

SAR EVALUATION REPORT CLASS II PERMISSIVE CHANGE

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For CDMA/LTE PHONE WITH BT & DTS WLAN b/g/n

FCC ID: ZNFL62VL Model Name: LGL62VL, L62VL, LG-L62VL

> Report Number: 16l22653-S1V2 Issue Date: 2/8/2016

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 Sylvan Avenue Englewood Cliffs, New Jersey 07632

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
V1	V1 2/1/2016 Initial Issue		
V2 2/8/2016		Section 2: Updated KDB 941225 D05 to latest Revision Section 7: Removed Note 1.	Coltyce Sanders

Table of Contents

1.	Attestation of Test Results			
2.	Test Specification, Methods and Procedures	5		
3.	Facilities and Accreditation	5		
4.	SAR Measurement System & Test Equipment7	7		
4.1	SAR Measurement System	7		
4.2	SAR Scan Procedures	3		
4.3	Test Equipment)		
5.	Measurement Uncertainty11	I		
6.	Device Under Test (DUT) Information 12	2		
6.1	DUT Description	2		
6.2	Wireless Technologies	2		
6.3	Maximum Output Power from Tune-up Procedure13	3		
6.4	General LTE SAR Test and Reporting Considerations14	4		
7.	RF Exposure Conditions (Test Configurations) 15	5		
8.	Dielectric Property Measurements & System Check 16	3		
8.1	Dielectric Property Measurements	3		
8.2	System Check	9		
9.	Conducted Output Power Measurements 20)		
9.1	СДМА)		
9.2	LTE	2		
9.3	Wi-Fi 2.4GHz (DTS Band)	3		
9.4	Bluetooth	3		
10.	Measured and Reported (Scaled) SAR Results)		
10.	1. CDMA BC0	1		
10.	2. CDMA BC1	1		
10.	3. LTE Band 2 (20MHz Bandwidth)	1		
10.	4. LTE Band 4 (20MHz Bandwidth) 32	2		
10.	5. LTE Band 13 (10MHz Bandwidth) 32	2		
10.	6. Wi-Fi (DTS Band)	2		
10.	7. Bluetooth	3		
11.	SAR Measurement Variability	ł		
12.	Simultaneous Transmission SAR Analysis 38	5		

	12.1.	Sum of SAR for CDMA BC0 & Wi-Fi & BT	35
	12.2.	Sum of SAR for CDMA BC1 & Wi-Fi & BT	35
	12.3.	Sum of SAR for LTE Band 2 & Wi-Fi & BT	35
	12.4.	Sum of SAR for LTE Band 4 & Wi-Fi & BT	36
	12.5.	Sum of SAR for LTE Band 13 & Wi-Fi & BT	36
A	ppendixe	es	37
	1612265	3-S1V1 SAR_App A Photos & Ant. Locations	37
	1612265	3-S1V1 SAR_App B System Check Plots	37
	1612265	3-S1V1 SAR_App C Highest Test Plots	37
	1612265	3-S1V1 SAR_App D Tissue Ingredients	37
	1612265	3-S1V1 SAR_App E Probe Cal. Certificates	37
	1612265	3-S1V1 SAR_App F Dipole Cal. Certificates	37

Page 4 of 37

1. Attestation of Test Results

Applicant Name	LG ELECTRONICS MOBILECOMM U.S.A., INC.				
FCC ID	ZNFL62VL				
Model Name	LGL62VL, L62VL, LG-L62VL				
Applicable Standards	FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013				
Expedito Catagon	SAR Limits (W/Kg)				
Exposure Category	Peak spatial-average(1g of tissue)				
General population / Uncontrolled exposure	1.6				
	Equipment Class - Highest Reported SAR (W/kg)				
RF Exposure Conditions	Licensed	DTS	U-NII	DSS (BT)	
Head	0.738	0.714			
Body-worn	0.553	0.099	N1/A	N//A	
Wi-Fi Direct	N/A	0.195	N/A	N/A	
Simultaneous Tx	1.371				
Date Tested	1/12/2016 to 1/21/2016				
Test Results	Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:
Jen Curg	facfuni
Devin Chang	Krischelle Aurelio
Senior Engineer	Laboratory Technician
UL Verification Services Inc.	UL Verification Services Inc.

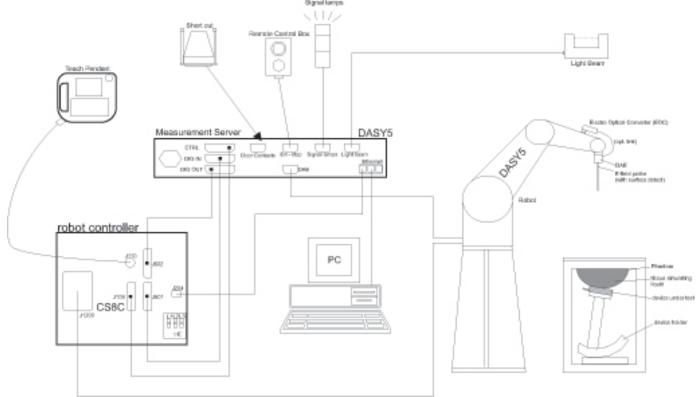
2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- 648474 D04 Handset SAR v01r03
- o 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	
SAR Lab F	
SAR Lab G	
SAR Lab H	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

$\leq 3 \text{ GHz}$ > 3 GHz

VV IIC
KDE
2 GH

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer Type/Model		Serial No.	Cal. Due Date
Network Analyzer	Agilent 8753ES		MY40001647	7/28/2016
Dielectric Probe kit	SPEAG	DAK-3.5	1103	2/17/2016
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	Traceable Calibration Control Co.	4242	140493798	8/4/2016

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
HP Signal Generator	HP	8665B	3744A01084	5/8/2016
Power Meter	Agilent	N1912A	MY50001018	10/19/2017
Power Sensor	Agilent	E9323A	MY5307005	4/29/2016
Power Sensor	Agilent	E9323A	MY5307007	3/2/2016
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795093	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2149	N/A
DC Power Supply	Sorensen Ametek	XT15-4	1319A02778	N/A
Synthesized Signal Generator	Agilent	8665B	3546A00784	6/27/2016
Power Meter	HP	437B	3125U09248	9/3/2016
Power Meter	HP	437B	3125U09516	9/17/2016
Power Sensor	Agilent	8481A	2349A36506	9/16/2016
Power Sensor	Agilent	8481A	3318A92374	9/16/2016
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1622052	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2711	N/A
DC Power Supply	Sorensen Ametek	XT 15-4	1319A02780	N/A
E-Field Probe (SAR Lab 1)	SPEAG	EX3DV4	7356	4/22/2016
E-Field Probe (SAR Lab 2)	SPEAG	EX3DV4	3990	3/18/2016
E-Field Probe (SAR Lab 3)	SPEAG	EX3DV4	3773	4/22/2016
E-Field Probe (SAR Lab 3)	SPEAG	EX3DV4	3749	1/26/2016
E-Field Probe (SAR Lab 4)	SPEAG	EX3DV4	3989	3/17/2016
Data Acquisition Electronics (SAR Lab 1)	SPEAG	DAE3	500	5/22/2016
Data Acquisition Electronics (SAR Lab 2)	SPEAG	DAE4	1257	9/16/2016
Data Acquisition Electronics (SAR Lab 3)	SPEAG	DAE4	1434	4/16/2016
Data Acquisition Electronics (SAR Lab 4)	SPEAG	DAE4	1258	5/14/2016
System Validation Dipole	SPEAG	D750V3	1019	3/11/2016
System Validation Dipole	SPEAG	D835V2	4d142	9/23/2016
System Validation Dipole	SPEAG	D1750V2	1050	4/15/2016
System Validation Dipole	SPEAG	D1900V2	5d163	9/21/2016
System Validation Dipole	SPEAG	D2450V2	899	3/13/2016
Thermometer (SAR Lab 1)	EXTECH	445703	CCS-205	3/20/2016
Thermometer (SAR Lab 2)	EXTECH	445703	CCS-200	3/19/2016
Thermometer (SAR Lab 3)	EXTECH	445703	CCS-237	6/5/2016
Thermometer (SAR Lab 4)	EXTECH	445703	CCS-238	6/5/2016

