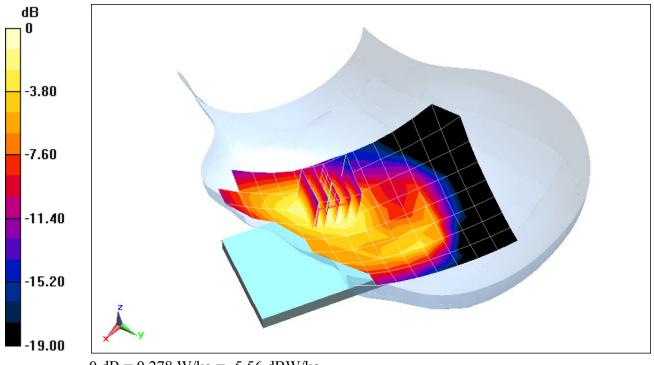
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \sigma = 1.421 \text{ S/m}; \ \epsilon_r = 39.504; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3209; ConvF(5.05, 5.05, 5.05); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.76 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.234 W/kg

DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

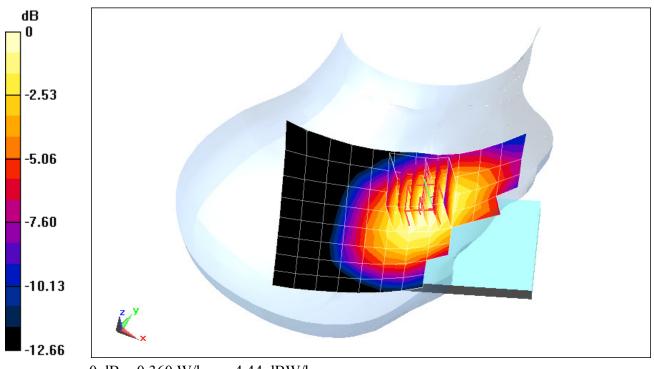
Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.199; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-18-2016; Ambient Temp: 24.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.31 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.432 W/kg

SAR(1 g) = 0.326 W/kg

0 dB = 0.360 W/kg = -4.44 dBW/kg

DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

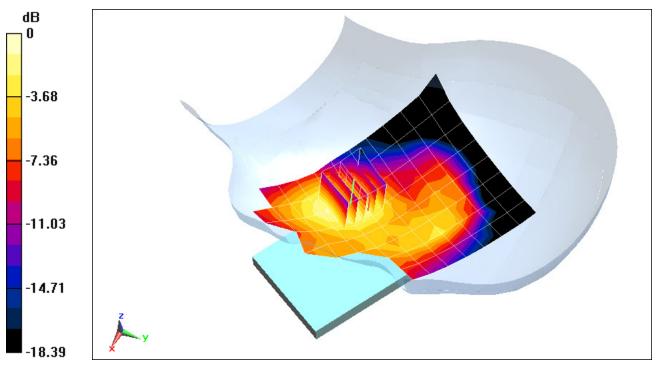
Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.335 \text{ S/m}; \ \epsilon_r = 38.474; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-27-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3334; ConvF(5.39, 5.39, 5.39); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: AWS UMTS, Left Head, Cheek, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.81 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.620 W/kg

SAR(1 g) = 0.402 W/kg

0 dB = 0.464 W/kg = -3.33 dBW/kg

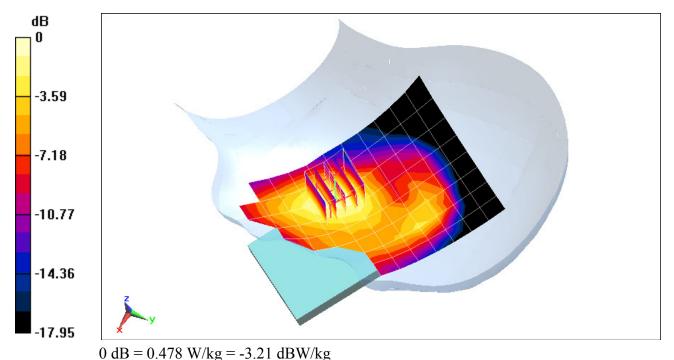
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.421 \text{ S/m}; \ \epsilon_r = 39.504; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3209; ConvF(5.05, 5.05, 5.05); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.31 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.401 W/kg

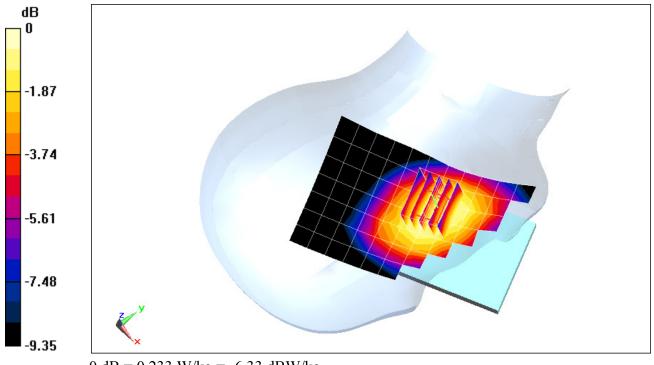
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03546

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.864 \text{ S/m}; \ \epsilon_r = 43.317; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-21-2016; Ambient Temp: 24.2°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(6.33, 6.33, 6.33); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.83 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.217 W/kg

0 dB = 0.233 W/kg = -6.33 dBW/kg

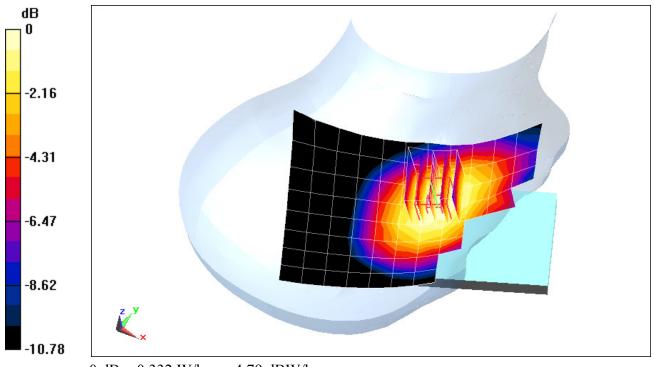
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03546

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-18-2016; Ambient Temp: 24.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.48 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.305 W/kg

0 dB = 0.332 W/kg = -4.79 dBW/kg

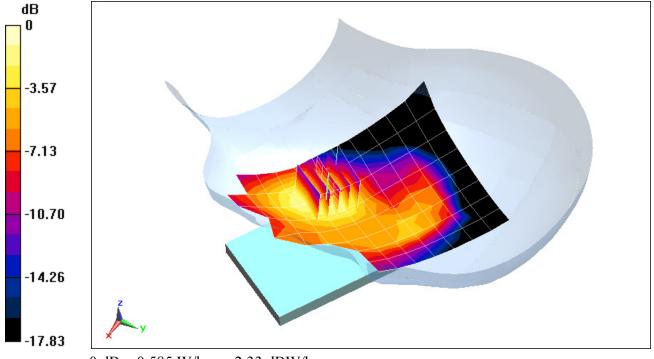
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03538

