PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com # SAR EVALUATION REPORT **Applicant Name:** LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States** **Date of Testing:** 11/07/16 - 11/16/16 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 0Y1611151756-R1.ZNF FCC ID: ZNFL57BL **APPLICANT:** LG ELECTRONICS MOBILECOMM U.S.A., INC. **DUT Type:** Portable Handset **Application Type:** Certification CFR §2.1093 FCC Rule Part(s): Model(s): LG-L57BL, LGL57BL, L57BL | Equipment | Band & Mode | Tx Frequency | SAR | | | | |--------------|--------------------------|-----------------------|---------------------|---------------------------|------------------------|--| | Class | Balla a Mede | TXTTOquonoy | 1 gm Head
(W/kg) | 1 gm Body-
Worn (W/kg) | 1 gm Hotspot
(W/kg) | | | PCE | GSM/GPRS/EDGE 850 | 824.20 - 848.80 MHz | 0.31 | 0.46 | 0.46 | | | PCE | UMTS 850 | 826.40 - 846.60 MHz | 0.33 | 0.39 | 0.39 | | | PCE | UMTS 1750 | 1712.4 - 1752.6 MHz | 0.62 | 0.93 | 0.93 | | | PCE | GSWGPRS/EDGE 1900 | 1850.20 - 1909.80 MHz | 0.47 | 0.47 | 0.47 | | | PCE | UMTS 1900 | 1852.4 - 1907.6 MHz | 0.71 | 0.98 | 0.98 | | | PCE | LTE Band 12 | 699.7 - 715.3 MHz | 0.36 | 0.67 | 0.67 | | | PCE | LTE Band 5 (Cell) | 824.7 - 848.3 MHz | 0.38 | 0.52 | 0.52 | | | PCE | LTE Band 4 (AWS) | 1710.7 - 1754.3 MHz | 0.70 | 0.94 | 0.94 | | | PCE | LTE Band 2 (PCS) | 1850.7 - 1909.3 MHz | 0.74 | 0.99 | 0.99 | | | DTS | 2.4 GHz WLAN | 2412 - 2462 MHz | 0.99 | 0.59 | 0.61 | | | DSS/DTS | Bluetooth | 2402 - 2480 MHz | N/A | N/A | N/A | | | Simultaneous | SAR per KDB 690783 D01v0 | 1.42 | 1.58 | 1.58 | | | Note: This revised Test Report (S/N: 0Y1611151756-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly. This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested. The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info. | FCC ID: ZNFL57BL | PCTEST* | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |--------------------|-----------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 4 of 54 | | 0Y1611151756-R1.ZN | F 11/07/16 - 11/16/16 | Portable Handset | | Page 1 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. # TABLE OF CONTENTS | 1 | DEVICE | UNDER TEST | 3 | |-------|---------|--|----| | 2 | LTE INF | ORMATION | 8 | | 3 | INTROD | UCTION | 9 | | 4 | DOSIME | TRIC ASSESSMENT | 10 | | 5 | DEFINIT | ION OF REFERENCE POINTS | 11 | | 6 | TEST C | ONFIGURATION POSITIONS | 12 | | 7 | RF EXP | OSURE LIMITS | 15 | | 8 | FCC ME | ASUREMENT PROCEDURES | 16 | | 9 | RF CON | DUCTED POWERS | 21 | | 10 | SYSTEM | I VERIFICATION | 33 | | 11 | SAR DA | TA SUMMARY | 35 | | 12 | FCC MU | LTI-TX AND ANTENNA SAR CONSIDERATIONS | 45 | | 13 | SAR ME | ASUREMENT VARIABILITY | 49 | | 14 | EQUIPM | ENT LIST | 50 | | 15 | MEASU | REMENT UNCERTAINTIES | 51 | | 16 | CONCLU | JSION | 52 | | 17 | REFERE | NCES | 53 | | APPEN | NDIX A: | SAR TEST PLOTS | | | APPEN | NDIX B: | SAR DIPOLE VERIFICATION PLOTS | | | APPEN | IDIX C: | PROBE AND DIPOLE CALIBRATION CERTIFICATES | | | APPEN | NDIX D: | SAR TISSUE SPECIFICATIONS | | | APPEN | NDIX E: | SAR SYSTEM VALIDATION | | | APPEN | NDIX F: | DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS | | | APPEI | NDIX G: | WIFI POWER REDUCTION VERIFICATION | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---|--------|-----------------------|--------------|------------------------------| | Document S/N: Test Dates: | | DUT Type: | Page 2 of 54 | | | 0Y1611151756-R1.ZNF 11/07/16 - 11/16/16 | | Portable Handset | | | # 1 DEVICE UNDER TEST #### 1.1 Device Overview | Band & Mode | Operating Modes | Tx Frequency | |-------------------|-----------------|-----------------------| | GSM/GPRS/EDGE 850 | Voice/Data | 824.20 - 848.80 MHz | | UMTS 850 | Voice/Data | 826.40 - 846.60 MHz | | UMTS 1750 | Voice/Data | 1712.4 - 1752.6 MHz | | GSWGPRS/EDGE 1900 | Voice/Data | 1850.20 - 1909.80 MHz | | UMTS 1900 | Voice/Data | 1852.4 - 1907.6 MHz | | LTE Band 12 | Voice/Data | 699.7 - 715.3 MHz | | LTE Band 5 (Cell) | Voice/Data | 824.7 - 848.3 MHz | | LTE Band 4 (AWS) | Voice/Data | 1710.7 - 1754.3 MHz | | LTE Band 2 (PCS) | Voice/Data | 1850.7 - 1909.3 MHz | | 2.4 GHz WLAN | Voice/Data | 2412 - 2462 MHz | | Bluetooth | Data | 2402 - 2480 MHz | ### 1.2 Power Reduction for SAR This device uses a fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description. The reduced powers for the powers reduction mechanisms were confirmed via conducted power measurements at the RF port (See Section 9). Additional test procedure information and data verifying the WLAN power reduction mechanism is included in Appendix G. # 1.3 Nominal and Maximum Output Power Specifications This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06. ### 1.3.1 Maximum PCE Powers | maximum i | ilori maximami oʻzi onoro | | | | | | | | | | |--------------------|---------------------------|----------------|--------------------------|------------|------------|---------------------------|------------|------------|------------|------------| | Mode / Band | | Voice
(dBm) | Burst Average GMSK (dBm) | | | Burst Average 8-PSK (dBm) | | | | | | | | 1 TX Slot | 1 TX Slots | 2 TX Slots | 3 TX Slots | 4 TX Slots | 1 TX Slots | 2 TX Slots | 3 TX Slots | 4 TX Slots | | CSM/CDDS/EDGE 8E0 | Maximum | 33.7 | 33.7 | 31.2 | 29.2 | 28.2 | 26.7 | 26.7 | 25.7 | 24.7 | | GSM/GPRS/EDGE 850 | Nominal | 33.2 | 33.2 | 30.7 | 28.7 | 27.7 | 26.2 | 26.2 | 25.2 | 24.2 | | GSM/GPRS/EDGE 1900 | Maximum | 30.7 | 30.7 | 28.2 | 26.7 | 25.7 | 25.7 | 25.7 | 24.7 | 24.7 | | | Nominal | 30.2 | 30.2 | 27.7 | 26.2 | 25.2 | 25.2 | 25.2 | 24.2 | 24.2 | | | | Modulated Average (dBm) | | | | |------------------------------|---------|-------------------------|-------|------|--| | Mode / Band | 3GPP | 3GPP | 3GPP | | | | | WCDMA | HSDPA | HSUPA | | | | UMTS Band 5 (850 MHz) | Maximum | 23.7 | 23.7 | 23.7 | | | | Nominal | 23.2 | 23.2 | 23.2 | | | UMTS Band 4 (1750 MHz) | Maximum | 24.7 | 24.7 | 24.7 | | | OWITS Ballu 4 (1730 WHZ) | Nominal | 24.2 | 24.2 | 24.2 | | | UMTS Band 2 (1900 MHz) | Maximum | 23.7 | 23.7 | 23.7 | | | Olvi 13 Bailu 2 (1900 lvinz) | Nominal | 23.2 | 23.2 | 23.2 | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | L G | Reviewed by: Quality Manager | |---------------------------|---------------------|-----------------------|--------------|------------------------------| | Document S/N: Test Dates: | | DUT Type: | Dans 2 of 54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 3 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. | Mode / Band | Modulated Average
(dBm) | | |-------------------|----------------------------|------| | LTE Band 12 | Maximum | 24.7 | | LIE Ballu 12 | Nominal | 24.2 | | LTE D (C11) | Maximum | 24.7 | | LTE Band 5 (Cell) | Nominal | 24.2 | | LTE Dand 4 (ANAS) | Maximum | 24.7 | | LTE Band 4 (AWS) | Nominal | 24.2 | | LTE Pand 2 (DCS) | Maximum | 24.2 | | LTE Band 2 (PCS) | Nominal | 23.7 | # 1.3.2 Maximum WLAN/BT Powers | Mode / Band | | | Modulated Average
(dBm) | | | | | |-------------------------|------|-------|----------------------------|----------------------------|---------|--------|--------| | | | | Ch.1 | Ch. 2 | Ch. 3-9 | Ch. 10 | Ch. 11 | | IEEE 902 11h /2 4 CH-) | Maxi | mum | | | 21.0 | | | | IEEE 802.11b (2.4 GHz) | Non | ninal | | | 20.0 | | | | IEEE 902 11a (2.4 CHz) | Maxi | mum | 16.0 | 18.0 | 19.0 | 18.0 | 16.0 | | IEEE 802.11g (2.4 GHz) | Non | ninal | 15.0 | 17.0 | 18.0 | 17.0 | 15.0 | | IEEE 802.11n (2.4 GHz) | Maxi | mum | 15.0 | 17.0 | 18.0 | 17.0 | 15.0 | | TEEE 802.1111 (2.4 GHZ) | Non | ninal | 14.0 | 16.0 | 17.0 | 16.0 | 14.0 | | Mode / Band | | | | Modulated Average
(dBm) | | | | | Bluetooth | | Ma | ximum | | 8 | 3.5 | | | Bluetooth | | No | minal | | 7.5 | | | | Bluetooth LE | | Ma | ximum | | (| 0.0 | | | | | No | minal -1.0 | | | | | # 1.3.3 Reduced WLAN Powers- (Held to Ear) | Mode / Band | | Modulated Average
(dBm) | | | | | |-------------------------|---------|----------------------------|---------|--------|--------|------| | | Ch.1 | Ch. 2 | Ch. 3-9 | Ch. 10 | Ch. 11 | | | IEEE 802.11b (2.4 GHz) | Maximum | 16.0 | | | | | | TEEE 802.110 (2.4 GHZ)
 Nominal | 15.0 | | | | | | IEEE 802.11g (2.4 GHz) | Maximum | 13.0 | 15.0 | 16.0 | 15.0 | 13.0 | | TEEE 802.11g (2.4 GHZ) | Nominal | 12.0 | 14.0 | 15.0 | 14.0 | 12.0 | | IFFF 903 11 ~ (3.4 CH-) | Maximum | 13.0 | 15.0 | 16.0 | 15.0 | 13.0 | | IEEE 802.11n (2.4 GHz) | Nominal | 12.0 | 14.0 | 15.0 | 14.0 | 12.0 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------------|---------------------|-----------------------|--------------|------------------------------| | Document S/N: Test Dates: | | DUT Type: | Dans 4 of 54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 4 of 54 | #### 1.4 DUT Antenna Locations The overall dimensions of this device are $> 9 \times 5$ cm. The overall diagonal dimension of the device is ≤ 160 mm and the diagonal display is ≤ 150 mm. A diagram showing the location of the device antennas can be found in Appendix F. Table 1-1 Device Edges/Sides for SAR Testing | Mode | Back | Front | Top | Bottom | Right | Left | |-------------------|------|-------|-----|--------|-------|------| | GPRS 850 | Yes | Yes | No | Yes | Yes | Yes | | UMTS 850 | Yes | Yes | No | Yes | Yes | Yes | | UMTS 1750 | Yes | Yes | No | Yes | No | Yes | | GPRS 1900 | Yes | Yes | No | Yes | No | Yes | | UMTS 1900 | Yes | Yes | No | Yes | No | Yes | | LTE Band 12 | Yes | Yes | No | Yes | Yes | Yes | | LTE Band 5 (Cell) | Yes | Yes | No | Yes | Yes | Yes | | LTE Band 4 (AWS) | Yes | Yes | No | Yes | No | Yes | | LTE Band 2 (PCS) | Yes | Yes | No | Yes | No | Yes | | 2.4 GHz WLAN | Yes | Yes | Yes | No | No | Yes | Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing. # 1.5 Simultaneous Transmission Capabilities According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another. Figure 1-1 Simultaneous Transmission Paths This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|----|------------------------------| | Document S/N: | Test Dates: | ates: DUT Type: | | Dans 5 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 5 of 54 | Table 1-2 **Simultaneous Transmission Scenarios** | No. | Capable Transmit Configuration | Head | Body-Worn
Accessory | Wireless
Router | Notes | |-----|--------------------------------|------|------------------------|--------------------|---| | 1 | GSM voice + 2.4 GHz WI-FI | Yes | Yes | N/A | | | 2 | GSM voice + 2.4 GHz Bluetooth | N/A | Yes | N/A | | | 3 | UMTS + 2.4 GHz WI-FI | Yes | Yes | Yes | | | 4 | UMTS + 2.4 GHz Bluetooth | N/A | Yes | N/A | | | 5 | LTE + 2.4 GHz WI-FI | Yes | Yes | Yes | | | 6 | LTE + 2.4 GHz Bluetooth | N/A | Yes | N/A | | | 7 | GPRS/EDGE + 2.4 GHz WI-FI | Yes* | Yes* | Yes | *-Pre-installed VOIP applications are considered. | | 8 | GPRS/EDGE + 2.4 GHz Bluetooth | N/A | Yes* | N/A | *-Pre-installed VOIP applications are considered. | - 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously. - 2. All licensed modes share the same antenna path and cannot transmit simultaneously. - 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario. - 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Simultaneous transmission scenarios involving WIFI direct are listed in the above table. - 5. This device supports VoLTE. - 6. This device supports VoWIFI. #### 1.6 **Miscellaneous SAR Test Considerations** ### (A) Licensed Transmitter(s) GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data. This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01. LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04. #### (B) Bluetooth Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation: $$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$ Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; $[(7/10)^* \sqrt{2.480}] = 1.1 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation. | FCC ID: ZNFL57BL | PCTEST* | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Danie C of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 6 of 54 | # 1.7 Guidance Applied - IEEE 1528-2013 - FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot) - FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices) - FCC KDB Publication 447498 D01v06 (General SAR Guidance) - FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) - October 2013 TCB Workshop Notes (GPRS Testing Considerations) ### 1.8 Device Serial Numbers Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. | | Head Serial
Number | Body-Worn
Serial Number | Hotspot Serial
Number | |--------------------|-----------------------|----------------------------|--------------------------| | GSM/GPRS/EDGE 850 | 00830 | 00830 | 00830 | | UMTS 850 | 00830 | 00830 | 00830 | | UMTS 1750 | 00889 | 00889 | 00889 | | GSM/GPRS/EDGE 1900 | 00830 | 00871 | 00871 | | UMTS 1900 | 00830 | 00871 | 00871 | | LTE Band 12 | 00830 | 00830 | 00830 | | LTE Band 5 (Cell) | 00830 | 00830 | 00830 | | LTE Band 4 (AWS) | 00889 | 00889 | 00889 | | LTE Band 2 (PCS) | 00830 | 00830 | 00830 | | 2.4 GHz WLAN | 03530 | 03530 | 03530 | | FCC ID: ZNFL57BL | PCTEST* | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | et Dates: DUT Type: | | Dans 7 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 7 of 54 | #### 2 LTE INFORMATION | | LTE Information | | | | |---|--|------------------------------|----------------|--| | FCC ID | | ZNFL57BL | | | | Form Factor | | Portable Handset | | | | Frequency Range of each LTE transmission band | LTE | E Band 12 (699.7 - 715.3 M | 1Hz) | | | | LTE E | Band 5 (Cell) (824.7 - 848.3 | MHz) | | | | LTE Ba | nd 4 (AWS) (1710.7 - 1754 | 3 MHz) | | | | LTE Band 2 (PCS) (1850.7 - 1909.3 MHz) | | | | | Channel Bandwidths | LTE Band 12: 1.4 MHz, 3 MHz, 5 M | | | | | | LTE Band 5 | (Cell): 1.4 MHz, 3 MHz, 5 I | MHz, 10 MHz | | | | . , | 4 MHz, 3 MHz, 5 MHz, 10 | | | | | ` ' | 1 MHz, 3 MHz, 5 MHz, 10 | | | | Channel Numbers and Frequencies (MHz) | Low | Mid | High | | | LTE Band 12: 1.4 MHz | 699.7 (23017) | 707.5 (23095) | 715.3 (23173) | | | LTE Band 12: 3 MHz | 700.5 (23025) | 707.5 (23095) | 714.5 (23165) | | | LTE Band 12: 5 MHz | 701.5 (23035) | 707.5 (23095) | 713.5 (23155) | | | LTE Band 12: 10 MHz | 704 (23060) | 707.5 (23095) | 711 (23130) | | | LTE Band 5 (Cell): 1.4 MHz | 824.7 (20407) | 836.5 (20525) | 848.3 (20643) | | | LTE Band 5 (Cell): 3 MHz | 825.5 (20415) | 836.5 (20525) | 847.5 (20635) | | | LTE Band 5 (Cell): 5 MHz | 826.5 (20425) | 836.5 (20525) | 846.5 (20625) | | | LTE Band 5 (Cell): 10 MHz | 829 (20450) | 836.5 (20525) | 844 (20600) | | | LTE Band 4 (AWS): 1.4 MHz | 1710.7 (19957) | 1732.5 (20175) | 1754.3 (20393) | | | LTE Band 4 (AWS): 3 MHz | 1711.5 (19965) |