Other

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Power Meter	Agilent	N1912A	MY55196004	7/1/2016
Power Sensor	Agilent	N1921A	MY53260001	9/24/2016
Base Station Simulator	R&S	CMW500	132910	10/22/2016
Base Station Simulator	R&S	CMW500	135390	4/6/2016

Page 10 of 37

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

	Overall (Length x Width): 146.61 mm x 74.86 mm					
Device Dimension	Overall Diagonal: 156 mm					
	Display Diagonal: 135 mm					
De als Orange	⊠ Normal Battery Cover					
Back Cover	Normal Battery Cover with NFC					
	Standard – Lithium-ion battery, Rating 3.8Vdc, 8.8Wh					
Battery Options	Extended (large capacity)					
Accessory	Headset					
Wireless Router (Hotspot)	Not supported					
	Wi-Fi Direct enabled devices transfer data directly between each other					
Wi-Fi Direct	⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz)					
	Wi-Fi Direct (Wi-Fi 5 GHz)					
	S/N	IMEI	Notes			
	601KPZK000749	35492-07—000749-1	Conducted unit			
Test sample information	601KPJP000740	354792-07-0000740-0	Radiated unit			
	601KPRW000742	354792-07-000742-6	Radiated unit			
	601KPBF000741	354792-07-000741-8	Radiated unit			

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
CDMA (CDMA2000)	BC0 BC1	1xRTT (Voice & Data) 1xEV-DO Rel. 0 1xEV-DO Rev. A 1xAdvanced	100%
LTE	Does this device suppor FDD Band 2 FDD Band 4 FDD Band 13	t SV-DO (1xRTT-1xEVDO)? □ Yes ⊠ No QPSK 16QAM ⊠ Rel. 10 Does not support Carrier Aggregation (CA)	100% (FDD)
	Does this device support		
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n (HT20)	100%
Bluetooth	2.4 GHz	Version 4.1 LE	77.5% (DH5)

6.3. Maximum Output Power from Tune-up Procedure

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

RF Interface	Mode	Max. RF Output Pow er (dBm)		
	1xRTT	24.4		
CDMA BC0	1xAdvanced	24.4		
	1xEVDO Rel. 0	24.4		
	1xEVDO Rel. A	24.4		
	1xRTT	24.7		
CDMA BC1	1xAdvanced	24.7		
CDIVIA BCT	1xEVDO Rel. 0	24.7		
	1xEVDO Rel. A	24.7		
LTE Band 2	QPSK	24.2		
LTE Dario 2	16-QAM	23.2		
	QPSK	24.4		
LTE Band 4	16-QAM	23.4		
LTE Dond 10	QPSK	24.2		
LTE Band 13	16-QAM	23.2		
	802.11b	16.0		
WiFi 2.4 GHz	802.11g	13.0		
	802.11n HT20	12.0		
Bluet	ooth	8.5		
Blueto	oth LE	0.0		

6.4. General LTE SAR Test and Reporting Considerations

Item	Description								
			F	Freque	ncy range	: 1850 - 191	0 MHz		
	Band 2				Channel	Bandwidth			
		20 MHz	15 MHz		10 MHz	5 MHz	3	MHz	1.4 MHz
	Low	18700	18675/		18650/	18625/		8615/	18607/
	LOW	/1860	1857.5		1855	1852.5		851.5	1850.7
	Mid	18900/	18900/	1	18900/	18900/		8900/	18900/
		1880	1880		1880	1880		880	1880
	High	19100/	19125/		19150/	19175/		9185/	19193/
	5	1900	1902.5		1905	1907.5		908.5	1909.3
	D		ŀ	-reque		: 1710 - 17	5 MHZ		
	Band 4					Bandwidth			
Frequency range, Channel Bandwidth,		20 MHz	15 MHz		10 MHz	5 MHz		MHz	1.4 MHz
Numbers and Frequencies	Low		20025/	8	20000/	19975/		9965/	19957/
•		004754	1717.5		1715	1712.5		711.5	1710.7
	Mid	20175/	20175/		20175/	20175/		0175/	20175/
		1732.5	1732.5 20325/		1732.5 20350/	1732.5 20375/		732.5 0385/	1732.5 20393/
	High		1747.5	1	1750	1752.5		753.5	20393/
				Eroqu				55.5	1754.5
	Band 13	Frequency range: 777 - 787 MHz Channel Bandwidth							
	Dallu 15	20 MHz	45 MU-	1			2	MU	4.4.141
		20 MHZ	15 MHz		10 MHz	5 MHz	3	MHz	1.4 MHz
	Low				23230/	23230/			
	Mid				782	782			
	High				102	102			
			(4) Tu/D			(4) Du a			
LTE transmitter and antenna		2 and 4 have o					itenna		
implementation	LIE Band 1	3 has one (1)	I x/Rx anten	na and	d one (1) F	tx antenna			
	Refer to App	oendix A.							
	Та	ble 6.2.3-1: Ma	ximum Pow	er Rec	duction (M	PR) for Pow	er Class	3	
	-								
	Modulatio	on Cha	nnel bandwid	ith / Tra	ansmission	bandwidth (I	RB)	MPR (d	B)
		1.4	3.0	5	10	15	20	1	
Maximum power reduction (MPR)		MHz	MHz	MHz	MHz	MHz	MHz		
maximum power reduction (init ity)	QPSK	>5	>4	>8	> 12	>16	> 18	≤1	
	16 QAM 16 QAM		≤4 >4	≤8 >8	≤ 12 > 10	≤ 16 > 16	≤ 18 > 10	≤ <u>1</u> ≤2	_
	ID QAM	>0	>4	>0	> 12	> 10	> 18	52	
	MPR Built-in	n by design							
	A-MPR (add	litional MPR) v	vas disabled	during	g SAR test	ting			
Power reduction	No	,				-			2
		onfigured base	station sim	ulator	was used	for the SAR	and not	ver meas	urements.
Spectrum plots for RB configurations		ectrum plots f							1
Spectrum plots for RD configurations		ectrum piors i		anoca		iser conligu	auon di		
	SAR report.								

Page 14 of 37

7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required
			Left Touch	N/A	Yes
	Head	0 mm	Left Tilt (15°)	N/A	Yes
WWAN		Unin	Right Touch	N/A	Yes
WWWAIN			Right Tilt (15°)	N/A	Yes
	Body	15 mm	Rear	N/A	Yes
	Войу	13 11111	Front	N/A	Yes
			Left Touch	N/A	Yes
	Head	0 mm	Left Tilt (15°)	N/A	Yes
		0 mm	Right Touch	N/A	Yes
			Right Tilt (15°)	N/A	Yes
	Body	15 mm	Rear	N/A	Yes
WLAN	Вобу	13 11111	Front	N/A	Yes
			Rear	< 25 mm	Yes
			Front	< 25 mm	Yes
	Wi-Fi Direct	10 mm	Edge 1 (Top)	< 25 mm	Yes
	WITT DIECL		Edge 2 (Right)	< 25 mm	Yes
			Edge 3 (Bottom)	> 25 mm	No
			Edge 4 (Left)	> 25 mm	No

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)		Head	Body		
Target Trequency (MITZ)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR Lab 1