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.335 \text{ S/m}; \ \epsilon_r = 38.473; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-27-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3334; ConvF(5.39, 5.39, 5.39); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.41 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.741 W/kg

SAR(1 g) = 0.499 W/kg

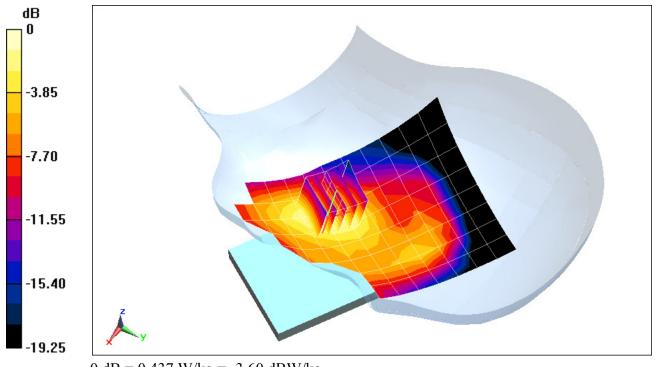
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03538

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.441 \text{ S/m}; \ \epsilon_r = 39.417; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3209; ConvF(5.05, 5.05, 5.05); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Left Head, Cheek, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.61 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.612 W/kg

SAR(1 g) = 0.364 W/kg

0 dB = 0.437 W/kg = -3.60 dBW/kg

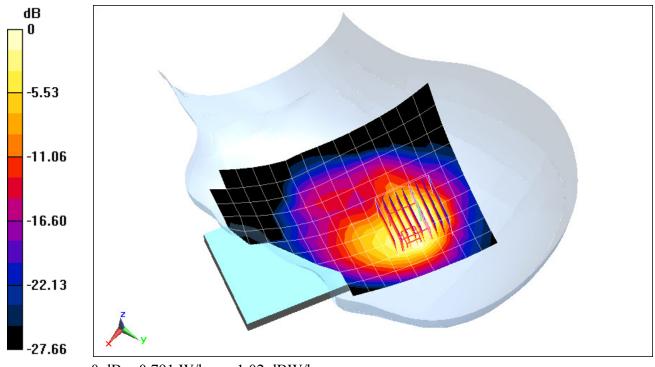
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03553

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.799 \text{ S/m}; \ \epsilon_r = 38.397; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-19-2016; Ambient Temp: 22.3°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3351; ConvF(4.46, 4.46, 4.46); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 1, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.62 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.602 W/kg

0 dB = 0.791 W/kg = -1.02 dBW/kg

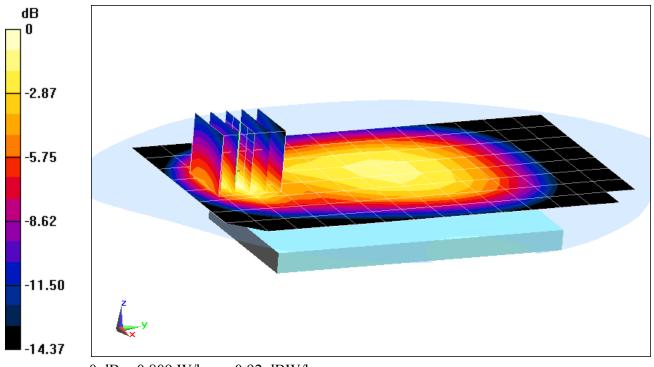
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.011$ S/m; $\varepsilon_r = 53.506$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3351; ConvF(6.11, 6.11, 6.11); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

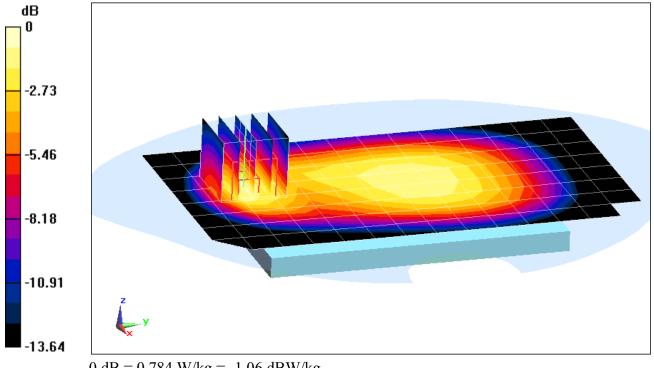
Reference Value = 26.12 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.649 W/kg

0 dB = 0.809 W/kg = -0.92 dBW/kg

DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520


Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 1.011 \text{ S/m}; \epsilon_r = 53.506; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3351; ConvF(6.11, 6.11, 6.11); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2015 Phantom: SAM 5.0 front; Type: OD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.09 W/kgSAR(1 g) = 0.635 W/kg

0 dB = 0.784 W/kg = -1.06 dBW/kg

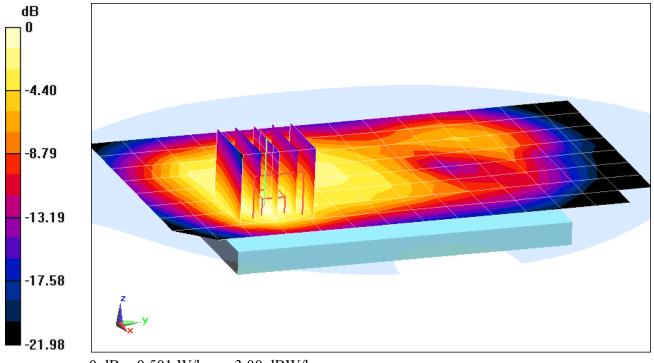
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.532 \text{ S/m}; \ \epsilon_r = 51.569; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-25-2016; Ambient Temp: 21.5°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.73 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.417 W/kg

0 dB = 0.501 W/kg = -3.00 dBW/kg

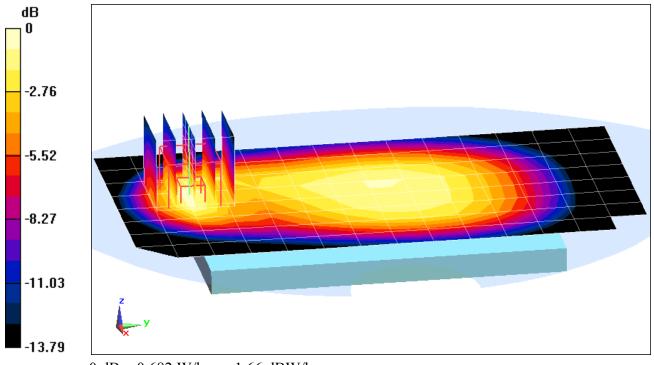
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.011$ S/m; $\varepsilon_r = 53.506$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3351; ConvF(6.11, 6.11, 6.11); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.50 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.940 W/kg

