

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs, NJ 07632 USA Date of Testing: 04/17/12 - 04/19/12 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1204180526.ZNF

FCC ID:

ZNFL40G

APPLICANT:

LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Application Type:	Portable Handset Certification
FCC Rule Part(s):	CFR §2.1093
Model(s):	LGL40G, LG-L40G, LG-L40g, LGL40g, L40g, L40G
Test Device Serial No.:	Pre-Production [S/N: 203KPTM165016, 203KPTM165017]

Band & Mode	Tx Frequency	Conducted	SAR		
		Power [dBm]	1 gm Head (W/kg)	1 gm Body-Worn (W/kg)	
GSM/GPRS/EDGE Rx Only 850	824.20 - 848.80 MHz	33.10	0.50	0.74	
WCDMA/HSDPA 850	826.40 - 846.60 MHz	23.55	0.36	0.39	
GSM/GPRS/EDGE Rx Only 1900	1850.20 - 1909.80 MHz	30.08	0.37	0.30	
WCDMA/HSDPA 1900	1852.4 - 1907.6 MHz	22.69	0.69	0.37	
2.4 GHz WLAN	2412 - 2462 MHz	17.36	0.81	0.25	
Bluetooth 2402 - 2480 MHz 10.0			N	/A	
Simultaneous SAR per KDB 690783		1.50	0.84		

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

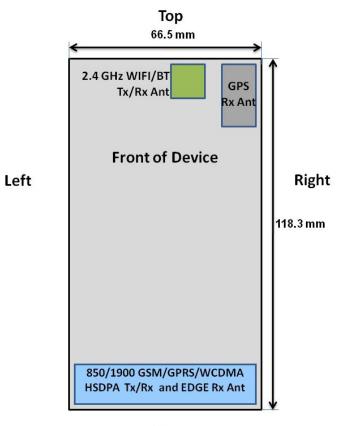
PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 1 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 1 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

TABLE OF CONTENTS

1	DEVICE UNDER TEST	3
2		5
3	SAR MEASUREMENT SETUP	6
4	DOSIMETRIC ASSESSMENT	7
5	DEFINITION OF REFERENCE POINTS	8
6	TEST CONFIGURATION POSITIONS FOR HANDSETS	9
7	FCC RF EXPOSURE LIMITS	. 12
8	FCC MEASUREMENT PROCEDURES	. 13
9	RF CONDUCTED POWERS	. 15
10	SYSTEM VERIFICATION	. 18
11	SAR DATA SUMMARY	. 20
12	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	. 24
13	EQUIPMENT LIST	. 26
14	MEASUREMENT UNCERTAINTIES	. 27
15	CONCLUSION	. 28
16	REFERENCES	. 29


FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 2 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 2 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 11.2 M

DEVICE UNDER TEST 1

1.1 **Device Overview**

Band & Mode	Tx Frequency
GSM/GPRS/EDGE Rx Only 850	824.20 - 848.80 MHz
WCDMA/HSDPA 850	826.40 - 846.60 MHz
GSWGPRS/EDGE Rx Only 1900	1850.20 - 1909.80 MHz
WCDMA/HSDPA 1900	1852.4 - 1907.6 MHz
2.4 GHz WLAN	2412 - 2462 MHz
Bluetooth	2402 - 2480 MHz

DUT Antenna Locations 1.2

Bottom Figure 1-1 DUT Antenna Locations

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 2 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 3 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

1.3 SAR Test Exclusions Applied

(A) WIFI/BT

The separation between the main antenna and the Bluetooth and WLAN antennas is 99.4 mm. RF Conducted Power of Bluetooth Tx is 10.07 mW (Please refer to the EMC DSS Report for a full set of Bluetooth conducted powers). RF Conducted Power of WLAN is 54.95 mW.

2.4 GHz WIFI and Bluetooth share the same antenna path and cannot transmit simultaneously.

Per KDB Publication 648474, **Bluetooth SAR was not required** based on the maximum conducted power, the Bluetooth/WLAN to main antenna separation distance and Body-SAR of the main antenna.

(B) Licensed Transmitter(s)

This model does not support Simultaneous Voice and Data for the licensed transmitter in any modes except in WCDMA that allows Multi-RAB transmissions that share voice and data operations on a single physical channel.

GSM/GPRS DTM is not supported. Therefore GSM Voice cannot transmit simultaneously with GPRS Data.

1.4 Power Reduction for SAR

There is no power reduction for any band/mode implemented in this device for SAR purposes.

1.5 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB 941225 (2G/3G)
- FCC KDB 248227 (802.11)
- FCC KDB 648474 (Simultaneous)

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 4 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 4 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

2 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

	Equation 2-1 SAR Mathematical Equation							
SAR =	$= \frac{d}{dt} \left(\frac{dU}{dm} \right) =$	$= \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$						

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dego E of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 5 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

3 SAR MEASUREMENT SETUP

3.1 Automated SAR Measurement System

Measurements are performed using the DASY automated dosimetric SAR assessment system. The DASY is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). See www.speag.com for more information about the specification of the SAR assessment system.

Figure 3-1 SAR Measurement System

Figure 3-2 Near-Field Probe

Frequency (MHz)	835	835	1900	1900	2450	2450
Tissue	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)						
Bactericide	0.1	0.1				
DGBE			44.92	29.44	7.99	26.7
HEC	1	1				
NaCl	1.45	0.94	0.18	0.39	0.16	0.1
Sucrose	57	44.9				
Triton X-100					19.97	
Water	40.45	53.06	54.9	70.17	71.88	73.2

Table 3-1 Composition of the Tissue Equivalent Matter

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dege 6 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 6 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head interface and the horizontal grid resolution was 15mm and 15mm for frequencies < 3 GHz in the x and y directions respectively. When applicable, for frequencies above 3 GHz, a 10 mm by 10 mm resolution was used.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1 gram cube evaluation. SAR at this fixed point was measured and used as a reference value.

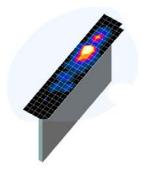


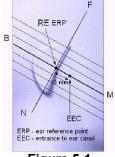
Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring at least 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.


4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 7 of 30
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset	Handset	
© 2012 PCTEST Engineering Laboratory, Inc.				

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 8 of 30
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset	ndset	
© 2012 PCTEST Engineering Laboratory, Inc.				

6 TEST CONFIGURATION POSITIONS FOR HANDSETS

6.1 Device Holder

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 **Positioning for Cheek/Touch**

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 0 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 9 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.					

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

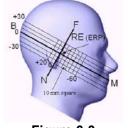


Figure 6-3 Side view w/ relevant markings

Figure 6-4 Body SAR Sample Photo (Not Actual EUT)

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document publication 648474. The SAR required in these regions of SAM should be measured using a flat phantom. **Rectangular shaped phones** should be positioned with its bottom edge positioned from the flat phantom with the same distance provided by the cheek touching position using SAM. The ear reference point (ERP, as defined for SAM) of the phone should be positioned ½ cm from the flat phantom shell. **Clam-shell phones** should be positioned with the hinge against a smooth edge of the flat phantom where the upper half of the phone is unfolded and extended beyond the phantom side wall. The lower half of the phone is secured in the test device holder at a fixed distance below the flat phantom determined by the minimum separation along the lower edge of the phone in the cheek touching position using SAM. Any case with substantial variation in separation distance along the lower edge of a clam shell is discussed with the FCC for best-to-use methodology.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

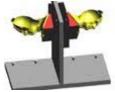


Figure 6-5 Twin SAM Chin20

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). A device with a headset output is tested with a headset connected to the device.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	ON REPORT		
Document S/N:	Test Dates:	DUT Type:		Page 10 of 30	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset	P		
© 2012 PCTEST Engineering Laboratory, Inc.					

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 11 of 30	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset	set		
© 2012 PCTEST Engineering Laboratory, Inc.					

7 FCC RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS							
UNCONTROLLED CONTROLLED ENVIRONMENT ENVIRONMENT							
_	General Population (VV/kg) or (mVV/g)	Occupational (W/kg) or (mW/g)					
SPATIAL PEAK SAR Brain	1.6	8.0					
SPATIAL AVERAGE SAR Whole Body	0.08	0.4					
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20					

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 12 of 30	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset	Portable Handset		
© 2012 PCTEST Engineering Laboratory. Inc.					

8 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

8.1 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

8.2 SAR Measurement Conditions for WCDMA

8.2.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

8.2.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

8.2.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

8.2.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 12 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 13 of 30	
© 2012 DOTEST Engineering Laboratory Inc.					

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK =5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

8.3 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 for more details.

8.3.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

8.3.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg or if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 14 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 14 of 30	
© 2012 PCTEST Engineering Laboratory. Inc.					

9 **RF CONDUCTED POWERS**

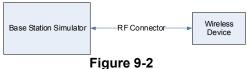
9.1 **GSM Conducted Powers**

	Maximum Burst-Averaged Output Power						
		Voice	GPRS Da	ta (GMSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot			
	128	33.12	33.10	31.73			
Cellular	190	33.10	33.09	31.72			
	251	33.03	33.02	31.71			
	512	30.15	30.18	28.86			
PCS	661	30.08	30.08	28.82			
	810	30.13	30.11	28.79			
Calcul	ated Maxim	um Frame-Ave	eraged Output	Power			
		Voice	GPRS Da	ta (GMSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] GPRS [d 1 Tx Slot 2 Tx S				
	128	24.09	24.07	25.71			
Cellular	190	24.07	24.06	25.70			
	251	24.00	23.99	25.69			
	512	21.12	21.15	22.84			
PCS	661	21.05	21.05	22.80			
	810	21.10	21.08	22.77			

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. The bolded GPRS modes were selected according to the highest frame-averaged output power table according to KDB 941225 D03.
- 3. CS1 coding scheme was used in GPRS output power measurements and SAR Testing, as a condition where GMSK modulation was ensured. It was investigated that CS1 - CS4 settings do not have any impact on the output levels in the GPRS modes.

GSM Class: B GPRS Multislot class: 10 (max 2 Tx Uplink slots) EDGE Multislot class: Rx Only **DTM Multislot Class: N/A**


Power Measurement Setup

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 15 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	4/17/12 - 04/19/12 Portable Handset		Page 15 of 30	
© 2012 PCTEST Engineering Laboratory Inc.					

3GPP Release	Mode	3GPP 34.121 Subtest			Cellular Band [dBm]		PCS Band [dBm]		βc	βd	MPR [dB]
Version	/ersion Sublesi	oublest	4132	4183	4233	9262	9400	9538			
99	WCDMA	12.2 kbps RMC	23.46	23.55	23.31	22.71	22.69	22.75	-	-	-
99	VVCDIVIA	12.2 kbps AMR	23.44	23.50	23.21	22.60	22.67	22.77	-	-	-
5		Subtest 1	23.35	23.44	23.12	22.78	22.69	22.72	2	15	0
5		Subtest 2	23.16	23.33	23.00	22.56	22.56	22.53	11	15	0
5	HSDPA	Subtest 3	22.69	22.64	22.42	22.24	22.17	22.25	15	8	0.5
5		Subtest 4	22.67	22.72	22.39	22.19	22.21	22.20	15	4	0.5

9.1.1 HSDPA Conducted Powers

WCDMA SAR was tested under RMC 12.2 kbps with HSDPA Inactive per KDB Publication 941225 D01. HSDPA SAR was not required since the average output power of the HSDPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

Power Measurement Setup

9.2 WLAN Conducted Powers

Table 9-1 IEEE 802.11b Average RF Power

Freq [MHz]	Channel	Data Rate [Mbps]	Average Power (dBm)
2412	1	1	16.81
		2	16.78
		5.5	16.71
		11	16.73
2437	6	1	16.96
		2	16.86
		5.5	16.95
		11	17.03
2462	11	1	17.36
		2	17.34
		5.5	17.40
		11	17.32

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dego 16 of 20		
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 16 of 30		
© 2012 PCTEST Engineering Lab	© 2012 PCTEST Engineering Laboratory, Inc.					

Freq [MHz]	Channel	Data Rate [Mbps]	Average Power (dBm)
2412	1	6	13.99
		9	13.81
		12	13.86
		18	13.76
		24	13.94
		36	13.81
		48	13.77
		54	13.74
2437	6	6	14.05
		9	13.98
		12	14.02
		18	14.06
		24	14.17
		36	14.00
		48	13.93
		54	14.13
2462	11	6	14.18
		9	14.09
		12	14.15
		18	14.07
		24	14.21
		36	14.12
		48	14.09
		54	14.17

Table 9-2

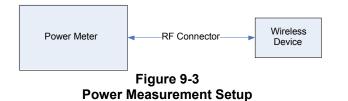

IEEE 802.11g Average RF Power

Table 9-3 IEEE 802.11n Average RF Power

Freq [MHz]	Channel	Data Rate [Mbps]	Average Power (dBm)
2412	1	6.5/7.2	12.73
		13/ 14.40	12.83
		19.5/21.70	13.00
		26/28.90	12.85
		29/43.3	12.75
		52/57.80	12.68
		58.50/65	12.64
		65/72.2	12.81
2437	6	6.5/7.2	12.90
		13/14.40	12.77
		19.5/21.70	12.73
		26/28.90	12.72
		29/43.3	12.83
		52/57.80	12.75
		58.50/65	12.60
		65/72.2	12.86
2462	11	6.5/7.2	12.67
		13/14.40	12.86
		19.5/21.70	12.81
		26/28.90	12.80
		29/43.3	12.94
		52/57.80	12.73
		58.50/65	12.67
		65/72.2	12.66

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕑 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dega 17 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 17 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.			REV 11.2 M

10 SYSTEM VERIFICATION

10.1 Tissue Verification

	Measured Tissue Properties										
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	%devε		
			820	0.901	42.75	0.90	41.57	0.33%	2.84%		
04/17/2012	835H	23.0	835	0.910	42.29	0.90	41.50	1.11%	1.90%		
			850	0.925	42.07	0.92	41.50	0.98%	1.37%		
			1850	1.377	38.53	1.40	40.00	-1.64%	-3.68%		
04/18/2012	1900H	22.9	1880	1.405	38.39	1.40	40.00	0.36%	-4.03%		
			1910	1.435	38.27	1.40	40.00	2.50%	-4.32%		
			2401	1.828	38.05	1.76	39.30	3.98%	-3.18%		
04/18/2012	2450H	22.8	2450	1.887	37.85	1.80	39.20	4.83%	-3.44%		
				2499	1.942	37.64	1.85	39.14	4.86%	-3.82%	
			820	0.970	52.66	0.97	55.28	0.10%	-4.75%		
04/19/2012	835B	23.5	835	0.984	52.57	0.97	55.20	1.44%	-4.76%		
			850	0.998	52.41	0.99	55.15	1.01%	-4.98%		
			1850	1.493	53.17	1.52	53.30	-1.78%	-0.24%		
04/19/2012	1900B	23.1	1880	1.528	53.07	1.52	53.30	0.53%	-0.43%		
					1910	1.560	52.93	1.52	53.30	2.63%	-0.69%
			2401	1.989	50.94	1.90	52.77	4.52%	-3.46%		
04/19/2012	2450B	21.9	2450	2.047	50.76	1.95	52.70	4.97%	-3.68%		
			2499	2.119	50.59	2.02	52.64	4.95%	-3.89%		

Table 10-1 Measured Tissue Propertie

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

10.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity, for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 19 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 18 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.					

10.3 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

	System Verification Results										
	System Verification TARGET & MEASURED										
Tissue Frequency (MHz) Tissue Type Date: Amb. Temp (°C) Liquid Temp (°C) Input Power (W) Dipole SN Probe SN Measured SAR _{1g} 1 W Target SAR _{1g} 1 W Normalized SAR _{1g} Deviation (W/kg)										Deviation (%)	
835	Head	04/17/2012	23.1	22.4	0.100	4d026	3258	0.959	9.460	9.590	1.37%
1900	Head	04/18/2012	23.1	22.6	0.100	502	3022	3.90	39.200	39.000	-0.51%
2450	Head	04/18/2012	23.7	22.4	0.100	719	3209	5.51	53.800	55.100	2.42%
835	Body	04/19/2012	23.0	22.7	0.100	4d026	3258	1.04	9.660	10.400	7.66%
1900	Body	04/19/2012	22.1	21.8	0.100	502	3022	3.72	38.900	37.200	-4.37%
2450	Body	04/19/2012	23.4	22.3	0.100	719	3209	5.52	51.300	55.200	7.60%

Table 10-2 System Verification Result

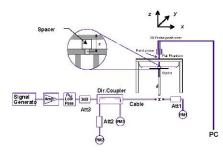


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dage 10 of 20		
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 19 of 30		
© 2012 PCTEST Engineering Labor	© 2012 PCTEST Engineering Laboratory, Inc.					