1732.5 (20175) | 1753.5 (20385) | | | LTE Band 4 (AWS): 5 MHz | 1712.5 (19975) | 1732.5 (20175) | 1752.5 (20375) | | | LTE Band 4 (AWS): 10 MHz | 1715 (20000) | 1732.5 (20175) | 1750 (20350) | | | LTE Band 4 (AWS): 15 MHz | 1717.5 (20025) | 1732.5 (20175) | 1747.5 (20325) | | | LTE Band 4 (AWS): 20 MHz | 1720 (20050) | 1732.5 (20175) | 1745 (20300) | | | LTE Band 2 (PCS): 1.4 MHz | 1850.7 (18607) | 1880 (18900) | 1909.3 (19193) | | | LTE Band 2 (PCS): 3 MHz | 1851.5 (18615) | 1880 (18900) | 1908.5 (19185) | | | LTE Band 2 (PCS): 5 MHz | 1852.5 (18625) | 1880 (18900) | 1907.5 (19175) | | | LTE Band 2 (PCS): 10 MHz | 1855 (18650) | 1880 (18900) | 1905 (19150) | | | LTE Band 2 (PCS): 15 MHz | 1857.5 (18675) | 1880 (18900) | 1902.5 (19125) | | | LTE Band 2 (PCS): 20 MHz | 1860 (18700) | 1880 (18900) | 1900 (19100) | | | UE Category | | 4 | | | | Modulations Supported in UL | | QPSK, 16QAM | | | | LTE MPR Permanently implemented per 3GPP TS 36.101 | | | | | | section 6.2.3~6.2.5? (manufacturer attestation to be | YES | | | | | provided) A MDD (Additional MDD) disabled for SAD Testing? | VEO | | | | | A-MPR (Additional MPR) disabled for SAR Testing? LTE Release 10 Additional Information | | YES | 0000001 15 15 | | | LTE Release TO Additional information | This device does not support full CA features on 3GPP Release 10. All uplink communications are identical to the Release 8 Specifications. The following LTE Release 10 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, elClC, WIFI Offloading, MDH, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA. | | | | | FCC ID: ZNFL57BL | PCTEST INC. INC. | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |--------------------------------------|---------------------|-----------------------|-----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 0 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 8 of 54 | | 016 PCTEST Engineering Laboratory In | C | | | DEV/ 18 M | # 3 # INTRODUCTION The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1] The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### 3.1 SAR Definition Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1). # Equation 3-1 SAR Mathematical Equation $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6] | FCC ID: ZNFL57BL | PCTEST" | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 0 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 9 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. # DOSIMETRIC ASSESSMENT #### 4.1 Measurement Procedure The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. - 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 4-1 Sample SAR Area Scan - 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04* | | Maximum Area Scan Maximum Zoom Scan Resolution (mm) Resolution (mm) | | Maximum Zoom Scan Spatial
Resolution (mm) | | | Minimum Zoom Scan | |-----------|--|--|--|-------------------------|---------------------------------|------------------------| | Frequency | (Δx _{area} , Δy _{area}) | (Δx _{zoom} , Δy _{zoom}) | Uniform Grid | Graded Grid | | Volume (mm)
(x,y,z) | | | ,, | ,, | Δz _{zoom} (n) | Δz _{zoom} (1)* | Δz _{zoom} (n>1)* | , ,,, , | | ≤ 2 GHz | ≤ 15 | ≤8 | ≤5 | ≤4 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30 | | 2-3 GHz | ≤12 | ≤5 | ≤5 | ≤4 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30 | | 3-4 GHz | ≤12 | ≤5 | ≤4 | ≤3 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28 | | 4-5 GHz | ≤ 10 | ≤4 | ≤3 | ≤ 2.5 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25 | | 5-6 GHz | ≤ 10 | ≤4 | ≤ 2 | ≤2 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 22 | ^{*}Also compliant to IEEE 1528-2013 Table 6 | | FCC ID: ZNFL57BL | PCTEST: | SAR EVALUATION REPORT | Reviewed by: Quality Manager | |-----|--------------------------------------|---------------------|-----------------------|------------------------------| | | Document S/N: | Test Dates: | DUT Type: | D 40 . (54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | Page 10 of 54 | | 201 | C DOTECT Engineering Laboratory Inc. | | | DEV/ 40 M | © 2016 PCTEST Engineering Laboratory, Inc. # 5 DEFINITION OF REFERENCE POINTS #### 5.1 EAR REFERENCE POINT Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5]. Figure 5-1 Close-Up Side view of ERP ### 5.2 HANDSET REFERENCE POINTS Two imaginary lines
on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point. Figure 5-2 Front, back and side view of SAM Twin Phantom Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | Reviewed by:
Quality Manager | |-----|----------------------------------|---------------------|-----------------------|---------------------------------| | | Document S/N: | Test Dates: | DUT Type: | D 44 . (54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | Page 11 of 54 | | 004 | DOTEOT Frankraulakanska kalendar | | | DEV/40 M | # 6 TEST CONFIGURATION POSITIONS ### 6.1 Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. # 6.2 Positioning for Cheek 1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Figure 6-1 Front. Side and Top View of Cheek Position - 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna. - 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane. - 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2). # 6.3 Positioning for Ear / 15° Tilt With the test device aligned in the "Cheek Position": - 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees. - 2. The phone was then rotated around the horizontal line by 15 degrees. - 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2). | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | L G | Reviewed by: Quality Manager | | |---------------------|---------------------|--------------------------|---------------|------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | Page 12 of 54 | | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | 1/16/16 Portable Handset | | | | © 2016 PCTEST Engineering Laboratory, Inc. Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position Figure 6-3 Side view w/ relevant markings # 6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning. Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom. # 6.5 Body-Worn Accessory Configurations Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation Figure 6-4 Sample Body-Worn Diagram distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | | | |---------------------|---------------------|------------------------|-------------|------------------------------|--|--| | Document S/N: | Test Dates: | DUT Type: | ype: | | | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | 16/16 Portable Handset | | | | | dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. # 6.6 Extremity Exposure Configurations Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements. Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device. # 6.7 Wireless Router Configurations Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test
separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT LG | | Reviewed by: Quality Manager | |---------------------|---------------------|--------------------------|--|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 44 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 14 of 54 | # 7 RF EXPOSURE LIMITS #### 7.1 Uncontrolled Environment UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. ### 7.2 Controlled Environment CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 7-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6 | HUMAN EXPOSURE LIMITS | | | | | | |--|---|---|--|--|--| | | UNCONTROLLED
ENVIRONMENT
General Population
(W/kg) or (mW/g) | CONTROLLED
ENVIRONMENT
Occupational
(W/kg) or (mW/g) | | | | | Peak Spatial Average SAR
Head | 1.6 | 8.0 | | | | | Whole Body SAR | 0.08 | 0.4 | | | | | Peak Spatial Average SAR
Hands, Feet, Ankle, Wrists, etc. | 4.0 | 20 | | | | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | | |---------------------|---------------------|-----------------------|---------------|------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | | Dogg 15 of 54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | | Page 15 of 54 | | | # 8 FCC MEASUREMENT PROCEDURES Power measurements for licensed transmitters are performed using a base station simulator under digital average power. # 8.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. #### 8.2 3G SAR Test Reduction Procedure In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode. # 8.3 Procedures Used to Establish RF Signal for SAR The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated. #### 8.4 SAR Measurement Conditions for UMTS # 8.4.1 Output Power Verification Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified. | FCC ID: ZNFL57BL | PCTEST: | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | | |---------------------|---------------------|------------------------|-----------|-------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | | Page 16 of 54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | 16/16 Portable Handset | | | | © 2016 PCTEST Engineering Laboratory, Inc. ### 8.4.2 Head SAR Measurements SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure. # 8.4.3 Body SAR Measurements SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC. #### 8.4.4 SAR Measurements with Rel 5 HSDPA The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures. ### 8.4.5 SAR Measurements with Rel 6 HSUPA The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power
control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. #### 8.5 SAR Measurement Conditions for LTE LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI). # 8.5.1 Spectrum Plots for RB Configurations A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report. ### 8.5.2 MPR MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1. | FCC ID: ZNFL57BL | PCTEST" | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|---------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 47 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | | Page 17 of 54 | | © 2016 PCTEST Engineering Laboratory, Inc. ### 8.5.3 A-MPR A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator. # 8.5.4 Required RB Size and RB Offsets for SAR Testing According to FCC KDB 941225 D05v02r04: - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth - i. The required channel and offset combination with the highest maximum output power is required for SAR. - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel. - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel. - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1. - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg. - d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p> ### 8.6 SAR Testing with 802.11 Transmitters The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details. # 8.6.1 General Device Setup Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. # 8.6.2 Initial Test Position Procedure For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | L G | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 40 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 18 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. # 8.6.3 2.4 GHz SAR Test Requirements SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: - When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. ### 8.6.4 OFDM Transmission Mode and SAR Test Channel Selection When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel. # 8.6.5 Initial Test Configuration Procedure For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration. When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.4). | FCC ID: ZNFL57BL | PCTEST" | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-----------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 40 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 19 of 54 | # 8.6.6 Subsequent Test Configuration Procedures For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are
required. | FCC ID: ZNFL57BL | PCTEST* | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | | |---------------------|---------------------|-----------------------|-----------|------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | | Dana 00 of 54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 20 of 54 | | # 9 RF CONDUCTED POWERS ### 9.1 GSM Conducted Powers | Maximum Burst-Averaged Output Power | | | | | | | | | | | |--|--------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------| | | | Voice | | | DGE Data
MSK) | | EDGE Data
(8-PSK) | | | | | Band | Channel | GSM
[dBm]
CS
(1 Slot) | GPRS
[dBm]
1 Tx
Slot | GPRS
[dBm]
2 Tx
Slot | GPRS
[dBm]
3 Tx
Slot | GPRS
[dBm]
4 Tx
Slot | EDGE
[dBm]
1 Tx
Slot | EDGE
[dBm]
2 Tx
Slot | EDGE
[dBm]
3 Tx
Slot | EDGE
[dBm]
4 Tx
Slot | | | 128 | 33.70 | 33.70 | 31.05 | 29.07 | 28.16 | 26.45 | 26.22 | 25.37 | 24.35 | | GSM 850 | 190 | 33.36 | 33.38 | 30.83 | 28.70 | 28.00 | 26.22 | 26.05 | 25.01 | 24.12 | | | 251 | 33.10 | 33.11 | 30.55 | 28.22 | 27.77 | 26.12 | 25.88 | 24.88 | 24.10 | | | 512 | 30.54 | 30.45 | 27.86 | 26.52 | 25.47 | 25.70 | 25.53 | 24.57 | 24.55 | | GSM 1900 | 661 | 30.61 | 30.45 | 27.83 | 26.41 | 25.44 | 25.66 | 25.47 | 24.55 | 24.45 | | | 810 | 30.58 | 30.51 | 27.80 | 26.51 | 25.38 | 25.60 | 25.48 | 24.50 | 24.33 | | Calculated Maximum Frame-Averaged Output Power | | | | | | | | | | | | | | Voice | | | DGE Data
MSK) | | EDGE Data
(8-PSK) | | | | | Band | Channel | GSM
[dBm]
CS
(1 Slot) | GPRS
[dBm]
1 Tx
Slot | GPRS
[dBm]
2 Tx
Slot | GPRS
[dBm]
3 Tx
Slot | GPRS
[dBm]
4 Tx
Slot | EDGE
[dBm]
1 Tx
Slot | EDGE
[dBm]
2 Tx
Slot | EDGE
[dBm]
3 Tx
Slot | EDGE
[dBm]
4 Tx
Slot | | | 128 | 24.67 | 24.67 | 25.03 | 24.81 | 25.15 | 17.42 | 20.20 | 21.11 | 21.34 | | GSM 850 | 190 | 24.33 | 24.35 | 24.81 | 24.44 | 24.99 | 17.19 | 20.03 | 20.75 | 21.11 | | | 251 | 24.07 | 24.08 | 24.53 | 23.96 | 24.76 | 17.09 | 19.86 | 20.62 | 21.09 | | | 512 | 21.51 | 21.42 | 21.84 | 22.26 | 22.46 | 16.67 | 19.51 | 20.31 | 21.54 | | GSM 1900 | 661 | 21.58 | 21.42 | 21.81 | 22.15 | 22.43 | 16.63 | 19.45 | 20.29 | 21.44 | | | 810 | 21.55 | 21.48 | 21.78 | 22.25 | 22.37 | 16.57 | 19.46 | 20.24 | 21.32 | | GSM 850 | Frame | 24.17 | 24.17 | 24.68 | 24.44 | 24.69 | 17.17 | 20.18 | 20.94 | 21.19 | | GSM 1900 | Avg.Targets: | 21.17 | 21.17 | 21.68 | 21.94 | 22.19 | 16.17 | 19.18 | 19.94 | 21.19 | #### Note: - 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots. - 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes. - 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power. GSM Class: B GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: 12 (Max 4 Tx uplink slots) **DTM Multislot Class: N/A** Figure 9-1 Power Measurement Setup | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 04 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 21 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. # 9.2 UMTS Conducted Powers | 3GPP
Release | Mode | e Mode ^{3G} | 3GPP 34.121
Subtest | Cellu | lar Band | [dBm] | AW | AWS Band [dBm] PCS Band [dBm] | | | Bm] | 3GPP
MPR [dB] | | |-----------------|----------|----------------------|------------------------|-------|----------|-------|-------|-------------------------------|-------|-------|-------|------------------|--------------| | Version | | | Gubtest | 4132 | 4183 | 4233 | 1312 | 1412 | 1513 | 9262 | 9400 | 9538 | iiii it [ub] | | 99 | WCDMA | 12.2 kbps RMC | 23.57 | 23.63 | 23.62 | 24.53 | 24.69 | 24.63 | 23.62 | 23.61 | 23.56 | - | | | 99 | VVCDIVIA | 12.2 kbps AMR | 23.56 | 23.67 | 23.64 | 24.52 | 24.67 | 24.62 | 23.61 | 23.60 | 23.55 | - | | | 6 | HSDPA | | Subtest 1 | 23.54 | 23.65 | 23.60 | 24.57 | 24.63 | 24.65 | 23.61 | 23.43 | 23.59 | 0 | | 6 | | Subtest 2 | 23.53 | 23.55 | 23.47 | 24.47 | 24.64 | 24.66 | 23.52 | 23.45 | 23.58 | 0 | | | 6 | HODEA | Subtest 3 | 22.98 | 23.01 | 23.05 | 24.11 | 24.20 | 24.16 | 23.18 | 23.01 | 23.07 | 0.5 | | | 6 | | Subtest 4 | 22.95 | 23.06 | 23.00 | 24.00 | 24.10 | 24.20 | 23.09 | 23.03 | 23.08 | 0.5 | | | 6 | | Subtest 1 | 22.74 | 22.94 | 22.74 | 24.41 | 23.67 | 24.44 | 23.49 | 22.47 | 22.65 | 0 | | | 6 | | Subtest 2 | 21.68 | 21.98 | 21.70 | 22.97 | 22.74 | 23.19 | 22.14 | 21.69 | 21.85 | 2 | | | 6 | HSUPA | Subtest 3 | 22.16 | 22.11 | 22.52 | 23.10 | 23.26 | 23.74 | 22.66 | 22.22 | 22.77 | 1 | | | 6 | | Subtest 4 | 22.18 | 21.99 | 22.00 | 23.01 | 23.14 | 23.17 | 22.16 | 22.20 | 21.84 | 2 | | | 6 | | Subtest 5 | 23.24 | 23.60 | 23.40 | 24.01 | 24.15 | 23.99 | 22.87 | 23.17 | 23.49 | 0 | | This device does not support DC-HSDPA. Figure 9-2 Power Measurement Setup | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | | | |-------------------------------------|---------------------|-----------------------|-------|------------------------------|--|--| | Document S/N: | Test Dates: | DUT Type: | Туре: | | | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 22 of 54 | | | | AC DOTECT Engineering Laboratory Is | • • | | | DEV/ 10 M | | | # 9.3 LTE Conducted Powers 9.3.1 LTE Band 12 Table 9-1 LTE Band 12 Conducted Powers - 10 MHz Bandwidth | | ETE Build TE GOTIGUOGGA TO WITE BUILD WITH | | | | | | | | | | | |------------|--|-----------|-----------------------|------------------------------|----------|--|--|--|--|--|--| | | | | LTE Band 12 | | | | | | | | | | | | | 10 MHz Bandwidth | | | | | | | | | | | | | Mid Channel | | | | | | | | | | Modulation | RB Size | RB Offset | 23095