SAR(1 g) = 0.556 W/kg

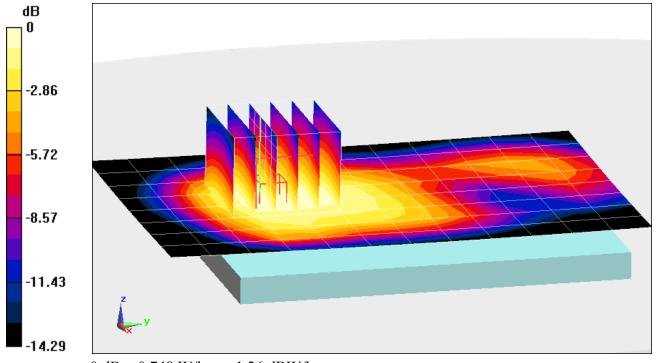
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, UMTS (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.506 \text{ S/m}; \ \epsilon_r = 52.532; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: AWS UMTS, Body SAR, Back side, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.54 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.952 W/kg

SAR(1 g) = 0.660 W/kg

0 dB = 0.748 W/kg = -1.26 dBW/kg

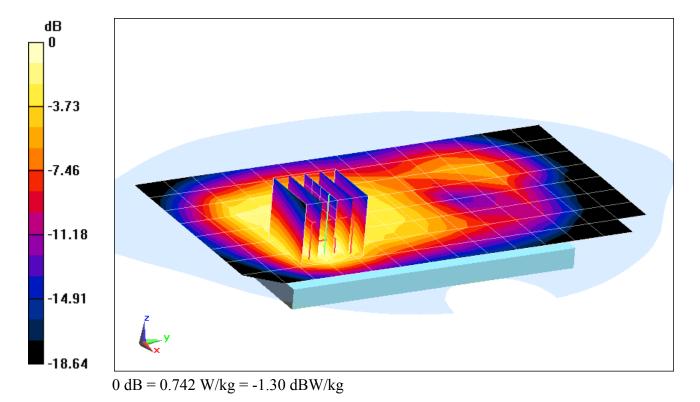
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03520

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.532 \text{ S/m}; \ \epsilon_r = 51.569; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-25-2016; Ambient Temp: 21.5°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.20 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.618 W/kg

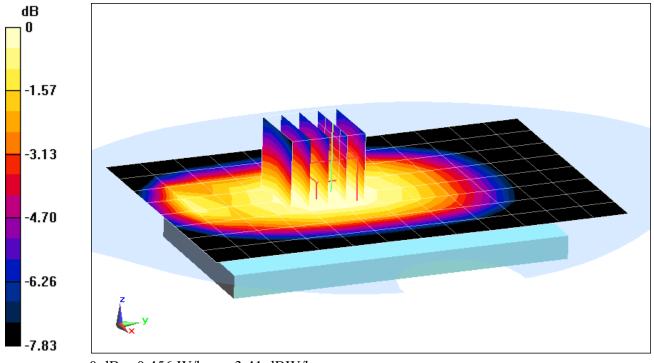
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03538

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.922$ S/m; $\varepsilon_r = 57.057$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-25-2016; Ambient Temp: 23.0°C; Tissue Temp: 21.4°C

Probe: ES3DV2 - SN3022; ConvF(6.16, 6.16, 6.16); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.05 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.514 W/kg

SAR(1 g) = 0.421 W/kg

0 dB = 0.456 W/kg = -3.41 dBW/kg

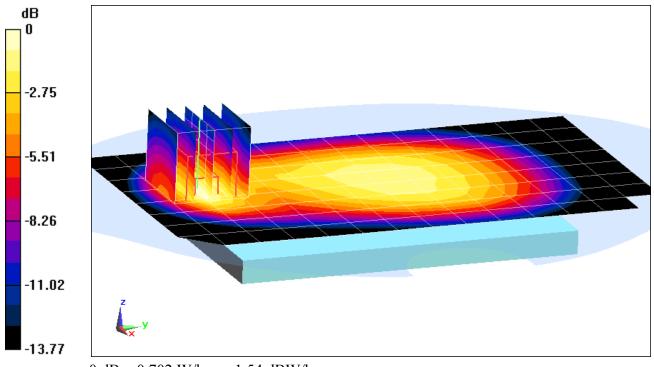
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03538

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.011$ S/m; $\varepsilon_r = 53.507$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3351; ConvF(6.11, 6.11, 6.11); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.10 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.994 W/kg

SAR(1 g) = 0.576 W/kg

0 dB = 0.702 W/kg = -1.54 dBW/kg

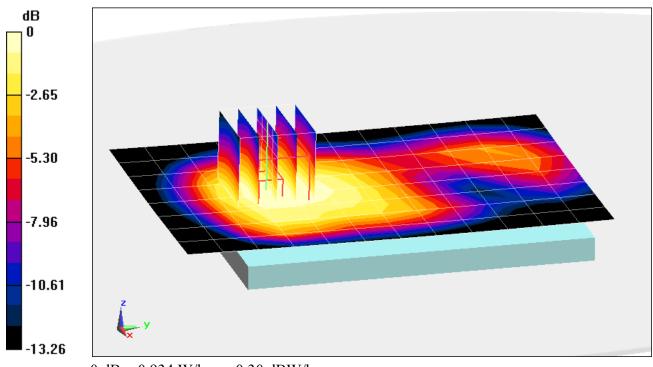
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03538

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.506 \text{ S/m}; \ \epsilon_r = 52.531; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.85 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.816 W/kg

0 dB = 0.934 W/kg = -0.30 dBW/kg

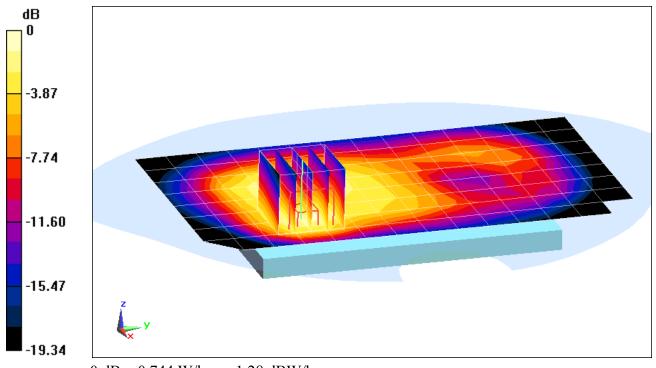
DUT: ZNFL81AL; Type: Portable Handset; Serial: 03538

