

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383. Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

SAR TEST REPORT

Applicant Name:

LG Electronics, MobileComm U.S.A., Inc.

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Issue: 01. 12, 2016

Test Report No.: HCT-A-1601-F005

Test Site: HCT CO., LTD.

FCC ID:

ZNFK430AR

Equipment Type:

GSM WCDMA LTE Phone with BT & WLAN

Model Name:

LG-K430AR

Additional Model Name:

LGK430AR, K430AR

Testing has been carried

out in accordance with:

47CFR §2.1093

ANSI/ IEEE C95.1 - 1992

IEEE 1528-2013

Date of Test:

 $12/21/2015 \sim 01/04/2016$

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

Bong-Kyun Park

Test Engineer / SAR Team Certification Division Reviewed By

Dong-Seob Kim

Technical Manager / SAR Team

Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

Rev.	DATE	DESCRIPTION
HCT-A-1601-F005	01. 12, 2016	First Approval Report

Table of Contents

Attestation of Test Result of Device Under Test		4
2. Device Under Test Description		5
3. INTRODUCTION	1	3
4. DESCRIPTION OF TEST EQUIPMENT	1	4
5. SAR MEASUREMENT PROCEDURE	1	8
6. DESCRIPTION OF TEST POSITION	2	0
7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2	3
8. FCC SAR GENERAL MEASUREMENT PROCEDURES	2	4
9. Output Power Specifications	2	8
10. SYSTEM VERIFICATION	3	6
11. SAR TEST DATA SUMMARY	3	8
12. Simultaneous SAR Analysis	4	5
13. SAR Measurement Variability and Uncertainty	4	7
14. MEASUREMENT UNCERTAINTY	4	8
16. CONCLUSION	5	0
17. REFERENCES	5	1
Attachment 1. – SAR Test Plots	5	3
Attachment 2. – Dipole Verification Plots	5	4
Attachment 3. – Probe Calibration Data	7	7
Attachment 4. – Dipole Calibration Data	2	3
Attachment 5. – SAR Tissue Characterization	5	6
Attachment 6. – SAR SYSTEM VALIDATION	5	7

1. Attestation of Test Result of Device Under Test

Attestation of SAR test result							
Trade Name:	LG Electronics, MobileComm U.S.A., Inc.						
FCC ID:	ZNFK430AR						
Model:	LG-K430AR						
Additional Model Name:	LGK430AR, K430AR						
EUT Type	GSM WCDMA LTE Phone with BT & WLAN						
Application Type:	Certification						

The Highest Reported SAR (W/Kg)

ogocopo.to c (g)									
	Tx. Frequency	Equipment	Reported 1g SAR (W/kg)						
Band	(MHz)	Class	Head	Body-Worn	Hotspot				
GSM/GPRS/EDGE 850	824.2 - 848.8	PCE	0.79	0.79	0.79				
GSM/GPRS/EDGE 1900	1 850.2 -1 909.8	PCE	0.35	0.41	0.41				
UMTS 850	826.4 - 846.6	PCE	0.42	0.27	0.37				
UMTS 1900	1852.4 - 1907.6	PCE	0.45	0.55	0.55				
LTE 4 (AWS)	1 710.7 – 1 754.3	PCE	0.28	0.66	0.66				
802.11b	2 412 - 2 462	DTS	0.63	0.18	0.18				
Bluetooth	2 402 - 2 480	DSS/DTS		0.10 *					
Simultaneous SAR	per KDB 690783 D0	1.42	0.97	0.97					
Date(s) of Tests:	e(s) of Tests: 12/21/2015 ~ 01/04/2016								

Note:

^{*1.} BT Body-worn SAR value is estimated SAR value that should not be reported standalone SAR on grants of equipment approval.

^{*} The device LG-K430AR (FCC ID: ZNFK430AR) is electrically identical compare to LG-K430T (FCC ID: ZNFK430T), with spot-checks test done to confirm. All SAR test data of this model were reused from LG-K430T (FCC ID: ZNFK430T).

2. Device Under Test Description

2.1 DUT specification

Device Wireless specific	Device Wireless specification overview									
Band & Mode	Operating Mode	Tx Frequency								
GSM/GPRS/EDGE 850	Voice / Data 824.2 – 848.8 MHz									
GSM/GPRS/EDGE 1900	Voice / Data 1 850.2 – 1 909.8 MHz									
UMTS 850	Voice / Data	826.4 – 846.6 MHz								
UMTS 1900	Voice / Data	1 852.4 – 1 907.6 MHz								
LTE Band 4 (AWS)	Data	1 710.7 – 1 754.3 MHz								
2.4 GHz WLAN	Data	2 412.0 – 2 462.0 MHz								
Bluetooth	Data	2 402.0 – 2 480.0 MHz								
Device Description										
Device Dimension	Overall (Length x Width): 146.6 mm x 74	I.8 mm								
Back Cover	Normal Battery cover									
Battery Options	Standard									
	Mode	Serial Number/IMEI								
	LTE 4	004402-34-993008-5								
	GSM 1900, WCDMA 1900	004402-34-989484-4								
Device Serial Numbers	GSM 850, WCDMA 850, WiFi 2.4 GHz 004402-34-993012-7									
Bovido Gorial Numbero	Several samples with identical hardware were used to SAR testing. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics are within operational tolerances expected for production units.									

2.2 DUT Wireless mode

Wireless Modulation	Band	(Operating Mode	Duty Cycle				
GSM	850 1900	Voice(GMSK) GPRS (GMSK) EGPRS (8PSK)	GPRS/ EDGE Multi-Slot Class: Class 12 – 4 Up, 4 Down Mode class B	GSM Voice: 12.5% GPRS 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%				
WCDMA (UMTS)	Band 5 Band 2	UMTS Rel.99 (\ HSDPA (Rel. 5) HSUPA (Rel. 6) HSPA+ (Rel. 7) DC-HSDPA (Re	(Uplink QPSK Only)	100 %				
LTE Band	4 (AWS)	Data (QPSK, 16QAM)		Data (QPSK, 16QAM)		Data (QPSK, 16QAM)		100 % (FDD)
2.4 GHz WLAN		Data 802.11 b, 802.11 g, 802.11 n (HT20)		99.27 %				
Bluetooth		Data 4.2 I	_E	N/A				

2.3 LTE information

	Item	ı .		Description							
Freque	ncy Rang	je:	Bar	and 4: 1 710.7 MHz ~ 1 754.3 MHz							
Channe	el Bandwi	idths	Bar	nd 4: 1.	4 MHz, 3	MHz, 5 N	ИHz, 10 I	MHz, 15 l	MHz, 20	MHz	
			С	hannel N	lumber s&	& Freque	ncies(MH	Hz):			
					Ba	nd 4					
1.4 [MHz	3 N	1Hz	5 N	ЛHz	10 N	ЛHz	15 N	ИНz	20	MHz
Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)
19957	1 710.7	19965	1 711.5	19975	1 712.5	20000	1 715.0	20025	1 717.5	20050	1 720.0
20175	1 732.5	20175	1 732.5	20175	1 732.5	20175	1 732.5	20175	1 732.5	20175	1 732.5
20393	1 754.3	20385	1 753.5	20375	1 752.5	20350	1 750.0	20325	1 747.5	20300	1 745.0
Modulat	tions Su	pported in	UL	QPSK, 16QAM							
				Data Only,							
LTE voic	ce/data red	quirements	3	LTE voice is available via VoIP. Considering the users may install 3rd party software to enable VoIP, LTE Head SAR is also evaluated.					oIP,		
				The I	EUT incorp	orates M	PR as per	3GPP TS	36.101 s	ec. 6.2.3 [^]	6.2.5
LTE MPR options				The MPR is permanently built-in by design as a mandatory.							
				A-MPR is not implemented in the DUT.							
Power re	eduction e	xplanation		This	device do	esn't imple	ements po	wer reduc	tion.		
LTE Rele	ease infor	mation		LTE	Rel. 9, Ca	tegory 4					

2.4 TEST METHODOLOGY and Procedures

The tests documented in this report were performed in accordance with IEEE Standard 1528-2013 & IEEE 1528-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 3G SAR Procedures v03r01
- FCC KDB Publication 941225 D06 Hot Spot SAR v02r01
- FCC KDB Publication 941225 D05 SAR for LTE Devices v02r03
- FCC KDB Publication 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB Publication 447498 D01 General SAR Guidance v06
- FCC KDB Publication 648474 D04 Handset SAR v01r03
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02
- October 2013 TCB Workshop Notes (GPRS testing criteria)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)

2.5 Nominal and Maximum Output Power SpecificationsThis device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

Mode / Band		Voice (dBm)	Burst A	Average	GMSK	(dBm)	Burst Average 8-PSK (dBm)				
		1 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	
COM/CDDC/FDCF 050	Maximum	33.7	33.7	32.7	30.7	29.7	26.7	25.7	23.7	22.7	
GSM/GPRS/EDGE 850	Nominal	33.2	33.2	32.2	30.2	29.2	26.2	25.2	23.2	22.2	
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	29.7	27.7	26.7	25.7	24.7	22.7	21.7	
GSM/GPRS/EDGE 1900	Nominal	30.2	30.2	29.2	27.2	26.2	25.2	24.2	22.2	21.2	

Mode / Band		3GPP	3GPP HSDPA(dBm)			3GPP HSUPA(dBm)				DC-HSDPA(dBm)					
		WCDMA	Sub test1	Sub test2	Sub test3	Sub test4	Sub test1	Sub test2	Sub test3	Sub test4	Sub Test5	Sub test1	Sub test2	Sub test3	Sub test4
UMTS Band 5	Maximum	23.7	23.7	23.7	23.2	23.2	23.7	21.7	22.7	21.7	23.7	23.7	23.7	23.2	23.2
(850 MHz)	Nominal	23.2	23.2	23.2	22.7	22.7	23.2	21.2	22.2	21.2	23.2	23.2	23.2	22.7	22.7
UMTS Band 2	Maximum	23.7	23.7	23.7	23.2	23.2	23.7	21.7	22.7	21.7	23.7	23.7	23.7	23.2	23.2
(1900 MHz)	Nominal	23.2	23.2	23.2	22.7	22.7	23.2	21.2	22.2	21.2	23.2	23.2	23.2	22.7	22.7

Mode / Band	Modulated A	Average (dBm)
LTE Dond 4 (AMC)	Maximum	23.7
LTE Band 4 (AWS)	Nominal	23.2

Mode / Bar	nd	Modulated A	Average (dBm)
IEE 000 11hE (0.	1.011-)	Maximum	16.5
IEE 802.11bE (2.4	i GHz)	Nominal	15.5
IEEE 000 11 m (0 /	1.011-)	Maximum	12.5
IEEE 802.11g (2.4	i GHz)	Nominal	11.5
IEEE 000 11 m (0.4	1.011-7	Maximum	12.5
IEEE 802.11n (2.4	i GHZ)	Nominal	11.5
	DUE	Maximum	7
	DH5	Nominal	6
	0.0115	Maximum	4
Divistantle	2-DH5	Nominal	3
Bluetooth	0.0115	Maximum	4
	3-DH5	Nominal	3
	1.5	Maximum	0
	LE	Nominal	-1

2.6 DUT Antenna Locations

	Device Edges / Sides for SAR Testing											
Mode	Rear	Front	Left	Right	Bottom	Тор						
GSM/GPRS 850	Yes	Yes	Yes	Yes	Yes	No						
GSM/GPRS 1900	Yes	Yes	Yes	No	Yes	No						
UMTS 850	Yes	Yes	Yes	Yes	Yes	No						
UMTS 1900	Yes	Yes	Yes	No	Yes	No						
LTE Band 4	Yes	Yes	Yes	No	Yes	No						
2.4 GHz WLAN	Yes	Yes	No	Yes	No	Yes						

Particular EUT edges were not required to be evaluated for Wireless Router SAR if the edges were > 25 mm from the transmitting antenna according to FCC KDB 941225 D06v02r01 on page 2. The distance between the transmit antennas and the edges of the device are included in the filing. The overall dimensions of this device are > 9 X 5 cm. The overall diagonal dimension of the device is < 160 mm and the diagonal display is < 150 mm.

2.7 SAR Summation Scenario

According to FCC KDB 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Simultaneous transmission paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

^{*} Note: All test configurations are based on front view position.

ZNFK430AR Issue Date: 01. 12, 2016 FCC ID:

Simultaneous Transmission Scenarios						
Applicable Combination	Head	Body-Worn	Hotspot			
GSM Voice + 2.4 GHz WiFi	Yes	Yes	N/A			
GSM Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A			
GPRS/EDGE + 2.4 GHz WiFi	Yes	Yes	Yes			
GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes	N/A			
UMTS + 2.4 GHz WiFi	Yes	Yes	Yes			
UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A			
LTE+ 2.4 GHz WiFi	Yes	Yes	Yes			
LTE+ 2.4 GHz Bluetooth	N/A	Yes	N/A			

- 1. 2.4 GHz WLAN, and 2.4GHz Bluetooth share antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. UMTS +WLAN scenario also represents the UMTS Voice/DATA + WLAN hotspot scenario.
- 4. LTE is considered pre-installed VOIP applications.
- 5. The highest reported SAR for each exposure condition is used for SAR summation purpose.

2.8 SAR Test Exclusions Applied

(A) BT & LE

Per FCC KDB 447498 D01v06, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel(mW)}}{\textit{Test Separation Distance (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance [mm]	≤ 3.0
Bluetooth	2 480	5	10	0.79
Bluetooth LE	2 480	1	10	0.16

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(5/10)^*\sqrt{2.480}] = 0.79 < 3.0$.

Based on the maximum conducted power of Bluetooth LE and antenna to use separation distance, Bluetooth LE SAR was not required $[(1/10)^*\sqrt{2.480}] = 0.16 < 3.0$.

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v06 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHZ)}}{7.5} * \frac{(Max \ Power \ of \ channel \ mW)}{Min \ Seperation \ Distance}$$
.

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	(Body)
	[MHz]	[mW]	[mm]	[W/kg]
Bluetooth	2 480	5	10	0.10
Bluetooth LE	2 480	1	10	0.02

Note:

- 1) Held-to ear configurations are not applicable to Bluetooth and Bluetooth LE operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v06.
- 2) The frequency of Bluetooth and Bluetooth LE using for estimated SAR was selected highest channel of Bluetooth LE for highest estimated SAR.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

Per FCC KDB 941225 D01v03r01, 12.2 kbps RMC is the primary mode and HSPA (HSUPA/HSDPA with RMC) is the secondary mode.

Per FCC KDB 941225 D01v03r01, The SAR test exclusion is applied to the secondary mode by the following equation.

Adjusted SAR = Highest Reported SAR *
$$\frac{Secondary\ Max\ tune - up\ (mW)}{Primary\ Max\ tune\ tune - up\ (mW)} \le 1.2\ W/kg$$

Based on the highest Reported SAR, the secondary mode is not required.

$$[0.709 * (234/234)] = 0.709 \text{ W/kg} \le 1.2 \text{ W/kg}$$

And the maximum output power and tune-up tolerance in secondary mode is \leq 0.25 dB higher than the primary mode.

3. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., Ne York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

 $\sigma = {\rm conductivity}$ of the tissue-simulant material (S/m) $\rho = {\rm mass}$ density of the tissue-simulant material (kg/m²) $E = {\rm Total}$ RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 & DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

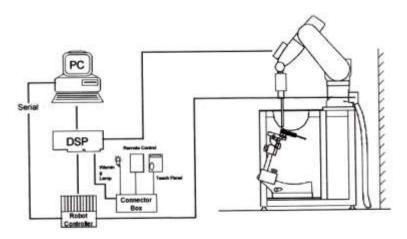


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

4.2 DASY E-FIELD PROBE SYSTEM

	Isotro	pic SAR Probe			
Probe type	ET3DV6	ES3DV3	EX3DV4		
Appearance					
	Symmetrical	design with triangular core Interlea	aved sensors		
Construction	Bu	ilt-in shielding against static charg	es		
	PEEK enclosure	material (resistant to organic solvents, e.g., DGBE)			
Calibration	IEEE 1528-2013, IEC 62209-1, IEC 62209-2, KDB 865664				
Frequency	10 MHz to 2.3 GHz Linearity: ± 0.2 dB	10 MHz to 4 GHz Linearity: ± 0.2 dB	10 MHz to 6 GHz Linearity: ± 0.2 dB		
	(30 MHz to 2.3 GHz) (30 MHz to 4 GHz) ± 0.2 dB in TSL ± 0.2 dB in TSL		(30 MHz to 6 GHz) ± 0.3 dB in TSL		
Directivity	(rotation around probe axis) ± 0.4 dB in TSL (rotation normal to probe axis)	(rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)	(rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)		
Dynamic Range	$5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$	$5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB		
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm		
Application	General dosimetry up to 2.3 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones		

The SAR measurements were conducted with the dosimetric probe ET3DV6, ES3DV3 and EX3DV4(depending on the frequency), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY 4 & 5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

4.3 SAM Phantom

	SAR PHANTOMS				
	Name	Twin SAM			
T W I N	Appearance		The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand Phone usage as well as body-mounted usage at the flat phantom region.		
	Material	Vinyl ester, Fiberglass reinforced (VE-GF)	A cover prevents evaporation of the liquid.		
S	Liquid Compatibility	Compatible with all DGBE Type liquid	Reference markings on the phantom allow the complete setup of all predefined phantom		
A	Shell Thickness	2 ± 0.2 mm (6±0.2 mm at ear point)	positions and measurement grids by teaching		
M	Dimensions Filling Volume	Length : 1000 mm Width : 500 mm Height : adjustable feet Approx. 25 liters	three points with the robot.		
	Name	MFP – Triple Modular Phantom			
M	Appearance	IVII 1 = Triple Modular Hartom	Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Course previous expectation of the		
F	Material	Vinyl ester, Fiberglass reinforced (VE-GF)	installation. Covers prevent evaporation of the liquid. Phantom material is resistant to		
Р	Liquid Compatibility	Compatible with all DGBE Type liquid	liquid. Phantom material is resistant to DGBE-based tissue simulating liquids.		
	Shell Thickness	2±0.2 mm	Applicable for system performance check from		
	Dimensions	Length : 292 mm Width : 178 mm Height : 178 mm Useable area : 280 x 175 mm	700 MHz – 6 GHz as well as dosimetric evaluations of body-worn devices.		
	Filling Volume	Approx. 8.1 liters (filing height 155 mm)			

4.4 Device Holder for Transmitters

Device Holder – Mounting Device

In combination with the SAM Phantom, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the EN 50360:2001/A:2001 and FCC KDB specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

4.5 Validation Dipole

The reference dipole should have a return loss better than -20 dB (measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

	System Validation Dipole	
Description	Symmetrical dipole with $\lambda\!/4$ balun. Enables measurement of feedpoint impedance with network analyzer (NWA). Matched for use near flat phantoms filled with tissue simulating liquids.	
Frequency	750,835,1900, 2000, 2300, 2450, 2600, 5000 MHz	
Return Loss	> 20 dB at specified validation position	
Power Capability	> 100 W (f < 1GHz), >40 W (f > 1 GHz)	
Dimension	D750V3: dipole length: 179.0 mm; overall height: 330.0 mm D835V2: dipole length: 158.0 mm; overall height: 340.0 mm D1900V2: dipole length: 67.7 mm; overall height: 300.0 mm D2300V2: dipole length: 56.3 mm; overall height: 290.0 mm D2450V2: dipole length: 52.0 mm; overall height: 290.0 mm D2600V1: dipole length: 49.2 mm; overall height: 290.0 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300.0 mm	

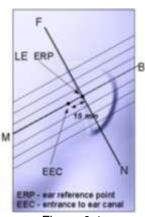
5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)
 - **a.** The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - **b.** The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points $(10 \times 10 \times 10)$ were interpolated to calculate the average.
 - **c.** All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.

			≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5±1 mm	¹ / ₂ ·δ·ln(2)±0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30°±1°	20°±1°
Maximum area scan Spatial resolution: $\Delta x_{Area,} \Delta y_{Area}$ Maximum zoom scan Spatial resolution: $\Delta x_{zoom,} \Delta y_{zoom}$			≤ 2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm
			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, th measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
			≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 GHz: ≤5 mm* 4-6 GHz: ≤4 mm*
	uniform grid: $\Delta z_{zoom}(n)$		≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm
Maximum zoom scan Spatial resolution normal to phantom surface	graded	Δz _{zoom} (1); between 1 st two Points closest to phantom surface	≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm
	grid $\Delta z_{z_{00m}}(n>1)$: between subsequent Points		$\leq 1.5 \cdot \Delta z_{\text{zoom}}(\text{n-1})$	
Minimum zoom scan volume	x, y, z	•	≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm


Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 EAR REFERENCE POINT

Figure 6-2 shows the front, back and side views of the SAM phantom. The center-of-mouth reference point is labeled "M", the left ear reference point (ERP) is marked "LE", and the right ERP is marked "RE." Each ERP is on the B-M (back-mouth) line located 15 mm behind the entrance-to-ear-canal (EEC) point, as shown in Figure 6-1. The Reference Plane is defined as passing through the two ear reference point and point M. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (See Figure 5-1), Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

Figure 6-1 Close-up side view of ERP

6.1 HEAD POSITION

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The device under test was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Figure 6-3). The acoustic output was than located at the same level as the center of the ear reference point. The device under test was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6-2
Front, back and side views of SAM Twin Phantom

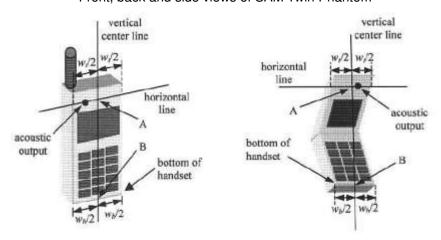


Figure 6-3. Handset vertical and horizontal reference lines

ZNFK430AR Issue Date: 01. 12, 2016 FCC ID:

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

6.3 Body-Worn Accessory Configurations

Body-Worn operating configurations are tested with the belt-dips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03 Body-Worn accessory exposure is typically related to voice mode operations when handsets are carried in body-Worn accessories. The body-Worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-Worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-Worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body- Worn accessory, measured without a headset connected to the handset, Sample Body-Worn Diagram is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body- Worn accessory with a headset attached to the handset.

Accessories for Body-Worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-dip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

HCT CO., LTD. Report No.

Body-Worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-Worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-Worn transmitters. SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.4 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (LxW≥9cmx5 cm) are based on *a* composite test separation distance of 10 mm from the front back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-Worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-Worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot* feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

8. FCC SAR GENERAL MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as Reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

8.2.1 GSM, GPRS AND EDGE

The following procedures may be considered for each frequency band to determine SAR test reduction for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance. GSM voice mode transmits with 1 time slot. GPRS and EDGE may transmit up to 4 time slots in the 8 time-slot frame according to the multi-slot class implemented in a device.

8.2.2 SAR Test Reduction

In FCC KDB 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB 941225 D01v03r01 - 3G SAR Measurement Procedures The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more than 5 % occurred, the tests were repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and speading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR measurements

SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

8.4.4 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel 6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2kbps RMC configured in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.5 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r03 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluation SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR(Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB offsets for SAR testing

According to FCC KDB 941225 D05v02r03

- a. Per sec 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/Kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Sec 4.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Sec 4.2.1.
- c. Per Sec. 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Sec. 4.2.4 and 4.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sec. 4.2.1 through 4.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/Kg.</p>

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR system to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating nest to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test positions are measured.

8.6.3 2.4 GHz SAR test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS is that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.4 OFDM Transmission Mode and SAR Test channel Selection

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate and lowest order 802.11 g/n mode. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 Initial Test configuration Procedure

For OFDM, in both 2.4 GHZ, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position on procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is $\leq 1.2 \text{ W/kg}$ for 1g SAR and $\leq 3.0 \text{ W/kg}$ for 10g SAR, no additional SAR tests for the subsequent test configurations are required.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383. Rep. of KOREA TEL: +82 31 645 6300 FAX: +82 31 645 6401

27 of 157

9. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

9.1 **GSM**

GSM Conducted output powers (Burst-Average)

		Voice		GPRS(GMSK) Data – CS1			EDGE Data			
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)
0014	128	33.34	33.33	32.29	29.93	28.97	26.15	25.19	23.25	22.39
GSM 850	190	33.51	33.50	32.48	30.19	29.21	26.12	25.18	23.26	22.35
000	251	33.47	33.45	32.40	30.04	29.08	26.17	25.23	23.33	22.37
0014	512	30.34	30.33	29.23	26.92	25.83	25.10	24.03	21.94	20.86
GSM 1900	661	30.42	30.40	29.43	27.23	26.15	25.40	24.36	22.32	21.21
1500	810	30.46	30.43	29.61	27.64	26.56	25.49	24.48	22.44	21.35

GSM Conducted output powers (Frame-Average)

		Voice	GPRS(GMSK) Data – CS1			EDGE Data				
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)
0014	128	24.31	24.30	26.27	25.67	25.96	17.12	19.17	18.99	19.38
GSM 850	190	24.48	24.47	26.46	25.93	26.20	17.09	19.16	19.00	19.34
000	251	24.44	24.42	26.38	25.78	26.07	17.14	19.21	19.07	19.36
CCM	512	21.31	21.30	23.21	22.66	22.82	16.07	18.01	17.68	17.85
GSM 1900	661	21.39	21.37	23.41	22.97	23.14	16.37	18.34	18.06	18.20
1000	810	21.43	21.40	23.59	23.38	23.55	16.46	18.46	18.18	18.34

Note:

Time slot average factor is as follows:

1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power - 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power - 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power - 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power – 3.01 dB

GSM Class : B GSM voice/GPRS VOIP: Head SAR , Body worn SAR GPRS/EDGE Multi-slots 12 : Hotspot SAR with GPRS/EDGE

Multi-slot Class 12 with CS 1 (GMSK)

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

9.2 UMTS

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7)

Mode	Subtest	Rel99	
	Loopback Mode	Test Mode 2	
WCDMA Conoral Sottings	Rel99 RMC	12.2kbps RMC	
WCDMA General Settings	Power Control Algorithm	Algorithm2	
	βc/βd	8/15	

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode		HSI	OPA			
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC		12.2kbj	os RMC			
	HSDPA FRC		H-S	et 1			
WCDMA	Power Control Algorithm		Algori	ithm 2			
General	βc	2/15	11/15	15/15	15/15		
Settings	βd	15/15	15/15	8/15	4/15		
Settings	Bd (SF)	64					
	βc/βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR (dB)	0	0	0.5	0.5		
	DACK	8					
	DNAK			3			
	DCQI			3			
HSDPA	Ack-Nack repetition factor	3					
Specific	CQI Feedback (Table	4ms					
Settings	5.2B.4)						
	CQI Repetition Factor	2					
	(Table 5.2B.4)						
	Ahs=βhs/βc		30	/15			

HSPA+

This DUT is only capable of QPSK HSPA+ in uplink. Therefore, the RF conducted power is not measured according to 941225 D01 3G SAR.

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	mode			HSPA				
	Subtest	1	2	3	4	5		
	Loopback Mode			Test Mode 1				
	Rel99 RMC			12.2 kbps RMC				
	HSDPA FRC			H-Set 1				
	HSUPA Test			HSPA				
	Power Control Algorithm			Algorithm 1				
WCDMA	βc	11/15	6/15	15/15	2/15	15/15		
General	βd	15/15	15/15	9/15	15/15	0		
Settings	βес	209/225	12/15	30/15	2/15	5/15		
	βc/βd	11/15	6/15	15/9	2/15	15/1		
	βhs	22/15	12/15	30/15	4/15	5/15		
	βed	1309/225	94/75	47/15	56/75	47/15		
	CM (dB)	1	3	2	3	1		
	MPR (dB)	0	2	1	2	0		
	DACK		8			0		
	DNAK		8			0		
LIODDA	DCQI		8			0		
HSDPA	Ack-Nack repetition factor			3				
Specific	CQI Feedback (Table 5.2B.4)			4ms				
Settings -	CQI Repetition Factor			2				
	(Table 5.2B.4)							
	Ahs = βhs/βc		30/15					
	E-DPDCCH	6	8	8	5	7		
	DHARQ	0	0	0	0	0		
	AG Index	20	12	15	17	21		
	ETFCI (from 34.121 Table	75	67	92	71	81		
	C.11.1.3)							
	Associated Max UL Data Rate	242.1	174.9	482.8	205.8	308.9		
	kbps							
	Reference E-TFCIs	5	5	2	5	1		
HSUPA	Reference E-TFCI	11	11	11	11	67		
Specific	Reference E-TFCI PO	4	4	4	4	18		
Settings	Reference E-TFCI	67	67	92	67	67		
	Reference E-TFCI PO	18	18	18	18	18		
	Reference E-TFCI	71	71	71	71	71		
	Reference E-TFCI PO	23	23	23	23	23		
	Reference E-TFCI	75	75	75	75	75		
	Reference E-TFCI PO	26	26	26	26	26		
	Reference E-TFCI	81	81	81	81	81		
	Reference E-TFCI PO	27	27	27	27	27		
	Maximum Channelization Codes		2xS	F2		SF4		

WCDMA850

3GPP		3GPP 34.121	W	CDMA Band 5 [d	lBm]
Release Version			UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458
99	WCDMA	12.2 kbps RMC	23.26	23.38	23.55
99	WCDMA	12.2 kbps AMR	23.28	23.38	23.57
5		Subtest 1	22.21	22.32	22.43
5	HSDPA	Subtest 2	22.23	22.33	22.46
5	ПОПРА	Subtest 3	21.82	21.87	22.04
5		Subtest 4	21.85	21.92	22.03
6		Subtest 1	20.33	20.45	20.61
6		Subtest 2	20.35	20.45	20.64
6	HSUPA	Subtest 3	21.36	21.44	21.57
6		Subtest 4	19.83	19.97	20.14
6		Subtest 5	20.30	20.41	20.58
8		Subtest 1	22.15	22.25	22.25
8	DC HCDDA	Subtest 2	22.13	22.30	22.30
8	DC-HSDPA	Subtest 3	21.75	21.70	21.70
8		Subtest 4	21.73	21.79	21.79

WCDMA Average Conducted output powers

WCDMA1900

3GPP		3GPP 34.121	W	CDMA Band 2 [d	Bm]
Release Version	Mode	Subtest	UL 9262 DL 9662	UL 9400 DL 9800	UL 9538 DL 9938
99	WCDMA	12.2 kbps RMC	23.55	23.34	23.50
99	WCDMA	12.2 kbps AMR	23.55	23.38	23.55
5		Subtest 1	22.60	22.45	22.60
5	LICDDA	Subtest 2	22.61	22.45	22.61
5	HSDPA	Subtest 3	22.14	21.98	22.14
5]	Subtest 4	22.13	21.98	22.11
6		Subtest 1	20.61	20.48	20.62
6		Subtest 2	20.64	20.49	20.63
6	HSUPA	Subtest 3	21.58	21.43	21.58
6		Subtest 4	20.12	19.97	20.11
6		Subtest 5	20.60	20.45	20.60
8		Subtest 1	22.07	22.10	21.86
8	DC HCDDA	Subtest 2	22.07	22.13	21.97
8	DC-HSDPA	Subtest 3	21.58	21.62	21.48
8		Subtest 4	21.60	21.63	21.50

9.3 LTE

- LTE Band 4

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
				19957	20175	20393	[dD]	[4D]
				1710.7 MHz	1732.5 MHz	1754.3 MHz	[dB]	[dB]
		1	0	23.24	23.19	23.12	0	0
		1	3	23.25	23.18	23.11	0	0
		1	5	23.27	23.20	23.13	0	0
	QPSK	3	0	23.27	23.24	23.17	0	0
		3	1	23.21	23.20	23.08	0	0
		3	3	23.22	23.19	23.11	0	0
1 4 MU-		6	0	22.25	22.19	22.09	0-1	1
1.4 MHz		1	0	22.28	22.26	22.17	0-1	1
		1	3	22.27	22.26	22.15	0-1	1
		1	5	22.28	22.25	22.17	0-1	1
	16QAM	3	0	22.24	22.22	22.14	0-1	1
		3	1	22.18	22.18	22.08	0-1	1
		3	3	22.23	22.23	22.14	0-1	1
		6	0	21.32	21.30	21.20	0-2	2

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	verage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
				19965	20175	20385	[dB]	[dB]
				1711.5 MHz	1732.5 MHz	1753.5 MHz	[ub]	[ub]
		1	0	23.21	23.16	23.08	0	0
		1	7	23.18	23.16	23.06	0	0
		1	14	23.18	23.16	23.08	0	0
	QPSK	8	0	22.31	22.28	22.16	0-1	1
		8	3	22.29	22.23	22.19	0-1	1
		8	7	22.31	22.27	22.18	0-1	1
O MILIT		15	0	22.26	22.23	22.13	0-1	1
3 MHz		1	0	22.08	22.05	21.96	0-1	1
		1	7	22.07	22.10	21.94	0-1	1
		1	14	22.01	22.04	21.92	0-1	1
	16QAM	8	0	21.37	21.36	21.26	0-2	2
		8	3	21.34	21.34	21.25	0-2	2
		8	7	21.36	21.34	21.25	0-2	2
		15	0	21.26	21.25	21.15	0-2	2

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR	
				19975	20175	20375	[dB]	[dD]
				1712.5 MHz	1732.5 MHz	1752.5 MHz	! [ub]	[dB]
		1	0	23.29	23.23	23.19	0	0
		1	12	23.21	23.17	23.11	0	0
		1	24	23.18	23.17	23.09	0	0
	QPSK	12	0	22.30	22.26	22.21	0-1	1
		12	6	22.27	22.24	22.17	0-1	1
		12	11	22.24	22.25	22.18	0-1	1
		25	0	22.24	22.21	22.15	0-1	1
5 MHz		1	0	22.44	22.40	22.35	0-1	1
		1	12	22.36	22.35	22.26	0-1	1
		1	24	22.34	22.34	22.26	0-1	1
	16QAM	12	0	21.35	21.33	21.27	0-2	2
		12	6	21.32	21.31	21.24	0-2	2
		12	11	21.30	21.31	21.26	0-2	2
		25	0	21.23	21.22	21.14	0-2	2

