

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 1 / 104

SAR TEST REPORT

Equipment Under Test	:	PCS GSM/GPRS with Bluetooth, WLAN and NFC(Felica) Phone
Model No.	:	L-02D
Applicant	:	LG Electronics MobileComm U.S.A., Inc.
Address of Applicant	:	10101 Old Grove Road, San Diego, CA 92131
FCC ID	:	ZNFL02D
Device Category	:	Portable Device
Exposure Category	:	General Population/Uncontrolled Exposure
Date of Receipt	:	2011-10-05
Date of Test(s)	:	2011-10-17 ~ 2011-11-07
Date of Issue	:	2011-11-10
Max. SAR	į	0.834 W/kg (PCS1900), 0.992 W/kg (WLAN)

Standards:

FCC OET Bulletin 65 supplement C IEEE 1528, 2003 ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Korea Co., Ltd. (Gunpo Laboratory) or testing done by SGS Korea Co., Ltd. (Gunpo Laboratory) in connection with distribution or use of the product described in this report must be approved by SGS Korea Co., Ltd. (Gunpo Laboratory) in writing.

Tested by	:	Fred Jeong	ろうも	2011-11-10
Approved by	:	Charles Kim	C.K.IL	2011-11-10

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 2 / 104

Contents

1. General Information

1.	.1	Testing Laboratory	3
1.	.2	Details of Applicant	3
1.	.3	Version of Report	3
1.	.4	Description of EUT(s)	3
1.	.5	Operation description	4
1.	.6	Evaluation procedures	4
1.	.7	The SAR Measurement System	5
1.	.8	System Components	7
1.	.9	SAR System Verification	8
1.	10	Tissue Simulant Fluid for the Frequency Band	10
1.	11	Test Standards and Limits	11
1.	.12	Justification for Extended SAR Dipole Calibrations	12
2. Inst	rum	ents List	13
3. Sun	nmai	ry of Results	14
3.	1	FCC Power Measurement Procedures	14
3.	.2	RF Conducted Power	14
3.	.3	KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05 Sept. 2008	17
3.	.4	SAR Test Configuration	19
3.	.5	SAR Data Summary	20

APPENDIX

A. DASY4 SAR Report

- B. Uncertainty Analysis
- C. Calibration certificate

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 3 / 104

1. General Information

1.1 Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, 435-040, Korea Telephone : 82-31-428-5700 FAX : 82-31-427-2371 Homepage : www.kr.sgs.com/ee

1.2 Details of Manufacturer

Manufacturer	: LG Electronics MobileComm U.S.A., Inc.
Address	: 10101 Old Grove Road, San Diego, CA 92131
Contact Person	: Hee-ju An
Phone No.	: 82-10-2846-2750
E-mail	: heeju.an@lge.com

1.3 Version of Report

Version Number	Date	Revision		
00	2011-10-20	Initial issue		
01	2011-11-10	Revision 01		

1.4 Description of EUT(s)

ЕИТ Туре	: PCS GSM/GPRS with Bluetooth, WLAN and NFC(Felica) Phone			
Model	: L-02D			
Serial Number	: N/A			
Mode of Operation	: PCS1900, WLAN, Bluetooth			
Duty Cycle	: 8(GSM), 8(GPRS 1Tx Slot), 4(GPRS 2Tx Slot), 2.67(GPRS 3Tx Slot), 2(GPRS 4Tx Slot), 1(WLAN)			
Body worn Accessory	: None			
Tx Frequency Range	: 1850.2 MHz ~ 1909.8 MHz (PCS1900) 2412 MHz ~ 2462 MHz (WLAN) 2402 MHz ~ 2480 MHz (Bluetooth)			
Conducted Average Max Power	: 29.60 dBm(PCS1900), 16.56 dBm(WLAN), 4.89dBm(Bluetooth)			
Battery Type	: 3.7 V d.c. (Lithum-ion Battery)			

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 4 / 104

1.5 Operation Configuration

The device in GSM mode was controlled by using a Communication tester (CMU 200). Communication between the device and the tester was established by air link. And the client provided a special driver and test program which can control the frequency and power of the WLAN module. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. Based on the RF Power and antenna separation distance, stand-alone BT SAR and simultaneous SAR evaluation are not required.

1.6 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan.

2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)

3. The generation of a high-resolution mesh within the measured volume

4. The interpolation of all measured values from the measurement grid to the high-resolution grid

5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 mm to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 5 / 104

point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1 % for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1 g and 10 g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30 g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1 g cube is placed numerically into the volume and its averaged SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.7 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

•A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

•A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

•A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 6 / 104

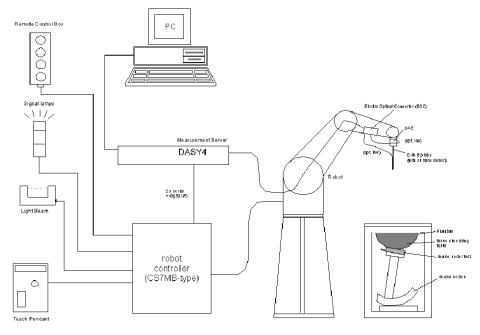


Fig a. The microwave circuit arrangement used for SAR system verification

• The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 7 / 104 Page :

1.8 System Components

ET3DV6 E-Field Probe

Construction	:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol).	
Calibration	:	In air from 10 MHz to 2.5 GHz In brain simulating tissue (accuracy \pm 8 %)	
Frequency	:	10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity	:	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal to probe axis)	
Dynamic	:	5 μ W/g to >100 mW/g; Linearity: ± 0.2 dB	
Range			
Srfce. Detect	:	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions	:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	ET3DV6 E-Field P
Application	:	General dosimetry up to 3 GHz Compliance tests of mobile phone	

Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 8 / 104

SAM Phantom

Construction:

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

Shell Thickness: $2.0 \text{ mm} \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.9 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10 % from the target SAR values. These tests were done at 1900 MHz and 2450 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range (22 ± 2) ° C, the relative humidity was in the range (55 ± 5) % R.H. and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 9 / 105

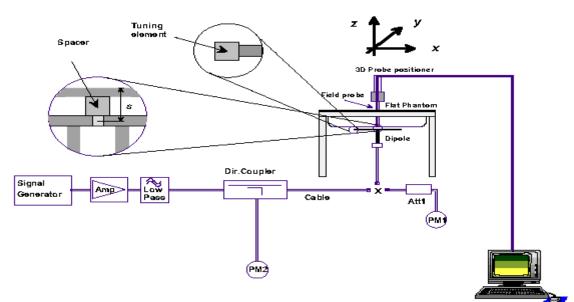


Fig b. System verification Setup Diagram

Fig c. Photo of the dipole Antenna

System	Validation	Results
~		1105 01105

Validation Kit	Tissue Frequency (MHz)	Tissue Type	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Measured SAR 1 g	Target SAR 1 g (1 W)	Normalized SAR 1 g (1 W)	Deviatio n (%)	Date
D1900V2 S/N: 5d033	1900	Head	21.9	22.1	0.25	10.2 W/kg	39.4 W/kg	40.8 W/kg	3.55	2011-10-17
D1900V2 S/N: 5d033	1900	Body	21.9	22.1	0.25	9.93 W/kg	41.3 W/kg	39.7 W/kg	-3.87	2011-10-17
D2450V2 S/N: 734	2450	Head	21.9	22.0	0.25	13.2 W/kg	51.7 W/kg	52.8 W/kg	2.13	2011-11-07
D2450V2 S/N: 734	2450	Body	21.9	22.0	0.25	13.2 W/kg	53.5 W/kg	52.8 W/kg	-1.31	2011-11-07

Table 1. System validation Results

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 10 / 104

1.10 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer (300 KHz - 3 GHz) by using a procedure detailed in Section V.

				Me	asured	Т	arget	Deviation (%)		
Test Date	Tissue Type	Tissue Temp. (°C)	Frequency (MHz)	Dielectric Constant, ε	Conductivity, σ (s/m)	Dielectric Constant, ɛ	Conductivity, σ (s/m)	Dielectric Constant, ε	Conductivity, σ (s/m)	
			1850	39.6	1.42			-1.00	1.43	
10/17/2011	1900H	22.1	1880	39.4	1.43	40.0	1.40	-1.50	2.14	
10/17/2011	19001	22.1	1900	39.3	1.43	40.0	1.40	-1.75	2.14	
			1910	39.3	1.45			-1.75	3.57	
			1850	53.5	1.46		1.52	0.38	-3.95	
10/17/2011	1900B	22.1	1880	53.5	1.48	53.3		0.38	-2.63	
10/17/2011	19006		1900	53.4	1.50			0.19	-1.32	
			1910	53.4	1.51			0.19	-0.66	
			2412	38.1	1.81			-2.81	0.56	
11/07/2011	2450H	22.0	2437	37.9	1.85	39.2	1.80	-3.32	2.78	
11/0//2011	2430H	22.0	2450	37.8	1.87	39.2	1.60	-3.57	3.89	
			2462	37.7	1.88			-3.83	4.44	
			2412	51.4	1.95			-2.47	0.00	
11/07/2011	2450B	22.0	2437	51.3	1.98	52.7	1.95	-2.66	1.54	
11/0//2011	24300	22.0	2450	51.3	2.01	32.1		-2.66	3.08	
			2462	51.3	2.02			-2.66	3.59	

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Freque	ncy (MHz	MHz)							
(% by weight)	450		835		915		1800/1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 ⁺% Pure Sodium Chloride

Sugar: 98 ⁺% Pure Sucrose

Water: De-ionized, 16 $M\Omega^+$ resistivity

HEC: Hydroxyethyl Cellulose

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 11 / 104

DGBE: 99 ⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.11 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3-2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 12 / 104

devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational		
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g		
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g		
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g		

Table .4 RF exposure limits

1.12 Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20 % of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB publication 450824:

D1900V2_Body (SN : 5d033)							
Measurement DateReturn Loss (dB) $\Delta\%$ Impedence (Ω) $\Delta\Omega$							
2010-05-26	-25.4	-	47.1	-			
2011-06-07 -24.3 4.33 46.4 1.49							

D1900V2_Head (SN : 5d033)						
Measurement DateReturn Loss (dB) $\Delta\%$ Impedence (Ω) $\Delta\Omega$						
2010-05-26	-28.4	-	49.5	-		
2011-06-07 -27.8 -2.11 47.7 -3.64						

D2450V2_Body (SN : 734)						
Measurement DateReturn Loss (dB) $\Delta\%$ Impedence (Ω) $\Delta\Omega$						
2010-05-27	-27.1	-	49.8	-		
2011-06-07 -26.2 -3.32 48.3 -3.01						

D2450V2_Head (SN : 734)						
Measurement DateReturn Loss (dB) $\Delta\%$ Impedence (Ω) $\Delta\Omega$						
2010-05-27	-26.4	-	53.8	-		
2011-06-07 25.9 -1.89 51.6 -4.09						

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 13 / 104

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E- Field Probe	ET3DV6	1782	April 14, 2012
Schmid& Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d033	May 26, 2012
Schmid& Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	734	May 27, 2012
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	January 27, 2012
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1645 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	March 31, 2012
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	July 04, 2012
Agilent	Power Sensor	Е9300Н	MY41495307 MY41495308	September 29, 2012 September 29, 2012
Agilent	Signal Generator	E4421B	MY43350132	July 05, 2012
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	April 01, 2012
Agilent	Dual Directional Coupler	777D 778D	50128 50454	July 10, 2012 July 06, 2012
Microlab	LP Filter	LA-15N LA-30N	N/A	September 29, 2012
R&S	Mobile Test Unit	CMU 200	109495	July 04, 2012

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 14 / 104

3. Summary of Results

3.1 FCC Power Measurement Procedures

Power measurements were performed using a base station simulator under digital average power.