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

	MEASUREMENT RESULTS									
FREQUE	ENCY	Mode/Band	Conducted Power	Power	Side Test Position	Test	Device Serial	SAR (1g)		
MHz	Ch.	woue/Banu	[dBm]	Drift [dB]		Position	Number	(W/kg)		
836.60	190	GSM 850	33.10	0.05	Right	Touch	203KPTM165016	0.502		
836.60	190	GSM 850	33.10	-0.08	Right	Tilt	203KPTM165016	0.263		
836.60	190	GSM 850	33.10	-0.05	Left	Touch	203KPTM165016	0.426		
836.60	190	GSM 850	33.10	-0.04	Left	Tilt	203KPTM165016	0.256		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head			
Spatial Peak						1.6 V	V/kg (mW/g)			
Uncon	trolled E	Exposure/Ge	neral Popu	lation		average	ed over 1 gram			

Table 11-1 GSM 850 Head SAR Results

Table 11-2 WCDMA 850 Head SAR Results

	MEASUREMENT RESULTS								
FREQU	ENCY	Mode/Band	Conducted Power	Power	Side	Test Position	Device Serial Number	SAR (1g)	
MHz	Ch.	Wode/Dallu	[dBm]	Drift [dB]	Side		Device Gerhan	Device Senar Number	(W/kg)
836.60	4183	WCDMA 850	23.55	-0.03	Right	Touch	203KPTM165016	0.360	
836.60	4183	WCDMA 850	23.55	-0.01	Right	Tilt	203KPTM165016	0.197	
836.60	4183	WCDMA 850	23.55	-0.05	Left	Touch	203KPTM165016	0.306	
836.60	4183	WCDMA 850	23.55	-0.02	Left	Tilt	203KPTM165016	0.179	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head		
Spatial Peak						1.6 \	N/kg (mW/g)		
Unco	ontrolle	d Exposure/Gen	eral Popula	tion		averag	ed over 1 gram		

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 20		
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 20 of 30		
© 2012 PCTEST Engineering Labor	© 2012 PCTEST Engineering Laboratory, Inc.					

			MEASU	REMEN	r RESUL	TS					
FREQUE	INCY	Mode/Band	Conducted	Power	Side	Test	Device Serial Number	SAR (1g)			
MHz	Ch.	mode/Bana	Power [dBm] Drift [dB]	Drift [dB]	blue	Position	bevice beriar namber	(W/kg)			
1880.00	661	GSM 1900	30.08	0.03	Right	Touch	203KPTM165016	0.242			
1880.00	661	GSM 1900	30.08	0.19	Right	Tilt	203KPTM165016	0.120			
1880.00	661	GSM 1900	30.08	-0.11	Left	Touch	203KPTM165016	0.367			
1880.00	661	GSM 1900	30.08	-0.01	Left	Tilt	203KPTM165016	0.126			
A	NSI / IEE	E C95.1 1992 -	SAFETY LIMI	т			Head				
	Spatial Peak				1.6 W/kg (mW/g)						
Unco	ontrolled	Exposure/Ge	neral Popula	tion		avera	averaged over 1 gram				

Table 11-3 GSM 1900 Head SAR Results

Table 11-4 WCDMA 1900 Head SAR Results

			MEASUR	REMENT	RESUL	TS			
FREQUE	INCY	Mode	Conducted Power	Power	Side	Test	Device Serial	SAR (1g)	
MHz	Ch.		[dBm]	Drift [dB]	6140	Position	Number	(W/kg)	
1880.00	9400	WCDMA 1900	22.69	-0.03	Right	Touch	203KPTM165016	0.451	
1880.00	9400	WCDMA 1900	22.69	0.16	Right	Tilt	203KPTM165016	0.239	
1880.00	9400	WCDMA 1900	22.69	-0.15	Left	Touch	203KPTM165016	0.689	
1880.00	9400	WCDMA 1900	22.69	0.00	Left	Tilt	203KPTM165016	0.238	
AN	ISI / IEEI	E C95.1 1992 - 3	SAFETY LIM	IT			Head		
	Spatial Peak					1.6 W/kg (mW/g)			
Unco	ntrolled	Exposure/Ger	neral Popula	ation		average	ed over 1 gram		

Table 11-52.4 GHz WLAN Head SAR Results

FREQU	ENCY	Mode	Service	Conducted	Power	Side	Test	Device Serial	Data Rate	SAR (1g)		
MHz	Ch.	wode	Service	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(W/kg)		
2462	11	IEEE 802.11b	DSSS	17.36	0.00	Right	Touch	203KPTM165016	1	0.578		
2462	11	IEEE 802.11b	DSSS	17.36	0.03	Right	Tilt	203KPTM165016	1	0.656		
2412	1	IEEE 802.11b	DSSS	16.81	0.03	Left	Touch	203KPTM165016	1	0.798		
2437	6	IEEE 802.11b	DSSS	16.96	-0.03	Left	Touch	203KPTM165016	1	0.812		
2462	11	IEEE 802.11b	DSSS	17.36	0.00	Left	Touch	203KPTM165016	1	0.804		
2412	1	IEEE 802.11b	DSSS	16.81	-0.01	Left	Tilt	203KPTM165016	1	0.736		
2437	6	IEEE 802.11b	DSSS	16.96	-0.07	Left	Tilt	203KPTM165016	1	0.766		
2462	11	IEEE 802.11b	DSSS	17.36	0.01	Left	Tilt	203KPTM165016	1	0.792		
	AN	SI / IEEE C95.1 1	992 - SAFET	YLIMIT				Head				
		Spatia	l Peak					1.6 W/kg (mW/g)				
	Unco	ntrolled Exposur	e/General P	opulation			a	averaged over 1 gram				

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 21 of 30
0Y1204180526.ZNF	04/17/12 - 04/19/12 Portable Handset			Fage 21 01 30
© 2012 PCTEST Engineering Laboration	atory, Inc.			REV 11.2 M

	Licensed Transmitter Body-Worn SAR Results											
	MEASUREMENT RESULTS											
FREQUE	FREQUENCY	Mode	Service	Conducted Power	Power	Spacing	Device Serial Number	# of Time	Side	SAR (1g)		
MHz	Ch.			[dBm]	Drift [dB]	- -		Slots		(W/kg)		
836.60	190	GSM 850	GSM	33.10	-0.02	1.5 cm	203KPTM165017	1	back	0.590		
836.60	190	GSM 850	GPRS	31.72	-0.06	1.5 cm	203KPTM165017	2	back	0.737		
836.60	4183	WCDMA 850	RMC	23.55	-0.09	1.5 cm	203KPTM165017	N/A	back	0.391		
1880.00	661	GSM 1900	GSM	30.08	-0.01	1.5 cm	203KPTM165016	1	back	0.225		
1880.00	661	GSM 1900	GPRS	28.82	-0.08	1.5 cm	203KPTM165016	2	back	0.297		
1880.00	9400	WCDMA 1900	RMC	22.69	-0.03	1.5 cm	203KPTM165016	N/A	back	0.371		
		ANSI / IEEE C95.1	1992 - SAFETY LI	MIT			Bod	ly				
		Spati	al Peak				1.6 W/kg	(mW/g)				
	Ur	controlled Exposu	ire/General Popu	lation		averaged over 1 gram						

Table 11-6

....

~ · - -

• •

11.2 Standalone Body-Worn SAR Data

. .

Table 11-7 WLAN Body-Worn SAR Results

	MEASUREMENT RESULTS									
FREQU	JENCY Mode		Service	Conducted Service Power Power		Spacing	Device Serial	Data Rate	Side	SAR (1g)
MHz	Ch.		[d]	[dBm]	Drift [dB]		Number	(Mbps)		(W/kg)
2462	11	IEEE 802.11b	DSSS	17.36	0.21	1.5 cm	203KPTM165016	1	back	0.253
	ANS	SI / IEEE C95.1 1	992 - SAFE	TY LIMIT		Body				
		Spatia	l Peak			1.6 W/kg (mW/g)				
	Uncon	ntrolled Exposur	e/General	Population		averaged over 1 gram				

11.3 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. Batteries are fully charged for all readings. The standard battery was used.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm. To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.
- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 6. Per FCC/OET Bulletin 65 Supplement C and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dega 22 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 22 of 30	
© 2012 DCTEST Engineering Lak	oraton / Inc			DEV/ 11.2 M	

7. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was tested because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR using headphones.
- 2. Per FCC Guidance, GPRS Data mode is additionally required for body-worn configurations
- 3. Justification for reduced test configurations per KDB Publication 941225 D03: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worst-case reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation for data modes.

WCDMA Notes:

1. WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSDPA Inactive per KDB Publication 941225 D01. HSDPA SAR was not required since the average output power of the HSDPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

WLAN Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. WLAN transmission was verified using an uncalibrated spectrum analyzer.
- 3. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.</p>

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager				
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 20				
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 23 of 30				
© 2012 PCTEST Engineering Labor	2012 PCTEST Engineering Laboratory, Inc.							

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" FCC KDB Publication 648474 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 FCC Power Tables & Conditions

	2.45	5.15 - 5.35	5.47 - 5.85	GHz					
P _{Ref}	12	б	5	mW					
Device output powe	Device output power should be rounded to the nearest mW to compare with values specified in this table.								

Figure 12-1 Output Power Thresholds for Unlicensed Transmitters

	In dividual Tr ansmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission – o output $\leq 60/f$: SAR not required O output $\geq 60/f$: stand-alone SAR required When there is simultaneous transmission – <u>Stand-alone SAR not required when</u> o output $\leq 2 \cdot P_{Ref}$ and antenna is ≥ 5.0 cm from other antennas o output $\leq P_{Ref}$ and antenna is ≥ 2.5 cm from other antennas o output $\leq P_{Ref}$ and antenna is ≥ 2.5 cm from other antennas o output $\leq P_{Ref}$ and antenna is < 2.5 cm from other antennas, each with either output power $\leq P_{Ref}$ or 1-g SAR < 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is $> 50\%$ of SAR limit, evaluate all channels according to normal procedures	 o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply
	Figure 12-2	

SAR Evaluation Requirements for Multiple Transmitter Handsets

According to Figure 12-1 and Figure 12-2, simultaneous transmission analysis of SAR may be required for this device for the licensed and unlicensed transmitters. Possible simultaneous transmissions for this device were numerically summed using stand-alone SAR data and are shown in the following tables.

Per KDB Publication 648474, standalone Bluetooth SAR tests were not required. Standalone SAR tests for WLAN were required. See Section 1.3(A) for more information.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager				
Document S/N:	Test Dates:	DUT Type:		Page 24 of 30				
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset						
© 2012 PCTEST Engineering	© 2012 PCTEST Engineering Laboratory, Inc.							

12.3 Head SAR Simultaneous Transmission Analysis

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	WCDMA 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.502	0.578	1.080		Right Cheek	0.360	0.578	0.938
Head SAR	Right Tilt	0.263	0.656	0.919	Head SAR	Right Tilt	0.197	0.656	0.853
	Left Cheek	0.426	0.812	1.238	neau SAR	Left Cheek	0.306	0.812	1.118
	Left Tilt	0.256	0.792	1.048		Left Tilt	0.179	0.792	0.971
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	WCDMA 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.242	0.578	0.820		Right Cheek	0.451	0.578	1.029
Head SAR	Right Tilt	0.120	0.656	0.776	Head SAR	Right Tilt	0.239	0.656	0.895
TICAU SAR	Left Cheek	0.367	0.812	1.179	neau SAR	Left Cheek	0.689	0.812	1.501
	Left Tilt	0.126	0.792	0.918		Left Tilt	0.238	0.792	1.030

Table 12-1 Simultaneous Transmission Scenario (Held to Ear)

The above tables represent a held to ear voice call potentially simultaneously operating with 2.4 GHz WLAN.

12.4 **Body-Worn Simultaneous Transmission Analysis**

ir	multaneous Transmission Scenario (Body-Worn at 1.5 cm)									
	Configuration	Mode	2G/3G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)					
	Back Side	GSM 850	0.590	0.253	0.843					
	Back Side	WCDMA 850	0.391	0.253	0.644					
	Back Side	GSM 1900	0.225	0.253	0.478					
	Back Side	WCDMA 1900	0.371	0.253	0.624					

Table 12-2 Sir I)

The above tables represent a body-worn voice call potentially simultaneously operating with 2.4 GHz WLAN.

12.5 **Simultaneous Transmission Conclusion**

The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. No volumetric SAR summation is required per FCC KDB Publication 648474.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 25 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 25 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.					

