

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383. Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

SAR TEST REPORT

Applicant Name:

LG Electronics, MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 Date of Issue: 02. 03, 2016 Test Report No.: HCT-A-1601-F007-3 Test Site: HCT CO., LTD.

FCC ID:

ZNFK350F

Equipment Type:

Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth

Model Name: Additional Model Name:

Testing has been carried out in accordance with:

47CFR §2.1093 ANSI/ IEEE C95.1 – 1992 IEEE 1528-2013

LG-K350F

LG-K350AR

Date of Test:

 $01/04/2016 \sim 01/13/2016$

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

parkinho

In-Ho Park Test Engineer / SAR Team Certification Division

Reviewed By

Dong-Seob Kim Technical Manager / SAR Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

F-TP22-03 (Rev.00)

Version

Rev.	DATE	DESCRIPTION
HCT-A-1601-F007	01. 19, 2016	First Approval Report
HCT-A-1601-F007-1	02. 01, 2016	Sec. 11.4 LTE Note 4 was revised. (Typo)
HCT-A-1601-F007-2	02. 02, 2016	UMTS Nominal and Maximum output power was revised. (Sec. 2.5 was revised.)
HCT-A-1601-F007-3	02. 03, 2016	Sec. 2.1 was revised (Typo – DUT Dimension)

Table of Contents

1. Attestation of Test Result of Device Under Test	4
2. Device Under Test Description	5
3. INTRODUCTION	13
4. DESCRIPTION OF TEST EQUIPMENT	14
5. SAR MEASUREMENT PROCEDURE	18
6. DESCRIPTION OF TEST POSITION	20
7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	23
8. FCC SAR GENERAL MEASUREMENT PROCEDURES	24
9. Output Power Specifications	29
10. SYSTEM VERIFICATION	45
11. SAR TEST DATA SUMMARY	47
12. Simultaneous SAR Analysis	57
13. SAR Measurement Variability and Uncertainty	6 0
14. MEASUREMENT UNCERTAINTY	61
16. CONCLUSION	63
17. REFERENCES	64
Attachment 1. – SAR Test Plots	66
Attachment 2. – Dipole Verification Plots	67
Attachment 3. – Probe Calibration Data 1	02
Attachment 4. – Dipole Calibration Data 1	39
Attachment 5. – SAR Tissue Characterization 1	8 0
Attachment 6. – SAR SYSTEM VALIDATION 1	81

1. Attestation of Test Result of Device Under Test

Attestation of SAR test result										
Trade Name:	LG Electronics, I	LG Electronics, MobileComm U.S.A., Inc.								
FCC ID:	ZNFK350F	ZNFK350F								
Model:	LG-K350F									
Additional Model Name:	LG-K350AR									
EUT Type	Cellular/PCS GS	M/WCDMA/LT	E Phone with WL	AN and Bluetooth	1					
Application Type:	Certification									
The Highest Reported SAR (W/Kg)										
	Tx. Frequency	Equipment	Rep	ported 1g SAR (V	V/kg)					
Band	(MHz)	Class	Head	Body-Worn	Hotspot					
GSM/GPRS 850	824.2 - 848.8	PCE	0.42	0.50	0.50					
GSM/GPRS 1900	1 850.2 -1 909.8	PCE	0.43	0.47	0.55					
UMTS 850	826.4 - 846.6	PCE	0.35	0.45	0.45					
UMTS 1700	1 712.4 ~ 1 752.6	PCE	0.46	0.67	0.71					
UMTS 1900	1852.4 - 1907.6	PCE	0.85	0.69	0.83					
LTE 2 (PCS)	1 850.7 ~ 1 909.3	PCE	0.76	0.65	0.78					
LTE 4 (AWS)	1 710.7 – 1 754.3	PCE	0.46	0.60	0.65					
LTE 5 (Cell)	824.7 - 843	PCE	0.30	0.39	0.39					
LTE 7	2 502.5 – 2 567.5	PCE	0.07	0.73	0.73					
802.11b	2 412 - 2 462	DTS	0.73	0.15	0.15					
Bluetooth	2 402 - 2 480	DSS/DTS		0.10 *1)						
Simultaneous SAR	per KDB 690783 D0	1v01r03	1.58	0.83	0.98					
Date(s) of Tests:	01/04/2016 ~ 01/	13/2016								

Note :

^{*1)} BT Body-worn SAR value is estimated SAR value that should not be reported standalone SAR on grants of equipment approval.