The handset was placed into a simulated call using a base station simulator in shielded chamber. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

3.2 RF Conducted Power

		Г	Maximum Averaged Output Power (dBm)				
	Channel	Frequency (MHz)			GPRS(GMSK)	
		(WIIIZ)		1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot
	512	1850.2	29.60	29.60	26.60	24.60	23.60
PCS 1900 Band	661	1880.0	29.60	29.50	26.60	24.80	23.60
Band	810	1909.8	29.50	29.40	26.50	24.70	23.60

GSM Conducted Powers

		Б	Calculated Maximum Frame-Averaged Output Power (dBm)						
	Channel Frequency (MHz)	i i nannel i f	(nannel)	nannel			GPRS(GMSK)		
		USM	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot			
	512	1850.2	20.57	20.57	20.58	20.34	20.59		
PCS 1900 Band	661	1880.0	20.57	20.47	20.58	20.54	20.59		
Band	810	1909.8	20.47	20.37	20.48	20.44	20.59		

Notes :

- 1. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE output powers were measured with CS1. EDGE (8-PSK) power were measured with MCS5.

GSM Class : B GPRS Multislot class : 12 (Max 4 Tx Uplink slots) DTM Multislot Class : N/A

WLAN

802.118	o Mode	Rated	Measured Power
Frequency (MHz)	Channel No.	(Mbps)	(dBm)
		1	16.19
2412	1	2	16.16
2412	1	5.5	16.15
		11	16.09
	6	1	16.41
2437		2	16.39
2437		5.5	16.36
		11	16.31
		1	16.56
2462	11	2	16.54
	11	5.5	16.50
		11	16.41

802.11g	g Mode	Rated	Measured Power
Frequency (MHz)	Channel No.	(Mbps)	(dBm)
		6	14.10
		9	14.02
		12	13.93
2412	1	18	13.70
2412	1	24	13.53
		36	13.23
		48	12.95
		54	12.74
		6	14.36
	6	9	14.02
		12	13.93
2437		18	13.70
2437		24	13.53
		36	13.23
		48	12.95
		54	12.74
		6	14.36
		9	14.25
		12	14.11
2462	11	18	13.99
2402	11	24	13.76
		36	13.50
		48	13.29
		54	13.10

802.11	nMode	Rated	Measured Power
Frequency (MHz)	Channel No.	(Mbps)	(dBm)
		MCS0	13.12
		MCS1	12.95
		MCS2	12.70
2412	1	MCS3	12.58
2412	1	MCS4	12.22
		MCS5	11.98
		MCS6	11.79
		MCS7	11.65
		MCS0	13.39
	6	MCS1	13.19
		MCS2	12.99
2437		MCS3	12.76
2437		MCS4	12.42
		MCS5	12.18
		MCS6	12.10
		MCS7	12.01
		MCS0	13.50
		MCS1	13.24
		MCS2	13.06
2462	11	MCS3	12.93
2402	11	MCS4	12.56
		MCS5	12.24
		MCS6	12.18
		MCS7	12.06

Bluetooth

Channel	Frequency (MHz)	GFSK (dBm)	8DPSK (dBm)
Low	2402	4.52	2.42
Middle	2441	4.89	2.75
High	2480	4.64	2.43

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 17 / 104

3.3 KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05 _Sept. 2008

Summary of SAR Evaluation Requirements for Cell Phone with Multiple Transmitters

These procedures were followed according to KDB 648474 document "SAR Handsets Multi Xmiter and Ant v01r05", September 2008. The procedures are applicable to phones with built-in unlicensed transmitters, such as 802.11 a/b/g and Bluetooth devices.

<Output Power Thresholds for Unlicensed Transmitters>

	2.45	5.15 - 5.35	5.47 - 5.85	GHz		
P _{Ref}	12	6	5	mW		
Device output power should be rounded to the nearest mW to compare with values specified in this table.						

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters		 when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas when SAR to peak location separation ratio of simultaneous transmitting antenna pair is <0.3 SAR required: Licensed & Unlicensed antenna pair is <0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition. Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply
Jaw, Mouth and Nose	Flat phantom SAR required • when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues • position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

<SAR Evaluation Requirements for Cellphones with Multiple Transmitters>

<KDB 648474 Simultaneous SAR evaluation>

Mode (f)	P (dBm)	P(mW)	Stand-alone SAR
PCS 1900	29.60	912.01	Yes
WLAN	16.56	45.29	Yes
Bluetooth	4.89	3.08	No

<Simultaneous Transmission Summation for Held to Ear Voice Call with Hotspot Active Scenario>

Simultaneous TX	configuration	1900 GSM SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)
	Right Cheek	0.520	0.970	1.490
Head SAR	Right Tilt	0.208	0.981	1.189
neau SAK	Left Cheek	0.388	0.992	1.380
	Left Tilt	0.157	0.869	1.026

<Simultaneous Transmission Summation for 2G Hotspot Data and WIFI Hotspot Active Scenario>

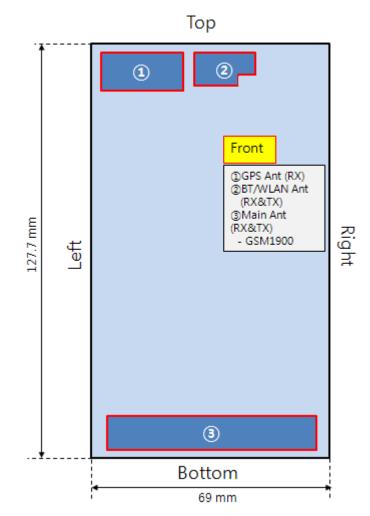
Simultaneous TX	configuration	1900 GSM SAR(W/kg)	WIFI SAR (W/kg)	∑SAR (W/kg)
	Back	0.834	0.565	1.399
	Front	0.578	0.303	0.881
DeduCAD	Left	0.253	-	0.253
Body SAR	Right	0.331	0.020	0.351
	Bottom	0.679	-	0.679
	Тор	-	0.368	0.368

** The above tables represent the worst-case simultaneous transmission scenarios possible with this device.

Note : "-" SAR results shown in the table are zero for summation purposes. SAR was not required to be measured due to exclusions mentioned in Section "3.4 SAR Test Configuration".

The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. Therefore, no volumetric SAR summation is required since the numerical sums are below the limit.

 Report File No. :
 F690501/RF-SAR001964-A1


 Date of Issue :
 2011-11-10

 Page :
 19 / 104

3.4 SAR Test Configuration

Mode	Front	Back	Edge A (Left)	Edge B (Right)	Edge C (Bottom)	Edge D (Top)
GPRS 1900	Yes	Yes	Yes	Yes	Yes	No
WLAN	Yes	Yes	No	Yes	No	Yes

Antenna Distance

- 1. Particular DUT edges were not necessary to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06 guidance, page 2.
- 2. For more information about "Antenna Distance", refer to the submitted documents of the Antenna Distance from manufacturer.

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 20 / 104

3.5 SAR Data Summary

Ambient Temperature (°C)	21.9
Liquid Temperature (°C)	22.1
Date	2011-10-17

Mode	II J	EUT	Traffic Channel		Conducted	Power	1 g SAR	1 g SAR
/ Band	Head	Position	Frequency (MHz)	Channel	Power (dBm)	Drift (dB)	(W/kg)	Limits (W/kg)
PCS1900	Left	Cheek	1880.0	661	29.60	-0.077	0.388	
PCS1900	Left	Tilt	1880.0	661	29.60	0.094	0.157	1.6
PCS1900	Right	Cheek	1880.0	661	29.60	-0.196	0.520	1.0
PCS1900	Right	Tilt	1880.0	661	29.60	0.030	0.208	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

4. Liquid tissue depth was at least 15 cm.

5. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

PCS 1900 Head SAR

PCS1900 Body Hotspot SAR

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 21 / 104

Ambient Temperature (°C)	21.9
Liquid Temperature (°C)	22.1
Date	2011-10-17

Mode	EUT	# of	Traffic (Channel	Conducted	Power	1 g SAR (W/kg)	1 g SAR Limits (W/kg)
(Service)	Position	GPRS Slots	Frequency (MHz)	Channel	Power (dBm)	Drift(dB)		
	Front	2	1880.0	661	26.60	-0.033	0.578	
	Back	2	1850.2	512	26.60	-0.059	0.757	
	Back	2	1880.0	661	26.60	-0.067	0.829	
	Back	2	1909.8	810	26.50	0.039	0.800	
	Left(Edge A)	2	1880.0	661	26.60	-0.012	0.253	
GPRS	Right(Edge B)	2	1880.0	661	26.60	-0.040	0.331	1.6
GPK5	Bottom(Edge C)	2	1880.0	661	26.60	-0.006	0.679	1.0
	Back	1	1850.2	512	29.60	0.017	0.551	
	Back	1	1880.0	661	29.50	-0.093	0.834	
	Back	1	1909.8	810	29.40	-0.020	0.779	
	Back	3	1880.0	661	24.80	0.098	0.763	
	Back	4	1880.0	661	23.60	0.021	0.756	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. Top was not tested since the antenna distance to edge was greater than 2.5 cm per KDB941225 D06.
- 8. GPRS body-worn SAR testing is more conservative than GSM voice body-worn testing with accessory.

