Report No.: DRTFCC1411-1530

Total 52 Pages

RF TEST REPORT

Test item : Cellular/PCS GSM/GPRS

Cellular WCDMA/HSDPA/HSUPA Router with WLAN

Model No. : L-01G

Order No. : DTNC1410-04542

Date of receipt : 2014-10-16

Test duration : 2014-11-13 ~ 2014-11-21

Date of issue : 2014-11-28

Use of report : FCC Original Grant

Applicant : LG Electronics MobileComm U.S.A., Inc.

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Test laboratory : DT&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935

Test specification : §22(H), §24(E)

Test environment : See appended test report

Test result : ☐ Pass ☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

Tested by: Reviewed by:

Engineer Technical Manager

Chulmin Kim Geunki Son

Test Report Version

Test Report No.	Date	Description
DRTFCC1411-1530	Nov. 28, 2014	Initial issue

Report No.: DRTFCC1411-1530

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1. EUT DESCRIPTION	5
2.2. MEASURING INSTRUMENT CALIBRATION	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS	6
3.1 ERP & EIRP	
3.2 PEAK TO AVERAGE RATIO	
3.3 OCCUPIED BANDWIDTH	10
3.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	11
3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	
3.6 RADIATED SPURIOUS EMISSIONS	
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
4. LIST OF TEST EQUIPMENT	
5. SUMMARY OF TEST RESULTS	
6. SAMPLE CALCULATION	
7. TEST DATA	
7.1 PEAK TO AVERAGE RATIO	
7.2 OCCUPIED BANDWIDTH	18
7.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	
7.4 BAND EDGE	
7.5 EFFECTIVE RADIATED POWER	19
7.6 EQUIVALENT ISOTROPIC RADIATED POWER	20
7.7 RADIATED SPURIOUS EMISSIONS	
7.7.1 RADIATED SPURIOUS EMISSIONS (GPRS850)	
7.7.2 RADIATED SPURIOUS EMISSIONS (WCDMA850)	
7.7.3 RADIATED SPURIOUS EMISSIONS (HSUPA850)	
7.7.4 RADIATED SPURIOUS EMISSIONS (GPRS1900)	
7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
7.8.1 FREQUENCY STABILITY (GPRS850)	25
7.8.2 FREQUENCY STABILITY (WCDMA850)	26
7.8.3 FREQUENCY STABILITY (HSUPA850)	27
7.8.4 FREQUENCY STABILITY (GPRS1900)	
8. TEST PLOTS	
8.1 Peak to Average Ratio	
8.2 Occupied Bandwidth (99 % Bandwidth)	
8.3 Spurious Emissions at Antenna Terminal	
8 1 Band Edge	47

DTNC1410-04542 Report No.: DRTFCC1411-1530

1. GENERAL INFORMATION

Applicant Name: LG Electronics MobileComm U.S.A., Inc.

Address: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632

FCC ID : ZNFL01G

FCC Classification : PCS Licensed Transmitter (PCB)

EUT : Cellular/PCS GSM/GPRS

Cellular WCDMA/HSDPA/HSUPA Router with WLAN

Model Name : L-01G

Add Model Name : NA

Supplying power : Standard Battery

- Type: Li-ion Battery

- M/N: L23

- Rating: DC 3.8V & 4880mAh / 18.5Wh

Antenna Information : Internal Antenna

- Type: Built-In type

Tx Frequency : GPRS850: 824.2 ~ 848.8 MHz

GPRS1900: 1850.2 ~ 1909.8 MHz WCDMA850: 826.4 ~ 846.6 MHz HSUPA850: 826.4 ~ 846.6 MHz

Rx Frequency : GPRS850: 869.2 ~ 893.8 MHz

GPRS1900: 1930.2 ~ 1989.8 MHz WCDMA850: 871.4 ~ 891.6 MHz HSUPA850: 871.4 ~ 891.6 MHz

Max. RF Output Power : GPRS850: 0.914 W ERP(29.61 dBm)

GPRS1900: 0.927 W EIRP(29.67 dBm) WCDMA850: 0.136 W ERP(21.33 dBm) HSUPA850: 0.114 W ERP(20.55 dBm)

Emission Designator(s) : GPRS850: 244KGXW

GPRS1900: 245KGXW WCDMA850: 4M15F9W HSUPA850: 4M17F9W

DTNC1410-04542 Report No.: DRTFCC1411-1530

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Equipment under test (EUT) supports Cellular/PCS GSM/GPRS Cellular WCDMA/HSDPA/HSUPA Router with WLAN

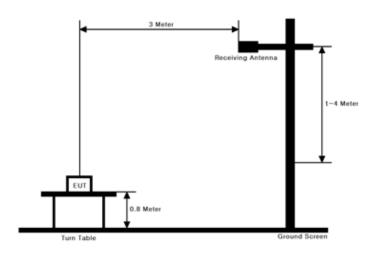
2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The 3&10m test site and conducted measurement facility used to collect the radiated data are located at the 42 Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935. The site is constructed in conformance with the requirements.

- 3 &10m test site registration Number: 678747


DTNC1410-04542 Report No.: DRTFCC1411-1530

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP

(Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

Test Procedure

- ANSI/TIA-603-C-2004 Section 2.2.17
- KDB 971168 D01 v02r02 Section 5.2.1

These measurements were performed at 3 &10 m test site. The equipment under test is placed on a non-conductive table 0.8-meters above a turn table which is flush with the ground plane and 3 meters from the receive antenna.

Test setting

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5 % of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep ≥ 2 × span / RBW.
- 5. Sweep time = auto couple.
- 6. Detector = RMS (power averaging).
- 7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98 %), then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep.

Ensure that the sweep time is less than or equal to the transmission burst duration.

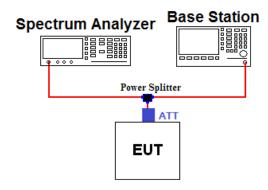
- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

DTNC1410-04542 Report No.: DRTFCC1411-1530

The receive antenna height and turn table rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.

The ERP/EIRP is calculated using the following formula:


ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration.

DTNC1410-04542 Report No.: DRTFCC1411-1530

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

A peak to average ratio measurement is performed using the following procedure.

CCDF Procedure

- KDB 971168 D01 v02r02 Section 5.7.1
- 1. Set resolution/measurement bandwidth ≥ signal`s occupied bandwidth
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1 ms
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1%

DTNC1410-04542 Report No.: DRTFCC1411-1530

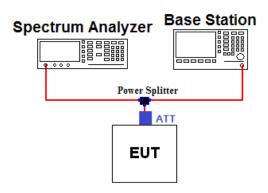
Alternate Procedure

KDB 971168 D01 v02r02 - Section 5.7.2

Use one of the measurement procedures of the peak power and record as P_{Pk} . Use one of the measurement procedures of the average power and record as P_{Avg} . Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm).