13 EQUIPMENT LIST

Agilent 8809A Dedectric Probe Kit 3/8/2012 Annual 3/8/2013 Mr4430033 Agilent 889A (19k4: 2646) Septum Analyser N/A N/A 3031400187 Agilent 55315C Wriceles Communications Test Set 10/10/2011 Annual 10/10/2012 664610872 Agilent 155315C Wriceles Communications Test Set 10/12/2011 Annual 10/12/2012 664410927 Agilent 155315C Wriceles Communications Test Set 2/14/2012 Annual 2/14/2013 664330985 Agilent 155315C Wriceles Communications Test Set 2/14/2012 Annual 2/14/2013 664340564 Agilent 15515C Wriceles Communications Test Set 2/14/2012 Annual 2/14/2013 664340564 Anritsu MA24110 Power Sensor 2/14/2012 Annual 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012 10/13/2012	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Aglent 88480 (1844:40H) Signal Generator 10/10/2011 Annual 10/10/2012 5031400 Aglent ES515C Wireless Communications Test Set 10/20/2011 Annual 10/20/2012 G84130927 Aglent ES515C Wireless Communications Test Set 10/24/2011 Annual 10/24/2012 G84130927 Aglent ES515C Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 G84330947 Aglent ES515C Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 G84340954 Aglent ES515C Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 G84340954 Antrisu MA24118 Pauer Sensor 2/14/2012 Annual 2/14/2013 S931 Antrisu MA24118 Pauer Sensor 2/14/2012 Annual 2/14/2013 S931 Antrisu MA24181 Pauer Sensor 2/14/2012 Annual 2/14/2013 3/24/2013 3/24/2013 3/24/2013 3/24/2013 3/24/2013 3/	Agilent	85070E	Dielectric Probe Kit	3/8/2012	Annual	3/8/2013	MY44300633
Aglent ESSISC Wireless Communications Test Set 10/10/2012 (Bela10872) Aglent ESSISC Wireless Communications Test Set 10/14/2012 (Bela10872) Aglent ESSISC Wireless Communications Test Set 10/14/2012 (Annual) 2/14/2013 (Bel310872) Aglent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 (Bel35088) Aglent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 (Bel35085) Anrisu Mo24118 Prower Sensor 1/14/2012 Annual 1/01/2013 (Bel30055) Anrisu Mo24118 Prower Sensor 2/14/2012 Annual 1/14/2013 S812 Anrisu Mo2481A Prower Sensor 2/14/2012 Annual 2/14/2013 8013 Anrisu Mo2481A Prower Sensor 2/14/2012 Annual 2/14/2013 8013 Anrisu Mo2481A Prower Sensor 2/14/2012 Annual 2/14/2013 8013 A	Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A		N/A	3051A00187
Aglient ESSISC Wireless Communications Test Set 10/20/2012 (88630798) Aglient ESSISC Wireless Communications Test Set 12/14/2012 Annual 12/14/2013 (88130788) Aglient ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 (88130788) Aglient ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 (8843078) Aglient ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 (88440554) Anritsu MA2481A Power Senor 2/14/2012 Annual 2/14/2013 S313 Anritsu MA2481A Power Senor 2/14/2012 Annual 2/14/2013 S412 Anritsu MA2481A Power Senor 2/14/2012 Annual 2/14/2013 S412 Anritsu MA2481A Power Senor 2/14/2012 Annual 2/14/2013 S403 Anritsu MA2481A Power Senor 2/14/2012 Annual 2/14/2013 S40	Agilent	8648D	(9kHz-4GHz) Signal Generator	10/10/2011	Annual	10/10/2012	3613A00315
Aglent ESSISC Wireless Communications Test Set 10/14/2012 Annual 2/14/2012 Reliand Aglient ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/12/2013 GB4330447 Aglient ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/12/2013 GB4316487 Aglient ESSISC Wireless Communications Test Set 2/07/2012 Annual 2/12/2013 GB4316547 Anrtisu MA24118 Pulze Sensor 10/13/2011 Annual 10/13/2011 S0213 S512 Anrtisu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 S512 Anrtisu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 S603 Anrtisu MA2481A Power Meter 10/13/2011 Annual 2/14/2013 S601 Anrtisu MA2481A Power Meter 10/14/2012 Annual 2/14/2013 S601 Anrtisu MA2481A Power Meter 10/14/2012 Annual	Agilent	E5515C	Wireless Communications Test Set	10/10/2011	Annual	10/10/2012	GB46110872
Aglent ESSISC Wireless Communications Test Set 10/14/2012 Annual 2/14/2013 GR41460275 Aglent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 GR4350447 Aglent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 GR4350447 Aglent ESSISC Wireless Communications Test Set 2/14/2013 GR4316447 2/14/2013 GR431647 Anrtsu MA24118 Pulse Sencor 10/13/2011 Annual 10/13/2011 10/13/2013 S812 Anrtsu MA2481A Power Sencor 2/14/2012 Annual 2/14/2013 S813 Anrtsu MA2481A Power Sencor 2/14/2012 Annual 2/14/2013 8013 Anrtsu MA2481A Power Sencor 2/14/2012 Annual 2/14/2013 8013 Anrtsu MA2481A Power Meter 10/13/2011 Annual 2/14/2013 8013 Anrtsu MA2481A Power Meter 10/14/2012 Annua	-	E5515C			Annual		
Aglent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/12/2013 Gelassionary Aglent ESSISC Wireless Communications Test Set 2/12/2012 Annual 2/12/2013 Gelassionary Aglent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/12/2013 Gelassionary Annisu MA2611B Polie Sensor 2/14/2012 Annual 2/14/2013 Siat Annisu MA2611B Polie Sensor 2/14/2012 Annual 2/14/2013 Siat Annisu MA2681A Power Sensor 2/14/2012 Annual 2/14/2013 Siat Annisu MA2681A Power Sensor 2/14/2012 Annual 2/14/2013 Si01 Annisu MA2681A Power Sensor 2/14/2012 Annual 2/14/2013 Si01 Annisu MA2681A Power Meter 1/13/2011 Annual 2/14/2013 Si01 Annisu MA2681A Power Meter 1/14/2012 Annual 2/14/2013 Si01<							GB41450275
Agilent ESSISC Wireless Communications Test Set 2/12/2012 Annual 2/12/2013 G68/306837 Agilent ESSISC Wireless Communications Test Set 2/19/2012 Annual 2/19/2013 G68/306837 Anritsu MA2811B Pulace Sensor 10/13/2011 Annual 10/13/2012 10/27293 Anritsu MA2811A Power Sensor 2/14/2012 Annual 2/14/2013 5842 Anritsu MA2811A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anritsu MA2811A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anritsu MA281A Power Meter 2/14/2012 Annual 2/14/2013 12/12/2014 12/12/2014	-	E5515C	Wireless Communications Test Set		Annual	2/14/2013	
Agilent ESSISC Wireless Communications Test Set 2/14/2012 Annual 2/14/2013 GB4316847 Agilent ESSISC Wireless Communications Test Set 2/19/2012 Annual 2/19/2013 GB43466551 Anrisu MA24118 Poles Eensor 10/13/2011 Annual 2/14/2013 53184 Anrisu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5318 Anrisu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anrisu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anrisu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 3803 Anrisu MA2483A Power Meter 2/14/2012 Annual 2/14/2013 3805001 Anrisu MA2483A Power Meter 10/13/2011 Annual 10/13/2012 1093008 Anrisu MA2483A Power Meter 10/13/2011 Annual 11/11/2013 1162041	-						GB45360985
Agilent ESSIG Wireless Communications Text Set 2/9/2012 Annual 2/9/2013 G883460554 mpliffer Research 55164 55W, 800Métr-420t/z N/A CBT N/A 2719 Anritsu MA24118 Puise Sensor 10/13/2011 Annual 10/13/2012 1027293 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5442 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 2/04/2013 Anritsu MA2481A Power Meter 2/14/2012 Annual 2/14/2013 2/00 Anritsu MA2482A Power Meter 2/14/2012 Annual 10/13/2012 109003 Anritsu MA2482A Power Meter 10/13/2011 Annual 10/13/2012 109004 Anritsu MA2482A Power Meter 10/13/2011 Annual 10/13/2012 109000	-				Annual		
Implifer Research SSIG4 SW, 200Hk-202Hz N/A CET N/A 2130 Anritsu MA24B3A Power Sensor 2/14/2012 Annual 2/14/2013 SSIB Anritsu MA24B3A Power Sensor 2/14/2012 Annual 2/14/2013 SSIB Anritsu MA24B3A Power Sensor 2/14/2012 Annual 2/14/2013 SSIE Anritsu MA24B3A Power Sensor 2/14/2012 Annual 2/14/2013 SSIE Anritsu MA24B3A Power Sensor 2/14/2012 Annual 2/14/2013 SSIES041 Anritsu MA24B3A Power Meter 2/14/2012 Annual 2/14/2013 SSIES041 Anritsu MA24B3A Power Meter 10/13/2011 Annual 10/13/2012 10/33/2012 10/33/2012 10/33/2012 10/33/2012 10/33/2012 10/33/2012 10/33/2012 10/33/2012 10/33/2012 10/32/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2014 11/2/2014 12/201/2014	-						
Anritsu MA2411B Pulse Sensor 10/13/2011 Annual 10/13/2012 1027293 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5318 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 8033 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 8033 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 8013 Anritsu ML2438A Power Meter 2/14/2012 Annual 10/13/2012 102039 Anritsu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 102039 Anritsu ML8265A Power Meter 10/13/2011 Annual 10/13/2012 10204497 Control Company 6122-416 Long-Stem Thermometer 2/14/2013 Blennial 1/1/2013 11642941	Amplifier Research						
Anrtisu MA2881A Power Sensor 2/14/2012 Annual 2/14/2013 5318 Anrtisu MA2881A Power Sensor 2/14/2013 Annual 2/14/2013 5442 Anrtisu MA2881A Power Sensor 2/14/2012 Annual 2/14/2013 5821 Anrtisu MA2881A Power Sensor 2/14/2012 Annual 2/14/2013 4000 Anrtisu MA2881A Power Meter 2/14/2012 Annual 2/14/2013 9815001 Anrtisu ML2488A Power Meter 1/11/2011 Annual 1/11/2012 109208 Anrtisu ML2495A Power Meter 1/11/2011 Annual 1/11/2012 109208 Anrtisu ML895A Power Meter 1/11/2011 Annual 1/11/2012 109208 Control Company 6122-0146 Long-Stem Thremometer 1/11/2011 Annual 1/11/2013 11133132 Control Company 6122-0146 Long-Stem Thremometer 1/11/2011 Annual 1/11/2013 1111864241							
Anrtisu MA281A Power Sensor 21/14/2012 Annual 21/14/2013 542 Anrtisu MA2481A Power Sensor 21/14/2012 Annual 21/14/2013 5821 Anrtisu MA2481A Power Sensor 21/14/2012 Annual 21/14/2013 2010 Anrtisu MA2481A Power Sensor 21/14/2012 Annual 21/14/2013 2400 Anrtisu ML2438A Power Meter 21/14/2012 Annual 21/14/2013 9815041 Anrtisu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 109003 Anrtisu ML2435A Power Meter 10/13/2011 Annual 11/12/012 6202091190 Control Company 61220-416 Long-Stem Thermometer 2/14/2013 Biennial 11/12/2013 111313601 Control Company 61220-416 Long-Stem Thermometer 7/12/2013 Biennial 7/12/2013 11138044 Gigatonics 80701A (0.05-18/514) Power Sensor 10/12/2011 Biennial 7/12/2013 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Anritsu MA281A Power Sensor 2/14/2012 Annual 2/14/2013 S821 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 8013 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 2000 Anritsu MA2481A Power Meter 2/14/2012 Annual 2/14/2013 9815001 Anritsu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 107030 Anritsu ML2495A Power Meter 10/13/2011 Annual 10/13/2012 107030 Control Company 61220-416 Long-Stem Thermometer 1/4/2012 Biennial 1/1/2013 11313332 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Biennial 1/1/2013 1138604 Giagtonics 8651A Universal Power Meter 10/12/2011 Annual 10/12/2012 865031 Mincl Circuits NP-2000 Electronic Balance 3/27/2012 Annual 10/12/2013		-					
Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 2013 Anritsu MA2481A Power Sensor 2/14/2012 Annual 2/14/2013 2400 Anritsu ML2488A Power Meter 2/14/2012 Annual 2/14/2013 98150011 Anritsu ML248A Power Meter 2/14/2012 Annual 2/14/2012 10/13/2011 10/13/2011 10/13/2011 10/13/2012 10/03006 Anritsu ML2495A Power Meter 10/13/2011 Annual 10/13/2012 1003006 Control Company 36934-158 Wall-Mounted Thermometer 1/1/12/011 Annual 1/1/12/012 6200901190 Control Company 61220-416 Long-Stem Thermometer 2/15/2011 Blennial 1/1/2/2013 111139601 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Annual 10/12/2012 11394601 Gigatronics 80701A (0.05-186Hz) Power Sensor 10/12/2011 Annual 10/12/2012 1833460 Gigatron				1 1 -			
Anritsu M42481A Power Sensor 2/14/2012 Annual 2/14/2013 2400 Anritsu M4248A Power Meter 2/14/2012 Annual 2/14/2013 1910013 Anritsu M4248A Power Meter 2/14/2012 Annual 2/14/2012 1910013 Anritsu M4248A Power Meter 10/13/2011 Annual 10/13/2012 1070030 Anritsu M4248A Power Meter 10/13/2011 Annual 10/13/2012 1070030 Control Company 36294-158 Wall-Mounted Thermometer 1/4/2012 Blennial 1/1/12011 111313332 Control Company 61220-416 Long-Stem Thermometer 1/1/2011 Blennial 1/1/12013 11186844 Gigatronics 807014 ((0.61-16/41) Power Sensor 10/12/2011 Blennial 10/12/2012 883600 Gigatronics 807014 ((0.61-16/41) Power Sensor 10/12/2011 Annual 10/12/2012 883600 Gigatronics 807014 ((0.61-16/41) Power Sensor 10/12/2011 Ann							
Anritsu ML2438A Power Meter 2/14/2012 Annual 2/14/2013 1910013 Anritsu ML2438A Power Meter 2/14/2012 Annual 2/14/2013 98150041 Anritsu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 10703008 Anritsu MR202C Radio Communication Tester 11/11/2014 10/13/2012 1020000 Control Company 61220-416 Long-Stem Thermometer 2/15/2011 Biennial 2/15/2013 111313332 Control Company 61220-416 Long-Stem Thermometer 1/1/2/2011 Biennial 2/15/2013 111313601 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Biennial 10/12/2012 1833460 Gigatronics 8051A Universal Power Meter 10/12/2011 Annual 10/12/2012 1833460 Gigatronics 8051A Universal Power Meter 10/12/2011 Annual 10/12/2012 8650319 Min-Circuits NLP-200- Low Pass Filter D<							
Anritsu ML2438A Power Meter 2/14/2012 Annual 2/14/2013 98150041 Anritsu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 1007030 Anritsu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 1007030 Control Company 36941-LSW Wall-Mounted Thermometer 11/4/2012 Biennial 11/4/2014 12201449 Control Company 61220-416 Long-Stem Thermometer 71/2/2011 Biennial 71/2/2013 111131332 Control Company 61220-416 Long-Stem Thermometer 71/2/2011 Annual 10/12/2013 1113142941 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Annual 10/12/2012 18636319 Gigatronics 8051A Universal Power Meter 10/12/2011 Annual 10/12/2012 8650319 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11061534 Min-Circuits SW-2400+ Low Pass Filter DC to 27							
Anritsu ML2438A Power Meter 10/13/2011 Annual 10/13/2012 1070300 Anritsu MR2495A Power Meter 10/13/2011 Annual 10/13/2012 100300 Anritsu MR820C Radio Communication Tester 11/11/2011 Annual 11/11/2012 602001190 Control Company 61220-416 Long-Stem Thermometer 2/15/2011 Biennial 2/15/2013 11133132 Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Biennial 7/1/2013 11186084 Gigatronics 80701A (0.05-18GHz) Power Sensor 10/12/2011 Annual 10/12/2012 1838460 Gigatronics 8051A Universal Power Meter 10/12/2011 Annual 10/12/2012 1838460 MinCicruuts SUP-2400+ Low Pass Filter N/A CBT N/A 1139 MinCicruuts SUP-2400+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Min-Grauts SUP-2400+ Low Pass Filter DC to 1000 MHz N/A							
Anritsu Mt2495A Power Meter 10/13/2011 Annual 10/13/2012 1039008 Anritsu Mt8820C Radio Communication Tester 11/11/2011 Annual 11/11/2012 6200901190 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 2/15/2013 11133132 Control Company 61220-416 Long-Stem Thermometer 2/15/2011 Biennial 2/15/2013 111331601 Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Biennial 10/12/2012 1183460 Gigatronics 8851A Universal Power Meter 10/12/2011 Annual 10/12/2012 885334 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 Mini-Circuits SUP-2400+ Low Pass Filter N/A CBT N/A R897950093 Mini-Circuits SUP-2400+ Low Pass Filter DC to 2000 MHz N/A CBT N/A N/A Mini-Circuits SUP-2400+ Low Pass Filter DC to 20							
Anritsu MT8820C Radio Communication Tester 11/11/2011 Annual 11/11/2012 6200901190 Control Company 66120-416 Long-Stem Thermometer 1/15/2011 Biennial 1/16/2013 111331332 Control Company 61220-416 Long-Stem Thermometer 3/16/2011 Biennial 3/16/2013 111331332 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Biennial 3/16/2013 1113642941 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Annual 10/12/2012 8560319 Gigatronics 80701A (0.05-168/H2) Power Sensor 10/12/2011 Annual 10/12/2012 8560319 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 Mini-Circuits SWP-A004 Low Pass Filter N/A CBT N/A R8979500903 Mini-Circuits SWP-4004 Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Mini-Circuits NLP-1200+							
Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 122014497 Control Company 61220-416 Long-Stem Thermometer 2/15/2011 Biennial 2/15/2013 11133130 Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Biennial 7/1/2013 11164241 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Annual 10/12/2012 1183600 Gigatronics 8651A Universal Power Meter 10/12/2011 Annual 10/12/2012 856330 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 Mici Circuits NP-4000+ Low Pass Filter N/A CBT N/A R897950003 Mini-Circuits NP-200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NP-2950+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) <td< td=""><td></td><td></td><td></td><td></td><td></td><td>· · · ·</td><td></td></td<>						· · · ·	
Control Company 61220-416 Long-Stem Thermometer 2/15/2011 Biennial 2/15/2013 111331332 Control Company 61220-416 Long-Stem Thermometer 3/16/2011 Biennial 3/16/2013 111331302 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Biennial 10/12/2013 11186084 Gigatronics 80701A (0.05-18GHz) Power Sensor 10/12/2011 Annual 10/12/2012 8550310 Gigatronics 8051A Universal Power Meter 10/12/2012 Annual 3/27/2013 11081534 MCL BW-N6W5+ 6dB Attenuator N/A CBT N/A 1139 Mini-Circuits SW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator N/A CBT N/A N/A Mini-Circuits NV2-1200+ Low Pass Filter D to 1200 MHz N/A CBT N/A N/A Mini-Circuits NV2-120+ Low Pass Filter D to 200 MHz N/A CBT N/A N/A Mini-Circuits NV2-120+ Low Pass Filter D to 200 MHz						· · · ·	
Control Company 61220-416 Long-Stem Thermometer 3/16/2011 Biennial 3/16/2013 111391601 Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Biennial 7/1/2013 111462941 Gigatronics 80701A (0.05-18GH2) Power Sensor 10/12/2011 Annual 10/12/2012 1883460 Gigatronics 8651A Universal Power Meter 10/12/2011 Annual 10/12/2012 8650319 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 MICICruits SUP-2400+ Low Pass Filter N/A CBT N/A R897505003 Mini-Circuits NUP-250+ Low Pass Filter DC to 2000 MHz N/A CBT N/A N/A Mini-Circuits NUP-250+ Low Pass Filter DC to 2000 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 120 Pastemack PE2209-10 Bidirectional Coupler 6/3/2011 Annu							
Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Biennial 7/1/2013 111642941 Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Biennial 10/12/2012 1188084 Gigatronics 8051A Universal Power Meter 10/12/2011 Annual 10/12/2012 865319 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 Micl Circuits SLP-2400+ Low Pass Filter N/A CBT N/A 1139 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 200 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (30B) N/A CBT N/A 120 Narda BW-S3W2 Attenuator (30B) N/A CBT N/A 120 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012							
Control Company 61220-416 Long-Stem Thermometer 10/12/2011 Biennial 10/12/2012 11380644 Gigatronics 80701A (0.05-18GHz) Power Sensor 10/12/2011 Annual 10/12/2012 1833460 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 MCL BW-N6W5+ 6dB Attenuator N/A CBT N/A 1139 Mini-Circuits SU-2400+ Low Pass Filter N/A CBT N/A R897950903 Mini-Circuits NLP-1200+ Low Pass Filter DC to 200 MHz N/A CBT N/A NA Mini-Circuits NLP-2950+ Low Pass Filter DC to 270 MHz N/A CBT N/A NA Narda 4772-3 Attenuator (3dB) N/A CBT N/A 120 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/4/2012							
Gigatronics 80701A (0.05-18GHz) Power Sensor 10/12/2011 Annual 10/12/2012 1833460 Gigatronics 8651A Universal Power Meter 10/12/2011 Annual 10/12/2012 8650319 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 MinCircuits SUP-2400+ Low Pass Filter N/A CBT N/A R897950093 Mini-Circuits SUP-2400+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 120 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8							
Gigatronics 8651A Universal Power Meter 10/12/2011 Annual 10/12/2012 8650319 Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 MCL BW-N6W5+ 6dB Attenuator N/A CBT N/A 1139 MiniCircuits SLP-2400+ Low Pass Filter N/A CBT N/A R87950093 Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator N/A CBT N/A N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 200 MHz N/A CBT N/A N/A Mini-Circuits NLP-1205+ Low Pass Filter DC to 200 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 120 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/3/2012 N/						· · · ·	
Intelligent Weigh PD-3000 Electronic Balance 3/27/2012 Annual 3/27/2013 11081534 MCL BW-N6W5+ 6dB Attenuator N/A CET N/A 1139 Mini-Circuits SIP-2400+ Low Pass Filter N/A CET N/A R8979500903 Mini-Circuits BW-N20W5+ DC to 18 GH2 Precision Fixed 20 dB Attenuator N/A CET N/A N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Mini-Gircuits NLP-2950+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 9406 Narda BW-53V2 Attenuator (3dB) N/A CBT N/A 9406 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Binenial 4/8/2013 1016955						· · · ·	
MCL BW-N6W5+ 6dB Attenuator N/A CBT N/A 1139 Mini-Circuits SIP-2400+ Low Pass Filter N/A CBT N/A R8979500903 Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 B Attenuator N/A CBT N/A N/A N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 9406 Narda BW-S3W2 Attenuator (3dB) N/A CBT N/A 120 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" Ib) 3/5/2012 Triennial 3/5/2015 N/A	-					· · · ·	
MiniCircuits SLP-2400+ Low Pass Filter N/A CBT N/A R8979500903 Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator N/A CBT N/A N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 120 Pastemack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/1/2012 833855/0010 Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" Ib) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 8/19/2011 Annual 8/19/2	ů ů						
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator N/A CBT N/A N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 120 Pasternack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/3/2012 N/A Seekonk NC-100 Torque Wrench (8" Ib) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" Ib) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 <td></td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td> <td></td>				· · ·			
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz N/A CBT N/A N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 9406 Narda BW-S3W2 Attenuator (3dB) N/A CBT N/A 120 Pasternack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/1/2012 833855/0010 Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719<							
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz N/A CBT N/A N/A Narda 4772-3 Attenuator (3dB) N/A CBT N/A 9406 Narda BW-53W2 Attenuator (3dB) N/A CBT N/A 120 Pasternack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/1/2012 833855/0010 Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" Ib) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" Ib) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 8/19/2012 719 SPEAG D1900V2 2450 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 40026 <							
Narda 4772-3 Attenuator (3dB) N/A CBT N/A 9406 Narda BW-S3W2 Attenuator (3dB) N/A CBT N/A 120 Pasternack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Pasternack PE2209-10 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/3/2012 N/A Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 11/29/2014 21053 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V/2 1900 MHz SAR Dipole 2/22/2012 Annual 2/21/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 <							
Narda BW-S3W2 Attenuator (3dB) N/A CBT N/A 120 Pasternack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Pasternack PE2209-10 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/3/2012 N/A Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 13/2/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG DA54V2 235 MHz SAR Dipole 8/19/2011 Annual 8/19/2012							
Pasternack PE2208-6 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Pasternack PE2209-10 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/1/2012 833855/0010 Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 11/29/2014 21053 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG DA54 Dasy Data Acquisition Electronics 1/18/2013 11272							
Pasternack PE2209-10 Bidirectional Coupler 6/3/2011 Annual 6/3/2012 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/1/2012 833855/0010 Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 11/29/2014 21053 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1990 MHz SAR Dipole 2/12/2012 Annual 2/12/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/15/2012 40266 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Rohde & Schwarz CMU200 Base Station Simulator 6/1/2011 Annual 6/1/2012 833855/0010 Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 11/29/2014 21053 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 40026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annu							
Rohde & Schwarz NRVD Dual Channel Power Meter 4/8/2011 Biennial 4/8/2013 101695 Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 11/29/2014 21053 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG DA54 Dasy Data Acquisition Electronics 5/19/2011 Annual 8/19/2012 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual							
Seekonk NC-100 Torque Wrench (8" lb) 11/29/2011 Triennial 11/29/2014 21053 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG D835V2 835 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 5/19/2013 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 1/2							
Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG D835V2 835 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 1/21/2012 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG D835V2 2450 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 5/19/2012 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 2/15/2013 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 2/15/2013 1323 Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 8/25/2011 3022 SPEAG ES3DV2 SAR Probe 3/16/2012 Annual 3/16/2013 <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · ·</td> <td></td>						· · · ·	
SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/22/2013 502 SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG D835V2 835 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 5/19/2012 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 1/18/2013 1272 SPEAG DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/							
SPEAG D2450V2 2450 MHz SAR Dipole 8/19/2011 Annual 8/19/2012 719 SPEAG D835V2 835 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 5/19/2012 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 1/18/2013 1323 Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV2 SAR Probe 3/16/2012 Annual 8/25/2012 3029 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 3/16/2013 3299 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258							
SPEAG D835V2 835 MHz SAR Dipole 8/15/2011 Annual 8/15/2012 4d026 SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 5/19/2012 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 2/15/2013 1323 Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 8/25/2012 3022 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 5/26/2012 10			· · · · · · · · · · · · · · · · · · ·				
SPEAG DAE4 Dasy Data Acquisition Electronics 5/19/2011 Annual 5/19/2012 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 2/15/2013 1323 Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 8/25/2012 3022 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012			· ·				-
SPEAG DAE4 Dasy Data Acquisition Electronics 1/18/2012 Annual 1/18/2013 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 2/15/2013 1323 Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 8/25/2012 3022 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2012 Annual 2/15/2013 1323 Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 8/25/2012 3022 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286400 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454					A I		
Speag DAK-3.5 Dielectric Assessment Kit 12/1/2011 Annual 12/1/2012 1031 SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 8/25/2012 3022 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286400 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
SPEAG ES3DV2 SAR Probe 8/25/2011 Annual 8/25/2012 3022 SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
SPEAG ES3DV3 SAR Probe 3/16/2012 Annual 3/16/2013 3209 SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286400 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
SPEAG ES3DV3 SAR Probe 2/21/2012 Annual 2/21/2013 3258 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286460 VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
VWR 36934-158 Wall-Mounted Thermometer 5/26/2010 Biennial 5/26/2012 101718589 VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
VWR 36934-158 Wall-Mounted Thermometer 1/21/2011 Biennial 1/21/2013 111286454							
VWR 36934-158 Wall-Mounted Thermometer 9/30/2011 Biennial 9/30/2013 111859323							
	VWR	36934-158	Wall-Mounted Thermometer	9/30/2011	Biennial	9/30/2013	111859323