2. Device Under Test Description

2.1 DUT specification

Device Wireless specification overview							
Band & Mode	Operating Mode Tx Frequency						
GSM/GPRS/EDGE 850	Voice / Data 824.2 – 848.8 MHz						
GSM/GPRS/EDGE 1900	Voice / Data	1 850.2	– 1 909.8 MHz				
UMTS 850	Voice / Data	826.4 -	846.6 MHz				
UMTS 1700	Voice / Data	1 712.4	– 1 752.6 MHz				
UMTS 1900	Voice / Data	1 852.4	– 1 907.6 MHz				
LTE Band 2 (PCS)	Data	1 850.7	– 1 909.3 MHz				
LTE Band 4 (AWS)	Data	1 710.7	– 1 754.3 MHz				
LTE Band 5 (Cell)	Data	824.7 –	848.3 MHz				
LTE Band 7	Data	2 502.5 – 2 567.5 MHz					
2.4 GHz WLAN	Data	2 412.0	– 2 462.0 MHz				
Bluetooth	Data	2 402.0	– 2 480.0 MHz				
Device Description							
Device Dimension	Overall (Length x Width) : 144.56 mm x 71.	45 mm					
Back Cover	Normal Battery cover						
Battery Options	Standard						
	Mode		Serial Number/IMEI				
	Wifi2450, GSM850, LTE7, WCDMA850, L1	TE5	004402-34-635302-6				
Device Serial Numbers	GSM1900, LTE2, LTE4, WCDMA1700, WCDMA1900	004402-34-635309-1					
	Several samples with identical hardware were used to SAR testing. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics are within operational tolerances expected for production units.						

FCC ID: ZNFK350F

2.2 DUT Wireless mode

Wireless Modulation	Band		Operating Mode	Duty Cycle
GSM	850 1900	Voice(GMSK GPRS (GMS EGPRS (8PS	K) Class 12 – 4 Up, 4 Down	GSM Voice: 12.5% GPRS 1 Slot: 12.5% 2 Slots : 25% 3 Slots : 37.5% 4 Slots : 50%
WCDMA (UMTS)	Band 5 Band 4 Band 2	HSDPA (Rel. HSUPA (Rel.	6) 7) (Uplink QPSK Only)	100 %
LTE Band	2 (PCS) 4 (AWS) 5 (Cell) 7	Data (QPSK, 16QAM) 100 % (FDD) Data (QPSK, 16QAM) 100 % (FDD) Data (QPSK, 16QAM) 100 % (FDD) Data (QPSK, 16QAM) 100 % (FDD)		100 % (FDD)
2.4 GHz WLAN Bluetooth			02.11 b, 802.11 g, 802.11 n (HT20) .2 LE	99.19 % N/A

2.3 LTE information

	Iter	n.					Desc	ription			
			Ban	d 2: 1	850.7 M⊦	lz ~ 1 90	9.3 MI	lz			
-		D	Ban	Band 4: 1 710.7 MHz ~ 1 754.3 MHz							
Fre	equenc	/ Range:	Ban	id 5: 82	24.7 MHz	~ 848.3	MHz				
			Band 7: 2 502.5 MHz ~ 2 567.5 MHz								
			Ban	d 2: 1.	4 MHz, 3	MHz, 5 M	MHz, 1	0 MHz, 15	MHz, 20	MHz	
								0 MHz, 15			
Cha	annel Ba	andwidths			4 MHz, 3						
			Ban	d 7: 5	MHz, 10	MHz, 15M	MHz, 2	0MHz			
			С	hannel N	lumber sa	& Freque	ncies(MHz):			
					Ba	nd 2					
1.4 1	MHz	3 N	1Hz	51	MHz	10 N	ЛНz	15 N	ЛНz	2) MHz
Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq (MHz	Ch	Freq. (MHz)	Ch.	Freq. (MHz)
18607	1850.7	18615	1851.5	18625	1852.5	18650	1855	18675	1857.5	18700	1860
18900	1880.0	18900	1880.0	18900	1880.0	18900	1880	18900	1880.0	18900	1880
19193	1909.3	19185	1908.5	19175	1907.5	19150	1905	19125	1902.5	19100	1900
					Ba	nd 4					
1.4 1	MHz	3 N	1Hz	51	MHz	10 MHz 15 M		ЛНz	2	0 MHz	
Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq (MHz	(Ch	Freq. (MHz)	Ch.	Freq. (MHz)
19957	1 710.7	19965	1 711.5	19975	1 712.5	20000	1 715	0 20025	1 717.5	20050	1 720.0
20175	1 732.5	20175	1 732.5	20175	1 732.5	20175	1 732	5 20175	1 732.5	20175	1 732.5
20393	1 754.3	20385	1 753.5	20375	1 752.5	20350	1 750	.0 20325	1 747.5	20300	1 745.0
					Ва	nd 5					
	1.4 MH			3 MHz			5 MH			10 MI	
Ch.		req. (MHz)	Ch.		eq. (MHz)	Ch.		req. (MHz)	Ch.		Freq. (MHz)
20407		824.7	20415		825.5	2042	5	826.5	2045		829.0
20525	5	836.5	20525		836.5	2052		836.5	2052	25	836.5
20643	3	848.3	20635		847.5	2062	5	846.5	2060	00	844.0
					Ba	nd 7					
	5 MHz			10 MHz			15 MI			20 MI	
Ch.		eq. (MHz)		Ch. Freq. (MHz)		Ch.		Freq. (MHz)	Ch.		req. (MHz)
2077		2 502.5	20800		2 505	2082		2 507.5	2085		2 510
21100		2 535.0	21100		2 535	2110		2 535.0	2110		2 535
2142	5	2 567.5	21400		2 565	2137	ō	2 562.5	2135	50	2 560