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR	
				20000	20175	20350	[AD]	[dD]
				1712.5 MHz	1732.5 MHz	1752.5 MHz	[dB]	[dB]
		1	0	23.31	23.27	23.16	0	0
		1	24	23.26	23.24	23.11	0	0
		1	49	23.26	23.21	23.06	0	0
	QPSK	25	0	22.26	22.23	22.12	0-1	1
		25	12	22.26	22.21	22.10	0-1	1
		25	24	22.29	22.24	22.07	0-1	1
10 MHz		50	0	22.27	22.23	22.11	0-1	1
10 1011 12		1	0	22.17	22.13	22.03	0-1	1
		1	24	22.12	22.11	21.98	0-1	1
		1	49	22.13	22.08	21.91	0-1	1
	16QAM	25	0	21.27	21.23	21.13	0-2	2
		25	12	21.23	21.20	21.10	0-2	2
		25	24	21.26	21.25	21.08	0-2	2
		50	0	21.23	21.21	21.09	0-2	2

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR	
				20025	20175	20325	[4D]	[AD]
				1717.5 MHz	1732.5 MHz	1747.5 MHz	[dB]	[dB]
		1	0	23.34	23.29	23.17	0	0
		1	36	23.31	23.26	23.15	0	0
		1	74	23.3	23.23	23.08	0	0
	QPSK	36	0	22.36	22.33	22.20	0-1	1
		36	18	22.37	22.28	22.19	0-1	1
		36	38	22.34	22.30	22.14	0-1	1
1 E MILI-		75	0	22.37	22.30	22.18	0-1	1
15 MHz		1	0	22.18	22.16	22.07	0-1	1
		1	36	22.16	22.15	22.04	0-1	1
		1	74	22.17	22.11	21.97	0-1	1
	16QAM	36	0	21.28	21.28	21.17	0-2	2
		36	18	21.30	21.26	21.15	0-2	2
		36	38	21.30	21.25	21.12	0-2	2
		75	0	21.31	21.27	21.14	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Average Power (dBm)	MPR Allowed Per 3GPP	MPR
_ = ===================================			Offset	20175	[dD]	[4D]
				1732.5 MHz	[dB]	[dB]
		1	0	23.34	0	0
		1	49	23.25	0	0
		1	99	23.26	0	0
	QPSK	QPSK 50 0		22.28	0-1	1
		50 25		22.25	0-1	1
		50	49	22.23	0-1	1
20 MHz		100	0	22.24	0-1	1
20 101112		1	0	22.61	0-1	1
		1	49	22.52	0-1	1
		1	99	22.54	0-1	1
	16QAM	50	0	21.30	0-2	2
		50	25	21.26	0-2	2
		50	49	21.25	0-2	2
		100	0	21.25	0-2	2

Note: LTE Band 4 (AWS) at 20 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r03, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

9.4 WiFi

IEEE 802.11 Average RF Power

Mode	Freq.	Channel	IEEE 802.11 (2.4 GHz) Conducted Power	
Mode	[MHz]	Citatillei	[dBm]	
	2 412	1	16.45	
802.11b	2 437	6	16.08	
	2 462	11	16.31	
	2 412	1	11.77	
802.11g	2 437	6	11.90	
	2 462	11	12.04	
	2 412	1	11.93	
802.11n (HT20)	2 437	6	12.14	
(_5)	2 462	11	11.94	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission mode with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Test Configuration

EUI	Coax Cable	Spectrum Analyzer

10. SYSTEM VERIFICATION

10.1 Tissue Verification

The Head /body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

		T	able for	r Head Tis	sue Veri	fication			
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε
			820	0.905	40.6	0.899	41.578	0.67%	-2.35%
12/29/2015	20.9	835H	835	0.919	40.5	0.900	41.500	2.11%	-2.41%
			850	0.932	40.3	0.916	41.500	1.75%	-2.89%
		1800H	1710	1.330	40.1	1.348	40.142	-1.34%	-0.10%
12/28/2015	20.2		1750	1.370	40.0	1.371	40.079	-0.07%	-0.20%
			1800	1.420	39.7	1.400	40.000	1.43%	-0.75%
			1850	1.380	40.0	1.400	40.000	-1.43%	0.00%
12/30/2015	20.4	1900H	1900	1.430	39.9	1.400	40.000	2.14%	-0.25%
			1910	1.440	39.8	1.400	40.000	2.86%	-0.50%
		20.2 2450H	2400	1.820	38.9	1.756	39.290	3.64%	-0.99%
12/21/2015	20.2		2450	1.870	38.6	1.800	39.200	3.89%	-1.53%
			2500	1.930	38.3	1.855	39.140	4.04%	-2.15%

Table for Body Tissue Verification									
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε
01/04/2016	20.4	835B	820	0.954	55.1	0.969	55.258	-1.55%	-0.29%
			835	0.965	55.1	0.970	55.200	-0.52%	-0.18%
			850	0.977	55.1	0.988	55.154	-1.11%	-0.10%
12/29/2015	20.2	1800B	1710	1.450	52.8	1.463	53.537	-0.89%	-1.38%
			1750	1.490	52.8	1.488	53.432	0.13%	-1.18%
			1800	1.540	52.5	1.520	53.300	1.32%	-1.50%
12/28/2015	20.3	1900B	1850	1.510	53.6	1.520	53.300	-0.66%	0.56%
			1900	1.560	53.4	1.520	53.300	2.63%	0.19%
			1910	1.570	53.4	1.520	53.300	3.29%	0.19%
12/21/2015	20.2	2450B	2400	1.920	53.7	1.902	52.770	0.95%	1.76%
			2450	1.990	53.5	1.950	52.700	2.05%	1.52%
			2500	2.060	53.3	2.021	52.640	1.93%	1.25%

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz / 1800 MHz/ 1 900 MHz / 2 450 MHz by using the system Verification kit. (Graphic Plots Attached)

System Verification Results

Freq.	Date	Probe (S/N)	Dipole (S/N)	Liquid	Amb. Temp.	Liquid Temp.	1 W Target SAR _{1g} (SPEAG)	Measured SAR _{1g}	1 W Normalized SAR _{1g}	Deviation	Limit [%]
[MHz]					[°C]	[°C]	[W/kg]	[W/kg]	[W/kg]	[%]	[%]
835	12/29/2015	1605	441	Head	21.2	20.9	9.21	0.914	9.14	- 0.76	± 10
835	01/04/2016	1605	441	Body	20.6	20.4	9.34	0.898	8.98	- 3.85	± 10
1 800	12/28/2015	3968	2d007	Head	20.4	20.2	38.3	3.79	37.9	- 1.04	± 10
1 800	12/29/2015	3903	20007	Body	20.4	20.2	38.3	3.73	37.3	- 2.61	± 10
1 900	12/30/2015	1605	5d032	Head	20.8	20.4	41.1	4.14	41.4	0.73	± 10
1 900	12/28/2015	3903	50032	Body	20.5	20.3	40.9	4.22	42.2	3.18	± 10
2 450	12/21/2015	7370	740	Head	20.4	20.2	53.4	5.16	51.6	- 3.37	± 10
2 450	12/21/2015	7370	743	Body	20.4	20.2	52.1	5.31	53.1	1.92	± 10

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

NOTE;

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

11. SAR TEST DATA SUMMARY

11.1 HEAD SAR Measurement Results

				GS	M 850	Head SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INO.
836.6	190	GSM	33.7	33.51	0.181	Left Cheek	1:8.3	0.223	1.045	0.233	-
836.6	190	GSM	33.7	33.51	0.137	Left Tilt	1:8.3	0.207	1.045	0.216	-
836.6	190	GSM	33.7	33.51	-0.012	Right Cheek	1:8.3	0.460	1.045	0.481	-
836.6	190	GSM	33.7	33.51	-0.042	Right Tilt	1:8.3	0.242	1.045	0.253	-
836.6	190	GPRS 4Tx	29.7	29.21	-0.123	Left Cheek	1:2.075	0.566	1.119	0.634	-
836.6	190	GPRS 4Tx	29.7	29.21	-0.038	Left Tilt	1:2.075	0.324	1.119	0.363	-
836.6	190	GPRS 4Tx	29.7	29.21	-0.119	Right Cheek	1:2.075	0.709	1.119	0.794	1
836.6	190	GPRS 4Tx	29.7	29.21	-0.005	Right Tilt	1:2.075	0.353	1.119	0.395	-
	ANSI/ IE	EE C95.1 - 1	992– Safet	y Limit				Head			
		Spatial F	eak					1.6 W/kg			
	Uncontrolle	ed Exposure/	General Po	opulation			Avera	ged over 1	gram		

				GSI	M 1900	Head SAR					
Frequ	ıency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	NO.
1880.0	661	GSM	30.7	30.42	-0.190	Left Cheek	1:8.3	0.195	1.067	0.208	-
1880.0	661	GSM	30.7	30.42	0.058	Left Tilt	1:8.3	0.101	1.067	0.108	-
1880.0	661	GSM	30.7	30.42	0.078	Right Cheek	1:8.3	0.145	1.067	0.155	-
1880.0	661	GSM	30.7	30.42	0.035	Right Tilt	1:8.3	0.092	1.067	0.098	-
1880.0	661	GPRS 4Tx	26.7	26.15	-0.103	Left Cheek	1:2.075	0.308	1.135	0.350	2
1880.0	661	GPRS 4Tx	26.7	26.15	-0.058	Left Tilt	1:2.075	0.162	1.135	0.184	-
1880.0	661	GPRS 4Tx	26.7	26.15	-0.066	Right Cheek	1:2.075	0.236	1.135	0.268	-
1880.0	661	GPRS 4Tx	26.7	26.15	0.002	Right Tilt	1:2.075	0.153	1.135	0.174	-
	ANSI/ IE	EE C95.1 - 1	992– Safet	y Limit				Head			
		Spatial F	Peak					1.6 W/kg			
	Uncontrolle	ed Exposure/	General Po	opulation			Avera	ged over 1	gram		

				UM [*]	TS 850	Head SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.
836.6	4183	RMC	23.7	23.38	-0.047	Left Cheek	1:1	0.312	1.076	0.336	-
836.6	4183	RMC	23.7	23.38	-0.124	Left Tilt	1:1	0.181	1.076	0.195	-
836.6	4183	RMC	23.7	23.38	-0.011	Right Cheek	1:1	0.393	1.076	0.423	3
836.6	4183	RMC	23.7	23.38	-0.026	Right Tilt	1:1	0.210	1.076	0.226	-
	ANSI/ IEI	EE C95.1 - 1	992– Safet	y Limit				Head			
		Spatial F	Peak					1.6 W/kg			
	Uncontrolle	d Exposure/	General Po	opulation			Avera	aged over 1	gram		

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

				UMT	S 1900	Head SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.
1 880.0	9400	RMC	23.7	23.34	-0.132	Left Cheek	1:1	0.410	1.086	0.445	4
1 880.0	9400	RMC	23.7	23.34	0.038	Left Tilt	1:1	0.225	1.086	0.244	-
1 880.0	9400	RMC	23.7	23.34	-0.152	Right Cheek	1:1	0.321	1.086	0.349	-
1 880.0	9400	RMC	23.7	23.34	-0.063	Right Tilt	1:1	0.229	1.086	0.249	-
	ANSI/ IEI	EE C95.1 - 1	992– Safet	y Limit				Head			
		Spatial F	Peak					1.6 W/kg			
	Uncontrolle	d Exposure/	General Po	opulation			Avera	aged over 1	l gram		

				L	TE B	and 4	(AWS) H	ead S	AR					
Frequ	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB offset	Duty Cycle	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)			Ullset	Cycle	(W/kg)	Facion	(W/kg)	NO.
1 732.5	20175	QPSK	20	23.7	23.34	-0.107	Left Cheek	1	0	1:1	0.255	1.086	0.277	5
1 732.5	20175	QPSK	20	22.7	22.28	-0.094								-
1 732.5	20175	QPSK	20	23.7	23.34	0.079	079 Left Tilt 1 0 1:1 0.144 1.086 0.156							
1 732.5	20175	QPSK	20	22.7	22.28	-0.048	Left Tilt	50	0	1:1	0.120	1.102	0.132	-
1 732.5	20175	QPSK	20	23.7	23.34	0.102	Right Cheek	1	0	1:1	0.205	1.086	0.223	-
1 732.5	20175	QPSK	20	22.7	22.28	0.188	Right Cheek	50	0	1:1	0.159	1.102	0.175	-
1 732.5	20175	QPSK	20	23.7	23.34	0.120	Right Tilt	1	0	1:1	0.167	1.086	0.181	-
1 732.5	20175	QPSK	20	22.7	22.28	-0.005	Right Tilt	50	0	1:1	0.146	1.102	0.161	-
	ANSI/	IEEE C95.	1 - 1992	- Safety	Limit					Head				
		Spa	ıtial Peal	<						1.6 W/kg	9			
	Uncontro	olled Expos	sure/ Ge	neral Pop	oulation				Averaç	ged over	1 gram			

							DTS	Head SA	\R						
Freque	ency	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Area Scan Peak SAR	Meas. SAR	Scaling Factor	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)			(W/kg)	(W/kg)		(Duty)	(W/kg)	
2 412	1	802.11b	22	1	16.5	16.45	0.117	Left Cheek	99.27	0.919	0.576	1.012	1.007	0.587	-
2 412	1	802.11b	22	1	16.5	16.45	0.184	Left Tilt	99.27	0.964	0.613	1.012	1.007	0.625	6
2 412	1	802.11b	22	1	16.5	16.45	0.148	Right Cheek	99.27	0.599	0.410	1.012	1.007	0.418	-
2 412	1	802.11b	22	1	16.5	16.45	0.177	Right Tilt	99.27	0.639	0.419	1.012	1.007	0.427	-
	Α	NSI/ IEEI	E C95.	1 - 1992	2– Safety L	₋imit					Head				
			Spa	tial Pea	k						1.6 W/k	g			
	Unc	ontrolled	Expos	ure/ Ge	neral Popu	ulation				Avera	ged ove	r 1 gram			

11.2 Body-worn SAR Measurement Results

1112	ouy i	/ O	1111110									
				GSM/	UMTS	Body-V	Vorn S	AR				
Frequ	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
836.6	190	GSM 850 GSM	33.7	33.51	0.029	Rear	1:8.3	10	0.547	1.045	0.571	7
836.6	190	GSM 850 GPRS 4Tx	29.7	29.21	-0.130	Rear	1:2.075	10	0.706	1.119	0.790	8
1880.0	661	GSM 1900 GSM	30.7	30.42	-0.008	Rear	1:8.3	10	0.270	1.067	0.288	9
1 880.0	661	GSM 1900 GPRS 4Tx	26.7	26.15	0.080	Rear	1:2.075	10	0.362	1.135	0.411	10
836.6	4183	RMC	23.7	23.38	-0.018	Rear	1:1	10	0.248	1.076	0.267	11
1 880.0	9400	RMC	23.7	23.34	-0.142	Rear	1:1	10	0.506	1.086	0.550	12
	ANSI/ IEE	EE C95.1 - 1 Spatial F		ty Limit					Body 6 W/kg			
U	ncontrolle	d Exposure/	General P	opulation				Averaged	d over 1 gr	am		

					L	ГЕ Во	dy-W	orn S	AR						
Frequ	uency	Mode	Band width	Tune- Up Limit		Power Drift	Test	RB Size	RB		Distance	Meas. SAR	Scaling	SAR	Plot
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position		offset	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
1 732.5	20175	LTE 4	20	23.7	23.34	0.066	Rear	1	0	1:1	10	0.604	1.086	0.656	13
1 732.5	20175	QPSK	20	22.7	22.28	0.101	Rear	50	0	1:1	10	0.480	1.102	0.529	-

						DTS	S Boo	dy-Wo	rn S	SAR						
Frague	2001		Band	Data	Tune-	Meas.	Power	Test	L	Distance	Area Scan	Meas.	Cooling	Scaling	Scaled	Plot
Freque	HICY	Mode	width	Rate	Up Limit	Power	Drift				Peak SAR	SAR	Scaling Factor	Factor	SAR	No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	Position	Cycle	(mm)	(W/kg)	(W/kg)	ractor	(Duty)	(W/kg)	INO.
2 412	1	802.11b	22	1	16.5	16.45	0.192	Rear	99.27	10	0.272	0.181	1.012	1.007	0.184	14
		ANSI/ IEE	E C95.1 -	1992– 5	Safety Lir	nit					Вс	dy				
			Spatia	l Peak							1.6 \	N/kg				
	Ur	ncontrolled	d Exposure	e/ Gener	al Popul	ation					Averaged of	over 1 gi	am			