- Peak Power Measurement


- 1. Set the RBW ≥ OBW
- 2. Set VBW ≥ 3 × RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Ensure that the number of measurement points ≥ span/RBW.
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep ≥ 2 × span / RBW.
- 5. Sweep time = auto-couple.
- 6. Detector = RMS (power averaging).
- 7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.2	19.42	1850.2	19.67
826.4	19.41	1880.0	19.74
836.6	19.46	1909.8	19.76
846.6	19.48	-	-
848.8	19.50	-	-
-	-	-	-

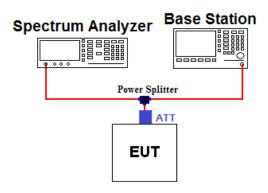
Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Cable A + Splitter +ATT+ Cable B

Test Procedure

KDB 971168 D01 v02r02 - Section 4.2

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.


Test setting

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = $1 \sim 5$ % of the expected OBW & VBW ≥ 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step 2 \sim 6 were repeated after changing the RBW such that it would be within 1 \sim 5 % of the 99 % occupied bandwidth observed in step 6.

DTNC1410-04542 Report No.: DRTFCC1411-1530

3.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
823.0	19.37	1850.0	19.66
824.0	19.42	1910.0	19.76
849.0	19.51	-	-
850.0	19.52	-	-
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Offset value = Cable A + Splitter +ATT+ Cable B

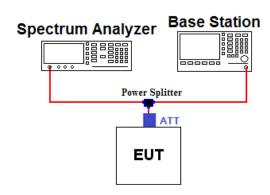
Test Procedure

KDB 971168 D01 v02r02 - Section 6.0

All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB

Test setting


- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW ≥ 1 % of the emission
- 4. VBW ≥ 3 X RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point ≥ 2 X span / RBW
- 8. The trace was allowed to stabilize

Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of **at least one percent** of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

DTNC1410-04542 Report No.: DRTFCC1411-1530

3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
5000.0	21.11	15000.0	22.27
10000.0	21.49	20000.0	23.53
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Offset value = Cable A + Splitter +ATT+ Cable B

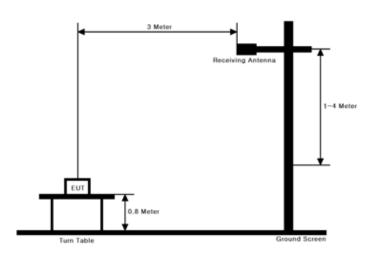
Test Procedure

KDB 971168 D01 v02r02 - Section 6.0

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB

Test setting


- RBW = 100 KHz or 1 MHz & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point ≥ 2 X span / RBW
- 5. The trace was allowed to stabilize

Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24.

DTNC1410-04542 Report No.: DRTFCC1411-1530

3.6 RADIATED SPURIOUS EMISSIONS

Test Set-up

Test Procedure

- ANSI/TIA-603-C-2004 Section 2.2.12
- KDB 971168 D01 v02r02 Section 5.8

These measurements were performed at 3 & 10m test site. The equipment under test is placed on a non-conductive table 0.8-meters above a turn table which is flush with the ground plane and 3 meters from the receive antenna.

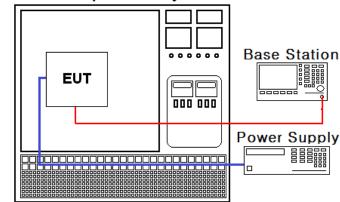
Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW ≥ 3 X RBW
- 2. Detector = Peak & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point ≥ 2 X span / RBW
- 5. The trace was allowed to stabilize

The receive antenna height and turn table rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated power measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.


This measurement was performed with the EUT oriented in 3 orthogonal axis.

DTNC1410-04542 Report No.: DRTFCC1411-1530

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Constant Temp & Humidity Chamber

Test Procedure

- ANSI/TIA-603-C-2004
- KDB 971168 D01 v02r02 Section 9.0

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24. The frequency stability of the transmitter shall be maintained within $\pm 0.000 25 \%$ ($\pm 2.5 \text{ ppm}$) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature.
 (25 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Cal.Date Next.Cal. Date Model S/N Type Manufacturer (yy/mm/dd) (yy/mm/dd) Spectrum Analyzer Agilent N9020A 14/09/15 15/09/15 MY50200867 17B 14/05/12 15/05/12 26030065WS Multimeter Fluke H.P 6633A DC Power Supply 14/02/27 15/02/27 3524A06634 Temp &Humid Test SJ Science SJ-TH-S50 14/10/21 15/10/21 SJ-TH-S50-130930 Chamber Power Splitter Anritsu K241B 14/10/21 15/10/21 1701099 SMAJK Attenuator(3dB) SMAJK-2-3 14/10/21 15/10/21 3 SMAJK-50-10 Attenuator(10dB) SMAJK. 14/10/21 15/10/21 2-50-10 15/03/03 Thermo hygrometer **BODYCOM** BJ5478 14/03/03 1209 Dipole Antenna Schwarzbeck VHA9103 13/10/24 15/10/24 2116 Dipole Antenna Schwarzbeck VHA9103 14/04/01 16/04/01 2117 Schwarzbeck **UHA9105** Dipole Antenna 13/10/24 15/10/24 2261 Dipole Antenna Schwarzbeck UHA9105 14/04/01 16/04/01 2262 VULB9160 14/07/31 16/07/31 9160-3362 Bilog Antenna Schwarzbeck LOOP Antenna Schwarzbeck FMZB1513 14/04/29 16/04/29 1513-128 **HORN ANT ETS** 3115 14/02/26 16/02/26 6419 **HORN ANT ETS** 3117 14/05/12 16/05/12 00140394 **HORN ANT** SAS-574 13/03/20 15/03/20 154 A.H.Systems **HORN ANT** SAS-574 A.H.Systems 13/05/27 15/05/27 155 Amplifier (22dB) H.P 8447E 14/01/07 15/01/07 2945A02865 Amplifier (30dB) 8449B 14/02/27 15/02/27 3008A00370 Agilent Amplifier **EMPOWER** BBS3Q7ELU 14/09/12 15/09/12 1020 High-pass filter Wainwright WHKX1.0 14/09/11 15/09/11 9 High-Pass Filter Wainwright WHNX2.1 14/09/11 15/09/11 8960 Series 10 Wireless GB43461134 Agilent E5515C 14/02/28 15/02/28 Comms Test Set Universal Radio Rohde Schwarz CMU200 14/02/28 15/02/28 106760 **Communication Tester** Vector Signal Generator Rohde Schwarz SMBV100A 14/01/08 15/01/08 255571 Rohde Schwarz 14/07/01 15/07/01 102341 Signal Generator SMF100A

