

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC/IC BT REPORT

FCC/IC Certification

Applicant Name:

LG Electronics MobileComm U.S.A., Inc.

Address:

1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NJ

07632

Date of Issue:

February 26, 2016

Test Site/Location:

HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majang-myeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1602-F019-1

HCT FRN: 0005866421

IC Recognition No.: 5944A-5

FCC ID:

ZNFKBB710

IC:

2703C-KBB710

APPLICANT:

LG Electronics MobileComm U.S.A., Inc.

FCC/IC Model(s):

KBB-710

EUT Type:

Bluetooth Keyboard

Max. RF Output Power:

3.696 dBm (2.342 mW)

Frequency Range:

2402 MHz - 2480 MHz (Bluetooth)

Modulation type

GFSK(Normal)

FCC Classification:

FCC Part 15 Spread Spectrum Transmitter

FCC Rule Part(s):

Part 15 subpart C 15.247

IC Rule Part(s):

RSS-247 Issue 1 (May 2015), RSS-GEN Issue 4(November 2014)

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Kyung Soo Kang

Test Engineer of RF Team

Approved by : Sang Jun Lee

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 2 of 55

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1602-F019	February 17, 2016	- First Approval Report
HCT-R-1602-F019-1	February 26, 2016	- Revised typo in Section4(C64.5 ⇒ C63.5).

Report No.: HCT-R-1602-F019-1

Table of Contents

1.	GENERAL INFORMATION				
2.	EUT DE	SCRIPTION	4		
3.	TEST M	IETHODOLOGY	5		
	3.1	EUT CONFIGURATION	5		
	3.2	EUT EXERCISE	5		
	3.3	GENERAL TEST PROCEDURES	5		
	3.4	DESCRIPTION OF TEST MODES	6		
4.	INSTRU	IMENT CALIBRATION	6		
5.	FACILIT	TIES AND ACCREDITATIONS	6		
	5.1	FACILITIES	6		
	5.2	EQUIPMENT	6		
6.	ANTEN	NA REQUIREMENTS	6		
7.	SUMMA	ARY OF TEST RESULTS	7		
	7.1 FCC	Part	7		
	7.2 IC P	art	8		
8.	TEST R	ESULT	9		
	8.1	PEAK POWER	9		
	8.2	BAND EDGES	13		
	8.3	FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	17		
	8.4	NUMBER OF HOPPING FREQUENCY	22		
	8.5	TIME OF OCCUPANCY (DWELL TIME)	24		
	8.6	SPURIOUS EMISSIONS	28		
	8.6.	.1 CONDUCTED SPURIOUS EMISSIONS	28		
	8.6.	2 RADIATED SPURIOUS EMISSIONS	37		
	8.6.	.3 RECEIVER SPURIOUS EMISSIONS	49		
	8.6.	.4 RADIATED RESTRICTED BAND EDGES	50		
	8.7	POWERLINE CONDUCTED EMISSIONS	53		
9.	LIST OF	TEST EQUIPMENT	54		
	9.1	LIST OF TEST EQUIPMENT(Conducted Test)	54		
	9.2	LIST OF TEST EQUIPMENT(Radiated Test)	55		

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 4 of 55

1. GENERAL INFORMATION

Applicant: LG Electronics MobileComm U.S.A.,Inc.

Address: 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NJ 07632

FCC ID: ZNFKBB710

IC: 2703C-KBB710

EUT Type: Bluetooth keyboard

FCC/IC Model name(s): KBB-710

Date(s) of Tests: February 01, 2016 ~ February 24, 2015

HCT Co., Ltd. Place of Tests:

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

(IC Recognition No.: 5944A-5)

2. EUT DESCRIPTION

FCC/IC Model Name	KBB-710	
EUT Type	Bluetooth keyboard	
Power Supply	DC 1.5 V	
Frequency Range	2402 MHz - 2480 MHz (Bluetooth)	
Transmit Power	3.696 dBm (2.342 mW)	
BT Operating Mode	Normal, AFH	
Modulation Type	GFSK(Normal)	
Modulation Technique	FHSS	
Number of Channels	79Channels, Minimum 20 Channels(AFH)	
	Manufacturer: Hitachi-LG Data Storage	
Antenna Specification	Antenna type: Internal ANTENNA	
	Peak Gain : -2.43 dBi	

* 15.247 / RSS-247 Requirements for Bluetooth transmitter

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

F-TP22-03 (Rev.00) 4 / 55 HCT CO.,LTD FCC ID: ZNFKBB710/IC: 2703C-KBB710

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 5 of 55

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) is used in the measurement of the LG Electronics MobileComm U.S.A., Inc.Bluetooth keyboard FCC ID: ZNFKBB710, IC: 2703C-KBB710

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C / the RSS-GEN issue 4, RSS-247 issue 1.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

Conducted Antenna Terminal

See Section from 7.8.2 to 7.8.8.(ANSI 63.10-2013)

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 6 of 55

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

All equipments(spectrum, antenna, accessory, etc.) for measurement is calibrated in accordance with the requirements of C63.5(Version: 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203 / RSS-GEN(Issue 4) Section 8.3:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

6 / 55

F-TP22-03 (Rev.00) FCC ID: ZNFKBB710/IC: 2703C-KBB710

^{*} The antennas of this E.U.T are permanently attached.