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)	
	Head 835	e'	41.9500	Relative Permittivity (ε_r):	41.95	41.50	1.08	5	
	Head 055	e"	19.8900	Conductivity (σ):	0.92	0.90	2.61	5	
1/11/0016	Head 820	e'	42.1300	Relative Permittivity (c _r):	42.13	41.60	1.27	5	
1/11/2016	neau ozu	e"	19.8500	Conductivity (σ):	0.91	0.90	0.73	5	
		e'	41.7800	Relative Permittivity (c _r):	41.78	41.50	0.67	5	
	Head 850	e"	19.8600	Conductivity (σ):	0.94	0.92	2.58	5	
	D 1 005	e'	54.0200	Relative Permittivity (ε_r):	54.02	55.20	-2.14	5	
	Body 835	e"	21.8800	Conductivity (o):	1.02	0.97	4.73	5	
		e'	54.2100	Relative Permittivity (ϵ_r):	54.21	55.28	-1.93	5	
1/11/2016	Body 820	e"	21.9200	Conductivity (σ):	1.00	0.97	3.20	5	
		e'	53.9100	Relative Permittivity (c _r):	53.91	55.16	-2.26	5	
	Body 850	e"	21.8300	Conductivity (σ):	1.03	0.99	4.52	5	
AR Lab 2		v	21.0000		1.00	0.00	1.02	Ű	
Date	Freq. (MHz)		Lia	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)	
Dale		e'	40.9700	Relative Permittivity (ε_r):		÷	. ,	. ,	
	Head 1750	e"			40.97	40.08	2.21	5 5	
		-	13.9800	Conductivity (σ): Relative Permittivity (ε _r):	1.36	1.37	-0.63		
1/14/2016	Head 1710	e'	41.1300		41.13	40.15	2.45	5	
			e"	13.8600	Conductivity (σ):	1.32	1.35	-2.12	5
	Head 1755	e'	40.8900	Relative Permittivity (c _r):	40.89	40.08	2.03	5	
		e"	13.9700	Conductivity (σ):	1.36	1.37	-0.62	5	
	Body 1750	e'	51.6500	Relative Permittivity (ε_r):	51.65	53.44	-3.35	5	
	,	e"	15.1800	Conductivity (σ):	1.48	1.49	-0.61	5	
1/14/2016	Body 1710	e'	51.7500	Relative Permittivity (c _r):	51.75	53.54	-3.35	5	
	/14/2016 Body 1710	e"	15.1100	Conductivity (σ):	1.44	1.46	-1.70	5	
	Body 1755	e'	51.6200	Relative Permittivity (c _r):	51.62	53.43	-3.38	5	
	Body 1700	e"	15.1900	Conductivity (o):	1.48	1.49	-0.47	5	
AR Lab 3									
Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)	
	Head 1900	e'	38.6700	Relative Permittivity (ε_r):	38.67	40.00	-3.33	5	
	Head 1900	e"	13.4000	Conductivity (σ):	1.42	1.40	1.12	5	
					00.00	10.00	-2.68	5	
1/13/2016		e'	38.9300	Relative Permittivity (c _r):	38.93	40.00	-2.00		
1/13/2016	Head 1850	e' e"	38.9300 13.2800	Conductivity (σ):	38.93 1.37	1.40	-2.08	5	
1/13/2016		-				40.00 1.40 40.00		5 5	
1/13/2016	Head 1850 Head 1910	e"	13.2800	Conductivity (σ):	1.37	1.40	-2.42		
1/13/2016	Head 1910	e" e'	13.2800 38.6600 13.4700	Conductivity (σ): Relative Permittivity (ε _r): Conductivity (σ):	1.37 38.66 1.43	1.40 40.00 1.40	-2.42 -3.35 2.18	5 5	
1/13/2016		e" e' e"	13.2800 38.6600 13.4700 51.1900	Conductivity (σ): Relative Permittivity (ε _r): Conductivity (σ): Relative Permittivity (ε _r):	1.37 38.66 1.43 51.19	1.40 40.00 1.40 53.30	-2.42 -3.35	5	
	Head 1910 Body 1900	e" e' e" e"	13.2800 38.6600 13.4700 51.1900 14.4400	Conductivity (σ): Relative Permittivity (ε _r): Conductivity (σ): Relative Permittivity (ε _r): Conductivity (σ):	1.37 38.66 1.43 51.19 1.53	1.40 40.00 1.40 53.30 1.52	-2.42 -3.35 2.18 -3.96 0.36	5 5 5 5	
1/13/2016	Head 1910	e" e' e"	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500	Conductivity (σ): Relative Permittivity (ε _r): Conductivity (σ): Relative Permittivity (ε _r): Conductivity (σ): Relative Permittivity (ε _r):	1.37 38.66 1.43 51.19 1.53 51.45	1.40 40.00 1.40 53.30 1.52 53.30	-2.42 -3.35 2.18 -3.96 0.36 -3.47	5 5 5	
	Head 1910 Body 1900 Body 1850	e" e' e" e" e"	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Conductivity (σ): Conductivity (σ):	1.37 38.66 1.43 51.19 1.53 51.45 1.47	1.40 40.00 1.40 53.30 1.52 53.30 1.52	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02	5 5 5 5 5 5 5	
	Head 1910 Body 1900	e" e' e' e' e' e'	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Relative Permittivity (ε_r): Relative Permittivity (ε_r):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86	5 5 5 5 5 5 5 5	
	Head 1910 Body 1900 Body 1850 Body 1910	e" e' e' e' e' e' e' e' e'	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59	5 5 5 5 5 5 5 5 5 5 5	
	Head 1910 Body 1900 Body 1850	e" e'	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54 52.37	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74	5 5 5 5 5 5 5 5 5 5 5 5	
	Head 1910 Body 1900 Body 1850 Body 1910	e" e e e e e e e e e	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600	$\begin{tabular}{ c c c c c } \hline Conductivity (\sigma): \\ \hline Relative Permittivity (ϵ_r): \\ \hline Conductivity (σ'): \\ \hline Relative Permittivity (ϵ_r): \\ \hline Conductivity (σ'): \\ \hline Conductivity (σ'): \\ \hline Relative Permittivity (ϵ_r): \\ \hline Conductivity (σ'): \\ \hline Relative Permittivity (ϵ_r): \\ \hline Relative Permittivity (ϵ_r): \\ \hline Conductivity (σ'): \\ \hline Relative Permittivity (ϵ_r): \\ \hline Conductivity (σ'): \\ \hline$	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20	5 5 5 5 5 5 5 5 5 5 5 5 5	
	Head 1910 Body 1900 Body 1850 Body 1910	e e e e e e e e e e e e e e e e e e e e e e e e e e e	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r):	$\begin{array}{r} 1.37\\ 38.66\\ 1.43\\ 51.19\\ 1.53\\ 51.45\\ 1.47\\ 51.24\\ 1.54\\ 52.37\\ 1.54\\ 52.61\end{array}$	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29	5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900	""" """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ):	$\begin{array}{r} 1.37\\ 38.66\\ 1.43\\ 51.19\\ 1.53\\ 51.45\\ 1.47\\ 51.24\\ 1.54\\ 52.37\\ 1.54\\ 52.61\\ 1.49\\ \end{array}$	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.94	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900	""" """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r):	$\begin{array}{r} 1.37\\ 38.66\\ 1.43\\ 51.19\\ 1.53\\ 51.45\\ 1.47\\ 51.24\\ 1.54\\ 52.37\\ 1.54\\ 52.61\\ 1.49\\ 52.28\\ \end{array}$	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.94 -1.91	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900 Body 1850	""" """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800 14.5800	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54 52.37 1.54 52.61 1.49 52.28 1.55	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.94 -1.91 1.87	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900 Body 1850	""" """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800 14.5800 39.0500	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54 52.37 1.54 52.61 1.49 52.28 1.55 39.05	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 40.00	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.94 -1.91 1.87 -2.38	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900 Body 1850 Body 1910 Body 1910 Body 1910	""" """" """ """ """ """ """ """ """ """ """" """" """" """" """" """" """" """" """" """" """" """" """" """" """" """" """"" """"" """""" """"""""""""""""	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800 14.5800 39.0500 13.3900	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ):	$\begin{array}{c} 1.37\\ 38.66\\ 1.43\\ 51.19\\ 1.53\\ 51.45\\ 1.47\\ 51.24\\ 1.54\\ 52.37\\ 1.54\\ 52.61\\ 1.49\\ 52.28\\ 1.55\\ 39.05\\ 1.41\\ \end{array}$	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.40 1.52	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.94 -1.91 1.87 -2.38 1.04	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900 Body 1850 Body 1910 Body 1910 Body 1910	""" """" """ """ """ """ """ """ """ """ """" """" """" """" """" """" """" """" """" """"" """"" """" """"" """"" """"" """""" """"""""""""" """"""" """""""""""""""""""	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800 14.5800 39.0500 13.3900 39.3100	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54 52.37 1.54 52.61 1.49 52.28 1.55 39.05 1.41 39.31	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 40.00 1.40 40.00	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.29 -1.94 -1.91 1.87 -2.38 1.04 -1.72	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016 1/19/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900 Body 1850 Body 1900 Body 1910 Head 1900 Head 1900	""""""""""""""""""""""""""""""""""""	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800 14.5800 39.0500 13.3900 39.3100 13.3300	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ):	$\begin{array}{c} 1.37\\ 38.66\\ 1.43\\ 51.19\\ 1.53\\ 51.45\\ 1.47\\ 51.24\\ 1.54\\ 52.37\\ 1.54\\ 52.61\\ 1.49\\ 52.28\\ 1.55\\ 39.05\\ 1.41\\ 39.31\\ 1.37\\ \end{array}$	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 40.00 1.40 40.00 1.40	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.94 -1.91 1.87 -2.38 1.04 -1.72 -2.06	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1/13/2016 1/19/2016	Head 1910 Body 1900 Body 1850 Body 1910 Body 1900 Body 1850 Body 1900 Body 1910 Head 1900 Head 1900	""" """" """ """ """ """ """ """ """ """ """" """" """" """" """" """" """" """" """" """"" """"" """" """"" """"" """"" """""" """"""""""""" """"""" """""""""""""""""""	13.2800 38.6600 13.4700 51.1900 14.4400 51.4500 14.3300 51.2400 14.5400 52.3700 14.5600 52.6100 14.4900 52.2800 14.5800 39.0500 13.3900 39.3100	Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r): Conductivity (σ): Relative Permittivity (ε_r):	1.37 38.66 1.43 51.19 1.53 51.45 1.47 51.24 1.54 52.37 1.54 52.61 1.49 52.28 1.55 39.05 1.41 39.31	1.40 40.00 1.40 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 53.30 1.52 40.00 1.40 40.00	-2.42 -3.35 2.18 -3.96 0.36 -3.47 -3.02 -3.86 1.59 -1.74 1.20 -1.29 -1.29 -1.94 -1.91 1.87 -2.38 1.04 -1.72	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