DTNC1410-04542 Report No.: DRTFCC1411-1530

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 (5.4) RSS-133 (4.1)	Conducted Output Power	C ^{Note 2}
22.913(a) 24.232(c)	RSS-132 (5.4) [SRSP-503(5.1.3)] RSS-133 (6.4) [SRSP-510(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
22.917(a) 24.238(a) 2.1049	RSS-Gen (6.6)	Occupied Bandwidth	С
22.917(a) 24.238(a) 2.1051	RSS-132 (5.5) RSS-133 (6.5)	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	O
24.232(d)	RSS-132 (5.4) RSS-133 (6.4)	Peak to Average Ratio	O
22.917(a) 24.238(a) 2.1053	RSS-132 (5.5) RSS-133 (6.5)	Radiated Spurious and Harmonic Emissions	С
22.355 24.235 2.1055	RSS-132 (5.3) RSS-133 (6.3)	Frequency Stability	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: Refer to RF Exposure Report (Test Report_SAR)

The sample was tested according to the following specification:

ANSI/TIA/EIA-603-C-2004 and KDB 971168 D01 v02r02

DTNC1410-04542 Report No.: DRTFCC1411-1530

6. SAMPLE CALCULATION

A. Emission Designator

GPRS850 Emission Designator

Emission Designator = **244KGXW**GPRS OBW = 244.48 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA850 Emission Designator

Emission Designator = **4M15F9W**

WCDMA OBW = 4.1513 MHz

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

GPRS1900 Emission Designator

Emission Designator = **245KGXW**

GPRS OBW = 245.36 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

HSUPA850 Emission Designator

Emission Designator = **4M17F9W**

HSUPA OBW = 4.1685 MHz

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

7. TEST DATA

7.1 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.2 OCCUPIED BANDWIDTH

Band	Channel	Frequency	Test Result (kHz)
	128	824.2	244.48
GPRS850	190	836.6	241.52
	251	848.8	244.43
	512	1850.2	245.36
GPRS1900	661	1880.0	241.69
	810	1909.8	243.76
	4132	826.4	4129.70
WCDMA850	4183	836.6	4151.30
	4233	846.6	4138.50
	4132	826.4	4158.90
HSUPA850	4183	836.6	4168.50
	4233	846.6	4149.60

⁻ Plots of the EUT's Occupied Bandwidth are shown in Clause 8.2

7.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.4 BAND EDGE

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.5 EFFECTIVE RADIATED POWER

- GPRS850 data

CH.	EUT	Test mode GPRS 1TX									
(FREQ.) Position MHz (Axis)	Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Rated Voltage	Note.				
128 (824.2)	Х	Н	27.92	1.19	29.11	0.815	DC 3.8V	GPRS			
190 (836.6)	X	Н	28.42	1.19	29.61	0.914	DC 3.8V	GPRS			
251 (848.8)	Х	Н	27.70	1.19	28.89	0.774	DC 3.8V	GPRS			

- WCDMA850 data

CH.	EUT	Test mode 12.2 kbps RMC									
(FREQ.) Position	Position (Axis)	Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Rated Voltage	Note.			
4132 (826.4)	Υ	V	19.21	1.19	20.40	0.110	DC 3.8V	-			
4183 (836.6)	Y	V	20.14	1.19	21.33	0.136	DC 3.8V	-			
4233 (846.6)	Y	V	18.76	1.19	19.95	0.099	DC 3.8V	-			

- HSUPA850 data

CH.	EUT	Test mode subtest 1									
(FREQ.) MHz	(FREQ.) Position	Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Rated Voltage	Note.			
4132 (826.4)	Υ	V	18.92	1.19	20.11	0.103	DC 3.8V	-			
4183 (836.6)	Y	V	19.36	1.19	20.55	0.114	DC 3.8V	-			
4233 (846.6)	Y	V	18.12	1.19	19.31	0.085	DC 3.8V	-			

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DTNC1410-04542 Report No.: DRTFCC1411-1530

7.6 EQUIVALENT ISOTROPIC RADIATED POWER

- GPRS1900 data

CH	EUT	Test mode GPRS 1TX							
CH. (FREQ.) MHz	Position (Axis)	Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Rated Voltage	Note.	
512 (1850.2)	Y	V	20.78	8.89	29.67	0.927	DC 3.8V	GPRS	
661 (1880.0)	Y	V	20.66	8.92	29.58	0.908	DC 3.8V	GPRS	
810 (1909.8)	Y	V	20.56	8.96	29.52	0.895	DC 3.8V	GPRS	

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DTNC1410-04542 Report No.: DRTFCC1411-1530

7.7 RADIATED SPURIOUS EMISSIONS

7.7.1 RADIATED SPURIOUS EMISSIONS (GPRS850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
128	1648.21	V	Η	-60.99	6.50	-54.49	83.60	
(0.815 W)	2472.74	V	Н	-60.40	7.53	-52.87	81.98	42.11
(0.015 00)	3296.76	V	Н	-60.19	7.79	-52.40	81.51	
100	1673.21	V	Н	-58.62	6.53	-52.09	81.70	
190	2509.92	V	Н	-50.94	7.57	-43.37	72.98	42.61
(0.914 W)	3346.55	V	Н	-59.12	7.80	-51.32	80.93	
254	1697.71	V	Н	-46.87	6.56	-40.31	69.20	
251	2546.60	V	Н	-31.70	7.59	-24.11	53.00	41.89
(0.774 W)	3394.80	V	Н	-60.55	7.81	-52.74	81.63	

⁻ Limit Calculation= 43 + 10 log₁₀(ERP [W]) [dBc]

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

DTNC1410-04542 Report No.: DRTFCC1411-1530

7.7.2 RADIATED SPURIOUS EMISSIONS (WCDMA850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	1651.02	Z	V	-59.26	6.51	-52.75	73.15	33.40
4132 (0.110 W)	2476.36	Z	V	-52.27	7.54	-44.73	65.13	
(01110111)	3309.84	Z	V	-58.21	7.80	-50.41	70.81	
	1671.22	Z	V	-57.47	6.53	-50.94	72.27	34.33
4183 (0.136 W)	2512.76	Z	V	-51.88	7.57	-44.31	65.64	
(01100 11)	3350.30	Z	V	-58.68	7.80	-50.88	72.21	
4233 (0.099 W)	1695.36	Z	V	-58.81	6.56	-52.25	72.20	
	2536.68	Z	V	-53.75	7.58	-46.17	66.12	32.95
(3.330 11)	3382.26	Z	V	-59.41	7.81	-51.60	71.55	