11.3 Hotspot SAR Measurement Results

11.01	10136		LIVICU	Juici		tosuit	J						
				(3SM 85	0 Hots	pot SAF	}					
Frequ	iency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty Cycle	Distance	Meas. SAR	Scaling	Scaled SAR	Plot	
MHz	Ch.		(dB)	(dB)	(dB)	Position		(mm)	(W/kg)	Factor	(W/kg)	No.	
836.6	190	GPRS 4Tx	29.7	29.21	-0.130								
836.6	190	GPRS 4Tx	29.7	29.21	0.006								
836.6	190	GPRS 4Tx	29.7	29.21	0.013	Left	1:2.075	10	0.269	1.119	0.301	-	
836.6	190	GPRS 4Tx	29.7	29.21	0.035	Right	1:2.075	10	0.485	1.119	0.543	-	
836.6	190	GPRS 4Tx	29.7	29.21	0.037	Bottom	1:2.075	10	0.436	1.119	0.488	-	
	ANSI/ II	EEE C95.1 - Spatial		fety Limit					Body W/kg				
l	Jncontroll	ed Exposure		Populatio	n				over 1 gra	ım			

				G	SM 19	00 Hots	pot SAI	R				
Frequ	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty Cycle	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position		(mm)	(W/kg)	Factor	(W/kg)	No.
1 880.0	661	GPRS 4Tx	26.7	26.15	0.080	Rear	1:2.075	10	0.362	1.135	0.411	10
1 880.0	661	GPRS 4Tx	26.7	26.15	0.052	Front	1:2.075	10	0.354	1.135	0.402	-
1 880.0	661	GPRS 4Tx	26.7	26.15	0.070	Left	1:2.075	10	0.257	1.135	0.292	-
1 880.0	661	GPRS 4Tx	26.7	26.15	-0.017	Bottom	1:2.075	10	0.208	1.135	0.236	-
	ANSI/ I	EEE C95.1 -	1992– Sa	fety Limit				E	Body			
		Spatia	l Peak					1.6	W/kg			
ι	Jncontro	lled Exposure	e/ General	Populatio	n			Averaged	over 1 gra	ım		

	UMTS 850 Hotspot SAR												
Frequency		Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot	
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.	
836.6	4183	RMC	23.7	23.38	-0.018	Rear	1:1	10	0.248	1.076	0.267	11	
836.6	4183	RMC	23.7	23.38	-0.063	Front	1:1	10	0.252	1.076	0.271	-	
836.6	4183	RMC	23.7	23.38	-0.184	Left	1:1	10	0.196	1.076	0.211	-	
836.6	4183	RMC	23.7	23.38	0.029	Right	1:1	10	0.340	1.076	0.366	15	
836.6	4183	RMC	23.7	23.38	0.000	Bottom	1:1	10	0.244	1.076	0.263	-	
	ANSI/ IEEE C95.1 - 1992– Safety Limit						Body						
ι	Jncontrolle		ıl Peak e/ General	Population	n				6 W/kg d over 1 gra	am			

	UMTS 1900 Hotspot SAR											
Frequency		Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
1 880.0	9400	RMC	23.7	23.34	-0.142	Rear	1:1	10	0.506	1.086	0.550	12
1 880.0	9400	RMC	23.7	23.34	0.009	Front	1:1	10	0.494	1.086	0.537	-
1 880.0	9400	RMC	23.7	23.34	0.116	Left	1:1	10	0.349	1.086	0.379	-
1 880.0	9400	RMC	23.7	23.34	0.005	Bottom	1:1	10	0.289	1.086	0.314	-
	ANSI/ IEEE	C95.1 -	1992- Sat	fety Limit		Body						
	Spatial Peak							1.	6 W/kg			
Ur	ncontrolled I	Exposure	/ General	Populatio	n			Average	d over 1 gr	am		

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

				L	TE E	and 4	1 (AWS	S) Ho	tspot	SAR					
Frequ	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test	RB Size	RB	Duty Cycle	Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position		offset	Oycle	(mm)	(W/kg)	Factor	(W/kg)	NO.
1 732.5	20175	QPSK	20	23.7	23.34	0.066	Rear	1	0	1:1	10	0.604	1.086	0.656	13
1 732.5	20175	QPSK	20	22.7	22.28	0.101	Rear	50	0	1:1	10	0.480	1.102	0.529	-
1 732.5	20175	QPSK	20	23.7	23.34	-0.016	Front	1	0	1:1	10	0.535	1.086	0.581	-
1 732.5	20175	QPSK	20	22.7	22.28	0.077	Front	50	0	1:1	10	0.426	1.102	0.469	-
1 732.5	20175	QPSK	20	23.7	23.34	0.049	Left	1	0	1:1	10	0.234	1.086	0.254	-
1 732.5	20175	QPSK	20	22.7	22.28	0.045	Left	50	0	1:1	10	0.189	1.102	0.208	-
1 732.5	20175	QPSK	20	23.7	23.34	-0.003	Bottom	1	0	1:1	10	0.356	1.086	0.387	-
1 732.5	20175	QPSK	20	22.7	22.28	0.018	Bottom	50	0	1:1	10	0.282	1.102	0.311	-
	ANSI/ IEEE C95.1 - 1992- Safety Limit										Body				
	Spatial Peak							1.6 W/kg							
ι	Jncontrol	led Expo	sure/ Ge	eneral Po	pulation	ı				Average	ed over 1 g	gram			

	DTS Hotspot SAR															
Freque	ency	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test	Test Duty Position Cycle		Area Scan Peak SAR			Scaling Factor	SAR	
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	Position	Cycle	(mm)	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	No.
2 412	1	802.11b	22	1	16.5	16.45	0.192	Rear	99.27	10	0.272	0.181	1.012	1.007	0.184	14
2 412	1	802.11b	22	1	16.5	16.45		Front	99.27	10	0.165		1.012	1.007		
2 412	1	802.11b	22	1	16.5	16.45		Right	99.27	10	0.060		1.012	1.007		
2 412	1	802.11b	22	1	16.5	16.45		Тор	99.27	10	0.248		1.012	1.007		
ANSI/ IEEE C95.1 - 1992– Safety Limit						Body										
	Spatial Peak						1.6 W/kg									
	Un	controlled	Expos	ure/ Ge	neral Popu	ulation					Averaged or	er 1 gra	am			

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 648474 D04v01r03, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
- Per FCC KDB 865664 D01v01r04, variability SAR tests were not performed since the measured SAR
 results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis
 information.

GSM/GPRS Test Notes:

- 1. This EUT'S GSM and GPRS device class is B.
- 2. This device supports GPRS VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for head and body-worn compliance.
- 3. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 4. Justification for reduced test configurations per KDB 941225 D01v03r01: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power including tolerance was evaluated for SAR.
- 5. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.
- 6. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Consideration for LTE Devices in FCC KDB 941225 D05v02r03.
- 2. According to FCC KDB 941225 D05v02r03:
 - When the reported SAR is ≤ 0.8 W/kg, testing of the 100%RB allocation and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the 1RB, 50%RB and 100%RB allocation with highest output power for that channel.
 - Only one channel, and as reported SAR values for 1RB allocation and 50%RB allocation were less than 1.45W/Kg only the highest power RB offset for each allocation was required.
- 3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to target MPR is indicated alongside the SAR results.
- 4. A-MPR was dialed for all SAR tests by setting NS=01 on the base station simulator.

- 5. Pre-installed VOIP applications are considered.
 - SAR test reduction is applied using the following criteria: Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is >0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are >0.8 W/kg, Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation <1.45 W/kg. Testing for 16-QAM modulation is not required because the reported SAR for QPSK is <1.45 W/kg and its output power is not more than 0.5 dB higher than that a QPSK. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth.

UMTS Notes:

- 1. The 12.2 kbps RMC mode is the primary mode per KDB 941225 D01v03r01.
- 2. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and Adjusted SAR value was less than 1.2 W/kg.
- 3. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the channel highest output power channel was used.
- 4. UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. For initial test position, the highest extrapolated peak SAR will be used. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR results is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test position are measured.
- 2. Per KDB 248227 D01v02r02 justification for test configurations of 2.4 GHz WiFi Single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11 g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
- 3. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rated, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated WLAN test reports.

12. Simultaneous SAR Analysis

12.1 Simultaneous Transmission Summation for Head

Simultaneous	Transmission Summ	ation Scenario wit	h 2.4 GHz WLAN	
Exposure condition	Band	WWAN SAR	2.4 GHz WLAN SAR	∑1-g SAR
		(W/kg)	(W/kg)	(W/kg)
	GSM 850	0.481	0.625	1.106
	GPRS 850	0.794	0.625	1.419
	GSM 1900	0.208	0.625	0.833
Head SAR	GPRS 1900	0.350	0.625	0.975
	UMTS 850	0.423	0.625	1.048
	UMTS 1900	0.445	0.625	1.070
	LTE 4	0.277	0.625	0.902

12.2 Simultaneous Transmission Summation for Body-Worn

2.2 dimataneous franciscosoff cumulation for Body Worn											
	Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN										
Exposure condition	Distance	Band	WWAN SAR	2.4 GHz WLAN SAR	∑1-g SAR						
	(mm)		(W/kg)	(W/kg)	(W/kg)						
		GSM 850	0.571	0.184	0.755						
		GPRS 850	0.790	0.184	0.974						
		GSM 1900	0.288	0.184	0.472						
Body-worn	10	GPRS 1900	0.411	0.184	0.595						
		UMTS 850	0.267	0.184	0.451						
		UMTS 1900	0.550	0.184	0.734						
		LTE 4	0.656	0.184	0.840						

	Simultaneous Transmission Summation Scenario with Bluetooth										
Exposure	Distance	Dond	WWAN SAR	Bluetooth SAR	∑ 1-g SAR						
condition	(mm)	Band	(W/kg)	(W/kg)	(W/kg)						
		GSM 850	0.571	0.10	0.671						
		GPRS 850	0.790	0.10	0.890						
		GSM 1900	0.288	0.10	0.388						
Body-worn	10	GPRS 1900	0.411	0.10	0.511						
		UMTS 850	0.267	0.10	0.367						
		UMTS 1900	0.550	0.10	0.650						
		LTE Band 4	0.656	0.10	0.756						

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v06. Estimated SAR results were used for SAR summation for body-worn back side at 10 mm to determine simultaneous transmission SAR test exclusion.

12.3 Simultaneous Transmission Summation for Hotspot

	Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN										
Exposure condition	Distance	Band	WWAN SAR	2.4 GHz WLAN SAR	∑1-g SAR						
	(mm)		(W/kg)	(W/kg)	(W/kg)						
		GSM 850	0.790	0.184	0.974						
		GSM 1900	0.411	0.184	0.595						
Hotspot	10	UMTS 850	0.366	0.184	0.550						
		UMTS 1900	0.550	0.184	0.734						
		LTE 4	0.656	0.184	0.840						

12.4 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013.

13. SAR Measurement Variability and Uncertainty

In accordance with KDB procedure 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz, SAR additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement variability was assessed using the following procedures for each frequency band:

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR; steps 2) through 4) do not apply.
- 2) When the original highest measured 1g SAR is \geq 0.80 W/kg or 10g SAR \geq 2.0W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg for 1g SAR or ≥ 3.625 W/kg for 10g SAR ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg for 1g SAR or ≥ 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

14. MEASUREMENT UNCERTAINTY

Unc	ertainty (7	00 MHz	z ~ 26	00 MH	z)	
	Tol	Prob.			Standard Uncertainty	
Error Description	(± %)	dist.	Div.	Ci	(± %)	V _{eff}
1. Measurement System	·					
Probe Calibration	6.00	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related						
Device Positioning	2.25	N	1.00	1	2.25	9
Device Holder	3.60	N	1.00	1	3.60	∞
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup						
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.70	N	1	0.64	1.73	∞
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	1.90	N	1	0.6	1.14	∞
Combind Standard Uncertainty	•	•	•	<u> </u>	10.67	•
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					21.34	

15. SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F01/5K09A1/C/01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4	1417	01/27/2015	Annual	01/27/2016
SPEAG	DAE4	869	10/07/2015	Annual	10/07/2016
SPEAG	DAE3	446	01/21/2015	Annual	01/21/2016
SPEAG	DAE3	466	02/24/2015	Annual	02/24/2016
SPEAG	E-Field Probe EX3DV4	3903	09/28/2015	Annual	09/28/2016
SPEAG	E-Field Probe EX3DV4	3968	06/18/2015	Annual	06/18/2016
SPEAG	E-Field Probe EX3DV4	7370	09/01/2015	Annual	09/01/2016
SPEAG	E-Field Probe ET3DV6	1605	04/27/2015	Annual	04/27/2016
SPEAG	Dipole D835V2	441	01/23/2015	Annual	01/23/2016
SPEAG	Dipole D1800V2	2d007	02/19/2015	Annual	02/19/2016
SPEAG	Dipole D1900V2	5d032	05/20/2015	Annual	05/20/2016
SPEAG	Dipole D2450V2	743	05/19/2015	Annual	05/19/2016
Agilent	Power Meter N1991A	MY45101406	10/03/2015	Annual	10/03/2016
Agilent	Power Sensor N1921A	MY55220026	08/19/2015	Annual	08/19/2016
SPEAG	DAKS 3.5	1038	05/26/2015	Annual	05/26/2016
HP	Dirextional Bridge	86205A	05/20/2015	Annual	05/20/2016
Agilent	Base Station E5515C	GB44400269	02/09/2015	Annual	02/09/2016
HP	Signal Generator N5182A	MY4770230	05/13/2015	Annual	05/13/2016
Agilent	MXA Signal Analyzer N9020A	MY50510407	03/23/2015	Annual	03/23/2016
HP	Network Analyzer 8753ES	JP39240221	03/23/2015	Annual	03/23/2016
R&S	Wideband Radio Communication Tester CMW500	115733	09/18/2015	Annual	09/18/2016
Hewlett Packard	11636B/Power Divider	58698	03/02/2015	Annual	03/02/2016

NOTE:

^{1.} The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

17. REFERENCES

[1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.

- [2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [3] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [4] ANSI/IEEE C 95.1 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006.
- [5] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zörich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation and procedures – Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.

- [21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.
- [22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Band) Issue 5, March 2015.
- [23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz 300 GHz, 2009
- [24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.
- [25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01.
- [26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.
- [27] SAR Evaluation for Laptop, Notebook, Netbook and Tablet computers KDB 616217 D04.
- [28] SAR Measurement and Reporting Requirements for 100 MHz 6 GHz, KDB 865664 D01, D02.
- [29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01, D02.

Attachment 1. - SAR Test Plots

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Plot No.:

DUT: LG-K430T; Type: Bar

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.075

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.92 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

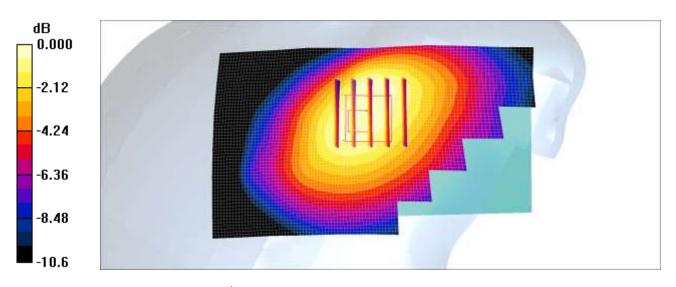
Probe: ET3DV6 - SN1605; ConvF(6.33, 6.33, 6.33); Calibrated: 2015-04-27

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
 Postprocessing SW: SEMCAD, V1.8 Build 186


GSM850 Right Touch 4Tx 190ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.802 mW/g

GSM850 Right Touch 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dx=5mm

Reference Value = 9.37 V/m; Power Drift = -0.119 dB

Peak SAR (extrapolated) = 0.957 W/kg

SAR(1 g) = 0.709 mW/g; SAR(10 g) = 0.530 mW/g Maximum value of SAR (measured) = 0.753 mW/g

0 dB = 0.753 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.8 $^{\circ}$ C Test Date: 12/30/2015

Plot No.:

DUT: LG-K430T; Type: Bar

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(5.01, 5.01, 5.01); Calibrated: 2015-04-27

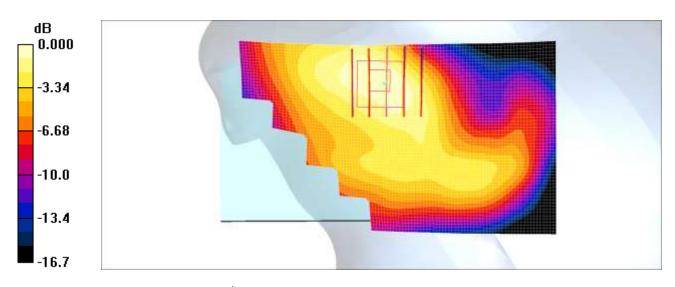
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

• Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
 Destruction OW OFMORE V4.0 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


GSM1900 Left Touch 4Tx 661ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.341 mW/g

GSM1900 Left Touch 4Tx 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.80 V/m; Power Drift = -0.103 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.200 mW/gMaximum value of SAR (measured) = 0.336 mW/g

0 dB = 0.336 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.9 $^{\circ}$ C Ambient Temperature: 21.2 $^{\circ}$ C Test Date: 12/29/2015

Plot No.:

DUT: LG-K430T; Type: Bar

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.92 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.33, 6.33, 6.33); Calibrated: 2015-04-27