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.553 \text{ S/m}; \ \epsilon_r = 51.489; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-25-2016; Ambient Temp: 21.5°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.05 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.609 W/kg

0 dB = 0.744 W/kg = -1.28 dBW/kg

DUT: ZNFL81AL; Type: Portable Handset; Serial: 03553

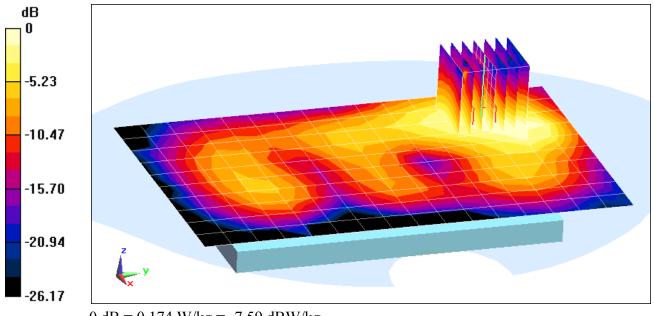
Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.943 \text{ S/m}; \ \epsilon_r = 51.706; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 21.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.916 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.135 W/kg

0 dB = 0.174 W/kg = -7.59 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

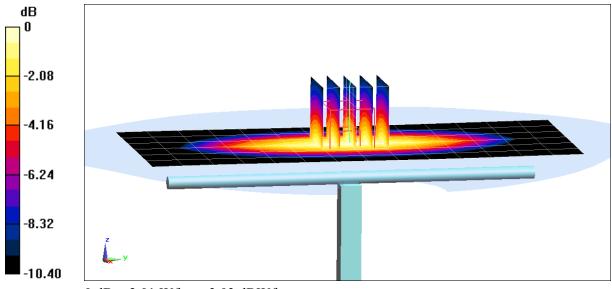
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.903 \text{ S/m}$; $\epsilon_r = 42.726$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.5 cm

Test Date: 01-21-2016; Ambient Temp: 24.2°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(6.33, 6.33, 6.33); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.56 W/kg

SAR(1 g) = 1.72 W/kg

Deviation(1 g) = 3.86%

0 dB = 2.01 W/kg = 3.03 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.892 \text{ S/m}$; $\epsilon_r = 40.219$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

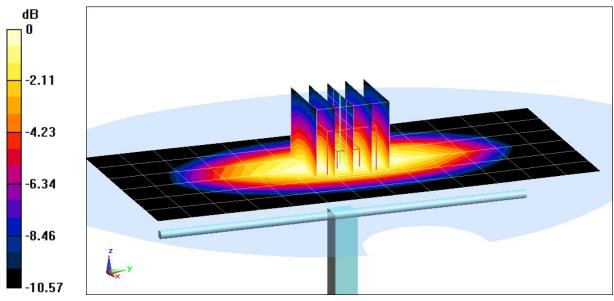
Test Date: 01-18-2016; Ambient Temp: 24.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.87 W/kg

SAR(1 g) = 1.95 W/kg

Deviation (1 g)= 3.94%

0 dB = 2.27 W/kg = 3.56 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.353 \text{ S/m}; \ \epsilon_r = 38.344; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

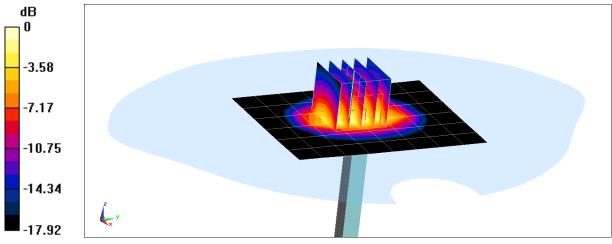
Test Date: 01-27-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3334; ConvF(5.39, 5.39, 5.39); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.89 W/kg

SAR(1 g) = 3.82 W/kg

Deviation(1 g) = 5.52%

0 dB = 4.79 W/kg = 6.80 dBW/kg

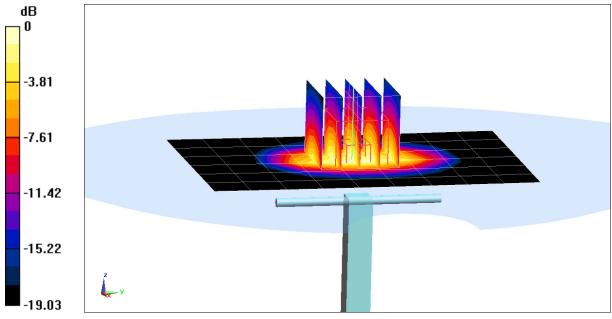
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.441$ S/m; $\varepsilon_r = 39.417$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3209; ConvF(5.05, 5.05, 5.05); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

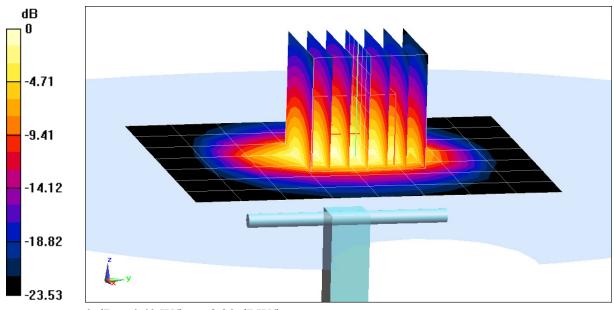
Peak SAR (extrapolated) = 8.41 W/kg

SAR(1 g) = 4.3 W/kg

Deviation (1 g) = 5.65%

0 dB = 5.42 W/kg = 7.34 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 38.234$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 22.3°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3351; ConvF(4.46, 4.46, 4.46); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.5 W/kg SAR(1 g) = 5.06 W/kg Deviation (1 g)= -6.64%

0 dB = 6.60 W/kg = 8.20 dBW/kg

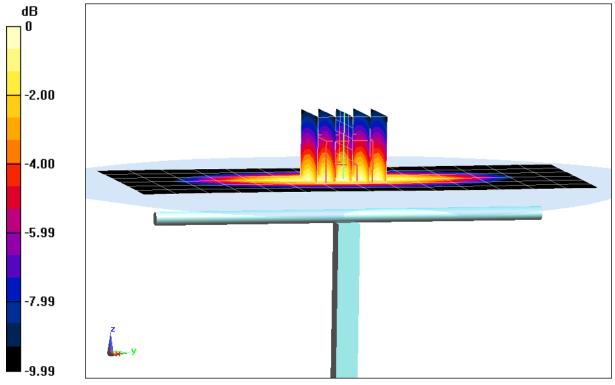
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.964 \text{ S/m}$; $\epsilon_r = 56.648$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-25-2016; Ambient Temp: 23.0°C; Tissue Temp: 21.4°C

Probe: ES3DV2 - SN3022; ConvF(6.16, 6.16, 6.16); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.59 W/kg