SAR Lab 4								
Date	Freq. (MHz)		Liquid Parameters			Target	Delta (%)	Limit ±(%)
	Head 2450	e'	37.3100	Relative Permittivity (ε_r):	37.31	39.20	-4.82	5
	neau 2450	e"	13.8300	Conductivity (σ):	1.88	1.80	4.67	5
1/12/2016	Head 2410	e'	37.5400	Relative Permittivity (ε_r):	37.54	39.28	-4.43	5
1/12/2010	Heau 2410	e"	13.7500	Conductivity (σ):	1.84	1.76	4.66	5
	Head 2480	e'	37.2400	Relative Permittivity (ε_r):	37.24	39.16	-4.91	5
	Heau 2460	e"	13.9400	Conductivity (σ):	1.92	1.83	4.90	5
	Body 2450	e'	50.5600	Relative Permittivity (ε_r):	50.56	52.70	-4.06	5
	B00y 2450	e"	14.6300	Conductivity (σ):	1.99	1.95	2.21	5
1/12/2016	Body 2410	e'	50.7200	Relative Permittivity (ε_r):	50.72	52.76	-3.87	5
1/12/2010	B00y 2410	e"	14.5800	Conductivity (σ):	1.95	1.91	2.43	5
	Body 2480	e'	50.5100	Relative Permittivity (ε_r):	50.51	52.66	-4.09	5
	500y 2400	e"	14.7100	Conductivity (σ):	2.03	1.99	1.82	5
	Head 750	e'	39.4300	Relative Permittivity (ε_r):	39.43	41.96	-6.03	10
	Head 750	e"	21.4800	Conductivity (σ):	0.90	0.89	0.30	10
1/14/2016	Head 700	e'	40.1600	Relative Permittivity (ε_r):	40.16	42.22	-4.87	10
1/14/2010	Heau 700	e"	21.8900	Conductivity (σ):	0.85	0.89	-4.19	10
	Head 790	e'	38.9600	Relative Permittivity (ε_r):	38.96	41.76	-6.70	10
	Heau 790	e"	21.2000	Conductivity (σ):	0.93	0.90	3.92	10
	Body 750	e'	53.2100	Relative Permittivity (ε_r):	53.21	55.55	-4.21	5
	BOUY 750	e"	23.5700	Conductivity (σ):	0.98	0.96	2.06	5
1/14/2016	Body 700	e'	53.7400	Relative Permittivity (ε_r):	53.74	55.74	-3.59	5
1/14/2010	BOUY 700	e"	23.9600	Conductivity (σ):	0.93	0.96	-2.78	5
	Body 790	e'	52.8000	Relative Permittivity (c _r):	52.80	55.39	-4.68	5
	BOUY /90	e"	23.0800	Conductivity (σ):	1.01	0.97	4.93	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz hand
 Distance between probe sensors and phantom surface was set to
- For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

					Me	easured Resul	ts for 1g SAR		Ме	asured Result	s for 10g SAR		
SAR Room	Date	Tissue Type	Dipole Type Serial #	Dipole Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
1	1/11/2016	Head	D835V2 SN:4d142	9/23/2016	0.90	8.98	9.27	-3.13	0.59	5.86	6.01	-2.50	1,2
1	1/11/2016	Body	D835V2 SN:4d142	9/23/2016	0.92	9.18	9.41	-2.44	0.60	6.03	6.18	-2.43	
2	1/14/2016	Head	D1750V2 SN:1050	4/15/2016	3.57	35.70	36.40	-1.92	1.89	18.90	19.30	-2.07	3,4
2	1/14/2016	Body	D1750V2 SN:1050	4/15/2016	3.74	37.40	37.00	1.08	2.01	20.10	19.90	1.01	
3	1/13/2016	Head	D1900V2 SN:5d163	9/21/2016	4.25	42.50	40.10	5.99	2.19	21.90	21.00	4.29	
3	1/13/2016	Body	D1900V2 SN:5d163	9/21/2016	4.25	42.50	39.90	6.52	2.23	22.30	21.00	6.19	5,6
3	1/19/2016	Head	D1900V2 SN:5d163	9/21/2016	3.84	38.40	40.10	-4.24	2.02	20.20	21.00	-3.81	7,8
3	1/19/2016	Body	D1900V2 SN:5d163	9/21/2016	4.13	41.30	39.90	3.51	2.12	21.20	21.00	0.95	
4	1/12/2016	Head	D2450V2 SN:899	3/13/2016	5.36	53.60	51.60	3.88	2.43	24.30	23.90	1.67	
4	1/12/2016	Body	D2450V2 SN:899	3/13/2016	5.36	53.60	48.80	9.84	2.45	24.50	22.70	7.93	9,10
4	1/14/2016	Head	D750V3 SN:1019	3/11/2016	0.82	8.19	8.44	-2.96	0.54	5.38	5.50	-2.18	
4	1/14/2016	Body	D750V3 SN:1019	3/11/2016	0.90	9.03	8.53	5.86	0.60	6.00	5.68	5.63	11,12

9. Conducted Output Power Measurements

9.1. CDMA

1x Advanced Setup Procedures used to establish the test signals

Call box setup procedure

- Protocol Rev > 6 (IS-2000-0)
- System ID: 331; NID: 65535, Reg. Ch. #.:
- Radio Config (RC) > Fwd11,Rvs8
- Service Option (SO) Setup > SO75 (Loopback)
- Traffic Data Rate > Full
- Rvs Power Ctrl > All Up bits (Maximum TxPout)
- Reverse Power Control Mode: 00-200 to 400 bps
- Smart blanking was disabled.