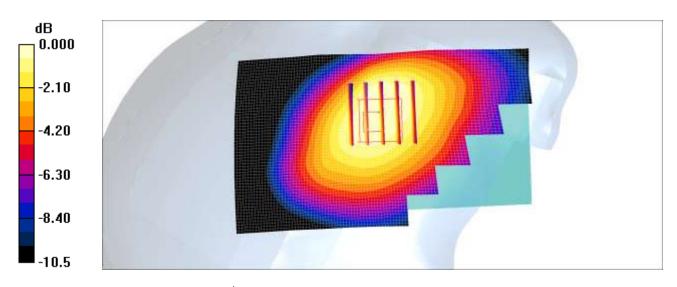
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA850 Right Touch 4183ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.434 mW/g

WCDMA850 Right Touch 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.57 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.515 W/kg

SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.297 mW/gMaximum value of SAR (measured) = 0.410 mW/g

0 dB = 0.410 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.8 $^{\circ}$ C Test Date: 12/30/2015

Plot No.: 4

DUT: LG-K430T; Type: Bar

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

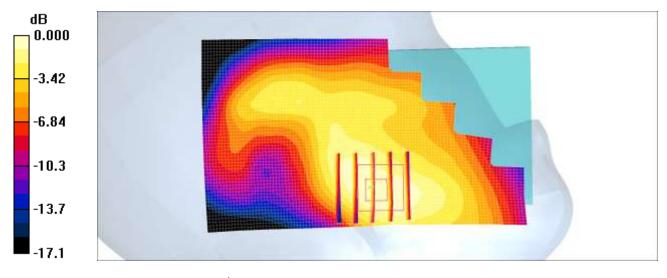
Probe: ET3DV6 - SN1605; ConvF(5.01, 5.01, 5.01); Calibrated: 2015-04-27

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA1900 Left Touch 9400ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.471 mW/g

WCDMA1900 Left Touch 9400ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.13 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 0.571 W/kg

SAR(1 g) = 0.410 mW/g; SAR(10 g) = 0.268 mW/gMaximum value of SAR (measured) = 0.442 mW/g

0 dB = 0.442 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.2 $^{\circ}$ C Ambient Temperature: 20.4 $^{\circ}$ C Test Date: 12/28/2015

Plot No.: 5

DUT: LG-K430T; Type: Bar

Communication System: LTE Band 4; Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.36 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3968; ConvF(8.23, 8.23, 8.23); Calibrated: 2015-06-18

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1417; Calibrated: 2015-01-27

Phantom: SAM

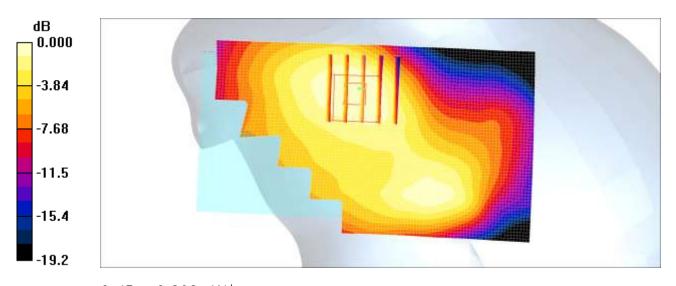
Measurement SW: DASY4, V4.7 Build 80
Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band4 Head Left Touch QPSK 20MHz 1RB 0offset 20175ch/Area Scan (61x111x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.325 mW/g

LTE Band4 Head Left Touch QPSK 20MHz 1RB 0offset 20175ch/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.90 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.255 mW/g; SAR(10 g) = 0.171 mW/g

Maximum value of SAR (measured) = 0.309 mW/g

0 dB = 0.309 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Plot No.: 6

DUT: LG-K430T; Type: Bar

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.83 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

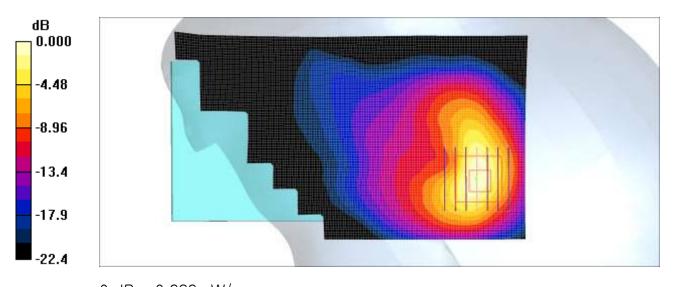
• Probe: EX3DV4 - SN7370; ConvF(6.94, 6.94, 6.94); Calibrated: 2015-09-01

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn869; Calibrated: 2015-10-07

Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
Postprocessing SW: SEMCAD, V1.8 Build 186


802.11b Left Tilt 1Mbps 1ch/Area Scan (81x141x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.964 mW/g

802.11b Left Tilt 1Mbps 1ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.184 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.613 mW/g; SAR(10 g) = 0.268 mW/gMaximum value of SAR (measured) = 0.989 mW/g

0 dB = 0.989 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Plot No.: 7

DUT: LG-K430T; Type: Bar

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.967 \text{ mho/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.11, 6.11, 6.11); Calibrated: 2015-04-27

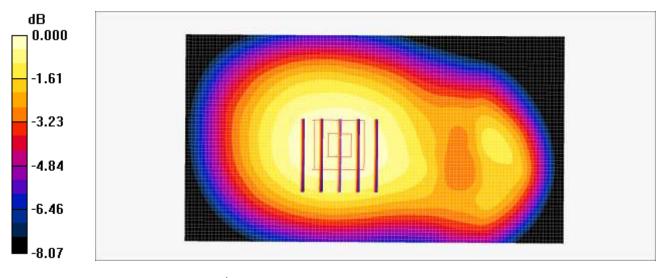
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


GSM850 Body Rear 190ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.570 mW/g

GSM850 Body Rear 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.0 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 0.645 W/kg

SAR(1 g) = 0.547 mW/g; SAR(10 g) = 0.425 mW/g Maximum value of SAR (measured) = 0.569 mW/g

0 dB = 0.569 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C Test Date: 01/04/2016

Plot No.:

DUT: LG-K430T; Type: Bar

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.075

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.967 \text{ mho/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.11, 6.11, 6.11); Calibrated: 2015-04-27

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear 4Tx 190ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.788 mW/g

GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.3 V/m; Power Drift = -0.130 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.706 mW/g; SAR(10 g) = 0.405 mW/g Maximum value of SAR (measured) = 0.778 mW/g

GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.3 V/m; Power Drift = -0.130 dB

Peak SAR (extrapolated) = 0.747 W/kg

SAR(1 g) = 0.638 mW/g; SAR(10 g) = 0.494 mW/g Maximum value of SAR (measured) = 0.663 mW/g

0 dB = 0.663 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.3 $^{\circ}$ C Ambient Temperature: 20.5 $^{\circ}$ C Test Date: 12/28/2015

Plot No.: 9

DUT: LG-K430T; Type: Bar

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN3903; ConvF(7.72, 7.72, 7.72); Calibrated: 2015-09-28

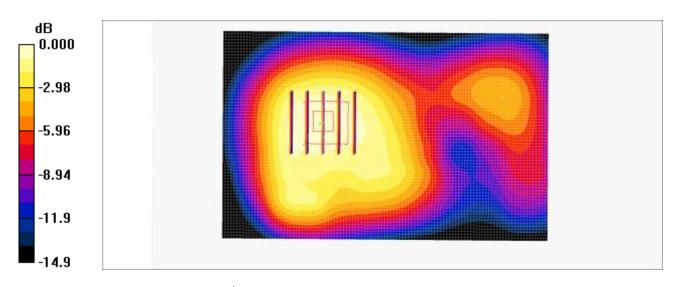
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2015-02-24

Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


GSM1900 Body-worn Rear 661ch/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.348 mW/g

GSM1900 Body-worn Rear 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.63 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.173 mW/gMaximum value of SAR (measured) = 0.345 mW/g

0 dB = 0.345 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Plot No.: 10

DUT: LG-K430T; Type: Bar

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN3903; ConvF(7.72, 7.72, 7.72); Calibrated: 2015-09-28

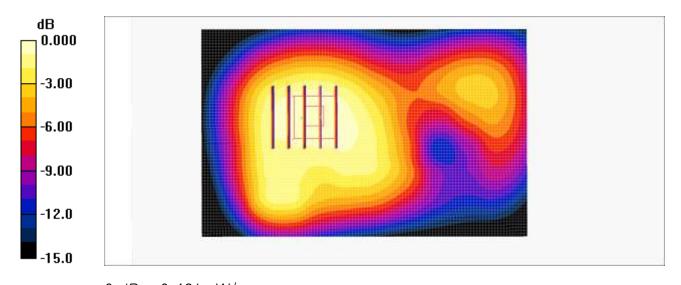
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2015-02-24

Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


GSM1900 Body Rear 4Tx 661ch/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.459 mW/g

GSM1900 Body Rear 4Tx 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.75 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.233 mW/gMaximum value of SAR (measured) = 0.461 mW/g

0 dB = 0.461 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C Test Date: 01/04/2016

Plot No.:

DUT: LG-K430T; Type: Bar

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.967 \text{ mho/m}$; $\epsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.11, 6.11, 6.11); Calibrated: 2015-04-27

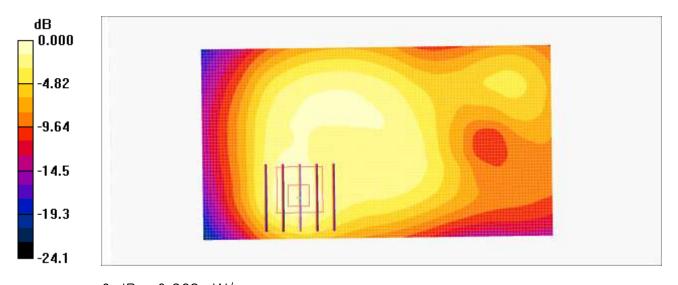
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA850 Body Rear 4183ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.278 mW/g

WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 0.625 W/kg

SAR(1 g) = 0.248 mW/g; SAR(10 g) = 0.121 mW/g Maximum value of SAR (measured) = 0.268 mW/g

0 dB = 0.268 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.3 $^{\circ}$ C Ambient Temperature: 20.5 $^{\circ}$ C Test Date: 12/28/2015

Plot No.: 12

DUT: LG-K430T; Type: Bar

Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN3903; ConvF(7.72, 7.72, 7.72); Calibrated: 2015-09-28

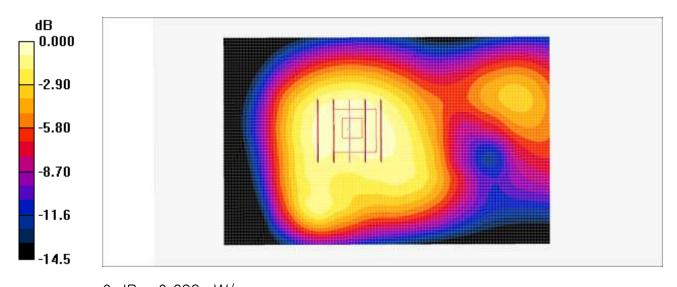
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2015-02-24

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA1900 Body Rear 9400ch/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.650 mW/g

WCDMA1900 Body Rear 9400ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.506 mW/g; SAR(10 g) = 0.329 mW/gMaximum value of SAR (measured) = 0.639 mW/g

0 dB = 0.639 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Liquid Temperature: 20.2 $^{\circ}$ C Ambient Temperature: 20.4 $^{\circ}$ C Test Date: 12/29/2015

Plot No.:

DUT: LG-K430T; Type: Bar

Communication System: LTE Band 4; Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN3903; ConvF(7.94, 7.94, 7.94); Calibrated: 2015-09-28

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2015-02-24

Phantom: Triple Flat Phantom

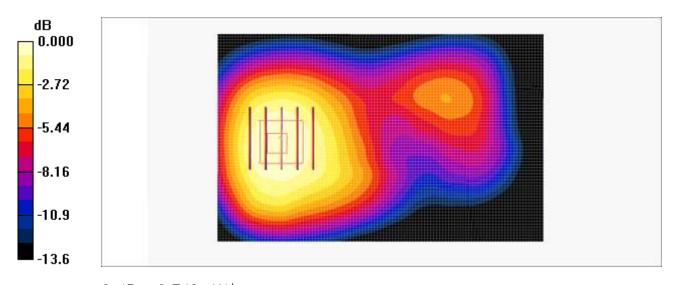
Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 4 Body Rear QPSK 20MHz 1RB 0offset 20175ch/Area Scan (71x111x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.756 mW/g


LTE Band 4 Body Rear QPSK 20MHz 1RB 0offset 20175ch/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.38 V/m; Power Drift = 0.066 dB

Peak SAR (extrapolated) = 0.876 W/kg

SAR(1 g) = 0.604 mW/g; SAR(10 g) = 0.399 mW/gMaximum value of SAR (measured) = 0.743 mW/g

0 dB = 0.743 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Plot No.: 14

DUT: LG-K430T; Type: Bar

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN7370; ConvF(7.16, 7.16, 7.16); Calibrated: 2015-09-01

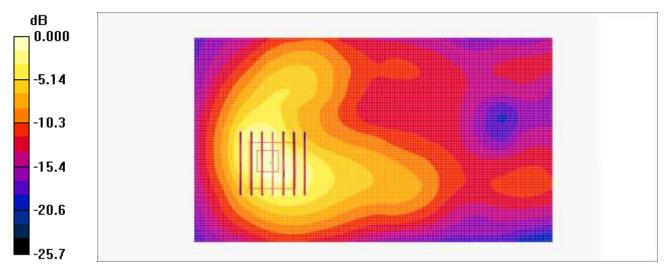
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn869; Calibrated: 2015-10-07

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


802.11b Body Rear 1Mbps 1ch/Area Scan (81x141x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.272 mW/g

802.11b Body Rear 1Mbps 1ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.74 V/m; Power Drift = 0.192 dB

Peak SAR (extrapolated) = 0.380 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.087 mW/gMaximum value of SAR (measured) = 0.273 mW/g

0 dB = 0.273 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM WCDMA LTE Phone with BT & WLAN

Plot No.: 15

DUT: LG-K430T; Type: Bar

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.967 \text{ mho/m}$; $\epsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.11, 6.11, 6.11); Calibrated: 2015-04-27

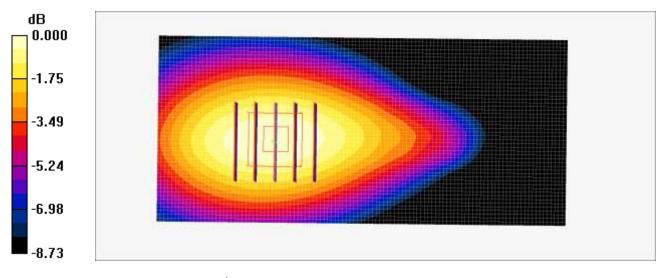
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA850 Body Right 4183ch/Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.365 mW/g

WCDMA850 Body Right 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 0.456 W/kg

SAR(1 g) = 0.340 mW/g; SAR(10 g) = 0.237 mW/g Maximum value of SAR (measured) = 0.364 mW/g

0 dB = 0.364 mW/g

Attachment 2. – Dipole Verification Plots

Verification Data (835 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.9 $^{\circ}$ C Test Date: 12/29/2015

DUT: Dipole 835 MHz; Type: D835V2

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.919 mho/m; ε_r = 40.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.33, 6.33, 6.33); Calibrated: 2015-04-27

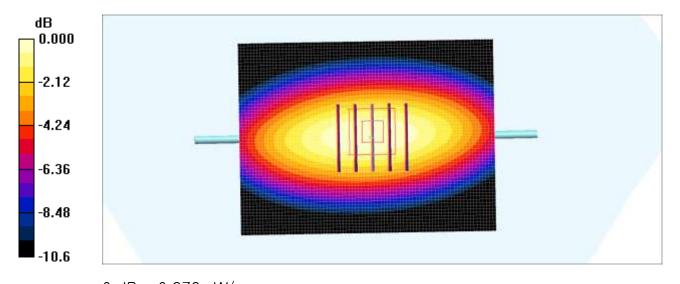
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
 DESTANCE BUILDING BUILDING

Postprocessing SW: SEMCAD, V1.8 Build 186


835 MHz Head Verification/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.989 mW/g

835 MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.0 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.914 mW/g; SAR(10 g) = 0.600 mW/g Maximum value of SAR (measured) = 0.976 mW/g

0 dB = 0.976 mW/g

■ Verification Data (835 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.4 $^{\circ}$ C Test Date: 01/04/2016

DUT: Dipole 835 MHz; Type: D835V2

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.965 mho/m; ε_r = 55.1; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: ET3DV6 - SN1605; ConvF(6.11, 6.11, 6.11); Calibrated: 2015-04-27

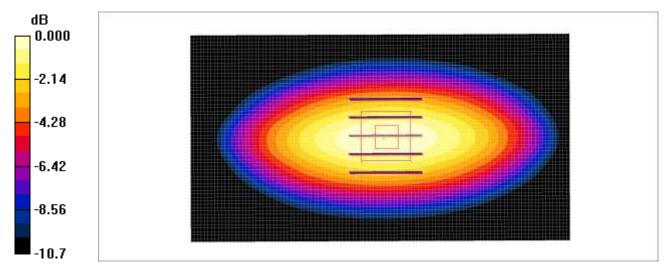
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