SAR(1 g) = 1.76 W/kg

Deviation(1 g) = 3.17%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 1.009 \text{ S/m}$; $\epsilon_r = 53.523$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-20-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3351; ConvF(6.11, 6.11, 6.11); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.95 W/kg

Deviation (1 g)= 5.98%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

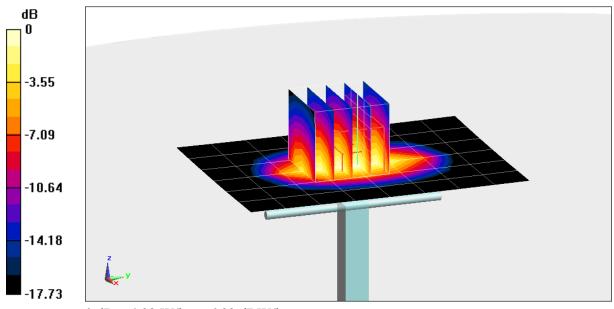
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.526 \text{ S/m}; \ \epsilon_r = 52.462; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-20-2016; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.98 W/kg

SAR(1 g) = 3.96 W/kg

Deviation(1 g) = 6.74%

0 dB = 4.92 W/kg = 6.92 dBW/kg

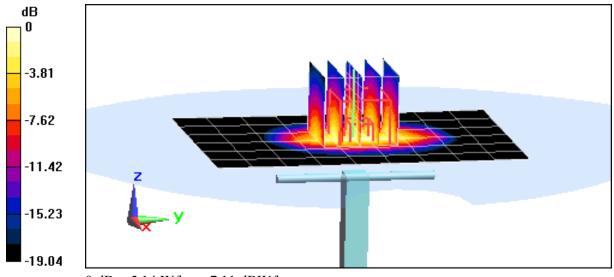
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.553 \text{ S/m}$; $\varepsilon_r = 51.489$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-25-2016; Ambient Temp: 21.5°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

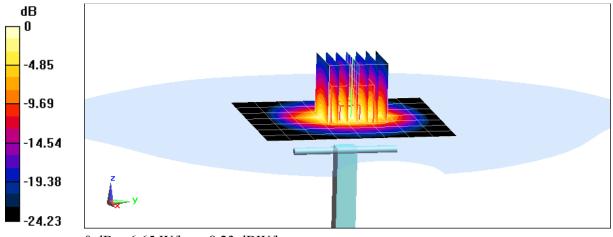
Peak SAR (extrapolated) = 7.52 W/kg

SAR(1 g) = 4.07 W/kg

Deviation(1 g) = 1.75%

0 dB = 5.14 W/kg = 7.11 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.992 \text{ S/m}; \ \epsilon_r = 51.567; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 21.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.3 W/kg SAR(1 g) = 4.99 W/kg Deviation(1 g) = -3.11%

0 dB = 6.65 W/kg = 8.23 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1054_Mar15

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 11, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Michael Weber Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 11, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

The following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and ballotiations were applied	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D750V3-1054_Mar15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω - 0.6 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 2.6 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
· · · · · · · · · · · · · · · · · · ·	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Certificate No: D750V3-1054_Mar15

DASY5 Validation Report for Head TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

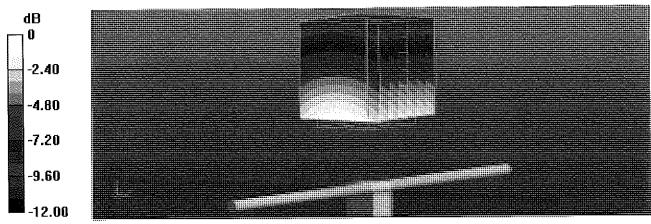
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

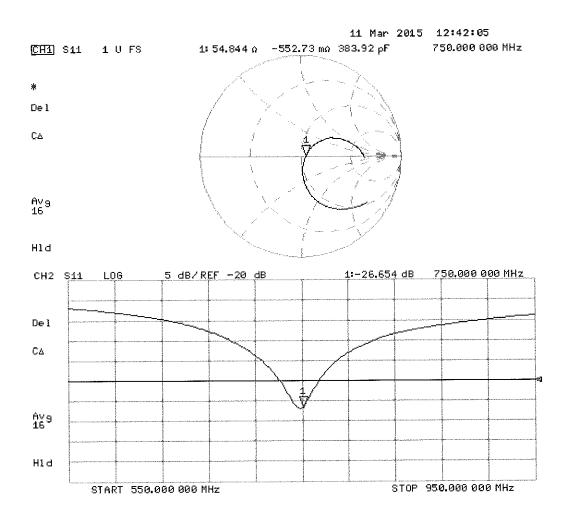
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.06 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

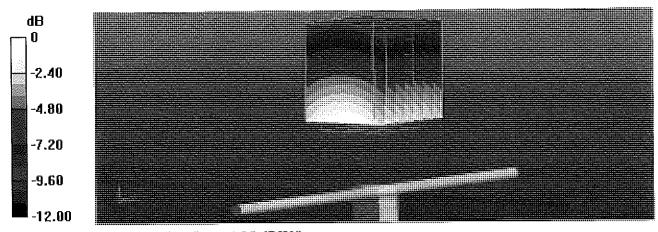
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

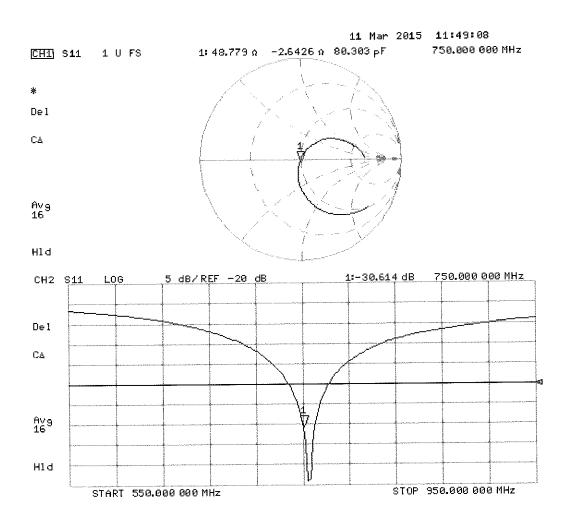
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.35 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.20 W/kg


SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d119_Apr15

Certificate No: D835V2-4d119_Apr15

Object	D835V2 - SN:4d	1.19 military responsement a raminary formation	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits ab	RN ove 700 MHz 4/29
Calibration date:	April 13, 2015		en en en el como internacional de la como de La como de la como de l
The measurements and the thice	rtainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^\circ$	nd are part of the certificate.
Primary Standards	ID #	Cal Data (Cartificate No.)	
Power meter EPM-442A	GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02020)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Oct-15
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Mar-16
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Dec-15 Aug-15
Secondary Standards	ID#		. 139 10
RF generator R&S SMT-06	100005	Check Date (in house)	Scheduled Check
Network Analyzer HP 8753E	US37390585 S4206	04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	In house check: Oct-16 In house check: Oct-15
On Phone and the	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Miseen Chaceee
Approved by:	Katja Pokovic	Technical Manager	Ally-
		full without written approval of the laboratory	Issued: April 13, 2015