Item.	Description
Modulations Supported in UL	QPSK, 16QAM
	Data Only,
LTE voice/data requirements	LTE voice is available via VoIP. Considering the users may install 3rd party software to enable VoIP, LTE Head SAR is also evaluated.
	The EUT incorporates MPR as per 3GPP TS 36.101 sec. 6.2.3 ~ 6.2.5
LTE MPR options	The MPR is permanently built-in by design as a mandatory.
	A-MPR is not implemented in the DUT.
Power reduction explanation	This device doesn't implements power reduction.
LTE Release information	LTE Rel. 9, Category 6

2.4 TEST METHODOLOGY and Procedures

The tests documented in this report were performed in accordance with IEEE Standard 1528-2013 & IEEE 1528-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 3G SAR Procedures v03r01
- FCC KDB Publication 941225 D06 Hot Spot SAR v02r01
- FCC KDB Publication 941225 D05 SAR for LTE Devices v02r05
- FCC KDB Publication 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB Publication 447498 D01 General SAR Guidance v06
- FCC KDB Publication 648474 D04 Handset SAR v01r03
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02
- October 2013 TCB Workshop Notes (GPRS testing criteria)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)

2.5 Nominal and Maximum Output Power Specifications This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

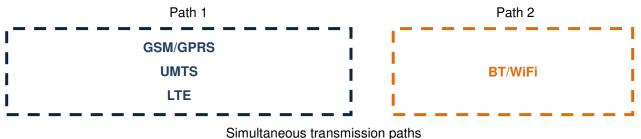
Mode / Band		Voice (dBm)	I	GMSK (dBm	SK (dBm)		
mode / Ban			1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	
GSM/GPRS 850	Maximum	33.7	33.7	30.7	29.7	28.7	
G3W/GFR3 650	Nominal	33.2	33.2	30.2	29.2	28.2	
GSM/GPRS 1900	Maximum	30.2	30.2	27.2	26.2	25.2	
GSIVI/GPR5 1900	Nominal	29.7	29.7	26.7	25.7	24.7	

Mode / Band		3GPP	3GF	PP HSD	PA(dB	m)		3GPP F	ISUPA(dBm)		D	C-HSDF	PA(dBn	n)
Mode / E	sand	WCDMA	Sub test1	Sub test2	Sub test3	Sub test4	Sub test1	Sub test2	Sub test3	Sub test4	Sub Test5	Sub test1	Sub test2	Sub test3	Sub test4
UMTS Band 5	Maximum	23.7	22.5	22.5	22.0	22.0	20.5	20.5	21.5	20.0	20.5	22.5	22.5	20.0	20.0
(850 MHz)	Nominal	23.2	22.0	22.0	21.5	21.5	20.0	20.0	21.0	19.5	20.0	22.0	22.0	21.5	21.5
UMTS Band 4	Maximum	23.2	22.5	22.5	22.0	22.0	20.5	20.5	21.5	20.0	20.5	22.5	22.5	20.0	20.0
(1700 MHz)	Nominal	22.7	22.0	22.0	21.5	21.5	20.0	20.0	21.0	19.5	20.0	22.0	22.0	21.5	21.5
UMTS Band 2	Maximum	23.2	22.5	22.5	22.0	22.0	20.5	20.5	21.5	20.0	20.5	22.5	22.5	20.0	20.0
(1900 MHz)	Nominal	22.7	22.0	22.0	21.5	21.5	20.0	20.0	21.0	19.5	20.0	22.0	22.0	21.5	21.5