^{*}The E.U.T Complies with the requirement of §15.203 / RSS-GEN

7. SUMMARY OF TEST RESULTS

7.1 FCC Part

Report No.: HCT-R-1602-F019-1

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)(ii) or (iii)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 1 W if ≥ 75 non-overlapping hopping channels used < 0.125 W if < 75 non-overlapping hopping channels used		PASS
Carrier Frequency Separation	§15.247(a)(1)	>25 kHz or >2/3 of the 20dB BW	CONDUCTED	PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii)	≥ 15		PASS
Time of Occupancy	§15.247(a)(1)(iii)	<400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge(Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.7		PASS
\$15.247(d), 15.205, Radiated Spurious Emissions 15.209		cf. Section 8.6.2	DADIATED	PASS
Radiated Restricted Band Edge	c		RADIATED	PASS

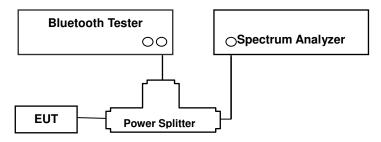
Report No.: HCT-R-1602-F019-1

7.2 IC Part

Test Description	IC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	RSS-247, 5.1.1	NA		PASS
99 % Bandwidth	RSS-GEN, 6.6	NA		PASS
Conducted Maximum Peak Output Power	RSS-247, 5.4.2	< 1 W if the hopset uses 75 or more hopping channels < 0.125 W if the hopset uses less than 75 hopping channels		PASS
Carrier Frequency Separation	RSS-247, 5.1.2	> 25 kHz or > 2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	RSS-247, 5.1.4	≥ 15	CONDUCTED	PASS
Time of Occupancy	RSS-247, 5.1.4	< 0.4 s		PASS
Conducted Spurious Emissions	RSS-247, 5.5	< 20 dB for all out-of band emissions		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	< 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	RSS-GEN, 8.8	RSS-GEN section 8.8 table 3		PASS
Radiated Spurious Emissions	RSS-GEN, 8.9	RSS-GEN section 8.9 table 4, 5		PASS
Radiated Restricted Band Edge	RSS-GEN, 8.10	RSS-GEN section 8.10 table 6	RADIATED	PASS
Receiver Spurious Emissions	RSS-GEN, 5 RSS-GEN, 7.1.2	RSS-GEN section 7.1.2 table 2		PASS

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 9 of 55

8. TEST RESULT


8.1 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW ≥ RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

SAMPLE CALCULATION

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea) = 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

Note:

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss

F-TP22-03 (Rev.00) 9 / 55 FCC ID: ZNFKBB710/IC: 2703C-KBB710

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 10 of 55

3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.36 dB at 2402 MHz and is 7.44 dB at 2480 MHz.So, 7.4 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result

TEST RESULTS

No non-compliance noted

Test Data

Channel	Frequency	Output Power (GFSK)		Limit	Result
	(MHz)	(dBm) (mW)		(mW)	
Low	2402	3.696	2.342		PASS
Mid	2441	3.111	2.047	125	PASS
High	2480	2.009	1.588		PASS

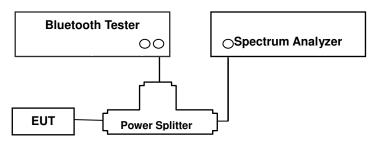
Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 11 of 55

Test Plots (GFSK) Peak Power (Low-CH)

Test Plots (GFSK) Peak Power (Mid-CH)

Report No.: HCT-R-1602-F019-1 Model: KBB-710

Test Plots (GFSK) Peak Power (High-CH)


Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 13 of 55

8.2 BAND EDGES

LIMIT

According to §15.247(d) / RSS-247 5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013)

- Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz6) VBW: 300 kHz7) Detector: Peak8) Trace: Max hold

F-TP22-03 (Rev.00) FCC ID: ZNFKBB710/IC: 2703C-KBB710

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 14 of 55

TEST RESULTS

See attached.

Note:

- 1. The results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.36 dB at 2402 MHz and is 7.44 dB at 2480 MHz. So, 7.4 dB is offset. And the offset gap in the 2.4 GHz range do not affect the band edge measurement final result.

Test Data

- Without hopping

Outside Frequency	GFSK	Limit	Margin		
Band	(dB)	(dBc)	GFSK	Result	
Ballu	(dB) (dBc)		(dBc)		
Lower	49.995	20	29.995	PASS	
Upper	48.543	20	28.543	PASS	

- With hopping

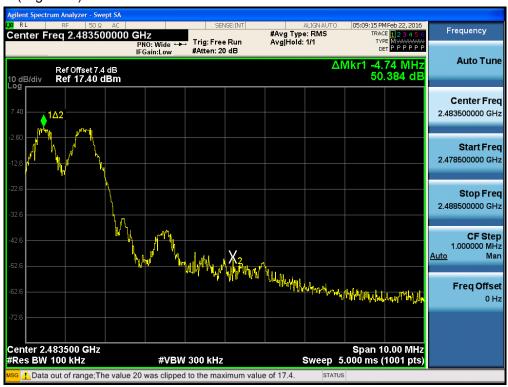
Outside Frequency	GFSK	Limit	Margin	
Band	(dB)	(dBc)	GFSK	Result
Dana	(ub)	(dBC)	(dBc)	
Lower	50.915	20	30.915	PASS
Upper	50.384	20	30.384	PASS