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 22 / 104

Ambient Temperature (°C)	21.9
Liquid Temperature (°C)	22.0
Date	2011-11-11

Mode Service		, EUT	Traffic Channel		Data	Conducted	Power	1 g	1 g SAR	
	Service	Head	Position	Frequency (MHz)	Channel	Rate (Mbps)	Power (dBm)	Drift (dB)	SAR (W/kg)	Limits (W/kg)
		Left	Cheek	2412	1	1	16.19	-0.052	0.481	
		Left	Cheek	2437	6	1	16.41	0.020	0.679	
		Left	Cheek	2462	11	1	16.56	-0.187	0.992	
		Left	Tilt	2412	1	1	16.19	-0.002	0.418	
		Left	Tilt	2437	6	1	16.41	0.058	0.622	
IEEE	DCCC	Left	Tilt	2462	11	1	16.56	0.154	0.869	1.6
802.11b	DSSS	Right	Cheek	2412	1	1	16.19	-0.037	0.506	1.6
		Right	Cheek	2437	6	1	16.41	0.024	0.762	
		Right	Cheek	2462	11	1	16.56	0.038	0.970	
		Right	Tilt	2412	1	1	16.19	0.006	0.459	
		Right	Tilt	2437	6	1	16.41	0.142	0.690	
		Right	Tilt	2462	11	1	16.56	-0.083	0.981	

2.4 GHz WLAN Head SAR

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. WLAN could be used for data transmission during voice communication at the same time.
- 7. KDB 248227 <SAR Measurement Procedures for 802.11 a/b/g Transmitters>
 - Channel 1, 6 and 11 were tested by the definition of "default test channels".
 - Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other mode were not tested since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 8. WLAN transmission was verified using a spectrum analyzer.

Ambient Temperature (°C)	21.9
Liquid Temperature (°C)	22.0
Date	2011-11-07

2.4 GHz WLAN Body Hotspot SAR

Mode	Service	EUT Position	Traffic Channel		Data	Conducted	Power Drift	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Rate (Mbps)	Power (dBm)	(dB)	(W/kg)	Limits (W/kg)
IEEE 802.11b	DSSS	Front	2462	11	1	16.56	-0.054	0.303	1.6
		Back	2462	11	1	16.56	-0.019	0.565	
		Right (Edge B)	2462	11	1	16.56	-0.009	0.020	
		Top (Edge D)	2462	11	1	16.56	-0.198	0.368	

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 6. The distance from EUT to flat phantom for testing Body SAR is 10 mm.
- 7. KDB 248227 <SAR Measurement Procedures for 802.11 a/b/g Transmitters>
 - Channel 1, 6 and 11 were tested by the definition of "default test channels".
 - Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other mode were not tested since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 8. WLAN transmission was verified using a spectrum analyzer.
- 9. Left and Bottom was not tested since the antenna distance to edge was greater than 2.5 cm per KDB941225 D06.

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 24 / 104

Appendix

List

Appendix A	DASY4 Report (Plots of the SAR Measurements)	 Validation Test (1900 MHz, 2450 MHz) PCS1900 Test WLAN Test
Appendix B	Uncertainty Analysis	
Appendix C	Calibration Certificate	- PROBE - DAE3 - DIPOLE

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 25 / 104

Appendix A Test Plot - DASY4 Report

1900 MHz Validation Test_Head

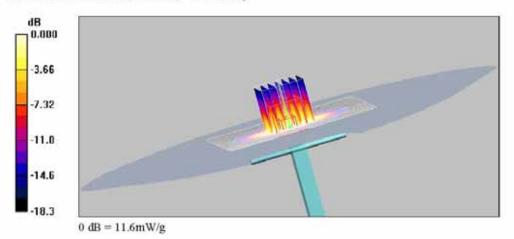
Date: 2011-10-17

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Validation 1900 MHz Head.da4

Input Power : 250 mW

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033 Program Name: Validation 1900 MHz_Head

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ϵ_r = 39.3; ρ = 1000 kg/m³ Phantom section: Flat Section

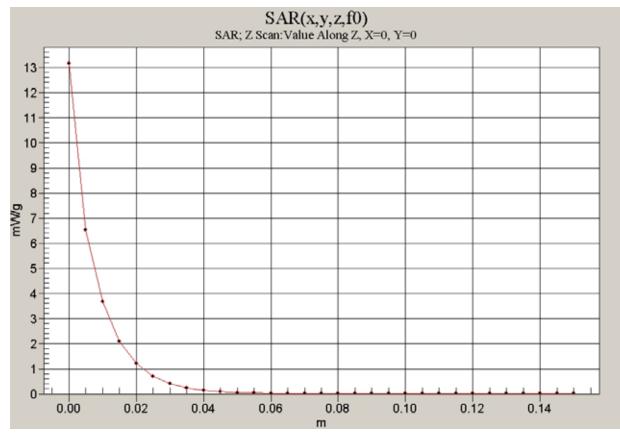

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.95, 4.95, 4.95); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 1900 MH_Head/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.7 mW/g

Validation 1900 MH_Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.0 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.22 mW/g Maximum value of SAR (measured) = 11.6 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 27 / 104

Z Scan

1900 MHz Validation Test_Body

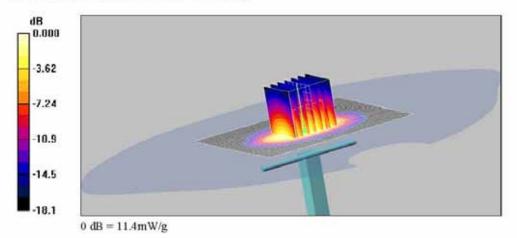
Date: 2011-10-17

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Validation 1900 MHz Body.da4

Input Power : 250 mW

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033 Program Name: Validation 1900 MHz_Body

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f=1900 MHz; σ =1.5 mho/m; ϵ_r =53.4; ρ =1000 kg/m³ Phantom section: Flat Section

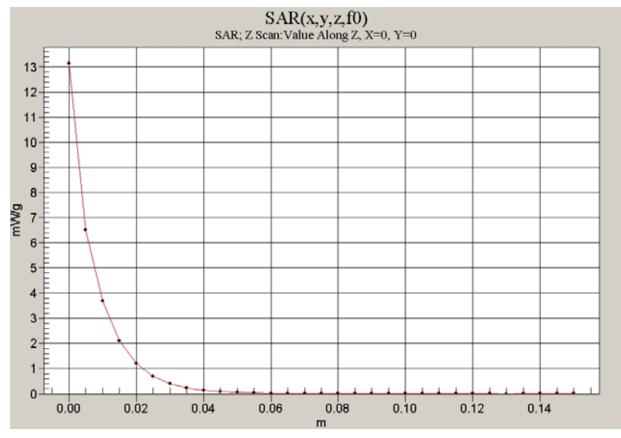

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 1900 MH_Body/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.4 mW/g

Validation 1900 MH_Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.1 V/m; Power Drift = -0.026 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.09 mW/g Maximum value of SAR (measured) = 11.4 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 29 / 104

Z Scan

2450 MHz Validation Test Head

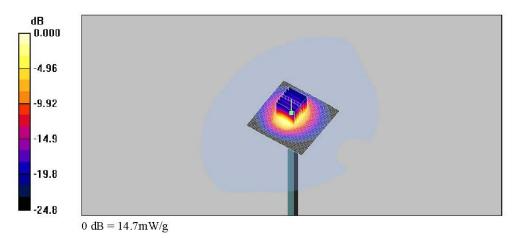
Date: 2011-11-07

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Validation 2450 MHz_Head.da4

Input Power: 250 mW

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734 Program Name: Validation 2450 MHz Head

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ mho/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

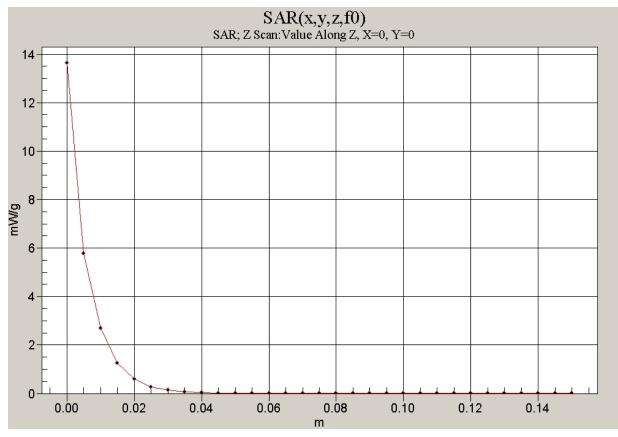

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 16.7 mW/g

Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.9 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 29.4 W/kgSAR(1 g) = 13.2 mW/g; SAR(10 g) = 5.99 mW/gMaximum value of SAR (measured) = 14.7 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 31 / 104

Z Scan

2450 MHz Validation Test_Body

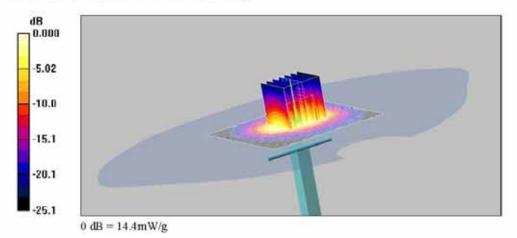
Date: 2011-11-07

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Validation 2450 MHz Body.da4

Input Power : 250 mW

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734 Program Name: Validation 2450 MHz Body

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

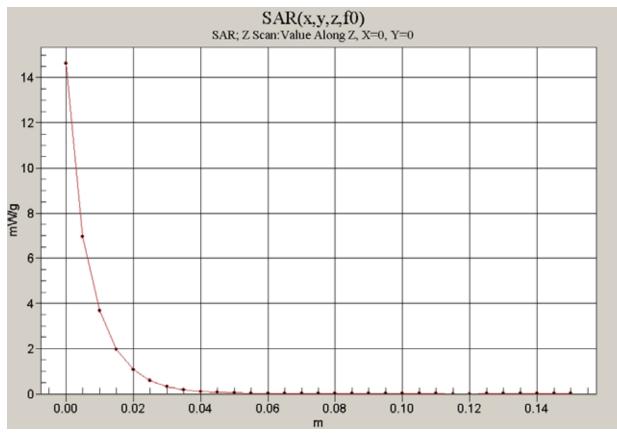

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(3.94, 3.94, 3.94); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 16.5 mW/g

Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.1 V/m; Power Drift = -0.061 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 5.86 mW/g Maximum value of SAR (measured) = 14.4 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 33 / 104

Z Scan

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 34 / 104

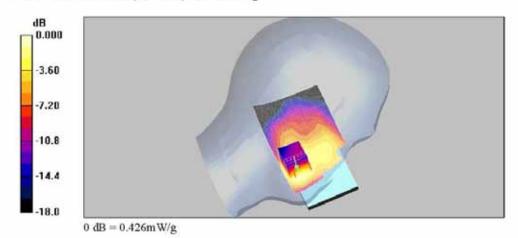
PCS1900 Head SAR Test

Date: 2011-10-17

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: <u>PCS1900_LE.da4</u>

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900_Head

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.95, 4.95, 4.95); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_LE_Mid_Check/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.416 mW/g

PCS1900 LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.31 V/m; Power Drift = -0.077 dB Peak SAR (extrapolated) = 0.606 W/kg SAR(1 g) = 0.388 mW/g; SAR(10 g) = 0.234 mW/g Maximum value of SAR (measured) = 0.426 mW/g