835 MHz Body Verification/Area Scan (111x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.983 mW/g

835 MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.2 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.898 mW/g; SAR(10 g) = 0.584 mW/gMaximum value of SAR (measured) = 0.974 mW/g

0 dB = 0.974 mW/g

■ Verification Data (1 800 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.2 $^{\circ}$ C Test Date: 12/28/2015

DUT: Dipole 1800 MHz; Type: D1800V2

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1800 MHz; σ = 1.42 mho/m; ε_r = 39.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

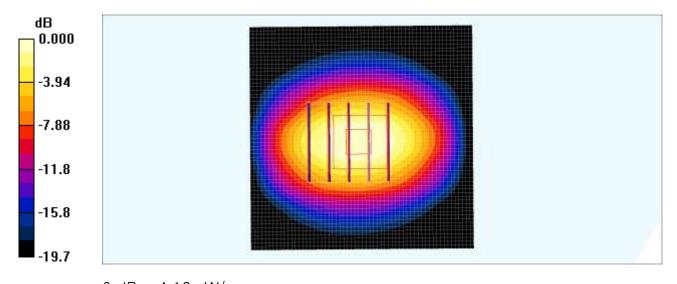
Probe: EX3DV4 - SN3968; ConvF(8.23, 8.23, 8.23); Calibrated: 2015-06-18

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1417; Calibrated: 2015-01-27

· Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
 Postprocessing SW: SEMCAD, V1.8 Build 186


1800MHz Head Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.49 mW/g

1800MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.7 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 7.19 W/kg

SAR(1 g) = 3.79 mW/g; SAR(10 g) = 1.94 mW/gMaximum value of SAR (measured) = 4.16 mW/g

0 dB = 4.16 mW/g

■ Verification Data (1 800 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.2 $^{\circ}$ C Test Date: 12/29/2015

DUT: Dipole 1800 MHz; Type: D1800V2

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1800 MHz; σ = 1.54 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN3903; ConvF(7.94, 7.94, 7.94); Calibrated: 2015-09-28

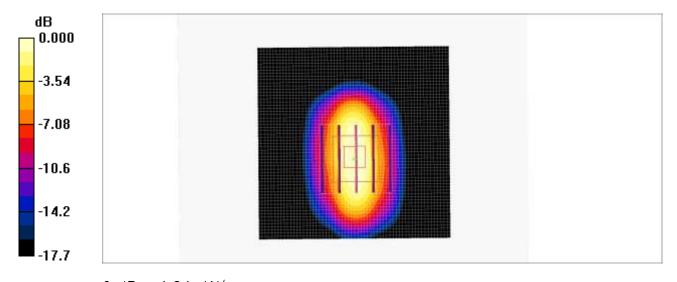
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2015-02-24

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


1800MHz Body Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.83 mW/g

1800MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.0 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 7.43 W/kg

SAR(1 g) = 3.73 mW/g; SAR(10 g) = 1.83 mW/g Maximum value of SAR (measured) = 4.24 mW/g

0 dB = 4.24 mW/g

■ Verification Data (1 900 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.4 $^{\circ}$ C Test Date: 12/30/2015

DUT: Dipole 1900 MHz; Type: D1900V2

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ε_r = 39.9; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

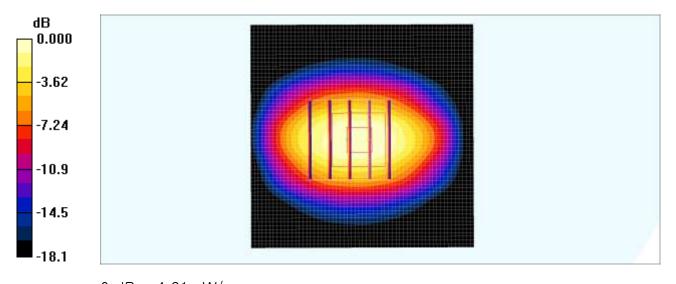
Probe: ET3DV6 - SN1605; ConvF(5.01, 5.01, 5.01); Calibrated: 2015-04-27

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn446; Calibrated: 2015-01-21

· Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
 Postprocessing SW: SEMCAD, V1.8 Build 186


1900MHz Head Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.03 mW/g

1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 61.0 V/m; Power Drift = -0.077 dB

Peak SAR (extrapolated) = 6.83 W/kg

SAR(1 g) = 4.14 mW/g; SAR(10 g) = 2.23 mW/g Maximum value of SAR (measured) = 4.61 mW/g

0 dB = 4.61 mW/g

■ Verification Data (1 900 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.3 $^{\circ}$ C Test Date: 12/28/2015

DUT: Dipole 1900 MHz; Type: D1900V2

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.56 mho/m; ϵ_r = 53.4; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN3903; ConvF(7.72, 7.72, 7.72); Calibrated: 2015-09-28

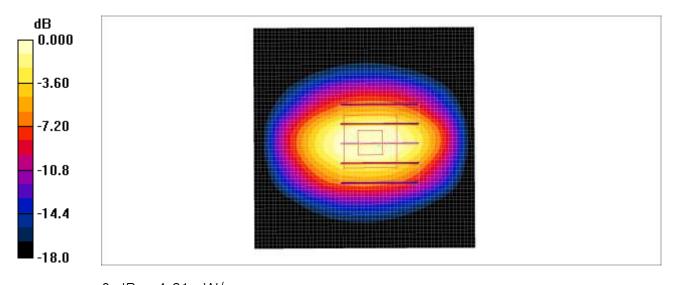
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2015-02-24

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


1900MHz Body Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.09 mW/g

1900MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 7.59 W/kg

SAR(1 g) = 4.22 mW/g; SAR(10 g) = 2.23 mW/gMaximum value of SAR (measured) = 4.61 mW/g

0 dB = 4.61 mW/g

■ Verification Data (2 450 MHz Head)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 20.2 $^{\circ}$ C Test Date: 12/21/2015

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

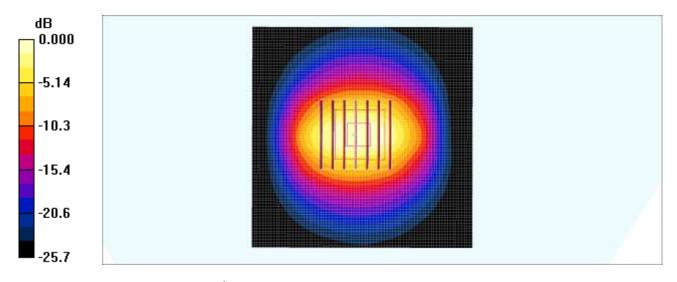
• Probe: EX3DV4 - SN7370; ConvF(6.94, 6.94, 6.94); Calibrated: 2015-09-01

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn869; Calibrated: 2015-10-07

Phantom: SAM

Measurement SW: DASY4, V4.7 Build 80
 Postprocessing SW: SEMCAD, V1.8 Build 186


2450MHz Head Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 8.30 mW/g

2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.0 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 11.7 W/kg

SAR(1 g) = 5.16 mW/g; SAR(10 g) = 2.28 mW/g Maximum value of SAR (measured) = 8.15 mW/g

0 dB = 8.15 mW/g

Verification Data (2 450 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.2 $^{\circ}$ C Test Date: 12/21/2015

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY4 Configuration:

Probe: EX3DV4 - SN7370; ConvF(7.16, 7.16, 7.16); Calibrated: 2015-09-01

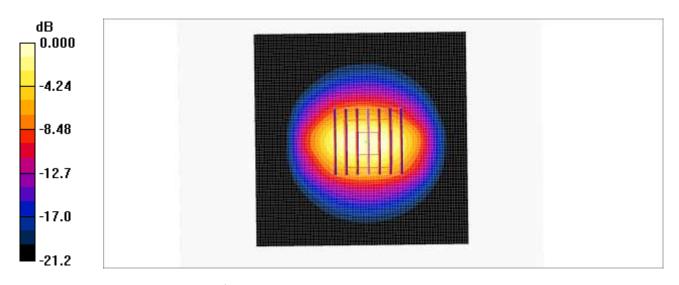
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn869; Calibrated: 2015-10-07

• Phantom: Triple Flat Phantom

Measurement SW: DASY4, V4.7 Build 80

Postprocessing SW: SEMCAD, V1.8 Build 186


2450MHz Body Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 7.94 mW/g

2450MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.8 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 10.7 W/kg

SAR(1 g) = 5.31 mW/g; SAR(10 g) = 2.51 mW/g Maximum value of SAR (measured) = 7.98 mW/g

0 dB = 7.98 mW/g

Attachment 3. – Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

HCT (Dymstec)

Certificate No: ET3-1605_Apr15

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1605

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date April 27, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ND.	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Deton Kastrati

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 29, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1605_Apr15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerlscher Kafibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 8 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- iEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
 characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media, VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip
 (on probe axis), No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1605, Apr 15

Page 2 of 11

ET30V6 - SN:1605

April 27, 2015

Probe ET3DV6

SN:1605

Manufactured: July 27, 2001 Calibrated: April 27, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1605_Apr15

Page 3 of 11

FCC ID: 01. 12, 2016 ZNFK430AR Issue Date:

April 27, 2015 ET30V6-SN:1605

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.49	1.91	1.61	± 10.1 %
DCP (mV) ^{fr}	100.4	99.7	100.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	189.6	±3.0 %
		Y	0.0	0.0	1.0		194.2	
		2	0.0	0.0	1.0		177,7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1605_Apr15

Page 4 of 11

h The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 8).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6-SN:1605

April 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Unct. (k=2)
750	41.9	0.89	6.64	6,64	6.64	0.26	3.00	± 12.0 %
835	41.5	0.90	6,33	6.33	6.33	0.28	3.00	± 12.0 %
900	41.5	0.97	6,14	6.14	6.14	0.31	3.00	± 12.0 %
1450	40.5	1.20	5.37	5.37	5.37	0.45	2.64	± 12.0 %
1750	40.1	1:37	5.20	5.20	5.20	0.73	2.15	± 12.0 %
1900	40.0	1.40	5.01	5.01	5.01	0.80	2.12	± 12.0 %
1950	40.0	1.40	4.94	4.94	4.94	0.80	2.05	± 12.0 %
2300	39.5	1.67	4.77	4.77	4.77	0.80	1.88	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.85	1.75	± 12.0 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 129, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated largel tissue parameters.

*Applia/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ET3-1605_Apr15

Page 5 of 11

April 27, 2015 ET3DV6-SN:1605

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.21	6.21	6.21	0.30	2.71	±12.0 %
835	55.2	0.97	5,11	6.11	6.11	0.30	3.00	± 12.0 %
1750	53.4	1.49	4.66	4.66	4.66	0.80	2.52	± 12.0 %
1900	53.3	1.52	4.54	4.54	4.54	0.80	2,32	± 12.0 %
2450	52.7	1.95	4.18	4.18	4,18	0.79	1.80	± 12.0 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the Convir unpertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for Convir assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of issue parameters (it and in) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies bove 3 GHz, the validity of fissue parameters (it and it) is restricted to ± 5%. The uncertainty is the RSS of the Convir uncertainty for indicated target tissue parameters.

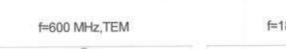
*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe by diameter from the boundary.

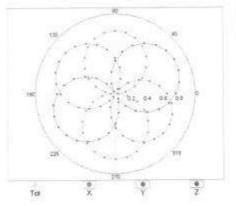
ET3DV6 - SN:1605 April 27, 2015

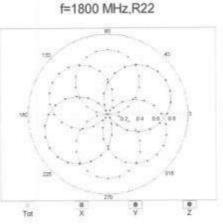
Frequency Response of E-Field

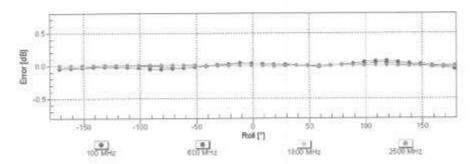
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1605_Apr15

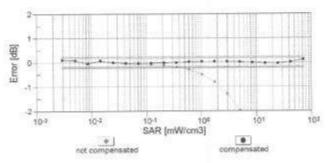

Page 7 of 11


ET3DV6-SN:1605


April 27, 2015

Receiving Pattern (\$\phi\$), 9 = 0°

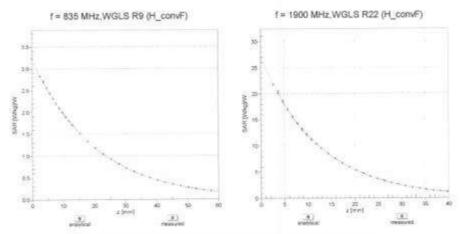
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ET3-1605_Apr15

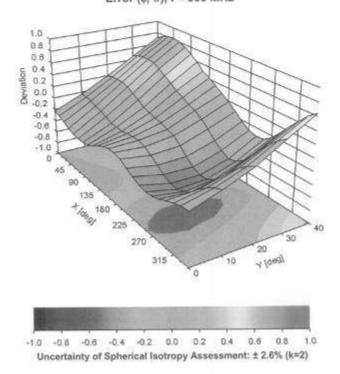
Page 8 of 11

ET3DV6- SN:1605 April 27, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1605_Apr15


Page 9 of 11

ET3DV6- SN:1605 April 27, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ø, 9), f = 900 MHz

Certificate No: ET3-1605_Apr15

Page 10 of 11

April 27, 2015 ET3DV6- SN:1605

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	58.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm
The second secon	

Certificate No: ET3-1605_Apr15

Page 11 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: EX3-3903 Sep15

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3903

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date September 28, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID .	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor 64412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: 95054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: 55129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013, Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Israe Elnoug

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 30, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3903_Sep15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., § = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, *IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013
- Techniques', June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3903_Sep15

Page 2 of 11

EX3DV4 - SN:3903

September 28, 2015

Probe EX3DV4

SN:3903

Manufactured: September 4, 2012 Calibrated: September 28, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3903_Sep15

Page 3 of 11

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

EX3DV4-SN:3903

September 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3903

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (uV/(V/m) ²) ^A	0.41	0.36	0.56	± 10.1 %
Norm (µV/(V/m) ²) ^A DCP (mV) ^B	103.7	108.6	99.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	dB	WR mV	Unc (k=2)
0	CW	X	0.0	0.0	1.0	0.00	145.2	±2.7 %
74.7		Y	0.0	0.0	1.0		134.4	
		Z	0.0	0.0	1,0		143.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3903_Sep15

Page 4 of 11

The uncertainties of Norm X.Y.Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

EX3DV4- SN:3903

September 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3903

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^S (mm)	Unc (k=2)
835	41.5	0.90	9.84	9.84	9.84	0.20	1.58	± 12.0 %
900	41.5	0.97	9.68	9.68	9.68	0.22	1.40	± 12.0 %
1450	40.5	1.20	8.25	8.25	8.25	0.17	1.55	± 12.0 %
1750	40.1	1.37	8,29	8.29	8.29	0.37	0.80	± 12.0 %
1900	40.0	1.40	8.03	8.03	8.03	0.37	0.80	± 12.0 %
1950	40.0	1.40	7.84	7.84	7.84	0.33	0.88	± 12.0 %
2300	39.5	1.67	7.69	7.69	7.69	0.35	0.83	± 12.0 %
2450	39.2	1,80	7.35	7.35	7.35	0.42	0.80	± 12.0 %
2600	39.0	1.96	7.09	7.09	7.09	0.26	1,13	± 12.0 9
5200	36.0	4.66	5.28	5.28	5.28	0.40	1.80	± 13.1 9
5300	35.9	4.76	5.08	5.08	5.08	0.40	1.80	± 13.1 %
5500	35.6	4.96	4,91	4.91	4,91	0.40	1.80	±13.19
5600	35.5	5.07	4.70	4.70	4.70	0.45	1.80	± 13.1 9
5800	35.3	5.27	4.60	4.60	4.60	0.45	1.80	± 13.19

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 10 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if liquid compensation formula is applied to reseasured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3903_Sep15

Page 5 of 11

EX3DV4-SN:3903

September 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3903

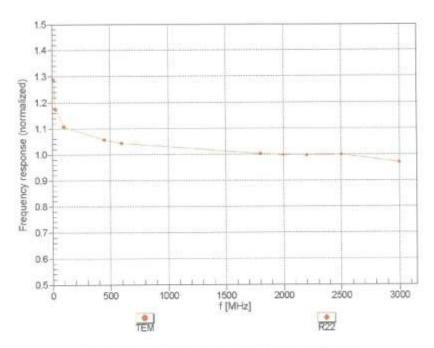
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^d	Depth G (mm)	Unc (k=2)
835	55.2	0.97	10.05	10.05	10.05	0.23	1.29	± 12.0 %
1750	53.4	1.49	7.94	7.94	7.94	0.39	0.85	± 12.0 %
1900	53.3	1.52	7,72	7.72	7.72	0.34	0.87	± 12.0 %
2300	52.9	1.81	7.57	7.57	7.57	0.42	0.80	± 12.0 %
2450	52.7	1.95	7.38	7,38	7.38	0.31	0.95	± 12.0 %
2600	52.5	2.16	7.22	7.22	7.22	0.22	0.95	± 12.0 %
5200	49.0	5.30	4.57	4.57	4.57	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.42	4.42	4.42	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.88	3.88	3.88	0.60	1.90	±13.1 %
5600	48.5	5.77	3.74	3.74	3.74	0.60	1.90	± 13,1 %
5800	48.2	6.00	4.05	4.05	4.05	0.60	1.90	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvEuroertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvEuroerests at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (and if) can be relaxed to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of bissue parameters (in and ii) is restricted to ± 5%. The uncertainty is the RSS of the ConvEuroerest for indicated target tissue parameters.

Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

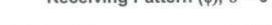

Certificate No: EX3-3903_Sep15

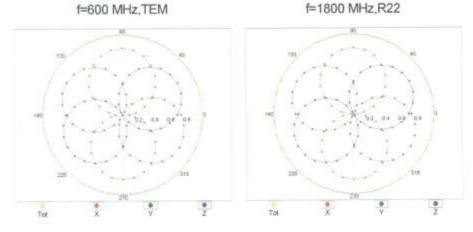
Page 6 of 11

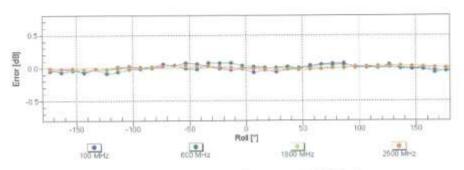
September 28, 2015 EX3DV4- SN:3903

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

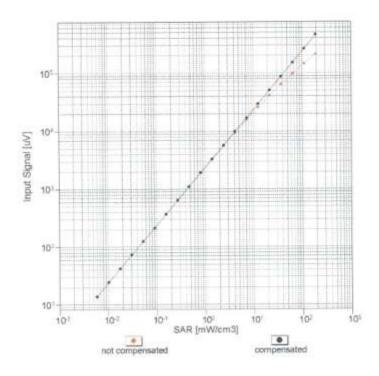

Certificate No: EX3-3903_Sep15

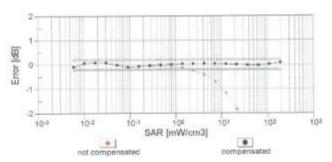

Page 7 of 11



EX3DV4- SN:3903 September 28, 2015

Receiving Pattern (6), 9 = 0°

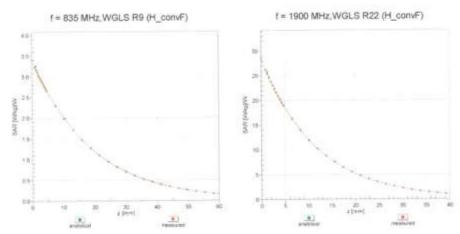




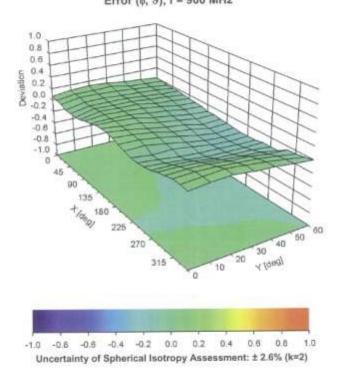
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV4- SN:3903 September 26, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3903_Sep15


Page 9 of 11

EX3DV4- SN:3903 September 28, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (0, 3), f = 900 MHz

Certificate No: EX3-3903_Sep15

Page 10 of 11

September 28, 2015

EX3DV4-SN:3903

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3903

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-33.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3903_Sep15

Page 11 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: EX3-3968_Jun15

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3968

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 18, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	10	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02126)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAÉ4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID.	Check Date (in house)	Scheduled Check
RF generator HP 8646C	U\$3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	in house check: Oct-15

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: June 18, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3968_Jun15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty, cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of CorivF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax.y.z: Bx.y.z: Cx.y.z: Dx.y.z: VRx.y.z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3968_Jun15

Page 2 of 11

EX3DV4 - SN:3968

June 18, 2015

Probe EX3DV4

SN:3968

Manufactured:

September 30, 2013

Calibrated:

June 18, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3968_Jun15

Page 3 of 11

01. 12, 2016 ZNFK430AR FCC ID: Issue Date:

EX3DV4- SN:3968

June 18, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3968

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.36	0.35	0.42	±10.1%
DCP (mV) [®]	103.1	102.8	96.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^c (k=2)
0	CW	X	0.0	0.0	1.0	0.00	130.3	±3.0 %
		Y	0.0	0.0	1.0		129.8	
		Z	0.0	0.0	1.0		142.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3968_Jun15

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter, uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

June 18, 2015 EX3DV4-SN:3968

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3968

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁰ (mm)	Unct. (k=2)
150	52.3	0.76	13.09	13.09	13.09	0.00	1,00	± 13.3 %
300	45.3	0.87	12.28	12.28	12,28	0.10	1.20	± 13.3 %
450	43.5	0.87	10.61	10.61	10.61	0.18	1.20	± 13.3 %
750	41.9	0.89	9.92	9.92	9.92	0.18	1.57	± 12.0 %
835	41.5	0.90	9.60	9,60	9.60	0.21	1.64	± 12.0 %
900	41.5	0.97	9,45	9.45	9.45	0.22	1.25	± 12.0 %
1450	40.5	1.20	8,28	8.28	8.28	0.26	1.02	± 12.0 %
1750	40.1	1.37	8.23	8.23	8.23	0.31	0.80	± 12.0 9
1900	40.0	1.40	7.95	7.95	7,95	0.30	0.80	± 12.0 9
1950	40.0	1.40	7.66	7.66	7.66	0.38	0.80	± 12.0 9
2300	39.5	1.67	7.51	7.51	7.51	0.37	0.80	±12.09
2450	39.2	1.80	7.21	7.21	7.21	0.36	0.80	± 12.0 9
2600	39.0	1,96	7.06	7.06	7.06	0.39	0.89	± 12.0 9
3500	37.9	2.91	6.82	6.82	6.82	0.29	1.33	± 13.1 9
5200	36.0	4.66	5.26	5.26	5.26	0.30	1.80	± 13.1 9
5300	35.9	4.76	5.09	5.09	5.09	0.35	1.80	± 13.19
5500	35.6	4.96	4.86	4.86	4.86	0.40	1.80	±13.19
5600	35.5	5.07	4.59	4.59	4.59	0.40	1.80	± 13.1 9
5800	35.3	5.27	4.68	4.68	4.68	0.40	1.80	± 13.1 9

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^a At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be refixed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^a Alpha/Depth are determined during calibration. SPEAG werrants that the remaining deviation due to the boundary effect after compensation is elways less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe to diameter from the boundary.

Certificate No: EX3-3968_Jun15

Page 5 of 11

EX3DV4-SN:3968

June 18, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3968

Calibration Parameter Determined in Body Tissue Simulating Media

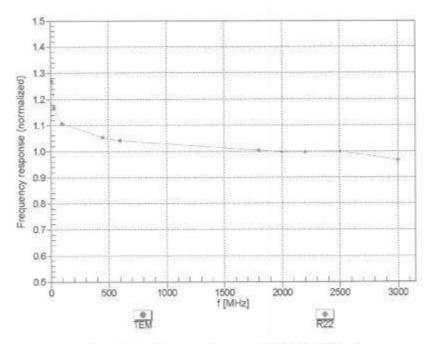
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^T	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^{ft} (mm)	Unct. (k=2)
150	61.9	0.80	12.40	12.40	12.40	0.00	1.00	± 13.3 %
300	58,2	0.92	11.34	11.34	11.34	0.05	1.10	± 13.3 %
450	56.7	0.94	10.86	10.86	10.86	0.12	1.20	± 13.3 %
750	55.5	0.96	9,49	9.49	9,49	0.34	1.03	± 12.0 %
835	55.2	0.97	9.55	9.55	9,55	0.50	0.80	± 12.0 %
900	55.0	1.05	9.34	9.34	9.34	0.42	0.93	± 12.0 %
1750	53.4	1.49	7.87	7.87	7.87	0.42	0.80	± 12.0 %
1900	53.3	1.52	7.60	7.60	7.60	0.33	0.95	± 12.0 %
2450	52.7	1.95	7.25	7.25	7.25	0.36	0.80	± 12.0 %
2600	52.5	2,16	7.10	7.10	7.10	0.24	0.80	± 12.0 %
5200	49.0	5.30	4.71	4.71	4.71	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.44	4.44	4.44	0.40	1.90	±13.1 %
5500	48.6	5.65	4.14	4.14	4,14	0.45	1.90	± 13.1 9
5600	48.5	5.77	3.93	3.93	3.93	0.45	1.90	± 13.1 9
5800	48.2	6.00	4.27	4.27	4.27	0.45	1.90	± 13.1 9

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else ± is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 100 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (c and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated larget tissue parameters.

*Aphia/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3968_Jun15


Page 6 of 11

EX3DV4-- SN:3968

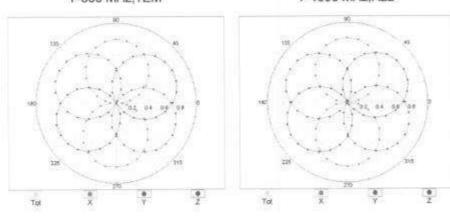
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

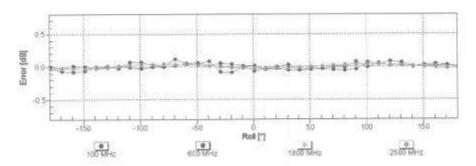
June 18, 2015

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3968_Jun15

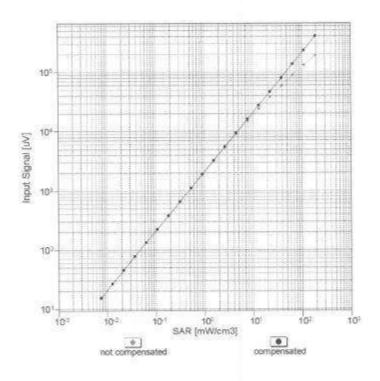
Page 7 of 11

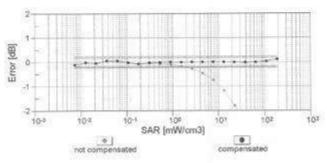

EX3DV4-- SN:3968


June 18, 2015

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

f=1800 MHz,R22

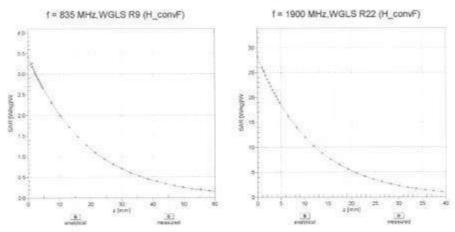

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3968_Jun15

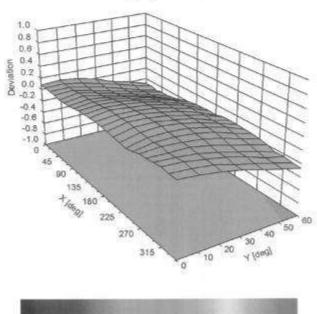
Page 8 of 11

EX3DV4- SN:3968 June 18, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3968_Jun15


Page 9 of 11

EX3DV4- SN:3968 June 18, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\theta\$), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 1. Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3968_Jun15

Page 10 of 11

EX3DV4- SN:3968

June 18, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3968

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	61.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2,5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3968_Jun15

Page 11 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

HCT (Dymstec)

Certificate No: EX3-7370 Sep15

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7370

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

September 1, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ib	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44198	GB41283874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES30V2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	in house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Israe Elnaouq

Laboratory Technicism

Signature

Laboratory

Insued: September 2, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7370_Sep15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweitzerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz."

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSI, (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7370_Sep15 Page 2 of 11

EX3DV4 - SN:7370

September 1, 2015

Probe EX3DV4

SN:7370

Manufactured: March 17, 2015 Calibrated: September 1, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-7370_Sep15 Page 3 of 11

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

EX3DV4-SN:7370

September 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7370

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.47	0.51	0.43	± 10.1 %
Norm (µV/(V/m) ²) ⁴ DCP (mV) ⁸	99.0	105.3	99.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	X	0.0	0.0	1.0	0.00	162.3	±3.3 %
		Y	0.0	0.0	1.0		164.9	
		Z	0.0	0.0	1.0		167.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-7370_Sep15

Page 4 of 11

The uncertainties of Norm X,Y,Z do not affect the E¹-field uncertainty inside TSL (see Pages 5 and 6).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ZNFK430AR FCC ID: Issue Date: 01. 12, 2016

EX3DV4- SN:7370

September 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7370

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^a	Depth ⁰ (mm)	Unc (k=2)
450	43.5	0.87	10.67	10.67	10.67	0.16	1.70	± 13.3 %
750	41.9	0.89	9.81	9.81	9.81	0.26	1.24	± 12.0 %
835	41.5	0.90	9.57	9.57	9.57	0.27	1.17	±12.09
900	41.5	0.97	9.29	9.29	9.29	0.29	1.12	± 12.0 9
1450	40.5	1.20	8.08	8.08	8.08	0.26	1.06	± 12.0 9
1750	40.1	1.37	8.05	8.05	8.05	0.34	0.80	± 12.0 9
1900	40.0	1.40	7.80	7.80	7.80	0.34	0.80	± 12.0 9
1950	40.0	1.40	7.57	7.57	7.57	0.40	0.80	± 12.0 9
2300	39.5	1.67	7,43	7.43	7.43	0.33	0.83	± 12.0 %
2450	39.2	1.80	6.94	6.94	6.94	0.32	0.92	± 12.0 9
2600	39.0	1.96	6.81	6.81	6.81	0.43	0.80	± 12.0 9
3500	37.9	2.91	6.92	6.92	6.92	0.29	1.39	± 13.1 9
5200	36.0	4.66	5.13	5.13	5.13	0.35	1.80	±13.19
5300	35.9	4,76	4.95	4.95	4,95	0.35	1.80	± 13.1 9
5500	35.6	4.96	4.53	4.53	4.53	0.40	1.80	± 13,1 9
5600	35.5	5.07	4,35	4.35	4.35	0.40	1.80	± 13.1 9
5800	35.3	5.27	4.53	4.53	4.53	0.40	1.80	± 13.1 9

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The Frequency validity above 300 MHz of ± 100 MHz orly applies for CASY-v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target fissue parameters.

**Applia/Copt are determined distingle calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7370_Sep15

Page 5 of 11

EX3DV4-- SN:7370

September 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7370

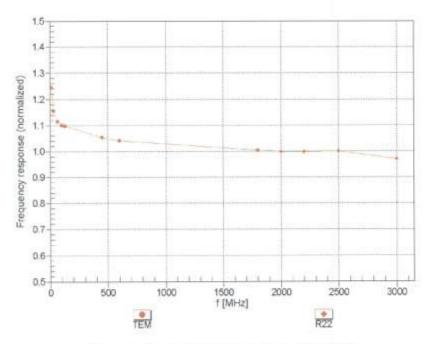
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^d	Depth ⁰ (mm)	Unc (k=2)
450	56.7	0.94	11.08	11.08	11.08	0,11	1.60	± 13.3 %
750	55.5	0.96	9.82	9.82	9.82	0.24	1.27	± 12.0 %
835	55.2	0.97	9.66	9.66	9.66	0.29	1.25	± 12.0 %
1750	53.4	1.49	7.76	7.76	7.76	0.47	0.81	± 12.0 %
1900	53.3	1.52	7.49	7.49	7.49	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.16	7.16	7,16	0.35	0.80	± 12.0 %
2600	52.5	2.16	7.07	7.07	7.07	0.29	0.80	±12.0 %
5200	49.0	5.30	4.64	4.64	4.64	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.46	4,46	4.46	0.45	1.90	± 13.1 %
5500	48.6	5.65	4.03	4.03	4.03	0.50	1.90	± 13.1 %
5600	48,5	5,77	3.85	3.85	3.85	0.50	1.90	±13.1 %
5800	48.2	6.00	4.03	4.03	4.03	0.50	1.90	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 10 MHz.

**All frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if figurd compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Applia/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip claimeter from the boundary.