(707.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | | | | | | Conducted Power [dBm] | | | | | | | | | | | 1 | 0 | 24.31 | | 0 | | | | | | | | | 1 | 25 | 24.44 | 0 | 0 | | | | | | | | | 1 | 49 | 24.25 | | 0 | | | | | | | | QPSK | 25 | 0 | 23.20 | | 1 | | | | | | | | | 25 | 12 | 23.18 | 0-1 | 1 | | | | | | | | | 25 | 25 | 23.09 | 0-1 | 1 | | | | | | | | | 50 | 0 | 23.11 | | 1 | | | | | | | | | 1 | 0 | 23.70 | | 1 | | | | | | | | | 1 | 25 | 23.66 | 0-1 | 1 | | | | | | | | | 1 | 49 | 23.31 | | 1 | | | | | | | | 16QAM | 25 | 0 | 22.38 | | 2 | | | | | | | | | 25 | 12 | 22.21 | 0-2 | 2 | | | | | | | | | 25 | 25 | 22.22 | 0-2 | 2 | | | | | | | | 1 | 50 | 0 | 22.15 | 1 | 2 | | | | | | | Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. Table 9-2 LTE Band 12 Conducted Powers - 5 MHz Bandwidth | | | | • · · · · · · · · · · · · · · · · · · · | adotod i omore | O MILL Bai | | | |------------|----------|-----------|---|----------------------|----------------------|------------------------------|----------| | | <u> </u> | | | LTE Band 12 | | | | | | | | | 5 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 23035
(701.5 MHz) | 23095
(707.5 MHz) | 23155
(713.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (| Conducted Power [dBm |] | | | | | 1 | 0 | 24.18 | 24.30 | 24.26 | | 0 | | | 1 | 12 | 24.54 | 24.11 | 24.17 | 0 | 0 | | | 1 | 24 | 24.33 | 24.22 | 24.14 | | 0 | | QPSK | 12 | 0 | 23.10 | 23.28 | 23.24 | 0-1 | 1 | | | 12 | 6 | 23.34 | 23.29 | 23.18 | | 1 | | | 12 | 13 | 23.20 | 23.17 | 23.23 | | 1 | | | 25 | 0 | 23.21 | 23.09 | 23.17 | | 1 | | | 1 | 0 | 23.33 | 23.26 | 23.70 | | 1 | | | 1 | 12 | 23.60 | 23.56 | 23.55 | 0-1 | 1 | | | 1 | 24 | 23.34 | 23.15 | 23.46 | | 1 | | 16QAM | 12 | 0 | 22.16 | 22.29 | 22.31 | | 2 | | | 12 | 6 | 22.24 | 22.35 | 22.36 | 1 | 2 | | | 12 | 13 | 22.28 | 22.35 | 22.47 | 0-2 | 2 | | | 25 | 0 | 22.51 | 22.19 | 22.29 | 1 | 2 | | Document S/N: Test Dates: DUT Type: | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | Reviewed by:
Quality Manager | |-------------------------------------|---------------------|---------------------|-----------------------|---------------------------------| | | Document S/N: | Test Dates: | DUT Type: | D | | 0Y1611151756-R1.ZNF | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | Page 23 of 54 | Table 9-3 LTF Band 12 Conducted Powers - 3 MHz Bandwidth | | | | Sand 12 Cond | lucted Powers | 5 - 3 WITZ Dai | iawiatii | | |------------|---------|-----------|--------------|----------------------|----------------|------------------------------|----------| | | | | | LTE Band 12 | | | | | |
| ı | Law Channal | 3 MHz Bandwidth | Liinh Ohannal | 1 | | | | | | Low Channel | Mid Channel | High Channel | I | | | Modulation | RB Size | RB Offset | 23025 | 23095 | 23165 | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (700.5 MHz) | (707.5 MHz) | , , , | | | | | | | | Conducted Power [dBm | - | | | | | 1 | 0 | 24.54 | 24.32 | 24.30 | | 0 | | | 1 | 7 | 24.47 | 24.38 | 24.40 | 0 | 0 | | | 1 | 14 | 24.39 | 24.15 | 24.26 | | 0 | | QPSK | 8 | 0 | 23.13 | 23.31 | 23.21 | | 1 | | | 8 | 4 | 23.07 | 23.27 | 23.22 | 0-1 | 1 | | | 8 | 7 | 23.20 | 23.19 | 23.23 | | 1 | | | 15 | 0 | 23.16 | 23.31 | 23.27 | | 1 | | | 1 | 0 | 23.64 | 23.47 | 23.47 | | 1 | | | 1 | 7 | 23.70 | 23.63 | 23.53 | 0-1 | 1 | | | 1 | 14 | 23.66 | 23.70 | 23.38 | | 1 | | 16QAM | 8 | 0 | 22.20 | 22.38 | 22.48 | | 2 | | | 8 | 4 | 22.31 | 22.36 | 22.54 | 0-2 | 2 | | | 8 | 7 | 22.16 | 22.46 | 22.36 |] "-2 | 2 | | | 15 | 0 | 22.23 | 22.38 | 22.15 | | 2 | Table 9-4 LTF Band 12 Conducted Powers -1 4 MHz Bandwidth | | | | | LTE Band 12
1.4 MHz Bandwidth | | | | |------------|---------|-----------|----------------------|----------------------------------|----------------------|------------------------------|----------| | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 23017
(699.7 MHz) | 23095
(707.5 MHz) | 23173
(715.3 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | Conducted Power [dBn | 1] | | | | | 1 | 0 | 24.34 | 24.28 | 24.42 | | 0 | | | 1 | 2 | 24.40 | 24.38 | 24.38 | 0 | 0 | | | 1 | 5 | 24.23 | 24.31 | 24.25 | | 0 | | QPSK | 3 | 0 | 24.14 | 24.14 | 24.20 | | 0 | | | 3 | 2 | 24.17 | 24.34 | 24.39 | | 0 | | | 3 | 3 | 24.18 | 24.29 | 24.29 | | 0 | | | 6 | 0 | 23.03 | 23.25 | 23.22 | 0-1 | 1 | | | 1 | 0 | 23.48 | 23.53 | 23.70 | | 1 | | | 1 | 2 | 23.63 | 23.62 | 23.46 | | 1 | | | 1 | 5 | 23.61 | 23.38 | 23.55 | 1 01 | 1 | | 16QAM | 3 | 0 | 23.23 | 23.54 | 23.55 | 0-1 | 1 | | | 3 | 2 | 23.12 | 23.35 | 23.18 | 1 | 1 | | | 3 | 3 | 23.02 | 23.58 | 23.31 | | 1 | | | 6 | 0 | 22.18 | 22.41 | 22.54 | 0-2 | 2 | | FCC ID: ZNFL57BL | PCTEST* | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | | | | |---------------------|---------------------------------|-----------------------|-------------|------------------------------|--|--|--| | Document S/N: | ment S/N: Test Dates: DUT Type: | | | | | | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 24 of 54 | | | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | DEV/40.M | | | | # 9.3.1 LTE Band 5 (Cell) Table 9-5 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth | | LTE Band 5 (Cell) 10 MHz Bandwidth | | | | | | | | | | |------------|------------------------------------|-----------|-----------------------|------------------------------|----------|--|--|--|--|--| | | | | Mid Channel | | | | | | | | | Modulation | RB Size | RB Offset | 20525
(836.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | | | | | Conducted Power [dBm] | | | | | | | | | | 1 | 0 | 24.62 | | 0 | | | | | | | QPSK | 1 | 25 | 24.61 | 0 | 0 | | | | | | | | 1 | 49 | 24.33 | | 0 | | | | | | | | 25 | 0 | 23.35 | | 1 | | | | | | | | 25 | 12 | 23.25 | 0-1 | 1 | | | | | | | | 25 | 25 | 23.24 | 0-1 | 1 | | | | | | | | 50 | 0 | 23.34 | | 1 | | | | | | | | 1 | 0 | 23.63 | | 1 | | | | | | | | 1 | 25 | 23.70 | 0-1 | 1 | | | | | | | | 1 | 49 | 23.69 | | 1 | | | | | | | 16QAM | 25 | 0 | 22.25 | | 2 | | | | | | | | 25 | 12 | 22.26 | 0-2 | 2 | | | | | | | | 25 | 25 | 22.22 | 0-2 | 2 | | | | | | | | 50 | 0 | 22.17 | | 2 | | | | | | Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. Table 9-6 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth | | | | ia 5 (5511) 55 | illuucteu i Ow | 010 0 1111112 2 | anamatn | | | | | |------------|---------|--------------|----------------|----------------------|-----------------|-----------|-------|-------|-----------------|----------| | | | | | LTE Band 5 (Cell) | | | | | | | | | | | | 5 MHz Bandwidth | | 1 | | | | | | | | | Low Channel | Mid Channel | High Channel | | | | | | | Modulation | RB Size | RB Size RB (| RB Offset | RR Offset | RB Offset | 20425 | 20525 | 20625 | MPR Allowed per | MPR [dB] | | ouu.uuo | | 1.2 0 | (826.5 MHz) | (836.5 MHz) | (846.5 MHz) | 3GPP [dB] | [] | | | | | | | | | Conducted Power [dBm | | | | | | | | | 1 | 0 | 24.30 | 24.31 | 24.20 | | 0 | | | | | | 1 | 12 | 24.29 | 24.59 | 24.46 | 0 | 0 | | | | | | 1 | 24 | 24.16 | 24.34 | 24.29 | | 0 | | | | | QPSK | 12 | 0 | 23.27 | 23.27 | 23.32 | 0-1 | 1 | | | | | | 12 | 6 | 23.27 | 23.26 | 23.29 | | 1 | | | | | | 12 | 13 | 23.32 | 23.28 | 23.25 | | 1 | | | | | | 25 | 0 | 23.25 | 23.32 | 23.28 | | 1 | | | | | | 1 | 0 | 23.35 | 23.29 | 23.70 | | 1 | | | | | | 1 | 12 | 23.27 | 23.26 | 23.36 | 0-1 | 1 | | | | | | 1 | 24 | 23.46 | 23.34 | 23.12 | | 1 | | | | | 16QAM | 12 | 0 | 22.53 | 22.39 | 22.37 | | 2 | | | | | | 12 | 6 | 22.39 | 22.37 | 22.47 | 0-2 | 2 | | | | | | 12 | 13 | 22.43 | 22.14 | 22.41 | 0-2 | 2 | | | | | | 25 | 0 | 22.45 | 22.23 | 22.41 | | 2 | | | | | FCC ID: ZNFL57BL | PCTEST INDIVIDUAL LIDER TRUE INC. | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | | | |--------------------------------------|-----------------------------------|-----------------------|-------|---------------------------------|--|--| | Document S/N: | Test Dates: | DUT Type: | Type: | | | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 25 of 54 | | | | 16 DCTECT Engineering Laboratory In- | | | | DEV/ 40 M | | | Table 9-7 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth | | | | (| LTE Band 5 (Cell) | | | | |------------|---------|-----------|----------------------|----------------------|----------------------|------------------------------|----------| | | | | | 3 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 20415
(825.5 MHz) | 20525
(836.5 MHz) | 20635
(847.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.53 | 24.30 | 24.27 | | 0 | | | 1 | 7 | 24.64 | 24.49 | 24.30 | 0 | 0 | | | 1 | 14 | 24.59 | 24.46 | 24.11 | | 0 | | QPSK | 8 | 0 | 23.40 | 23.29 | 23.42 | 0-1 | 1 | | | 8 | 4 | 23.29 | 23.30 | 23.34 | | 1 | | | 8 | 7 | 23.13 | 23.12 | 23.29 | | 1 | | | 15 | 0 | 23.21 | 23.35 | 23.38 | 1 | 1 | | | 1 | 0 | 23.70 | 23.66 | 23.70 | | 1 | | | 1 | 7 | 23.57 | 23.61 | 23.59 | 0-1 | 1 | | | 1 | 14 | 23.58 | 23.68 | 23.38 | 1 | 1 | | 16QAM | 8 | 0 | 22.44 | 22.70 | 22.56 | | 2 | | | 8 | 4 | 22.29 | 22.60 | 22.40 | 0-2 | 2 | | | 8 | 7 | 22.26 | 22.65 | 22.38 |] "-2 | 2 | | | 15 | 0 | 22.22 | 22.48 | 22.24 | 1 | 2 | Table 9-8 LTF Band 5 (Cell) Conducted Powers -1 4 MHz Bandwidth | | | LIL Dai | ia 3 (Cell) CO | nducted Powe | 713 - 1. 4 IVII IZ I | Danawiath | | |------------|---------|-----------|----------------------|----------------------|---------------------------------|------------------------------|----------| | | | | | LTE Band 5 (Cell) | | | | | | | | | 1.4 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 20407
(824.7 MHz) | 20525
(836.5 MHz) | 20643
(848.3 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.42 | 24.47 | 24.36 | | 0 | | | 1 | 2 | 24.45 | 24.45 | 24.28 | 0 | 0 | | | 1 | 5 | 24.33 | 24.43 | 24.24 | | 0 | | QPSK | 3 | 0 | 24.29 | 24.45 | 24.34 | | 0 | | | 3 | 2 | 24.33 | 24.45 | 24.20 | | 0 | | | 3 | 3 | 24.27 | 24.40 | 24.21 | | 0 | | | 6 | 0 | 23.30 | 23.42 | 23.15 | 0-1 | 1 | | | 1 | 0 | 23.70 | 23.19 | 23.60 | | 1 | | | 1 | 2 | 23.66 | 23.58 | 23.51 | | 1 | | | 1 | 5 | 23.66 | 23.49 | 23.55 | 1 04 | 1 | | 16QAM | 3 | 0 | 23.38 | 23.70 | 23.41 | 0-1 | 1 | | | 3 | 2 | 23.40 | 23.66 | 23.27 |] | 1 | | | 3 | 3 | 23.36 | 23.61 | 23.27 | | 1 | | | 6 | 0 | 22.09 | 22.37 | 22.20 | 0-2 | 2 | | FCC ID: ZNFL57BL | PCTEST' | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | | |---------------------|---------------------|-----------------------|-----------|-------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | | Day 200 (154 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 26 of 54 | | # 9.3.2 LTE Band 4 (AWS) Table 9-9 LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth | | | | LTE Band 4 (AWS)
20 MHzBandwidth | | | |------------|---------|-----------|-------------------------------------|------------------------------|----------| | | | | Mid Channel | | | | Modulation | RB Size | RB Offset | 20175
(1732.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | Conducted Power [dBm] | 0011 [05] | | | | 1 | 0 | 24.22 | | 0 | | | 1 | 50 | 24.65 | 0 | 0 | | QPSK | 1 | 99 | 24.45 | | 0 | | | 50 | 0 | 23.38 | | 1 | | | 50 | 25 | 23.49 | 0-1 | 1 | | | 50 | 50 | 23.27 | 0-1 | 1 | | | 100 | 0 | 23.48 | | 1 | | | 1 | 0 | 23.32 | | 1 | | | 1 | 50 | 23.20 | 0-1 | 1 | | | 1 | 99 | 23.31 | | 1 | | 16QAM | 50 | 0 | 22.45 | | 2 | | | 50 | 25 | 22.38 | 0-2 | 2 | | | 50 | 50 | 22.25 | J | 2 | | | 100 | 0 | 22.45 | | 2 | Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. Table 9-10 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth | | | | | LTE Band 4 (AWS) | | Danawiatii | | |------------|---------|----------------|-----------------------|-----------------------|-----------------------|------------------------------|----------| | | | | | 15
MHzBandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | Size RB Offset | 20025
(1717.5 MHz) | 20175
(1732.5 MHz) | 20325
(1747.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | Conducted Power [dBm | i] | | | | | 1 | 0 | 24.59 | 24.62 | 24.61 | | 0 | | | 1 | 36 | 24.41 | 24.41 | 24.27 | 0 | 0 | | | 1 | 74 | 24.33 | 24.42 | 24.38 | | 0 | | QPSK | 36 | 0 | 23.28 | 23.40 | 23.31 | 0-1 | 1 | | | 36 | 18 | 23.18 | 23.39 | 23.27 | | 1 | | | 36 | 37 | 23.20 | 23.31 | 23.47 | | 1 | | | 75 | 0 | 23.23 | 23.39 | 23.41 | | 1 | | | 1 | 0 | 23.57 | 23.70 | 23.70 | | 1 | | | 1 | 36 | 23.24 | 23.60 | 23.67 | 0-1 | 1 | | | 1 | 74 | 23.11 | 23.68 | 23.70 | | 1 | | 16QAM | 36 | 0 | 22.29 | 22.47 | 22.61 | | 2 | | | 36 | 18 | 22.28 | 22.47 | 22.52 | | 2 | | | 36 | 37 | 22.12 | 22.43 | 22.46 | 0-2 | 2 | | | 75 | 0 | 22.27 | 22.36 | 22.53 | | 2 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 07 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 27 of 54 | **Table 9-11** LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth | | | LIL Dan | u + (/ 1110) 00 | TE Pared 4 (AWC) | 010 10 111112 | Banamath | | |------------|---------|-----------|-----------------|-------------------------------------|---------------|-----------------|----------| | | | | | LTE Band 4 (AWS)
10 MHzBandwidth | | | | | | | 1 | Low Channel | Mid Channel | High Channel | | | | | | | | | | | | | Modulation | RB Size | RB Offset | 20000 | 20175 | 20350 | MPR Allowed per | MPR [dB] | | | | | (1715.0 MHz) | (1732.5 MHz) | (1750.0 MHz) | 3GPP [dB] | • | | | | | 1 | Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.40 | 24.70 | 24.64 | | 0 | | | 1 | 25 | 24.44 | 24.65 | 24.65 | 24.67 | 0 | | | 1 | 49 | 24.46 | 24.64 | 24.68 | | 0 | | QPSK | 25 | 0 | 23.23 | 23.40 | 23.43 | 0-1 | 1 | | | 25 | 12 | 23.29 | 23.49 | 23.41 | | 1 | | | 25 | 25 | 23.35 | 23.40 | 23.29 | | 1 | | | 50 | 0 | 23.29 | 23.42 | 23.40 | | 1 | | | 1 | 0 | 23.65 | 23.70 | 23.70 | | 1 | | | 1 | 25 | 23.66 | 23.53 | 23.66 | 0-1 | 1 | | | 1 | 49 | 23.50 | 23.55 | 23.61 | | 1 | | 16QAM | 25 | 0 | 22.46 | 22.60 | 22.54 | | 2 | | | 25 | 12 | 22.33 | 22.70 | 22.66 | 0-2 | 2 | | | 25 | 25 | 22.41 | 22.61 | 22.44 | 0-2 | 2 | | | 50 | 0 | 22.34 | 22.49 | 22.40 | 1 | 2 | **Table 9-12** LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth | | | LIL Dai | id + (A443) C | Jiluucieu Pow | reis - 5 Williz L | Janawiath | | |------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------| | | | | | LTE Band 4 (AWS) | | | | | | | | | 5 MHzBandwidth | | <u> </u> | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 19975
(1712.5 MHz) | 20175
(1732.5 MHz) | 20375
(1752.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (| Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.12 | 24.41 | 24.32 | | 0 | | | 1 | 12 | 24.16 | 24.48 | 24.43 | 0 | 0 | | | 1 | 24 | 24.17 | 24.46 | 24.39 | | 0 | | QPSK | 12 | 0 | 23.12 | 23.28 | 23.49 | | 1 | | | 12 | 6 | 23.09 | 23.29 | 23.44 | 0-1 | 1 | | | 12 | 13 | 23.16 | 23.37 | 23.41 | | 1 | | | 25 | 0 | 23.12 | 23.32 | 23.40 | | 1 | | | 1 | 0 | 23.40 | 23.42 | 23.59 | | 1 | | | 1 | 12 | 23.54 | 23.42 | 23.45 | 0-1 | 1 | | | 1 | 24 | 23.45 | 23.40 | 23.54 | | 1 | | 16QAM | 12 | 0 | 22.16 | 22.51 | 22.63 | | 2 | | | 12 | 6 | 22.26 | 22.50 | 22.61 | 0-2 | 2 | | | 12 | 13 | 22.23 | 22.59 | 22.40 | 0-2 | 2 | | l l | 25 | 0 | 22.26 | 22.26 | 22.31 | | 2 | **Table 9-13** LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth | | | | (2 122 0 / 0 | LTE Band 4 (AWC) | | | | |------------|---------|-----------|--------------|------------------------------------|-----------------------|------------------------------|----------| | | | | | LTE Band 4 (AWS)