F-TP22-03 (Rev.00) FCC ID: ZNFKBB710/IC: 2703C-KBB710

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 15 of 55

Test Plots without hopping (GFSK) Band Edges (Low-CH)

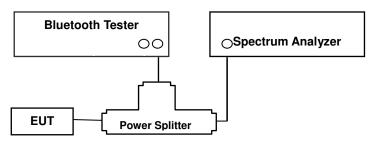
Test Plots without hopping (GFSK) Band Edges (High-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 16 of 55

Test Plots with hopping (GFSK) Band Edges (Low-CH)

Test Plots with hopping (GFSK) Band Edges (High-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 17 of 55

8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW) LIMIT

According to §15.247(a)(1) / RSS-247 5.1.2, Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

TEST PROCEDURE

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013)

- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

TEST RESULTS

No non-compliance noted

F-TP22-03 (Rev.00) FCC ID: ZNFKBB710/IC: 2703C-KBB710

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 18 of 55

Test Data

Channel Separation (kHz)	20dB Band	width (kHz)	Limit	Result
GFSK	Channel	GFSK	(kHz)	
	Low CH	941.6	>25 or	
998	Middle CH	942.1	>2/3 of the	Pass
	High CH	942.7	20dB BW	

Occupied Bandwidth (99% BW)

99% BW (kHz)			
Channel	GFSK		
Low CH	897.66		
Middle CH	901.85		
High CH	898.46		

Note: We can not know what use channel in AFH mode. So, we can not test in AFH mode. Also, if the test performs some channel in AFH mode, the test result is not different with normal mode.

Report No.: HCT-R-1602-F019-1 Model: KBB-710

Test Plots (GFSK)

Channel Separation

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 20 of 55

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

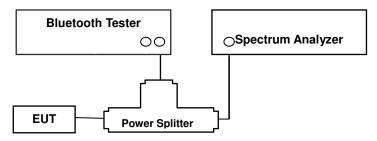
Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

Report No.: HCT-R-1602-F019-1 Model: KBB-710

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)


Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 22 of 55

8.4 NUMBER OF HOPPING FREQUENCY

LIMIT

According to 15.247(a)(1)(iii) / RSS-247 5.1.4, Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

Test Configuration

TEST PROCEDURE

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.

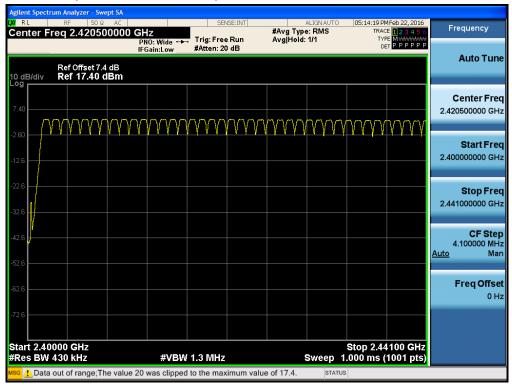
TEST RESULTS

No non-compliance noted

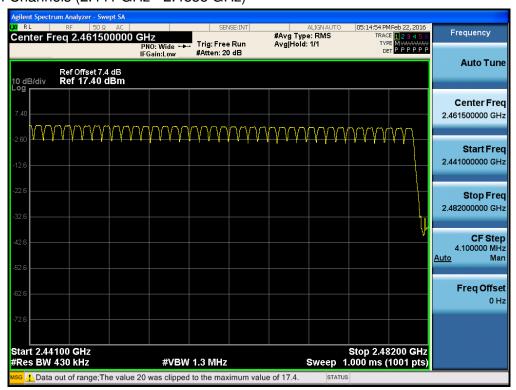
Test Data

Result (No. of CH)	l imais	Dooult	
GFSK	Limit	Result	
79	>15	Pass	

Note: In case of AFH mode, minimum number of hopping channels is 20.


F-TP22-03 (Rev.00) FCC ID: ZNFKBB710/IC: 2703C-KBB710

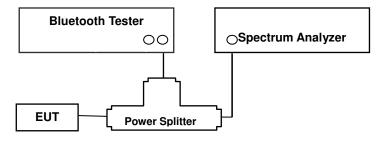
Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 23 of 55


Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)


Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 24 of 55

8.5 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(iii) / RSS-247 5.1.4, Frequency hopping systems operating in the 2400 MHz ~ 2483.5MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off.

EUT was set to transmit the longest packet type (DH5)

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013)

- 1) Span: Zero span, centered on a hopping channel
- 2) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Normal Mode / EDR Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.925 * (1600/6)/79 * 31.6 = 312.00 (ms)

AFH Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.925 * (800/6)/20 * 8.0 = 156.00 (ms)

F-TP22-03 (Rev.00) FCC ID: ZNFKBB710/IC: 2703C-KBB710

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 25 of 55

Note:

A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance of DH5 is 2.892 ms.

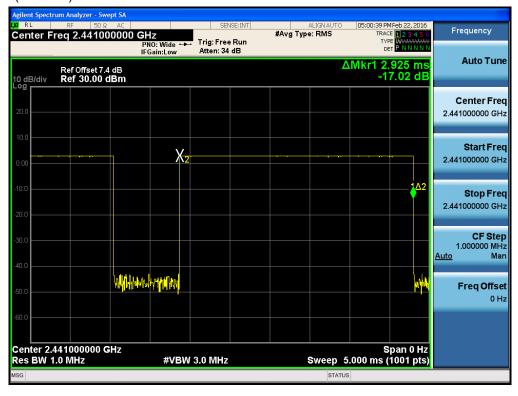
Dwell time = Tx-time * 106.7

TEST RESULTS

See the table.