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, attenuator, coupler, amplifier, or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 26 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 26 of 30
© 2012 PCTEST Engineering Laboratory. Inc.				

MEASUREMENT UNCERTAINTIES 14

Applicable for frequencies less than 3000 MHz.

а	b	с	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
	360.	(,			5		(± %)	(± %)	·
Measurement System									
Probe Calibration	E.2.1	6.0	Ν	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	8
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time		2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions		3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance		0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom		2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation		1.0	R	1.73	1.0	1.0	0.6	0.6	x
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values		5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty		4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	DUT Type:		
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 27 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.					

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dego 29 of 20	
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 28 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.					

16 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio [3] frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), [5] Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining [6] the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

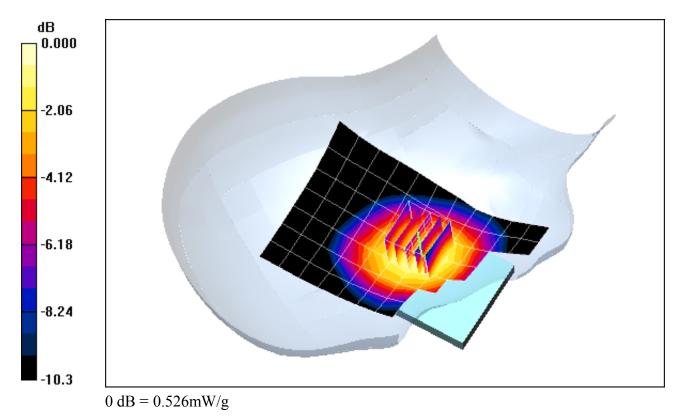
FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 20
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 29 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC Hot Spot SAR v01, KDB Publication 941225 D06.

FCC ID: ZNFL40G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	DUT Type:		
0Y1204180526.ZNF	04/17/12 - 04/19/12	Portable Handset		Page 30 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.					

APPENDIX A: SAR TEST DATA

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Right Section

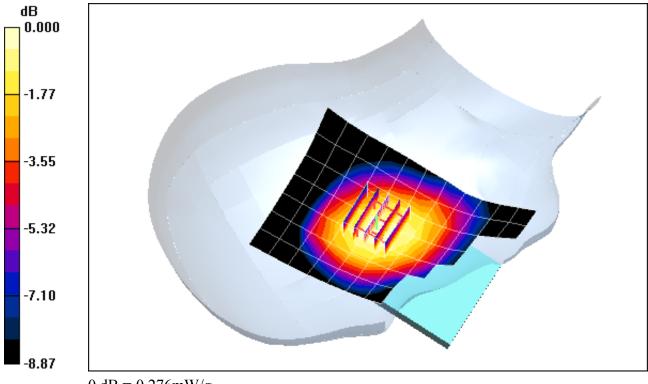
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Touch, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.2 V/m; Power Drift = 0.045 dB Peak SAR (extrapolated) = 0.616 W/kg SAR(1 g) = 0.502 mW/g; SAR(10 g) = 0.381 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Right Section

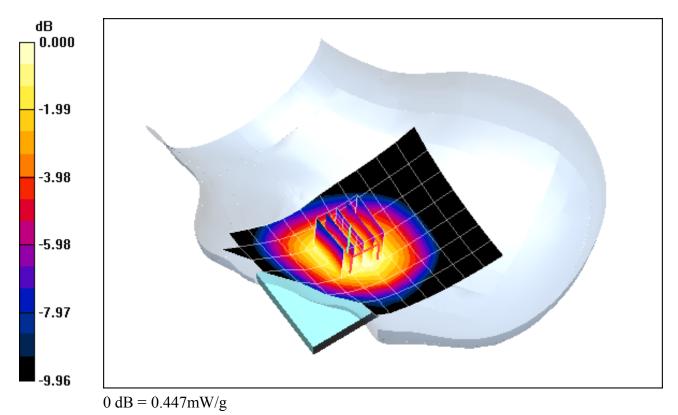
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Right Head, Tilt, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.079 dB Peak SAR (extrapolated) = 0.317 W/kg SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.203 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Left Section

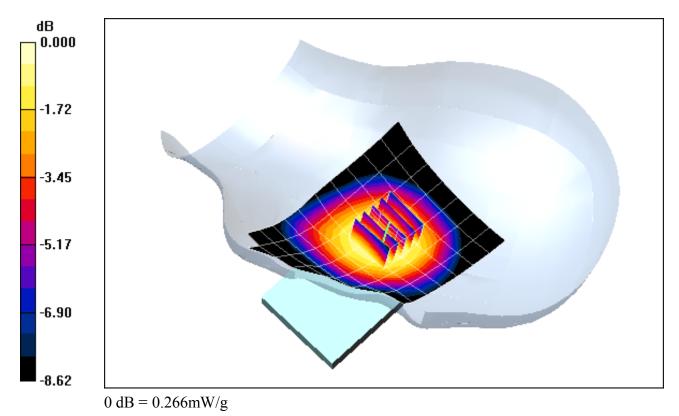
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Touch, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.2 V/m; Power Drift = -0.050 dB Peak SAR (extrapolated) = 0.526 W/kg SAR(1 g) = 0.426 mW/g; SAR(10 g) = 0.324 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Left Head, Tilt, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.042 dB Peak SAR (extrapolated) = 0.305 W/kg SAR(1 g) = 0.256 mW/g; SAR(10 g) = 0.200 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Right Section

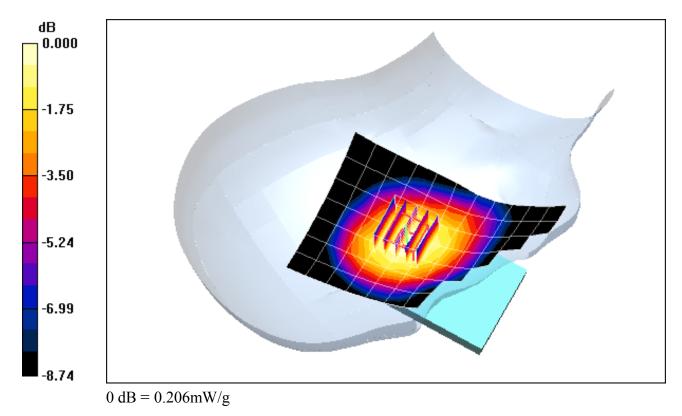
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Right Head, Touch, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.5 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 0.445 W/kg SAR(1 g) = 0.360 mW/g; SAR(10 g) = 0.274 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Right Section

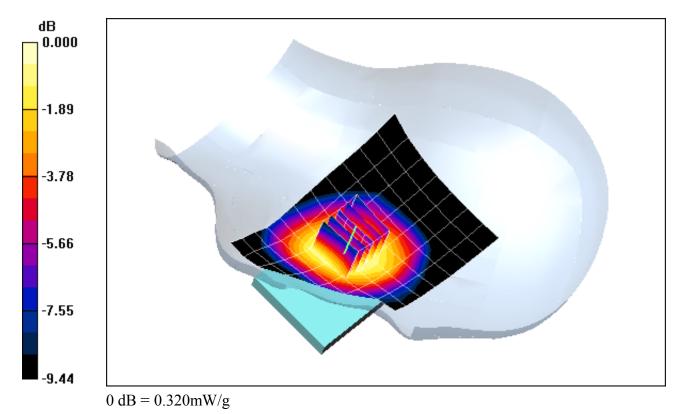
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Right Head, Tilt, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.1 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 0.237 W/kg SAR(1 g) = 0.197 mW/g; SAR(10 g) = 0.152 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Left Section

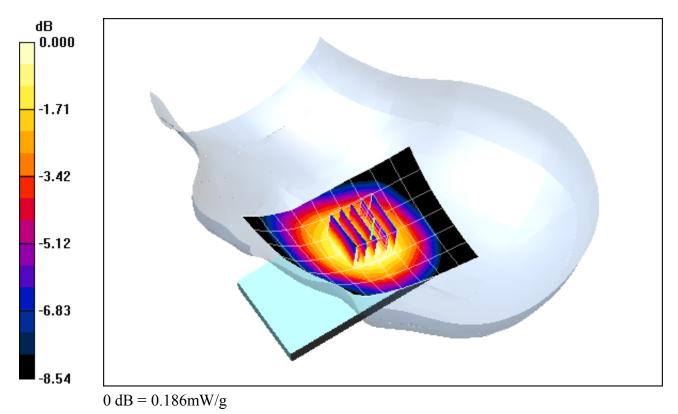
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Left Head, Touch, Mid.ch

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.3 V/m; Power Drift = -0.050 dB Peak SAR (extrapolated) = 0.379 W/kg SAR(1 g) = 0.306 mW/g; SAR(10 g) = 0.233 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Left Section

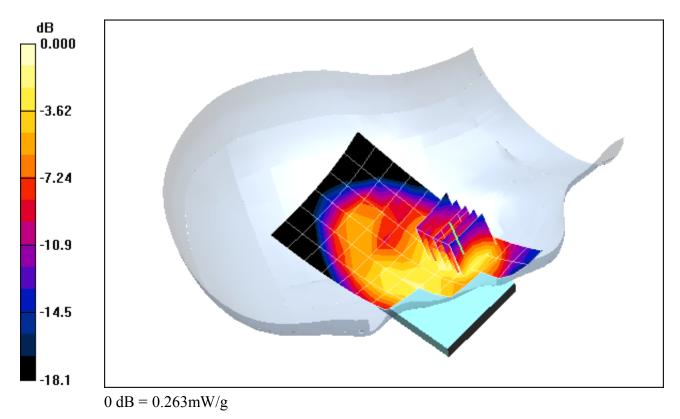
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 850, Left Head, Tilt, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 0.214 W/kg SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.140 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Right Section

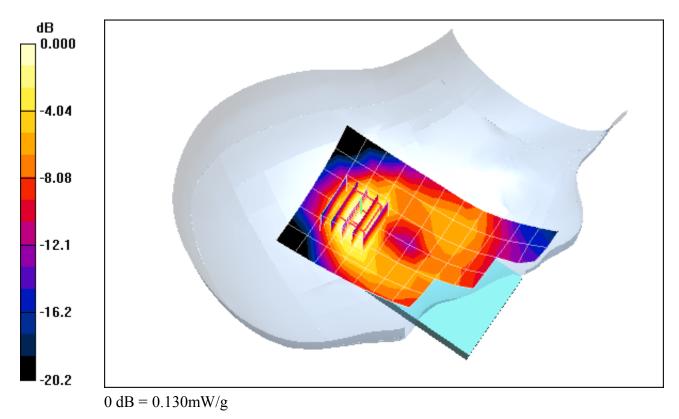
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Touch, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.4 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 0.362 W/kg SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.150 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Right Section

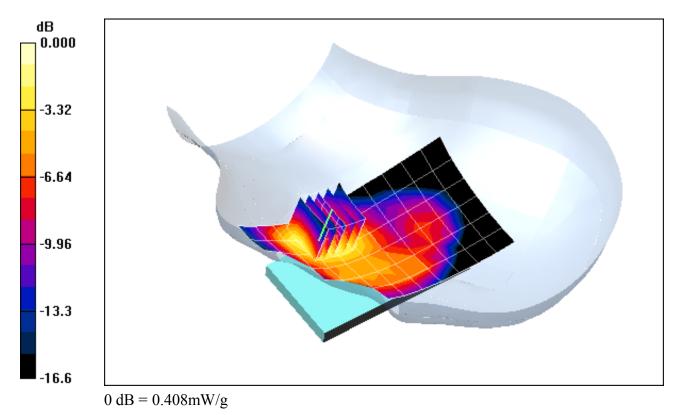
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Right Head, Tilt, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.87 V/m; Power Drift = 0.193 dB Peak SAR (extrapolated) = 0.201 W/kg SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.067 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section

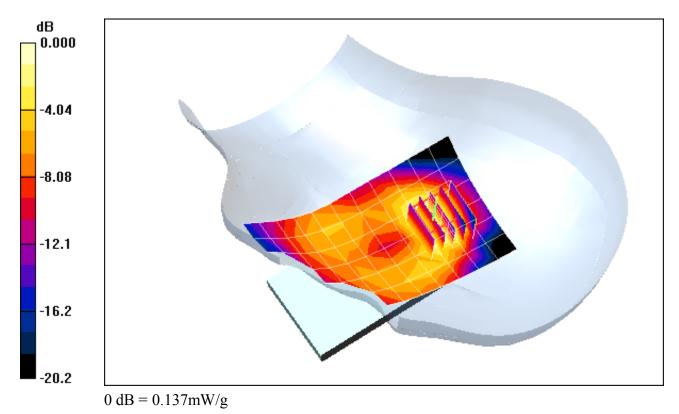
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Touch, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = -0.107 dB Peak SAR (extrapolated) = 0.582 W/kg SAR(1 g) = 0.367 mW/g; SAR(10 g) = 0.214 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section