3 MHzBandwidth | | | | | - | | т т | Low Channel | Mid Channel | High Channel | T T | | | | | | 19965 | | 20385
(1753.5 MHz) | MPR Allowed per
3GPP [dB] | | | Modulation | RB Size | RB Offset | | 20175
(1732.5 MHz) | | | MPR [dB] | | | | | 1 | Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.15 | 24.41 | 24.50 | | 0 | | | 1 | 7 | 24.43 | 24.70 | 24.55 | 0 | 0 | | | 1 | 14 | 24.52 | 24.61 | 24.47 | | 0 | | QPSK | 8 | 0 | 23.10 | 23.34 | 23.51 | | 1 | | | 8 | 4 | 23.13 | 23.28 | 23.46 | 0-1 | 1 | | | 8 | 7 | 23.14 | 23.41 | 23.41 | | 1 | | | 15 | 0 | 23.14 | 23.38 | 23.37 | | 1 | | | 1 | 0 | 23.54 | 23.70 | 23.60 | | 1 | | | 1 | 7 | 23.56 | 23.69 | 23.70 | 0-1 | 1 | | | 1 | 14 | 23.54 | 23.65 | 23.62 | | 1 | | 16QAM | 8 | 0 | 22.49 | 22.53 | 22.48 | | 2 | | | 8 | 4 | 22.52 | 22.61 | 22.62 | | 2 | | | 8 | 7 | 22.54 | 22.62 | 22.58 | 0-2 | 2 | | | 15 | 0 | 22.22 | 22.35 | 22.47 | | 2 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 00 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 28 of 54 | **Table 9-14** LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth | | | LIL Duii | u + (A110) 00 | TIGUCTER I OW | CIS 1.7 WILL | Banawiath | | | |-------------|---------|------------|--------------------------|-----------------------------------|--------------|-----------|-----------------|----------| | | | | | LTE Band 4 (AWS) 1.4 MHzBandwidth | | | | | | | | | | | | 1 | | | | | | | Low Channel | Mid Channel | High Channel | _ | | | | Modulation | RB Size | RB Offset | RB Offset | 19957 | 20175 | 20393 | MPR Allowed per | MPR [dB] | | Wiodulation | ND GIZE | IND CHISCI | (1710.7 MHz) | (1732.5 MHz) | (1754.3 MHz) | 3GPP [dB] | iiii it [ub] | | | | | | (| Conducted Power [dBm |] | | | | | | 1 | 0 | 24.06 | 24.53 | 24.53 | | 0 | | | | 1 | 2 | 24.19 | 24.57 | 24.40 | 0 | 0 | | | | 1 | 5 | 24.10 | 24.55 | 24.31 | | 0 | | | QPSK | 3 | 0 | 24.04 | 24.51 | 24.37 | | 0 | | | | 3 | 2 | 24.39 | 24.48 | 24.37 | | 0 | | | | 3 | 3 | 24.34 | 24.53 | 24.33 | | 0 | | | | 6 | 0 | 23.02 | 23.33 | 23.35 | 0-1 | 1 | | | | 1 | 0 | 23.66 | 23.50 | 23.60 | | 1 | | | | 1 | 2 | 23.65 | 23.68 | 23.55 | | 1 | | | | 1 | 5 | 23.46 | 23.68 | 23.68 | 0-1 | 1 | | | 16QAM | 3 | 0 | 23.12 | 23.18 | 23.39 | 0-1 | 1 | | | | 3 | 2 | 23.28 | 23.25 | 23.58 |] | 1 | | | | 3 | 3 | 23.12 | 23.21 | 23.64 | | 1 | | | | 6 | 0 | 21.96 | 22.37 | 22.55 | 0-2 | 2 | | 9.3.3 LTE Band 2 (PCS) **Table 9-15** LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth | | | LIL Danc | 12 (FCS) COI | iducted Powe | 13 - ZU WII IZ L | Janawiath | | |------------|---------|-----------|-----------------------|--------------------------------------|-----------------------|------------------------------|----------| | | | | | LTE Band 2 (PCS)
20 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | 1 | | | | | | | | 19100
(1900.0 MHz) | MDD Allowed nor | | | Modulation | RB Size | RB Offset | 18700
(1860.0 MHz) | 18900
(1880.0 MHz) | | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (| Conducted Power [dBm | i] | | | | | 1 | 0 | 24.20 | 23.94 | 24.16 | | 0 | | | 1 | 50 | 24.13 | 24.02 | 24.15 | 0 | 0 | | | 1 | 99 | 24.02 | 23.89 | 24.18 | | 0 | | QPSK | 50 | 0 | 22.94 | 23.01 | 23.02 | | 1 | | | 50 | 25 | 22.86 | 23.03 | 22.95 | 0-1 | 1 | | | 50 | 50 | 22.90 | 22.93 | 22.86 | - U-1 | 1 | | | 100 | 0 | 22.99 | 22.99 | 23.00 | | 1 | | | 1 | 0 | 23.01 | 23.20 | 23.20 | | 1 | | | 1 | 50 | 22.84 | 23.15 | 23.07 | 0-1 | 1 | | | 1 | 99 | 22.76 | 23.16 | 23.20 | | 1 | | 16QAM | 50 | 0 | 22.11 | 22.01 | 22.01 | | 2 | | | 50 | 25 | 21.95 | 22.05 | 21.99 | 0-2 | 2 | | | 50 | 50 | 21.83 | 21.96 | 21.87 | 0-2 | 2 | | | 100 | 0 | 21.97 | 21.94 | 21.93 | 1 | 2 | **Table 9-16** LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth | | | LIL Danc | 1 2 (1 00) 001 | iducted Powe | 13 - 10 WII IZ L | Janawiath | | |------------|---------|-----------|----------------|-----------------------------------|------------------|------------------------------|----------| | | | | | LTE Band 2 (PCS) 15 MHz Bandwidth | | | | | | | T . | Low Channel | Mid Channel | High Channel | 1 | | | | | | | | | | | | Modulation | RB Size | RB Offset | 18675 | 18900 | 19125 | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (1857.5 MHz) | (1880.0 MHz) | (1902.5 MHz) | 3GPP [dB] | | | | | | (| Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.19 | 24.10 | 24.04 | 0 | 0 | | | 1 | 36 | 24.08 | 24.03 | 23.95 | | 0 | | | 1 | 74 | 24.06 | 24.04 | 24.09 | 1 | 0 | | QPSK | 36 | 0 | 22.98 | 23.07 | 22.94 | | 1 | | | 36 | 18 | 22.97 | 23.08 | 22.84 | 0-1 | 1 | | | 36 | 37 | 22.95 | 22.96 | 22.85 | 0-1 | 1 | | | 75 | 0 | 22.93 | 23.05 | 22.93 | 1 | 1 | | | 1 | 0 | 23.20 | 23.20 | 23.20 | | 1 | | | 1 | 36 | 23.16 | 23.16 | 23.19 | 0-1 | 1 | | | 1 | 74 | 23.15 | 23.15 | 23.11 | 1 | 1 | | 16QAM | 36 | 0 | 21.96 | 22.11 | 21.76 | | 2 | | | 36 | 18 | 21.97 | 22.12 | 21.67 | 0-2 | 2 | | | 36 | 37 | 21.86 | 22.12 | 21.74 | 0-2 | 2 | | | 75 | 0 | 21.95 | 22.08 | 21.86 | 1 | 2 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | L G | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 00 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 29 of 54 | **Table 9-17** LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth | | | LIL Dallu | 1 Z (FC3) COI | iducted Powe | 13 - 10 1411 12 1 | Januwium | | |--------------------|---------|---|---------------|----------------------|-------------------|-----------------|----------| | | | | | LTE Band 2
(PCS) | | | | | | | , | | 10 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation RB Size | RB Size | RB Offset | 18650 | 18900 | 19150 | MPR Allowed per | MPR [dB] | | | | | (1855.0 MHz) | (1880.0 MHz) | (1905.0 MHz) | 3GPP [dB] | | | | | | (| Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.05 | 23.94 | 24.11 | | 0 | | | 1 | 25 | 24.20 | 24.15 | 24.20 | 0 | 0 | | 1 | 1 | 49 | 24.08 | 23.87 | 23.96 | | 0 | | QPSK | 25 | 0 | 23.12 | 23.07 | 22.86 | 0-1 | 1 | | | 25 | 12 | 22.97 | 23.12 | 22.88 | | 1 | | | 25 | 25 | 22.94 | 22.97 | 22.88 | 0-1 | 1 | | | 50 | 0 | 22.99 | 22.97 | 22.83 | | 1 | | | 1 | 0 | 23.20 | 22.91 | 23.15 | | 1 | | | 1 | 25 | 23.13 | 23.07 | 22.96 | 0-1 | 1 | | | 1 | 49 | 23.10 | 23.16 | 23.20 | | 1 | | 16QAM | 25 | 0 | 22.02 | 22.10 | 21.91 | | 2 | | | 25 | 12 | 22.00 | 22.15 | 21.95 | 0-2 | 2 | | | 25 | 25 | 21.98 | 22.07 | 21.96 |] 0-2 | 2 | | | 50 | 0 | 21.99 | 22.04 | 21.79 | | 2 | **Table 9-18** LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth | | | LIL Dail | u 2 (1 00) 00 | iluucieu Pow | CIS - O WILLE | anawiatn | | |------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------| | | | | | LTE Band 2 (PCS) | | | | | | | 1 | | 5 MHz Bandwidth | | 1 | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 18625
(1852.5 MHz) | 18900
(1880.0 MHz) | 19175
(1907.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (| Conducted Power [dBm | 1] | | | | | 1 | 0 | 23.93 | 24.02 | 23.79 | | 0 | | | 1 | 12 | 23.76 | 23.81 | 23.81 | 0 | 0 | | | 1 | 24 | 23.76 | 23.86 | 23.64 | 1 | 0 | | QPSK | 12 | 0 | 22.94 | 22.94 | 22.96 | 0-1 | 1 | | | 12 | 6 | 22.97 | 22.98 | 22.86 | | 1 | | | 12 | 13 | 23.04 | 22.97 | 22.84 | 0-1 | 1 | | | 25 | 0 | 23.04 | 22.95 | 22.99 | 1 | 1 | | | 1 | 0 | 23.11 | 23.07 | 22.85 | | 1 | | | 1 | 12 | 23.20 | 22.79 | 23.02 | 0-1 | 1 | | T I | 1 | 24 | 23.20 | 23.16 | 22.91 | 1 | 1 | | 16QAM | 12 | 0 | 22.09 | 21.79 | 21.96 | | 2 | | | 12 | 6 | 22.14 | 22.06 | 21.87 | 0-2 | 2 | | | 12 | 13 | 22.20 | 22.16 | 21.85 | U-2 | 2 | | | 25 | 0 | 22.11 | 22.02 | 21.91 | 1 | 2 | **Table 9-19** LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth | | | | . , , | LTE Band 2 (PCS) | | anawiam | | |------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------| | | | | | 3 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 18615
(1851.5 MHz) | 18900
(1880.0 MHz) | 19185
(1908.5 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | (| Conducted Power [dBm |] | | | | | 1 | 0 | 24.20 | 24.15 | 24.03 | | 0 | | | 1 | 7 | 23.90 | 24.09 | 23.84 | 0 | 0 | | 1 | 1 | 14 | 24.12 | 24.02 | 23.82 | 1 | 0 | | QPSK | 8 | 0 | 23.16 | 22.96 | 22.97 | | 1 | | Ī | 8 | 4 | 23.11 | 23.08 | 22.98 | 0-1 | 1 | | | 8 | 7 | 23.18 | 22.99 | 22.87 | 0-1 | 1 | | | 15 | 0 | 23.15 | 22.97 | 22.97 | | 1 | | | 1 | 0 | 23.20 | 23.20 | 23.20 | | 1 | | | 1 | 7 | 23.19 | 23.05 | 22.95 | 0-1 | 1 | | | 1 | 14 | 23.11 | 23.16 | 23.16 | | 1 | | 16QAM | 8 | 0 | 22.05 | 21.92 | 22.09 | | 2 | | Ī | 8 | 4 | 22.13 | 21.92 | 21.97 | 0-2 | 2 | | | 8 | 7 | 22.08 | 22.05 | 22.15 | 0-2 | 2 | | | 15 | 0 | 22.11 | 21.96 | 22.20 | | 2 | | FCC ID: ZNFL57BL | PCTEST" | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 20 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 30 of 54 | **Table 9-20** LTE Band 2 (PCS) Conducted Powers -1 4 MHz Bandwidth | | | LIL Dalla | 2 (1 00) 001 | iducted Powe | 13 -1.7 141112 1 | Janawiath | | |------------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------| | | | | | LTE Band 2 (PCS) | | | | | | | | | 1.4 MHz Bandwidth | | | | | | | | Low Channel | Mid Channel | High Channel | | | | Modulation RB Si | RB Size | RB Offset | 18607
(1850.7 MHz) | 18900
(1880.0 MHz) | 19193
(1909.3 MHz) | MPR Allowed per
3GPP [dB] | MPR [dB] | | | | | | Conducted Power [dBm | 1] | | | | | 1 | 0 | 24.09 | 24.14 | 24.20 | | 0 | | | 1 | 2 | 24.05 | 24.18 | 23.89 | 0 | 0 | | QPSK | 1 | 5 | 24.07 | 24.08 | 23.92 | | 0 | | | 3 | 0 | 24.05 | 24.08 | 23.89 | | 0 | | | 3 | 2 | 24.10 | 24.19 | 23.92 | | 0 | | | 3 | 3 | 24.14 | 24.17 | 23.90 | | 0 | | | 6 | 0 | 23.16 | 23.10 | 22.91 | 0-1 | 1 | | | 1 | 0 | 23.16 | 23.19 | 23.20 | | 1 | | | 1 | 2 | 23.11 | 23.20 | 23.05 | 1 | 1 | | | 1 | 5 | 23.15 | 23.15 | 23.09 | 0-1 | 1 | | 16QAM | 3 | 0 | 23.20 | 22.96 | 23.15 | 1 0-1 | 1 | | | 3 | 2 | 23.20 | 22.98 | 23.05 | 1 | 1 | | | 3 | 3 | 23.16 | 23.07 | 22.95 | 1 | 1 | | | 6 | 0 | 22.20 | 22.12 | 21.85 | 0-2 | 2 | #### 9.4 WLAN Conducted Powers **Table 9-21** 2.4 GHz WLAN Maximum Average RF Power | F PAU 1 | 01 | 2.4GHz Conducted
Power [dBm] | | | |------------|---------|---------------------------------|-------------|--| | Freq [MHz] | Channel | IEEE Transm | ission Mode | | | | | 802.11b | 802.11g | | | 2412 | 1 | 20.16 | 15.13 | | | 2437 | 6 | 20.14 | 18.01 | | | 2462 | 11 | 20.13 | 15.13 | | **Table 9-22** 2.4 GHz WLAN Reduced Average RF Power | | | 2.4GHz Conducted Power [dBm] IEEE Transmission Mode | | | | | | |------------|---------|--|---------|---------|--|--|--| | Freq [MHz] | Channel | | | | | | | | | | 802.11b | 802.11g | 802.11n | | | | | 2412 | 1 | 15.14 | 12.55 | 12.51 | | | | | 2437 | 6 | 15.39 | 15.31 | 15.39 | | | | | 2462 | 11 | 15.13 | 12.34 | 12.44 | | | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 04 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 31 of 54 | | 010 DOTEOT E | | T OTTABLE TIGHTEEST | | DEV/ 40 M | Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02: - Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units. - For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate. - For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations. - For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured. - The bolded data rate and channel above were tested for SAR. Figure 9-3 Power Measurement Setup | Document S/N: Test Dates: DUT Type: | FCC ID: ZNFL57BL | PCTEST' | SAR EVALUATION REPORT | Reviewed by: Quality Manager | |-------------------------------------|---------------------|---------------------|-----------------------|-------------------------------| | | Document S/N: | Test Dates: | DUT Type: | D 00 . (54 | | 0Y1611151756-R1.ZNF | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | Page 32 of 54 | # 10.1 Tissue Verification Table 10-1 Measured Tissue Properties | Measured rissue Froperties | | | | | | | | | | | |--|----------------|--|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|--------|---------|--------| | Calibrated for
Tests Performed
on: | Tissue
Type | Tissue Temp During
Calibration (°C) | Measured
Frequency
(MHz) | Measured
Conductivity,
σ (S/m) | Measured
Dielectric
Constant, ε | TARGET
Conductivity,
σ (S/m) | TARGET
Dielectric
Constant, ε | %dev σ | % dev ε | | | | | | 700 | 0.859 | 42.640 | 0.889 | 42.201 | -3.37% | 1.04% | | | 11/8/2016 | 750H | 20.9 | 710 | 0.868 | 42.495 | 0.890 | 42.149 | -2.47% | 0.82% | | | 11/0/2010 | 75011 | 20.9 | 740 | 0.894 | 42.045 | 0.893 | 41.994 | 0.11% | 0.12% | | | | | | 755 | 0.908 | 41.828 | 0.894 | 41.916 | 1.57% | -0.21% | | | | | | 820 | 0.911 | 42.608 | 0.899 | 41.578 | 1.33% | 2.48% | | | 11/7/2016 | 835H | 20.1 | 835 | 0.927 | 42.457 | 0.900 | 41.500 | 3.00% | 2.31% | | | | | | 850 | 0.940 | 42.265 | 0.916 | 41.500 | 2.62% | 1.84% | | | | | | 1710 | 1.329 | 40.099 | 1.348 | 40.142 | -1.41% | -0.11% | | | 11/7/2016 | 1750H | 20.8 | 1750 | 1.370 | 39.889 | 1.371 | 40.079 | -0.07% | -0.47% | | | | | | 1790 | 1.413 | 39.730 | 1.394 | 40.016 | 1.36% | -0.71% | | | | | | 1850 | 1.359 | 40.032 | 1.400 | 40.000 | -2.93% | 0.08% | | | 11/8/2016 | 1900H | 23.0 | 1880 | 1.388 | 39.899 | 1.400 | 40.000 | -0.86% | -0.25% | | | | | | | 1910 | 1.419 | 39.770 | 1.400 | 40.000 | 1.36% | -0.57% | | | | | 2400 | 1.813 | 38.832 | 1.756 | 39.289 | 3.25% | -1.16% | | | 11/16/2016 | 2450H | 23.7 | 2450 | 1.869 | 38.631 | 1.800 | 39.200 | 3.83% | -1.45% | | | | | | | 2500 | 1.926 | 38.395 | 1.855 | 39.136 | 3.83% | -1.89% | | | | | 700 | 0.919 | 55.868 | 0.959 | 55.726 | -4.17% | 0.25% | | | 11/7/2016 | 7500 | 22.0 | 710 | 0.928 | 55.757 | 0.960 | 55.687 | -3.33% | 0.13% | | | 11/7/2016 | 750B | 22.0 | 740 | 0.957 | 55.419 | 0.963 | 55.570 | -0.62% | -0.27% | | | | | | 755 | 0.971 | 55.256 | 0.964 | 55.512 | 0.73% | -0.46% | | | | | | 820 | 0.969 | 52.946 | 0.969 | 55.258 | 0.00% |
-4.18% | | | 11/10/2016 | 835B | 21.1 | 835 | 0.984 | 52.786 | 0.970 | 55.200 | 1.44% | -4.37% | | | | | | 850 | 0.997 | 52.632 | 0.988 | 55.154 | 0.91% | -4.57% | | | | | | 1710 | 1.420 | 51.768 | 1.463 | 53.537 | -2.94% | -3.30% | | | 11/7/2016 | 1750B | 22.7 | 1750 | 1.462 | 51.589 | 1.488 | 53.432 | -1.75% | -3.45% | | | | | | 1790 | 1.506 | 51.458 | 1.514 | 53.326 | -0.53% | -3.50% | | | | | | 1850 | 1.521 | 53.777 | 1.520 | 53.300 | 0.07% | 0.89% | | | 11/9/2016 | 1900B | 21.9 | 1880 | 1.556 | 53.680 | 1.520 | 53.300 | 2.37% | 0.71% | | | | | | 1910 | 1.591 | 53.590 | 1.520 | 53.300 | 4.67% | 0.54% | | | | | | 2400 | 1.927 | 52.328 | 1.902 | 52.767 | 1.31% | -0.83% | | | 11/16/2016 | 2450B | 23.0 | 2450 | 1.996 | 52.155 | 1.950 | 52.700 | 2.36% | -1.03% | | | | | | 2500 | 2.065 | 51.954 | 2.021 | 52.636 | 2.18% | -1.30% | | The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | L G | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 22 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 33 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. # 10.2 Test System Verification Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E. Table 10-2 System Verification Results | | System verification Results | | | | | | | | | | | | | |-----------------|------------------------------|----------------|------------|-------------------|---------------------|-----------------------|--------------|-------------|--------------------------------------|---|--|--------------------------------|--| | | System Verification | | | | | | | | | | | | | | | | | | | TA | RGET & M | EASURE |) | | | | | | | SAR
System # | Tissue
Frequency
(MHz) | Tissue
Type | Date: | Amb.
