

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics MobileComm U.S.A. Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 01/08/2018 - 01/11/2018 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 1M1712050312-08-R1.ZNF

FCC ID:

ZNFL413DL

APPLICANT:

LG ELECTRONICS MOBILECOMM U.S.A. INC.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard:	Audio Band Magnetic Testing (T-Coil) Class II Permissive Change CFR §20.19(b) ANSI C63.19-2011 285076 D01 HAC Guidance v05
DUT Type: Model: Additional Model(s): Test Device Serial No.: Class II Permissive Change(s): Original Grant Date:	285076 D02 T-Coil testing for CMRS IP v03 Portable Handset LML413DL LM-L413DL, L413DL, LM-X410ULMG, LMX410ULMG, X410ULMG <i>Pre-Production Sample</i> [S/N: 18312] See FCC Change Document 12/29/2017

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M1712050312-08-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFL413DL	CALL PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 1 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 10172
© 2018 PCTEST Engineering Laboratory, Inc.				

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	5
4.	METHOD OF MEASUREMENT	7
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	17
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	19
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	22
8.	FCC 3G MEASUREMENTS	24
9.	T-COIL TEST SUMMARY	26
10.	MEASUREMENT UNCERTAINTY	35
11.	EQUIPMENT LIST	36
12.	TEST DATA	37
13.	CALIBRATION CERTIFICATES	60
14.	CONCLUSION	67
15.	REFERENCES	68
16.	TEST SETUP PHOTOGRAPHS	70

FCC ID: ZNFL413DL	PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 2 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 2 01 7 2
© 2018 PCTEST Engineering Laboratory, Inc.				
				01/11/0010

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFL413DL	PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 3 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 5 01 72	
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.				

2. DUT DESCRIPTION

FCC ID:	ZNFL413DL			
Applicant:	LG Electronics MobileComm U.S.A. Inc.			
	1000 Sylvan Avenue			
	Englewood Cliffs, NJ 07632			
	United States			
Model:	LML413DL			
Additional Model(s):	LM-L413DL, L413DL, LM-X410ULMG, LMX410ULMG,			
	X410ULMG			
Serial Number:	18312			
HW Version:	Rev.1.0			
SW Version:	L413DL08n			
Antenna:	Internal Antenna			
DUT Type:	Portable Handset			

I. LTE Band Selection

This device supports the following pair of LTE bands with similar frequencies: LTE B4 & B66. This pair of LTE bands has the same target power and shares the same transmission path. Since the supported frequency span for the smaller LTE band is completely covered by the larger LTE band, only the larger LTE band (LTE B66) was evaluated for hearing-aid compliance.

ZNFL413DL HAC AIr Interfaces						
Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	
	835	vo	Yes	Yes: WIFI or BT	CMRS Voice*	
CDMA	1900	vo	res	Yes: WIFI OF BI	CIVINS VOICE	
	EvDO	VD	Yes	Yes: WIFI or BT	Google Duo**	
	850	vo	Yes	Yes: WIFI or BT	CMRS Voice*	
GSM	1900	vo	Yes	Yes: WIFI OF BI	CIVIRS VOICe*	
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo**	
	850		Yes Yes: WIFI or BT			
UMTS	1700	VD		Yes: WIFI or BT	CMRS Voice*	
UIVITS	1900					
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo**	
	700 (B12)	700 (B12)				
	780 (B13)		Yes	Yes: WIFI or BT	VoLTE*, Google Duo**	
LTE (FDD)	850 (B5)	VD				
	1700 (B4)	VD				
	1700 (B66)					
	1900 (B2)					
WIFI	2450	VD	Yes	Yes: CDMA, GSM, UMTS, or LTE	VoWIFI**, Google Duo**	
BT	2450	DT	No	Yes: CDMA, GSM, UMTS, or LTE	N/A	
Type Transport Notes: VO = Voice Only * Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 VoLTE D = Digital Data - Not intended for CMRS Service Interpretation. VD = CMRS and IP Voice over Data Transport ** Reference level is -20dBm0 in accordance with FCC KDB 285076 D02						

 Table 2-1

 ZNFL413DL HAC Air Interfaces

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 4 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 4 0172	
© 2019 DCTEST Engineering					

© 2018 PCTEST Engineering Laboratory, Inc.

REV 3.2.M 01/11/2018

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

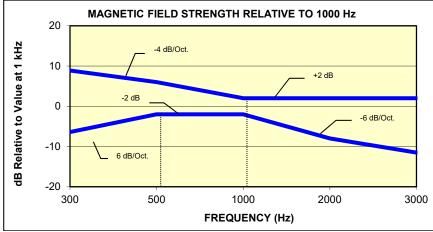
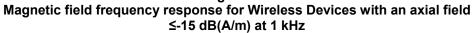
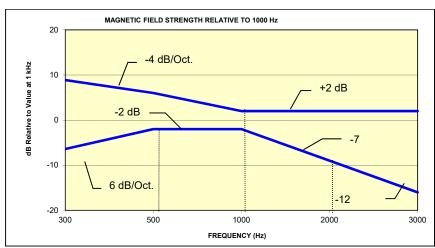




Figure 3-1

Figure 3-2

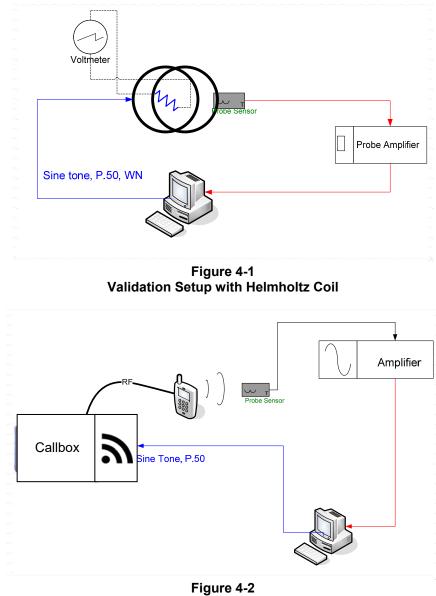
Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: ZNFL413DL	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 5 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 5 0172	
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.				

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.


Category	Telephone RF Parameters			
	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 6 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 0 01 72	
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.				

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

T-Coil Test Setup

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 7 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Tage / 01/2
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M 01/11/2018

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

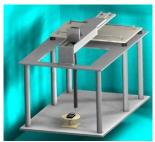
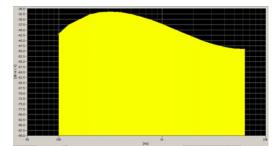
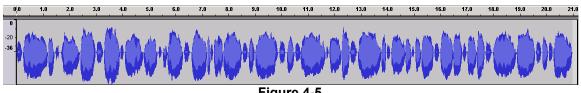


Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

- ··· _	
Active Frequency 100 Hz – 8 kHz Range:	
Stimulus Type: Male and Female, no space	es
Single Sample20.96 secondsDuration:100%	

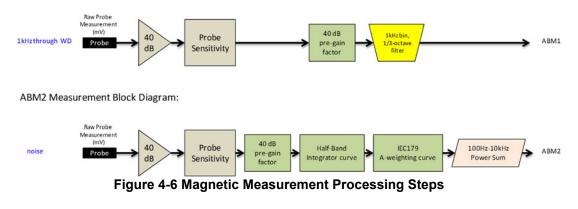

Figure 4-4 Spectral Characteristic of full P.50

Figure 4-5 Temporal Characteristic of full P.50

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 8 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 6 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M 01/11/2018

ABM1 Measurement Block Diagram:

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is: -18 - 30 - 10= -58 dBA/m
- 2. Measurement System Validation(See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation
 - The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_{c} = \frac{NI}{r\sqrt{1.25^{3}}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^{3}}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.08m; R=10.2Ω and using V=18mV:

$$H_c = \frac{20 \cdot (\frac{0.018}{10.2})}{0.08 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 18mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10 dB(A/m). This was verified to be within $\pm 0.5 \text{ dB}$ of the -10 dB(A/m) value (see Page 33).

FCC ID: ZNFL413DL	CAPCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 9 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 5 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

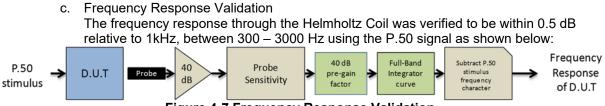
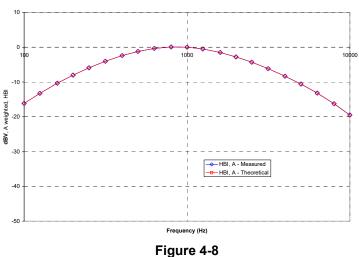


Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

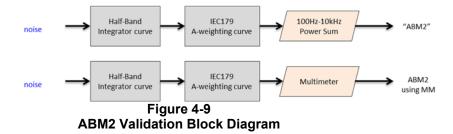
WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

ABM2 Frequency Response Validation					
	HBI, A -	HBI, A -			
f (Hz)	Measured	Theoretical	dB Var.		
	(dB re 1kHz)	(dB re 1kHz)			
100	-16.180	-16.170	-0.010		
125	-13.257	-13.250	-0.007		
160	-10.347	-10.340	-0.007		
200	-8.017	-8.010	-0.007		
250	-5.925	-5.920	-0.005		
315	-4.045	-4.040	-0.005		
400	-2.405	-2.400	-0.005		
500	-1.212	-1.210	-0.002		
630	-0.349	-0.350	0.001		
800	0.071	0.070	0.001		
1000	0.000	0.000	0.000		
1250	-0.503	-0.500	-0.003		
1600	-1.513	-1.510	-0.003		
2000	-2.778	-2.780	0.002		
2500	-4.316	-4.320	0.004		
3150	-6.166	-6.170	0.004		
4000	-8.322	-8.330	0.008		
5000	-10.573	-10.590	0.017		
6300	-13.178	-13.200	0.022		
8000	-16.241	-16.270	0.029		
10000	-19.495	-19.520	0.025		


Table 4-1BM2 Frequency Response Validation

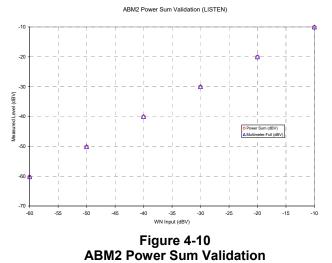
FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 10 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

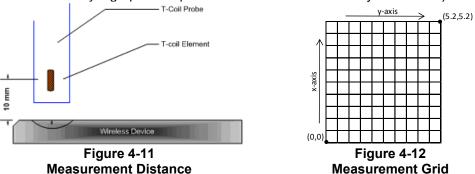

01/11/2018

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation


The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.