⁻ Limit Calculation= 43 + 10 log₁₀(ERP [W]) [dBc]

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

DTNC1410-04542 Report No.: DRTFCC1411-1530

7.7.3 RADIATED SPURIOUS EMISSIONS (HSUPA850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	1651.08	Z	Н	-62.08	6.51	-55.57	75.68	33.11
4132 (0.103 W)	2476.33	Z	Η	-55.47	7.54	-47.93	68.04	
(01.001.)	3309.86	Z	Н	-59.64	7.80	-51.84	71.95	
	1671.26	Z	Н	-61.33	6.53	-54.80	75.35	33.55
4183 (0.114 W)	2512.79	Z	Н	-54.65	7.57	-47.08	67.63	
(0.11.11)	3350.37	Z	Н	-57.59	7.80	-49.79	70.34	
	1695.39	Z	Н	-62.57	6.56	-56.01	75.32	
4233 (0.085W)	2536.66	Z	Н	-53.97	7.58	-46.39	65.70	32.31
	3382.42	Z	Н	-61.51	7.81	-53.70	73.01	

⁻ Limit Calculation= 43 + 10 log₁₀(ERP [W]) [dBc]

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

DTNC1410-04542 Report No.: DRTFCC1411-1530

7.7.4 RADIATED SPURIOUS EMISSIONS (GPRS1900)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	3700.47	Z	Η	-60.07	9.78	-50.29	79.96	42.67
512 (0.927 W)	5550.49	Z	Ι	-53.06	11.04	-42.02	71.69	
(616_111)	-	-		-	-	-	-	
	3759.86	Z	Н	-61.14	9.72	-51.42	81.00	42.58
661 (0.908 W)	5639.47	Z	Н	-57.29	11.14	-46.15	75.73	
(0.000 11)	-	-	-	-	-	-	-	
810 (0.895 W)	3819.47	Z	Н	-61.19	9.66	-51.53	81.05	
	5729.33	Z	Н	-55.52	11.23	-44.29	73.81	42.52
	-	-	-	-	-	-	-	

⁻ Limit Calculation = 43 + 10 log₁₀(EIRP [W]) [dBc]

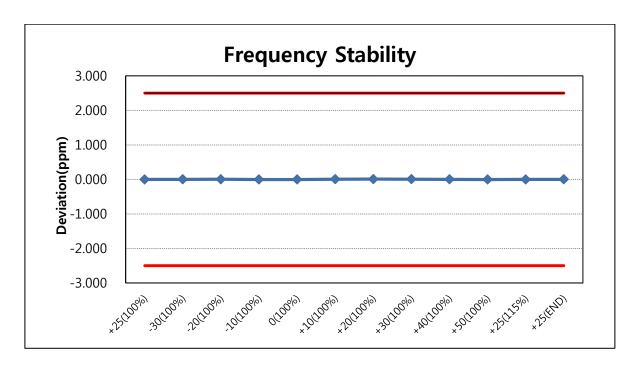
NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and HSUPA mode with 12.2 kbps + HSPA and subtest 1 and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

7.8.1 FREQUENCY STABILITY (GPRS850)


OPERATING FREQUENCY : 836,600,009 Hz

CHANNEL: 190(Mid)

REFERENCE VOLTAGE : 3.800 V DC

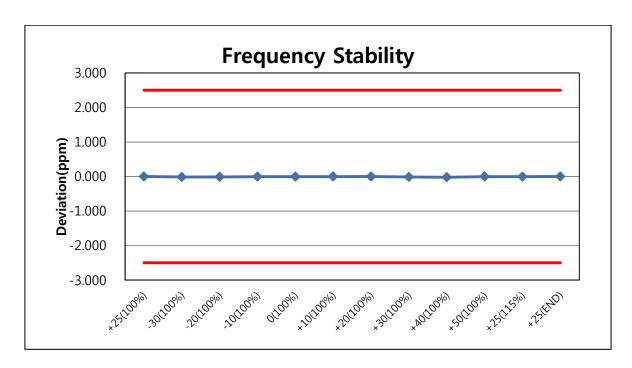
DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100%	3.800	+25(Ref)	836,600,009	0.000	0.00000000	
100%		-30	836,600,011	0.002	0.00000024	
100%		-20	836,600,013	0.005	0.00000048	
100%		-10	836,600,007	-0.002	-0.00000024	
100%		0	836,600,008	-0.001	-0.00000012	
100%		+10	836,600,016	0.008	0.00000084	
100%		+20	836,600,017	0.010	0.00000096	
100%		+30	836,600,016	0.008	0.00000084	
100%		+40	836,600,012	0.004	0.00000036	
100%		+50	836,600,008	-0.001	-0.00000012	
115%	4.370	+25	836,600,009	0.000	0.00000000	
BATT.ENDPOINT	2.900	+25	836,600,011	0.002	0.00000024	

 DTNC1410-04542
 FCCID:
 ZNFL01G

 Report No.:
 DRTFCC1411-1530

7.8.2 FREQUENCY STABILITY (WCDMA850)


OPERATING FREQUENCY : 836,600,007 Hz

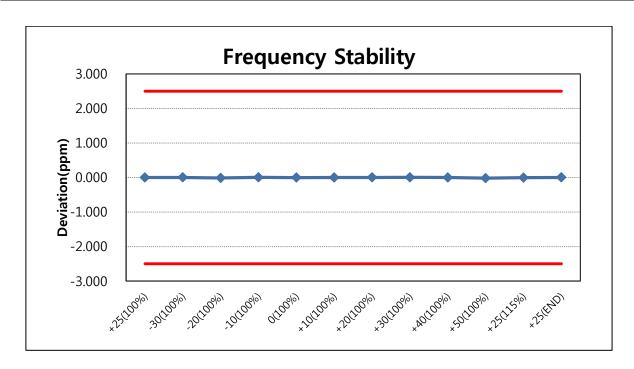
CHANNEL : $\overline{4183}$ (Mid)

REFERENCE VOLTAGE : 3.800 V DC

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100%	3.800	+25(Ref)	836,600,007	0.000	0.00000000	
100%		-30	836,599,995	-0.014	-0.00000143	
100%		-20	836,599,997	-0.012	-0.00000120	
100%		-10	836,600,004	-0.004	-0.00000036	
100%		0	836,600,003	-0.005	-0.00000048	
100%		+10	836,600,006	-0.001	-0.00000012	
100%		+20	836,600,008	0.001	0.00000012	
100%		+30	836,599,996	-0.013	-0.00000131	
100%		+40	836,599,990	-0.020	-0.00000203	
100%		+50	836,600,005	-0.002	-0.00000024	
115%	4.370	+25	836,600,003	-0.005	-0.00000048	
BATT.ENDPOINT	2.900	+25	836,600,007	0.000	0.00000000	