Temp (°C) | Liquid
Temp (°C) | Input
Power
(W) | Dipole
SN | Probe
SN | Measured
SAR _{1g} (W/kg) | 1 W Target
SAR _{1g}
(W/kg) | 1 W Normalized
SAR _{1g} (W/kg) | Deviation _{1g}
(%) | | | 1 | 750 | HEAD | 11/08/2016 | 20.5 | 20.7 | 0.200 | 1054 | 3288 | 1.600 | 8.220 | 8.000 | -2.68% | | | Н | 835 | HEAD | 11/07/2016 | 20.1 | 20.1 | 0.200 | 4d047 | 3319 | 1.950 | 9.130 | 9.750 | 6.79% | | | А | 1750 | HEAD | 11/07/2016 | 20.7 | 20.8 | 0.100 | 1150 | 3022 | 3.590 | 36.100 | 35.900 | -0.55% | | | К | 1900 | HEAD | 11/08/2016 | 23.7 | 22.4 | 0.100 | 5d149 | 7409 | 4.060 | 40.100 | 40.600 | 1.25% | | | 1 | 2450 | HEAD | 11/16/2016 | 23.2 | 23.1 | 0.100 | 981 | 3288 | 5.520 | 52.800 | 55.200 | 4.55% | | | К | 750 | BODY | 11/07/2016 | 22.5 | 21.1 | 0.200 | 1161 | 7409 | 1.700 | 8.430 | 8.500 | 0.83% | | | С | 835 | BODY | 11/10/2016 | 23.6 | 21.1 | 0.200 | 4d132 | 7410 | 1.920 | 9.660 | 9.600 | -0.62% | | | С | 1750 | BODY | 11/07/2016 | 24.1 | 22.3 | 0.100 | 1150 | 7410 | 3.650 | 36.500 | 36.500 | 0.00% | | | G | 1900 | BODY | 11/09/2016 | 22.7 | 21.9 | 0.100 | 5d080 | 3287 | 3.860 | 39.100 | 38.600 | -1.28% | | | E | 2450 | BODY | 11/16/2016 | 22.7 | 22.2 | 0.100 | 797 | 7406 | 5.010 | 50.700 | 50.100 | -1.18% | | Figure 10-1 System Verification Setup Diagram Figure 10-2 System Verification Setup Photo | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | ① LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 24 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 34 of 54 | # 11.1 Standalone Head SAR Data # Table 11-1 GSM/GPRS 850 Head SAR | | MEASUREMENT RESULTS | | | | | | | | | | | | | | | |--------|---------------------|-------------|--------------------------------|--------------------------------------|-------------|------------|-------|----------|------------------|-----------|------------|----------|----------------|----------------------|--------| | FREQUI | ENCY | Mode/Band | Service | Maximum
Allowed | Conducted | Power | Side | Test | Device
Serial | # of Time | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | Ch. | | | Power [dBm] | Power [dBm] | Drift [dB] | | Position | Number | Slots | ., | (W/kg) | 3 | (W/kg) | | | 824.20 | 128 | GSM 850 | GSM | 33.7 | 33.70 | -0.02 | Right | Cheek | 00830 | 1 | 1:8.3 | 0.289 | 1.000 | 0.289 | | | 824.20 | 128 | GSM 850 | GSM | 33.7 | 33.70 | 0.08 | Right | Tilt | 00830 | 1 | 1:8.3 | 0.138 | 1.000 | 0.138 | | | 824.20 | 128 | GSM 850 | GSM | 33.7 | 33.70 | 0.07 | Left | Cheek | 00830 | 1 | 1:8.3 | 0.256 | 1.000 | 0.256 | | | 824.20 | 128 | GSM 850 | GSM | 33.7 | 33.70 | 0.05 | Left | Tilt | 00830 | 1 | 1:8.3 | 0.154 | 1.000 | 0.154 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.01 | Right | Cheek | 00830 | 4 | 1:2.076 | 0.300 | 1.047 | 0.314 | A1 | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.08 | Right | Tilt | 00830 | 4 | 1:2.076 | 0.141 | 1.047 | 0.148 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.14 | Left | Cheek | 00830 | 4 | 1:2.076 | 0.298 | 1.047 | 0.312 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.12 | Left | Tilt | 00830 | 4 | 1:2.076 | 0.173 | 1.047 | 0.181 | | | | | ANSI / IEI | EE C95.1 1992 -
Spatial Pea | | Т | | Head | | | | | | | | | | | | Uncontrolle | | 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | | | | | | | ### Table 11-2 UMTS 850 Head SAR | | CHITO COO TICAC CAIX | | | | | | | | | | | | | | | | |--------|--|-----------|---------|--------------------|-------------|------------|-------|-----------------|--------------------|------------|-----------------|----------------|----------------------|--------|--|--| | | MEASUREMENT RESULTS | | | | | | | | | | | | | | | | | FREQUE | NCY | Mode/Band | Service | Maximum
Allowed | Conducted | Power | Side | Test | De vice
Se rial | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | | | MHz | Ch. | | | Power [dBm] | Power [dBm] | Drift [dB] | | Position | Number | | (W/kg) | | (W/kg) | | | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.08 | Right | Cheek | 00830 | 1:1 | 0.321 | 1.016 | 0.326 | A2 | | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.03 | Right | Tilt | 00830 | 1:1 | 0.159 | 1.016 | 0.162 | | | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.03 | Left | Cheek | 00830 | 1:1 | 0.277 | 1.016 | 0.281 | | | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.13 | Left | Tilt | 00830 | 1:1 | 0.155 | 1.016 | 0.157 | | | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT | | | | | | | | | | Head | | | | | | | | Spatial Peak | | | | | | | 1.6 W/kg (mW/g) | | | | | | | | | | | Uncontrolled Exposure/General Population | | | | | | | | | averag | ged over 1 grar | n | | | | | ### Table 11-3 UMTS 1750 Head SAR | | OMITO 1700 FICAU OAK | | | | | | | | | | | | | | |--|----------------------|-----------|-----------------|--------------------|-------------|------------|-------|-----------------|--------------------|------------|-----------------|----------------|----------------------|--------| | | MEASUREMENT RESULTS | | | | | | | | | | | | | | | FREQUE | ENCY | Mode/Band | Service | Maximum
Allowed | Conducted | Power | Side | Test | De vice
Se rial | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | Ch. | | | Power [dBm] | Power [dBm] | Drift [dB] | | Position | Number | | (W/kg) | | (W/kg) | | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | -0.04 | Right | Cheek | 00889 | 1:1 | 0.366 | 1.002 | 0.367 | | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | 0.14 | Right | Tilt | 00889 | 1:1 | 0.210 | 1.002 | 0.210 | | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | 0.03 | Left | Cheek | 00889 | 1:1 | 0.615 | 1.002 | 0.616 | A3 | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | 0.11 | Left | Tilt | 00889 | 1:1 | 0.216 | 1.002 | 0.216 | | | | | ANSI / IE | EE C95.1 1992 - | SAFETY LIMI | Т | | | | | | Head | | | | | | Spatial Peak | | | | | | | 1.6 W/kg (mW/g) | | | | | | | | Uncontrolled Exposure/General Population | | | | | | | | | | averag | jed over 1 gran | n | | | | | | Quality Manager | |---|------------------|-----------------| | Document S/N: Test Dates: | DUT Type: | Dana 25 of 54 | | 0Y1611151756-R1.ZNF 11/07/16 - 11/16/16 | Portable Handset | Page 35 of 54 | ### Table 11-4 GSM/GPRS 1900 Head SAR | | COM/OF NO 1300 Flead OAN | | | | | | | | | | | | | | | |---------|---|------------|---------|--------------------|-------------|------------|--------|--------------------------------------|------------------|-----------|------------|----------|----------------|----------------------|--------| | | | | | | | MEAS | JREMEN | T RESUL | .TS | | | | | | | | FREQUE | NCY | Mode/Band | Service | Maximum
Allowed | Conducted | Power | Side | Test | Device
Serial | # of Time | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | Ch. | | | Power [dBm] | Power [dBm] | Drift [dB] | | Position | Number | Slots | ., | (W/kg) | 3 | (W/kg) | | | 1880.00 | 661 | GSM 1900 | GSM | 30.7 | 30.61 | -0.01 | Right | Cheek | 00830 | 1 | 1:8.3 | 0.193 |
1.021 | 0.197 | | | 1880.00 | 661 | GSM 1900 | GSM | 30.7 | 30.61 | 0.02 | Right | Tilt | 00830 | 1 | 1:8.3 | 0.093 | 1.021 | 0.095 | | | 1880.00 | 661 | GSM 1900 | GSM | 30.7 | 30.61 | 0.02 | Left | Cheek | 00830 | 1 | 1:8.3 | 0.304 | 1.021 | 0.310 | | | 1880.00 | 661 | GSM 1900 | GSM | 30.7 | 30.61 | -0.03 | Left | Tilt | 00830 | 1 | 1:8.3 | 0.112 | 1.021 | 0.114 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | -0.02 | Right | Cheek | 00830 | 4 | 1:2.076 | 0.219 | 1.062 | 0.233 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | 0.02 | Right | Tilt | 00830 | 4 | 1:2.076 | 0.103 | 1.062 | 0.109 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | 0.03 | Left | Cheek | 00830 | 4 | 1:2.076 | 0.446 | 1.062 | 0.474 | A4 | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | 0.06 | Left | Tilt | 00830 | 4 | 1:2.076 | 0.157 | 1.062 | 0.167 | | | | | ANSI / IEI | | | | | • | Hea | | • | | | | | | | | Spatial Peak Uncontrolled Exposure/General Population | | | | | | | 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | | | ### Table 11-5 UMTS 1900 Head SAR | | 5m15 1555 11544 5741 | | | | | | | | | | | | | | | |---------|--|-----------|---------|--------------------|-------------|------------|-------|----------------------|------------------|------------|----------|----------------|----------------------|--------|--| | | MEASUREMENT RESULTS | | | | | | | | | | | | | | | | FREQUE | ENCY | Mode/Band | Service | Maximum
Allowed | Conducted | Power | Side | Test | Device
Serial | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | | MHz | Ch. | | | Power [dBm] | Power [dBm] | Drift [dB] | | Position | Number | , , , , | (W/kg) | 3 | (W/kg) | | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | -0.07 | Right | Cheek | 00830 | 1:1 | 0.418 | 1.021 | 0.427 | | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | 0.03 | Right | Tilt | 00830 | 1:1 | 0.198 | 1.021 | 0.202 | | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | 0.18 | Left | Cheek | 00830 | 1:1 | 0.695 | 1.021 | 0.710 | A5 | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | 0.14 | Left | Tilt | 00830 | 1:1 | 0.225 | 1.021 | 0.230 | | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT | | | | | | | | | | Head | | | | | | | Spatial Peak | | | | | | | 1.6 W/kg (mW/g) | | | | | | | | | | Uncontrolled Exposure/General Population | | | | | | | averaged over 1 gram | | | | | | | | # Table 11-6 LTE Band 12 Head SAR | | | | | | | | | UREMENT RESULTS | | | | | | | | | | | | |--------|---|-----|-------------|-----------|--------------------|-------------|------------|-----------------|---|----------|------------|---------|-----------|-------------------|-------|----------|----------------|----------------------|--------| | FF | REQUENCY | | Mode | Bandwidth | Maximum
Allowed | Conducted | Power | MPR [dB] | Side | Test | Modulation | RB Size | RB Offset | De vice
Serial | Duty | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | C | h. | | [MHz] | Power [dBm] | Power [dBm] | Drift [dB] | | | Position | | | | Number | Cycle | (W/kg) | | (W/kg) | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | 0.06 | 0 | Right | Cheek | QPSK | 1 | 25 | 00830 | 1:1 | 0.340 | 1.061 | 0.361 | A6 | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.05 | 1 | Right | Cheek | QPSK | 25 | 0 | 00830 | 1:1 | 0.248 | 1.123 | 0.279 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | -0.05 | 0 | Right | Tilt | QPSK | 1 | 25 | 00830 | 1:1 | 0.185 | 1.061 | 0.196 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | 0.14 | 1 | Right | Tilt | QPSK | 25 | 0 | 00830 | 1:1 | 0.140 | 1.123 | 0.157 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | 0.01 | 0 | Left | Cheek | QPSK | 1 | 25 | 00830 | 1:1 | 0.288 | 1.061 | 0.306 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.02 | 1 | Left | Cheek | QPSK | 25 | 0 | 00830 | 1:1 | 0.216 | 1.123 | 0.243 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | -0.08 | 0 | Left | Tilt | QPSK | 1 | 25 | 00830 | 1:1 | 0.203 | 1.061 | 0.215 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.01 | 1 | Left | Tilt | QPSK | 25 | 0 | 00830 | 1:1 | 0.147 | 1.123 | 0.165 | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population | | | | | | | | Head 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | | | | | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |-------------------------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 00 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 36 of 54 | | AC DOTECT Engineering Laboratory In | | | | DEV/ 10 M | #### Table 11-7 LTE Band 5 (Cell) Head SAR | | | | | | | | | | ~ • | ••, | i icua v | - 7 11 1 | | | | | | | | |--------|----------|-----|-------------------|-------------|--------------------|-------------|---------------------|----------|-----------------|----------|------------|-----------------|-----------|-------------------------------------|-------|----------|----------------|----------------------|--------| | | | | | | | | | ME | SURE | IENT RE | SULTS | | | | | | | | | | FF | REQUENCY | | Mode | Bandwidth | Maximum
Allowed | Conducted | Power
Drift [dB] | MPR [dB] | Side | Test | Modulation | RB Size | RB Offset | De vice
Se rial | Duty | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | M Hz | CI | 1. | | [MHz] | Power [dBm] | Power [dBm] | Dritt (dB) | | | Position | | | | Number | Cycle | (W/kg) | | (W/kg) | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | 0.00 | 0 | Right | Cheek | QPSK | 1 | 0 | 00830 | 1:1 | 0.373 | 1.019 | 0.380 | A7 | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | -0.03 | 1 | Right | Cheek | QPSK | 25 | 0 | 00830 | 1:1 | 0.310 | 1.084 | 0.336 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | -0.02 | 0 | Right | Tilt | QPSK | 1 | 0 | 00830 | 1:1 | 0.206 | 1.019 | 0.210 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | 0.02 | 1 | Right | Tilt | QPSK | 25 | 0 | 00830 | 1:1 | 0.155 | 1.084 | 0.168 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | 0.18 | 0 | Left | Cheek | QPSK | 1 | 0 | 00830 | 1:1 | 0.346 | 1.019 | 0.353 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | 0.08 | 1 | Left | Cheek | QPSK | 25 | 0 | 00830 | 1:1 | 0.280 | 1.084 | 0.304 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | 0.06 | 0 | Left | Tilt | QPSK | 1 | 0 | 00830 | 1:1 | 0.196 | 1.019 | 0.200 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | 0.01 | 1 | Left | Tilt | QPSK | 25 | 0 | 00830 | 1:1 | 0.153 | 1.084 | 0.166 | | | | | | | Spatial Pea | | | | | | | | | | Head
.6 W/kg (m\
raged over 1 | | | | | | #### Table 11-8 LTE Band 4 (AWS) Head SAR | | | | | | | | | MEA | | ENT RES | ULTS | | | | | | | | | |---------|----------|-----|------------------|--------------------|--------------------|--------------------------|---------------------|----------|-------|------------------|------------|---------|-----------|------------------------------------|---------------|----------|----------------|----------------------|--------| | FF | REQUENCY | | Mode | Bandwidth
[MHz] | Maximum
Allowed | Conducted
Power [dBm] | Power
Drift [dB] | MPR [dB] | Side | Test
Position | Modulation | RB Size | RB Offset | De vice
Se rial | Duty
Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | C | ۱. | | [MHZ] | Power [dBm] | Power (abm) | Drift (ab) | | | Position | | | | Number | Cycle | (W/kg) | | (W/kg) | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | -0.16 | 0 | Right | Cheek | QPSK | 1 | 50 | 00889 | 1:1 | 0.371 | 1.012 | 0.375 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | 0.12 | 1 | Right | Cheek | QPSK | 50 | 25 | 00889 | 1:1 | 0.270 | 1.050 | 0.284 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | -0.16 | 0 | Right | Tilt | QPSK | 1 | 50 | 00889 | 1:1 | 0.215 | 1.012 | 0.218 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | 0.10 | 1 | Right | Tilt | QPSK | 50 | 25 | 00889 | 1:1 | 0.158 | 1.050 | 0.166 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | 0.13 | 0 | Left | Cheek | QPSK | 1 | 50 | 00889 | 1:1 | 0.688 | 1.012 | 0.696 | A8 | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | 0.05 | 1 | Left | Cheek | QPSK | 50 | 25 | 00889 | 1:1 | 0.510 | 1.050 | 0.536 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | 0.11 | 0 | Left | Tilt | QPSK | 1 | 50 | 00889 | 1:1 | 0.241 | 1.012 | 0.244 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | -0.03 | 1 | Left | Tilt | QPSK | 50 | 25 | 00889 | 1:1 | 0.174 | 1.050 | 0.183 | | | | | | | Spatial Pea | | | | | | : | | | | Head
1.6 W/kg (m
eraged over | • | | | | | ### Table 11-9 LTE Band 2 (PCS) Head SAR | | | | | | | | | MEA | SUREM | ENT RES | ULTS | | | | | | | | | |---|----------|-----|------------------|--------------------|--------------------|-------------|------------|----------|-------|------------------|------------|---------|-----------|------------------------------------|---------------|----------|----------------|----------------------|--------| | FF | REQUENCY | | Mode | Bandwidth
[MHz] | Maximum
Allowed | Conducted | Power | MPR [dB] | Side | Test
Position | Modulation | RB Size | RB Offset | De vice
Se rial | Duty
Cycle |
SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | C | h. | | [MHZ] | Power [dBm] | Power [dBm] | Drift [dB] | | | Position | | | | Number | Cycle | (W/kg) | | (W/kg) | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | 0.17 | 0 | Right | Cheek | QPSK | 1 | 0 | 00830 | 1:1 | 0.376 | 1.000 | 0.376 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | -0.04 | 1 | Right | Cheek | QPSK | 50 | 25 | 00830 | 1:1 | 0.300 | 1.041 | 0.312 | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | -0.04 | 0 | Right | Tilt | QPSK | 1 | 0 | 00830 | 1:1 | 0.240 | 1.000 | 0.240 | | | | 1880.00 18900 Mid LTE Band 2 (PCS) 20 23.2 23.03 0.03 1 Right Tilt QPSK 50 25 00830 1:1 0.162 1.041 0.169 | | | | | | | | | | | | 0.169 | | | | | | | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | -0.05 | 0 | Left | Cheek | QPSK | 1 | 0 | 00830 | 1:1 | 0.743 | 1.000 | 0.743 | A9 | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | -0.02 | 1 | Left | Cheek | QPSK | 50 | 25 | 00830 | 1:1 | 0.548 | 1.041 | 0.570 | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | -0.13 | 0 | Left | Tilt | QPSK | 1 | 0 | 00830 | 1:1 | 0.214 | 1.000 | 0.214 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | 1 | Left | Tilt | QPSK | 50 | 25 | 00830 | 1:1 | 0.176 | 1.041 | 0.183 | | | | | | | | Spatial Pe | | | | | | | | | | Head
1.6 W/kg (m
eraged over | • | | | | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |------------------------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Day 07 (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 37 of 54 | | 16 DCTEST Engineering Laboratory L | 200 | | | DEV/ 10 M | #### Table 11-10 2.4 GHz WLAN Head SAR | | | | | | | | <u> </u> | | _, | | <u> </u> | | | | | | | | |--------|-----|--------------|------------|-------------|--------------------|-------------|------------|--------|----------|------------------|----------|------------|--------------------------|----------|-------------------|-------------------|----------------------|--------| | | | | | | | | MI | EASURE | EMENT R | ESULTS | | | | | | | | | | FREQUE | NCY | Mode | Service | Bandwidth | Maximum
Allowed | Conducted | Power | Side | Test | Device
Serial | | Duty Cycle | Peak SAR of
Area Scan | SAR (1g) | Scaling
Factor | Scaling
Factor | Reported SAR
(1g) | Plot # | | MHz | Ch. | | | [MHz] | Power [dBm] | Power [dBm] | Drift [dB] | | Position | Number | (Mbps) | (%) | W/kg | (W/kg) | (Power) | (Duty
Cycle) | (W/kg) | 1 | | 2412 | 1 | 802.11b | DSSS | 22 | 16.0 | 15.14 | 0.03 | Right | Cheek | 03530 | 1 | 99.9 | 0.928 | 0.780 | 1.219 | 1.001 | 0.952 | | | 2437 | 6 | 802.11b | DSSS | 22 | 16.0 | 15.39 | 0.04 | Right | Cheek | 03530 | 1 | 99.9 | 0.957 | 0.833 | 1.151 | 1.001 | 0.960 | | | 2437 | 6 | 802.11b | DSSS | 22 | 16.0 | 15.39 | 0.05 | Right | Tilt | 03530 | 1 | 99.9 | 0.525 | 0.440 | 1.151 | 1.001 | 0.507 | | | 2437 | 6 | 802.11b | DSSS | 22 | 16.0 | 15.39 | -0.04 | Left | Cheek | 03530 | 1 | 99.9 | 0.423 | 0.347 | 1.151 | 1.001 | 0.400 | | | 2437 | 6 | 802.11b | DSSS | 22 | 16.0 | 15.39 | 0.09 | Left | Tilt | 03530 | 1 | 99.9 | 0.275 | - | 1.151 | 1.001 | - | | | 2437 | 6 | 802.11b | DSSS | 22 | 16.0 | 15.39 | -0.04 | Right | Cheek | 03530 | 1 | 99.9 | 1.024 | 0.859 | 1.151 | 1.001 | 0.990 | A10 | | | | ANSI / IEE | C95.1 1992 | - SAFETY LI | МІТ | | | | | | | | Head | | | | | | | | | | Spatial Pe | ak | | | | 1 | | | | | 1.6 W/kg (m | nW/g) | | | | | | | | Uncontrolled | Exposure/G | eneral Popu | ulation | | | | | | | | averaged over | 1 gram | | | | | Blue entry represents variability data. ## 11.2 Standalone Body-Worn SAR Data Table 11-11 GSM/GPRS/UMTS Body-Worn SAR Data | | | | | | ME | EASURE | MENTR | ESULTS | | | | | | | | |---------|------------|-----------|---|-----------------------------------|--------------------------|---------------------|---------|-------------------------|--------------------|---------------|---------|--------------------------------|----------------|--------------------------------|--------| | FREQUE | NCY
Ch. | Mode | Service | Maximum
Allowed
Power [dBm] | Conducted
Power [dBm] | Power
Drift [dB] | Spacing | Device Serial
Number | # of Time
Slots | Duty
Cycle | Side | SAR (1g) | Scaling Factor | Reported SAR
(1g)