Table 4-2 ABM2 Power Sum Validation						
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)			
-60	-60.36	-60.2	0.16			
-50	-50.19	-50.13	0.06			
-40	-40.14	-40.03	0.11			
-30	-30.13	-30.01	0.12			
-20	-20.12	-20	0.12			
-10	-10.14	-10	0.14			

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 11 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 110172
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.			

3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-15 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
IDEN™	TDMA (22 and 11 Hz)	-18

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	💽 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 12 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (see below for GSM, see Section 8 for more information regarding worst-case configurations for CDMA and UMTS. LTE configuration information can be found in Section 5. WIFI configuration information can be found in Section 6 and 7.):

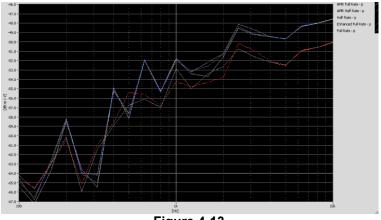


Figure 4-13 Vocoder Analysis for ABM Noise for GSM

- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz – 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2

FCC ID: ZNFL413DL	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 13 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 13 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).

- ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
- iii. This result was subtracted from the ABM1 result in step 4.a, to obtain the Signal Quality.

V. Test Setup

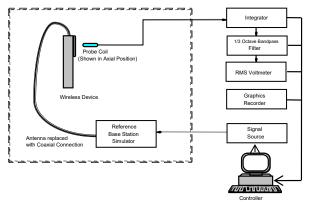


Figure 4-14 Audio Magnetic Field Test Setup

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 14 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 14 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M
				01/11/2018

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes since circuit-switched voice modes were worst-case.

Center Channels and Frequencies							
Test frequencies & associated channels							
Channel	Frequency (MHz)						
Cellular 850	Cellular 850						
384 (CDMA) 836.52							
190 (GSM)	836.60						
4183 (UMTS)	836.60						
AWS 1750							
1412 (UMTS)	1730.40						
PCS 1900	PCS 1900						
600 (CDMA)	1880						
661 (GSM)	1880						
9400 (UMTS)	1880						

Table 4-3 Center Channels and Frequencies

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. The middle channel and supported bandwidths from the worst-case band was additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-5 to 9-9 and 9-14 for LTE bandwidths and channels.

3. WIFI

The middle channel for each 802.11 standard was tested for each probe orientation. The 2.4GHz 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. See Tables 9-10 and 9-15 for WIFI standards and channels.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 15 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Tage To of 72
© 2018 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M
				01/11/2018

IX. Test Flow

The flow diagram below was followed (From C63.19):

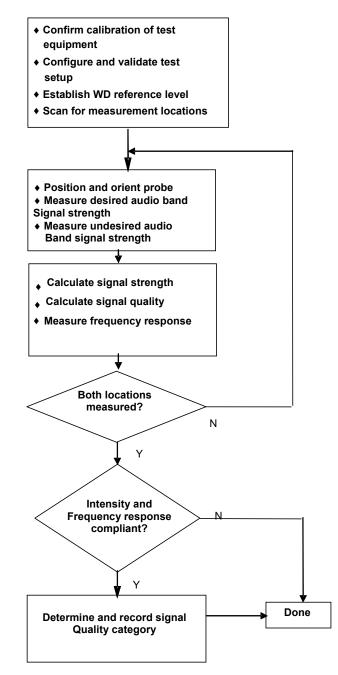


Figure 4-15 C63.19 T-Coil Signal Test Process

FCC ID: ZNFL413DL	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 16 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 10 0172
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

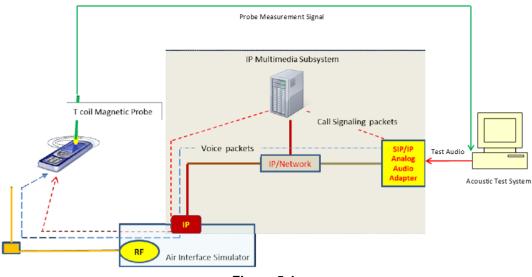


Figure 5-1 Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level^{*}. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 17 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 17 0172	
© 2018 PCTEST Engineering	2018 PCTEST Engineering Laboratory, Inc.				
				01/11/2018	

II. DUT Configuration for VoLTE over IMS T-coil Testing

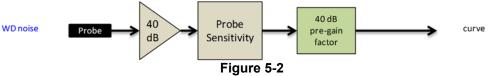
1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

	Vol TE over IMS SNNR by Radio Configuration								
Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
1880.0	18900	20	QPSK	1	0	3.46	-28.24	31.70	
1880.0	18900	20	QPSK	1	50	3.72	-27.65	31.37	
1880.0	18900	20	QPSK	1	99	3.51	-28.03	31.54	
1880.0	18900	20	QPSK	50	0	3.60	-28.24	31.84	
1880.0	18900	20	QPSK	50	25	3.20	-29.32	32.52	
1880.0	18900	20	QPSK	50	50	3.30	-29.34	32.64	
1880.0	18900	20	QPSK	100	0	3.15	-28.94	32.09	
1880.0	18900	20	16QAM	1	0	3.37	-25.57	28.94	
1880.0	18900	20	16QAM	1	50	3.18	-26.54	29.72	
1880.0	18900	20	16QAM	1	99	3.76	-25.53	29.29	
1880.0	18900	20	16QAM	50	0	3.53	-29.65	33.18	
1880.0	18900	20	16QAM	50	25	3.19	-29.07	32.26	
1880.0	18900	20	16QAM	50	50	3.34	-30.25	33.59	
1880.0	18900	20	16QAM	100	0	3.53	-28.64	32.17	

Table 5-1	
VoLTE over IMS SNNR by Radio Configuration	۱

2. Codec Configuration


An investigation was performed to determine the audio codec configuration to be used for testing. The NB AMR 12.2kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

	AMR Codec Investigation – VoLTE over IMS							
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel	
ABM1 (dBA/m)	11.06	11.94	3.47	4.29	– Axial	LTE Band 2 / 20MHz BW	18900	
ABM2 (dBA/m)	-24.41	-24.32	-25.36	-24.79				
Frequency Response	Pass	Pass	Pass	Pass				
S+N/N (dB)	35.47	36.26	28.83	29.08				

	Table 5-2
MR	Codec Investigation – VoLTE over IMS

Mute on; Backlight off; Max Volume; Max Contrast

• TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 18 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 10 0172	
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.				

6. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

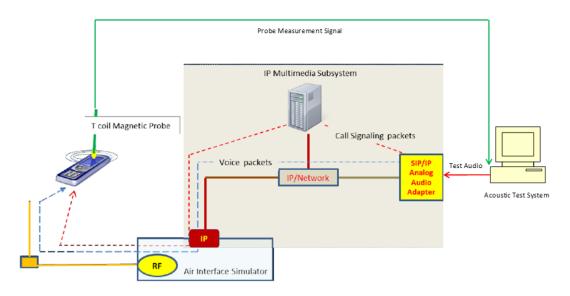


Figure 6-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

0	
	, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
= EUU UTTICE OF Engineering and Lechnology KUB	285076 DUZ 1-COILLESTING FOR CMIRS IP VU3 Sentember 13, 2017

FCC ID: ZNFL413DL	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 19 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 190172
© 2018 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M
				01/11/2018

II. DUT Configuration for VoWIFI over IMS T-coil Testing

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each 802.11 standard:

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
802.11b	6	DSSS	1	-2.05	-25.57	23.52
802.11b	6	DSSS	2	-1.88	-25.50	23.62
802.11b	6	CCK	5.5	-1.91	-25.17	23.26
802.11b	6	CCK	11	-1.81	-25.21	23.40

Table 6-1 802.11b SNNR by Radio Configurati

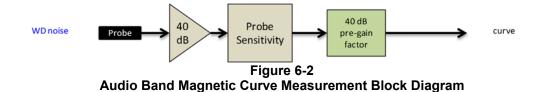
Table 6-2 802.11g SNNR by Radio Configuration Data Rate ABM1 ABM2 SNNR Channel Modulation Mode [Mbps] [dB(A/m)] [dB(A/m)] [dB] 802.11g 6 **BPSK** 6 -1.85 -27.95 26.10 802.11g 6 BPSK 9 -2.09 -28.26 26.17 802.11g 6 QPSK 12 -1.97 -27.99 26.02 6 QPSK 802.11g 18 -1.93-29.1327.20 802.11g 6 16-QAM 24 -1.91 -28.73 26.82 16-QAM 6 27.37 802.11g 36 -1.99 -29.36 6 48 802.11g 64-QAM -1.94 -28.63 26.69 802.11g 6 64-QAM 54 -1.81 -30.62 28.81

Table 6-3 802 11n SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
802.11n	6	BPSK	6.5	-1.73	-25.58	23.85
802.11n	6	QPSK	13	-1.80	-26.28	24.48
802.11n	6	QPSK	19.5	-2.00	-26.03	24.03
802.11n	6	16-QAM	26	-2.02	-26.07	24.05
802.11n	6	16-QAM	39	-1.86	-26.24	24.38
802.11n	6	64-QAM	52	-1.72	-25.80	24.08
802.11n	6	64-QAM	58.5	-1.66	-25.89	24.23
802.11n	6	64-QAM	65	-1.59	-25.85	24.26

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 20 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 20 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

2. Codec Configuration


.