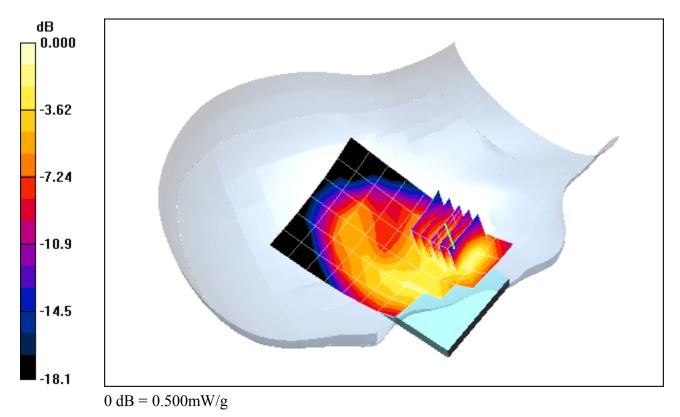
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Left Head, Tilt, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.47 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 0.207 W/kg SAR(1 g) = 0.126 mW/g; SAR(10 g) = 0.072 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Right Section

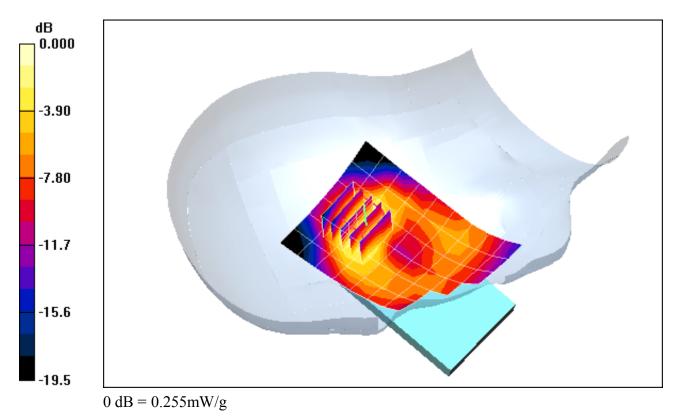
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Right Head, Touch, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.3 V/m; Power Drift = -0.026 dB Peak SAR (extrapolated) = 0.686 W/kg SAR(1 g) = 0.451 mW/g; SAR(10 g) = 0.278 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Right Section

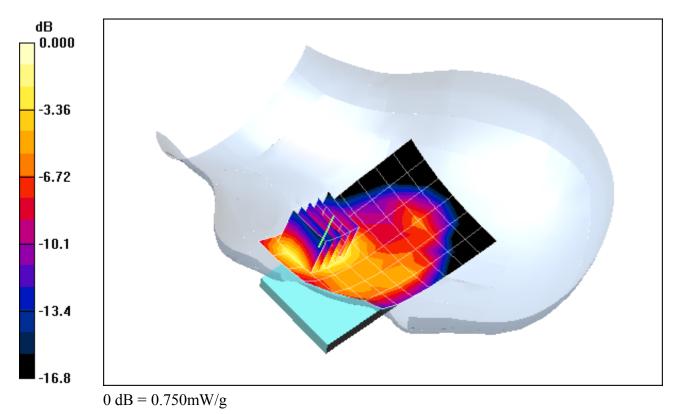
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Right Head, Tilt, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.9 V/m; Power Drift = 0.157 dB Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.138 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section

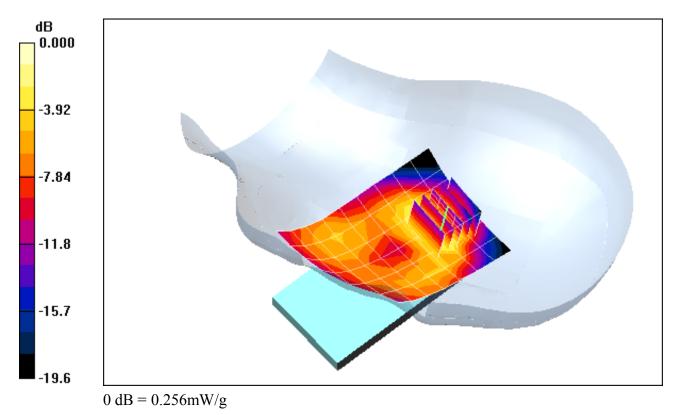
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Left Head, Touch, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.2 V/m; Power Drift = -0.149 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.689 mW/g; SAR(10 g) = 0.406 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section

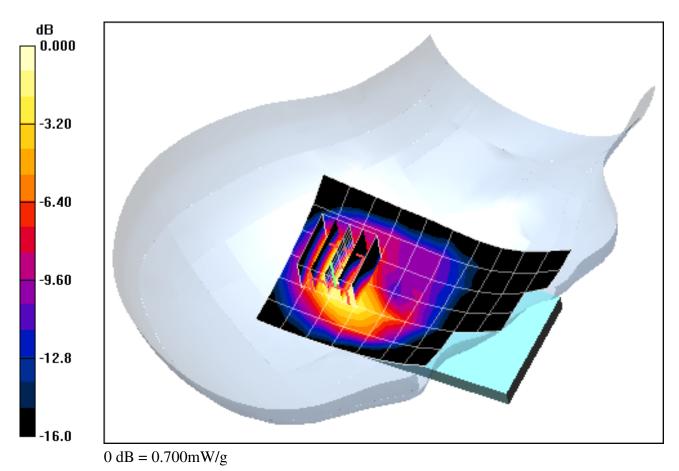
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Left Head, Tilt, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.1 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 0.388 W/kg SAR(1 g) = 0.238 mW/g; SAR(10 g) = 0.136 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Right Section

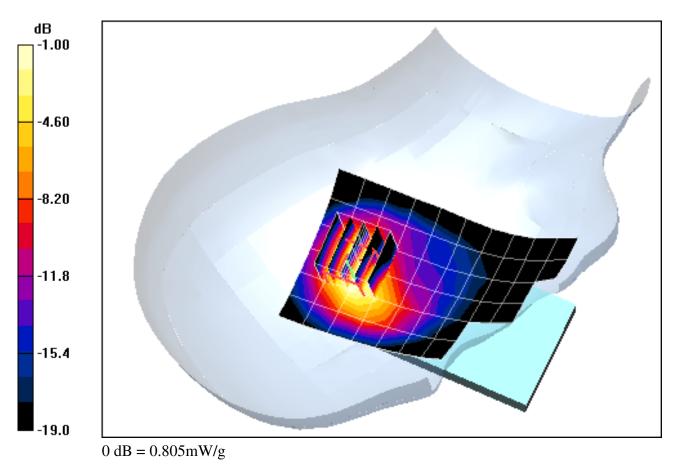
Test Date: 04-18-2012; Ambient Temp: 23.7 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.46, 4.46, 4.46); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Right Head, Touch, Ch 11, 1 Mbps

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.2 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.578 mW/g; SAR(10 g) = 0.274 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \sigma = 1.9 \text{ mho/m}; \epsilon_r = 37.8; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 04-18-2012; Ambient Temp: 23.7 °C; Tissue Temp: 22.4 °C

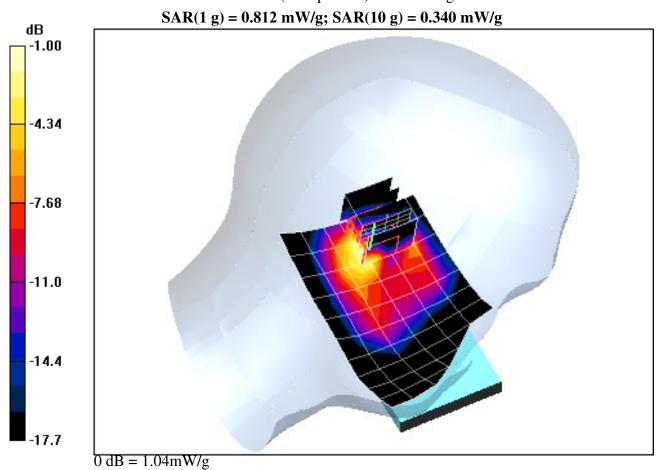
Probe: ES3DV3 - SN3209; ConvF(4.46, 4.46, 4.46); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Right Head, Tilt, Ch 11, 1 Mbps

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.9 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 1.40 W/kg SAR(1 g) = 0.656 mW/g; SAR(10 g) = 0.301 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.871$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Left Section


Test Date: 04-18-2012; Ambient Temp: 23.7 °C; Tissue Temp: 22.4 °C

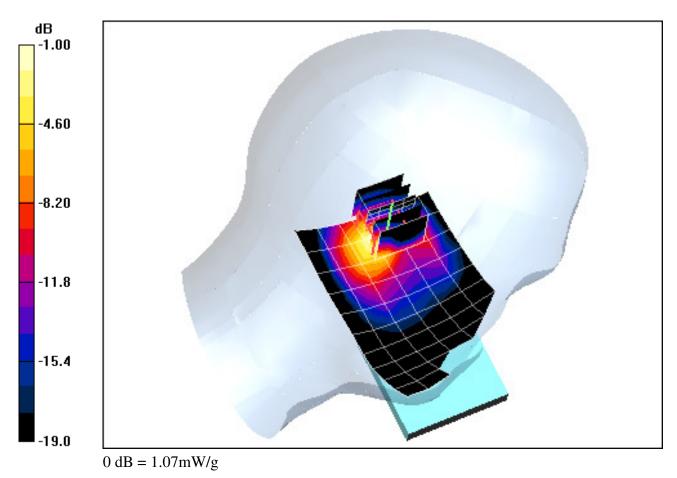
Probe: ES3DV3 - SN3209; ConvF(4.46, 4.46, 4.46); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Left Head, Touch, Ch 06, 1 Mbps

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

> Reference Value = 19.4 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 1.86 W/kg

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 04-18-2012; Ambient Temp: 23.7 °C; Tissue Temp: 22.4 °C

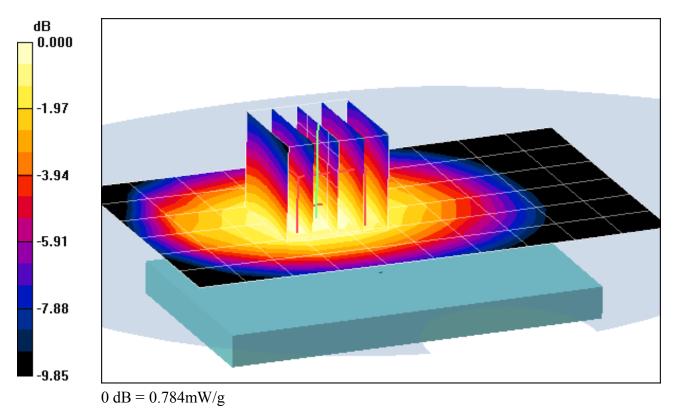
Probe: ES3DV3 - SN3209; ConvF(4.46, 4.46, 4.46); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Left Head, Tilt, Ch 11, 1 Mbps

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.8 V/m; Power Drift = 0.009 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 0.792 mW/g; SAR(10 g) = 0.339 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165017

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.985$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

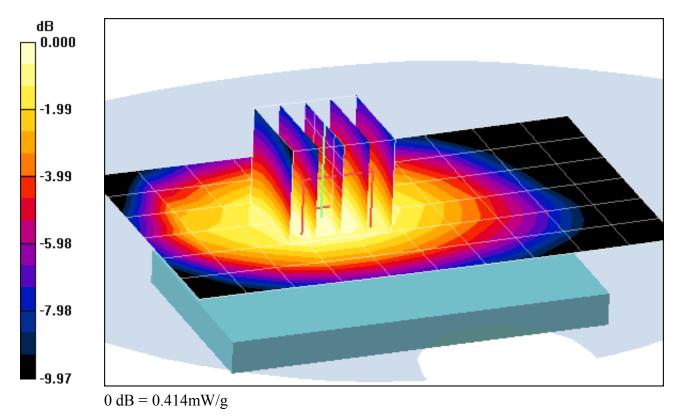
Test Date: 04-19-2012; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.4 V/m; Power Drift = -0.055 dB Peak SAR (extrapolated) = 0.959 W/kg SAR(1 g) = 0.737 mW/g; SAR(10 g) = 0.539 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165017


Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.985$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-19-2012; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

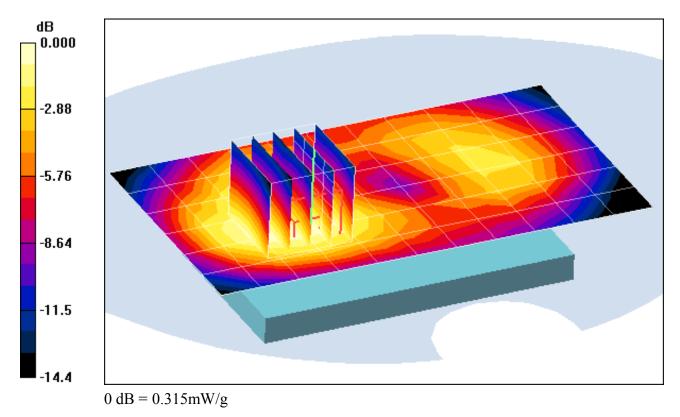
Mode: WCDMA 850, Body SAR, Back side, Mid.ch

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.5 V/m; Power Drift = -0.092 dB Peak SAR (extrapolated) = 0.512 W/kg SAR(1 g) = 0.391 mW/g; SAR(10 g) = 0.286 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016

Communication System: GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used:

f = 1880 MHz; σ = 1.53 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-19-2012; Ambient Temp: 22.1°C; Tissue Temp: 21.8°C

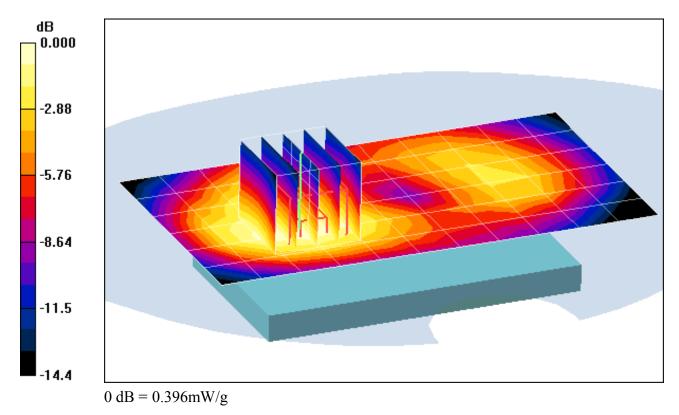
Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.0 V/m; Power Drift = -0.083 dB Peak SAR (extrapolated) = 0.473 W/kg SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.184 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016

Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

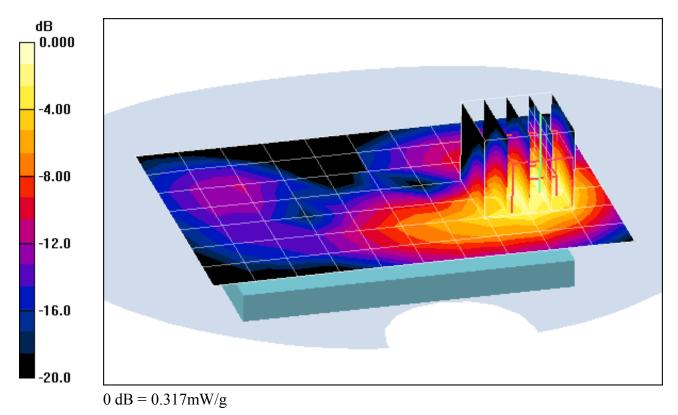
Test Date: 04-19-2012; Ambient Temp: 22.1°C; Tissue Temp: 21.8°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Back side, Mid.ch

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.5 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 0.590 W/kg SAR(1 g) = 0.371 mW/g; SAR(10 g) = 0.229 mW/g

DUT: ZNFL40G; Type: Portable Handset; Serial: 203KPTM165016


Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.06$ mho/m; $\varepsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-19-2012; Ambient Temp: 23.4 °C; Tissue Temp: 22 3°C

Probe: ES3DV3 - SN3209; ConvF(4.23, 4.23, 4.23); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

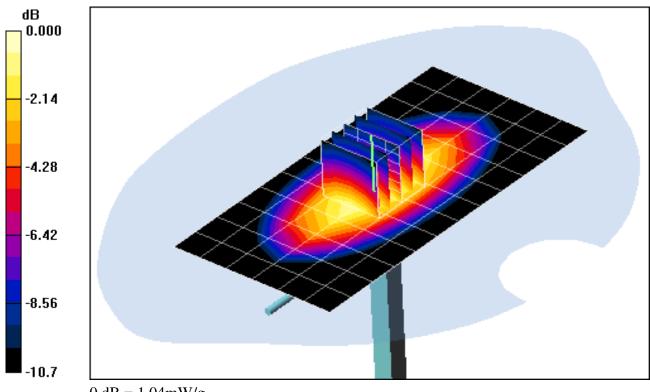
Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Back Side

Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.6 V/m; Power Drift = 0.209 dB Peak SAR (extrapolated) = 0.518 W/kg SAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.128 mW/g