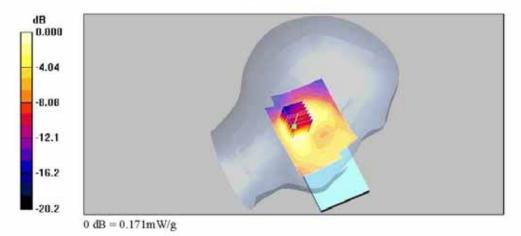
Date: 2011-10-17

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: PCS1900 LE.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.95, 4.95, 4.95); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_LE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.183 mW/g

PCS1900_LE_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.70 V/m; Power Drift = 0.094 dB Peak SAR (extrapolated) = 0.228 W/kg SAR(1 g) = 0.157 mW/g; SAR(10 g) = 0.096 mW/gMaximum value of SAR (measured) = 0.171 mW/g

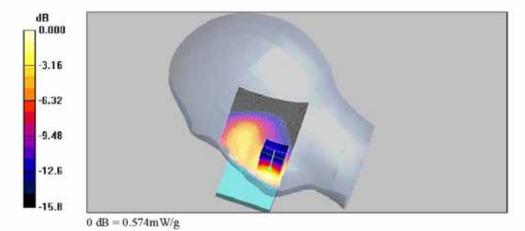
Date: 2011-10-17

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: PCS1900 RE.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:

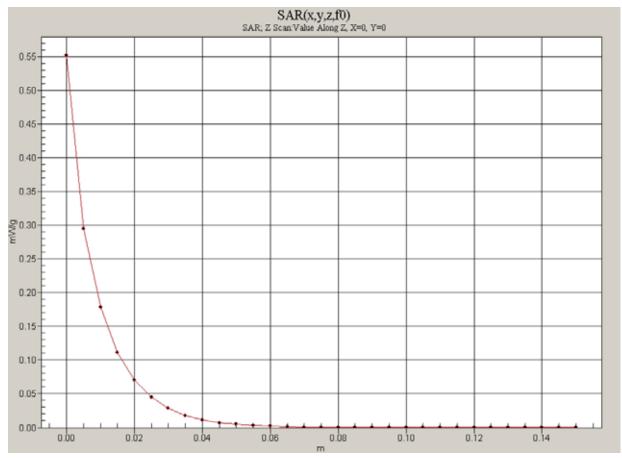

- Probe: ET3DV6 - SN1782; ConvF(4.95, 4.95, 4.95); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_RE_Mid_Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.588 mW/g

PCS1900 RE Mid Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.10 V/m; Power Drift = -0.196 dB Peak SAR (extrapolated) = 0.831 W/kg SAR(1 g) = 0.520 mW/g; SAR(10 g) = 0.304 mW/gMaximum value of SAR (measured) = 0.574 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 37 / 104

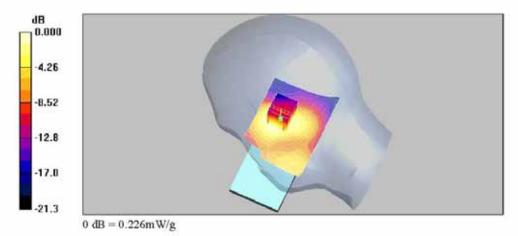
Z Scan

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: PCS1900 RE.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Head

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.95, 4.95, 4.95); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_RE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.236 mW/g

PCS1900 RE Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.36 V/m; Power Drift = 0.030 dB Peak SAR (extrapolated) = 0.304 W/kg SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.126 mW/gMaximum value of SAR (measured) = 0.226 mW/g

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

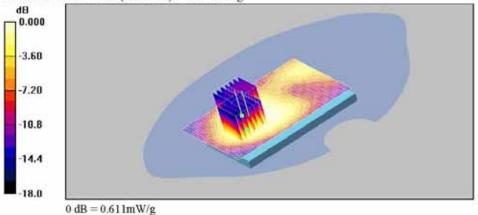
 Page :
 39 / 104

PCS1900 Body SAR Test

Date: 2011-10-17

Test Laboratory; SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 2Tx Front.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900_Body


Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Front_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.653 mW/g PCS1900_Front_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.8 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 0.896 W/kg SAR(1 g) = 0.578 mW/g; SAR(10 g) = 0.359 mW/g Maximum value of SAR (measured) = 0.630 mW/g PCS1900_Front_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.8 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 0.866 W/kg SAR(1 g) = 0.541 mW/g; SAR(10 g) = 0.333 mW/g Maximum value of SAR (measured) = 0.611 mW/g

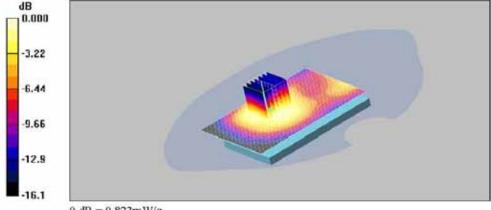
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPR S1900 Body 1cm 2Tx Back.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_Low_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.819 mW/g

PCS1900_Back_Low_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = -0.059 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.757 mW/g; SAR(10 g) = 0.459 mW/g Maximum value of SAR (measured) = 0.823 mW/g

0 dB = 0.823 mW/g

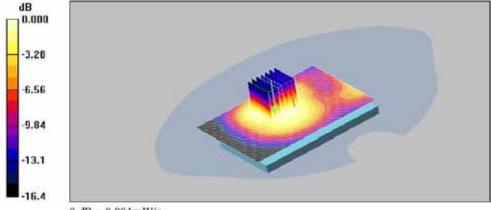
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPR S1900 Body 1cm 2Tx Back.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.889 mW/g

PCS1900_Back_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.829 mW/g; SAR(10 g) = 0.502 mW/g Maximum value of SAR (measured) = 0.901 mW/g

0 dB = 0.901 mW/g

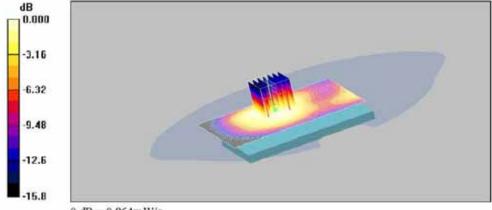
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPR S1900 Body 1cm 2Tx Back.da4

DUT: DS1007; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1910 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_High_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.863 mW/g

PCS1900_Back_High_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = 0.039 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.800 mW/g; SAR(10 g) = 0.489 mW/g Maximum value of SAR (measured) = 0.864 mW/g

0 dB = 0.864 mW/g

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 Page : 43 / 104

Date: 2011-10-17

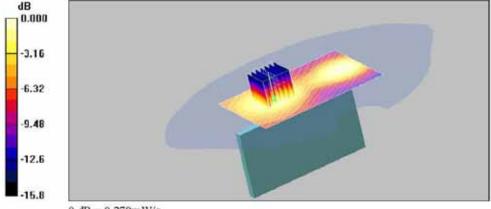
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 2Tx Edge A.da4

DUT: DS1007_Side; Type: Mobile Phone; Serial: N/A Program Name: GPRS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS1900 Edge A Mid_1cm_2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.281 mW/g

GPRS1900_Edge A_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 9.00 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 0.392 W/kgSAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.152 mW/gMaximum value of SAR (measured) = 0.279 mW/g

0 dB = 0.279 mW/g

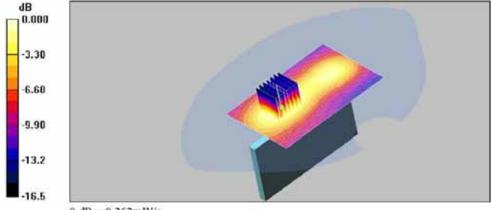
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 2Tx Edge B.da4

DUT: DS1007_Side; Type: Mobile Phone; Serial: N/A Program Name: GPRS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS1900 Edge B Mid 1cm 2Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.379 mW/g

GPRS1900_Edge B_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 12.3 V/m; Power Drift = -0.040 dB Peak SAR (extrapolated) = 0.536 W/kg SAR(1 g) = 0.331 mW/g; SAR(10 g) = 0.191 mW/g Maximum value of SAR (measured) = 0.363 mW/g

0 dB = 0.363 mW/g

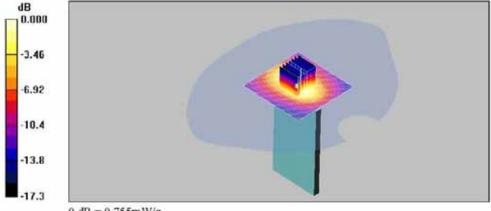
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 2Tx Edge C.da4

DUT: DS1007_Top&Bottom; Type: Mobile Phone; Serial: N/A Program Name: GPRS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS1900_Edge C_Mid_1cm_2Tx/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.757 mW/g

GPRS1900_Edge C_Mid_1cm_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 24.3 V/m; Power Drift = -0.006 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.367 mW/g Maximum value of SAR (measured) = 0.755 mW/g

0 dB = 0.755 mW/g

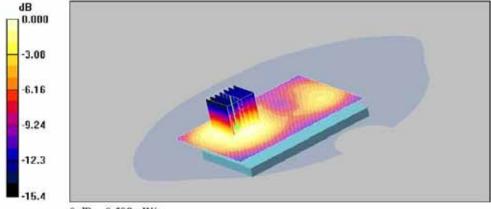
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 1Tx Back.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_Low_1cm_1Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.599 mW/g

PCS1900_Back_Low_1cm_1Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.87 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 0.854 W/kg SAR(1 g) = 0.551 mW/g; SAR(10 g) = 0.339 mW/g Maximum value of SAR (measured) = 0.598 mW/g

0 dB = 0.598 mW/g

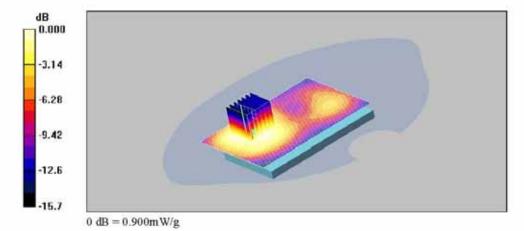
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 1Tx Back.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14

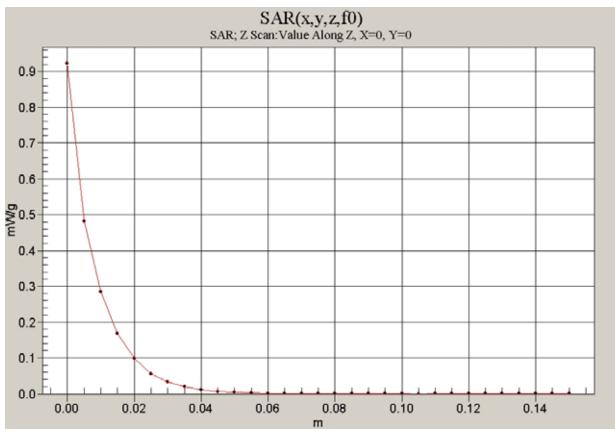

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_Mid_1cm_1Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.895 mW/g