An investigation was performed to determine the audio codec configuration to be used for testing. The NB AMR 12.2kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

	AMR Codec Investigation – vowiFi over IMS							
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	6.19	7.06	-1.73	-1.16		2.4GHz 802.11b	000.44	6
ABM2 (dBA/m)	-26.97	-27.18	-24.94	-27.02	Axial			
Frequency Response	Pass	Pass	Pass	Pass	Axia		802.110	0
S+N/N (dB)	33.16	34.24	23.21	25.86				

Table 6-4 AMR Codec Investigation – VoWIFI over IMS

Mute on; Backlight off; Max Volume; Max Contrast

FCC ID: ZNFL413DL	PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 21 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 21 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 64kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The 64kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Codec Investigation – OTT VoIP (EvDO)						
Codec Setting:	64kbps	6kbps	Orientation	Channel		
ABM1 (dBA/m)	19.53	20.02				
ABM2 (dBA/m)	-28.93	-29.26	Axial	384		
Frequency Response	Pass	Pass	304			
S+N/N (dB)	48.46	49.28				

Table 7-1

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: ZNFL413DL	PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 22 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 22 01 72
© 2018 PCTEST Engineering Laboratory. Inc.				

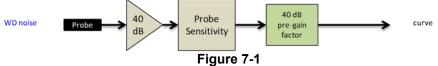
Codec Investigation – OTT VoIP (EDGE)							
Codec Setting:	64kbps	6kbps	Orientation	Channel			
ABM1 (dBA/m)	19.70	19.02	- Axial				
ABM2 (dBA/m)	-10.80	-11.75		190			
Frequency Response	Pass	Pass		130			
S+N/N (dB)	30.50	30.77					

Table 7-2 Codec Investigation – OTT VoIP (EDGE)

 Table 7-3

 Codec Investigation – OTT VolP (HSPA)

Codec Setting:	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	19.13	19.58		
ABM2 (dBA/m)	-28.37	-27.65	Axial	4183
Frequency Response	Pass	Pass	Axiai	
S+N/N (dB)	46.59	47.23		


Table 7-4 Codec Investigation – OTT VoIP (LTE)

		<u> </u>	. ,			
Codec Setting:	64kbps	6kbps	Orientation	Band / BW	Channel	
ABM1 (dBA/m)	19.29	19.23				
ABM2 (dBA/m)	-21.08	-21.53	Axial	B4 20MHz		18900
Frequency Response	Pass	Pass			10300	
S+N/N (dB)	40.37	40.76				

Table 7-5 Codec Investigation – OTT VoIP (WIFI)

	Couec	mvesuyau	011 - 011			
Codec Setting:	64kbps	6kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	19.61	19.83		2.4GHz	802.11b	
ABM2 (dBA/m)	-19.14	-19.18	Axial			6
Frequency Response	Pass	Pass		2.40112	002.115	0
S+N/N (dB)	38.75	39.01				

- Mute on; Backlight off; Max Volume; Max Contrast
- · Radio Configurations can be found in Section 9.III.G

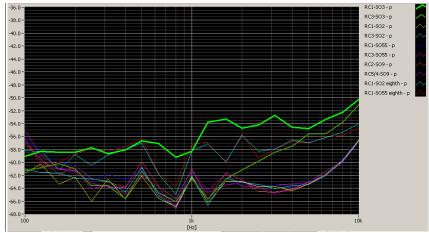
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFL413DL	<u>PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset	Fage 25 0172	
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

8. FCC 3G MEASUREMENTS

I. CDMA Test Configurations

Radio Configuration 1, Service Option 3 (thick, green data curve) was used for the testing as the worstcase configuration for the handset due to vocoder gating from the EVRC logic. See below plot for ABM noise comparison between operational field service options and radio configurations for a CDMA2000 handset:



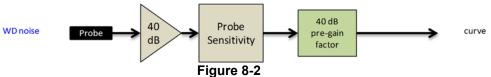

Figure 8-1 CDMA Audio Band Magnetic Noise

Table 8-1
FCC 3G ABM Measurements for ZNFL413DL (CDMA)

Codec Setting:	RC1/SO3	RC3/SO3	RC4/SO3	Orientation	Channel							
ABM1 (dBA/m)	6.16	5.70	5.74									
ABM2 (dBA/m)	-26.09	-39.39	-39.05	Axial	384							
Frequency Response	Pass	Pass	Pass	Axia	304							
S+N/N (dB)	32.25	45.09	44.79									

• Mute on; Backlight off; Max Volume; Max Contrast

Power Control Bits = "All Up"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager					
Filename:	Test Dates:	DUT Type:		Page 24 of 72					
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 24 01 72					
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.								

II. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

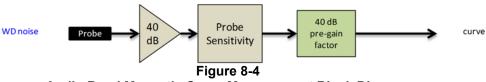

Figure 8-3 UMTS Audio Band Magnetic Noise

Table 8-2 Codec Investigation - UMTS

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel		
ABM1 (dBA/m)	3.54	4.69	5.14				
ABM2 (dBA/m)	-37.24	-36.92	-37.44	Axial	4183		
Frequency Response	Pass	Pass	Pass	Axiai			
S+N/N (dB)	40.78	41.61	42.58				

Mute on; Backlight off; Max Volume; Max Contrast

TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager					
Filename: Test Dates: 1M1712050312-08-R1.ZNF 01/08/2018 - 01/11/2018		DUT Type:		Page 25 of 72					
		Portable Handset		Fage 25 0172					
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.								

9. T-COIL TEST SUMMARY

ſ

			Consoli	dated T	abled Re	sults			
		-	esponse rgin	-	netic y Verdict		SNNR dict	FCC Margin	C63.19-2011
C63 10	9 Section	8.	3.2	8.	3.1	8.	3.4	(dB)	Rating
003.18	9 Section	Axial	Radial	Axial	Radial	Axial	Radial		
CDMA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-7.01	Т3
ODIIIA	PCS	PASS	NA	PASS	PASS	PASS	PASS	-7.01	15
EvDO	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-21.68	Τ4
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	-21.00	14
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-5.87	Т3
001	PCS	PASS	NA	PASS	PASS	PASS	PASS	-5.07	15
EDGE	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-10.81	T4
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	-10.81	14
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-18.01	Τ4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
HSPA (OTT VoIP)	AWS	PASS	NA	PASS	PASS	PASS	PASS		Τ4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	B12	PASS	NA	PASS	PASS	PASS	PASS		
	B13	PASS	NA	PASS	PASS	PASS	PASS	1	
LTE FDD	B5	PASS	NA	PASS	PASS	PASS	PASS	-4.70	Т3
	B66	PASS	NA	PASS	PASS	PASS	PASS		
	B2	PASS	NA	PASS	PASS	PASS	PASS	1	
LTE FDD (OTT VoIP)	B4	PASS	NA	PASS	PASS	PASS	PASS	-20.40	Τ4
	802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN	802.11g	PASS	NA	PASS	PASS	PASS	PASS	-2.04	Т3
	802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN (OTT VoIP)	802.11g	PASS	NA	PASS	PASS	PASS	PASS	-18.37	Τ4
(011 1011)	802.11n	PASS	NA	PASS	PASS	PASS	PASS	1	

Table 9-1 Consolidated Tabled Results

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager					
Filename:	Test Dates:	DUT Type:		Page 26 of 72					
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 20 01 72					
© 2018 PCTEST Engineering	2018 PCTEST Engineering Laboratory, Inc.								

01/11/2018

I. Raw Handset Data

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates		
		1013	6.39	-24.02		1.96	30.41	20.00	-10.41	Τ4			
	Axial	384	6.33	-26.07	-63.86	1.96	32.40	20.00	-12.40	T4	2.6, 3.4		
Cellular		777	6.34	-24.85		1.93	31.19	20.00	-11.19	T4			
Central		1013	-1.56	-29.11	-63.98	N/A	27.55	20.00	-7.55	Т3			
	Radial	384	-1.72	-30.59			28.87	20.00	-8.87	Т3	2.6, 4.2		
		777	-1.52	-29.73			28.21	20.00	-8.21	T3			
		25	6.44	-24.20		1.95	30.64	20.00	-10.64	T4			
	Axial	600	6.68	-25.17	-63.86	1.95	31.85	20.00	-11.85	T4	2.6, 3.4		
PCS		1175	6.44	-23.97		1.98	30.41	20.00	-10.41	T4			
F03		25	-1.86	-29.15			27.29	20.00	-7.29	Т3			
	Radial	600	-1.67	-30.33	-63.98	N/A	28.66	20.00	-8.66	Т3	2.6, 4.2		
		1175	-1.89	-28.90			27.01	20.00	-7.01	Т3			

Table 9-2 Raw Data Results for CDMA

Table 9-3 Raw Data Results for GSM

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates		
		128	22.15	-7.75		1.26	29.90	20.00	-9.90	Т3			
	Axial	190	22.38	-8.38	-63.86	1.07	30.76	20.00	-10.76	T4	2.6, 3.4		
GSM850		251	22.27	-8.31		1.38	30.58	20.00	-10.58	T4			
G31050		128	12.13	-13.74	-63.98	8 N/A	25.87	20.00	-5.87	Т3	2.6, 4.2		
	Radial	190	12.33	-14.55			26.88	20.00	-6.88	Т3			
		251	12.38	-14.19			26.57	20.00	-6.57	Т3			
		512	22.44	-12.18		1.31	34.62	20.00	-14.62	T4			
	Axial	661	22.18	-12.77	-63.86	1.28	34.95	20.00	-14.95	T4	2.6, 3.4		
GSM1900		810	22.50	-12.86		1.33	35.36	20.00	-15.36	T4			
G3W1900		512	12.27	-17.66			29.93	20.00	-9.93	T3			
	Radial	661	12.09	-18.68	-63.98 N/A	N/A	30.77	20.00	-10.77	T4	2.6, 4.2		
		810	12.28	-18.81		31.09	20.00	-11.09	T4				