(W/kg) | Plot # | | 824.20 | 128 | GSM 850 | GSM | 33.7 | 33.70 | 0.01 | 10 mm | 00830 | 1 | 1:8.3 | back | 0.364 | 1.000 | 0.364 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.16 | 10 mm | 00830 | 4 | 1:2.076 | back | 0.440 | 1.047 | 0.461 | A11 | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | -0.01 | 10 mm | 00830 | N/A | 1:1 | back | 0.386 | 1.016 | 0.392 | A12 | | 1712.40 | 1312 | UMTS 1750 | RMC | 24.7 | 24.53 | 0.05 | 10 mm | 00889 | N/A | 1:1 | back | 0.889 | 1.040 | 0.925 | A13 | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | -0.03 | 10 mm | 00889 | N/A | 1:1 | back | 0.842 | 1.002 | 0.844 | | | 1752.60 | 1513 | UMTS 1750 | RMC | 24.7 | 24.63 | -0.01 | 10 mm | 00889 | N/A | 1:1 | back | 0.737 | 1.016 | 0.749 | | | 1880.00 | 661 | GSM 1900 | GSM | 30.7 | 30.61 | 0.02 | 10 mm | 00871 | 1 | 1:8.3 | back | 0.408 | 1.021 | 0.417 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | -0.13 | 10 mm | 00871 | 4 | 1:2.076 | back | 0.442 | 1.062 | 0.469 | A14 | | 1852.40 | 9262 | UMTS 1900 | RMC | 23.7 | 23.62 | 0.07 | 10 mm | 00871 | N/A | 1:1 | back | 0.961 | 1.019 | 0.979 | A15 | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | -0.06 | 10 mm | 00871 | N/A | 1:1 | back | 0.934 | 1.021 | 0.954 | | | 1907.60 | 9538 | UMTS 1900 | RMC | 23.7 | 23.56 | -0.09 | 10 mm | 00871 | N/A | 1:1 | back | 0.651 | 1.033 | 0.672 | | | | | | E C95.1 1992 - SA
Spatial Peak
I Exposure/Gener | | | | | | | | 1.6 W/k | ody
g (mW/g)
over 1 gram | | | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |--------------------------------------|---------------------|-----------------------|-----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 00 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 38 of 54 | | 16 DOTECT Engineering Laboratory In- | | | | DEV/ 40 M | #### Table 11-12 LTE Body-Worn SAR | | | | | | | | <u> </u> | | uy-vv | 0111 3/ | 717 | | | | | | | | | |---------|---|----------|-------------------|--------------------|-----------------------------------|--------------------------|---------------------|----------|-------------------------|------------|---------|-----------|---------|------------|---------------|----------|----------------|----------------------|--------| | | | | | | | | | MEASU | REMENT | RESULTS | | | | | | | | | | | | REQUENCY | r
Ch. | Mode | Bandwidth
[MHz] | Maximum
Allowed
Power [dBm] | Conducted
Power [dBm] | Power
Drift [dB] | MPR [dB] | Device Serial
Number | Modulation | RB Size | RB Offset | Spacing | Side | Duty
Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | M Hz | | | | | | | | | | | | | | | - | (W/kg) | | (W/kg) | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | 0.09 | 0 | 00830 | QPSK | 1 | 25 | 10 mm | back | 1:1 | 0.634 | 1.061 | 0.673 | A16 | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.10 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | back | 1:1 | 0.462 | 1.123 | 0.519 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | -0.13 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | back | 1:1 | 0.508 | 1.019 | 0.518 | A17 | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | -0.12 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | back | 1:1 | 0.390 | 1.084 | 0.423 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | 0.05 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | back | 1:1 | 0.926 | 1.012 | 0.937 | A18 | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | 0.12 | 1 | 00889 | QPSK | 50 | 25 | 10 mm | back | 1:1 | 0.686 | 1.050 | 0.720 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.48 | -0.15 | 1 | 00889 | QPSK | 100 | 0 | 10 mm | back | 1:1 | 0.672 | 1.052 | 0.707 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | -0.01 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | back | 1:1 | 0.880 | 1.012 | 0.891 | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | -0.16 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | back | 1:1 | 0.988 | 1.000 | 0.988 | A19 | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 24.2 | 24.02 | 0.18 | 0 | 00830 | QPSK | 1 | 50 | 10 mm | back | 1:1 | 0.874 | 1.043 | 0.912 | | | 1900.00 | 19100 | High | LTE Band 2 (PCS) | 20 | 24.2 | 24.18 | -0.08 | 0 | 00830 | QPSK | 1 | 99 | 10 mm | back | 1:1 | 0.651 | 1.004 | 0.654 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | 0.04 | 1 | 00830 | QPSK | 50 | 25 | 10 mm | back | 1:1 | 0.716 | 1.041 | 0.745 | | | 1900.00 | 19100 High LTE Band 2 (PCS) 20 23.2 23.00 -0.04 | | | | | | | | 00830 | QPSK | 100 | 0 | 10 mm | back | 1:1 | 0.672 | 1.046 | 0.703 | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | back | 1:1 | 0.864 | 1.000 | 0.864 | | | | | | | | ANSI / IEEE | | SAFETY LIMI | ſ | | | | | | | | Во | | | | | | | | | | | Spatial Pea | | | | | | | | | | 1.6 W/kg | | | | | l | | | | | Uncontrolled E | x posure/Ge | nerai Populat | ion | | | | | | | а | iveraged o | ver 1 gran | n | | | | Blue entries represent variability data. #### Table 11-13 2.4 GHz WLAN Body-Worn SAR | | | | | | | | М | EASUR | EMENT | RESUL | rs | | | | | | | | |-------|-------|----------|------------|--------------|--------------------|-------------|-------------|---------|------------------|-----------
------|---------------|--------------------------|-------------|----------------|--------------|----------------------|----------| | FREQU | JENCY | Mode | Service | Bandwidth | Maximum
Allowed | | Power Drift | Spacing | Device
Serial | Data Rate | Side | Duty
Cycle | Peak SAR of
Area Scan | SAR (1g) | Scaling Factor | | Reported SAR
(1g) | Plot # | | MHz | Ch. | · | | [MHz] | Power [dBm] | Power [dBm] | [dB] | | Number | (Mbps) | | (%) | W/kg | (W/kg) | (Power) | (Duty Cycle) | (W/kg) | <u> </u> | | 2412 | 1 | 802.11b | DSSS | 22 | 21.0 | 20.16 | 0.00 | 10 mm | 03530 | 1 | back | 99.9 | 0.700 | 0.486 | 1.213 | 1.001 | 0.590 | A20 | | | | ANSI | IEEE C95 | .1 1992 - SA | FETY LIMIT | | | | | | | | E | lody | | | | | | | | | Sp | atial Peak | | | | | | | | | 1.6 W/I | (g (mW/g) | | | | | | | | Uncontro | olled Expo | sure/Gener | ral Population | 1 | | | | | | | averaged | over 1 gram | | | | | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |-----|--------------------------------------|---------------------|-----------------------|----|------------------------------| | | Document S/N: | Test Dates: | DUT Type: | | D 00 . (54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 39 of 54 | | 201 | C DCTCCT Engineering Laboratory Inc. | | | | DEV/ 10 M | ## 11.3 Standalone Hotspot SAR Data # Table 11-14 GPRS/UMTS Hotspot SAR Data | | | | | | GPRS/U | | <u> </u> | RESULTS | Date | | | | | | | |---------|------|--------------|-----------------------------------|------------------------|--------------------------|---------------------|----------|-------------------------|--------------------|---------------|--------|-----------------|----------------|----------------|--------| | FREQUE | NCY | | | Maximum | | | l | L | | - · | | SAR (1g) | I | Reported SAR | | | MHz | Ch. | Mode | Service | Allowed
Power [dBm] | Conducted
Power [dBm] | Power
Drift [dB] | Spacing | Device Serial
Number | # of GPRS
Slots | Duty
Cycle | Side | (W/kg) | Scaling Factor | (1g)
(W/kg) | Plot # | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.16 | 10 mm | 00830 | 4 | 1:2.076 | back | 0.440 | 1.047 | 0.461 | A11 | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.10 | 10 mm | 00830 | 4 | 1:2.076 | front | 0.386 | 1.047 | 0.404 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | -0.14 | 10 mm | 00830 | 4 | 1:2.076 | bottom | 0.136 | 1.047 | 0.142 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | 0.19 | 10 mm | 00830 | 4 | 1:2.076 | right | 0.257 | 1.047 | 0.269 | | | 836.60 | 190 | GSM 850 | GPRS | 28.2 | 28.00 | -0.01 | 10 mm | 00830 | 4 | 1:2.076 | left | 0.207 | 1.047 | 0.217 | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | -0.01 | 10 mm | 00830 | N/A | 1:1 | back | 0.386 | 1.016 | 0.392 | A12 | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.00 | 10 mm | 00830 | N/A | 1:1 | front | 0.337 | 1.016 | 0.342 | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | -0.01 | 10 mm | 00830 | N/A | 1:1 | bottom | 0.117 | 1.016 | 0.119 | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.02 | 10 mm | 00830 | N/A | 1:1 | right | 0.277 | 1.016 | 0.281 | | | 836.60 | 4183 | UMTS 850 | RMC | 23.7 | 23.63 | 0.00 | 10 mm | 00830 | N/A | 1:1 | left | 0.216 | 1.016 | 0.219 | | | 1712.40 | 1312 | UMTS 1750 | RMC | 24.7 | 24.53 | 0.05 | 10 mm | 00889 | N/A | 1:1 | back | 0.889 | 1.040 | 0.925 | A13 | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | -0.03 | 10 mm | 00889 | N/A | 1:1 | back | 0.842 | 1.002 | 0.844 | | | 1752.60 | 1513 | UMTS 1750 | RMC | 24.7 | 24.63 | -0.01 | 10 mm | 00889 | N/A | 1:1 | back | 0.737 | 1.016 | 0.749 | | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | 0.15 | 10 mm | 00889 | N/A | 1:1 | front | 0.750 | 1.002 | 0.752 | | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | -0.06 | 10 mm | 00889 | N/A | 1:1 | bottom | 0.317 | 1.002 | 0.318 | | | 1732.40 | 1412 | UMTS 1750 | RMC | 24.7 | 24.69 | 0.02 | 10 mm | 00889 | N/A | 1:1 | left | 0.432 | 1.002 | 0.433 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | -0.13 | 10 mm | 00871 | 4 | 1:2.076 | back | 0.442 | 1.062 | 0.469 | A14 | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | 0.06 | 10 mm | 00871 | 4 | 1:2.076 | front | 0.422 | 1.062 | 0.448 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | -0.03 | 10 mm | 00871 | 4 | 1:2.076 | bottom | 0.189 | 1.062 | 0.201 | | | 1880.00 | 661 | GSM 1900 | GPRS | 25.7 | 25.44 | -0.06 | 10 mm | 00871 | 4 | 1:2.076 | left | 0.291 | 1.062 | 0.309 | | | 1852.40 | 9262 | UMTS 1900 | RMC | 23.7 | 23.62 | 0.07 | 10 mm | 00871 | N/A | 1:1 | back | 0.961 | 1.019 | 0.979 | A15 | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | -0.06 | 10 mm | 00871 | N/A | 1:1 | back | 0.934 | 1.021 | 0.954 | | | 1907.60 | 9538 | UMTS 1900 | RMC | 23.7 | 23.56 | -0.09 | 10 mm | 00871 | N/A | 1:1 | back | 0.651 | 1.033 | 0.672 | | | 1852.40 | 9262 | UMTS 1900 | RMC | 23.7 | 23.62 | 0.08 | 10 mm | 00871 | N/A | 1:1 | front | 0.888 | 1.019 | 0.905 | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | 0.10 | 10 mm | 00871 | N/A | 1:1 | front | 0.892 | 1.021 | 0.911 | | | 1907.60 | 9538 | UMTS 1900 | RMC | 23.7 | 23.56 | -0.11 | 10 mm | 00871 | N/A | 1:1 | front | 0.664 | 1.033 | 0.686 | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | 0.03 | 10 mm | 00871 | N/A | 1:1 | bottom | 0.437 | 1.021 | 0.446 | | | 1880.00 | 9400 | UMTS 1900 | RMC | 23.7 | 23.61 | -0.05 | 10 mm | 00871 | N/A | 1:1 | left | 0.544 | 1.021 | 0.555 | | | | | ANSI / IEEI | E C95.1 1992 - SA
Spatial Peak | FETY LIMIT | | | | | | | | ody
g (mW/g) | | | | | | | Uncontrolled | Exposure/Gener | ral Population | 1 | | | | | | | over 1 gram | | | | | | FCC ID: ZNFL57BL | PCTEST. | SAR EVALUATION REPORT | Reviewed by: Quality Manager | |-----|--------------------------------------|---------------------|-----------------------|------------------------------| | | Document S/N: | Test Dates: | DUT Type: | Day 10 (554 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | Page 40 of 54 | | 004 | C DCTCCT Engineering Laboratory Inc. | | | DEV/ 40 M | #### **Table 11-15** LTE Band 12 Hotspot SAR | | | | | | | | | MEAS | UREMENT | RESULTS | 3 | | | | | | | | | |--------|--|--|-------------|--------------------|--------------------|--------------------------|---------------------|---|-------------------------|------------|---------|-----------|---------|----------|------------|----------|----------------|----------------------|--------| | FRI | EQUENCY | | Mode | Bandwidth
[MHz] | Maximum
Allowed | Conducted
Power [dBm] | Power
Drift (dB) | MPR [dB] | Device Serial
Number | Modulation | RB Size | RB Offset | Spacing | Side | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | CI | 1. | | [miz] | Power [dBm] | rower [dbiii] | Drint [db] | | Number | | | | | | | (W/kg) | | (W/kg) | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | 0.09 | 0 | 00830 | QPSK | 1 | 25 | 10 mm | back | 1:1 | 0.634 | 1.061 | 0.673 | A16 | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.10 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | back | 1:1 | 0.462 | 1.123 | 0.519 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | 0.00 | 0 | 00830 | QPSK | 1 | 25 | 10 mm | front | 1:1 | 0.405 | 1.061 | 0.430 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | 0.01 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | front | 1:1 | 0.295 | 1.123 | 0.331 | | | 707.50 | 707.50 23095 Mid LTE Band 12 10 24.7 24.44 | | | | | | | 0 | 00830 | QPSK | 1 | 25 | 10 mm | bottom | 1:1 | 0.116 | 1.061 | 0.123 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.06 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | bottom | 1:1 | 0.087 | 1.123 | 0.098 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 24.7 | 24.44 | 0.11 | 0 | 00830 | QPSK | 1 | 25 | 10 mm | right | 1:1 | 0.247 | 1.061 | 0.262 | | | 707.50 | 23095 | Mid | LTE Band 12 | 10 | 23.7 | 23.20 | -0.05 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | right | 1:1 | 0.207 | 1.123 | 0.232 | | | 707.50 | 23095 Mid LTE Band 12 10 24.7 24.44 0.05 | | | | | | 0.05 | 0 | 00830 | QPSK | 1 | 25 | 10 mm | left | 1:1 | 0.243 | 1.061 | 0.258 | | | 707.50 | | | | | | | 0.08 | 08 1 00830 QPSK 25 0 10 mm left 1:1 0.188 1.123 0.211 | | | | | | | | | | | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT | | | | | | | | | | | | | Body | | | | | | | | Spatial Peak | | | | | | | | | | | | | V/kg (mW | • | | | | ļ | | | | Uncontrolled Exposure/General Population | | | | | | averaged over 1 gram | | | | | | | | | | | | **Table 11-16** LTE Band 5 (Cell) Hotspot SAR | | LIC | | | | | | | iiu 3 | (Cell |) HOLS | pot | SAL | ١ | | | | | | | |--------|---|-----|-------------------|--------------------|--------------------|--------------------------|---|----------|-------------------------|------------|---------|-----------|----------|--------|------------|----------|----------------|----------------------|--------| | | | | | | | | | MEAS | UREMENT | RESULTS | \$ | | | | | | | | | | FR | EQUENCY | | Mode | Bandwidth
[MHz] | Maximum
Allowed | Conducted
Power [dBm] | Power
Drift [dB] | MPR [dB] | Device Serial
Number | Modulation | RB Size | RB Offset | Spacing | Side | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | CI | 1. | | [2] | Power [dBm] | rower (abiii) | Dinit [db] | | - ramber | | | | | | | (W/kg) | | (W/kg) | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | -0.13 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | back | 1:1 | 0.508 | 1.019 | 0.518 | A17 | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | -0.12 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | back | 1:1 | 0.390 | 1.084 | 0.423 | | | 836.50 | 20525 | Mid | LTE Band 5
(Cell) | 10 | 24.7 | 24.62 | -0.02 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | front | 1:1 | 0.420 | 1.019 | 0.428 | | | 836.50 | | | | | | | 0.01 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | front | 1:1 | 0.325 | 1.084 | 0.352 | | | 836.50 | 836.50 20525 Mid LTE Band 5 (Cell) 10 24.7 24.62 | | | | | | -0.03 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | bottom | 1:1 | 0.139 | 1.019 | 0.142 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | 0.08 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | bottom | 1:1 | 0.111 | 1.084 | 0.120 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 24.7 | 24.62 | 0.01 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | right | 1:1 | 0.213 | 1.019 | 0.217 | | | 836.50 | 20525 | Mid | LTE Band 5 (Cell) | 10 | 23.7 | 23.35 | -0.09 | 1 | 00830 | QPSK | 25 | 0 | 10 mm | right | 1:1 | 0.169 | 1.084 | 0.183 | | | 836.50 | 0 20525 Mid LTE Band 5 (Cell) 10 24.7 24.62 -0.1 | | | | | | -0.11 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | left | 1:1 | 0.255 | 1.019 | 0.260 | | | 836.50 | 0 20525 Mid LTE Band 5 (Cell) 10 23.7 23.35 -0.04 | | | | | -0.04 | 04 1 00830 QPSK 25 0 10 mm left 1:1 0.196 1.084 0.212 | | | | | | | | | | | | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT | | | | | | | | | | | | | Body | | | | | | | | Spatial Peak | | | | | | | | | | | 1.6 V | V/kg (mW | //g) | | | | | | | | Uncontrolled Exposure/General Population | | | | | | averaged over 1 gram | | | | | | | | | | | | | **Table 11-17** LTE Band 4 (AWS) Hotspot SAR | | | | | | | | | | (, ,,,, | <i>,</i> 110t | <u> </u> | . 0, | | | | | | | | |---------|---|-----|------------------|-----------|--------------------|-------------|----------------------|----------|--------------------|---------------|----------|-----------|----------|--------|------------|----------|----------------|----------------------|--------| | | | | | | | | | MEAS | UREMENT | RESULTS | \$ | | | | | | | | | | FR | EQUENCY | | Mode | Bandwidth | Maximum
Allowed | Conducted | Power | MPR [dB] | Device Serial | Modulation | RB Size | RB Offset | Spacing | Side | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | Ci | ١. | | [MHz] | Power [dBm] | Power [dBm] | Drift [dB] | | Number | | | | | | | (W/kg) | | (W/kg) | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | 0.05 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | back | 1:1 | 0.926 | 1.012 | 0.937 | A18 | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | 0.12 | 1 | 00889 | QPSK | 50 | 25 | 10 mm | back | 1:1 | 0.686 | 1.050 | 0.720 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.48 | -0.15 | 1 | 00889 | QPSK | 100 | 0 | 10 mm | back | 1:1 | 0.672 | 1.052 | 0.707 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | -0.01 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | front | 1:1 | 0.921 | 1.012 | 0.932 | | | 1732.50 | | | | | | | | 1 | 00889 | QPSK | 50 | 25 | 10 mm | front | 1:1 | 0.698 | 1.050 | 0.733 | | | 1732.50 | 1732.50 20175 Mid LTE Band 4 (AWS) 20 23.7 23.48 | | | | | | | 1 | 00889 | QPSK | 100 | 0 | 10 mm | front | 1:1 | 0.676 | 1.052 | 0.711 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | -0.07 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | bottom | 1:1 | 0.343 | 1.012 | 0.347 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 23.7 | 23.49 | -0.11 | 1 | 00889 | QPSK | 50 | 25 | 10 mm | bottom | 1:1 | 0.255 | 1.050 | 0.268 | | | 1732.50 | 20175 | Mid | LTE Band 4 (AWS) | 20 | 24.7 | 24.65 | -0.02 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | left | 1:1 | 0.481 | 1.012 | 0.487 | | | 1732.50 | 50 20175 Mid LTE Band 4 (AWS) 20 23.7 23.49 -0.0 | | | | | -0.08 | 1 | 00889 | QPSK | 50 | 25 | 10 mm | left | 1:1 | 0.358 | 1.050 | 0.376 | | | | 1732.50 | 50 20175 Mid LTE Band 4 (AWS) 20 24.7 24.65 -0.01 | | | | | -0.01 | 0 | 00889 | QPSK | 1 | 50 | 10 mm | back | 1:1 | 0.880 | 1.012 | 0.891 | | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT | | | | | | | | | | | | Body | | | | | | | | | Spatial Peak | | | | | | | | | | | 1.6 V | V/kg (mW | /g) | | | | | | | | Uncontrolled Exposure/General Population | | | | | | averaged over 1 gram | | | | | | | | | | | | | Blue entry represents variability data. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 44 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 41 of 54 | ### **Table 11-18** LTE Band 2 (PCS) Hotspot SAR | | | | | | | _ | | | UREMENT | | • | | | | | | | | | |---------|---|------|------------------|-----------|--------------------|-------------|---|----------|---------------|------------|---------|-----------|---------|--------|------------|----------|----------------|----------------------|--------| | FRE | EQUENCY | | Mode | Bandwidth | Maximum
Allowed | Conducted | Power | MPR [dB] | Device Serial | Modulation | RB Size | RB Offset | Spacing | Side | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | CI | h. | | [MHz] | Power [dBm] | Power [dBm] | Drift [dB] | | Number | | | | | | | (W/kg) | | (W/kg) | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | -0.16 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | back | 1:1 | 0.988 | 1.000 | 0.988 | A19 | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 24.2 | 24.02 | 0.18 | 0 | 00830 | QPSK | 1 | 50 | 10 mm | back | 1:1 | 0.874 | 1.043 | 0.912 | | | 1900.00 | 19100 | High | LTE Band 2 (PCS) | 20 | 24.2 | 24.18 | -0.08 | 0 | 00830 | QPSK | 1 | 99 | 10 mm | back | 1:1 | 0.651 | 1.004 | 0.654 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | 0.04 | 1 | 00830 | QPSK | 50 | 25 | 10 mm | back | 1:1 | 0.716 | 1.041 | 0.745 | | | 1900.00 | 19100 | High | LTE Band 2 (PCS) | 20 | 23.2 | 23.00 | -0.04 | 1 | 00830 | QPSK | 100 | 0 | 10 mm | back | 1:1 | 0.672 | 1.046 | 0.703 | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | 0.01 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | front | 1:1 | 0.874 | 1.000 | 0.874 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 24.2 | 24.02 | 0.03 | 0 | 00830 | QPSK | 1 | 50 | 10 mm | front | 1:1 | 0.814 | 1.043 | 0.849 | | | 1900.00 | 19100 | High | LTE Band 2 (PCS) | 20 | 24.2 | 24.18 | -0.19 | 0 | 00830 | QPSK | 1 | 99 | 10 mm | front | 1:1 | 0.645 | 1.004 | 0.648 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | -0.09 | 1 | 00830 | QPSK | 50 | 25 | 10 mm | front | 1:1 | 0.727 | 1.041 | 0.757 | | | 1900.00 | 19100 | High | LTE Band 2 (PCS) | 20 | 23.2 | 23.00 | 0.05 | 1 | 00830 | QPSK | 100 | 0 | 10 mm | front | 1:1 | 0.657 | 1.046 | 0.687 | | | 1860.00 | 18700 | Low | LTE Band 2 (PCS) | 20 | 24.2 | 24.20 | 0.10 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | bottom | 1:1 | 0.423 | 1.000 | 0.423 | | | 1880.00 | 18900 | Mid | LTE Band 2 (PCS) | 20 | 23.2 | 23.03 | 0.01 | 1 | 00830 | QPSK | 50 | 25 | 10 mm | bottom | 1:1 | 0.347 | 1.041 | 0.361 | | | 1860.00 | 00 18700 Low LTE Band 2 (PCS) 20 24.2 24.20 -0.03 | | | | | | -0.07 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | left | 1:1 | 0.524 | 1.000 | 0.524 | | | 1880.00 | 0.00 18900 Mid LTE Band 2 (PCS) 20 23.2 23.03 0.03 | | | | | | 0.03 | 1 | 00830 | QPSK | 50 | 25 | 10 mm | left | 1:1 | 0.427 | 1.041 | 0.445 | | | 1860.00 | | | | | | | -0.12 | 0 | 00830 | QPSK | 1 | 0 | 10 mm | back | 1:1 | 0.864 | 1.000 | 0.864 | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population | | | | | | Body