7.8.3 FREQUENCY STABILITY (HSUPA850)


OPERATING FREQUENCY : 836,600,005 Hz

CHANNEL : $\overline{4183}$ (Mid)

REFERENCE VOLTAGE : 3.800 V DC

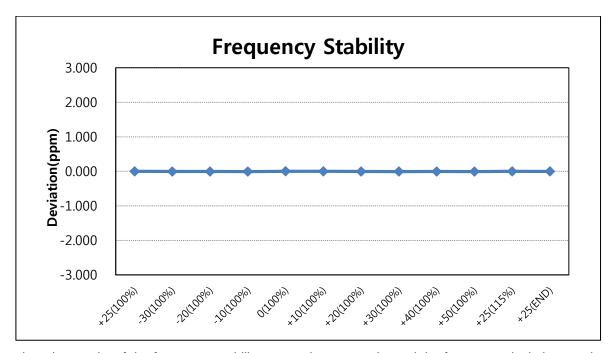
DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100%	3.800	+25(Ref)	836,600,005	0.000	0.00000000	
100%		-30	836,600,007	0.002	0.00000024	
100%		-20	836,599,994	-0.013	-0.00000131	
100%		-10	836,600,010	0.006	0.00000060	
100%		0	836,600,004	-0.001	-0.00000012	
100%		+10	836,600,006	0.001	0.00000012	
100%		+20	836,600,007	0.002	0.00000024	
100%		+30	836,600,009	0.005	0.00000048	
100%		+40	836,600,005	0.000	0.00000000	
100%		+50	836,599,989	-0.019	-0.00000191	
115%	4.370	+25	836,600,002	-0.004	-0.00000036	
BATT.ENDPOINT	2.900	+25	836,600,008	0.004	0.0000036	

7.8.4 FREQUENCY STABILITY (GPRS1900)

OPERATING FREQUENCY : 1,880,000,033 Hz

CHANNEL: 661(Mid)

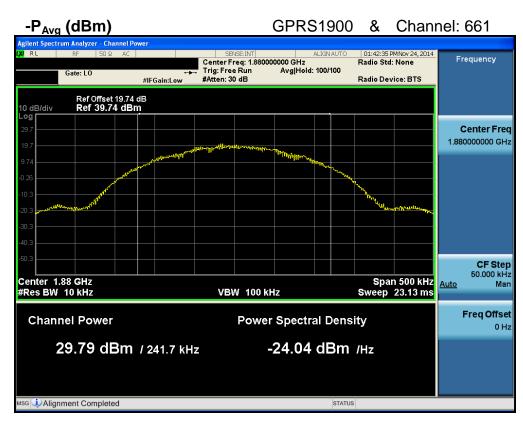

REFERENCE VOLTAGE : 3.800 V DC

LIMIT : The frequency stability shall be sufficient to ensure that the

fundamental emission stays wthin the authorized frequency

block.

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100%	3.800	+25(Ref)	1,880,000,033	0.000	0.00000000	
100%		-30	1,880,000,024	-0.005	-0.00000048	
100%		-20	1,880,000,026	-0.004	-0.00000037	
100%		-10	1,880,000,019	-0.007	-0.00000074	
100%		0	1,880,000,036	0.002	0.00000016	
100%		+10	1,880,000,032	-0.001	-0.00000005	
100%		+20	1,880,000,024	-0.005	-0.00000048	
100%		+30	1,880,000,022	-0.006	-0.00000059	
100%		+40	1,880,000,025	-0.004	-0.00000043	
100%		+50	1,880,000,019	-0.007	-0.00000074	
115%	4.370	+25	1,880,000,033	0.000	0.00000000	
BATT.ENDPOINT	2.900	+25	1,880,000,031	-0.001	-0.00000011	


Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. as such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

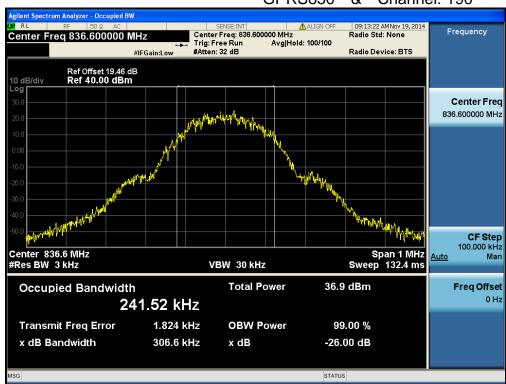
DTNC1410-04542 Report No.: DRTFCC1411-1530

8. TEST PLOTS

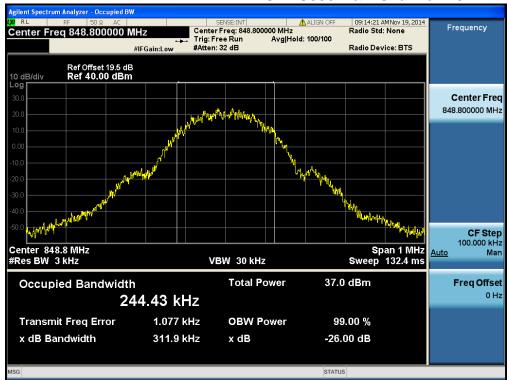
8.1 Peak to Average Ratio

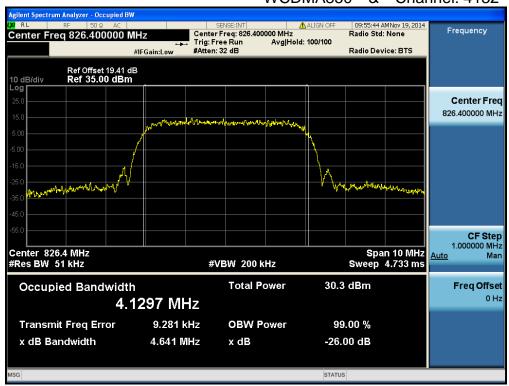
-P_{Pk} (dBm) GPRS1900 & Channel: 661 #Avg Type: Log-Pwr Frequency Center Freq 1.880000000 GHz Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr2 1.880 000 GHz 30.16 dBm Center Frea 1.880000000 GHz Start Freq 1.877500000 GHz Stop Freq 1.882500000 GHz Center 1.880000 GHz Span 5.000 MHz CF Step 500.000 kHz Man #Res BW 1.0 MHz **#VBW** 3.0 MHz Sweep 1.000 ms (1001 pts) 1.880 050 GHz 1.880 000 GHz Freq Offset