	Channel	GFSK
Pulse Time (ms)	Low	2.925
	Mid	2.925
	High	2.925

	Channel	GFSK	Period Time (s)	Limit (ms)	Result
Total of Dwell (ms)	Low	312.00	31.6	400	PASS
	Mid	312.00	31.6		PASS
	High	312.00	31.6		PASS


25 / 55

Report No.: HCT-R-1602-F019-1 Model: KBB-710

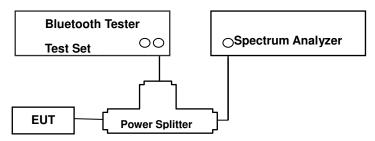
Test Plots (GFSK) Dwell Time (Low-CH)

Test Plots (GFSK) Dwell Time (Mid-CH)

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 27 of 55

Test Plots (GFSK) Dwell Time (High-CH)

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 28 of 55


8.6 SPURIOUS EMISSIONS

8.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Requirements and limit, §15.247(d) / RSS-247(Issue 1) Section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section / Section 5.4.4, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) / RSS-Gen is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Limit: 20 dBc
Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013)

1) Span: 30 MHz to 10 times the operating frequency in GHz.

RBW: 100 kHz
 VBW: 300 kHz
 Sweep: Coupled
 Detector: Peak

Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

F-TP22-03 (Rev.00)
FCC ID: ZNFKBB710/IC: 2703C-KBB710

28 / 55

HCT CO.,LTD

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 29 of 55

TEST RESULTS

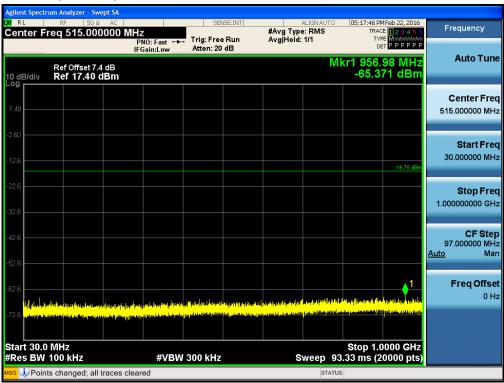
No non-compliance noted.

Note: In order to simplify the report, attached plots were only the worst case channel and data rate.

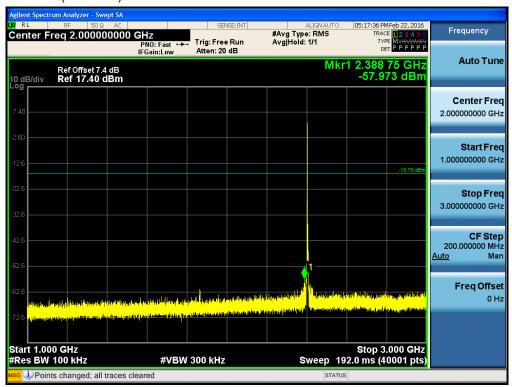
FACTORS FOR FREQUENCY

FACTORS FOR FREQUENCY					
Factor(dB)					
7.18					
6.35					
7.04					
6.58					
6.26					
5.95					
6.17					
6.34					
6.72					
7.08					
7.38					
7.78					
7.36					
7.44					
7.88					
8.95					
9.57					
6.68					
9.99					
8.34					
9.61					
10.47					
8.96					
9.73					
8.84					
9.50					
11.54					
8.14					
11.73					
9.71					
10.40					
11.69					
10.72					
12.31					
9.85					
12.52					
11.07					
10.50					

Note: 1. '*' is fundamental frequency range.

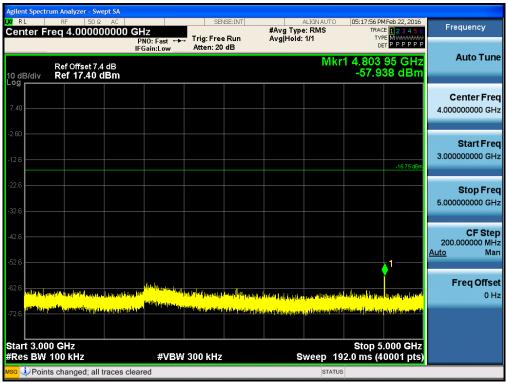

2. Factor = Cable loss + Splitter loss

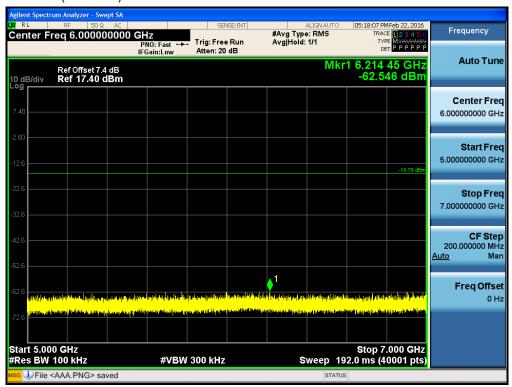
HCT CO.,LTD



Report No.: HCT-R-1602-F019-1 Model: KBB-710

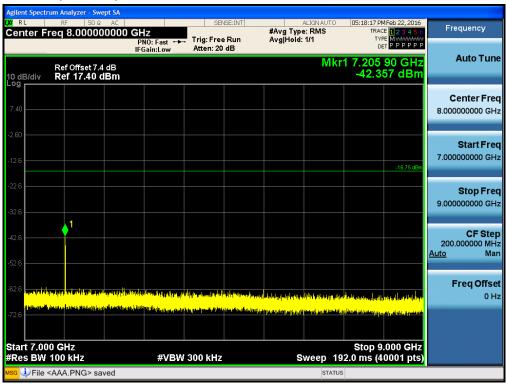
Test Plots (GFSK)- 30 MHz - 1 GHz Spurious Emission (Low-CH)