1.6 W/kg (mW/g)
averaged over 1 gram | | | | | | | | | | | | | Blue entry represents variability data. #### **Table 11-19** 2.4 GHz WLAN Hotspot SAR | | 2.4 OHZ WEAR HOUSPOL DAIL | | | | | | | | | | | | | | | | | | |-------|--|---------|---------|-----------|--------------------|-------------|----------------------|---------|------------------|-----------|-------|---------------|--------------------------|----------|---------|----------------|----------------------|--------| | | | | | | | | N | MEASUR | EMENT | RESUL | TS | | | | | | | | | FREQU | ENCY | Mode | Service | Bandwidth | Maximum
Allowed | Conducted | Power Drift | Spacing | Device
Serial | Data Rate | Side | Duty
Cycle | Peak SAR of
Area Scan | SAR (1g) | | Scaling Factor | Reported SAR
(1g) | Plot # | | MHz | Ch. | | | [MHz] | Power [dBm] | Power [dBm] | [dB] | | Number | (Mbps) | | (%) | W/kg | (W/kg) | (Power) | (Duty Cycle) | (W/kg) | | | 2412 | 1 | 802.11b | DSSS | 22 | 21.0 | 20.16 | 0.00 | 10 mm | 03530 | 1 | back | 99.9 | 0.700 | 0.486 | 1.213 | 1.001 | 0.590 | | | 2412 | 2412 1 802.11b DSSS 22 21.0 20.16 (| | | | | | 0.00 | 10 mm | 03530 | 1 | front | 99.9 | 0.717 | 0.502 | 1.213 | 1.001 | 0.610 | A21 | | 2412 | | | | | | | 0.04 | 10 mm | 03530 | 1 | top | 99.9 | 0.244 | - | 1.213 | 1.001 | - | | | 2412 | 1 | 802.11b | DSSS | 22 | 21.0 | 20.16 | 0.04 | 10 mm | 03530 | 1 | left | 99.9 | 0.428 | - | 1.213 | 1.001 | ٠ | | | | ANSI / IEEE C95.1 1992 - SAFETY LIMIT | | | | | | | Body | | | | | | | | | | | | | Spatial Peak | | | | | | 1.6 W/kg (mW/g) | | | | | | | | | | | | | | Uncontrolled Exposure/General Population | | | | | | averaged over 1 gram | • | | | | • | | • | | | | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | Reviewed by: Quality Manager | |-----|--------------------------------------|---------------------|-----------------------|------------------------------| | | Document S/N: | Test Dates: | DUT Type: | D 40 . (54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | Page 42 of 54 | | 201 | 6 DCTEST Engineering Laboratory Inc. | | | DEV/ 10 M | #### 11.4 SAR Test Notes #### General Notes: - 1. The test data reported are the worst-case SAR values according to
test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06. - 2. Batteries are fully charged at the beginning of the SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06. - 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance. - 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required. - 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis. - 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details). #### **GSM Test Notes:** - 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR. - Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested. - 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used. - GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios. #### **UMTS Notes:** - UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01. - 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used. | FCC ID: ZNFL57BL | PCTEST: | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 42 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 43 of 54 | #### LTE Notes: - 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4. - 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1. - A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI). #### WLAN Notes: - For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. - 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.3 for more information. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured. - 3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | |---------------------------------------|---------------------|-----------------------|-------------|---------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 44 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 44 of 54 | | AC DOTECT Engineering Laboratory Inc. | | | | DEV/ 10 M | ### 12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS #### 12.1 Introduction The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter. #### 12.2 Simultaneous Transmission Procedures This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter. Estimated SAR= $$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$ #### Table 12-1 Estimated SAR | Mode | Frequency | Maximum
Allowed
Power | Separation
Distance
(Body) | Estimated
SAR (Body) | |-----------|-----------|-----------------------------|----------------------------------|-------------------------| | | [MHz] | [dBm] | [mm] | [W/kg] | | Bluetooth | 2480 | 8.50 | 10 | 0.147 | Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation. (*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB Publication 248227, the worst case WLAN SAR result for the applicable exposure condition was used for simultaneous transmission analysis. ### 12.3 Head SAR Simultaneous Transmission Analysis Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear) | Simult Tx | Configuration | GSM 850
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | GPRS 850
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | |------------|---------------|-----------------------|-------------------------------|-----------------|------------|---------------|------------------------|-------------------------------|-----------------| | | Right Cheek | 0.289 | 0.990 | 1.279 | | Right Cheek | 0.314 | 0.990 | 1.304 | | Head SAR | Right Tilt | 0.138 | 0.507 | 0.645 | Head SAR | Right Tilt | 0.148 | 0.507 | 0.655 | | i lead SAR | Left Cheek | 0.256 | 0.400 | 0.656 | i lead SAR | Left Cheek | 0.312 | 0.400 | 0.712 | | | Left Tilt | 0.154 | 0.990* | 1.144 | | Left Tilt | 0.181 | 0.990* | 1.171 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-----------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 45 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 45 of 54 | © 2016 PCTEST Engineering Laboratory, Inc. 05/16/2016 | Simult Tx | Configuration | UMTS 850
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) |
Simult Tx | Configuration | UMTS 1750
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | |------------|---------------------------|------------------------------------|-------------------------------|-----------------------|------------|---------------------------|-----------------------------------|-------------------------------|-----------------------| | | Right Cheek
Right Tilt | 0.326
0.162 | 0.990
0.507 | 1.316
0.669 | | Right Cheek
Right Tilt | 0.367
0.210 | 0.990
0.507 | 1.357
0.717 | | Head SAR | Left Cheek | 0.162 | 0.400 | 0.681 | Head SAR | Left Cheek | 0.210 | 0.400 | 1.016 | | | Left Tilt | 0.261 | 0.990* | 1.147 | | Left Tilt | 0.216 | 0.990* | 1.206 | | Simult Tx | Configuration | GSM 1900
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | GPRS 1900
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | | | Right Cheek | 0.197 | 0.990 | 1.187 | | Right Cheek | 0.233 | 0.990 | 1.223 | | Head SAR | Right Tilt | 0.095 | 0.507 | 0.602 | Head SAR | Right Tilt | 0.109 | 0.507 | 0.616 | | neau SAR | Left Cheek | 0.310 | 0.400 | 0.710 | Head SAR | Left Cheek | 0.474 | 0.400 | 0.874 | | | Left Tilt | 0.114 | 0.990* | 1.104 | | Left Tilt | 0.167 | 0.990* | 1.157 | | Simult Tx | Configuration | UMTS 1900
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | LTE Band 12
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | | | Right Cheek | 0.427 | 0.990 | 1.417 | | Right Cheek | 0.361 | 0.990 | 1.351 | | Head SAR | Right Tilt | 0.202 | 0.507 | 0.709 | Head SAR | Right Tilt | 0.196 | 0.507 | 0.703 | | neau SAR | Left Cheek | 0.710 | 0.400 | 1.110 | Head SAR | Left Cheek | 0.306 | 0.400 | 0.706 | | | Left Tilt | 0.230 | 0.990* | 1.220 | | Left Tilt | 0.215 | 0.990* | 1.205 | | Simult Tx | Configuration | LTE Band 5
(Cell) SAR
(W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | LTE Band 4
(AWS) SAR
(W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | | | Right Cheek | 0.380 | 0.990 | 1.370 | | Right Cheek | 0.375 | 0.990 | 1.365 | | Head SAR | Right Tilt | 0.210 | 0.507 | 0.717 | Head SAR | Right Tilt | 0.218 | 0.507 | 0.725 | | I lead OAK | Left Cheek | 0.353 | 0.400 | 0.753 | i leau OAR | Left Cheek | 0.696 | 0.400 | 1.096 | | | Left Tilt | 0.200 | 0.990* | 1.190 | | Left Tilt | 0.244 | 0.990* | 1.234 | | Simult Tx | Configuration | LTE Band 2
(PCS) SAR
(W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | |------------|---------------|-----------------------------------|-------------------------------|-----------------| | | Right Cheek | 0.376 | 0.990 | 1.366 | | Head SAR | Right Tilt | 0.240 | 0.507 | 0.747 | | rieau SAIX | Left Cheek | 0.743 | 0.400 | 1.143 | | | Left Tilt | 0.214 | 0.990* | 1.204 | ## 12.4 Body-Worn Simultaneous Transmission Analysis Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm) | Exposure
Condition | Mode | 2G/3G/4G
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | |-----------------------|-------------------|------------------------|-------------------------------|-----------------| | | GSM/GPRS 850 | 0.461 | 0.590 | 1.051 | | | UMTS 850 | 0.392 | 0.590 | 0.982 | | | UMTS 1750 | 0.925 | 0.590 | 1.515 | | | GSM/GPRS 1900 | 0.469 | 0.590 | 1.059 | | Body-Worn | UMTS 1900 | 0.979 | 0.590 | 1.569 | | | LTE Band 12 | 0.673 | 0.590 | 1.263 | | | LTE Band 5 (Cell) | 0.518 | 0.590 | 1.108 | | | LTE Band 4 (AWS) | 0.937 | 0.590 | 1.527 | | | LTE Band 2 (PCS) | 0.988 | 0.590 | 1.578 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | L G | Reviewed by: Quality Manager | |--|-------------|-----------------------|------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 40 of 54 | | Y1611151756-R1.ZNF 11/07/16 - 11/16/16 | | Portable Handset | | Page 46 of 54 | Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm) | Exposure
Condition | Mode | 2G/3G/4G
SAR (W/kg) | Bluetooth
SAR (W/kg) | Σ SAR
(W/kg) | |-----------------------|-------------------|------------------------|-------------------------|-----------------| | | GSM/GPRS 850 | 0.461 | 0.147 | 0.608 | | | UMTS 850 | 0.392 | 0.147 | 0.539 | | | UMTS 1750 | 0.925 | 0.147 | 1.072 | | | GSM/GPRS 1900 | 0.469 | 0.147 | 0.616 | | Body-Worn | UMTS 1900 | 0.979 | 0.147 | 1.126 | | | LTE Band 12 | 0.673 | 0.147 | 0.820 | | | LTE Band 5 (Cell) | 0.518 | 0.147 | 0.665 | | | LTE Band 4 (AWS) | 0.937 | 0.147 | 1.084 | | | LTE Band 2 (PCS) | 0.988 | 0.147 | 1.135 | ### 12.5 Hotspot SAR Simultaneous Transmission Analysis Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-"). Table 12-5 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm) | Simult Tx | Configuration | GPRS 850
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | UMTS 850
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | |--------------|---------------|-------------------------|-------------------------------|-----------------|---------------|---------------|---------------------------|-------------------------------|-----------------| | | | | | | | | | , ,, | | | | Back | 0.461 | 0.590 | 1.051 | | Back | 0.392 | 0.590 | 0.982 | | | Front | 0.404 | 0.610 | 1.014 | | Front | 0.342 | 0.610 | 0.952 | | Hotspot SAR | Тор | - | 0.610* | 0.610 | Hotspot SAR | Тор | - | 0.610* | 0.610 | | | Bottom | 0.142 | - | 0.142 | | Bottom | 0.119 | - | 0.119 | | | Right | 0.269 | - | 0.269 | | Right | 0.281 | - | 0.281 | | | Left | 0.217 | 0.610* | 0.827 | | Left | 0.219 | 0.610* | 0.829 | | Simult Tx | Configuration | UMTS 1750
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | GPRS 1900
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | | | Back | 0.925 | 0.590 | 1.515 | | Back | 0.469 | 0.590 | 1.059 | | | Front | 0.752 | 0.610 | 1.362 | | Front | 0.448 | 0.610 | 1.058 | | Hotspot SAR | Тор | - | 0.610* | 0.610 | Hotspot SAR | Тор | - | 0.610* | 0.610 | | Hotspot SAIX | Bottom | 0.318 | - | 0.318 | Hotspot SAIX | Bottom | 0.201 | - | 0.201 | | | Right | - | - | 0.000 | | Right | - | - | 0.000 | | | Left | 0.433 | 0.610* | 1.043 | | Left | 0.309 | 0.610* | 0.919 | | Simult Tx | Configuration | UMTS 1900
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | Simult Tx | Configuration | LTE Band 12
SAR (W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | | | Back | 0.979 | 0.590 | 1.569 | | Back | 0.673 | 0.590 | 1.263 | | | Front | 0.911 | 0.610 | 1.521 | | Front | 0.430 | 0.610 | 1.040 | | Hotspot SAR | Тор | - | 0.610* | 0.610 | Hotspot SAR | Тор | - | 0.610* | 0.610 | | TIOLSPOL SAR | Bottom | 0.446 | - | 0.446 | 1 lotapot SAR | Bottom | 0.123 | - | 0.123 | | | Right | - | - | 0.000 | | Right | 0.262 | - | 0.262 | | | Left | 0.555 | 0.610* | 1.165 | | Left | 0.258 | 0.610* | 0.868 | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-----------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 47 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 47 of 54 | | Simult Tx | Configuration | (Ce | Band 5
ell) SAR
W/kg) | WLA | GHz
.N SAR
//kg) | Σ SAF
(W/kg | | Simult | t Tx | Config | guration | (A\ | E Band 4
WS) SAR
(W/kg) | 2.4 GHz
WLAN SAR
(W/kg) | Σ SAR
(W/kg) | |-------------|---------------|-----|-----------------------------|------|------------------------|----------------|-----|------------------------------|------|--------------------------|----------------|-----|-------------------------------|-------------------------------|-----------------| | | Back | C |).518 | 0. | .590 | 1.108 | | | | В | ack | | 0.937 | 0.590 | 1.527 | | | Front | C |).428 | 0. | .610 | 1.038 | | | | F | ront | | 0.932 | 0.610 | 1.542 | | Hotspot SAR | Тор | | - | 0. | 610* | 0.610 | 1 | Hotspot | SAP | Т | ор | | - | 0.610* | 0.610 | | Hotspot SAR | Bottom | C |).142 | | - | 0.142 | | Ποιδροι | SAN | Во | ttom | | 0.347 | - | 0.347 | | | Right | C |).217 | | - | 0.217 | | | | R | ight | | - | - | 0.000 | | | Left | C |).260 | 0. | 610* | 0.870 | 1 | | | L | Left | | 0.487 | 0.610* | 1.097 | | | | | Simult | Тх | Config | guration | (PC | E Band 2
CS) SAR
W/kg) | WLA | 4 GHz
AN SAR
V/kg) | Σ SAF
(W/kg | | | | | | | | | | | В | ack | (| 0.988 | 0 | .590 | 1.578 | | | | | | | | | | | Fı | ront | (| 0.874 | 0 | .610 | 1.484 | |] | | | | | | | Hotspot | SAR | T | ор | | - | 0. | 610* | 0.610 | 1 | | | | | | | | ιοισμοί | OAIX | Во | ttom | (| 0.423 | | - | 0.423 | _ | | | | | | Right | | - | | - | 0.000 | | | | | | | | | | | | | | | | L | .eft | (| 0.524 | 0. | 610* | 1.134 | | | | | #### 12.6 Simultaneous Transmission Conclusion The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2. | FCC ID: ZNFL57BL | PCTEST' | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 40 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 48 of 54 | ### 13 SAR MEASUREMENT VARIABILITY #### 13.1 Measurement Variability Per FCC
KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. SAR Measurement Variability was assessed using the following procedures for each frequency band: - 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once. - 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-q SAR limit). - 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg Table 13-1 Head SAR Measurement Variability Results | | | | | | | | | ., | | | | | | | |------|--------------------------|----------|--------------------------------|---------|-----------------|-------|----------------|----------------------|-----------------------------------|------|-----------------------------|-------|-----------------------------|-------| | | HEAD VARIABILITY RESULTS | | | | | | | | | | | | | | | Band | FREQUE | ENCY | Mode/Band | Service | Service Side | | Test Data Rate | Measured
SAR (1g) | 1st
Repeated
SAR (1g) Ratio | | 2nd
Repeated
SAR (1g) | Ratio | 3rd
Repeated
SAR (1g) | Ratio | | | MHz | Ch. | | | | | , | (W/kg) | (W/kg) | | (W/kg) | | (W/kg) | | | 2450 | 2437.00 | 6 | 802.11b, 22 MHz Bandwidth | DSSS | Right | Cheek | 1 | 0.833 | 0.859 | 1.03 | N/A | N/A | N/A | N/A | | | A | NSI / IE | EE C95.1 1992 - SAFETY LIMIT | | Head | | | | | | | | | | | | | | Spatial Peak | | 1.6 W/kg (mW/g) | | | | | | | | | | | | Unc | ontrolle | ed Exposure/General Population | | | | | | averaged ov | | | | | | Table 13-2 Body SAR Measurement Variability Results | | | | zea, c. | art measurem | | uu | , | | | | | | | |------|--------------------------|-------|-------------------------------------|-----------------------------|-----------------|---------|----------------------|-----------------------------|-------|-----------------------------|-------|-----------------------------|-------| | | BODY VARIABILITY RESULTS | | | | | | | | | | | | | | Band | FREQUE | ENCY | Mode | Service | Side | Spacing | Measured
SAR (1g) | 1st
Repeated
SAR (1g) | Ratio | 2nd
Repeated
SAR (1g) | Ratio | 3rd
Repeated
SAR (1g) | Ratio | | | MHz | Ch. | | | | | (W/kg) | (W/kg) | | (W/kg) | | (W/kg) | | | 1750 | 1732.50 | 20175 | LTE Band 4 (AWS), 20 MHz Bandwidth | QPSK, 1 RB, 50 RB
Offset | back | 10 mm | 0.926 | 0.880 | 1.05 | N/A | N/A | N/A | N/A | | 1900 | 1860.00 | 18700 | LTE Band 2 (PCS), 20 MHz Bandwidth | QPSK, 1 RB, 0 RB
Offset | back | 10 mm | 0.988 | 0.864 | 1.14 | N/A | N/A | N/A | N/A | | | | A | ANSI / IEEE C95.1 1992 - SAFETY LIF | | Body | | | | | | | | | | | | | Spatial Peak | | 1.6 W/kg (mW/g) | | | | | | | | | | | | Und | controlled Exposure/General Popul | | | a | veraged o | ver 1 gram | | | | | | ## 13.2 Measurement Uncertainty The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |-------------------------------------|---------------------|-----------------------|-----|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | D 40 . (54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 49 of 54 | | 16 DCTECT Engineering Laboratory In | 20 | | | DEV/ 10 M | © 2016 PCTEST Engineering Laboratory, Inc. 05/16/2016 ### 14 E ## **EQUIPMENT LIST** | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|--------------------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 6/28/2016 | Annual | 6/28/2017 | MY40000670 | | Agilent | E4432B | ESG-D Series Signal Generator | 3/5/2016 | Annual | 3/5/2017 | US40053896 | | Agilent | E4438C | ESG Vector Signal Generator | 3/2/2016 | Annual | 3/2/2017 | MY47270002 | | Agilent | E5515C | Wireless Communications Test Set | 11/30/2015 | Annual | 11/30/2016 | GB42361078 | | Agilent | E8257D | (250kHz-20GHz) Signal Generator | 3/2/2016 | Annual | 3/2/2017 | MY45470194 | | Agilent | N5182A | MXG Vector Signal Generator | 3/5/2016 | Annual | 3/5/2017 | MY47420800 | | Agilent | N9020A | MXA Signal Analyzer | 10/28/2016 | Annual | 10/28/2017 | US46470561 | | Agilent | N4010A | Wireless Connectivity Test Set | N/A | N/A | N/A | GB46170464 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433972 | | Anritsu | MA24106A | USB Power Sensor | 6/2/2016 | Annual | 6/2/2017 | 1231535 | | Anritsu | MA24106A | USB Power Sensor | 6/2/2016 | Annual | 6/2/2017 | 1231538 | | Anritsu | MA24106A | USB Power Sensor | 6/2/2016 | Annual | 6/2/2017 | 1244512 | | Anritsu | MA24106A | USB Power Sensor | 6/2/2016 | Annual | 6/2/2017 | 1244515 | | Anritsu | MA2411B | Pulse Power Sensor | 8/18/2016 | Annual | 8/18/2017 | 1126066 | | Anritsu | ML2495A | Power Meter | 10/16/2015 | Biennial | 10/16/2017 | 941001 | | Anritsu | MT8820C | Radio Communication Analyzer | 9/15/2016 | Annual | 9/15/2017 | 6200901190 | | COMTech | AR85729-5 | Solid State Amplifier | CBT | N/A | CBT | M1S5A00-009 | | COMTECH | AR85729-5/5759B | Solid State Amplifier | CBT | N/A | CBT | M3W1A00-1002 | | Control Company | 4040 | Digital Thermometer | 3/18/2015 | Biennial | 3/18/2017 | 150194895 | | | 4352 | | 3/8/2016 | | | | | Control Company | | Ultra Long Stem Thermometer | | Biennial | 3/8/2018 | 160261694 | | Control Company | 4353 | Long Stem Thermometer | 1/22/2015 | Biennial | 1/22/2017 | 150053029 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | MCL | BW-N6W5+ | 6dB Attenuator | CBT | N/A | CBT | 1139 | | MiniCircuits | SLP-2400+ | Low Pass Filter | CBT | N/A | CBT | R8979500903 | | Mini-Circuits | BW-N20W5 | Power Attenuator | CBT | N/A | CBT | 1226 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-1200+ | Low Pass Filter DC to 1000 MHz | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Mitutoyo | CD-6"CSX | Digital Caliper | 3/2/2016 | Biennial | 3/2/2018 | 13264162 | | Mitutoyo | CD-6"CSX | Digital Caliper | 3/2/2016 | Biennial | 3/2/2018 | 13264165 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Narda | BW-S3W2 | Attenuator (3dB) | CBT | N/A | CBT | 120 | | Pasternack | NC-100 | Torque Wrench | 11/6/2015 | Biennial | 11/6/2017 | N/A | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | CMU200 | Base Station Simulator | 12/2/2015 | Annual | 12/2/2016 | 833855/0010 | | Rohde & Schwarz | CMW500 | Radio Communication Tester | 10/20/2016 | Annual | 10/20/2017 | 100976 | | Seekonk | NC-100 | Torque Wrench | 11/6/2015 | Biennial | 11/6/2017 | 22313 | | Seekonk | NC-100 | Torque Wrench | 11/6/2015 | Biennial | 11/6/2017 | N/A | | SPEAG | DAK-12 | Dielectric Assessment Kit (10MHz - 3GHz) | 3/1/2016 | Annual | 3/1/2017 | 1102 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/10/2016 | Annual | 5/10/2017 | 1070 | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 7/19/2016 | Annual | 7/19/2017 | 1039 | | SPEAG | ES3DV3 | SAR Probe | 8/24/2016 | Annual | 8/24/2017 | 3288 | | SPEAG | ES3DV3 | SAR Probe | 3/18/2016 | Annual | 3/18/2017 | 3319 | | SPEAG | ES3DV2 | SAR Probe | 7/19/2016 | Annual | 7/19/2017 | 3022 | | SPEAG | EX3DV4 | SAR Probe | 5/17/2016 | Annual | 5/17/2017 | 7409 | | SPEAG | EX3DV4 | SAR Probe | 7/25/2016 | Annual | 7/25/2017 | 7410 | | SPEAG | ES3DV3 | SAR Probe | 9/19/2016 | Annual | 9/19/2017 | 3287 | | SPEAG | EX3DV4 | SAR Probe | 4/19/2016 | Annual | 4/19/2017 | 7406 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/22/2016 | Annual | 8/22/2017 | 1364 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/14/2016 | Annual | 3/14/2017 | 1368 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/15/2016 | Annual | 1/15/2017 | 1466 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/11/2016 | Annual | 5/11/2017 | 859 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/12/2016 | Annual | 7/12/2017 | 1322 | | SPEAG | DAF4 | Dasy Data Acquisition Electronics | 9/14/2016 | Annual | 9/14/2017 | 1408 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/14/2016 | Annual | 4/14/2017 | 1407 | | SPEAG | D750V3 | 750 MHz Dipole | 3/16/2016 | Annual | 3/16/2017 | 1054 | | SPEAG | D835V2 | 835 MHz SAR Dipole | 7/13/2016 | Annual | 7/13/2017 | 4d047 | | SPEAG | D1750V2 | 1750