Mode / Band				
LTE Bond 2 (DCS)	Maximum	23.2		
LTE Band 2 (PCS)	Nominal	22.7		
LTE Dond 4 (AWC)	Maximum	23.2		
LTE Band 4 (AWS)	Nominal	22.7		
LTE Dand E (Call)	Maximum	23.7		
LTE Band 5 (Cell)	Nominal	23.2		
LTE Dand 7	Maximum	23.2		
LTE Band 7	Nominal	22.7		

Mode /	Band	Modulated Average (dBm)			
		Maximum	16.0		
IEE 802.11b) (2.4 GHZ)	Nominal	15.5		
		Maximum	13.0		
IEEE 802.11	g (2.4 GHZ)	Nominal	12.5		
		Maximum	12.0		
IEEE 802.11	n (2.4 GHZ)	Nominal	11.5		
	DUE	Maximum	7.0		
	DH5	Nominal	6.0		
		Maximum	5.0		
Divisionation	2-DH5	Nominal	4.0		
Bluetooth		Maximum	5.0		
	3-DH5	Nominal	4.0		
		Maximum	1.0		
	LE	Nominal	-1.0		

Device Edges / Sides for SAR Testing									
Mode	Rear	Front	Left	Right	Bottom	Тор			
GSM/GPRS 850	Yes	Yes	Yes	No	Yes	No			
GSM/GPRS 1900	Yes	Yes	No	Yes	Yes	No			
UMTS 850	Yes	Yes	Yes	No	Yes	No			
UMTS 1700	Yes	Yes	No	Yes	Yes	No			
UMTS 1900	Yes	Yes	No	Yes	Yes	No			
LTE Band 2	Yes	Yes	No	Yes	Yes	No			
LTE Band 4	Yes	Yes	No	Yes	Yes	No			
LTE Band 5	Yes	Yes	Yes	No	Yes	No			
LTE Band 7	Yes	Yes	Yes	No	Yes	No			
2.4 GHz WLAN	Yes	Yes	No	Yes	No	Yes			


2.6 DUT Antenna Locations

Particular EUT edges were not required to be evaluated for Wireless Router SAR if the edges were > 25 mm from the transmitting antenna according to FCC KDB 941225 D06v02r01 on page 2. The distance between the transmit antennas and the edges of the device are included in the filing. The overall dimensions of this device are > 9 X 5 cm. A diagram showing device antenna can be found in SAR_setup_photos. Since the diagonal dimension of this device is > 160 mm and < 200 mm, it is considered a "phablet".

* Note: All test configurations are based on front view position.

2.7 SAR Summation Scenario

According to FCC KDB 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

Simultaneous Transmission Scenarios						
Applicable Combination	Head	Body-Worn	Hotspot			
GSM Voice + 2.4 GHz WiFi	Yes	Yes	N/A			
GSM Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A			
GPRS/EDGE + 2.4 GHz WiFi	Yes	Yes	Yes			
GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes	N/A			
UMTS + 2.4 GHz WiFi	Yes	Yes	Yes			
UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A			
LTE+ 2.4 GHz WiFi	Yes	Yes	Yes			
LTE+ 2.4 GHz Bluetooth	N/A	Yes	N/A			

1. 2.4 GHz WLAN, and 2.4GHz Bluetooth share antenna path and cannot transmit simultaneously.

2. All licensed modes share the same antenna path and cannot transmit simultaneously.

3. UMTS +WLAN scenario also represents the UMTS Voice/DATA + WLAN hotspot scenario.

4. LTE is considered pre-installed VOIP applications.

5. The highest reported SAR for each exposure condition is used for SAR summation purpose.

2.8 SAR Test Exclusions Applied

(A) BT & LE

Per FCC KDB 447498 D01v06, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

 $\frac{Max Power of Channel(mW)}{Test Separation Distance (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Mode	Frequency [MHz]	Maximum Separation Distance Allowed Power [mW] [mm]		≤ 3.0
Bluetooth	2 480	5	10	0.79
Bluetooth LE	2 480	1	10	0.16

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(5/10)^*\sqrt{2.480}] = 0.79 < 3.0$.

Based on the maximum conducted power of Bluetooth LE and antenna to use separation distance, Bluetooth LE SAR was not required $[(1/10)^*\sqrt{2.480}] = 0.16 < 3.0$.