Table 9-4 Raw Data Results for UMTS

			ABM1	ABM2	Ambient Noise	Frequency	S+N/N	FCC imit	ABM1 ABM2 ABM2 Ambient Noise '1 S+N/N ECC Limit ECC Margin LC63 19-2011 Lest										
Mode	Orientation	Channel	[dB(A/m)]	[dB(A/m)]	[dB(A/m)]	Response Margin (dB)	(dB)	(dB)	(dB)	Rating	Coordinates								
		4132	3.34	-38.27		2.00	41.61	20.00	-21.61	T4									
	Axial	4183	3.21	-37.52	-63.86	2.00	40.73	20.00	-20.73	T4	2.6, 3.4								
UMTS V		4233	3.29	-37.18		2.00	40.47	20.00	-20.47	T4									
		4132	-5.49	-44.06			38.57	20.00	-18.57	T4									
	Radial	4183	-5.83	-44.13	-63.98	N/A	38.30	20.00	-18.30	T4	2.6, 4.2								
		4233	-5.82	-44.09			38.27	20.00	-18.27	T4									
											-								
	Axial	1312	3.55	-37.27		2.00	40.82	20.00	-20.82	T4									
		1412	3.63	-37.98	-63.86	2.00	41.61	20.00	-21.61	T4	2.6, 3.4								
UMTS IV		1513	3.35	-37.04		2.00	40.39	20.00	-20.39	T4									
0111311		1312	-5.45	-43.56	-63.98 N/A		38.11	20.00	-18.11	T4									
	Radial	1412	-5.68	-43.80		38.12	20.00	-18.12	T4	2.6, 4.2									
		1513	-5.48	-43.67			38.19	20.00	-18.19	T4									
		9262	3.33	-37.39		2.00	40.72	20.00	-20.72	T4									
	Axial	9400	3.37	-38.08	-63.86	2.00	41.45	20.00	-21.45	T4	2.6, 3.4								
UMTS II		9538	3.34	-37.20		2.00	40.54	20.00	-20.54	T4									
011131		9262	-5.74	-43.75			38.01	20.00	-18.01	T4									
	Radial	9400	-5.65	-44.20	-63.98	-63.98	-63.98	-63.98	-63.98	N/A	38.55	20.00	-18.55	T4	2.6, 4.2				
		9538	-5.29	-43.40			38.11	20.00	-18.11	T4									

FCC ID: ZNFL413DL	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 27 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 21 0172
@ 2019 DOTEST Engineering	a Laboratora, Inc.			DEV 2.2 M

© 2018 PCTEST Engineering Laboratory, Inc.

REV 3.2.M 01/11/2018

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
		10MHz	23095	3.44	-26.09		2.00	29.53	20.00	-9.53	Т3		
	Axial	5MHz	23095	3.76	-25.27	-63.86	2.00	29.03	20.00	-9.03	T3	2.6, 3.4	
		3MHz	23095	3.39	-25.97		2.00	29.36	20.00	-9.36	Т3		
LTE Band		1.4MHz	23095	3.84	-25.87		2.00	29.71	20.00	-9.71	Т3		
12		10MHz	23095	-5.06	-31.65			26.59	20.00	-6.59	T3		
	Radial	5MHz	23095	-5.20	-32.46	-63.98	N/A	27.26	20.00	-7.26	Т3	2.6, 4.2	
	Naulai	3MHz	23095	-5.16	-31.37	-03.98	IN/A	26.21	20.00	-6.21	T3	2.0, 4.2	
		1.4MHz	23095	-5.10	-31.13			26.03	20.00	-6.03	Т3		

Table 9-5 Raw Data Results for LTE B12

Table 9-6 Raw Data Results for LTE B13

	Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)		Test Coordinates
	LTE Band 13	Axial	10MHz	23230	3.37	-25.59	-63.86	2.00	28.96	20.00	-8.96	Т3	2.6, 3.4
			5MHz	23230	3.26	-26.35		2.00	29.61	20.00	-9.61	T3	2.0, 3.4
		Radial	10MHz	23230	-5.30	-31.30	62.09	-63.98 N/A	26.00	20.00	-6.00	Т3	2.6, 4.2
			5MHz	23230	-5.53	-32.03	-63.98		26.50	20.00	-6.50	T3	2.0, 4.2

Table 9-7Raw Data Results for LTE B5

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
		10MHz	20525	3.37	-27.05		2.00	30.42	20.00	-10.42	T4		
Axial	5MHz	20525	3.36	-28.16	-63.86	2.00	31.52	20.00	-11.52	T4	2.6, 3.4		
	Axiai	3MHz	20525	3.56	-28.00	-03.00	2.00	31.56	20.00	-11.56	T4	2.0, 3.4	
LTE Band 5		1.4MHz	20525	3.41	-27.37		2.00	30.78	20.00	-10.78	T4		
LIE Ballu 5		10MHz	20525	-5.35	-32.73			27.38	20.00	-7.38	T3		
	Radial	5MHz	20525	-5.15	-32.34	-63.98	N/A	27.19	20.00	-7.19	Т3	2.6, 4.2	
	Naulai	3MHz	20525	-5.18	-32.62		IN/A	27.44	20.00	-7.44	Т3	2.0, 4.2	
		1.4MHz	20525	-5.34	-31.88			26.54	20.00	-6.54	Т3		

Table 9-8 Raw Data Results for LTE B66

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132572	3.45	-23.55		2.00	27.00	20.00	-7.00	Т3	
		20MHz	132322	3.27	-23.43		2.00	26.70	20.00	-6.70	Т3	
		20MHz	132072	3.03	-23.01		2.00	26.04	20.00	-6.04	Т3	
	Axial	15MHz	132322	3.27	-23.54	-63.86	2.00	26.81	20.00	-6.81	Т3	2.6, 3.4
	Axiai	10MHz	132322	3.43	-25.18	-03.00	2.00	28.61	20.00	-8.61	T3	2.0, 3.4
		5MHz	132322	3.35	-25.94		2.00	29.29	20.00	-9.29	T3	
		3MHz	132322	3.11	-25.96		2.00	29.07	20.00	-9.07	Т3	
LTE Band		1.4MHz	132322	3.52	-25.76		2.00	29.28	20.00	-9.28	Т3	
66		20MHz	132572	-5.29	-30.69			25.40	20.00	-5.40	Т3	
		20MHz	132322	-5.26	-30.40			25.14	20.00	-5.14	Т3	
		20MHz	132072	-5.43	-30.13			24.70	20.00	-4.70	Т3	
	Dedial	15MHz	132322	-5.15	-30.64	C2 00	NIA	25.49	20.00	-5.49	Т3	00.40
	Radial	10MHz	132322	-5.18	-31.39	-63.98	N/A	26.21	20.00	-6.21	Т3	2.6, 4.2
		5MHz	132322	-5.31	-32.51			27.20	20.00	-7.20	Т3	
		3MHz	132322	-5.11	-31.77			26.66	20.00	-6.66	Т3	
		1.4MHz	132322	-5.15	-32.05			26.90	20.00	-6.90	T3	

FCC ID: ZNFL413DL	CAPCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 28 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 20 01 72
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M

	Table 9-9
Raw Data	Results for LTE B2

								_				
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	18900	3.48	-25.74		2.00	29.22	20.00	-9.22	Т3	
		15MHz	18900	3.46	-25.85		2.00	29.31	20.00	-9.31	T3	
	Axial	10MHz	18900	3.35	-26.62	-63.86	2.00	29.97	20.00	-9.97	T3	2.6, 3.4
		5MHz	18900	3.15	-27.55	-03.00	2.00	30.70	20.00	-10.70	T4	2.0, 3.4
		3MHz	18900	3.24	-26.22		2.00	29.46	20.00	-9.46	Т3	
LTE Band 2		1.4MHz	18900	3.23	-26.83		2.00	30.06	20.00	-10.06	T4	
LIE Ballu 2		20MHz	18900	-5.45	-31.35			25.90	20.00	-5.90	Т3	
		15MHz	18900	-5.32	-31.25			25.93	20.00	-5.93	Т3	
	Radial	10MHz	18900	-5.45	-32.47	-63.98	N/A	27.02	20.00	-7.02	Т3	2.6, 4.2
	nadiai	5MHz	18900	-5.54	-32.76	-03.96	IN/A	27.22	20.00	-7.22	T3	2.0, 4.2
		3MHz	18900	-5.31	-31.31			26.00	20.00	-6.00	T3]
		1.4MHz	18900	-5.47	-32.18	T I		26.71	20.00	-6.71	T3]

Table 9-10 Raw Data Results for 2.4GHz WIFI

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		1	-1.73	-23.77		2.00	22.04	20.00	-2.04	Т3	
	Axial	6	-1.76	-24.65	-63.86	2.00	22.89	20.00	-2.89	Т3	2.6, 3.4
WLAN		11	-1.66	-25.87		2.00	24.21	20.00	-4.21	Т3	
802.11b		1	-8.36	-31.82			23.46	20.00	-3.46	Т3	
	Radial	6	-8.08	-31.50	-63.98	N/A	23.42	20.00	-3.42	Т3	2.6, 4.2
		11	-8.43	-31.66			23.23	20.00	-3.23	Т3	
WLAN	Axial	6	-1.93	-28.30	-63.86	2.00	26.37	20.00	-6.37	Т3	2.6, 3.4
802.11g	Radial	6	-8.00	-32.94	-63.98	N/A	24.94	20.00	-4.94	Т3	2.6, 4.2
WLAN	Axial	6	-1.84	-25.40	-63.86	2.00	23.56	20.00	-3.56	Т3	2.6, 3.4
802.11n	Radial	6	-7.95	-31.70	-63.98	N/A	23.75	20.00	-3.75	Т3	2.6, 4.2

Table 9-11 Raw Data Results for EvDO (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
Cellular	Axial	384	19.81	-28.54	-63.86	2.00	48.35	20.00	-28.35	T4	2.6, 3.4
EvDO	Radial	384	12.35	-29.33	-63.98	N/A	41.68	20.00	-21.68	T4	2.6, 4.2
PCS	Axial	600	19.39	-29.06	-63.86	2.00	48.45	20.00	-28.45	T4	2.6, 3.4
EvDO	Radial	600	13.19	-31.41	-63.98	N/A	44.60	20.00	-24.60	T4	2.6, 4.2