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d026

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

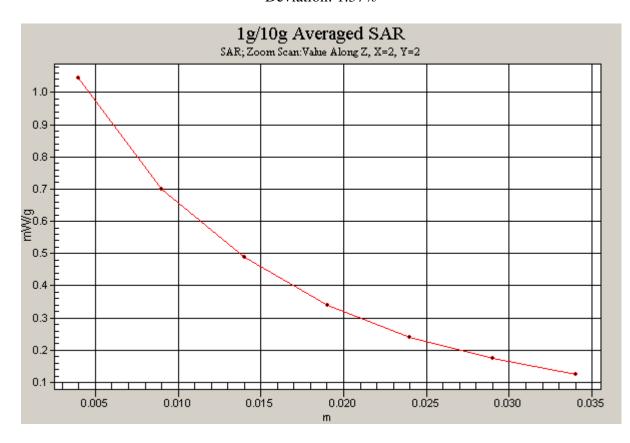
835MHz System Verification

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power: 20.0 dBm (100 mW) SAR(1 g) = 0.959 mW/g; SAR(10 g) = 0.625 mW/g Deviation: 1.37%

 $0 \, dB = 1.04 \, mW/g$

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d026

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

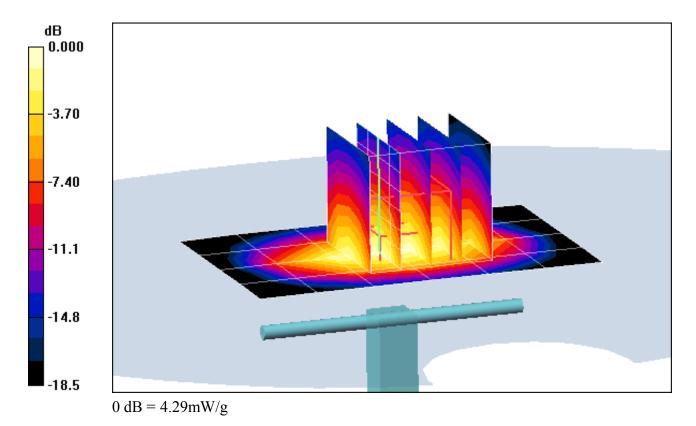
Test Date: 04-17-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power: 20.0 dBm (100 mW) SAR(1 g) = 0.959 mW/g; SAR(10 g) = 0.625 mW/g Deviation: 1.37%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

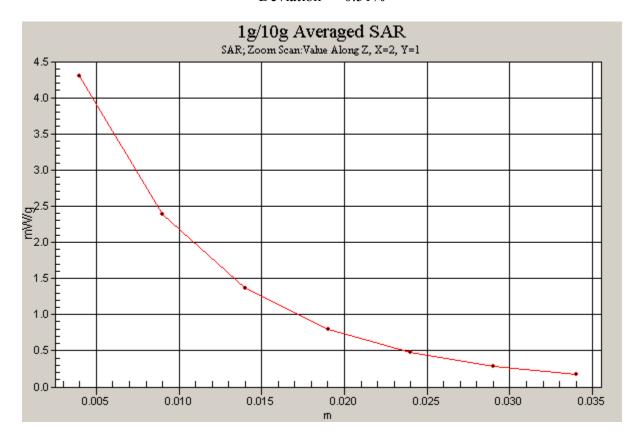
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) SAR(1 g) = 3.9 mW/g; SAR(10 g) = 2.03 mW/gDeviation = -0.51%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

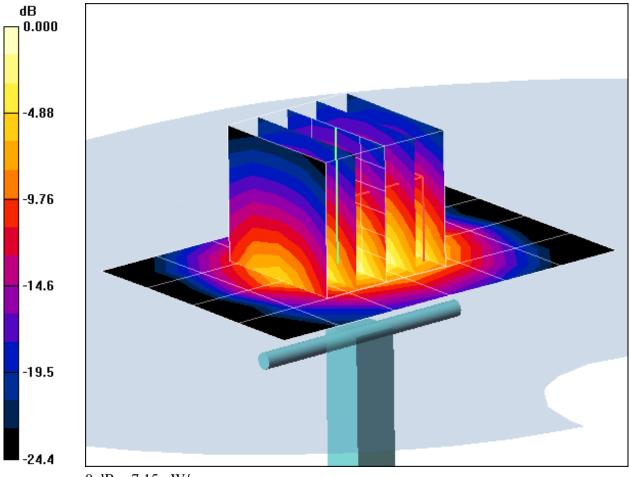
Test Date: 04-18-2012; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.98, 4.98, 4.98); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) SAR(1 g) = 3.9 mW/g; SAR(10 g) = 2.03 mW/gDeviation = -0.51%

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-18-2012; Ambient Temp: 23.7 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.46, 4.46, 4.46); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) SAR(1 g) = 5.51 mW/g; SAR(10 g) = 2.52 mW/g Deviation = 2.42 %

 $0 \, dB = 7.15 \, mW/g$

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

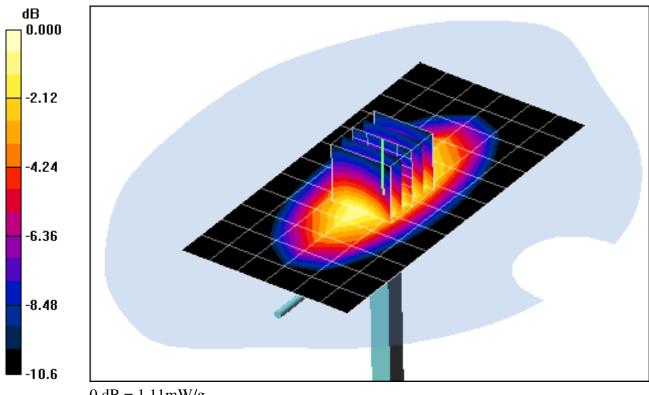
Test Date: 04-18-2012; Ambient Temp: 23.7 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.46, 4.46, 4.46); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) SAR(1 g) = 5.51 mW/g; SAR(10 g) = 2.52 mW/g Deviation = 2.42 %

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d026


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-19-2012; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

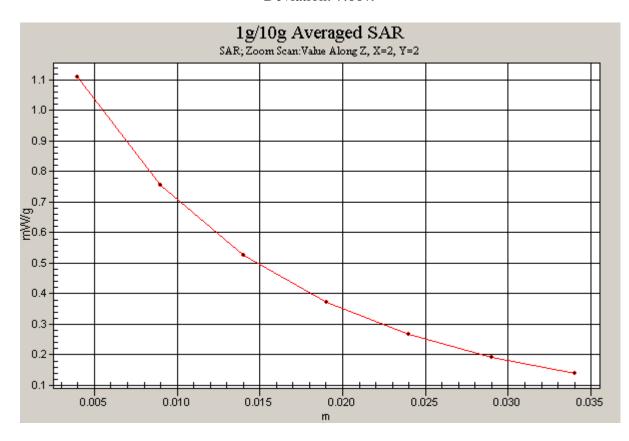
835MHz System Verification

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power: 20.0 dBm (100 mW) SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.677 mW/g Deviation: 7.66%

 $0 \, dB = 1.11 \, mW/g$

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d026

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.5 cm

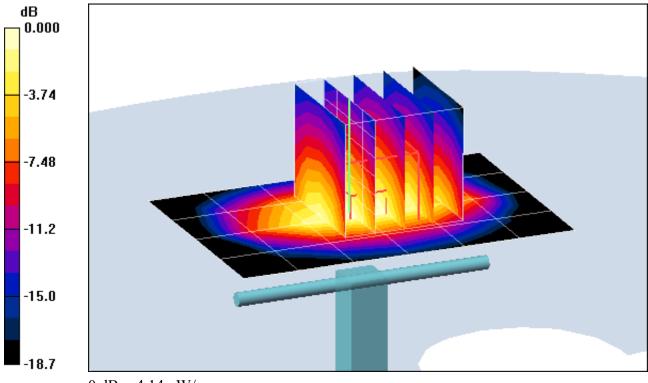
Test Date: 04-19-2012; Ambient Temp: 23.0°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power: 20.0 dBm (100 mW) SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.677 mW/g Deviation: 7.66%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-19-2012; Ambient Temp: 22.1°C; Tissue Temp: 21.8°C

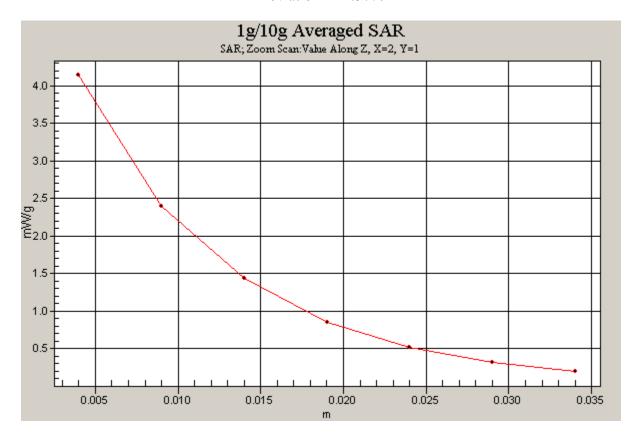
Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) SAR(1 g) = 3.72 mW/g; SAR(10 g) = 1.96 mW/gDeviation = -4.37%

 $0 \, dB = 4.14 mW/g$

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

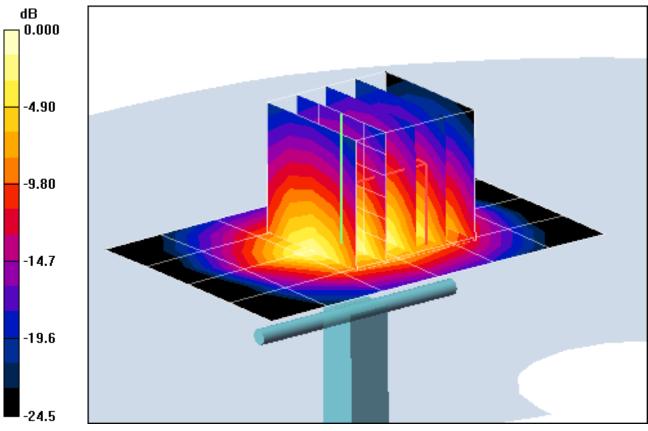
Test Date: 04-19-2012; Ambient Temp: 22.1°C; Tissue Temp: 21.8°C

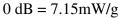
Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/19/2011 Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20 dBm (100 mW) SAR(1 g) = 3.72 mW/g; SAR(10 g) = 1.96 mW/g Deviation = -4.37%

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 04-19-2012; Ambient Temp: 23.4 °C; Tissue Temp: 22.3°C

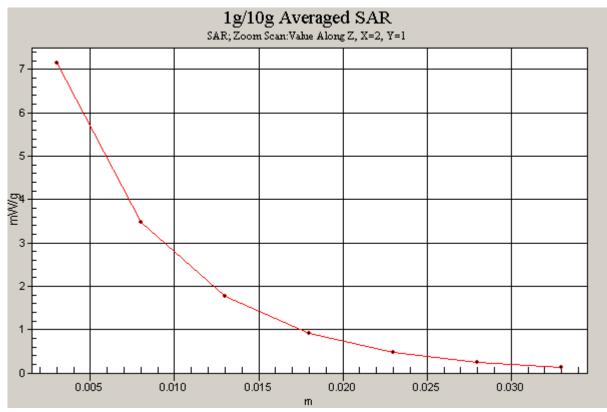
Probe: ES3DV3 - SN3209; ConvF(4.23, 4.23, 4.23); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) SAR(1 g) = 5.52 mW/g; SAR(10 g) = 2.51 mW/gDeviation = 7.60 %

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.05$ mho/m; $\varepsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 04-19-2012; Ambient Temp: 23.4 °C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3209; ConvF(4.23, 4.23, 4.23); Calibrated: 3/16/2012 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 2/15/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) SAR(1 g) = 5.52 mW/g; SAR(10 g) = 2.51 mW/g

Deviation = 7.60 %

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

I

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
 - **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

S

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates				
Client PC Test		1	Certificate No: D835V2-4d026_Aug11	
CALIBRATION C	DERTIFICATI			
Object	D835V2 - SN: 40	1026		
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation		
Calibration date:	August 15, 2011		/ KOX- 9/6/11	
			e physical units of measurements (SI). ving pages and are part of the certificate.	
All calibrations have been conduc	cted in the closed laborate	ry facility: environment tempera	ture (22 \pm 3)°C and humidity < 70%.	
Calibration Equipment used (M&	TE critical for calibration)			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11	
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11	
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12	
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12	
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205 A	or11) Apr-12	

Helefence Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	D#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Nama	Frenchism	
Collibrated by	Name Olaudia Laudia	Function	\$1gnature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			Luga -
Approved by:	Katja Pokovic	Technical Manager	20110
	s de la company de la company		de Cart
			Issued: August 15, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.46 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.66 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.42 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

[Impedance, transformed to feed point	53.4 Ω - 3.1 jΩ
	Return Loss	- 27.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.3 Ω - 5.4 jΩ		
Return Loss	- 25.3 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.389 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

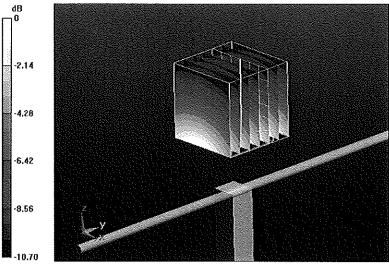
Manufactured by	SPEAG			
Manufactured on	December 17, 2004			

DASY5 Validation Report for Head TSL

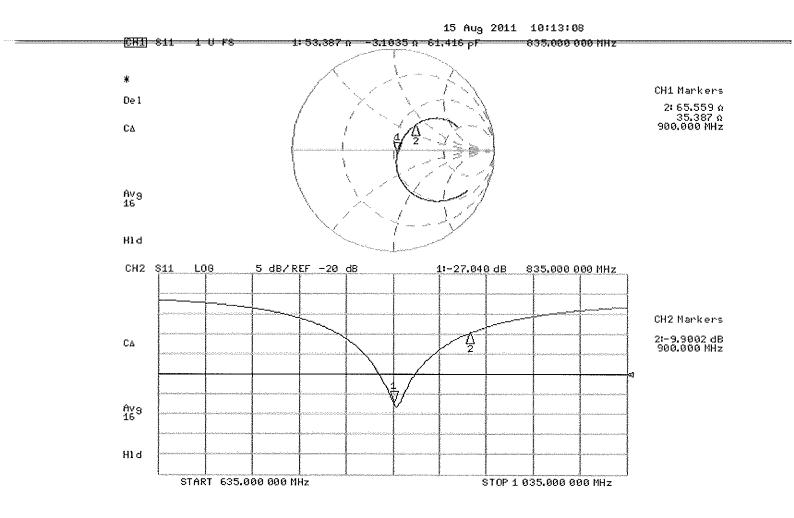
Date: 15.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d026


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.042 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.480 W/kg SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g Maximum value of SAR (measured) = 2.719 mW/g

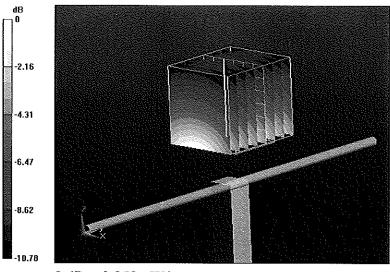
 $0 \, dB = 2.720 \, mW/g$

DASY5 Validation Report for Body TSL

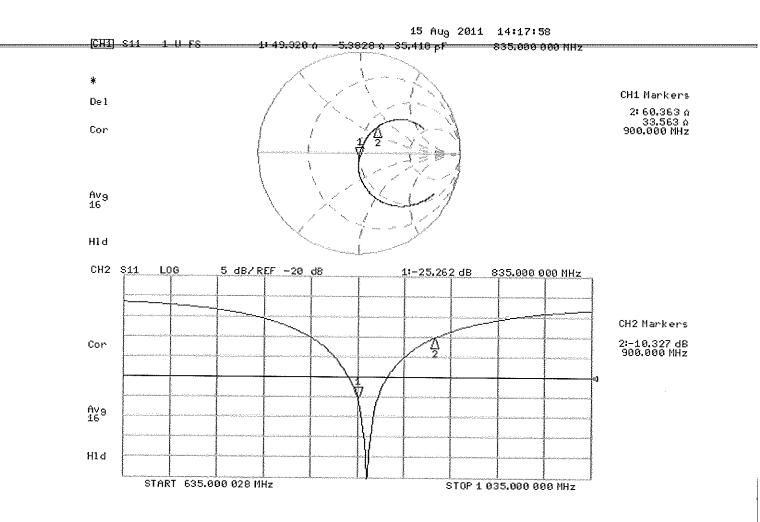
Date: 15.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d026


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ϵ_r = 53.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

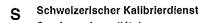
DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 54.889 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.598 W/kg SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.854 mW/g

 $0 \, dB = 2.850 \, mW/g$



Calibration Laboratory Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich		BC-MRA	SWISS OF 2 PLORATO	C	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accreditat	ion Service (SAS)		Accredite	ation N	lo.: SCS 108
The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatories				
Client PC Test			Certificat	te No:	D1900V2-502_Feb12
CALIBRATION C	ERTIFICATE	1			
Object	D1900V2 - SN: 50	02			
Calibration procedure(s)	QA CAL-05.v8 Calibration proced	dure for dipole	validation kits	abov	e 700 MHz
Calibration date:	February 22, 201	2			KOK
This calibration certificate docume The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T	tainties with confidence pr ted in the closed laborator	robability are given	on the following page	es and	are part of the certificate.
Primary Standards	ID #	Cal Date (Certific	ate No.)		Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 2	17-01451)		Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 2	17-01451)		Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 2	17-01368)		Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 2	17-01371)		Apr-12
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. F	S3-3205_Dec11)		Dec-12
DAE4	SN: 601	04-Jul-11 (No. D	AE4-601_Jul11)		Jul-12
Secondary Standards	1D #	Check Date (in h	01150)		Scheduled Check
Power sensor HP 8481A	MY41092317		use check Oct-11)		In house check: Oct-13
RF generator R&S SMT-06	100005	•	use check Oct-11)		In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	-	use check Oct-11)		In house check: Oct-12
	ι Ι	,			
	Name	Fund	tion		Signature
Calibrated by:	Israe El-Naouq	Labo	ratory Technician		Aran el-Daoug
Approved by:	Katja Pokovic	Tech	nical Manager		Selliz.
This calibration certificate shall no	ot be reproduced except in	full without written	approval of the labor	ratory.	Issued: February 22, 2012