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d119_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VOZ.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	with opacer
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.20 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 2.2 jΩ
Return Loss	- 33.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 4.9 ϳΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Flectrical Doloy (one dispetion)	
Electrical Delay (one direction)	1 000
	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr15

DASY5 Validation Report for Head TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

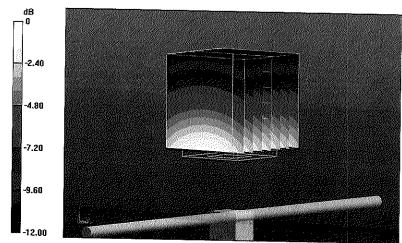
Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

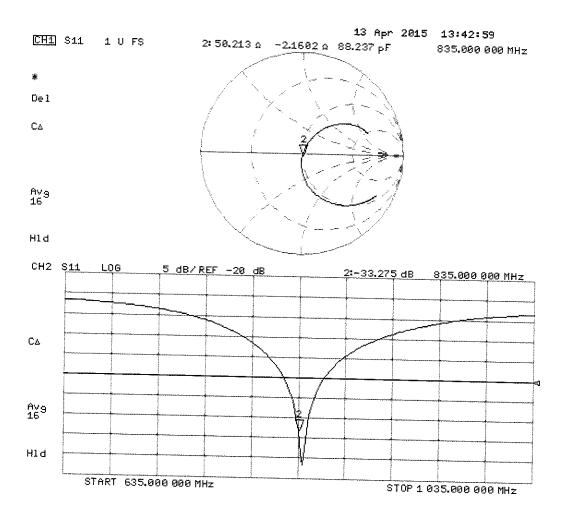
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.77 V/m P

Reference Value = 56.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

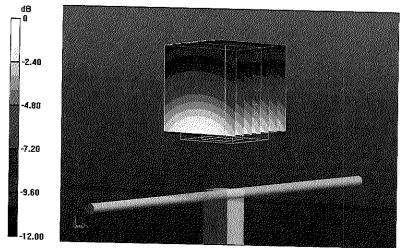
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1750V2-1051 Apr15

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1051

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 15, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1.0-
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 15, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1051_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1051_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VJZ.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with Opacei
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	250 mW input power	4.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
	250 mW input power	9.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	250 mW input power	5.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1051_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 0.2 jΩ
Return Loss	- 37.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 0.3 jΩ
Return Loss	- 29.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
= comodi Belay (one difection)	1.221 ns
	1.221118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manadactared by	SPEAG
Manufactured on	Fobruary 10, 0040
	February 19, 2010

Certificate No: D1750V2-1051_Apr15

DASY5 Validation Report for Head TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

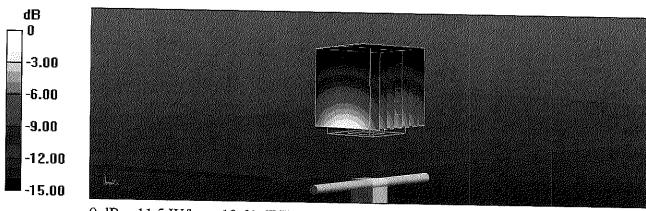
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

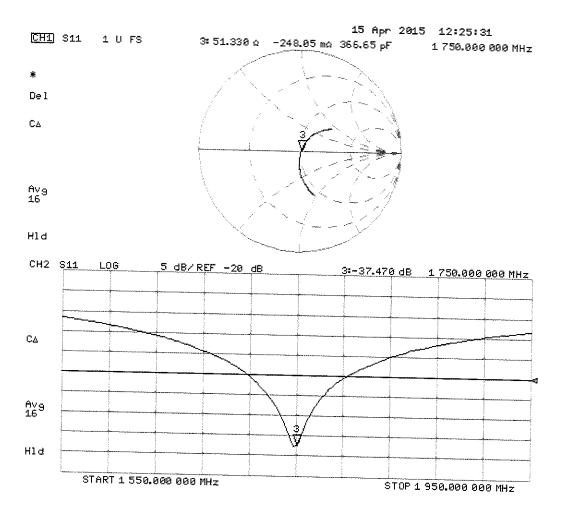
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.99 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.3 W/kg


SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

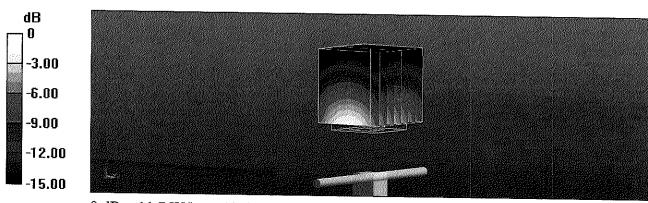
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

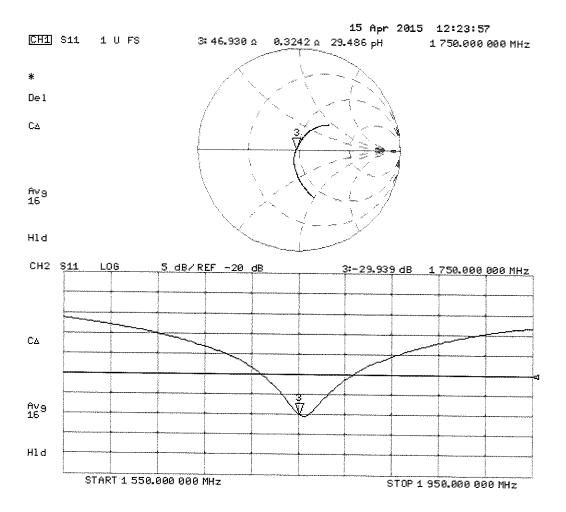
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.87 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.32 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1900V2-5d141_Apr15

Object D1900V2 - SN:5d141

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature ₃
Calibrated by:	Claudio Leubler	Laboratory Technician	(1/2)

Issued: April 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d141_Apr15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	a u 12.20	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d141_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 4.6 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω + 5.6 jΩ
Return Loss	- 24.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
	1.130115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d141_Apr15

DASY5 Validation Report for Head TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

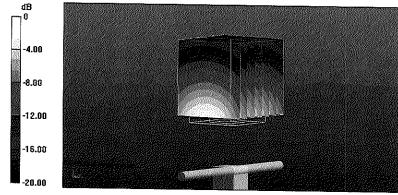
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