Table 9-12 Raw Data Results for EDGE (OTT VolP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	19.69	-11.12	-63.86	2.00	30.81	20.00	-10.81	T4	2.6, 3.4
LDGL030	Radial	190	12.76	-20.32	-63.98	N/A	33.08	20.00	-13.08	T4	2.6, 4.2
EDGE1900	Axial	661	19.56	-14.61	-63.86	2.00	34.17	20.00	-14.17	T4	2.6, 3.4
EDGE 1900	Radial	661	12.21	-22.50	-63.98	N/A	34.71	20.00	-14.71	T4	2.6, 4.2

FCC ID: ZNFL413DL	CAPCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 29 01 72
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
HSPA V	Axial	4183	19.49	-28.36	-63.86	2.00	47.85	20.00	-27.85	T4	2.6, 3.4	
HSPA V	Radial	4183	12.35	-31.25	-63.98	N/A	43.60	20.00	-23.60	T4	2.6, 4.2	
HSPA IV	Axial	1412	19.43	-27.95	-63.86	2.00	47.38	20.00	-27.38	T4	2.6, 3.4	
HSPAIN	Radial	1412	12.27	-31.58	-63.98	N/A	43.85	20.00	-23.85	T4	2.6, 4.2	
HSPA II	Axial	9400	19.19	-27.98	-63.86	2.00	47.17	20.00	-27.17	T4	2.6, 3.4	
параш	Radial	9400	13.52	-31.38	-63.98	N/A	44.90	20.00	-24.90	T4	2.6, 4.2	

Table 9-13 Raw Data Results for HSPA (OTT VoIP)

Table 9-14 Raw Data Results for LTE B4 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	20300	19.20	-22.68		2.00	41.88	20.00	-21.88	T4	
		20MHz	20175	19.16	-21.24		2.00	40.40	20.00	-20.40	T4	
		20MHz	20050	19.04	-21.95		2.00	40.99	20.00	-20.99	T4	
	Axial	15MHz	20175	19.07	-21.46	-63.86	2.00	40.53	20.00	-20.53	T4	2.6, 3.4
Axiai	Axiai	10MHz	20175	19.53	-22.82	-03.00	2.00	42.35	20.00	-22.35	T4	2.0, 3.4
		5MHz	20175	19.24	-22.31		2.00	41.55	20.00	-21.55	T4	
		3MHz	20175	19.23	-21.62		2.00	40.85	20.00	-20.85	T4	
LTE Band 4		1.4MHz	20175	19.18	-22.18		2.00	41.36	20.00	-21.36	T4	
LIE Danu 4		20MHz	20175	11.90	-29.43			41.33	20.00	-21.33	T4	
		15MHz	20175	11.81	-29.33			41.14	20.00	-21.14	T4	
		10MHz	20175	11.83	-29.91			41.74	20.00	-21.74	T4	
	Radial	5MHz	20175	11.78	-29.52	62.09	N/A	41.30	20.00	-21.30	T4	2.6, 4.2
	Raulai	3MHz	20175	11.83	-29.57	-63.98	IN/A	41.40	20.00	-21.40	T4	2.0, 4.2
		1.4MHz	20393	11.82	-30.25			42.07	20.00	-22.07	T4	
		1.4MHz	20175	11.82	-29.14			40.96	20.00	-20.96	T4	
		1.4MHz	19957	11.76	-29.40			41.16	20.00	-21.16	T4	

Table 9-15 Raw Data Results for 2.4GHz WIFI (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		1	19.63	-19.87		2.00	39.50	20.00	-19.50	T4	
	Axial	6	19.56	-18.81	-63.86	2.00	38.37	20.00	-18.37	T4	2.6, 3.4
WLAN		11	19.65	-19.21		2.00	38.86	20.00	-18.86	T4	
802.11b		1	12.47	-29.91			42.38	20.00	-22.38	T4	
	Radial	6	12.41	-29.17	-63.98	N/A	41.58	20.00	-21.58	T4	2.6, 4.2
		11	12.39	-29.49			41.88	20.00	-21.88	T4	
WLAN	Axial	6	19.65	-24.04	-63.86	2.00	43.69	20.00	-23.69	T4	2.6, 3.4
802.11g	Radial	6	12.40	-31.00	-63.98	N/A	43.40	20.00	-23.40	T4	2.6, 4.2
WLAN	Axial	6	19.66	-21.99	-63.86	2.00	41.65	20.00	-21.65	T4	2.6, 3.4
802.11n	Radial	6	12.44	-29.83	-63.98	N/A	42.27	20.00	-22.27	T4	2.6, 4.2

FCC ID: ZNFL413DL	PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 30 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 50 0172
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M 01/11/2018

II. Test Notes

A. General

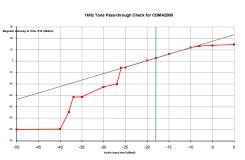
- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (**Phone→Settings→More Settings→Hearing aids**) was set to ON for Frequency Response compliance
- 4. Speech Signal: ITU-T P.50 Artificial Voice
- 5. Bluetooth and WIFI were disabled for 2G/3G/4G modes while testing.
- 6. Licensed data modes and Bluetooth were disabled for WIFI modes while testing.

B. CDMA

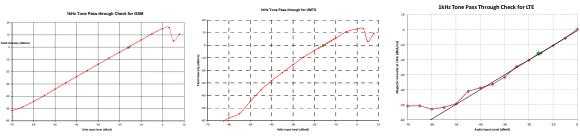
- 1. Power Configuration: Power Control Bits = "All Up"
- 2. Vocoder Configuration: RC1/SO3 (CDMA EVRC)

C. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);
- D. UMTS
 - 1. Power Configuration: TPC= "All 1s";
 - 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);
- E. LTE FDD
 - 1. Power Configuration: TPC = "Max Power"
 - 2. Radio Configuration: 16QAM, 1RB, 0RB offset
 - 3. Vocoder Configuration: NB AMR 12.2kbps
 - 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 at 20MHz is the worst-case for both Axial and Radial probe orientations.

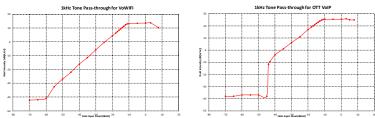

F. WIFI

- 1. Radio Configuration
 - a. 802.11b: CCK, 5.5Mbps
 - b. 802.11g: QPSK, 12Mbps
 - c. 802.11n: BPSK, 6.5Mbps
- 2. Vocoder Configuration: NB AMR 12.2kbps
- 3. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. 802.11b is the worst-case for both Axial and Radial probe orientations.


FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1712050312-08-R1.ZNF	Test Dates: 01/08/2018 - 01/11/2018	DUT Type: Portable Handset		Page 31 of 72
© 2018 PCTEST Engineering		Portable Handset		REV 3.2.M
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3. 01/11/2

- G. OTT VoIP
 - 1. Vocoder Configuration: 64kbps
 - 2. EvDO Configuration
 - a. Revision: A
 - 3. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
 - 4. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
 - 5. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. LTE Band 66 was the worst-case band from VoLTE over IMS testing for both Axial and Radial probe orientations however LTE Band 4 was evaluated for OTT VoIP due to carrier limitations.
 - 6. WIFI Configuration:
 - a. Radio Configuration
 - i. 802.11b: CCK, 5.5Mbps
 - ii. 802.11g: QPSK, 12Mbps
 - iii. 802.11n: BPSK, 6.5Mbps
 - b. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. 802.11b is the worst-case for both Axial and Radial probe orientations.

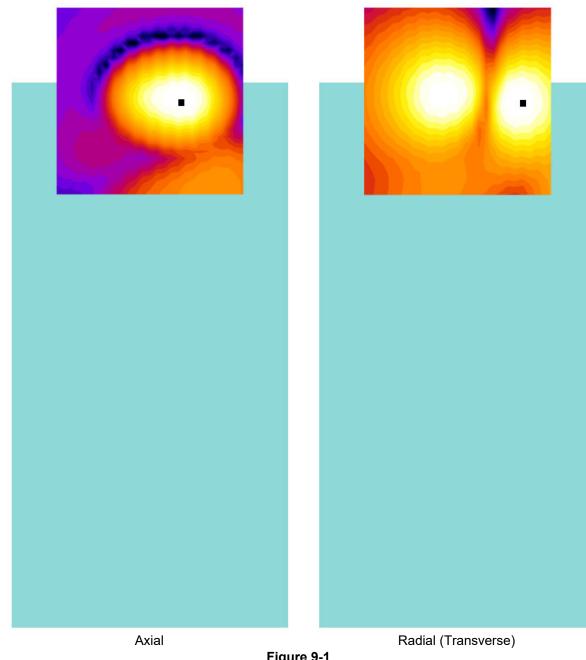
III. 1 kHz Vocoder Application Check



This model was verified to be within the linear region for ABM1 measurements at -18 dBm0 for CDMA. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 52 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M


This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

IV. T-Coil Validation Test Results

Item	Target	Result	Verdict
Axial		-	
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.176	PASS
Environmental Noise	< -58 dBA/m	-63.86	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.277	PASS
Environmental Noise	< -58 dBA/m	-63.98	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

Table 9-16Helmholtz Coil Validation Table of Results

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 33 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 55 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

V. ABM1 Magnetic Field Distribution Scan Overlays

Figure 9-1 T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	💽 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 34 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 34 0172
© 2018 PCTEST Engineering	J Laboratory, Inc.			REV 3.2.M
				01/11/2018

10. MEASUREMENT UNCERTAINTY

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)					17.7%	0.71	
Expanded uncertainty (k=2), 95% confidence level 35					35.3%	1.31	

Table 10-1 Uncertainty Estimation Table

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 55 0172
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M
	-			01/11/2018