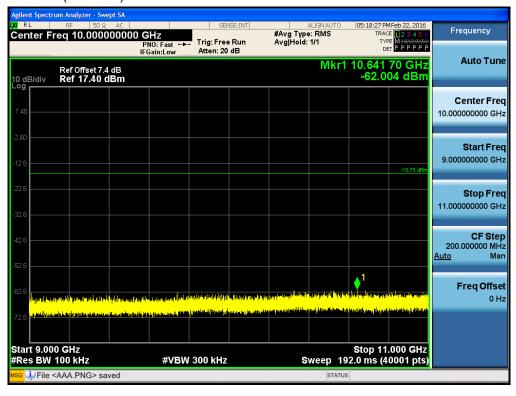

Test Plots (GFSK)- 1 GHz - 3 GHz Spurious Emission (Low-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 31 of 55

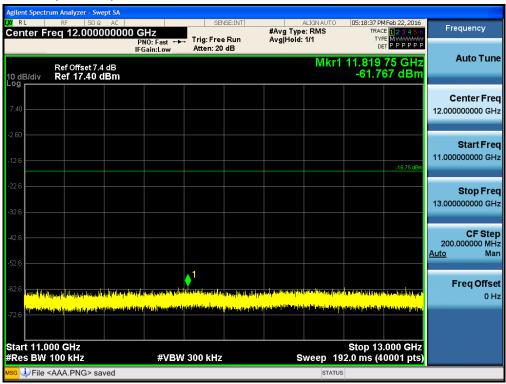
Test Plots (GFSK)- 3 GHz - 5 GHz Spurious Emission (Low-CH)

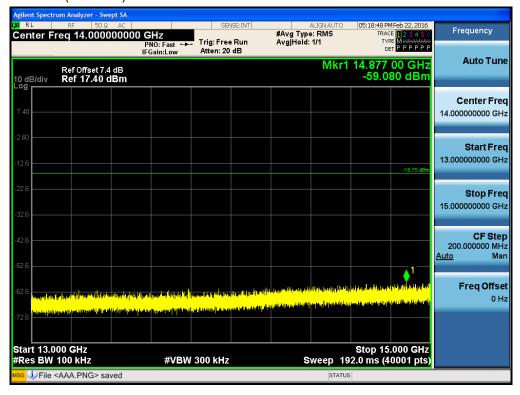

Test Plots (GFSK)- 5 GHz - 7 GHz Spurious Emission (Low-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 32 of 55

Test Plots (GFSK)- 7 GHz - 9 GHz Spurious Emission (Low-CH)

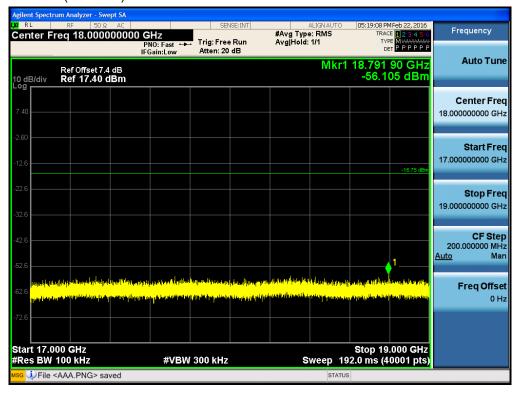

Test Plots (GFSK)- 9 GHz - 11 GHz Spurious Emission (Low-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 33 of 55

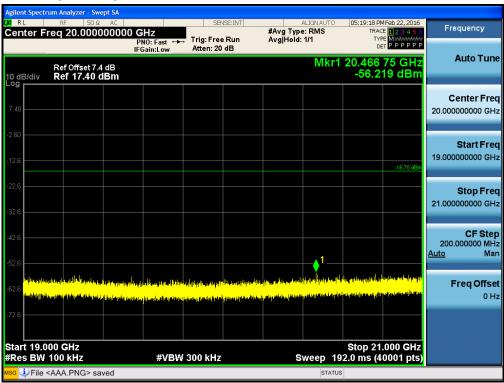
Test Plots (GFSK)- 11 GHz - 13 GHz Spurious Emission(Low-CH)

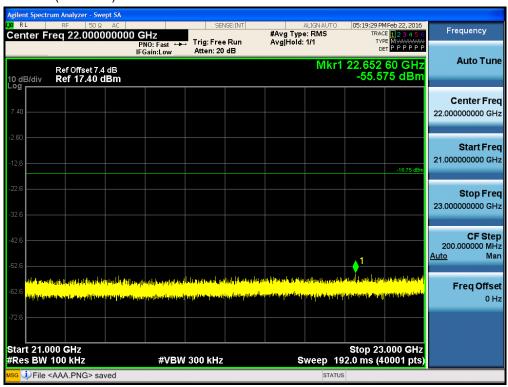
Test Plots (GFSK)- 13 GHz - 15 GHz Spurious Emission (Low-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710