CDMA BC0 Measured Results

Band		Mode	Ch No.	Freq. (MHz)	Max. Pwr (dBm)
		DO1 00FF	1013	824.70	24.0
		RC1 SO55 (Loopback)	384	836.52	24.1
		(LOOPDACK)	777	848.31	24.2
			1013	824.70	24.0
	1xRTT	RC3 SO55 (Loopback)	384	836.52	24.1
		(LOOPDACK)	777	848.31	24.2
		RC3 SO32 (+F-SCH)	1013	824.70	24.0
			384	836.52	24.1
50.0		(+1-501)	777	848.31	24.2
BC 0		Excelded / Date 0	1013	824.70	24.0
	1xAdvanced	Fwd11/Rvs8 SO75 (Loopback)	384	836.52	24.1
		SONS (LOOpback)	777	848.31	24.1
			1013	824.70	24.0
	1xEVDO Rel. 0	FTAP Rate: 307.2 kbps(2 slot, QPSK) RTAP Rate: 153.6 kbps	384	836.52	24.1
	1101. 0	TTAT Hate. 100.0 Kbps	777	848.31	24.2
			1013	824.70	24.0
	1xEVDO Rev. A	1xEVDO FETAP: 307.2k, QPSK/ ACK Rev. A RETAP: 4096		836.52	24.1
	TIEV. A	NETAL: 4030	777	848.31	24.2

CDMA BC1	Measured F	Results			
Band		Mode	Ch No.	Freq. (MHz)	Max. Pwr (dBm)
			25	1851.25	24.7
		RC1 SO55 (Loopback)	600	1880.00	24.5
			1175	1908.75	24.4
	1xRTT		25	1851.25	24.7
		RC3 SO55 (Loopback)	600	1880.00	24.6
		(LOOPDACK)	1175	1908.75	24.4
			25	1851.25	24.7
		RC3 SO32 (+F-SCH)	600	1880.00	24.7
DO 1		(+++-5011)	1175	1908.75	24.5
BC 1		Excelded / Date 0	25	1851.25	24.7
	1xAdvanced	Fwd11/Rvs8 SO75 (Loopback)	600	1880.00	24.6
			1175	1908.75	24.6
			25	1851.25	24.7
	1xEVDO Rel. 0	FTAP Rate: 307.2 kbps(2 slot, QPSK) RTAP Rate: 153.6 kbps	600	1880.00	24.6
		TTAL Hate. 135.0 Kbps	1175	1908.75	24.5
			25	1851.25	24.7
	1xEVDO Rev. A	FETAP: 307.2k, QPSK/ ACK RETAP: 4096	600	1880.00	24.6
			1175	1908.75	24.5

Page 21 of 37

9.2. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum	Power Reduction	(MPR) for Power Class 3
------------------------	------------------------	-------------------------

Modulation	Cha	MPR (dB)					
-	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	>4	>8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	>8	> 12	> 16	> 18	≤ 2

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01".

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
			5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
		,	15	>8	≤ <mark>1</mark>
			20	>10	≤ 1
NS 04	6.6.2.2.2	41	5	>6	≤ 1
113_04	0.0.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS 10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32	-	5	2	8.5	-

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

LTE Band 2 Measured Results

	BW	asured I	RB	RB		Max	. Avg Pwr (d	Bm)
Band	(MHz)	Mode	Allocation	offset	MPR	1860 MHz	1880 MHz	1900 MHz
			1	0	0	24.2	24.2	24.2
			1	50	0	24.2	24.2	24.2
			1	99	0	23.9	24.0	23.8
		QPSK	50	0	1	23.1	23.2	23.1
			50	25	1	23.1	23.2	23.0
			50	50	1	23.1	23.1	23.0
LTE			100	0	1	23.2	23.2	23.0
Band 2	20		1	0	1	23.2	23.2	23.2
			1	50	1	23.2	23.1	23.2
			1	99	1	23.2	23.0	22.9
		16QAM	50	0	2	22.1	22.1	22.0
			50	25	2	22.1	22.1	21.9
			50	50	2	22.1	22.0	22.0
			100	0	2	22.2	22.2	22.0
	BW		RB	RB	_		. Avg Pwr (d	
Band	(MHz)	Mode	Allocation	offset	MPR	1857.5 MHz	1880 MHz	1902.5 MHz
			1	0	0	24.2	24.2	24.1
			1	36	0	24.2	24.1	23.9
		QPSK	1	74	0	24.0	24.1	23.9
			36	0	1	23.1	23.1	22.9
			36	18	1	23.1	23.1	23.0
			36	37	1	23.1	23.0	23.0
LTE	15		75	0	1	23.1	23.0	22.9
Band 2	15		1	0	1	23.2	23.0	23.2
			1	36	1	23.2	23.2	23.2
			1	74	1	23.2	23.2	23.2
		16QAM	36	0	2	22.1	22.0	21.9
			36	18	2	22.1	22.1	22.0
			36	37	2	22.0	22.0	22.1
			75	0	2	22.1	22.0	21.9
Band	BW	Mode	RB	RB	MPR	Max	. Avg Pwr (d	Bm)
Danu	(MHz)	Mode	Allocation	offset		1855 MHz	1880 MHz	1905 MHz
			1	0	0	23.9	23.9	23.8
			1	25	0	23.8	23.8	23.9
			1	49	0	23.9	23.9	23.7
		QPSK	25	0	1	23.0	23.0	22.9
			25	12	1	23.0	23.0	23.0
			25	25	1	23.0	23.1	23.0
LTE	10		50	0	1	23.1	23.1	22.9
Band 2	10		1	0	1	23.0	23.2	23.2
			1	25	1	23.2	23.2	23.2
			1	49	1	23.2	23.2	23.2
		16QAM	25	0	2	22.2	22.1	22.0
			25	12	2	22.1	22.0	22.1
			25	25	2	22.1	22.1	22.0
			50	0	2	22.1	21.9	22.0

LTE Band 2 Measured Results (continued)