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.8.0
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1900 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	1.56 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.88 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	38.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.5 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω + 7.2 jΩ
Return Loss	- 22.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω + 7.6 jΩ
Return Loss	- 21.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

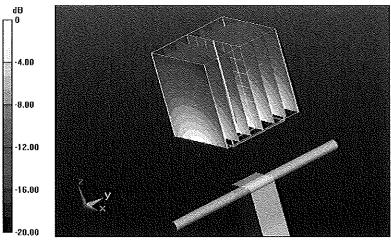
Manufactured by	SPEAG
Manufactured on	November 14, 1998

DASY5 Validation Report for Head TSL

Date: 22.02.2012

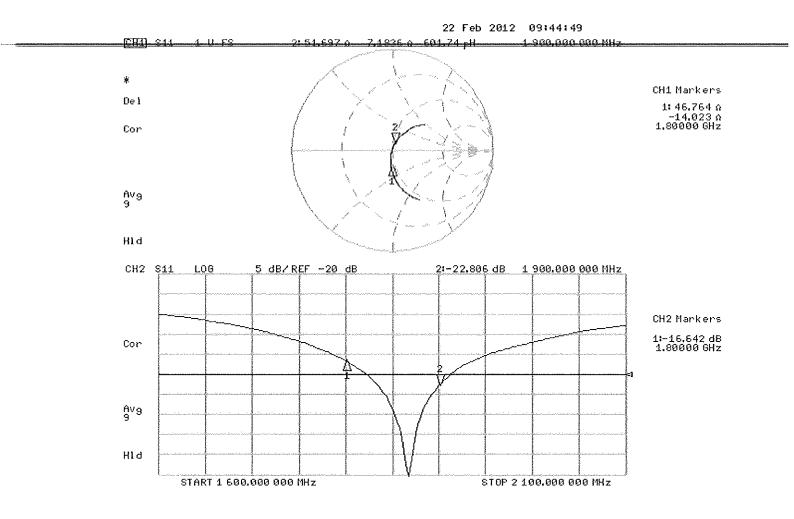
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 502


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.315 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.4000 SAR(1 g) = 9.79 mW/g; SAR(10 g) = 5.17 mW/g Maximum value of SAR (measured) = 12.015 mW/g

0 dB = 12.020 mW/g = 21.60 dB mW/g

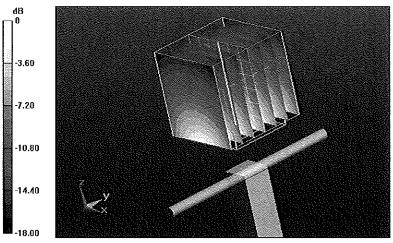
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

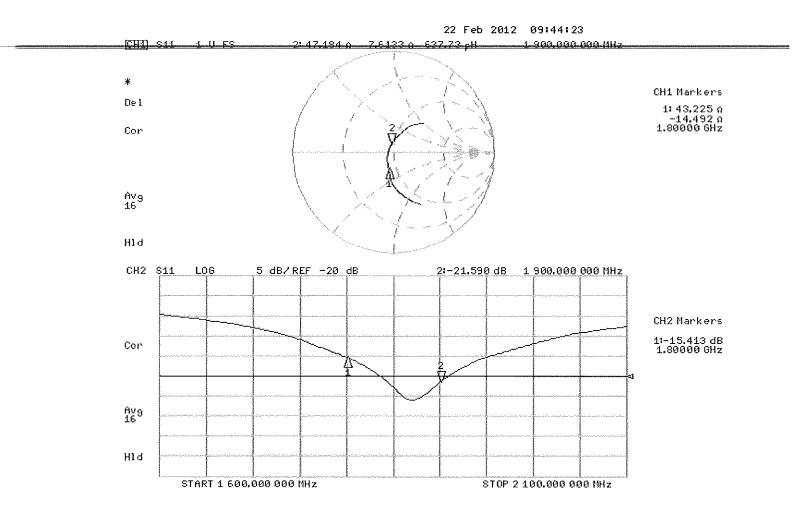
Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 502


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 93.607 V/m; Power Drift = 0.0093 dB Peak SAR (extrapolated) = 17.4260 SAR(1 g) = 9.88 mW/g; SAR(10 g) = 5.17 mW/g Maximum value of SAR (measured) = 12.532 mW/g

0 dB = 12.530 mW/g = 21.96 dB mW/g

Calibration Laboratory of NIS Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С 7C **Engineering AG** Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland **Swiss Calibration Service** 8RP Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **PC** Test Client Certificate No: D2450V2-719_Aug11 **CALIBRATION CERTIFICATE**

D2450V2 - SN: 7	19	
QA CAL-05.v8 Calibration proce	dure for dipole validation kits a	bove 700 MHz
August 19, 2011		16/11 9/6/11
ID #	Cal Date (Certificate No.)	Scheduled Calibration
		Oct-11
		Oct-11
		Apr-12
	•	Apr-12
SN: 3205		Apr-12
SN: 601		Jul-12
	,	
ID #	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Name	Function	Sjĝnature \
Claudio Leubler	Laboratory Technician	(Ch
Katja Pokovic	Technical Manager	Alkz
t be reproduced except in	full without written approval of the laborate	Issued: August 22, 2011
	QA CAL-05.v8 Calibration proce August 19, 2011 August 19, 2011 August 19, 2011 August 19, 2011 ID # GB37480704 US37292783 SN: 5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Claudio Leubler Katja Pokovic	Calibration procedure for dipole validation kits a August 19, 2011 ents the traceability to national standards, which realize the physical realities with confidence probability are given on the following pages steed in the closed laboratory facility: environment temperature (22 ± 3) TE critical for calibration) ID # Cal Date (Certificate No.) GB37480704 06-Oct-10 (No. 217-01266) US37292783 06-Oct-10 (No. 217-01266) SN: S5086 (20b) 29-Mar-11 (No. 217-01367) SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) SN: 601 04-Jul-11 (No. DAE4-601_Jul11) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-09) 100005 04-Aug-99 (in house check Oct-09) US37390585 S4206 18-Oct-01 (in house check Oct-10) Name Function Claudio Leubler Laboratory Technician

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kallbrierdienst
- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed . point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	5 - 100000 /
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	, MINERAUL
SAR measured	250 mW input power	6.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 3.6 jΩ	
Return Loss	- 26.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 4.3 jΩ
Return Loss	- 27.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

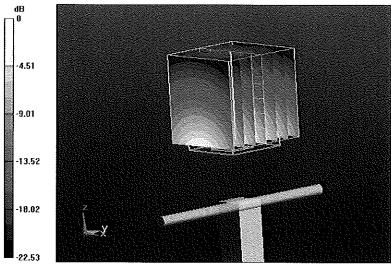
Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

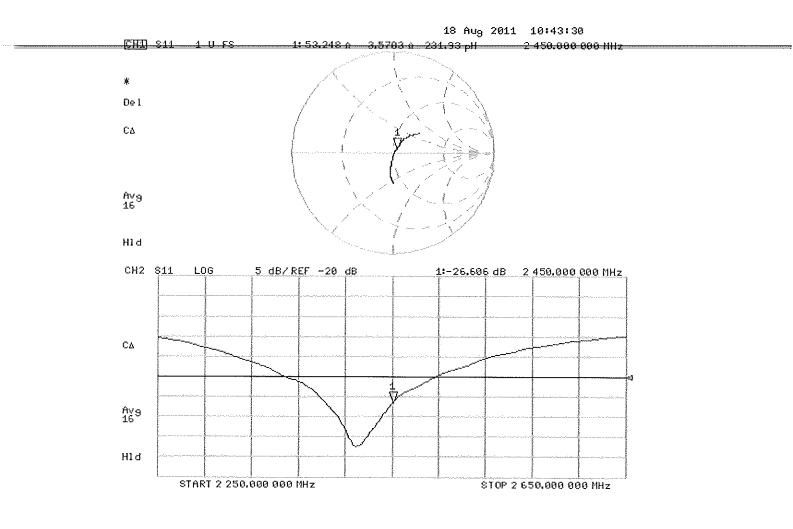
Date: 18.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.4 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.234 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.35 mW/g Maximum value of SAR (measured) = 17.657 mW/g

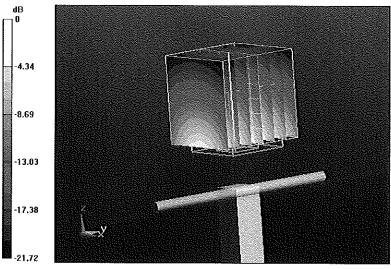
 $0 \, dB = 17.660 \, mW/g$

DASY5 Validation Report for Body TSL

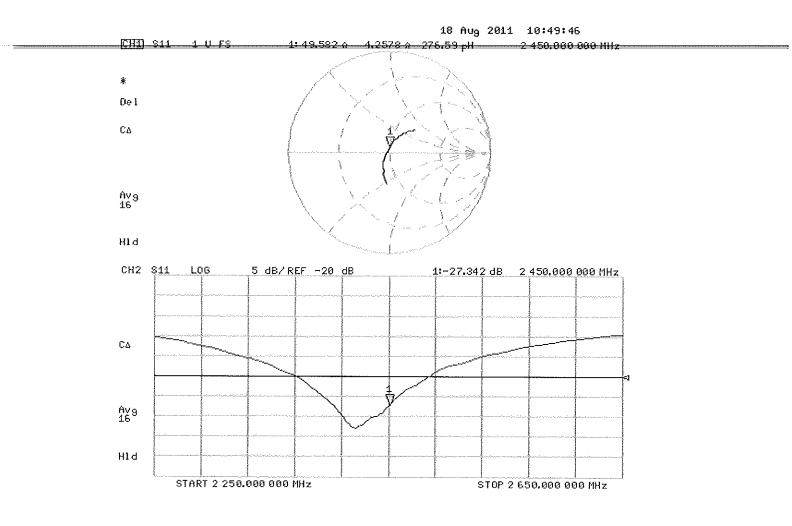
Date: 19.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.948 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.876 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.07 mW/g Maximum value of SAR (measured) = 17.309 mW/g

 $0 \, dB = 17.310 \, mW/g$

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

WIS

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

С

S

PC Test Client

Certificate No: ES3-3022_Aug11

CALIBRATION CERTIFICATE

ES3DV2 - SN:3022

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

August 25, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09) In house check: Oct	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10) In house check: Oct-11	

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	IIhl
			VAL
Approved by:	Katja Pokovic	Technical Manager	- Alle
			da to
			Issued: August 27, 2011
This calibration contificate	a chall not be reproduced event in f	Il without written approval of the John	and an a

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Classonu

С

S

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, v.z; Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell: f > 1800 MHz; R22 wavequide). NORMx, v, z are only intermediate values, i.e., the uncertainties of NORMx, v, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z, VRx, y, z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV2

SN:3022

Manufactured: Calibrated: April 15, 2003 August 25, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.00	1.04	0.99	± 10.1 %
DCP (mV) ^B	99.5	97.7	99.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	133.2	±2.7 %
			Y	0.00	0.00	1.00	130.0	
			Z	0.00	0.00	1.00	133.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

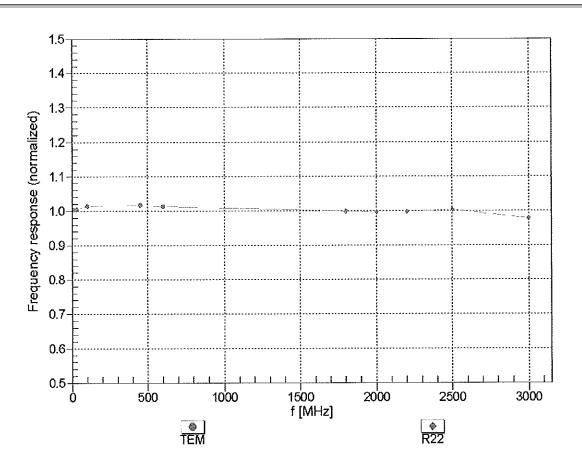
DASY/EASY - Parameters	of Probe: ES3DV2 -	SN:3022
-------------------------------	--------------------	---------

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.27	6.27	6.27	0.80	1.13	± 12.0 %
835	41.5	0.90	6.05	6.05	6.05	0.80	1.14	± 12.0 %
1750	40.1	1.37	5.20	5.20	5.20	0.59	1.39	± 12.0 %
1900	40.0	1.40	4.98	4.98	4.98	0.66	1.30	± 12.0 %
2450	39.2	1.80	4.30	4.30	4.30	0.58	1.41	± 12.0 %
2600	39.0	1.96	4.20	4.20	4.20	0.58	1.43	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

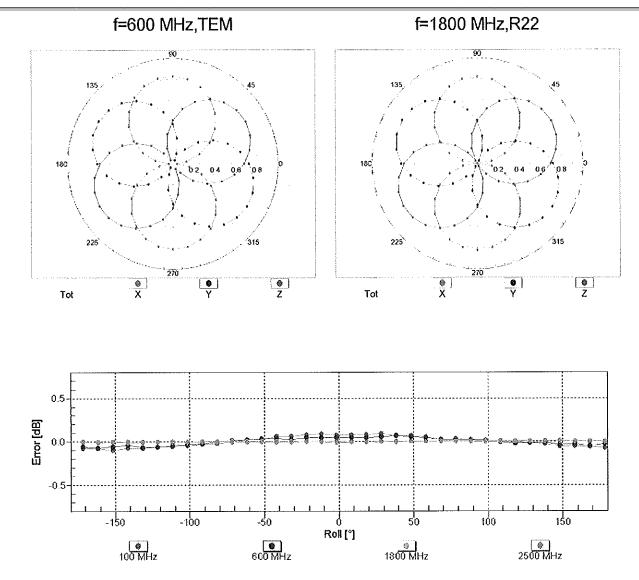
^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

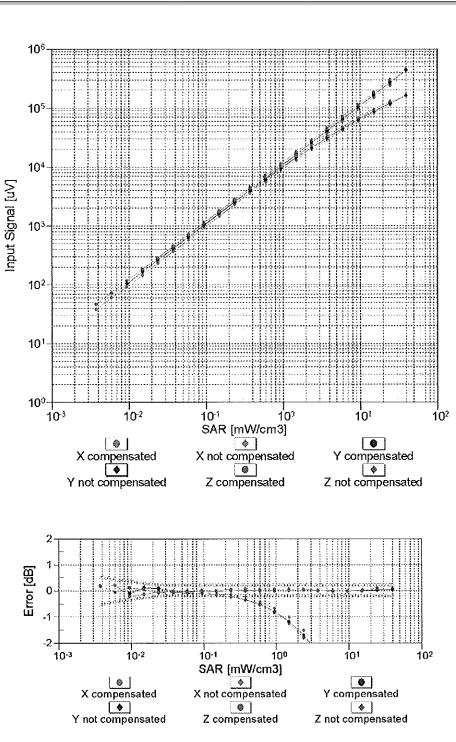

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	6.93	6.93	6.93	0.07	1.00	± 13.4 %
750	55.5	0.96	6.11	6.11	6.11	0.80	1.18	± 12.0 %
835	55.2	0.97	6.06	6.06	6.06	0.80	1.20	± 12.0 %
1640	53.8	1.40	5.07	5.07	5.07	0.70	1.32	± 12.0 %
1750	53.4	1.49	4.64	4.64	4.64	0.67	1.35	± 12.0 %
1900	53.3	1.52	4.41	4.41	4.41	0.54	1.56	± 12.0 %
2450	52.7	1.95	4.01	4.01	4.01	0.66	1.19	± 12.0 %
2600	52.5	2.16	3.90	3.90	3.90	0.54	1.45	± 12.0 %

DASY/EASY - Parameters of Probe: ES3DV2- SN:3022

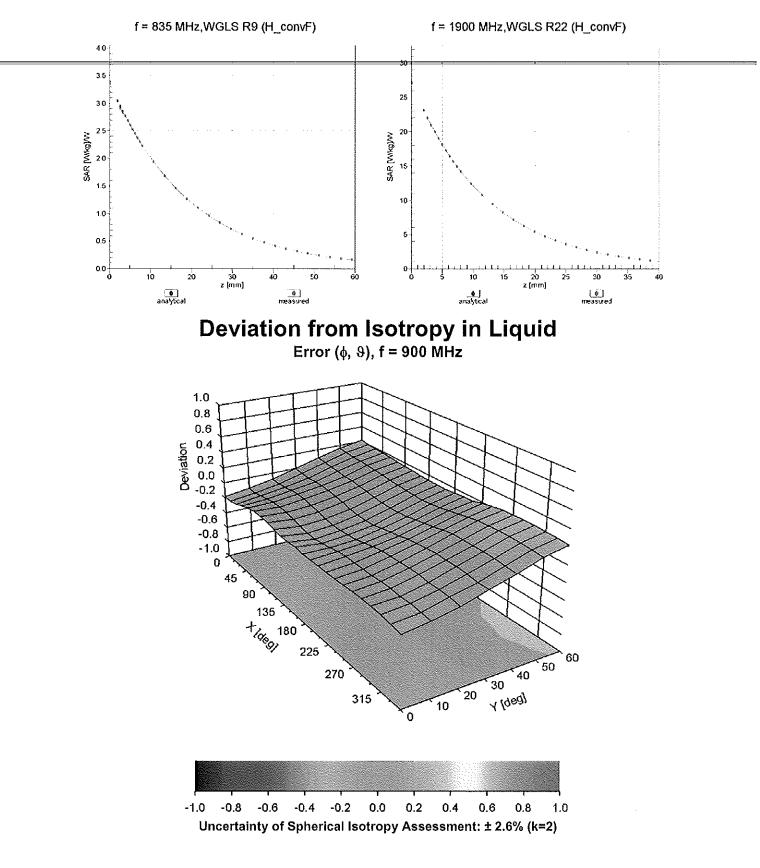
Calibration Parameter Determined in Body Tissue Simul	lating Media
Vanislation i alameter betershined in body rissue onna	a ang moaia


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Other Probe Parameters	
Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Schmid & Partner Engineering AG

p e a g S

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	August 29, 2011
Probe Calibration Date:	August 25, 2011

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1750 MHz.