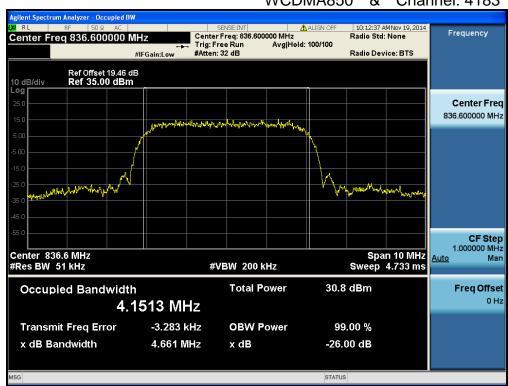
PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 30.16dBm - 29.79dBm = 0.37 dB

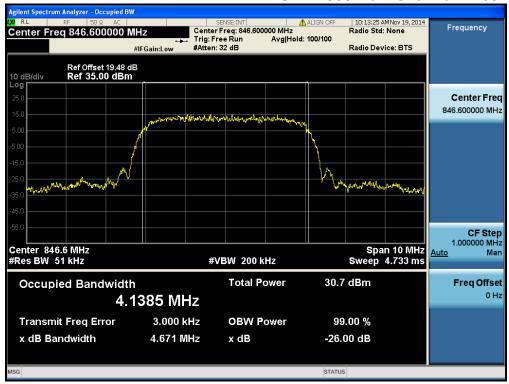

TRF-RF-210(04)140901 Page 29 / 52

8.2 Occupied Bandwidth (99 % Bandwidth)


GPRS850 & Channel: 128


GPRS850 & Channel: 190

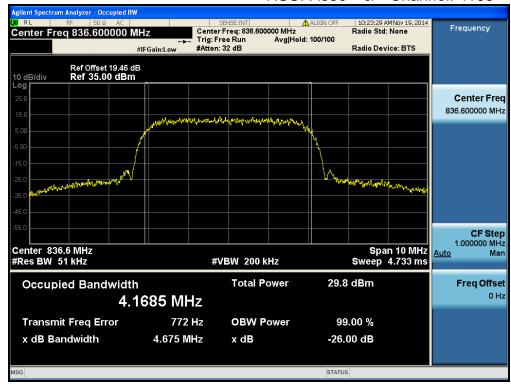

GPRS850 & Channel: 251


WCDMA850 & Channel: 4132

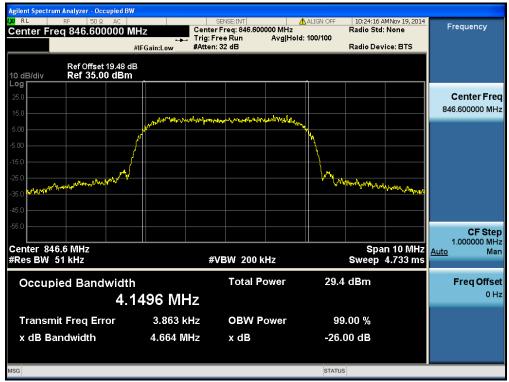
WCDMA850 & Channel: 4183

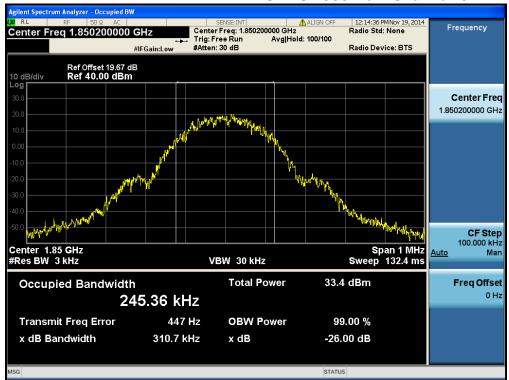


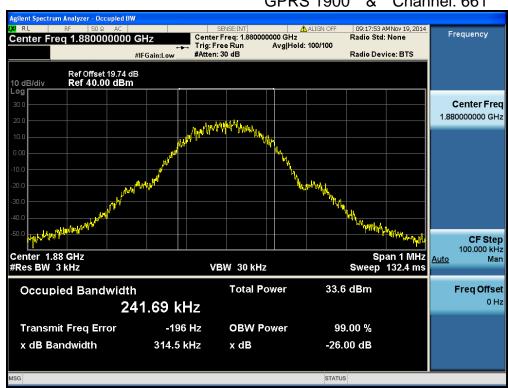
WCDMA850 & Channel: 4233



Report No.: DRTFCC1411-1530

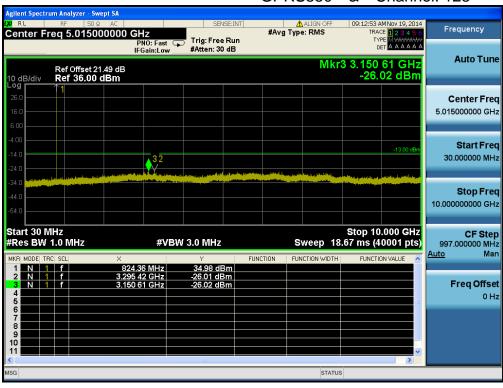

HSUPA850 & Channel: 4132


HSUPA850 & Channel: 4183

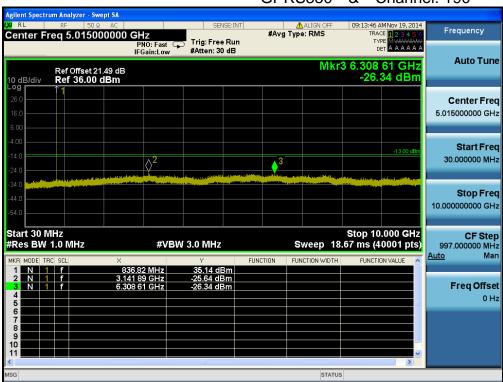

HSUPA850 & Channel: 4233


GPRS 1900 & Channel: 512

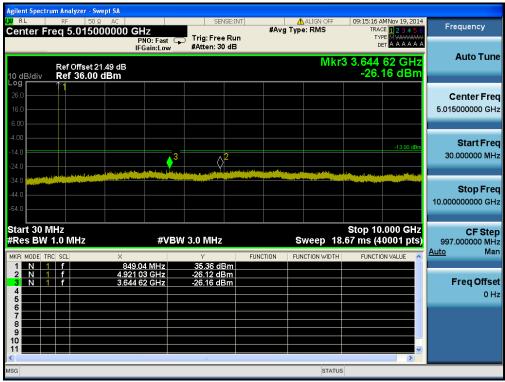
GPRS 1900 & Channel: 661

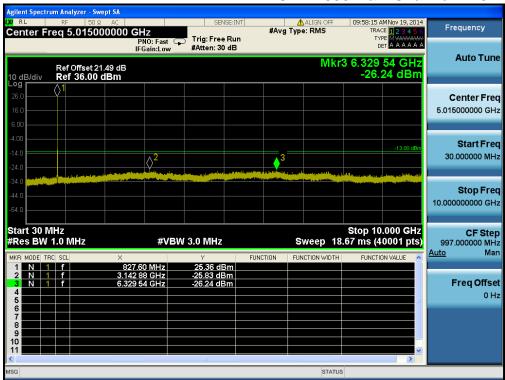


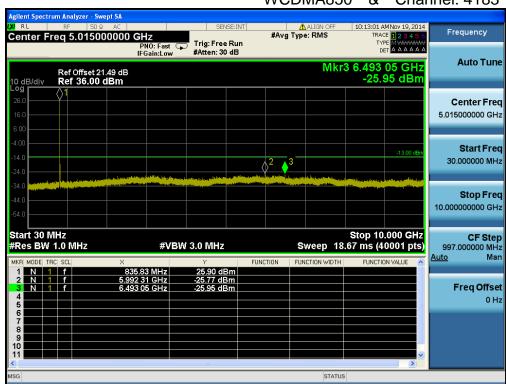
GPRS 1900 & Channel: 810

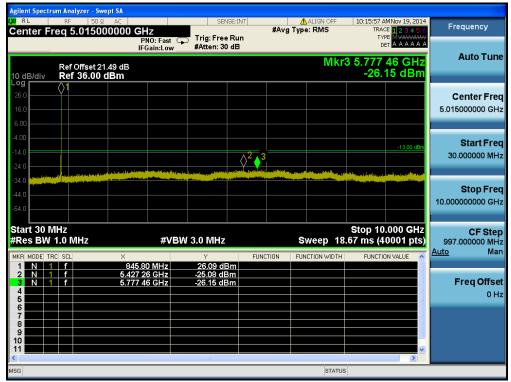


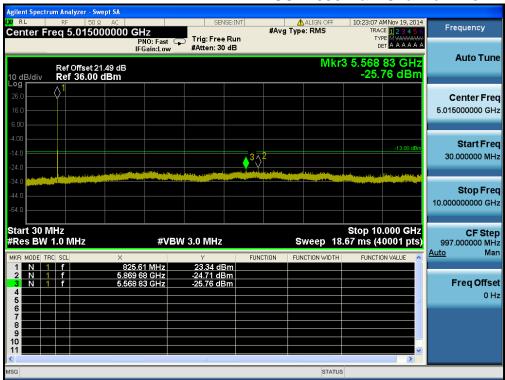
8.3 Spurious Emissions at Antenna Terminal