	BW	asureu	Results (c RB	RB	<u>iea)</u>	Мах	. Avg Pwr (d	Rm)
Band	(MHz)	Mode	Allocation	offset	MPR	1852.5 MHz	1880 MHz	1907.5 MHz
	~ /		1	0	0	23.9	23.8	23.6
			1	12	0	23.8	23.9	23.8
			1	24	0	23.7	23.8	23.7
		QPSK	12	0	1	23.0	23.0	23.0
			12	6	1	22.9	23.1	23.0
			12	13	1	22.9	23.1	23.0
LTE			25	0	1	23.0	23.0	23.0
Band 2	5		1	0	1	23.1	22.8	23.0
			1	12	1	23.1	22.7	23.0
			1	24	1	23.2	22.8	23.0
		16QAM	12	0	2	21.9	21.8	22.1
			12	6	2	21.8	21.9	22.1
			12	13	2	22.0	22.0	22.1
			25	0	2	22.0	22.1	22.1
	BW		RB	RB			. Avg Pwr (d	
Band	(MHz)	Mode	Allocation	offset	MPR	1851.5 MHz	1880 MHz	, 1908.5 MHz
			1	0	0	23.8	23.9	23.5
			1	7	0	23.7	24.0	23.9
		QPSK	1	14	0	23.7	23.7	23.8
			8	0	1	23.0	22.9	23.0
			8	4	1	22.9	23.0	22.9
			8	7	1	22.9	23.0	23.0
LTE	0		15	0	1	22.9	23.0	23.0
Band 2	3		1	0	1	23.2	23.1	23.2
			1	7	1	23.2	23.2	23.2
			1	14	1	23.1	23.2	23.2
		16QAM	8	0	2	22.1	22.1	22.0
			8	4	2	22.1	22.1	21.9
			8	7	2	22.1	22.2	21.9
			15	0	2	21.9	21.9	22.0
Band	BW	Mode	RB	RB	MPR	Max	. Avg Pwr (d	Bm)
Danu	(MHz)	Mode	Allocation	offset		1850.7 MHz	1880 MHz	1909.3 MHz
			1	0	0	23.8	23.8	23.7
			1	2	0	23.7	23.9	23.7
			1	5	0	23.7	24.0	23.7
		QPSK	3	0	0	23.9	23.8	23.7
			3	2	0	23.8	23.9	23.8
			3	3	0	23.9	23.9	23.9
LTE	1.4		6	0	1	22.9	23.1	23.0
Band 2	1.4		1	0	1	23.2	23.2	23.1
			1	2	1	23.2	23.2	23.1
			1	5	1	23.2	23.2	23.1
		16QAM	3	0	1	23.2	22.8	23.2
			3	2	1	23.0	22.9	23.2
			3	3	1	22.9	23.1	23.2
			6	0	2	21.9	21.7	22.0

LTE Band 4 Measured Results

Avg Pwr (dE 732.5 MHz 24.2 24.3 24.2 23.0 23.0 23.0 23.0	3m)
24.2 24.3 24.2 23.0 23.0	
24.3 24.2 23.0 23.0	
24.2 23.0 23.0	
23.0 23.0	
23.0	
23.0	
23.0	
23.4	
	-
	1747.5 MHz
	23.8
	23.4
	23.5
	23.1
23.0	22.9
22.8	23.0
	23.0
23.4	23.4
23.4	23.4
23.4	23.4
22.1	21.9
	21.8
21.9	21.8
21.9	21.9
	1750 MHz
23.5	23.6
	23.5
	23.7
	22.9
22.9	22.9
22.8	23.0
22.9	23.0
23.1	23.1
23.1	23.4
23.0	23.4
22.1	22.0
22.0	21.8
21.9	21.8
21.8	21.8
	22.8 22.9 23.4 23.4 23.4 22.1 22.1 21.9 21.9 21.9 21.9 21.9 23.5 23.6 23.4 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22

Note(s):

20 MHz Bandwidth does not support at least three non-overlapping channels. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply per KDB 941225 D05 SAR for LTE Devices.

Page 25 of 37

LTE Band 4 Measured Results (continued)

LTE Bai		asureu			uea)	Max. Avg Pwr (dBm)				
Band	BW (MHz)	Mode	RB Allocation	RB offset	MPR					
					<u>^</u>	1712.5 MHz	1732.5 MHz	1752.5 MHz		
			1	0	0	23.6	23.7	23.5		
			1	12	0	23.9	23.8	23.6		
		ODOK	1	24	0	23.4	23.5	23.7		
		QPSK	12	0	1	22.9	22.9	23.0		
			12	6	1	22.9	22.9	23.0		
			12	13	1	22.9	22.9	23.1		
LTE Danal 4	5		25	0	1	22.9	22.9	23.0		
Band 4			1	0	1	23.0	22.8	23.4		
			1	12	1	23.1	22.4	22.9		
			1	24	1	23.2	22.6	22.8		
		16QAM	12	0	2	22.0	21.8	21.9		
			12	6	2	21.8	21.8	21.9		
			12	13	2	21.9	21.9	22.2		
			25	0	2	22.0 22.0 22.2				
Band	BW	Mode	RB	RB	MPR		x. Avg Pwr (d			
Dana	(MHz)	mode	Allocation	offset		1711.5 MHz	1732.5 MHz	1753.5 MHz		
			1	0	0	23.8	23.5	23.7		
			1	7	0	23.7	23.4	23.7		
			1	14	0	23.8	23.4	23.7		
		QPSK	8	0	1	22.9	22.8	23.0		
			8	4	1	22.8	22.9	23.1		
			8	7	1	23.0	23.0	23.0		
LTE	3		15	0	1	22.9	22.8	23.1		
Band 4	5		1	0	1	23.4	23.0	23.4		
			1	7	1	23.4	23.1	23.3		
			1	14	1	23.4	22.9	23.4		
		16QAM	8	0	2	21.9	21.9	22.1		
			8	4	2	21.9	22.0	22.2		
			8	7	2	21.9	21.9	21.8		
			15	0	2	21.9	21.8	22.1		
Band	BW	Mode	RB	RB	MPR	Ма	x. Avg Pwr (de	3m)		
Dallu	(MHz)	Mode	Allocation	offset		1710.7 MHz	1732.5 MHz	1754.3 MHz		
			1	0	0	23.4	23.5	23.4		
			1	2	0	23.4	23.5	23.7		
			1	5	0	23.4	23.3	23.6		
		QPSK	3	0	0	23.5	23.4	23.7		
			3	2	0	23.5	23.5	23.8		
			3	3	0	23.5	23.5	23.7		
LTE	1 4		6	0	1	22.7	22.8	23.0		
Band 4	1.4		1	0	1	22.8	23.3	23.1		
			1	2	1	23.0	23.4	23.3		
			1	5	1	22.9	23.4	23.2		
		16QAM	3	0	1	22.6	23.1	23.1		
			3	2	1	22.5	22.6	23.4		
			3	3	1	22.5	22.6	23.3		
			6	0	2	21.8	21.6	22.1		