MHz SAR Dipole | 7/14/2016 | Annual | 7/13/2017 | 1150 | | SPEAG | D1750V2
D1900V2 | 1900 MHz SAR Dipole | 7/15/2016 | | 7/14/2017 | 5d149 | | | D1900V2
D2450V2 | | | Annual | | 981 | | SPEAG | D750V3 | 2450 MHz SAR Dipole | 7/25/2016 | Annual | 7/25/2017 | | | SPEAG | | 750 MHz SAR Dipole | 7/13/2016 | Annual | 7/13/2017 | 1161 | | SPEAG | D835V2 | 835 MHz SAR Dipole | 1/20/2016 | Annual | 1/20/2017 | 4d132 | | SPEAG | D1900V2 | 1900 MHz SAR Dipole | 7/8/2016 | Annual | 7/8/2017 | 5d080 | | SPEAG | D2450V2 | 2450 MHz SAR Dipole | 9/13/2016 | Annual | 9/13/2017 | 797 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | | |--|---------------------|-----------------------|-----|------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | | D 50 . (54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 50 of 54 | | | 2016 PCTEST Engineering Laboratory Inc | | | | | | $\ @\ 2016\ PCTEST\ Engineering\ Laboratory,\ Inc.$ REV 18 M 05/16/2016 | a | С | d | e= | f | g | h = | i = | k | |---|-------|-------|--------|------|--------|----------------|---------|----------------| | | | | f(d,k) | | | c x f/e | c x g/e | | | | Tol. | Prob. | | Ci | Ci | 1gm | 10gms | | | Uncertainty Component | (± %) | Dist. | Div. | 1gm | 10 gms | u _i | ui | v _i | | | | | , | "" | , | (± %) | (± %) | ' | | Measurement System | | • | | • | ' | | | | | Probe Calibration | 6.55 | Ν | 1 | 1.0 | 1.0 | 6.6 | 6.6 | ∞ | | Axial Isotropy | 0.25 | Ν | 1 | 0.7 | 0.7 | 0.2 | 0.2 | ∞ | | Hemishperical Isotropy | 1.3 | Ν | 1 | 0.7 | 0.7 | 0.9 | 0.9 | oc | | Boundary Effect | 2.0 | R | 1.73 | 1.0 | 1.0 | 1.2 | 1.2 | oc | | Linearity | 0.3 | Ν | 1 | 1.0 | 1.0 | 0.3 | 0.3 | oc | | System Detection Limits | 0.25 | R | 1.73 | 1.0 | 1.0 | 0.1 | 0.1 | ∞ | | Readout Electronics | 0.3 | Ν | 1 | 1.0 | 1.0 | 0.3 | 0.3 | œ | | Response Time | 0.8 | R | 1.73 | 1.0 | 1.0 | 0.5 | 0.5 | œ | | Integration Time | 2.6 | R | 1.73 | 1.0 | 1.0 | 1.5 | 1.5 | oc | | RF Ambient Conditions - Noise | 3.0 | R | 1.73 | 1.0 | 1.0 | 1.7 | 1.7 | œ | | RF Ambient Conditions - Reflections | | R | 1.73 | 1.0 | 1.0 | 1.7 | 1.7 | × | | Probe Positioner Mechanical Tolerance | 0.4 | R | 1.73 | 1.0 | 1.0 | 0.2 | 0.2 | ∞ | | Probe Positioning w/ respect to Phantom | | R | 1.73 | 1.0 | 1.0 | 3.9 | 3.9 | œ | | Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | 4.0 | R | 1.73 | 1.0 | 1.0 | 2.3 | 2.3 | 8 | | Test Sample Related | | | | | | | | | | Test Sample Positioning | 2.7 | N | 1 | 1.0 | 1.0 | 2.7 | 2.7 | 35 | | Device Holder Uncertainty | 1.67 | Ν | 1 | 1.0 | 1.0 | 1.7 | 1.7 | 5 | | Output Power Variation - SAR drift measurement | 5.0 | R | 1.73 | 1.0 | 1.0 | 2.9 | 2.9 | œ | | SAR Scaling | 0.0 | R | 1.73 | 1.0 | 1.0 | 0.0 | 0.0 | ∞ | | Phantom & Tissue Parameters | | | | | | | | | | Phantom Uncertainty (Shape & Thickness tolerances) | 7.6 | R | 1.73 | 1.0 | 1.0 | 4.4 | 4.4 | × × | | Liquid Conductivity - measurement uncertainty | 4.2 | N | 1 | 0.78 | 0.71 | 3.3 | 3.0 | 10 | | Liquid Permittivity - measurement uncertainty | 4.1 | N | 1 | 0.23 | 0.26 | 1.0 | 1.1 | 10 | | Liquid Conductivity - Temperature Uncertainty | 3.4 | R | 1.73 | 0.78 | 0.71 | 1.5 | 1.4 | œ | | Liquid Permittivity - Temperature Unceritainty | 0.6 | R | 1.73 | 0.23 | 0.26 | 0.1 | 0.1 | 00 | | Liquid Conductivity - deviation from target values | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Permittivity - deviation from target values | 5.0 | R | 1.73 | 0.60 | 0.49 | 1.7 | 1.4 | oc | | Combined Standard Uncertainty (k=1) | 3.0 | RSS | 1., 3 | 0.00 | 0.43 | 11.5 | 11.3 | 60 | | Expanded Uncertainty | | k=2 | | | | 23.0 | 22.6 | | | (95% CONFIDENCE LEVEL) | | K=Z | | | | 23.0 | 22.0 | | | FCC ID: ZNFL57BL | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | | |--|---------------------|-----------------------|-----|------------------------------|--| | Document S/N: | Test Dates: | DUT Type: | | D 54 | | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 51 of 54 | | | 2016 DCTCCT Engineering Laboratory, Inc. | | | | | | ### 16 CONCLUSION #### 16.1 Measurement Conclusion The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3] | FCC ID: ZNFL57BL | | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dana 50 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 52 of 54 | ### 17 REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. | FCC ID: ZNFL5 | 7BL | PCTEST | SAR EVALUATION REPORT | | Reviewed by: Quality Manager |
---------------|--------|---------------------|-----------------------|--|------------------------------| | Document S/N: | | Test Dates: | DUT Type: | | Dana 50 of 54 | | 0Y1611151756- | R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 53 of 54 | - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005. - [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015 - [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07 - [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01 - [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04 - [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009. - [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010. | FCC ID: ZNFL57BL | | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|---------------------|-----------------------|-------------|------------------------------| | Document S/N: | Test Dates: | DUT Type: | | Dans 54 of 54 | | 0Y1611151756-R1.ZNF | 11/07/16 - 11/16/16 | Portable Handset | | Page 54 of 54 | ## APPENDIX A: SAR TEST DATA DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.928 \text{ S/m}; \ \epsilon_r = 42.437; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Test Date: 11-07-2016; Ambient Temp: 20.1°C; Tissue Temp: 20.1°C Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.75 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.354 W/kg SAR(1 g) = 0.300 W/kg Mode: GPRS 850, Right Head, Cheek, Mid.ch, 4 Tx slots DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.928 \text{ S/m}; \ \epsilon_r = 42.437; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Test Date: 11-07-2016; Ambient Temp: 20.1°C; Tissue Temp: 20.1°C Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: UMTS 850, Right Head, Cheek, Mid.ch Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.31 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.384 W/kg SAR(1 g) = 0.321 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00889 Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.352$ S/m; $\epsilon_r = 39.981$; $\rho = 1000$ kg/m³ Phantom section: Left Section Test Date: 11-07-2016; Ambient Temp: 20.7°C; Tissue Temp: 20.8°C Probe: ES3DV2 - SN3022; ConvF(5.15, 5.15, 5.15); Calibrated: 7/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 1/15/2016 Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: UMTS 1750, Left Head, Cheek, Mid.ch Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.34 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.934 W/kg SAR(1 g) = 0.615 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.388 \text{ S/m}; \ \epsilon_r = 39.899; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Test Date: 11-08-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.4°C Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 4 Tx slots Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.11 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.709 W/kg SAR(1 g) = 0.446 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.388 \text{ S/m}$; $\epsilon_r = 39.899$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Test Date: 11-08-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.4°C Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: UMTS 1900, Left Head, Cheek, Mid.ch Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.76 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 1.12 W/kg SAR(1 g) = 0.695 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.866 \text{ S/m}; \ \epsilon_r = 42.531; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Test Date: 11-08-2016; Ambient Temp: 20.5°C; Tissue Temp: 20.7°C Probe: ES3DV3 - SN3288; ConvF(7, 7, 7); Calibrated: 8/24/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.46 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.434 W/kg SAR(1 g) = 0.340 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.928 \text{ S/m}; \ \epsilon_r = 42.438; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Test Date: 11-07-2016; Ambient Temp: 20.1°C; Tissue Temp: 20.1°C Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.79 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.461 W/kg SAR(1 g) = 0.373 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00889 Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.352 \text{ S/m}; \ \epsilon_r = 39.981; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Test Date: 11-07-2016; Ambient Temp: 20.7°C; Tissue Temp: 20.8°C Probe: ES3DV2 - SN3022; ConvF(5.15, 5.15, 5.15); Calibrated: 7/19/2016; Sensor-Surface: 3mm (Mechanical
Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 1/15/2016 Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.29 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.688 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.369 \text{ S/m}; \ \epsilon_r = 39.988; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Test Date: 11-08-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.4°C Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 2 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.39 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.743 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 03530 Communication System: UID 0, IEEE 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.854 \text{ S/m}; \ \epsilon_r = 38.683; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Test Date: 11-16-2016; Ambient Temp: 23.2°C; Tissue Temp: 23.1°C Probe: ES3DV3 - SN3288; ConvF(4.76, 4.76, 4.76); Calibrated: 8/24/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 6, 1 Mbps Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.82 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 0.859 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.985$ S/m; $\varepsilon_r = 52.77$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-10-2016; Ambient Temp: 23.6°C; Tissue Temp: 21.1°C Probe: EX3DV4 - SN7410; ConvF(9.72, 9.72, 9.72); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.01 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.578 W/kg SAR(1 g) = 0.440 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.985$ S/m; $\varepsilon_r = 52.77$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-10-2016; Ambient Temp: 23.6°C; Tissue Temp: 21.1°C Probe: EX3DV4 - SN7410; ConvF(9.72, 9.72, 9.72); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: UMTS 850, Body SAR, Back side, Mid.ch Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.01 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.502 W/kg SAR(1 g) = 0.386 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00889 Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.423$ S/m; $\epsilon_r = 51.757$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-07-2016; Ambient Temp: 24.1°C; Tissue Temp: 22.3°C Probe: EX3DV4 - SN7410; ConvF(7.95, 7.95, 7.95); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Main TWIN SAM; Type: QD000P40CC; Serial: TP-1406 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: UMTS 1750, Body SAR, Back side, Low.ch Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.34 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 0.889 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00871 Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.556 \text{ S/m}; \ \epsilon_r = 53.68; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-09-2016; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.73 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.689 W/kg SAR(1 g) = 0.442 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00871 Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.524$ S/m; $\epsilon_r = 53.769$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-09-2016; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Mode: UMTS 1900, Body SAR, Back side, Low.ch Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.24 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 0.961 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 55.785$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-07-2016; Ambient Temp: 22.5°C; Tissue Temp: 21.1°C Probe: EX3DV4 - SN7409; ConvF(9.46, 9.46, 9.46); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.13 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.836 W/kg SAR(1 g) = 0.634 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.985$ S/m; $\varepsilon_r = 52.771$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-10-2016; Ambient Temp: 23.6°C; Tissue Temp: 21.1°C Probe: EX3DV4 - SN7410; ConvF(9.72, 9.72, 9.72); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.23 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.668 W/kg SAR(1 g) = 0.508 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00889 Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.444 \text{ S/m}$; $\varepsilon_r = 51.667$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-07-2016; Ambient Temp: 24.1°C; Tissue Temp: 22.3°C Probe: EX3DV4 - SN7410; ConvF(7.95, 7.95, 7.95); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Main TWIN SAM;
Type: QD000P40CC; Serial: TP-1406 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.98 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.62 W/kg SAR(1 g) = 0.926 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 00830 Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.533 \text{ S/m}; \ \epsilon_r = 53.745; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-09-2016; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: LTE Band 2 (PCS), Body SAR, Back side, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.64 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.988 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 03530 Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.944 \text{ S/m}; \ \epsilon_r = 52.286; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-16-2016; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/14/2016 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Back Side Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.56 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.917 W/kg SAR(1 g) = 0.486 W/kg DUT: ZNFL57BL; Type: Portable Handset; Serial: 03530 Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.944$ S/m; $\varepsilon_r = 52.286$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-16-2016; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/14/2016 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331) ### Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Front Side Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.75 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.935 W/kg SAR(1 g) = 0.502 W/kg ### APPENDIX B: SYSTEM VERIFICATION DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.903$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm Test Date: 11-08-2016; Ambient Temp: 20.5°C; Tissue Temp: 20.7°C Probe: ES3DV3 - SN3288; ConvF(7, 7, 7); Calibrated: 8/24/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.35 W/kg SAR(1 g) = 1.6 W/kg Deviation(1 g) = -2.68% 0 dB = 1.87 W/kg = 2.72 dBW/kg #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.927$ S/m; $\epsilon_r = 42.457$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm Test Date: 11-07-2016; Ambient Temp: 20.1°C; Tissue Temp: 20.1°C Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.76 W/kg SAR(1 g) = 1.95 W/kg Deviation(1 g) = 6.79% 0 dB = 2.27 W/kg = 3.56 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 39.889$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-07-2016; Ambient Temp: 20.7°C; Tissue Temp: 20.8°C Probe: ES3DV2 - SN3022; ConvF(5.15, 5.15, 5.15); Calibrated: 7/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 1/15/2016 Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.51 W/kgSAR(1 g) = 3.59 W/kgDeviation(1 g) = -0.55% 0 dB = 4.50 W/kg = 6.53 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.409$ S/m; $\epsilon_r = 39.813$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-08-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.4°C Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.73 W/kg SAR(1 g) = 4.06 W/kg Deviation(1 g) = 1.25% #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.869$ S/m; $\varepsilon_r = 38.631$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-16-2016; Ambient Temp: 23.2°C; Tissue Temp: 23.1°C Probe: ES3DV3 - SN3288; ConvF(4.76, 4.76, 4.76); Calibrated: 8/24/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.52 W/kg Deviation(1 g) = 4.55% DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.966 \text{ S/m}$; $\epsilon_r = 55.31$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 11-07-2016; Ambient Temp: 22.5°C; Tissue Temp: 21.1°C Probe: EX3DV4 - SN7409; ConvF(9.46, 9.46, 9.46); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.54 W/kg SAR(1 g) = 1.7 W/kg Deviation(1 g) = 0.83% #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.984$ S/m; $\epsilon_r = 52.786$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm Test Date: 11-10-2016; Ambient Temp: 23.6°C; Tissue Temp: 21.1°C Probe: EX3DV4 - SN7410; ConvF(9.72, 9.72, 9.72); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.84 W/kg SAR(1 g) = 1.92 W/kg
Deviation(1 g) = -0.62% 0 dB = 2.52 W/kg = 4.01 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.462 \text{ S/m}; \ \epsilon_r = 51.589; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-07-2016; Ambient Temp: 24.1°C; Tissue Temp: 22.3°C Probe: EX3DV4 - SN7410; ConvF(7.95, 7.95, 7.95); Calibrated: 7/25/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/12/2016 Phantom: Main TWIN SAM; Type: QD000P40CC; Serial: TP-1406 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.29 W/kgSAR(1 g) = 3.65 W/kgDeviation(1 g) = 0.00% 0 dB = 5.39 W/kg = 7.32 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.579$ S/m; $\epsilon_r = 53.62$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-09-2016; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.86 W/kgSAR(1 g) = 3.86 W/kgDeviation(1 g) = -1.28% 0 dB = 4.90 W/kg = 6.90 dBW/kg DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 1.996$ S/m; $\varepsilon_r = 52.155$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 11-16-2016; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/14/2016 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.4 W/kgSAR(1 g) = 5.01 W/kgDeviation(1 g) = -1.18% 0 dB = 8.35 W/kg = 9.22 dBW/kg