PCS1900_Back_Mid_1cm_1Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.093 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.834 mW/g; SAR(10 g) = 0.512 mW/g Maximum value of SAR (measured) = 0.900 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 48 / 104

Z Scan

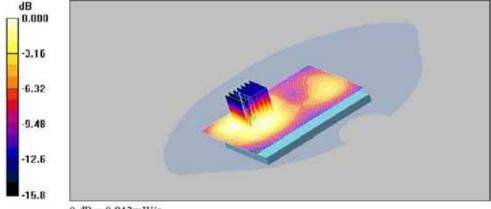
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 1Tx Back.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_High_1cm_1Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.838 mW/g

PCS1900_Back_High_1cm_1Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.77 V/m; Power Drift = -0.020 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.779 mW/g; SAR(10 g) = 0.476 mW/g Maximum value of SAR (measured) = 0.843 mW/g

0 dB = 0.843 mW/g

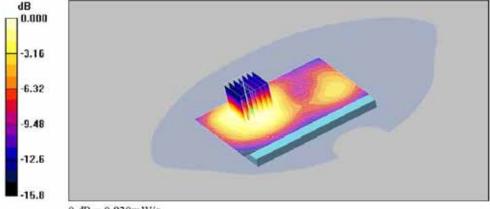
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 3Tx Back.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.67 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_Mid_1cm_3Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.819 mW/g

PCS1900_Back_Mid_1cm_3Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.67 V/m; Power Drift = 0.098 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.763 mW/g; SAR(10 g) = 0.470 mW/g Maximum value of SAR (measured) = 0.830 mW/g

0 dB = 0.830 mW/g

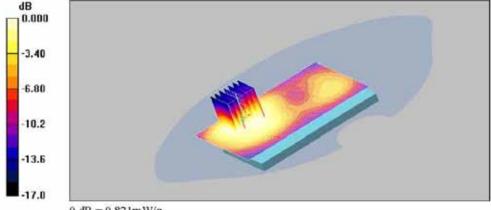
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: GPRS1900 Body 1cm 4Tx Back.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: PCS1900 Body

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.34, 4.34, 4.34); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_Back_Mid_1cm_4Tx/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.815 mW/g

PCS1900_Back_Mid_1cm_4Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.89 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.756 mW/g; SAR(10 g) = 0.469 mW/g Maximum value of SAR (measured) = 0.821 mW/g

0 dB = 0.821 mW/g

WLAN Head SAR Test

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

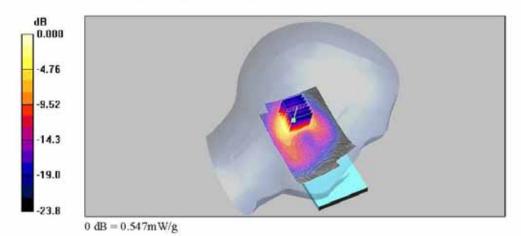
 Page :
 52 / 104

Date: 2011-11-07

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN_11b_LE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b_Head

Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_LE_Low_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.472 mW/g

WLAN 11b_LE_Low_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.3 V/m; Power Drift = -0.052 dBPeak SAR (extrapolated) = 1.23 W/kgSAR(1 g) = 0.481 mW/g; SAR(10 g) = 0.196 mW/gMaximum value of SAR (measured) = 0.547 mW/g

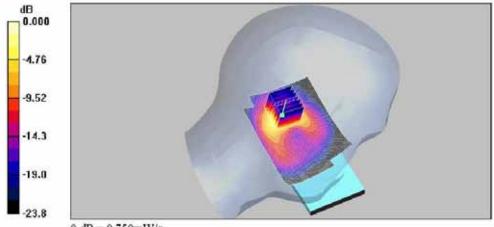
Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b LE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14


- Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_LE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.664 mW/g

WLAN 11b_LE_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.8 V/m; Power Drift = 0.020 dB

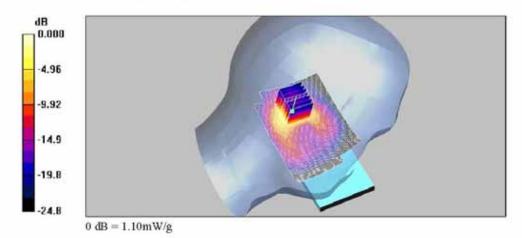
Peak SAR (extrapolated) = 1.71 W/kg SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.276 mW/g Maximum value of SAR (measured) = 0.750 mW/g

0 dB = 0.750 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN_11b_LE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b_Head

Communication System: WLAN; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Left Section

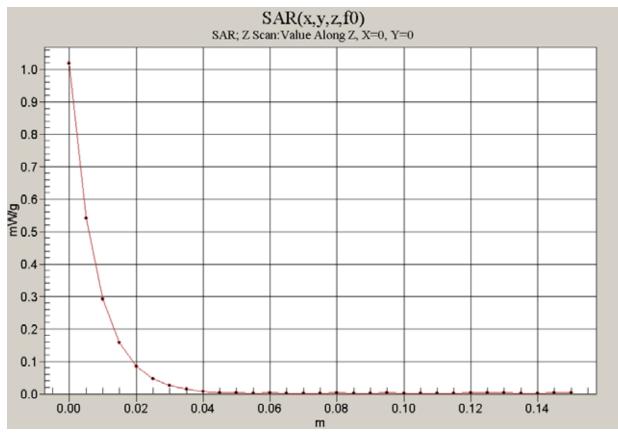

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_LE_High_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.965 mW/g

WLAN 11b_LE_High_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.7 V/m; Power Drift = -0.187 dB Peak SAR (extrapolated) = 2.56 W/kg SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.395 mW/g Maximum value of SAR (measured) = 1.10 mW/g



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 55 / 104

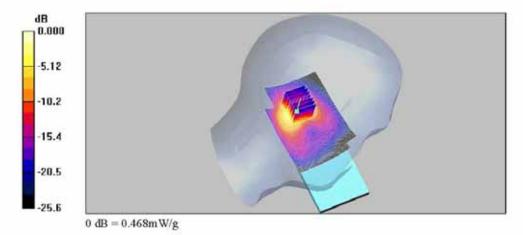
Z Scan

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b LE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_LE_Low_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.508 mW/g

WLAN 11b LE Low Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.7 V/m; Power Drift = -0.002 dB

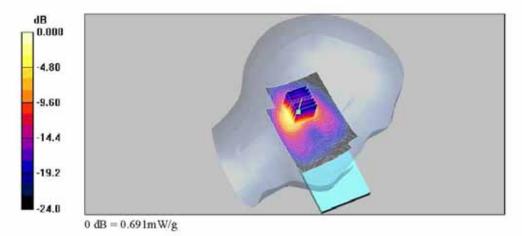
Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.418 mW/g; SAR(10 g) = 0.180 mW/gMaximum value of SAR (measured) = 0.468 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b LE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b LE Mid Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.751 mW/g

WLAN 11b LE Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

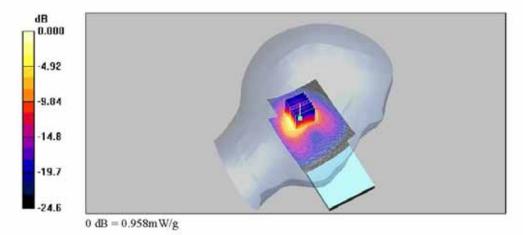
Reference Value = 17.7 V/m; Power Drift = 0.058 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.622 mW/g; SAR(10 g) = 0.265 mW/gMaximum value of SAR (measured) = 0.691 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b LE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b LE_High_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 mW/g

WLAN 11b LE High Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

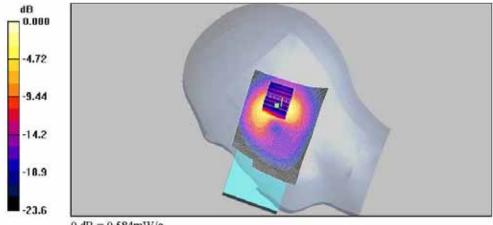
Reference Value = 20.4 V/m; Power Drift = 0.154 dB Peak SAR (extrapolated) = 2.14 W/kg SAR(1 g) = 0.869 mW/g; SAR(10 g) = 0.366 mW/g Maximum value of SAR (measured) = 0.958 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b RE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_RE_Low_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.481 mW/g

WLAN 11b_RE_Low_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.0 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.506 mW/g; SAR(10 g) = 0.210 mW/gMaximum value of SAR (measured) = 0.584 mW/g

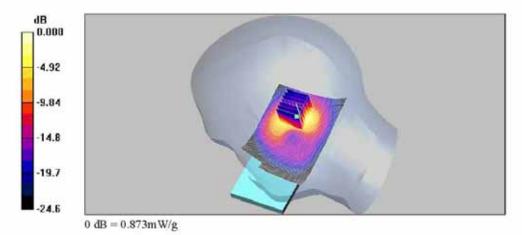
0 dB = 0.584 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b RE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_RE_Mid_Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.715 mW/g

WLAN 11b RE Mid Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

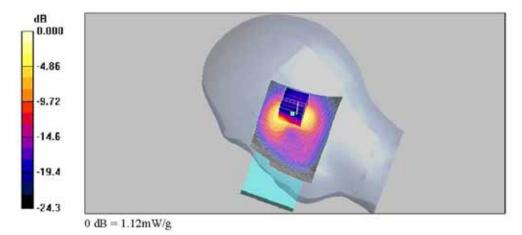
Reference Value = 19.5 V/m; Power Drift = 0.024 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.310 mW/gMaximum value of SAR (measured) = 0.873 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b RE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b RE_High Cheek/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.914 mW/g

WLAN 11b RE High Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

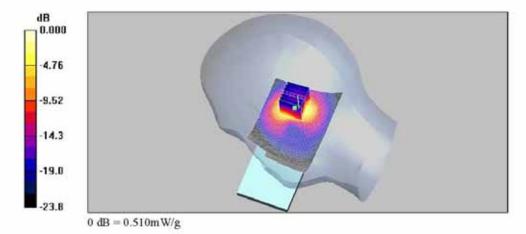
Reference Value = 21.1 V/m; Power Drift = 0.038 dB Peak SAR (extrapolated) = 2.46 W/kg SAR(1 g) = 0.970 mW/g; SAR(10 g) = 0.393 mW/gMaximum value of SAR (measured) = 1.12 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b RE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_RE_Low_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.487 mW/g

WLAN 11b RE Low Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

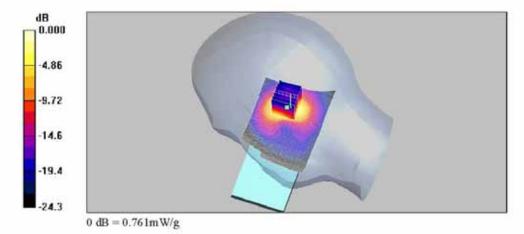
Reference Value = 14.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.198 mW/gMaximum value of SAR (measured) = 0.510 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b RE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b Head

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b_RE_Mid_Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.735 mW/g