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v06 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR = $\frac{\sqrt{f(GHZ)}}{7.5} * \frac{(Max Power of channel mW)}{Min Seperation Distance}$.

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance (Body) [mm]	Estimated SAR (Body) [W/kg]
Bluetooth	2 480	5	10	0.10
Bluetooth LE	2 480	1	10	0.02

Note :

1) Held-to ear configurations are not applicable to Bluetooth and Bluetooth LE operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v06.

2) The frequency of Bluetooth and Bluetooth LE using for estimated SAR was selected highest channel of Bluetooth LE for highest estimated SAR.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r05.

Per FCC KDB 648474 D04v01r03, this device is considered a "Phablet" since the diagonal dimension is greater than 160 mm and less than 200 mm. Therefore, extremity SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR >1.2 W/kg. When hotspot mode applies, 10g SAR required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1g SAR > 1.2 W/kg.

Per FCC KDB 941225 D01v03r01, 12.2 kbps RMC is the primary mode and HSPA (HSUPA/HSDPA with RMC) is the secondary mode.

Per FCC KDB 941225 D01v03r01, The SAR test exclusion is applied to the secondary mode by the following equation.

Adjusted SAR = Highest Reported SAR * $\frac{Secondary Max tune - up (mW)}{Primary Max tune tune - up (mW)} \le 1.2 \text{ W/kg}.$

Based on the highest Reported SAR, the secondary mode is not required.

[0.850 * (186/209)] = 0.758 W/kg ≤ 1.2 W/kg

And the maximum output power and tune-up tolerance in secondary mode is \leq 0.25 dB higher than the primary mode.

3. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., Ne York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{d U}{dm} \right) = \frac{d}{dt} \left(\frac{d U}{\rho dv} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

 σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 & DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

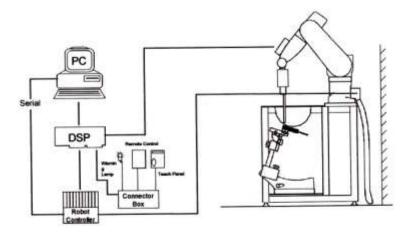


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

4.2 DASY E-FIELD PROBE SYSTEM

Isotropic SAR Probe						
Probe type	ET3DV6	ES3DV3	EX3DV4			
Appearance						
	Symmetrical	design with triangular core Interlea	aved sensors			
Construction	Bu	ilt-in shielding against static charg	es			
	ents, e.g., DGBE)					
Calibration	IEEE 1528-2	2013, IEC 62209-1, IEC 62209-2, I	<db 865664<="" th=""></db>			
_	10 MHz to 2.3 GHz	10 MHz to 4 GHz	10 MHz to 6 GHz			
Frequency	Linearity: ± 0.2 dB Linearity: ± 0.2 dB (30 MHz to 2.3 GHz) (30 MHz to 4 GHz)		Linearity: ± 0.2 dB (30 MHz to 6 GHz)			
	± 0.2 dB in TSL	± 0.2 dB in TSL	± 0.3 dB in TSL			
	(rotation around probe axis)	(rotation around probe axis)	(rotation around probe axis)			
Directivity	± 0.4 dB in TSL	± 0.3 dB in TSL	± 0.5 dB in TSL			
	(rotation normal to probe axis)	(rotation normal to probe axis)	(rotation normal to probe axis)			
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity:		10 μ W/g to > 100 mW/g;			
,	± 0.2 dB	± 0.2 dB	Linearity: ± 0.2 dB			
	Overall length: 337 mm (Tip: 16 mm)	Overall length: 337 mm (Tip: 20 mm)	Overall length: 337 mm (Tip: 20 mm)			
	Tip diameter: 6.8 mm	Tip diameter: 3.9 mm	Tip diameter: 2.5 mm			
Dimensions	(Body: 12 mm)	(Body: 12 mm)	(Body: 12 mm)			
	Distance from probe tip to	Distance from probe tip to	Distance from probe tip to			
	dipole centers: 2.7 mm	dipole centers: 2.0 mm	dipole centers: 1.0 mm			
	General dosimetry up to 2.3 GHz	General dosimetry up to 4 GHz	General dosimetry up to 6 GHz			
	Dosimetry in strong gradient	Dosimetry in strong gradient	Dosimetry in strong gradient			
Application	fields	fields	fields			
	Compliance tests of mobile	Compliance tests of mobile	Compliance tests of mobile			
	phones	phones	phones			

The SAR measurements were conducted with the dosimetric probe ET3DV6, ES3DV3 and EX3DV4(depending on the frequency), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY 4 & 5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