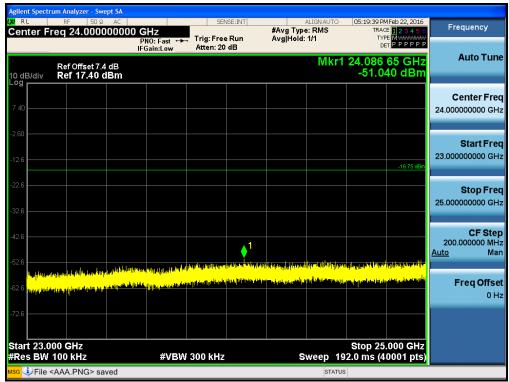
Test Plots (GFSK)- 15 GHz - 17 GHz Spurious Emission (Low-CH)


Test Plots (GFSK)- 17 GHz - 19 GHz Spurious Emission (Low-CH)



Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 35 of 55

Test Plots (GFSK)- 19 GHz - 21 GHz Spurious Emission (Low-CH)


Test Plots (GFSK)- 21 GHz - 23 GHz Spurious Emission(Low-CH)

Report No.: HCT-R-1602-F019-1 Model: KBB-710

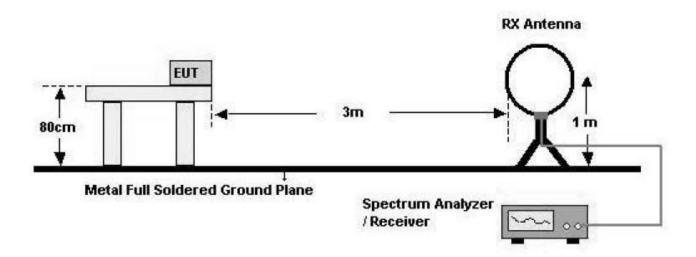
Test Plots (GFSK)- 23 GHz - 25 GHz Spurious Emission(Low-CH)

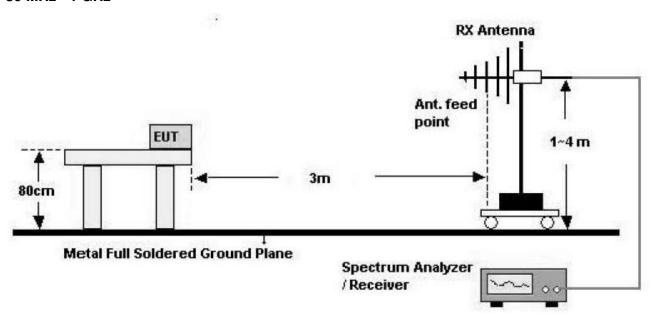
Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 37 of 55

8.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT: §15.247(d), §15.205, §15.209 / RSS-GEN(Issue 4) Section 8.9

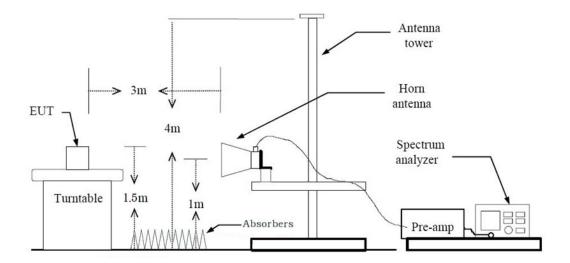
1. 20dBc in any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Test Configuration

Report No.: HCT-R-1602-F019-1

Below 30 MHz



30 MHz - 1 GHz

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 39 of 55

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. Spectrum Setting
 - a. Peak: 1 GHz 25 GHz, RBW = 1 MHz, VBW ≥3*RBW
 - b. Average: 1 GHz 25 GHz, RBW = 1 MHz, VBW \geq 1/T Hz, where T = pulse width in seconds.

Note:

We are performed the RSE and radiated band edge using standard radiated method.

BT Mode	T _{on}	VBW(1/T) (Hz)	The actual setting value of VBW (Hz)
	2.925	342	1000

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 40 of 55

TEST RESULTS

9 kHz - 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBμV	dB/m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB
No Critical peaks found							

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. This test is performed with hopping off.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 41 of 55

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBμV	dB/m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB
No Critical peaks found							

Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. This test is performed with hopping off.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 42 of 55

Above 1 GHz

Operation Mode: CH Low(GFSK)

Frequency	Reading	*A.F+CL-AMP GAIN	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Type
4804	57.47	-7.66	V	0	49.81	73.98	24.17	PK
4804	48.95	-7.66	V	-24.73	16.56	53.98	37.42	AV
7206	72.27	-1.98	٧	0	70.29	73.98	3.69	PK
7206	69.18	-1.98	٧	-24.73	42.47	53.98	11.51	AV
4804	56.55	-7.66	Н	0	48.89	73.98	25.09	PK
4804	47.66	-7.66	Н	-24.73	15.27	53.98	38.71	AV
7206	72.07	-1.98	Н	0	70.09	73.98	3.89	PK
7206	68.40	-1.98	Н	-24.73	41.69	53.98	12.29	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW = 3 MHz.
 - b. Average Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW \geq 1/ τ Hz, where τ = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H'=1
 - c. Worst Case Dwell Time = τ [ms] x H '= 2.900 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 7. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H' = 2
 - c. Worst Case Dwell Time = τ [ms] x H '= 5.800 ms