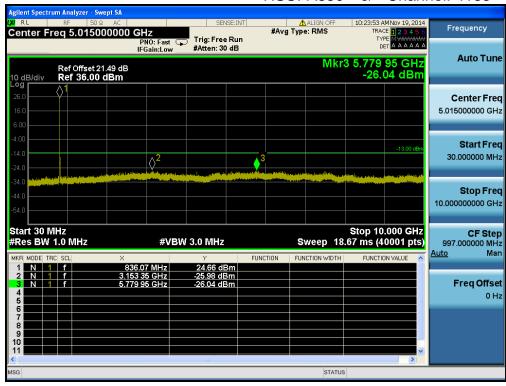

GPRS850 & Channel: 128

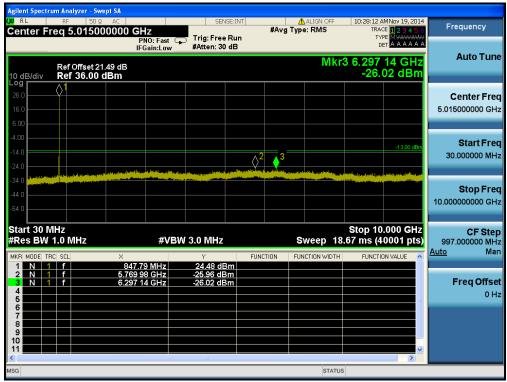

GPRS850 & Channel: 190

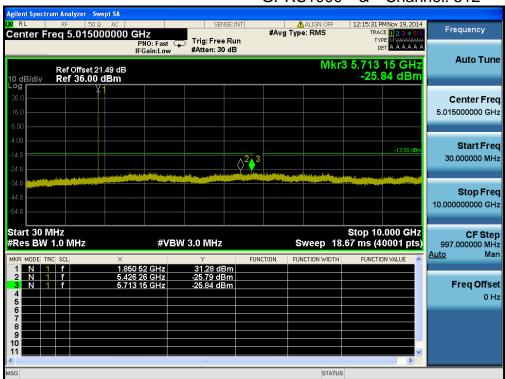

GPRS850 & Channel: 251

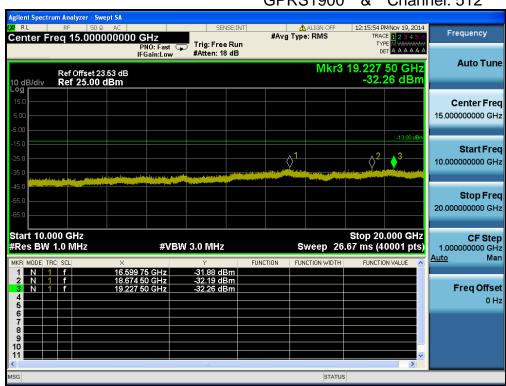

WCDMA850 & Channel: 4132

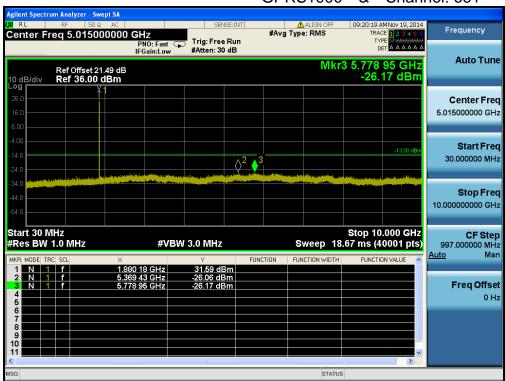

WCDMA850 & Channel: 4183

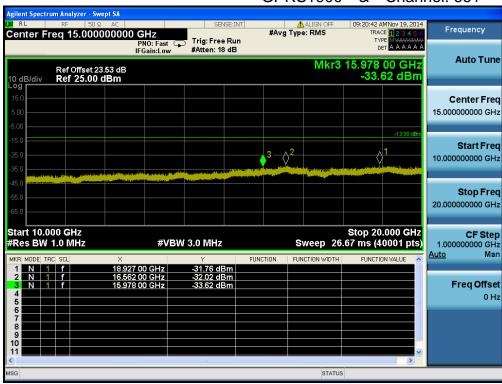


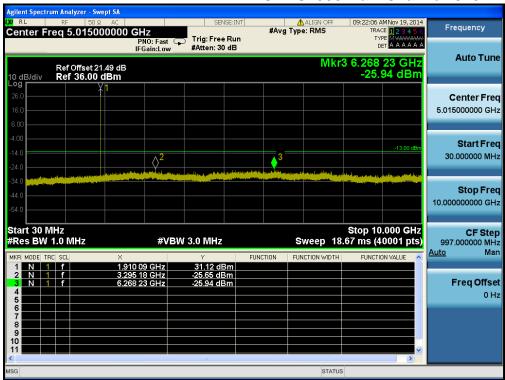

WCDMA850 & Channel: 4233

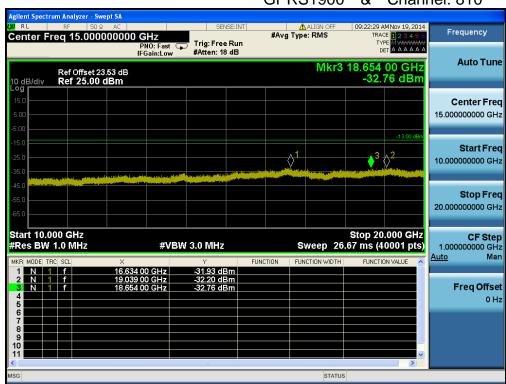

HSUPA850 & Channel: 4132



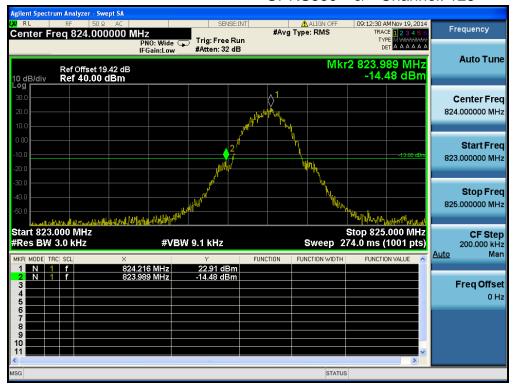

GPRS1900 & Channel: 512