4.3 SAM Phantom

	SAR PHANTOMS							
	Name	Twin SAM						
T W I N	Appearance		The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand Phone usage as well as body-mounted usage at the flat phantom region.					
	Material	Vinyl ester, Fiberglass reinforced (VE-GF)	A cover prevents evaporation of the liquid.					
S	Liquid Compatibility	Compatible with all DGBE Type liquid	Reference markings on the phantom allow the complete setup of all predefined phantom					
Α	Shell Thickness	2 ± 0.2 mm (6±0.2 mm at ear point)	positions and measurement grids by teaching					
Μ	Dimensions	Length : 1000mm Width : 500mm Height : adjustable feet	three points with the robot.					
	Filling Volume	Approx. 25 liters						
	Name	MFP – Triple Modular Phantom						
М	Appearance		Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation.					
F	Material	Vinyl ester, Fiberglass reinforced (VE-GF)	installation. Covers prevent evaporation of the liquid. Phantom material is resistant to					
P	Liquid Compatibility	Compatible with all DGBE Type liquid	DGBE-based tissue simulating liquids.					
	Shell Thickness	2±0.2 mm	Applicable for system performance check from					
	Dimensions	Length : 292mm Width : 178mm Height : 178mm Useable area : 280 x 175mm	700 MHz – 6 GHz as well as dosimetric evaluations of body-worn devices.					
	Filling Volume	Approx. 8.1 liters (filing height 155 mm)						

4.4 Device Holder for Transmitters

Device Holder – Mounting Device

In combination with the SAM Phantom, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the EN 50360:2001/A:2001 and FCC KDB specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

4.5 Validation Dipole

The reference dipole should have a return loss better than -20 dB (measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

	System Validation Dipole	
Description	Symmetrical dipole with $\lambda/4$ balun. Enables measurement of feedpoint impedance with network analyzer (NWA). Matched for use near flat phantoms filled with tissue simulating liquids.	
Frequency	750,835,1900, 2000, 2300, 2450, 2600, 5000 MHz	
Return Loss	> 20 dB at specified validation position	
Power Capability	> 100 W (f < 1GHz), >40 W (f > 1 GHz)	
Dimension	D750V3: dipole length : 179.0 mm ; overall height : 330.0 mm D835V2: dipole length : 158.0 mm ; overall height : 340.0 mm D1900V2: dipole length : 67.7 mm ; overall height : 300.0 mm D2300V2: dipole length : 56.3 mm ; overall height : 290.0 mm D2450V2: dipole length : 52.0 mm ; overall height : 290.0 mm D2600V1: dipole length : 49.2 mm ; overall height : 290.0 mm D5GHzV2: dipole length : 20.6 mm ; overall height : 300.0 mm	

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)

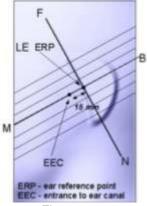
a. The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

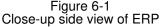
b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.


			\leq 3 GHz	> 3 GHz
Maximum distance from closes geometric center of probe sense		-	5±1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from pr normal at the measurement loca		phantom surface	30°±1°	20°±1°
			≤ 2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm
Maximum area scan Spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan Spatial resolution: Δx_{zoom} , Δy_{zoom}		≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 GHz: ≤5 mm* 4-6 GHz: ≤4 mm*	
	uniform grid: Δz _{zoom} (n)		≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm
Maximum zoom scan Spatial resolution normal to phantom surface	graded	$\Delta z_{zoom}(1)$; between 1 st two Points closest to phantom surface	≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm
	grid	∆z _{zoom} (n>1): between subsequent Points	$\leq 1.5 \cdot \Delta z_{zoom}(n-1)$	
Minimum zoom scan volume x, y, z		≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm	
2011 for details. * When zoom scan is require	d and the r nm, $\leq 7 \text{ mm}$	eported SAR from the arran and ≤ 5 mm zoom scan	ce to the tissue medium; see draft ea scan based 1-g SAR estimation resolution may be applied, respec	n procedures of KDB


6. DESCRIPTION OF TEST POSITION

6.1 EAR REFERENCE POINT

Figure 6-2 shows the front, back and side views of the SAM phantom. The center-of-mouth reference point is labeled "M", the left ear reference point (ERP) is marked "LE", and the right ERP is marked "RE." Each ERP is on the B-M (back-mouth) line located 15 mm behind the entrance-to-ear-canal (EEC) point, as shown in Figure 6-1. The Reference Plane is defined as passing through the two ear reference point and point M. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (See Figure 5-1), Line B-M is perpendicular to the N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