Band Band	BW	Mode	RB	RB	MDD	Max. Avg Pwr (dBm)
Bano	(MHz)	wode	Allocation	offset	MPR	Max. Avg Pwr (dBm) 782 MHz 23.8 24.0 22.9 22.9 22.9 22.9 22.9 22.7 23.2 23.1 22.0 21.9 22.0 21.9 22.0 21.9 22.0 21.9 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.9 22.9 22.9 22.9 22.8 22.7 22.5 22.6 <
			RB AllocationRB offsetMPRMax. Avg Pwr (dBm)10023.8125023.8125024.0149024.0250122.92512122.925255122.9500122.9500122.910122.910122.910122.910122.9110122.7125123.2149123.12512221.92512221.92512222.02512222.0500222.02525222.010023.8110023.8110023.8120122.91211122.9126122.91211122.91211122.91211122.810122.810122.7			
			1	25	0	24.0
			1	49	0	24.0
		QPSK	25	0	1	22.9
			25	12	1	22.9
			25	25	1	22.9
LTE	10		50	0	1	22.9
Band 13	10		1	0	1	22.7
			1	25	1	23.2
			1	49	1	23.1
		16QAM	25	0	2	22.0
			25	12	2	21.9
			25	25	2	22.0
			50	0	2	22.0
						Maria Arias Diam (al Diras)
Band	BW	Mode			MPR	Max. Avg Pwr (dBm)
Band	BW (MHz)	Mode			MPR	
Band		Mode	Allocation	offset		782 MHz
Band		Mode	Allocation 1	offset 0	0	782 MHz 23.8
Band			Allocation 1 1	0 0 12	0 0	782 MHz 23.8 24.2
Band		Mode QPSK	Allocation 1 1 1	offset 0 12 24	0 0 0	782 MHz 23.8 24.2 24.0
Band			Allocation 1 1 1 1 12	offset 0 12 24 0	0 0 0 1	782 MHz 23.8 24.2 24.0 22.9
Band			Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	offset 0 12 24 0 6	0 0 0 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9
LTE	(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	offset 0 12 24 0 6 11	0 0 1 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9
			Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5	offset 0 12 24 0 6 11 0	0 0 1 1 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9
LTE	(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5	offset 0 12 24 0 6 11 0	0 0 1 1 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.7
LTE	(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1	offset 0 12 24 0 6 11 0 0	0 0 1 1 1 1 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.5
LTE	(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1	offset 0 12 24 0 6 11 0 12	0 0 1 1 1 1 1 1 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.8 22.7 22.5 22.6
LTE	(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1 1 1 1	offset 0 12 24 0 6 11 0 0 12 244	0 0 1 1 1 1 1 1 1 1 1 1	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.8 22.7 22.5 22.6 21.7
LTE	(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1	offset 0 12 24 0 6 111 0 0 12 24 0 6 111 0 12 24 0 0 12 24 0	0 0 1 1 1 1 1 1 1 1 2	782 MHz 23.8 24.2 24.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.8 22.7 22.5 22.6 21.7

LTE Band 13 Measured Results

Note(s):

10/5 MHz Bandwidths does not support at least three non-overlapping channels. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply per KDB 941225 D05 SAR for LTE Devices.

9.3. Wi-Fi 2.4GHz (DTS Band)

Measured Results

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	Note(s)
			1	2412	15.7			
	802.11b	1 Mbps	6	2437	15.6	16.0	Yes	
			11	2462	15.4			
			1	2412				
2.4	802.11g	6 Mbps	6	2437		13.0	No	1
			11	2462	Not Required			
	802.11n (HT20)		1	2412	Not nequired			
		6 5 Mbns	6	2437	I	12.0	No	1
			11	2462				

Note(s):

1. Output Power and SAR is not required for 802.11g/n HT20 channels when the highest <u>reported</u> SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

9.4. Bluetooth

Maximum tune-up tolerance limit is 8.50 dBm. This power level qualifies for exclusion of SAR testing.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11 v02r02:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - \circ $\;$ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Page 30 of 37

10.1. CDMA BC0

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot			
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.			
	1xRTT (RC3 SO55)		Left Touch	384	836.5	24.4	24.1	0.454	0.486				
		0	Left Tilt	384	836.5	24.4	24.1	0.304	0.326				
			Right Touch	384	836.5	24.4	24.1	0.515	0.552				
Head			Right Tilt	384	836.5	24.4	24.1	0.334	0.358				
rieau			Left Touch	384	836.5	24.4	24.1	0.433	0.464				
	1xEVDO	0	Left Tilt	384	836.5	24.4	24.1	0.311	0.333				
	(Rel. 0)		0	0	0	0	Right Touch	384	836.5	24.4	24.1	0.542	0.581
			Right Tilt	384	836.5	24.4	24.1	0.340	0.364				
Body-worn	1xRTT	15	Rear	384	836.5	24.4	24.1	0.516	0.553	2			
Body-worn	(RC3 SO32)	13	Front	384	836.5	24.4	24.1	0.429	0.460				

10.2. CDMA BC1

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	600	1880.0	24.7	24.6	0.721	0.738	3
	1xRTT (RC3 SO55)	0	Left Tilt	600	1880.0	24.7	24.6	0.527	0.539	
		0	Right Touch	600	1880.0	24.7	24.6	0.605	0.619	
Head			Right Tilt	600	1880.0	24.7	24.6	0.340	0.348	
rieau			Left Touch	600	1880.0	24.7	24.6	0.685	0.701	
	1xEVDO	0	Left Tilt	600	1880.0	24.7	24.6	0.477	0.488	
	(Rel. 0)	0	Right Touch	600	1880.0	24.7	24.6	0.642	0.657	
			Right Tilt	600	1880.0	24.7	24.6	0.323	0.331	
Body-worn	1xRTT	15	Rear	600	1880.0	24.7	24.7	0.442	0.442	4
Body-worn	(RC3 SO32)	15	Front	600	1880.0	24.7	24.7	0.416	0.416	

10.3. LTE Band 2 (20MHz Bandwidth)

RF Exposure		Dist.	Test		Freg.	RB	RB	Power (dBm)		1-g SAR (W/kg)		Plot
Conditions	Mode	(mm)	Position	(:h#	(MHz)		offset	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	18900	1880.0	1	0	24.2	24.2	0.468	0.468	5
			Leit Touch	10900	1000.0	50	0	23.2	23.2	0.363	0.363	
Head QPSK		Left Tilt	18900	1880.0	1	0	24.2	24.2	0.384	0.384		
	PSK 0		18900	1000.0	50	0	23.2	23.2	0.296	0.296		
		Right Touch	18900	1880.0	1	0	24.2	24.2	0.402	0.402		
			Right Touch	10500	1000.0	50	0	23.2	23.2	0.306	0.306	
			Right Tilt	18900	1880.0	1	0	24.2	24.2	0.288	0.288	
			Tugnit Thit	10300	8900 1880.0	50	0	23.2	23.2	0.212	0.212	
			Boar	18900	1880.0	1	0	24.2	24.2	0.403	0.403	
Body-worn QPSK	15	Rear 1	10300	1000.0	50	0	23.2	23.2	0.328	0.328		
	15	Front	18900	1880.0	1	0	24.2	24.2	0.421	0.421	6	
			FION	10300	1000.0	50	0	23.2	23.2	0.314	0.314	

10.4. LTE Band 4 (20MHz Bandwidth)

RF Exposure		Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	-	offset	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	20175	1732.5	1	0	24.4	24.2	0.424	0.444	7
			Leit Touch	20175	1752.5	50	0	23.4	23.0	0.349	0.383	
Head QPSK 0		Left Tilt	20175	1732.5	1	0	24.4	24.2	0.320	0.335		
	0	Leit Tiit	20175	1752.5	50	0	23.4	23.0	0.233	0.255		
	FSK U	Right Touch	20175	1732.5	1	0	24.4	24.2	0.411	0.430		
			Tught Touch	20175	1752.5	50	0	23.4	23.0	0.325	0.356	
			Right Tilt	20175	1732.5	1	0	24.4	24.2	0.243	0.254	
				20175	1732.5	50	0	23.4	23.0	0.177	0.194	
			Rear	20175	1732.5	1	0	24.4	24.2	0.479	0.502	8
Body-worn QPSK	15	iieal	20175	1752.5	50	0	23.4	23.0	0.398	0.436		
	PSK 15	Front	20175 1	1732.5	1	0	24.4	24.2	0.415	0.435		
			FION	20175	1752.5	50	0	23.4	23.0	0.343	0.376	

10.5. LTE Band 13 (10MHz Bandwidth)

RF Exposure		Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Position	Ch #.	#. (MHz)	Allocation	offset	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	23230	782.0	1	25	24.2	24.0	0.303	0.317	9
			Leit Touch	23230	782.0	25	0	23.2	22.9	0.205	0.220	
Head QPSK		Left Tilt	23230	782.0	1	25	24.2	24.0	0.195	0.204		
	PSK 0			762.0	25	0	23.2	22.9	0.137	0.147		
	QFSK	0	Right Touch Right Tilt	23230	782.0	1	25	24.2	24.0	0.286	0.299	
						25	0	23.2	22.9	0.223	0.239	
				23230	782.0	1	25	24.2	24.0	0.192	0.201	
				23230	782.0	25	0	23.2	22.9	0.142	0.152	
			Rear	23230	782.0	1	25	24.2	24.0	0.436	0.457	10
Body-worn QPSK	OPSK		near	20200	702.0	25	0	23.2	22.9	0.325	0.348	
	PSK 15 -	Front	23230	782.0	1	25	24.2	24.0	0.343	0.359		
			FION	20200	762.0	25	0	23.2	22.9	0.258	0.276	