11. EQUIPMENT LIST

Table 11-1 Equipment List

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Dell	Latitude E6540	SoundCheck Acoustic Analyzer Laptop	4/11/2017	Annual	4/11/2018	7BFNM32
Listen	SoundConnect	Microphone Power Supply	12/2/2016	Biennial	12/2/2018	PS2612
Listen	SoundConnect	Microphone Power Supply	N/A	N/A	N/A	0899-PS150
RME	Fireface UC	SoundCheck Acoustic Analyzer External Audio Interface	4/11/2017	Annual	4/11/2018	23528889
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/10/2017	Annual	2/10/2018	162125
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	7/14/2017	Annual	7/14/2018	140144
TEM	Radial T-Coil Probe	Radial T-Coil Probe	12/7/2016	Biennial	12/7/2018	TEM-1130
TEM	Axial T-Coil Probe	Axial T-Coil Probe	12/7/2016	Biennial	12/7/2018	TEM-1124
TEM	Helmholtz Coil	Helmholtz Coil	12/7/2016	Biennial	12/7/2018	925
TEM		HAC System Controller with Software	N/A	N/A	N/A	N/A
TEM		HAC Positioner	N/A	N/A	N/A	N/A

FCC ID: ZNFL413DL	<u> <u> <u> PCTEST</u> </u></u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 36 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 50 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

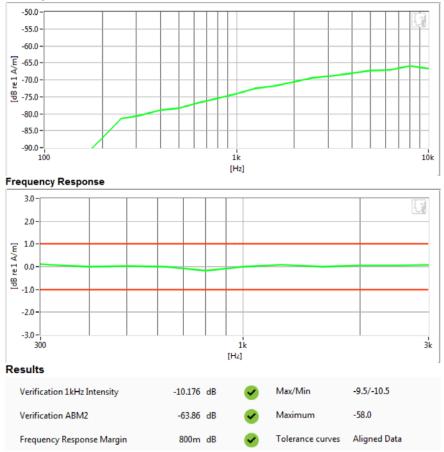
12. TEST DATA

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	💽 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 37 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 57 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	

01/08/2018

DUT: HH Coil – SN: 925

Type: HH Coil Serial: 925


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe - SN: TEM-1124; Calibrated: 12/07/2016

• Helmholtz Coil - SN: 925; Calibrated: 12/07/2016

Noise Spectrum

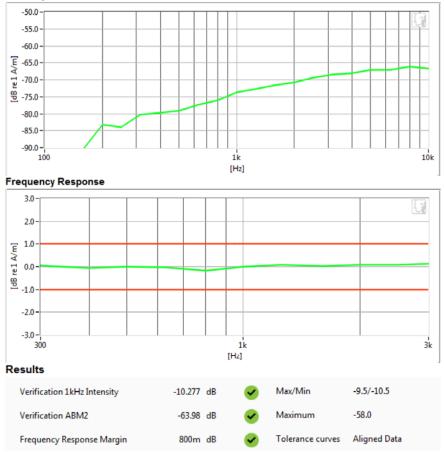
PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 30 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

01/08/2018

DUT: HH Coil – SN: 925 Type: HH Coil

Serial: 925


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

• Helmholtz Coil – SN: 925; Calibrated: 12/07/2016

Noise Spectrum

PCTEST 2018

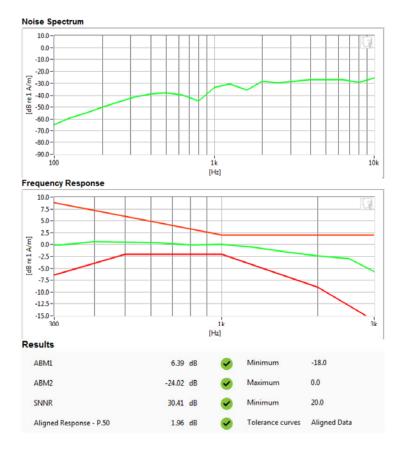
FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	💽 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 39 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 59 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011


Equipment:

٠

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: Cellular CDMA
 - Channel: 1013
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2018

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 40 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 40 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: PCS CDMA
- Channel: 1175
- Speech Signal: ITU-T P.50 Artificial Voice

Noise Spectrum 10.0 0.0 -10.0 -20.0 -20.0--30.0--40.0-B -50.0--60.0 -70.0 -80.0--80. -90.0 -| 100 1k 10k [Hz] Frequency Response 10.0 7.5 5.0-2.5 [dB re 1 A/m] 0.0 -2.5 -5.0--7.5 -10.0 -12.5 -15.0-1k [Hz] Results ABM1 6.44 dB Minimum -18.0 ABM2 -23.97 dB Maximum 0 SNNR 30.41 dB Minimum 20 Aligned Response - P.50 1.98 dB Tolerance curves Aligned Data

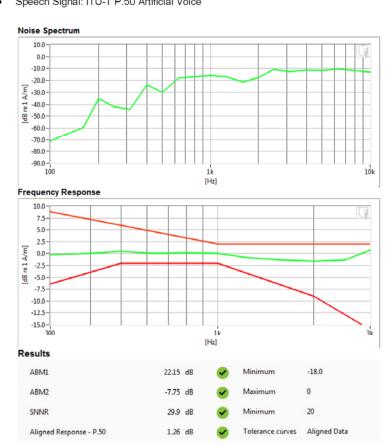
PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 41 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 41 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: GSM850
- Channel: 128 ٠
- Speech Signal: ITU-T P.50 Artificial Voice

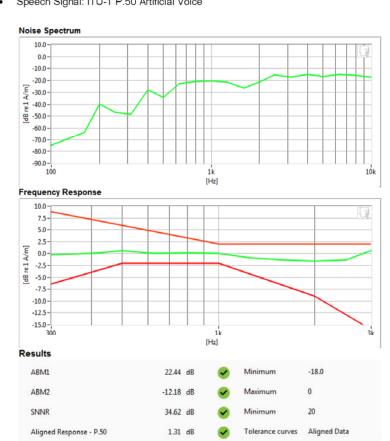
PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 42 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 42 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: GSM1900
- Channel: 512 ٠
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2018

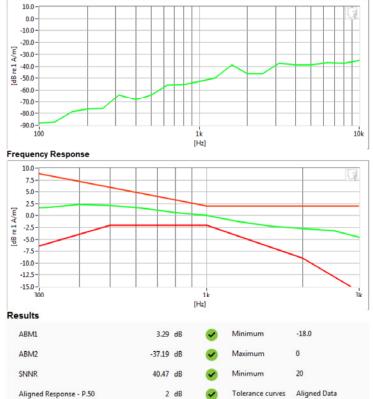
FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 43 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 43 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: UMTS V
- Channel: 4233
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2018

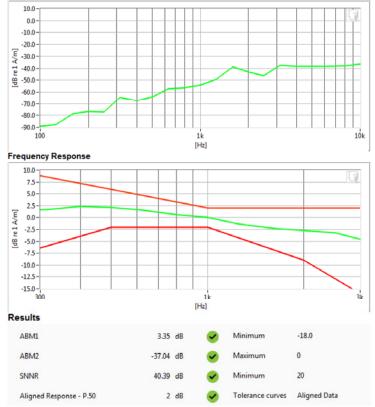
FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 44 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 44 0172
© 2018 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: UMTS IV
- Channel: 1513
- Speech Signal: ITU-T P.50 Artificial Voice

Noise Spectrum

PCTEST 2018

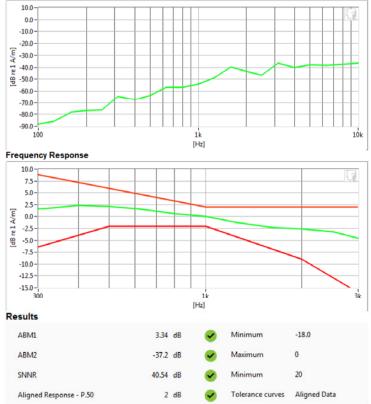
FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 45 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 45 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: UMTS II
- Channel: 9538
- Speech Signal: ITU-T P.50 Artificial Voice

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 40 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

01/10/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132072
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2018

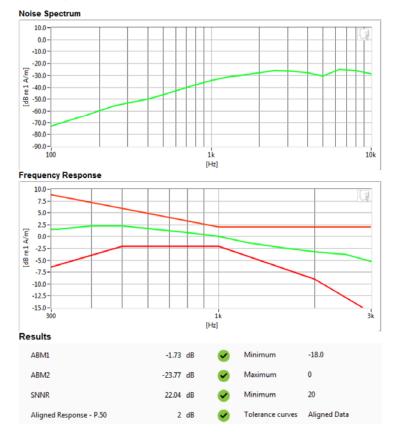
FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 47 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

01/10/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: 802.11b
- Channel: 1
- Speech Signal: ITU-T P.50 Artificial Voice

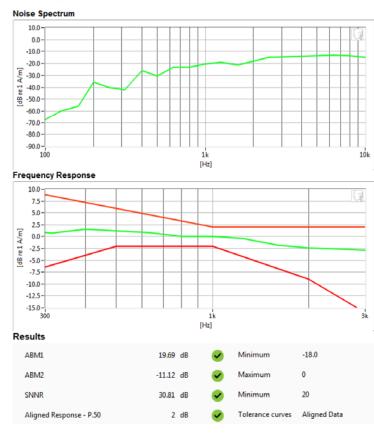
PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 48 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 40 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 12/07/2016

Test Configuration:

- VolP Application: Google Duo
- Mode: EDGE850
- Channel: 190
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 49 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: Cellular CDMA
- Channel: 1013

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	CALL PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 50 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 50 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	
				01/11/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: PCS CDMA
- Channel: 1175

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 51 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 51 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: GSM850
- Channel: 128

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 52 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 52 01 72
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: GSM1900
- Channel: 512

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 55 0172
© 2018 PCTEST Engineering	g Laboratory, Inc.			REV 3.2.M
				01/11/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: UMTS V
- Channel: 4233

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 54 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	
				01/11/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: UMTS IV
- Channel: 1312

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	CAPCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 55 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 55 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	
				01/11/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: UMTS II
- Channel: 9262

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	CALL PCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 50 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	
				01/11/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132072

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 57 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Tage of of 12
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	
				01/11/2018

01/10/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: 802.11b
- Channel: 11

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL	CAPCTEST	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 58 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 50 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	
				01/11/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFL413DL