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 43 of 55

- d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- e. We applied DCCF in the test result which hopping channel number is 20.
- 8. We have done Normal Mode and EDR Mode test.
- 9. This test is performed with hopping off.
- 10. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

43 / 55

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 44 of 55

Operation Mode: CH Mid(GFSK)

Frequency	Reading	*A.F+CL-AMP GAIN	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	DBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	1,700
4882	55.50	-7.45	V	0	48.05	73.98	25.93	PK
4882	44.53	-7.45	V	-24.73	12.35	53.98	41.63	AV
7323	68.64	-1.66	V	0	66.98	73.98	7.00	PK
7323	65.46	-1.66	V	-24.73	39.07	53.98	14.91	AV
4882	55.12	-7.45	Н	0	47.67	73.98	26.31	PK
4882	43.86	-7.45	Н	-24.73	11.68	53.98	42.30	AV
7323	67.39	-1.66	Н	0	65.73	73.98	8.25	PK
7323	64.29	-1.66	Н	-24.73	37.90	53.98	16.08	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW = 3 MHz.
 - b. Average Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW \geq 1/ τ Hz, where τ = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H' = 1
 - c. Worst Case Dwell Time = τ [ms] x H '= 2.900 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 7. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H' = 2
 - c. Worst Case Dwell Time = τ [ms] x H '= 5.800 ms

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 45 of 55

- d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- e. We applied DCCF in the test result which hopping channel number is 20.
- 8. We have done Normal Mode and EDR Mode test.
- 9. This test is performed with hopping off.
- 10. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

45 / 55

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 46 of 55

Operation Mode: CH High(GFSK)

Frequency [MHz]	Reading DBuV		ANT. POL	Duty Cycle Correction [dB]	Total	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	55.27	-7.29	V	0	47.98	73.98	26.00	PK
4960	42.24	-7.29	V	-24.73	10.22	53.98	43.76	AV
7440	62.69	-1.08	V	0	61.61	73.98	12.37	PK
7440	58.06	-1.08	V	-24.73	32.25	53.98	21.73	AV
4960	55.12	-7.29	Н	0	47.83	73.98	26.15	PK
4960	42.11	-7.29	Н	-24.73	10.09	53.98	43.89	AV
7440	61.05	-1.08	Н	0	59.97	73.98	14.01	PK
7440	56.79	-1.08	Н	-24.73	30.98	53.98	23.00	AV

***** A·F: ANTENNA FACTOR

C·L: CABLE LOSS

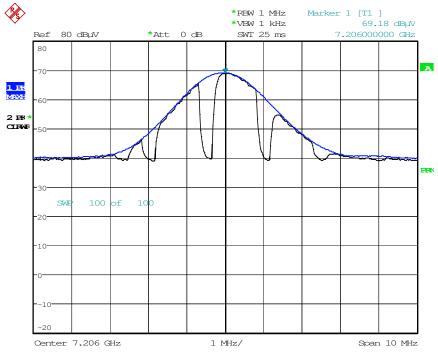
AMP GAIN: AMPLIFIER GAIN

Notes:

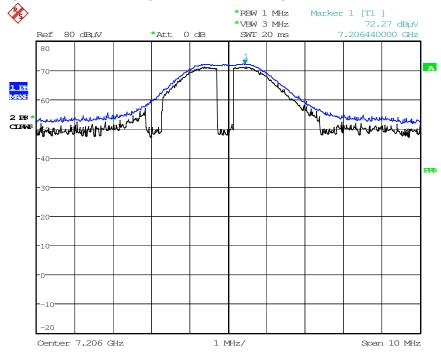
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW = 3 MHz.
 - b. Average Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW \geq 1/ τ Hz, where τ = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H'=1
 - c. Worst Case Dwell Time = τ [ms] x H '= 2.900 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 7. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H' = 2
 - c. Worst Case Dwell Time = τ [ms] x H '= 5.800 ms

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 47 of 55

- d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- e. We applied DCCF in the test result which hopping channel number is 20.
- 8. We have done Normal Mode and EDR Mode test.
- 9. This test is performed with hopping off.
- 10. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.


47 / 55

Report No.: HCT-R-1602-F019-1 Model: KBB-710


RESULT PLOTS

Radiated Spurious Emissions plot – Average Reading (GFSK, Low Ch. 3rd Harmonic)

Date: 12.FEB.2016 07:58:29

Radiated Spurious Emissions plot – Peak Reading (GFSK, Low Ch. 3rd Harmonic)

Date: 12.FEB.2016 07:57:58

Note: Only the worst case plots for Radiated Spurious Emissions.

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 49 of 55

8.6.3 RECEIVER SPURIOUS EMISSIONS

IC Rule(s) RSS-GEN

Test Requirements: Blow the table

Operating conditions: Under normal test conditions

Method of testing: Radiated

F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)

S/A. Settings:

F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)

Mode of operation: Receive

Frequency	Field Strength
(MHz)	(microvolts/m at 3 meters)
30 – 88	100
88 - 216	150
216 – 960	200
Above 960	500

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBμV	dB/m	dB	(H/V)	dBμV/m	dBμV/m	dB
No critical peaks found							

Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBμV	dB/m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB
No critical peaks found							

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 50 of 55

8.6.4 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d), §15.205, §15.209 / RSS-GEN(Issue 4) Section 8.10

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).