10.6. Wi-Fi (DTS Band)

Frequency Band Mode		RF Exposure	Dist.			Freq.	Area Scan	Power	(dBm)	1-g SAF	R (W/kg)	Plot						
	Mode	Conditions	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.						
				Left Touch	1	2412.0	0 996	16.0	15.7	0.559	0.599							
				Left Tilt	1	2412.0	1 060	16.0	15.7	0.666	0.714	11						
		Head	0	Right Touch	1	2412.0	0 582	16.0	15.7									
				Right Tilt	1	2412.0	0.624	16.0	15.7									
2.4GHz	802.11b	Body-worn	15	Rear	1	2412.0	0.112	16.0	15.7	0.092	0.099	12						
2.4GHZ	1 Mbps	pps	Body-worn 15	Front	1	2412.0	0.0820	16.0	15.7									
				Rear	1	2412.0	0 255	16.0	15.7	0.182	0.195	13						
		Wi-Fi Direct	10	Front	1	2412.0	0.1550	16.0	15.7									
		WI-FI Direct	10	Edge 1	1	2412.0	0 229	16.0	15.7									
										Edge 2	1	2412.0	0.0440	16.0	15.7			

10.7. Bluetooth

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- $f_{(GHz)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Body-worn Accessory Exposure Conditions

Max. tune-up	. tune-up tolerance limit Min. test Frequenc separation (GHz)		Frequency	SAR test exclusion	Test Configuration	Estimated 1-g SAR	
(dBm)	(mW)	distance (mm)	· · · ·	Result*	Configuration	(W/kg)	
8.5	7	15	2.480	0.7	Rear/Front	0.098	

Conclusion:

*: The computed value is \leq 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or 3 (1-g or 10-g respectively) or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 or 3 (1-g or 10-g respectively).

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)
750	LTE Band 13	Body	Rear	No	0.436
850	CDMA BC0	Head	Right Touch	No	0.542
1900	CDMA BC1	Head	Left Touch	No	0.721
1300	LTE Band 2	Head	Right Touch	No	0.468
1700	LTE Band 4	Body	Rear	No	0.479
2400	Wi-Fi 802.11b/g/n	Head	Left Tilt	No	0.666

Note(s):

Repeated Measurement is not required since the measured SAR is not > 0.8 W/kg for all frequency bands.

12. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

RF Exposure Condition	ltem	Capable Transmit Configurations				
Head	1	CDMA	+	DTS		
neau	2	LTE	+	DTS		
	3	CDMA	+	DTS		
Body-w orn	4	CDMA	+	BT		
Body-worn	5	LTE	+	DTS		
	6	LTE	+	BT		
Wi-Fi Direct	7	CDMA	+	DTS		
	8	LTE	+	DTS		

Notes:

- 1. Hotspot Mode is not supported for this device.
- 2. DTS supports Wi-Fi Direct.
- 3. VoIP is supported in CDMA and LTE.
- 4. DTS Radio cannot transmit simultaneously with Bluetooth Radio.

12.1. Sum of SAR for CDMA BC0 & Wi-Fi & BT

RF Exposure	Test	Standa	lone SAR ((W/kg)	∑1-gSAR (W/kg)		
conditions	Position	WWAN	DTS	BT	WWAN + DTS	WWAN + BT	
		1	2	3	1+2	1+3	
Head	Left Touch	0.486	0.599		1.085		
	Left Tilt	0.333	0.714		1.047		
Tieau	Right Touch	0.581	0.714		1.295		
	Right Tilt	0.364	0.714		1.078		
Body-worn	Rear	0.553	0.099	0.098	0.652	0.651	
Body-wom	Front	0.460	0.099	0.098	0.559	0.558	
Wi-Fi Direct	Rear	0.553	0.195		0.748		

12.2. Sum of SAR for CDMA BC1 & Wi-Fi & BT

RF Exposure conditions	Test	Standa	lone SAR	(W/kg)	∑1-gSAR (W/kg)		
	Position	WWAN ①	DTS ②	BT ③	WWAN + DTS (1) + (2)	WWAN + BT	
	Left Touch	0.738	0.599		1.337		
Head	Left Tilt	0.539	0.714		1.253		
пеац	Right Touch	0.657	0.714		1.371		
	Right Tilt	0.348	0.714		1.062		
Body-worn	Rear	0.442	0.099	0.098	0.541	0.540	
Body-wom	Front	0.416	0.099	0.098	0.515	0.514	
Wi-Fi Direct	Rear	0.442	0.195		0.637		

12.3. Sum of SAR for LTE Band 2 & Wi-Fi & BT

RF Exposure	Test	Standa	lone SAR	(W/kg)	∑1-gSAR (W/kg)		
conditions	Position	WWAN	DTS	BT	WWAN + DTS	WWAN + BT	
		1	2	3	1+2	1+3	
	Left Touch	0.468	0.599		1.067		
Head	Left Tilt	0.384	0.714		1.098		
пеац	Right Touch	0.402	0.714		1.116		
	Right Tilt	0.288	0.714		1.002		
Body-worn	Rear	0.403	0.099	0.098	0.502	0.501	
Body-worri	Front	0.421	0.099	0.098	0.520	0.519	
Wi-Fi Direct	Rear	0.403	0.195		0.598		

Page 35 of 37

12.4. Sum of SAR for LTE Band 4 & Wi-Fi & BT

RF Exposure conditions	Test	Standa	lone SAR ((W/kg)	∑1-g SAR (W/kg)		
	Position	WWAN	DTS	ВТ	WWAN + DTS	WWAN + BT	
		(1)	2	3	1+2	1+3	
Head	Left Touch	0.444	0.599		1.043		
	Left Tilt	0.335	0.714		1.049		
nead	Right Touch	0.430	0.714		1.144		
	Right Tilt	0.254	0.714		0.968		
Body-worn	Rear	0.502	0.099	0.098	0.601	0.600	
Body-worri	Front	0.435	0.099	0.098	0.534	0.533	
Wi-Fi Direct	Rear	0.502	0.195		0.697		

12.5. Sum of SAR for LTE Band 13 & Wi-Fi & BT

RF Exposure	Test	Standa	lone SAR	(W/kg)	∑1-gSAR (W/kg)		
conditions	Position	WWAN	DTS	BT	WWAN + DTS	WWAN + BT	
		1	2	3	1+2	1+3	
	Left Touch	0.317	0.599		0.916		
Head	Left Tilt	0.204	0.714		0.918		
neau	Right Touch	0.299	0.714		1.013		
	Right Tilt	0.201	0.714		0.915		
Body-worn	Rear	0.457	0.099	0.098	0.556	0.555	
Body-wom	Front	0.359	0.099	0.098	0.458	0.457	
Wi-Fi Direct	Rear	0.457	0.195		0.652		

Appendixes

Refer to separated files for the following appendixes.

16I22653-S1V1 SAR_App A Photos & Ant. Locations

16I22653-S1V1 SAR_App B System Check Plots

16I22653-S1V1 SAR_App C Highest Test Plots

16I22653-S1V1 SAR_App D Tissue Ingredients

16I22653-S1V1 SAR_App E Probe Cal. Certificates

16I22653-S1V1 SAR_App F Dipole Cal. Certificates

END OF REPORT