Assessed by:

ÉCÊ

ES3DV2-SN:3022

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

550 ± 50 MHz	ConvF	6.57 ± 7%	$\varepsilon_r = 56.3 \pm 5\%$ $\sigma = 0.95 \pm 5\% \text{ mho/m}$ (body tissue)
650 ± 50 MHz	ConvF	6.16 ± 7%	$\epsilon_r = 55.9 \pm 5\%$ $\sigma = 0.95 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client	

PC Test

Service suisse d'étalonnage С Servizio svizzero di taratura S

Schweizerischer Kalibrierdienst

Swiss Calibration Service

Accreditation No.: SCS 108

S

SWISS

Έρι

Certificate No: ES3-3209_Mar12

				CATE	

Object	ES3DV3 - SN:3209			
Calibration procedure(s)	QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes			
Calibration date:	March 16, 2012			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.				
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
Calibration Equipment used (M&TE critical for calibration)				

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	U\$3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Apr-13

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	\sim P ρ
			- le
Approved by:	Katja Pokovic	Technical Manager	V
_		roominder meneger	13 6 hora
			n - an ann an an ann an ann an ann an ann an a
			Issued: March 19, 2012
This calibration certificate	e shall not be reproduced except in fu	Il without written approval of the labo	pratory.

Calibration Laboratory of

Glossary:

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3209

Manufactured: Calibrated:

October 14, 2008 March 16, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.36	1.34	1.15	± 10.1 %
DCP (mV) ^B	98.2	97.4	98.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	119.2	±3.5 %
			Y	0.00	0.00	1.00	89.3	
			Z	0.00	0.00	1.00	111.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

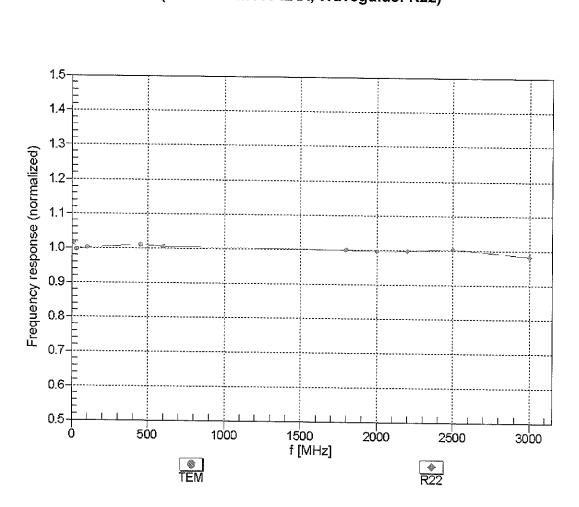
^a Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

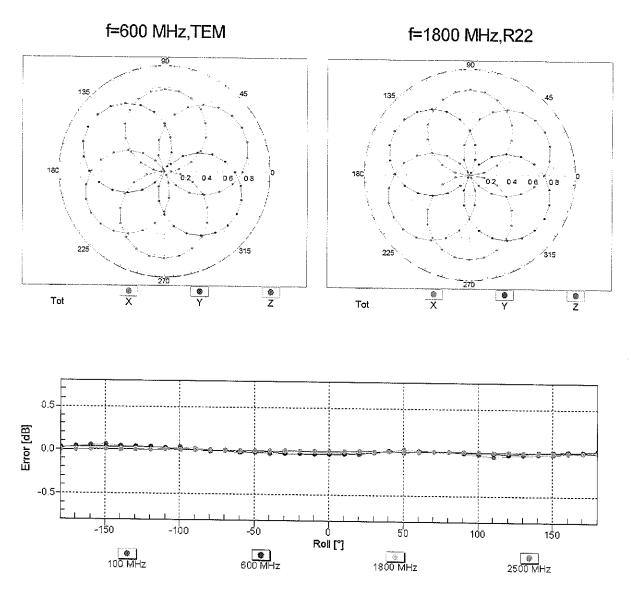
	D - 1 - 1							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.47	6.47	6.47	0.37	1.61	± 12.0 %
835	41.5	0.90	6.22	6.22	6.22	0.24	2.24	± 12.0 %
1640	40.3	1.29	5.38	5.38	5.38	0.41	1.56	± 12.0 %
1750	40.1	1.37	5.26	5.26	5.26	0.41	1.60	± 12.0 %
1900	40.0	1.40	5.15	5.15	5.15	0.80	<u>1.1</u> 6	± 12.0 %
2450	39.2	1.80	4.46	4.46	4.46	0.64	1.39	± 12.0 %
2600	39.0	1.96	4.30	4.30	4.30	0.69	1.42	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

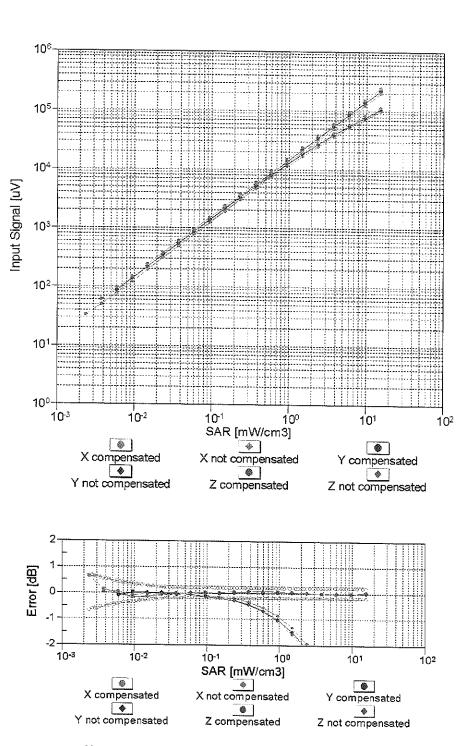

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

The requercises below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

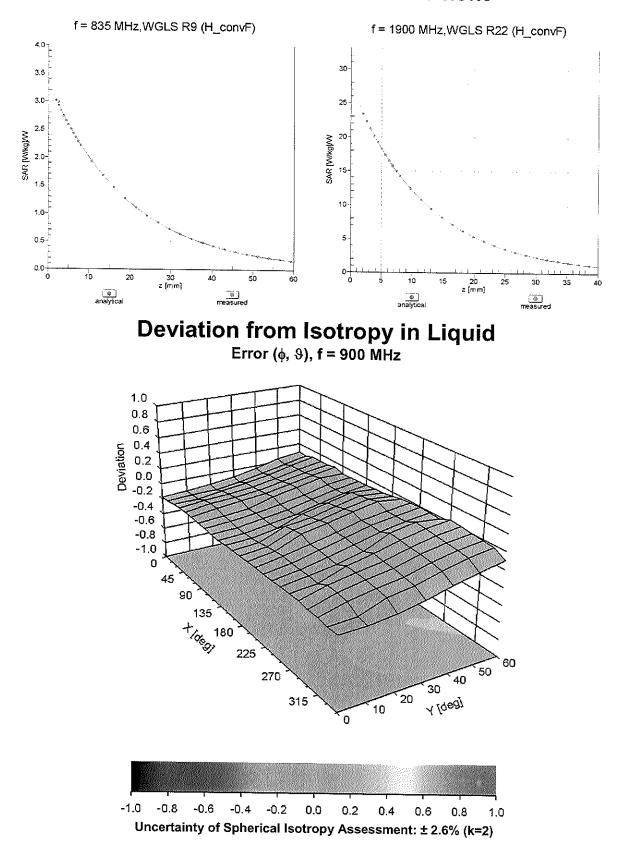
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.11	7.11	7.11	0.07	1.00	± 13.4 %
750	55.5	0.96	6.23	6.23	6.23	0.54	1.40	± 12.0 %
835	55.2	0.97	6.13	6.13	6.13	0.24	2.27	± 12.0 %
1640	53.8	1.40	5.21	5.21	5.21	0.72	1.29	± 12.0 %
1750	53.4	1.49	4.83	4.83	4.83	0.59	1.44	± 12.0 %
1900	53.3	1.52	4.63	4.63	4.63	0.57	1.50	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.80	1.00	± 12.0 %
2600	52.5	2.16	4.02	4.02	4.02	0.62	0.90	± 12.0 %


Calibration Parameter	Determined in Bod	y Tissue Simulating Media
-----------------------	-------------------	---------------------------

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

С

S

Client PC Test

Certificate No: ES3-3258_Feb12

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3258

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

February 21, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Altenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			YEh
Approved by:	Kalja Poković	Technical Manager	20112
			13-5100):
			Issued: February 23, 2012
This calibration certificate	shall not be reproduced except in full	without written approval of the labo	ratory.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, v, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW . signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal • characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of . power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3258

Manufactured: Calibrated: January 25, 2010 February 21, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters								
	Sensor X	Sensor Y	Sensor Z	Unc (k=2)				
Norm $(\mu V/(V/m)^2)^A$	1.29	1.18	1.23	± 10.1 %				
DCP (mV) ⁸	101.6	105.0	100.8					

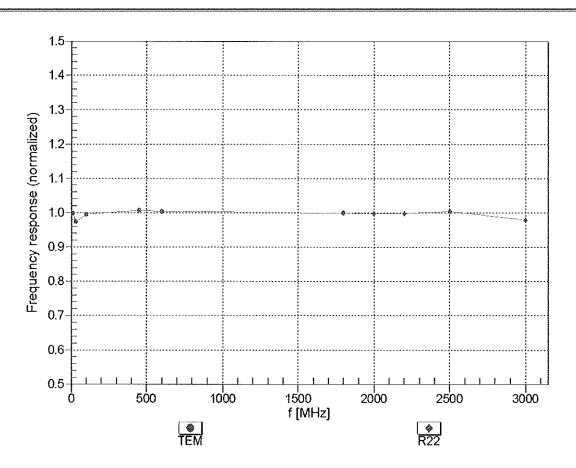
Modulation Calibration Parameters

UID	Communication System Name	PAR		Α	В	С	VR	Unc ^E
				dB	dB	dB	mV	(k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	115.9	±3.0 %
			Y	0.00	0.00	1.00	107.9	
			Z	0.00	0.00	1.00	115.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

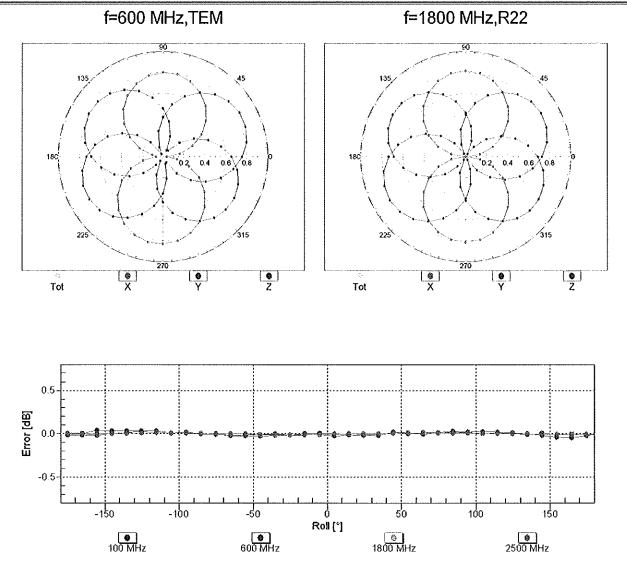
- ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
- ^B Numerical linearization parameter: uncertainty not required.
- ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.26	6.26	6.26	0.43	1.49	± 12.0 9
835	41.5	0.90	6.01	6.01	6.01	0.45	1.48	± 12.0 9
1640	40.3	1.29	5.46	5.46	5.46	0.61	1.30	± 12.0 9
1750	40.1	1.37	5.30	5.30	5.30	0.67	1.30	± 12.0 °
1900	40.0	1.40	5.17	5.17	5.17	0.79	1.23	± 12.0 °
2450	39.2	1.80	4.46	4.46	4.46	0.67	1.40	± 12.0 °
2600	39.0	1.96	4.31	4.31	4.31	0.80	1.33	± 12.0 9

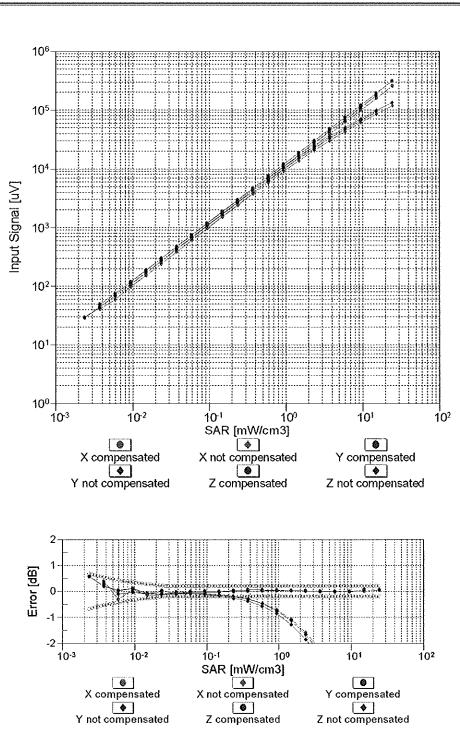

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^r At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

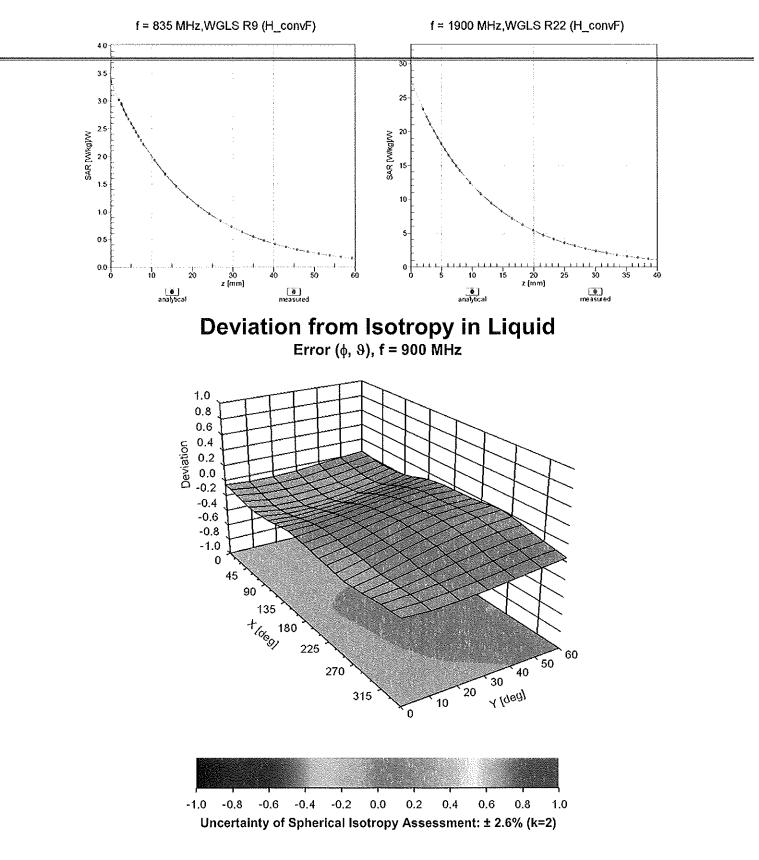
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.21	6.21	6.21	0.80	1.13	± 12.0 9
835	55.2	0.97	6.06	6.06	6.06	0.50	1.46	± 12.0 9
1640	53.8	1.40	5.45	5.45	5.45	0.80	1.23	± 12.0 9
1750	53.4	1.49	4.99	4.99	4.99	0.60	1.48	± 12.0 9
1900	53.3	1.52	4.70	4.70	4.70	0.56	1.57	± 12.0 9
2450	52.7	1.95	4.28	4.28	4.28	0.80	1.08	± 12.0 9
2600	52.5	2.16	4.05	4.05	4.05	0.80	1.02	± 12.0 %


^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^r At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Sensor Arrangement	Triangula		
Connector Angle (°)	Not applicable		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	337 mm		
Probe Body Diameter	10 mm		
Tip Length	10 mm		
Tip Diameter	4 mm		
Probe Tip to Sensor X Calibration Point	2 mm		
Probe Tip to Sensor Y Calibration Point	2 mm		
Probe Tip to Sensor Z Calibration Point	2 mm		
Recommended Measurement Distance from Surface	3 mm		