WLAN 11b RE Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

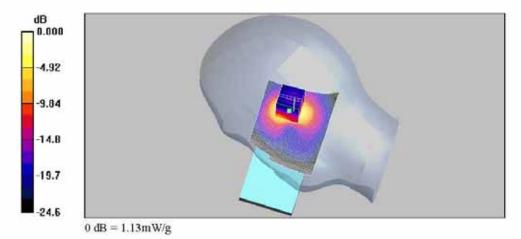
Reference Value = 17.5 V/m; Power Drift = 0.142 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.690 mW/g; SAR(10 g) = 0.297 mW/gMaximum value of SAR (measured) = 0.761 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b RE.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN 11b_Head

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(4.37, 4.37, 4.37); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN 11b RE High Tilt/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.01 mW/g

WLAN 11b_RE_High_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.3 V/m; Power Drift = -0.083 dB Peak SAR (extrapolated) = 2.48 W/kg SAR(1 g) = 0.981 mW/g; SAR(10 g) = 0.407 mW/g Maximum value of SAR (measured) = 1.13 mW/g

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 Page : 65 / 104

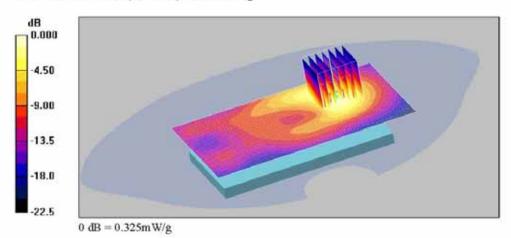
WLAN Body SAR Test

Date: 2011-11-07

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: <u>WLAN_11b_Front.da4</u>

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN_Body

Communication System: WLAN; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(3.94, 3.94, 3.94); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_11b_Front_High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.314 mW/g

WLAN_11b_Front_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

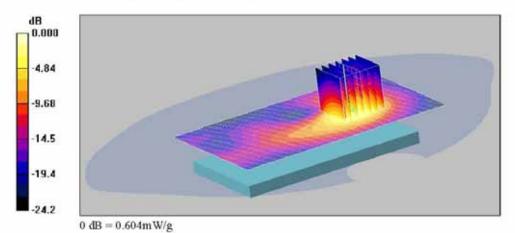
Reference Value = 3.78 V/m; Power Drift = -0.054 dBPeak SAR (extrapolated) = 0.740 W/kgSAR(1 g) = 0.303 mW/g; SAR(10 g) = 0.146 mW/gMaximum value of SAR (measured) = 0.325 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b Back.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN Body

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(3.94, 3.94, 3.94); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_11b_Back_High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.661 mW/g

WLAN 11b Back High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

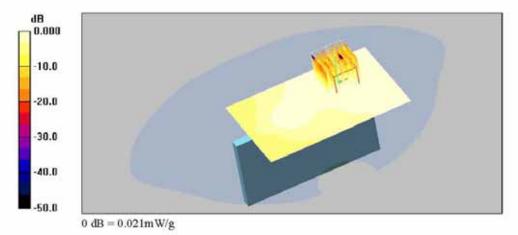
Reference Value = 4.59 V/m; Power Drift = -0.019 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.565 mW/g; SAR(10 g) = 0.257 mW/gMaximum value of SAR (measured) = 0.604 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b Right Side.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN Body

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(3.94, 3.94, 3.94); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_11b_Right Side_High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.021 mW/g

WLAN 11b Right Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

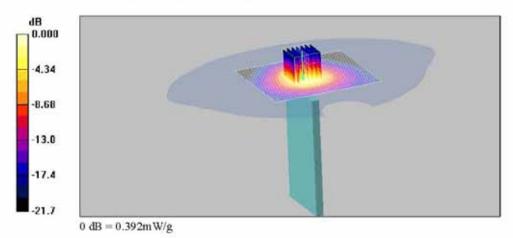
Reference Value = 2.85 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 0.048 W/kg SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.011 mW/gMaximum value of SAR (measured) = 0.021 mW/g

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: WLAN 11b Top.da4

DUT: L-02D; Type: Mobile Phone; Serial: N/A Program Name: WLAN Body

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(3.94, 3.94, 3.94); Calibrated: 2011-04-14

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
 Phantom: SAM with CRP_2011(left); Type: SAM; Serial: TP-1645
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_11b_Top_High/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.384 mW/g

WLAN_11b_Top_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=Smm

Reference Value = 13.4 V/m; Power Drift = -0.198 dB Peak SAR (extrapolated) = 0.912 W/kg SAR(1 g) = 0.368 mW/g; SAR(10 g) = 0.179 mW/gMaximum value of SAR (measured) = 0.392 mW/g

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 69 / 104

Appendix B

Uncertainty Analysis

а	b	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Sectio n in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition - Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning - mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation - SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		19.27	

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 70 / 104

Appendix C

Calibration Certificate

- PROBE

- DAE 3
- 1900 MHz, 2450 MHz DIPOLE

Report File No. :	F690501/RF-SAR001964-A1
Date of Issue :	2011-11-10
Page :	71 / 104

- PROBE Calibration Certificate

Schmid & Partner Engineering AG Joughausstrasse 43, 8004 Zur	ory of	Hac MRA (PARATO S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service				
Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates		s to the EA	Accreditation No.: SCS 108				
Client SGS (Dymstee	c)	Certificate No:	ET3-1782_Apr11				
CALIBRATION	CERTIFICAT	E					
Object	ET3DV6 - SN:17	82					
Calibration procedure(s)	NUMBER OF A DESCRIPTION	DA CAL-12.v6; QA CAL-23.v4; QA dure for dosimetric E-field probes					
Calibration date:	April 14, 2011		Senten Son				
The measurements and the unc All calibrations have been condu	certainties with confidence p ucted in the closed laborator	onal standards, which realize the physical units robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C i	are part of the certificate.				
The measurements and the unc All calibrations have been condu Calibration Equipment used (MR	certainties with confidence p ucted in the closed laborator RTE critical for calibration)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C (are part of the certificate. and humidity < 70%.				
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards	ertainties with confidence p ucted in the closed laborator STE critical for calibration)	robability are given on the following pages and ny facility: environment temperature (22 ± 3)°C (Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%.				
The measurements and the unc NI calibrations have been condi Calibration Equipment used (MR Primary Standards Power meter E4419B	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874	robability are given on the following pages and ry facility: environment temperature (22 ± 3)*C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12				
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M8 Primary Standards Power nutler E44198 Power sensor E4412A	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277	robability are given on the following pages and ny facility: environment temperature (22 ± 3)°C i Cal Date (Centificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12				
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M2 Primary Standards Power nutter E4419B Power sensor E4412A Power sensor E4412A	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41496057	robability are given on the following pages and ry facility: environment temperature (22 ± 3)*C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12				
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4419A Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41490087 SN: S5054 (3c)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01389)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12				
The measurements and the unc All calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41495277 MY41490067 SN: S5054 (3c) SN: S5066 (20b)	cobability are given on the following pages and ry facility: environment temperature (22 ± 3)°C i Gal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 20-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12				
The measurements and the unc All calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41490087 SN: S5054 (3c)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01389)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12				
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M2 Primary Standards Power nuter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator	ertainties with confidence p ucted in the closed laborator RTE critical for calibration) ID GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 20-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12				
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M2 Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E\$3DV2 DAE4	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41490087 SN: S5054 (3c) SN: S5054 (3c) SN: S5029 (30b) SN: 3013	robability are given on the following pages and ny facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 20-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 Dec-11				
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M8 Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 70 dB Attenuator	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41496067 SN: S5054 (3c) SN: S5066 (20b) SN: S5029 (30b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 854	colability are given on the following pages and ry facility: environment temperature (22 ± 3)*C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 20-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01370) 29-Mar-10 (No. E13-3013_Dec10) 23-Apr-10 (No. DAE4-654_Apr10)	are part of the certificate. and humidity < 70%. Schedwed Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 Apr-11				
The measurements and the unc All calibrations have been condi- Calibration Equipment used (MB Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E33DV2 DAE4 Secondary Standards RF generator HP 8848C	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41495277 MY41490087 SN: S5054 (3c) SN: S5054 (3c) SN: S5026 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013, Dec10) 23-Apr-10 (No. DAE4-654_Apr10) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Scheduled Check				
The measurements and the unc All calibrations have been condi- Calibration Equipment used (MB Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E33DV2 DAE4 Secondary Standards RF generator HP 8848C	ertainties with confidence p ucted in the closed laborator RTE critical for calibration) ID GB41293874 MY41495277 MY41495277 MY41490087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700	cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 20-Mar-11 (No. 217-01372) 20-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 23-Apr-10 (No. DAE4-654_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 Apr-11 Scheduled Check In house check: Ocl-11				
The measurements and the unc All calibration Equipment used (M2 Calibration Equipment used (M2 Primary Standards Power meter: E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5066 (20b) SN: S5096 (20b) SN: S512 (30b) SN: S512 (30b) SN: S514 ID US3642U01700 US37390565	cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. 217-01370) 29-Mar-10 (No. ES3-3013, Dec10) 23-Apr-10 (No. ES3-3013, Dec10) 23-Apr-10 (No. ES3-3013, Dec10) 24-Mar-99 (in house check Oct-00) 18-Oct-01 (in house check Oct-00)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 Apr-11 Scheduled Check In house check: Ocl-11 In house check: Ocl-11				
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41495277 MY41496277 MY41496277 SN: S5054 (3c) SN: S5066 (20b) SN: S5066 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013, Dec10) 23-Apr-10 (No. DAE4-654, Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-00) 18-Oct-01 (in house check Oct-00) Function	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 Apr-12 Dec-11 Scheduled Check In house check: Oct-11 In house check: Oct-11				

Certificate No: ET3-1782_Apr11

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

s

С

s

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

neasurement center),

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency, response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1782 Apr11

Page 2 of 11

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 73 / 104

ET3DV6 - SN:1782

April 14, 2011

Probe ET3DV6

SN:1782

Manufactured: April 15, 2003 Calibrated: April 14, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1782_Apr11

Page 3 of 11

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 74 / 104 Page :

ET3DV6-SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1782

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	2.07	1.66	1.92	± 10.1 %
DCP (mV) ⁸	96.4	96.6	97.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	111.1	±1.9 %
1.001			Y	0.00	0.00	1.00	141.0	
			Z	0.00	0.00	1.00	145.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ⁸ Numerical linearization parameter: uncertainty not required. ⁸ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ET3-1782_Apr11

Page 4 of 11

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 75 / 104 Page :

ET30V6- SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1782

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	6.89	6.89	6,89	0.21	2.29	± 13.4 %
835	41.5	0.90	6.22	6.22	6.22	0.88	1.63	± 12.0 %
1750	40.1	1.37	5.14	5.14	5,14	0.57	2.53	± 12.0 %
1900	40.0	1.40	4.95	4.95	4.95	0.58	2.54	± 12.0 %
2450	39.2	1.80	4.37	4.37	4.37	0.80	1.93	± 12.0 %