Operation Mode Normal(GFSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

Frequency	Reading	፠ A.F.+CL	Ant. Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	26.57	31.28	Η	0	57.85	73.98	16.13	PK
2390.0	13.69	31.28	Н	-24.73	20.23	53.98	33.75	AV
2390.0	26.21	31.28	٧	0	57.49	73.98	16.49	PK
2390.0	13.54	31.28	٧	-24.73	20.08	53.98	33.90	AV
2483.5	27.58	31.28	Н	0	58.86	73.98	15.13	PK
2483.5	16.80	31.28	Н	-24.73	23.34	53.98	30.64	AV
2483.5	26.92	31.28	٧	0	58.20	73.98	15.79	PK
2483.5	15.59	31.28	V	-24.73	22.13	53.98	31.85	AV

***** A·F: ANTENNA FACTOR

C·L: CABLE LOSS

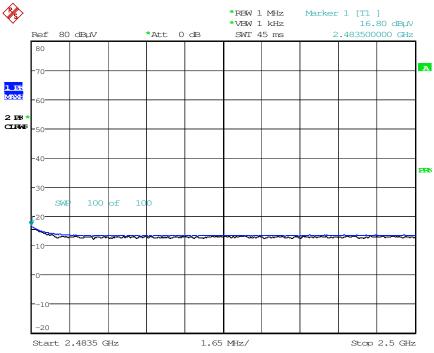
AMP GAIN: AMPLIFIER GAIN

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 51 of 55

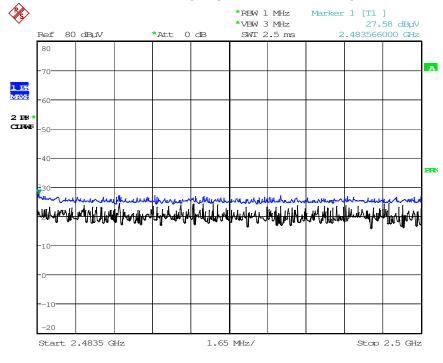
Notes:

- 1. Frequency range of measurement = 2483.5 MHz ~ 2500 MHz
- 2. Total = Reading Value + Antenna Factor + Cable Loss + Duty Cycle Correction Factor
- 3. Spectrum setting:
 - a. Peak Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW = 3 MHz.
 - b. Average Setting 1 GHz 25 GHz, RBW = 1 MHz, VBW ≥ 1/τ Hz, where τ = pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.


- 4. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H' = 1
 - c. Worst Case Dwell Time = T [ms] x H '= 2.900 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 5. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H' = 2
 - c. Worst Case Dwell Time = T [ms] x H '= 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
 - e. We applied DCCF in the test result which hopping channel number is 20.
- 6. This test is performed with hopping off.
- 7. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1602-F019-1 Model: KBB-710


RESULT PLOTS

Radiated Restricted Band Edges plot – Average Reading (GFSK, Ch.78)

12.FEB.2016 08:14:37 Date:

Radiated Restricted Band Edges plot – Peak Reading (GFSK, Ch.78)

Date: 12.FEB.2016 08:14:03

Note: Only the worst case plots for Radiated Restricted Band Edges.

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 53 of 55

8.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Evenuency Denne (MUT)	Limits (dBμV)					
Frequency Range (MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- Detectors Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

Note: We don't perform powerline conducted emission test. Because this EUT is DC voltage.

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 54 of 55

9. LIST OF TEST EQUIPMENT

9.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	12/28/2015	Annual	100073
Rohde & Schwarz	ESCI / TEST RECEIVER	12/28/2015	Annual	100584
Agilent	E4440A/ Spectrum Analyzer	03/18/2015	Annual	US45303008
Agilent	N9020A / SIGNAL ANALYZER	06/30/2015	Annual	MY51110085
Agilent	N9020A / SIGNAL ANALYZER	07/02/2015	Annual	MY50510304
Agilent	N1911A/Power Meter	07/09/2015	Annual	MY45100523
Agilent	N1921A /POWER SENSOR	07/09/2015	Annual	MY45241059
Agilent	87300B/Directional Coupler	11/30/2015	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/15/2015	Annual	5001
Hewlett Packard	E3632A / DC POWER SUPPLY	03/11/2015	Annual	KR75303962
Agilent	8493C / Attenuator(10 dB)	07/21/2015	Annual	07560
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/11/2015	Annual	100422

Report No.: HCT-R-1602-F019-1 Model: KBB-710 Page 55 of 55

9.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Schwarzbeck	VULB 9160/ TRILOG Antenna	10/10/2014	Biennial	3368
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
Schwarzbeck	BBHA 9120D/ Horn Antenna	05/07/2015	Biennial	937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/30/2015	Biennial	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	01/22/2016	Annual	839117/011
Wainwright Instrument	WHF3.0/18G-10EF / High Pass Filter	06/29/2015	Annual	8
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	06/15/2015	Annual	1
Rohde & Schwarz	LOOP ANTENNA	09/03/2014	Biennial	1513-175
CERNEX	CBL18265035 / POWER AMP	07/27/2015	Annual	22966
CERNEX	CBL06185030 / POWER AMP	07/21/2015	Annual	22965
CERNEX	CBLU1183540 / POWER AMP	07/21/2015	Annual	22964
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/11/2015	Annual	100422