Certificate No: EX3-7370_Sep15

Page 6 of 11

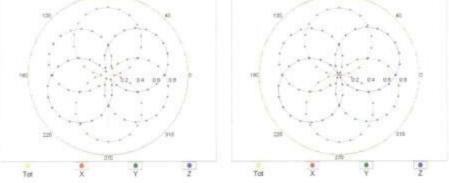
EX3DV4- SN:7370 September 1, 2015

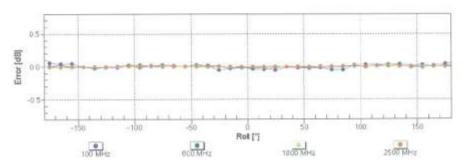
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

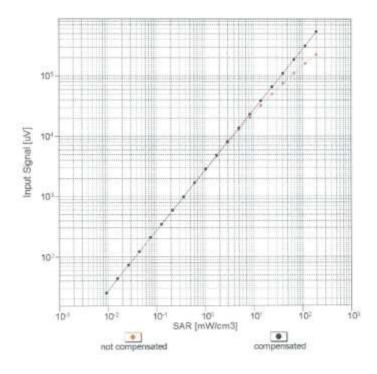
Certificate No: EX3-7370_Sep15

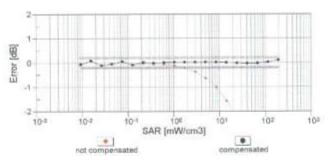

Page 7 of 11



EX3DV4- SN:7370 September 1, 2015

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

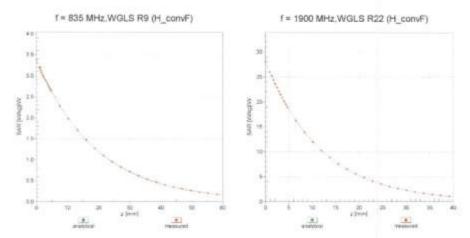



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

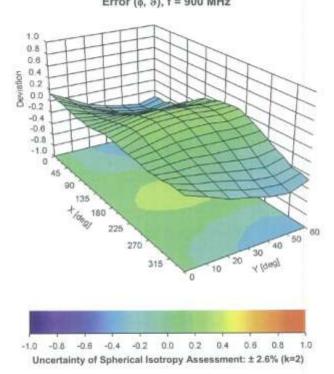
EX3DV4-SN:7370

September 1, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7370_Sep15


Page 9 of 11

EX3DV4—SN:7370 September 1, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\partial\$), f = 900 MHz

Certificate No: EX3-7370_Sep15

Page 10 of 11

EX3DV4~ SN:7370 September 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7370

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	94.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Page 11 of 11 Certificate No: EX3-7370_Sep15

Attachment 4. – Dipole Calibration Data

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-441 Jan15 HCT (Dymstec) CALIBRATION CERTIFICATE D835V2 - SN: 441 Object Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 07-Oct-14 (No. 217-02020) Power sensor HP 8481A US37292783 MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A Fleterence 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Dec-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Reference Probe ES30V3 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 DAE4 SN: 601 Check Date (in house) Scheduled Check Secondary Standards In house check: Oct-16 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-15 18-Oct-01 (in house check Oct-14) Network Analyzer HP 8753E US37390585 S4206 Function Name Calibrated by: Michael Weber Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: January 26, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-441_Jan15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-441_Jan15 Page 2 of 8

Report No. HCT-A-1601-F005

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.21 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.04 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	55.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.14 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-441_Jan15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 1.0 jΩ
Return Loss	- 34.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω - 2.7 Ω	
Return Loss	- 27.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.369 ns	
---	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole, The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 09, 2001

Certificate No: D835V2-441_Jan15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 22.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

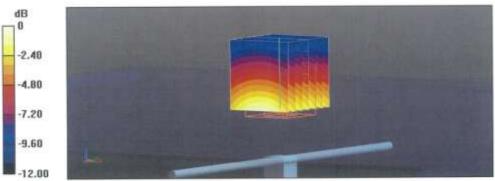
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

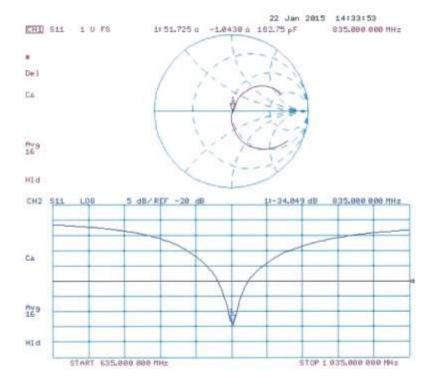

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52,8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.43 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.49 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kgMaximum value of SAR (measured) = 2.76 W/kg


0 dB = 2.76 W/kg = 4.41 dBW/kg

Certificate No: D835V2-441_Jan15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-441_Jan15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 23.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

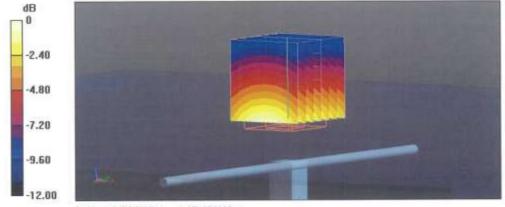
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 55.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

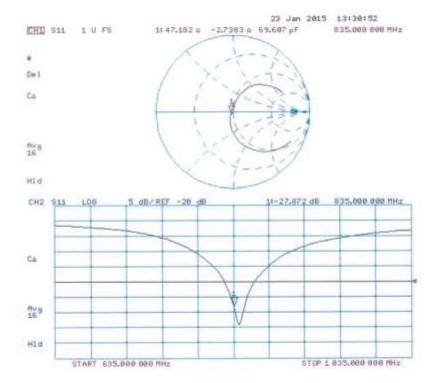

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.59 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kgMaximum value of SAR (measured) = 2.80 W/kg.


0 dB = 2.80 W/kg = 4.47 dBW/kg

Certificate No: D835V2-441_Jan15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-441_Jan15

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

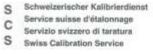
Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

HCT (Dymstec) Certificate No: D1800V2-2d007_Feb15 **CALIBRATION CERTIFICATE** D1800V2 - SN: 2d007 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 19, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A U537292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01916) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Pleference Probe ES30V3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 94-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Michael Weber Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 20, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d007_Feb15


Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d007_Feb15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

SUPPLY AND SERVICE STREET	
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy , $dz = 5 mm$	
1800 MHz ± 1 MHz	
	10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.44 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1000	****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.67 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d007_Feb15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.3 Ω - 6.9 JΩ	
Return Loss	- 22.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.9 Ω - 7.1 μΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,204 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 23, 2001	

Certificate No: D1800V2-2d007_Feb15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

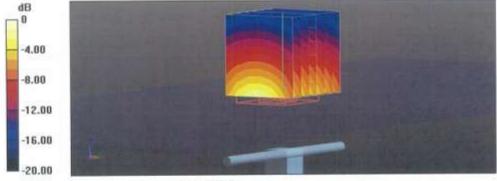
DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d007

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.44 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

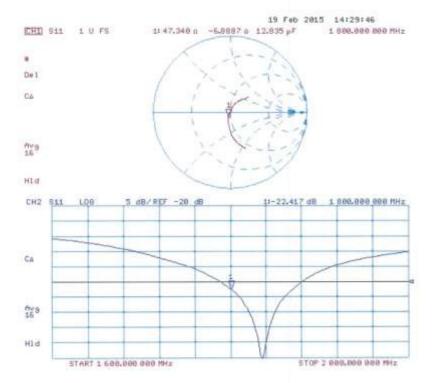

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.45 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.12 W/kgMaximum value of SAR (measured) = 12.4 W/kg



0 dB = 12.4 W/kg = 10.93 dBW/kg

Certificate No: D1800V2-2d007_Feb15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1800V2-2d007_Feb15

Page 6 of 8

FCC ID: ZNFK430AR Issue Date:

DASY5 Validation Report for Body TSL

Date: 19.02.2015

01. 12, 2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d007

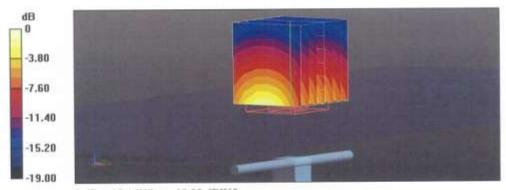
Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.53 \text{ S/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

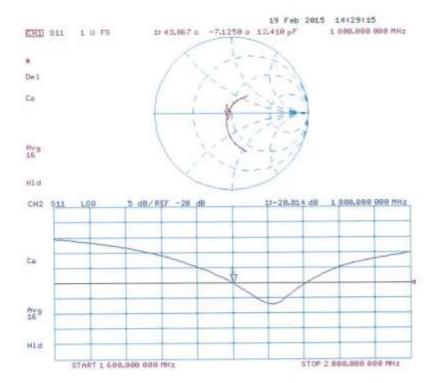

- Probe: ES3DV3 SN3205; ConvF(4.77, 4.77, 4.77); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.07 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.67 W/kg; SAR(10 g) = 5.1 W/kg Maximum value of SAR (measured) = 12.1 W/kg


0 dB = 12.1 W/kg = 10.83 dBW/kg

Certificate No: D1800V2-2d007_Feb15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1800V2-2d007_Feb15

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

ALIBRATION C	ERTIFICATE		The second
Object	D1900V2 - SN: 50	1032	
Salibration procedure(s)	QA CAL-05.v9 Calibration process	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	May 20, 2015		
he measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages as	nd are part of the certificate.
		y facility; environment temperature (22 ± 3)*	C and humidity < 70%.
Calibration Equipment used (M&T	TE critical for calibration)		
Calibration Equipment used (M&T	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration Oct-15
Calibration Equipment used (M&1 Primary Standardii Power meter EPM-442A	TE critical for calibration) ID # GB37490704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration
Calibration Equipment used (M&1 Primary Standardii Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration Oct-15
Calibration Equipment used (M&1 Primary Standardii Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783 MY41082317	Cai Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15
Calibration Equipment used (M&1 Primary Standardii Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	Cai Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15 Oct-15
Calibration Equipment used (M&1 Primary Standardii Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuitor Type-N mismatch combination	ID # GB37480704 US37292783 MY41082317 SN: 5058 (20k)	Cai Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16
Calibration Equipment used (M&1 Primary Standardii Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3	ID # GB37490704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4	ID # GB37499704 US37292783 MY41082317 SN: 5068 (20k) SN: 5067.2 / 06327 SN: 3206 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4	TE critical for calibration) ID # GB37490704 US37292783 MY41082317 SN: 5068 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4	ID # GB37499704 US37292783 MY41082317 SN: 5068 (20k) SN: 5067.2 / 06327 SN: 3206 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37486704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 160005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601 Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Oec-15 Aug-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601 Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37486704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 160005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601 Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205 Dec14) 18-Aug-14 (No. DAE4-601 Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D1900V2-5d032_May15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d032_May15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	41.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2444	

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d032_May15

Page 3 of 8

FCC ID: ZNFK430AR Issue Date:

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω + 5.2]Ω	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω + 5.5 jΩ	
Return Loss	- 24.2 dB	

General Antenna Parameters and Design

	11 10 10 10 10 10 10 10 10 10 10 10 10 1
Electrical Delay (one direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 17, 2003	

Certificate No: D1900V2-5d032_May15

Page 4 of 8

01. 12, 2016

DASY5 Validation Report for Head TSL

Date: 20.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

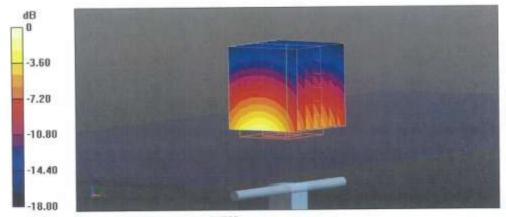
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d032

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

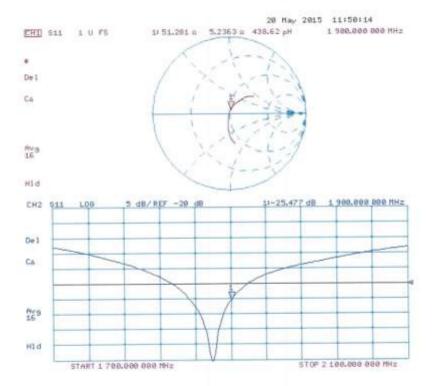

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type; QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.00 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 12.7 W/kg



0 dB = 12.7 W/kg = 11.04 dBW/kg

Certificate No: D1900V2-5d032_May15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d032_May15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 20.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

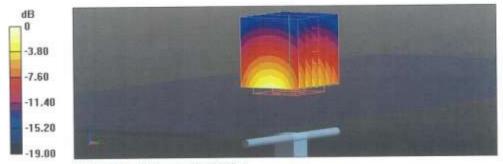
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d032

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\epsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

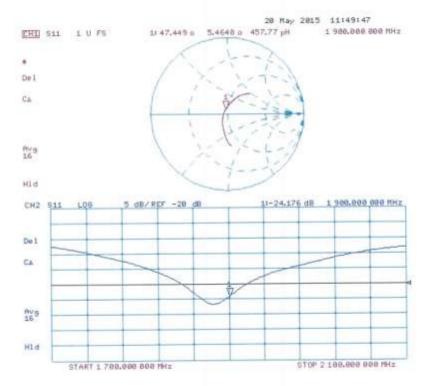

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 12.8 W/kg


0 dB = 12.8 W/kg = 11.07 dBW/kg

Certificate No: D1900V2-5d032_May15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d032_May15

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ALIBRATION C	ERTIFICATE		MENT NO.
Object	D2450V2 - SN: 74	43	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	May 19, 2015		
		obability are given on the following pages an	
		y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&	E critical for calibration)		Scheduled Calibration
Calibration Equipment used (M&		Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15 Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuitor	ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15 Mar-16 Mar-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-15 Oct-15 Mar-16 Mar-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4	TE critical for calibration) ID # GB37490704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-18 Dec-15 Aug-15 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-89 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (In house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-89 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-16
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (In house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-16

Certificate No: D2450V2-743_May15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeuchausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio evizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-743_May15 Page 2 of 8

FCC ID: ZNFK430AR Issue

Issue Date: 01. 12, 2016

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	50.7 ± 6 %	2:03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6,20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-743_May15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 4.4 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$51.4 \Omega + 6.1 \text{ j}\Omega$
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-743_May15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

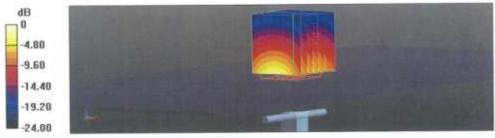
Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_c = 37.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

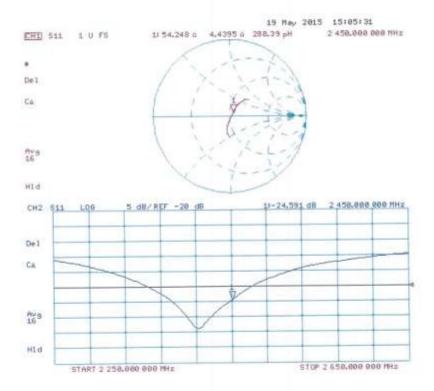

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.4 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.32 W/kg Maximum value of SAR (measured) = 17.7 W/kg


0 dB = 17.7 W/kg = 12.48 dBW/kg

Certificate No: D2450V2-743_May15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-743_May15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 19.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

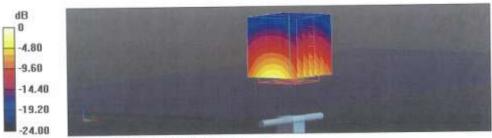
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

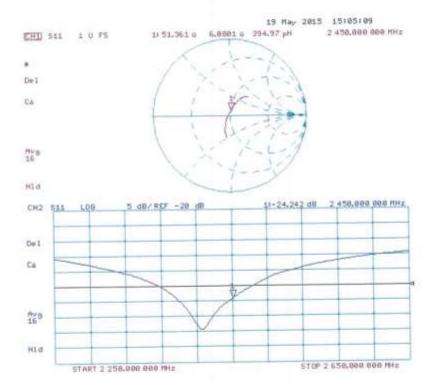

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.12 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.7 W/kg


0 dB = 17.7 W/kg = 12.48 dBW/kg

Certificate No: D2450V2-743_May15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-743_May15

Page 8 of 8

Attachment 5. - SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)								
(% by weight)	8	35	1 900		2 450 – 2 700		5 20	0 - 5 800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	
Water	40.45	53.06	54.9	70.17	71.88	73.2	65.52	78.66	
Salt (NaCl)	1.45	0.94	0.18	0.39	0.16	0.1	0.0	0.0	
Sugar	57.0	44.9	0.0	0	0.0	0.0	0.0	0.0	
HEC	1.0	1.0	0.0	0	0.0	0.0	0.0	0.0	
Bactericide	0.1	0.1	0.0	0	0.0	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	19.97	0.0	17.24	10.67	
DGBE	0.0	0.0	44.92	29.44	7.99	26.7	0.0	0.0	
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	10.67	

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Composition of the Tissue Equivalent Matter

Attachment 6. – SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR			Probe	be			Dielectric Parameters		CW Validation			Modulation Validation		
System No.	Probe	Probe Type	Calibration Point		Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR
4	1605	ET3DV6	Head	835	441	05.11.2015	41.6	0.89	PASS	PASS	PASS	GMSK	PASS	N/A
4	1605	ET3DV6	Body	835	441	05.11.2015	55.4	0.97	PASS	PASS	PASS	GMSK	PASS	N/A
9	3968	EX3DV4	Head	1800	2d007	06.29.2015	40.2	1.41	PASS	PASS	PASS	N/A	N/A	N/A
5	3903	EX3DV4	Body	1800	2d007	10.08.2015	53.1	1.54	PASS	PASS	PASS	N/A	N/A	N/A
4	1605	ET3DV6	Head	1900	5d032	06.04.2015	40.1	1.39	PASS	PASS	PASS	GMSK	PASS	N/A
5	3903	EX3DV4	Body	1900	5d032	10.08.2015	52.4	1.51	PASS	PASS	PASS	GMSK	PASS	N/A
12	7370	EX3DV4	Head	2450	743	09.14.2015	38.6	1.83	PASS	PASS	PASS	OFDM	N/A	PASS
12	7370	EX3DV4	Body	2450	743	09.15.2015	53.6	1.93	PASS	PASS	PASS	OFDM	N/A	PASS

SAR System Validation Summary 1g

Note:

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.