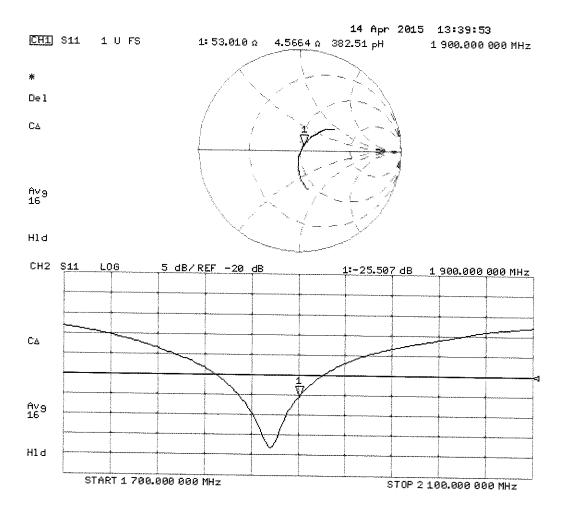
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.18 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.2 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

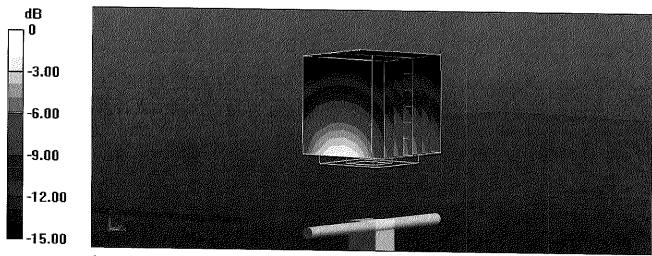
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

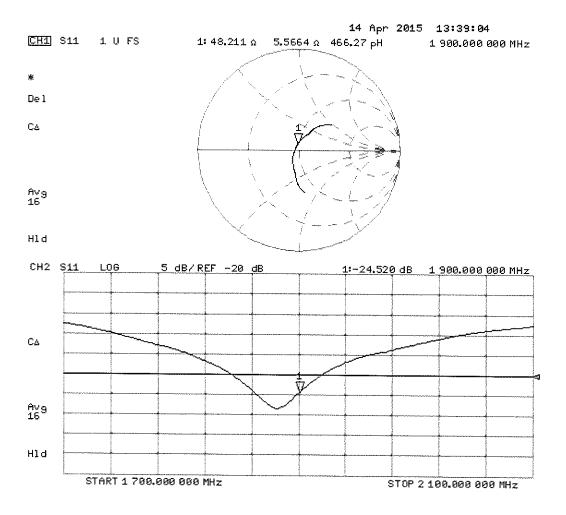
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.73 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.9 W/kg


SAR(1 g) = 9.94 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d149 Jul15

1	CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d149

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

UU√ 8/4/1°

Calibration date:

July 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature

Calibrated by:

Leif Klysner

Function

Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: July 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149_Jul15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d149_Jul15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.4 \Omega + 5.6 j\Omega$	
Return Loss	- 24.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 6.1 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Florida de Dalace / como Pro (U. A.)	
Electrical Delay (one direction)	1.197 ns
(1111)	11107 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

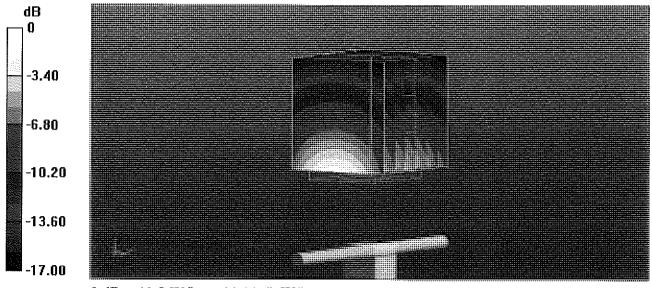
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

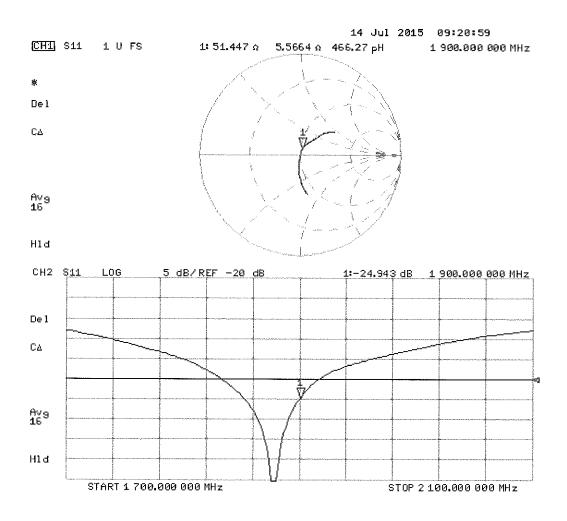
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.22 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.3 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

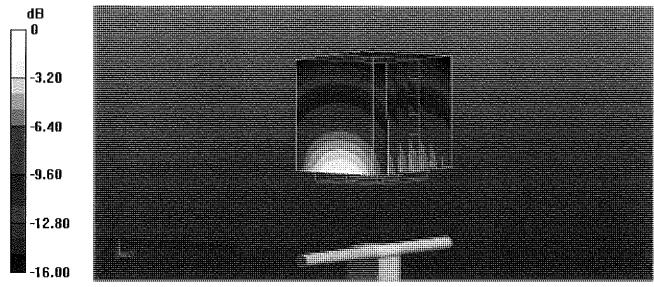
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

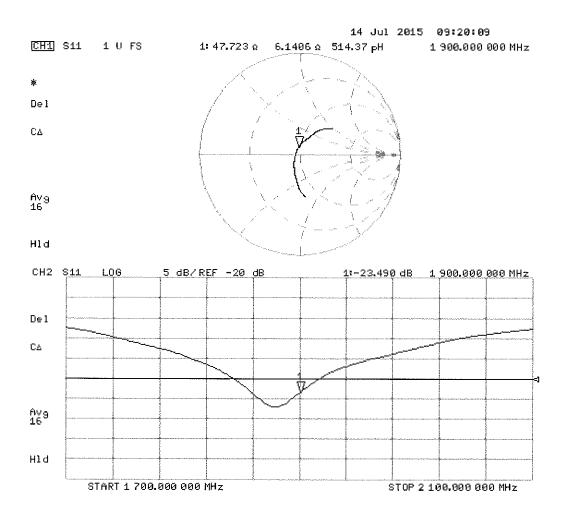
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.96 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.49 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-719_Aug15

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 719

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092 3 17	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	17-Aug-15 (No. DAE4-601_Aug15)	Aug-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name

Function

Michael Weber

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: August 21, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-719 Aug15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-719_Aug15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52. 7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-719_Aug15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 5.3 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 6.5 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	4.440
Listing Doidy (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