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁷ At requencies below 3 GHz, the validity of tissue parameters (*u* and *e*) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. All frequencies above 3 GHz, the validity of tissue parameters (*u* and *e*) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ET3-1782_Apr11

Page 5 of 11

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 76 / 104 Page :

ET3DV6- SN:1782

April 14, 2011

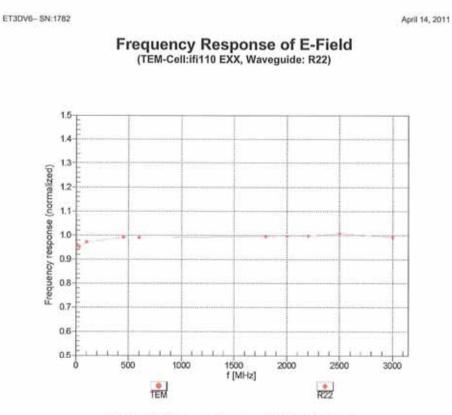
DASY/EASY - Parameters of Probe: ET3DV6- SN:1782

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.49	7.49	7.49	0.16	2.34	± 13.4 %
835	55.2	0.97	6.03	6.03	6.03	0.85	1.72	± 12.0 %
1750	53.4	1.49	4.54	4.54	4.54	0.64	2.70	± 12.0 %
1900	53.3	1.52	4.34	4.34	4.34	0.63	2.57	± 12.0 %
2450	52.7	1.95	3.94	3.94	3.94	0.99	1,21	± 12.0 %

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁷ All frequencies below 3 GHz, the validity of tissue parameters (*x* and *a*) can be refaxed to ± 10% if liquid compensation formula is applied to measured SAR values. All frequencies above 3 GHz, the validity of tissue parameters (*x* and *a*) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ET3-1782_Apr11


Page 6 of 11

 Report File No. :
 F690501/RF-SAR001964-A1

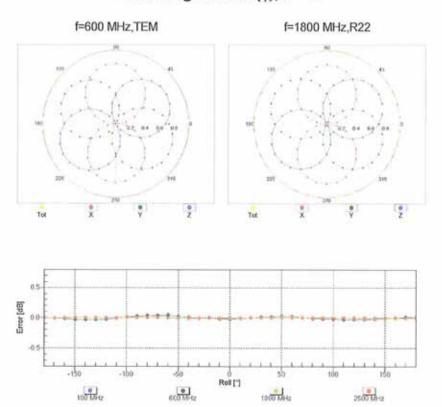
 Date of Issue :
 2011-11-10

 Page :
 77 / 104

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1782_Apr11

Page 7 of 11


 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 78 / 104

ET3DV6- SN:1782

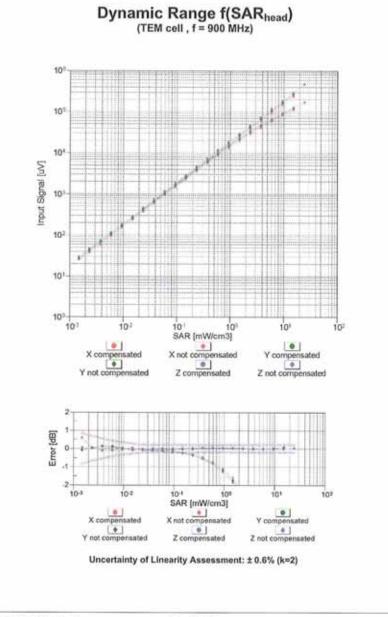
April 14, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1782_Apr11

Page 8 of 11

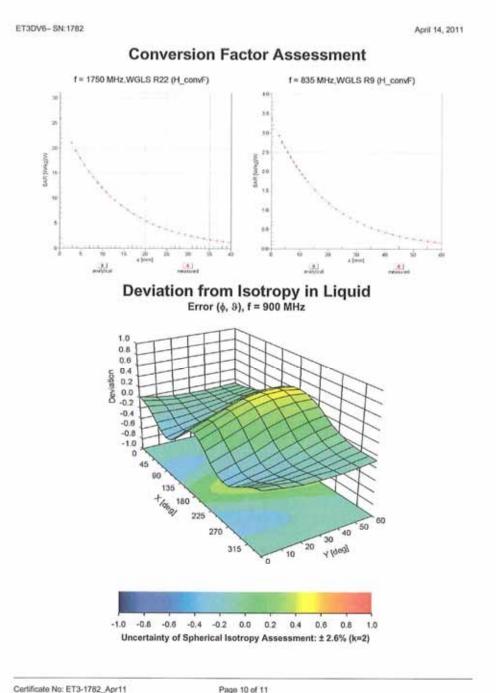

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 79 / 104

ET3DV6-SN:1782

April 14, 2011



Certificate No: ET3-1782_Apr11

Page 9 of 11

Report File No. : F690501/RF-SAR001964-A1 Date of Issue : 2011-11-10 80 / 104 Page :

Certificate No: ET3-1782_Apr11

Page 10 of 11

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 81 / 104

ET3DV6- SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1782

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1782_Apr11

Page 11 of 11

Report File No. :	F690501/RF-SAR001964-A1
Date of Issue :	2011-11-10
Page :	82 / 104

-DAE 3 Calibration Certificate

	ch, Switzerland	IAC MRA	C Service suisse d'etalonnage Servizio svizzero di taratura S Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servic fulfilateral Agreement for the	e is one of the signatorie	s to the EA	lation No.: SCS 108
CALIBRATION C	1	A DESCRIPTION OF A DESC	Ite No: DAE3-567_Jan11
Object	DAE3 - SD 000 E		
Calibration procedure(s)	QA CAL-06.v22 Calibration proce	dure for the data acquisition	electronics (DAE)
Calibration date:	January 27, 2011		
The measurements and the unce	ertainties with confidence pr	onal standards, which realize the physic obability are given on the following page y facility: environment temperature (22 :	es and are part of the certificate.
he measurements and the unce VI calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pr cted in the closed laborator TE critical for calibration)	obability are given on the following page y facility: environment temperature (22 :	es and are part of the certificate.
The measurements and the unce VI calibrations have been condu Calibration Equipment used (M& himary Standarda	ertainties with confidence pr	obability are given on the following page	es and are part of the certificate. = 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu- calibration Equipment used (M& himary Standards (eithley Multimeter Type 2001	rtainties with confidence pr cted in the closed laboratory TE critical for calibration)	coability are given on the following page y facility: environment temperature (22 : Cal Date (Certificate No.) 28-Sep-10 (No:10376)	es and are part of the certificate. = 3)*C and humidity < 70%. Scheduled Calibration Sep-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following page y facility: environment temperature (22 : Cal Date (Certificate No.)	es and are part of the certificate. = 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 0810278 ID #	coability are given on the following page y facility: environment temperature (22 : Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house)	es and are part of the certificate. ± 3)*C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11
The measurements and the unce VI calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	rtainties with confidence pr cled in the closed laborator TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following page y facility: environment temperature (22 : Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house) 07-Jun-10 (in house check)	es and are part of the certificate. = 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check
The measurements and the unce VI calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Italinties with confidence pr cled in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following page y facility: environment temperature (22 : Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house) 07-Jun-10 (in house check) Function	es and are part of the certificate. = 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

SWISS SPINSS CPUTO REAL

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-567_Jan11

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1µV.	full range =	-100+300 mV
Low Range:	1LSB =	61nV .		-1+3mV

Calibration Factors	x	Y	Z
High Range	404.644 ± 0.1% (k=2)	404.400 ± 0.1% (k=2)	404.475 ± 0.1% (k=2)
Low Range	3.94940 ± 0.7% (k=2)	3.96974 ± 0.7% (k=2)	3.94828 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	5.5°±1°
Connector Angle to be used in DASY system	5.5°±1°

Certificate No: DAE3-567_Jan11

Page 3 of 5

Appendix

1.	DC	Voltage	Linearity	
----	----	---------	-----------	--

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200011.1	0.86	0.00
Channel X + Input	20005.53	5,63	0.03
Channel X - Input	-19994.55	6.05	-0.03
Channel Y + Input	200012.0	3.19	0.00
Channel Y + Input	19998.16	-0.94	-0.00
Channel Y - Input	-19999.31	0.89	-0.00
Channel Z + Input	200007.6	-0.57	-0.00
Channel Z + Input	20000.62	1.02	0.01
Channel Z - Input	-19997.10	3.20	-0.02

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.6	-0.43	-0.02
Channel X + Input	200.86	0.86	0.43
Channel X - Input	-198.93	1.07	-0.54
Channel Y + Input	2000.2	0.40	0.02
Channel Y + Input	200.07	0.07	0.03
Channel Y - Input	-199.81	0.09	-0.05
Channel Z + Input	1999.8	-0.29	-0.01
Channel Z + Input	199.45	-0.75	-0.38
Channel Z - Input	-200.35	-0.25	0.12

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	3.83	1,88
	- 200	0.20	+2.32
Channel Y	200	0.69	-0.01
	- 200	-1.13	-1.19
Channel Z	200	4.39	4.66
	- 200	-6.15	-6.31

3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.13	-0.21
Channel Y	200	3.01	1.	3.24
Channel Z	200	1.69	-1.11	

Certificate No: DAE3-567_Jan11

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16333	16454
Channel Y	16169	16436
Channel Z	15951	16115

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 M $\!\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.23	-1.40	0.68	0.42
Channel Y	-0.84	-2.05	0.49	0.41
Channel Z	-0.76	-1.62	0.54	0.38

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <251A

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-567_Jan11

Page 5 of 5

Report File No. :	F690501/RF-SAR001964-A1
Date of Issue :	2011-11-10
Page :	87 / 104

- 1900 MHz Dipole Calibration Certificate

	h, Switzerland	HAC-MRA (2 V Z)	S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the re	e is one of the signatorie	s to the EA	Ion No.: SCS 108
Client SGS KES (Dyn	nstec)	Certificate	No: D1900V2-5d033_May10
CALIBRATION C	ERTIFICATE		
Object	D1900V2 - SN: 5	d033	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	May 26, 2010		
		ry facility: environment temperature (22 ± 3	3)"C and humidity < 70%.
ennen seere oor weere oor	Contraction of the second second		
Primary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power mater EPM-442A	ID # GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Scheduled Calibration Oct-10 Oct-10 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Scheduled Calibration Oct-10 Oct-10 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37460704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards	ID # GB37460704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Mar10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Mar-11 Scheduled Check
Primary Standards Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37460704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37460704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37460704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Mar10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-69 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37460704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205, Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Scheduled Calibration Oct-10 Oct-10 Mar-11 Apr-11 Mar-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D1900V2-5d033_May10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- SWISS S Schwe C Service S Service S Service
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage
 - Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d033_May10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

with Spacer

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.90 mW / g
SAR normalized	normalized to 1W	39.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.15 mW / g
SAR normalized	normalized to 1W	20.6 mW / g
	A CONTRACTOR OF A CONTRACTOR O	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C	1111	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.50 mW / g
SAR normalized	normalized to 1W	22.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d033_May10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω + 3.8 jΩ	
Return Loss	- 28.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω + 4.3 jΩ	
Return Loss	- 25.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns	-
----------------------------------	----------	---