6.1 HEAD POSITION

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The device under test was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Figure 6-3). The acoustic output was than located at the same level as the center of the ear reference point. The device under test was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

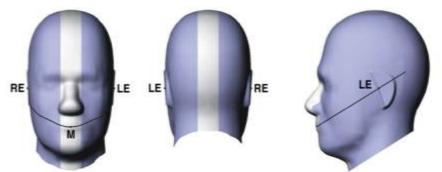
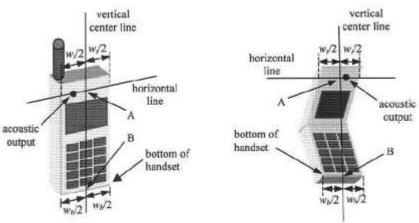
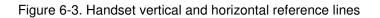




Figure 6-2 Front, back and side views of SAM Twin Phantom

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

6.3 Body-Worn Accessory Configurations

Body-Worn operating configurations are tested with the belt-dips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03 Body-Worn accessory exposure is typically related to voice mode operations when handsets are carried in body-Worn accessories. The body-Worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-Worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-Worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body- Worn accessory, measured without a headset connected to the handset, Sample Body-Worn Diagram is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and

frequency band should be repeated for that body- Worn accessory with a headset

Accessories for Body-Worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-dip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

attached to the handset.

Body-Worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-Worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-Worn transmitters. SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.4 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (LxW \ge 9cmx5 cm) are based on *a* composite test separation distance of 10 mm from the front back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-Worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-Worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot* feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

8. FCC SAR GENERAL MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as Reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

8.2.1 GSM, GPRS AND EDGE

The following procedures may be considered for each frequency band to determine SAR test reduction for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance. GSM voice mode transmits with 1 time slot. GPRS and EDGE may transmit up to 4 time slots in the 8 time-slot frame according to the multi-slot class implemented in a device.

8.2.2 SAR Test Reduction

In FCC KDB 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB 941225 D01v03r01 - 3G SAR Measurement Procedures The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more than 5 % occurred, the tests were repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and speading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR measurements

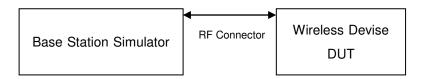
SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

8.4.4 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel 6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configuration in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.5 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.


8.4.6 DC-HSDPA

UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

DC-HSDPA Considerations:

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12(QPSK) was confirmed to be used during DC-HSDPA measurements
- Measured maximum output powers for DC-HSDPA were not greater than 1/4 dB higher than the WCDMA 12.2 kbps RMC maximum output and as a result, SAR is not required for DC-HSDPA
- The DUT supports UE category 24 for HSDPA.

It is expected by the manufacturer that MPR for some HSUPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r03 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluation SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR(Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB offsets for SAR testing

According to FCC KDB 941225 D05v02r05

- a. Per sec 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is \leq 0.8 W/Kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Sec 4.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Sec 4.2.1.
- c. Per Sec. 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Sec. 4.2.4 and 4.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sec. 4.2.1 through 4.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/Kg.</p>

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR system to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating nest to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test positions are measured.

8.6.3 2.4 GHz SAR test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS is that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.4 OFDM Transmission Mode and SAR Test channel Selection

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate and lowest order 802.11 g/n mode. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 Initial Test configuration Procedure

For OFDM, in both 2.4 GHZ, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position on procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg for 1g SAR and ≤ 3.0 W/kg for 10g SAR, no additional SAR tests for the subsequent test configurations are required.

9. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

9.1 GSM

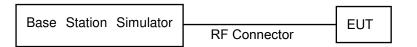
		Voice	GPRS(GMSK) Data – CS1			
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)
0.014	128	33.51	33.51	30.32	29.31	28.31
GSM 850	190	33.53	33.52	30.53	29.54	28.56
000	251	33.46	33.46	30.49	29.48	28.50
0.014	512	30.07	30.05	26.41	25.49	24.49
GSM 1900	661	30.05	30.02	26.54	25.64	24.71
1000	810	30.09	30.07	26.95	26.05	25.08

GSM Conducted output powers (Burst-Average)