GPRS1900 & Channel: 512

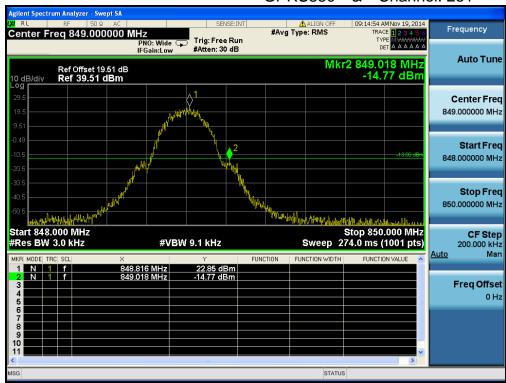

GPRS1900 Channel: 661


GPRS1900 & Channel: 661

GPRS1900 & Channel: 810

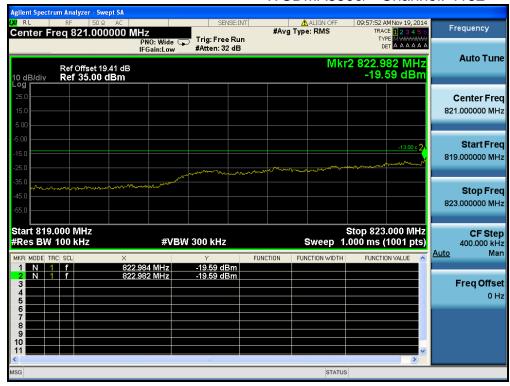


GPRS1900 & Channel: 810

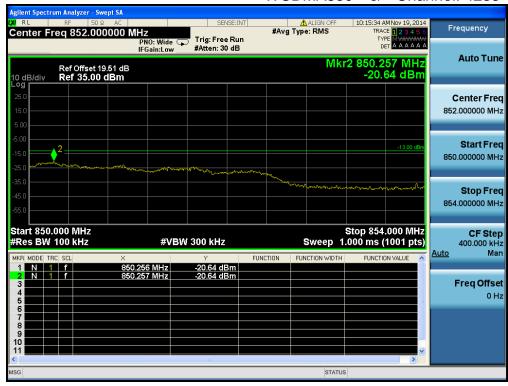


8.4 Band Edge

GPRS850 & Channel: 128

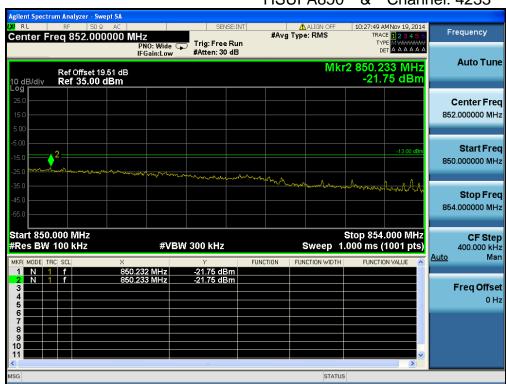

GPRS850 & Channel: 251

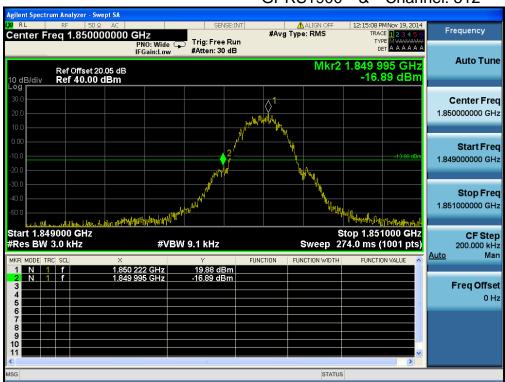
WCDMA850& Channel: 4132


WCDMA850& Channel: 4132

WCDMA850 & Channel: 4233

WCDMA850 & Channel: 4233


HSUPA850 & Channel: 4132



HSUPA850 & Channel: 4233

GPRS1900 & Channel: 512

GPRS1900 & Channel: 810