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 17, 2003	

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

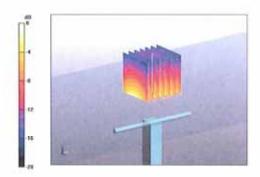
 Page :
 92 / 104

DASY5 Validation Report for Head TSL

Date/Time: 17.05.2010 15:51:21

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 39.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

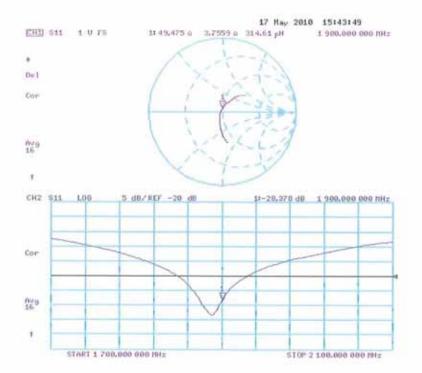
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.4 V/m; Power Drift = 0.00578 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.15 mW/g Maximum value of SAR (measured) = 12.4 mW/g

0 dB = 12.4 mW/g

Certificate No: D1900V2-5d033_May10

Page 6 of 9



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 93 / 104

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d033_May10

Page 7 of 9

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

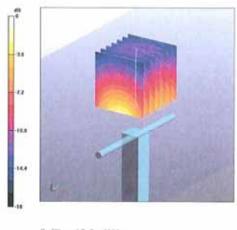
 Page :
 94 / 104

DASY5 Validation Report for Body

Date/Time: 26.05.2010 15:04:02

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

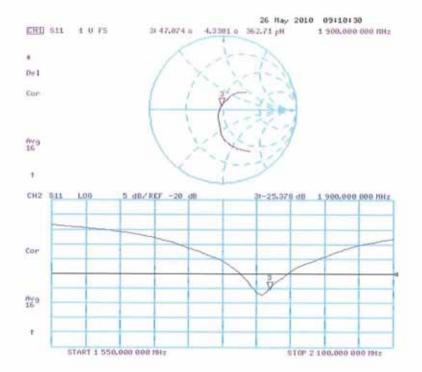
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.2 V/m; Power Drift = -0.00657 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.5 mW/g Maximum value of SAR (measured) = 12.9 mW/g

0 dB = 12.9 mW/g

Certificate No: D1900V2-5d033_May10

Page 8 of 9



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 95 / 104

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d033_May10

Page 9 of 9

Report File No. :	F690501/RF-SAR001964-A1
Date of Issue :	2011-11-10
Page :	96 / 104

- 2450 MHz Dipole Calibration Certificate

Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zuric	y of h, Switzerland	Hac-MRA (Q T z)	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
corredited by the Swiss Accredita he Swiss Accreditation Service fulfilateral Agreement for the re	e is one of the signatorie	s to the EA	on No.: SCS 108
SGS (Dymstec))	Certificate I	No: D2450V2-734_May10
CALIBRATION C	CERTIFICATE		
Object	D2450V2 - SN: 7	34	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	May 27, 2010		
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical u robability are given on the following pages i ry facility: environment temperature (22 \pm 3)	and are part of the certificate.
The measurements and the unce	rtainties with confidence p	robability are given on the following pages a	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards	rtainties with confidence p tied in the closed laborator (E critical for calibration)	robability are given on the following pages any facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate. *C and humidity < 70%, Scheduled Calibration
he measurements and the unce II calibrations have been conduc alibration Equipment used (M&1 trimary Standards fower meter EPM-442A	Itainties with confidence p Ited in the closed laborator (E critical for calibration)	robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086)	and are part of the certificate. *C and humidity < 70%-, Scheduled Calibration Oct-10
he measurements and the unce Il calibrations have been conduc alibration Equipment used (M&1 rimary Standerds ower meter EPM-442A ower sensor HP 8481A	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10
he measurements and the unce It calibrations have been conduc alibration Equipment used (M&T rimary Standards ower meter EPM-442A ower sensor HP 8481A leference 20 dB Attenuator	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # (B837480704 US37292783 SN: 5086 (20g)	robability are given on the following pages i ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	and are part of the certificate. #C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11
The measurements and the unce all calibrations have been conduc calibration Equipment used (M&T rrimary Standards "were meter EPM-442A lower ensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages i ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	and are part of the certificate. #G and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11
The measurements and the unce MI calibrations have been conduc Calibration Equipment used (M&T Primary Standards Prower enter EPM-442A Power sensor HP 8481A teference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # (B837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	robability are given on the following pages i ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	and are part of the certificate. #C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Prower sensor EPM-442A Prover sensor HP 8481A Neference 20 dB Attenuator Ypo-N mismatch combination telerence Probe ES3DV3 VAE4	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # (B37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages is ny facility: environment temperature (22 ± 3) O8-Oct-09 (No. 217-0108) 08-Oct-09 (No. 217-0108) 30-Mar-10 (No. 217-0118) 30-Mar-10 (No. 217-01182) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10)	and are part of the certificate. #C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11
The measurements and the unce MI calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Teference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # (B37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages is ny facility: environment temperature (22 ± 3) OB-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Mar10) 02-Mar-10 (No. DAE4-601_Mar10)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check
The measurements and the unce All calibrations have been conduc calibration Equipment used (M&T Primary Standards Prower mater EPM-442A Prower sensor HP 8481A Reference 20 dB Attenuator yppe-N mismatch combination Reference Probe ES3DV3 bAE4 Recondary Standards Prower sensor HP 8481A	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	coability are given on the following pages i ry facility: environment temperature (22 ± 3) Gal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Mar10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11 Mar-11
The measurements and the unce It calibrations have been conduc Calibration Equipment used (M&T frimary Standards Tower meter EPM-442A Tower sensor HP 8481A teference 20 dB Attenuator ype-N mismatch combination teference Probe ES3DV3 VAE4 tecondary Standards Tower sensor HP 8481A IF generator R&S SMT-06	rtainties with confidence p ted in the closed laborator (E critical for calibration) ID # (B37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages is ny facility: environment temperature (22 ± 3) OB-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Mar10) 02-Mar-10 (No. DAE4-601_Mar10)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Mar-11 Mar-11 Scheduled Check
The measurements and the unce MI calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RE generator R&S SMT-06	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages is ry facility: environment temperature (22 ± 3) 08-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 253-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 18-Oct-02 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	and are part of the certificate. #G and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce MI calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 letwork Analyzer HP 8763E	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 601 ID # MY41092317 100005	robability are given on the following pages i ry facility: environment temperature (22 ± 3) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Mar10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	and are part of the certificate. #C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 6481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages is ry facility: environment temperature (22 ± 3) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-0106) 4-Aug-99 (in house check Oct-09) Function	and are part of the certificate. #G and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages is ry facility: environment temperature (22 ± 3) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-0106) 4-Aug-99 (in house check Oct-09) Function	and are part of the certificate. #G and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by;	rtainties with confidence p ted in the closed laborator (E critical for calibration) (B37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 (D # MY41082317 100005 US37390585 S4206 Name Dimce liliev	robability are given on the following pages is ny facility: environment temperature (22 ± 3) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01086) OB-Oct-09 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 253-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) I8-Oct-01 (in house check Oct-09) Function Laboratory Technician	and are part of the certificate. #G and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D2450V2-734_May10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

CRUBRA

S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-734_May10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	39.0 ± 6 %	1.76 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR normalized	normalized to 1W	51.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.7 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.03 mW / g
SAR normalized	normalized to 1W	24.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-734_May10

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) *C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	53.5 mW / g ± 17.0 % (k=2)

chinaranged offer for and (in gron body fat	Contrainion	
SAR measured	250 mW input power	6.31 mW/g
SAR normalized	normalized to 1W	25.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	25.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-734_May10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 3.2 jΩ	
Return Loss	- 26.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 4.4 jΩ	
Return Loss	- 27.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2003	

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

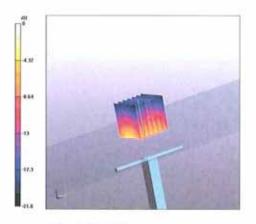
 Page :
 101 / 104

DASY5 Validation Report for Head TSL

Date/Time: 25.05.2010 14:48:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.76 mho/m; ε_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

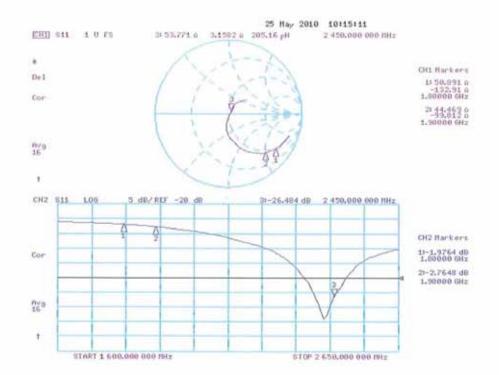
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = 0.030 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 12.8 mW/g; SAR(10 g) = 6.03 mW/g Maximum value of SAR (measured) = 16.7 mW/g

 $0 \, dB = 16.7 mW/g$

Certificate No: D2450V2-734_May10

Page 6 of 9



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 102 / 104

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-734_May10

Page 7 of 9

 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

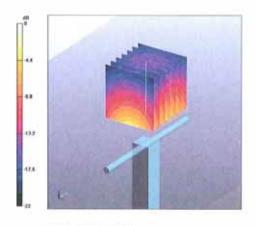
 Page :
 103 / 104

DASY5 Validation Report for Body

Date/Time: 27.05.2010 10:14:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

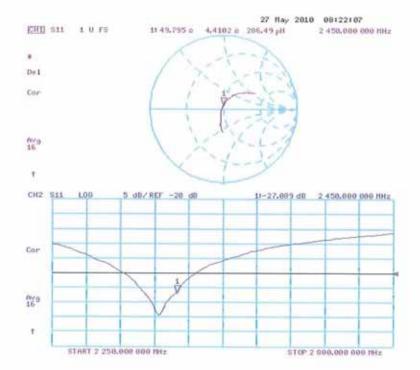
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.7 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.31 mW/g Maximum value of SAR (measured) = 17.4 mW/g

0 dB = 17.4 mW/g

Certificate No: D2450V2-734_May10

Page 8 of 9



 Report File No. :
 F690501/RF-SAR001964-A1

 Date of Issue :
 2011-11-10

 Page :
 104 / 104

Impedance Measurement Plot for Body TSL

Certilicate No: D2450V2-734_May10

Page 9 of 9