Certificate No: D2450V2-719_Aug15

DASY5 Validation Report for Head TSL

Date: 20.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;

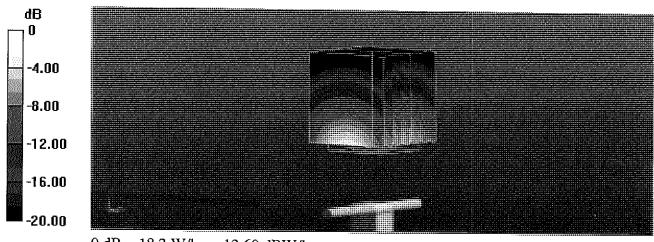
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

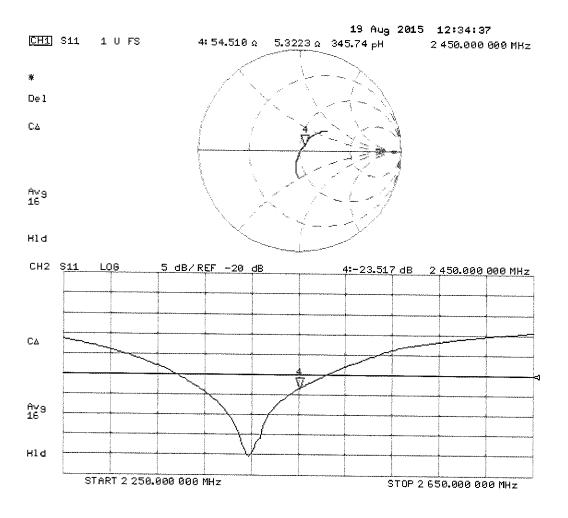
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.1 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.48 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

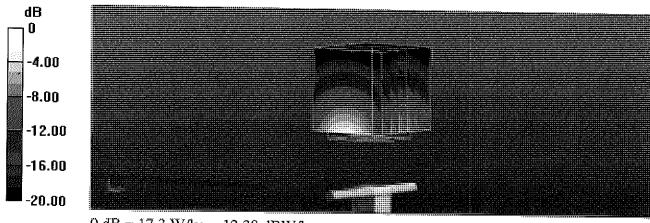
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

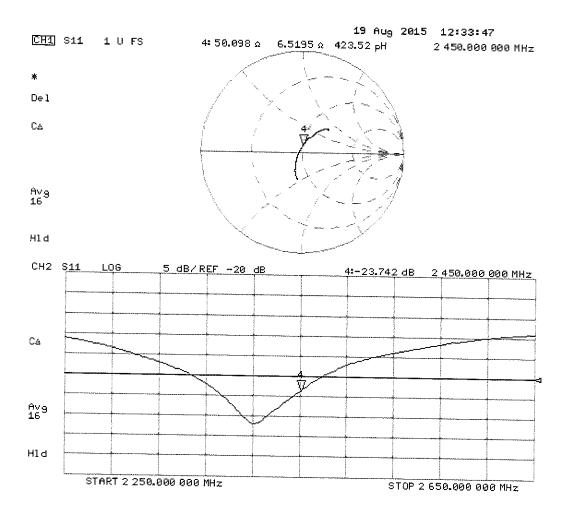
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.73 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstraese 43, 8004 Zurich, Switzerland

S

C

S

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Servica

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-797_Oct15

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

1/03/15

Calibration date:

October 21, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Sf). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	(D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power seneor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 d8 Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	30-Dec-14 (No. EX3-7349_Dec14)	Dec-15
DAE4	SN: 601	17-Aug-15 (No. DAE4-601_Aug15)	Aug-16
Secondary Standards	ID#	Check Date (In house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-19
Network Analyzer HP 9753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Leif Klyener	Laboratory Technician	Leif Helpen
Approved by:	Kalja Pokovic	Technical Manager	00101

Issued: October 22, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797_Oct15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x.v.z.

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measura the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) 1EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of tha flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantem	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	. 22,0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W /kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1 Ω + 8.0 jΩ
Return Loss	- 21.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 9.3 jΩ
Return Loss	- 20.7 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.152 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

Certificate No: D2450V2-797_Oct15

DASY5 Validation Report for Head TSL

Date: 21.10.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.67, 7.67, 7.67); Calibrated: 30.12,2014;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

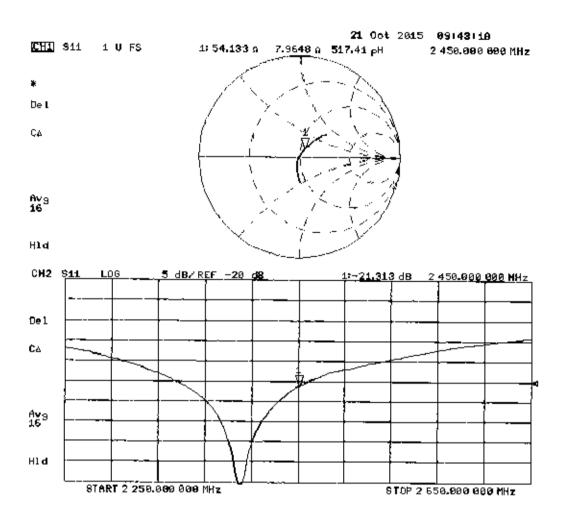
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.6 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.8 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.17 W/kg

Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21,10,2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.53, 7.53, 7.53); Calibrated: 30.12.2014;

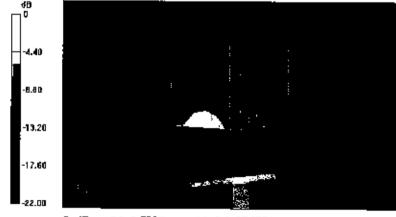
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002.

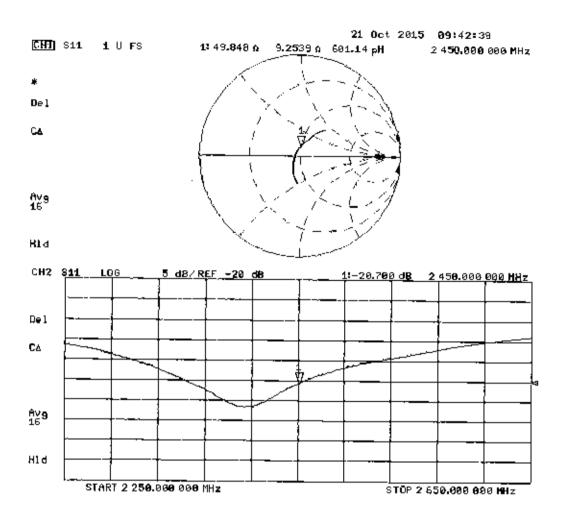
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.1 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 25.8 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

0 dB = 21.2 W/kg = 13.26 dBW/kg

Impedance Measurement Plot for Body TSL