Type: Portable Handset Serial: 18312

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 12/07/2016

Test Configuration:

- VolP Application: Google Duo
- Mode: EDGE850
- Channel: 190

Noise Spectrum

PCTEST 2018

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 35 0172
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

13. CALIBRATION CERTIFICATES

FCC ID: ZNFL413DL	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 00 01 72
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

01/11/2018

	Jaluwen Ca	ibration La	aboratories Inc.	
Corti	ficate	of Ca	libration	
	IICall	for UI		
	AXIA	L T COIL PROBE		
	Manufactured Model No:	by: TEM	CONSULTING L T COIL PROBE	
	Serial No: Calibration Re	TEM	-1124	
	Canbration R	Submitted By:		
	Customer:	ANDREW HAP	RWELL	X
	Company: Address:	PCTEST ENGI 6660-B DOBBI	NEERING LAB N ROAD	
		COLUMBIA	MD 21045	
	ation Laboratories Pr	ocedure No. A	MALTCTEMC / A	
Upon receipt for Calib	bration, the instrume	nt was found to be:	Vasap	
		nt was found to be:	12/29/266	
Upon receipt for Calil	1 (X)			
Upon receipt for Calil Within tolerance of the indic West Caldwell Calibr:	1 (X) ated specification. Sec ation Laboratories' c:	e attached Report of alibration control sy		
Upon receipt for Calil Within tolerance of the indic West Caldwell Calibr requirements, ISO 100	ated specification. Sec ation Laboratories' co 012-1 MIL STD 45662	e attached Report of alibration control sy 2A, ANSI/NCSL Z5	Calibration. stem meets the following 40-1, IEC Guide 25, ISO 9001:2008	
Upon receipt for Calil Within tolerance of the indic West Caldwell Calibr requirements, ISO 100 and ISO 17025 Note: With this Certificate,	ated specification. Sec ation Laboratories' co 012-1 MIL STD 45662	e attached Report of alibration control sy 2A, ANSI/NCSL Z5	Calibration. stem meets the following 40-1, IEC Guide 25, ISO 9001:2008 Approved by:	
Upon receipt for Calil Within tolerance of the indic West Caldwell Calibr requirements, ISO 100 and ISO 17025 Note: With this Certificate, Calibration Date:	n (X) ated specification. Sec ation Laboratories' cr 012-1 MIL STD 45663 . Report of Calibration is 07-Dec-16	e attached Report of alibration control sy 2A, ANSI/NCSL Z5	Calibration. stem meets the following 40-1, IEC Guide 25, ISO 9001:2008	
Upon receipt for Calil Within tolerance of the indic West Caldwell Calibr requirements, ISO 100 and ISO 17025 Note: With this Certificate,	1 (X) ated specification. Sec ation Laboratories' ca 012-1 MIL STD 45662 , Report of Calibration is 07-Dec-16 27068 - 3	e attached Report of alibration control sy 2A, ANSI/NCSL Z5	Calibration. stem meets the following 40-1, IEC Guide 25, ISO 9001:2008 Approved by: FC	
Upon receipt for Calil Within tolerance of the indice West Caldwell Calibr requirements, ISO 100 and ISO 17025 Note: With this Certificate, Calibration Date: Certificate No: QA Doc. \$1051 Rev. 2.0 10/1/01	n (X) ated specification. Sec ation Laboratories' cr 012-1 MIL STD 45663 . Report of Calibration is 07-Dec-16 27068 - 3 Certi Vest Caldwell	e attached Report of alibration control sy 2A, ANSI/NCSL Z5 included.	Calibration. stem meets the following 40-1, IEC Guide 25, ISO 9001:2008 Approved by: <u>FC</u> Felix Christopher (QA Mgr.)	
Upon receipt for Calil Within tolerance of the indice West Caldwell Calibr requirements, ISO 100 and ISO 17025 Note: With this Certificate, Calibration Date: Certificate No: QA Doc. #1051 Rev. 2.0 10/1/01	 (X) ated specification. See ation Laboratories' c: 012-1 MIL STD 45662 Report of Calibration is 1 07-Dec-16 27068 - 3 Centi Vest Caldwell Calibration Laboratories 	e attached Report of alibration control sy 2A, ANSI/NCSL Z5 included. Ificate Page 1 of 1	Calibration. stem meets the following 40-1, IEC Guide 25, ISO 9001:2008 Approved by: <u>FC</u> Felix Christopher (QA Mgr.)	

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 01 0172
© 2018 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M

HCATEMC_TEM 1124_Dec-07-2016

1575 State Route 96, Victor NY 14564

ISO/IEC 17025: 2005

REPORT OF CALIBRATION

TEM Consulting LP Axial T Coil Probe		Model No.: Axia	Serial No.: TEM 1124		
Company : PCTEST Engineering Lab.				I. D. No	: 80578
ibration results.					
Probe Sensitivity measured wi	ith Heimhall	Lz Coll			
Heimholtz Coil;			Before & atte	er data same	.: X
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m A	Laboratory Environ		
the current in the coils, in amperes.;	0.09	A	Ambient Temperature:	20.2	°C
Helmholtz Coll Constant;	7.09	A/ m/V	Ambient Humidity:	31.4	% RH
Helmholtz Coil magnetic field;	5.98	A/m	Ambient Pressure:	99.1	кРŧ
			Calibration Date:	7-D16	
Probe Sensitivity at	1000	H 			
Was	-60.23	a BV/A/m	Report Number:	27068	-3
	0.974	m V/A/ m	Control Number:	27068	
Probe resistance	904	0 h m •			
e above listed instrument meets or	exceeds tl	he tested manufact	turer's specifications.		
	rs:	683/284413-14			
Calibration is traceable through NIST test number			k=2.		
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95%			k=2.		
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95%)	1	
Celibretion is treceeble through NIST test numbe expanded uncertainty of calibration: 0.30dB at 95% on represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95%		el with a coverage factor of)	ed Probe Resp.	
Celibretion is treceeble through NIST test number expanded uncertainty of calibration: 0.30dB at 95% i in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	•
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% / In represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	•
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% in in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% In represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% / In represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% In represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% of the test number in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% of the represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% in represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	
Celibration is traceable through NIST test number expanded uncertainty of calibration: 0.30dB at 95% on represents Probes Frequency Response.		el with a coverage factor of)	ed Probe Resp.	10

Call Date: 7-Dec-2016 Callbrated on WCCL system type 9700

This document shall not be reproduced, except in Pull, without the written approval from West Caldwell Call Labor. Inc.

Messurements performed by: FC Felix Christopher Inc. Rev. 7.0 Jun. 24, 2014 D.-.. # 1038 HCATEMC

Page 1 of 2

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🔁 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 02 01 7 2
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.			

HCATEMC_TEM 1124_Dec-07-2016

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Vieter NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe

Model No.: Axial T Coil Probe

Serial No.: TEM 1124

Company : PCTEST Engineering Lab.

	unction Tolera			asured valu	ues
			Bafora	Out	Remarks
Probe Sensitivity at	1000 Hz.	d BV/A/m	-60.23		
		۵B			
Probe Level Linearity					
	R.∎f. (0 d B)				
		-12	-12.05		
		Hz			
Probe Frequency Response					
	D (0 D)				
	Ker. (UdD)				
		10000	20.2		
	Probe Level Linearity Probe Frequency Response	Probe Level Lineerity Ref. (0 aB)	Probe Level Linearity Probe Level Linearity Probe Frequency Response Probe Frequency Response Probe Frequency Response 100 126 158 200 251 316 398 501 631 794 Rer. (0 d B) 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943	B 6 6.03 Ref. (0 a B) 0 0.00 -6 -6.03 -12 -12 -12.05 -12 Probe Frequency Response 100 -19.8 126 -18.0 158 158 -16.0 200 200 -13.9 201 251 -12.0 316 316 -9.9 398 300 0.00 0.0 158 -16.0 100 201 158 -16.0 202 -12.0 316 9.9 398 -8.0 501 -6.0 631 -12.0 316 -9.9 398 -8.0 501 501 -6.0 631 -12.0 1600 0.0 1259 2.0 1585 4.0 1995 6.0 2512 7.9 3162 3981 11.9 5012 13.9 <td>B Construction B Construction Const</td>	B Construction B Construction Const

Instruments used for cellbr	etion:		Date of Col.	Tracaspility No.	Due Dete
HP	34401A	S/N 36064102	1-Oet-2016	,287708	1-Oct-2017
HP	34401A	S/N 36102471	1-Oct-2016	,287708	1-Oct-2017
HP	33120A	S/N 36043716	1-Oct-2016	.287708	1-Oct-2017
B&K	2133	S/N 1583254	1-Ost-2016	683/284413-14	1-Oot-2017

Cal. Date: 7-Dec-2016

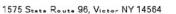
Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Label Inc.

Tested by: Felix Christopher

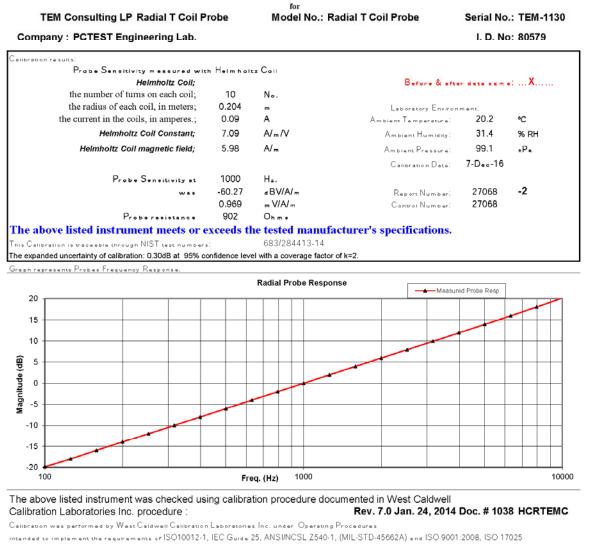
Rav. 7.0 Jan. 24, 2014 Dec. # 1038 HCATEMC

Page 2 of 2


FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 63 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 03 01 72
© 2018 PCTEST Engineering	J Laboratory, Inc.			REV 3.2.M

<section-header><section-header><section-header><section-header> Cectorial conduction of the production of the productic of the production of the produc</section-header></section-header></section-header></section-header>	West	Caldwell Calif	oration Laborato	ries Inc.	
<text><text><text><text><text><text></text></text></text></text></text></text>	Cort	ificato (of Calibr	ation	
HADIAL TCOIL PROBE Manufactured by: RADIAL T COIL PROBE Model No: RADIAL T COIL PROBE Manufactured by: RADIAL T COIL PROBE Berla No: TEM-1130 Calibration Recall No: TEM-1130 Calibration Laboratories Procedure No: RADIAL T TEMIC Charles Calibration Laboratories Procedure No: RADIAL T TEMIC Vest Calidwell Calibration Laboratories Procedure No: RADIAL T TEMIC Vithin (X) J2/2/2060 Within (X) Tolerance of the indicated specification using standards traceable to the following specification upon its return to the submitter. Within (X) Within (X) Tolerance of the indicated specification control system meets the following specification upon its return to the submitter. Within S 2068 - 2 Calibration Laboratories' calibration control system meets the following specification upon its return to the submitter. Met Calibration Is included. Met Christopher (QA Mgr. Subre Subre Subre Subre Subre SubreSubre		man		ation	
Manufactured by: TEM CONSULTING Model No: RADIAL T COLL PROBE Serial No: TEM-1130 Calibration Recall No: 27068 Submitted By: Submitted By: Customer: ANDREW HARWELL Company: PCTEST ENGINEERING LAB Address: G60-B DOBBIN ROAD COLUMBIA MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration. Laboratories Procedure No. RADIAL T TEM C Upon receipt for Calibration, the instrument was found to be: Ju/2N/206 Within (X) Ju/2N/206 tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate. Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 K Calibration Rew. 20 1001 Cortificate Page 1 of 1 ISO/IEC 17025		DIDIT	T CON DRODE		
Serial No: TEM-1130 Calibration Recall No: 27068 Submitted By:				NG	
Calibration Recall No: 27068 Submitted By: ANDREW HARWELL Company: PCTEST ENGINEERING LAB Address: 6660-B DOBBIN ROAD COLUMBIA MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration, the instrument was found to be: July 21/2046 Within (X) Iuly 21/2046 tolerance of the indicated specification control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Certificate No: 27068 - 2 Above: Flow Rev. 20 10101 Certificate Page 1 of 1 West Caldwell Calibration Is included. Muter Meet Calibration Date: 27068 - 2 Other streate No: 27068 - 2 Above: Streate Caldwell Certificate Page 1 of 1 West Caldwell Calibration Calibration Date: Croteflowell				PROBE	
Customer: ANDREW HARWELL Company: PCTEST ENGINEERING LAB Address: 6660-B DOBBIN ROAD COLUMBIA MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIALT TEMIC Upon receipt for Calibration, the instrument was found to be: IMLAT/2006 Within (X) IMLAT/2006 tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Calibration Date: 07-Dec-16 Calibration Date: 27068 - 2 Address Caldwell Galibration Calibration Date: 27068 - 2 Mater Calibration Gertificate Page 1 of 1 West Caldwell Calibration ISO/IEC 17025:2005 Mater Calibration <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Hornson		Su	bmitted By:		
Address: 6660-B DOBBIN ROAD COLUMBIA MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEMC Upon receipt for Calibration, the instrument was found to be: IMAH Within (X) tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Mator: Felix Christopher (QA Mgr.). ISO/IEC 17025:2005 ISO/IEC 17025:2005 Oa Doe: #081 Rev: 20 101/01 Certificate Page 1 of 1 West Caldwell Calibration Certificate Page 1 of 1 West Caldwell Calibration Calibration Certificate Page 1 of 1 West Caldwell Calibration Calibration Certificate Page 1 of 1		Customer:	ANDREW HARWELL		Ĩ
COLUMBIA MD 21045 The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C Upon receipt for Calibration, the instrument was found to be: IMAH Within (X) tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Matter Reserver Control Calibration is included. Approved by: Calibration Date: 27068 - 2 Galibration Rev. 2.0 101/01 Certificate Page 1 of 1 West Caldwell Calibration Certificate Page 1 of 1 West Caldwell Certificate Page 1 of 1				AB	
National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter. West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C Upon receipt for Calibration, the instrument was found to be: Within (X) tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Calibration Date: 07-Dec-16 Certificate No: 27068 - 2 Calibration Rev. 20 10/101 Certificate Page 1 of 1 SO/IEC 17025:2005 West Caldwell Calibration Laboratories, Inc.		Address:		MD 21045	
within (X) tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Certificate No: 27068 - 2 OA Doc. #1051 Rev. 2.0 10/1/01 Certificate Page 1 of 1 West Caldwell Calibration Laboratories, Inc. Image: Certificate Calibration	submitter.			- 	
Within (X) tolerance of the indicated specification. See attached Report of Calibration. West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Felix Christopher (QA Mgr.) ISO/IEC 17025:2005 QA Doc. #1051 Rev. 20 101/01 Certificate Page 1 of 1 Uncompromised calibration Laboratories, Inc.	Upon receipt for Cal	ibration, the instrument v	vas found to be:	VUSAF	
West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Certificate No: 27068 - 2 GA Doc. #1051 Rev. 2.0 10/101 Certificate Page 1 of 1 West Caldwell Calibration uncompromised calibration Laboratories, Inc.	Withi	in (X)		12/21/2016	Ĩ
requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025 Note: With this Certificate, Report of Calibration is included. Approved by: Calibration Date: 07-Dec-16 Certificate No: 27068 - 2 GA Doc. #1051 Rev. 2.0 10/1/01 Certificate Page 1 of 1 West Caldwell Calibration uncompromised calibration Laboratories, Inc.	tolerance of the indi	cated specification. See at	tached Report of Calibration.		
Calibration Date: 07-Dec-16 Certificate No: 27068 - 2 QA Doc. #1051 Rev. 2.0 101/101 Certificate Page 1 of 1 West Caldwell Calibration uncompromised calibration Laboratories, Inc.	requirements, ISO 1	ration Laboratories' calib 0012-1 MIL STD 45662A,	oration control system meets th ANSI/NCSL Z540-1, IEC Gui	e following ide 25, ISO 9001:2008	
Certificate No: 27068 - 2 QA Doc. #1051 Rev. 2.0 10/1/01 Certificate Page 1 of 1 West Caldwell Calibration uncompromised calibration Laboratories, Inc.	Note: With this Certificate	e, Report of Calibration is inclu	ided. Approved	by:	
Certificate No: 27068 - 2 QA Doc. #1051 Rev. 2.0 10/1/01 Certificate Page 1 of 1 West Caldwell Calibration uncompromised calibration Laboratories, Inc.	Calibration Date:	07-Dec-16		FC	
QA Doc. #1061 Rev. 2.0 10/1/01 Certificate Page 1 of 1 ISO/IEC 17025:2005 West Caldwell Calibration uncompromised calibration Laboratories, Inc.	Certificate No:	27068 - 2	Felix Chr		
uncompromised calibration Laboratories, Inc.			150		
uncompromised calibration Laboratories, Inc.	11	West Caldwell	2	2	
uncompromised calibration Laboratories , Inc.		Calibration			
	uncompromised calibration		nc.		1999-199 - Santo 199

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 64 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 04 01 72
© 2018 PCTEST Engineering	2018 PCTEST Engineering Laboratory, Inc.			


HCRTEMC_TEM-1130_Dec-07-2016

REPORT OF CALIBRATION

	Cal. Date:	7-Dec-2016
Calibrated on WCC	L system type	9700

This descents shall out be careedyand, assess to full, with

Page 1 of 2

when written an ensure from Weet Catalwell Cat, Lake, Inc.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 65 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 05 0172	
© 2018 PCTEST Engineering	© 2018 PCTEST Engineering Laboratory, Inc.				
				01/11/2018	

HCRTEMC_TEM-1130_Dec-07-2016

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Vieter NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe

Model No.: Radial T Coil Probe

Serial No.: TEM-1130

Company : PCTEST Engineering Lab.

Test	Function	Tolera	nce	Measured values		
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	d BV/A/m	-60.27		
2.0	Probe Level Lineerity	Rof. (0 d B)	⊮B 6 0 -6 -12	6.03 0.00 -6.03 -12.06		
3.0	Probe Frequency Response	R•r. (0 dB)	H₂ 100 126 158 200 251 316 398 501 631 794 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943 10000	-19.9 -18.0 -16.0 -13.9 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 7.9 9.9 11.9 13.9 15.9 18.0 20.2		

Instruments used for celibration:			Dete of Cal.	Traceability No.	Due Dete
HP	34401A	S/N 36064102	1-Oct-2016	,287708	1-Oot-2017
HP	34401A	S/N 36102471	1-Oct-2015	,287708	1-Oct-2017
HP	33120A	S/N 36043716	1-Oct-2016	.287708	1-Oct-2017
B&K	2133	S/N 1583254	1-Oat-2016	683/284413-14	1-Oot-2017

Cal. Date: 7-Dec-2016

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Label Inc.

Tested by: Felix Christopher

Ray. 7.0 Jan. 24, 2014 Dec. # 1038 HCRTEMC

Page 2 of 2

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 66 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 00 01 72	
© 2018 PCTEST Engineering	J Laboratory, Inc.			REV 3.2.M	

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

2

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFL413DL	<u> PCTEST</u>	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 67 of 72
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 07 0172
© 2018 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	

15. **REFERENCES**

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- 2. FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.

FCC ID: ZNFL413DL		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 68 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset			
© 2018 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M	
	-			01/11/2018	

- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFL413DL	CALCENT.	HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 69 of 72	
1M1712050312-08-R1.ZNF	01/08/2018 - 01/11/2018	Portable Handset		Fage 09 01 72	
© 2018 PCTEST Engineering Laboratory, Inc.				REV 3.2.M	
				01/11/2018	