GSM Conducted output powers (Frame-Average)							
		Voice	GF	GPRS(GMSK) Data – CS1			
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	
0.014	128	24.48	24.48	24.30	25.05	25.30	
GSM 850	190	24.50	24.49	24.51	25.28	25.55	
000	251	24.43	24.43	24.47	25.22	25.49	
0.014	512	21.04	21.02	20.39	21.23	21.48	
GSM 1900	661	21.02	20.99	20.52	21.38	21.70	
1000	810	21.06	21.04	20.93	21.79	22.07	

Note:

Time slot average factor is as follows:


1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power - 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power - 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power - 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power - 3.01 dB

GSM Class : B GSM voice/GPRS VOIP: Head SAR , Body worn SAR GPRS/EDGE Multi-slots 12 : Hotspot SAR with GPRS/EDGE Multi-slot Class 12 with CS 1 (GMSK)

9.2 UMTS

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7)

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA General Settings	Rel99 RMC	12.2kbps RMC
WODWA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode		HSI	DPA			
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC		12.2kb	os RMC			
	HSDPA FRC		H-S	Set 1			
WCDMA	Power Control Algorithm		Algor	ithm 2			
General	βc	2/15	11/15	15/15	15/15		
Settings	βd	15/15	15/15	8/15	4/15		
Settings	Bd (SF)	64					
	βc/βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR (dB)	0	0	0.5	0.5		
	DACK		8	8			
	DNAK		8	8			
	DCQI		8	8			
hsdpa	Ack-Nack repetition factor		:	3			
Specific	CQI Feedback (Table		4r	ns			
Settings	5.2B.4)						
	CQI Repetition Factor		:	2			
	(Table 5.2B.4)						
	Ahs=βhs/βc		30	/15			

<u>HSPA+</u>

This DUT is only capable of QPSK HSPA+ in uplink. Therefore, the RF conducted power is not measured according to 941225 D01 3G SAR.

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	mode			HSPA						
	Subtest	1	2	3	4	5				
	Loopback Mode			Test Mode 1						
	Rel99 RMC	12.2 kbps RMC								
	HSDPA FRC	H-Set 1								
WCDMA General Settings HSDPA Specific Settings HSUPA Specific Settings	HSUPA Test			HSPA						
	Power Control Algorithm		Algorit	hm 2		Algorithm 1				
WCDMA	βc	11/15	6/15	15/15	2/15	15/15				
General	βd	15/15	15/15	9/15	15/15	0				
Settings	βec	209/225	12/15	30/15	2/15	5/15				
	βc/βd	11/15	6/15	15/9	2/15	15/1				
	βhs	22/15	12/15	30/15	4/15	5/15				
	βed	1309/225	94/75	47/15	56/75	47/15				
	CM (dB)	1	3	2	3	1				
	MPR (dB)	0	2	1	2	0				
	DACK		8	•		0				
	DNAK		8			0				
General Settings	DCQI		8							
	Ack-Nack repetition factor		3							
	CQI Feedback (Table 5.2B.4)			4ms						
	CQI Repetition Factor			2						
	(Table 5.2B.4)									
	Ahs = βhs/βc			30/15						
	E-DPDCCH	6	8	8	5	7				
	DHARQ	0	0	0	0	0				
	AG Index	20	12	15	17	21				
	ETFCI (from 34.121 Table	75	67	92	71	81				
	C.11.1.3)									
	Associated Max UL Data Rate	242.1	174.9	482.8	205.8	308.9				
	kbps									
	Reference E-TFCIs	5	5	2	5	1				
HSUPA	Reference E-TFCI	11	11	11	11	67				
Specific	Reference E-TFCI PO	4	4	4	4	18				
Settings	Reference E-TFCI	67	67	92	67	67				
	Reference E-TFCI PO	18	18	18	18	18				
	Reference E-TFCI	71	71	71	71	71				
	Reference E-TFCI PO	23	23	23	23	23				
	Reference E-TFCI	75	75	75	75	75				
	Reference E-TFCI PO	26	26	26	26	26				
	Reference E-TFCI	81	81	81	81	81				
	Reference E-TFCI PO	27	27	27	27	27				
	Maximum Channelization Codes		2xS	F2		SF4				

WCDMA850

3GPP		3GPP 34.121	W	/CDMA Band 5 [d	Bm]
Release Version	Mode	Subtest	UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458
99	WCDMA	12.2 kbps RMC	23.16	23.23	23.25
99	WCDMA	12.2 kbps AMR	23.17	23.22	23.23
5		Subtest 1	22.11	22.14	22.17
5		Subtest 2	22.15	22.13	22.18
5	HSDPA	Subtest 3	21.70	21.67	21.75
5		Subtest 4	21.65	21.64	21.71
6		Subtest 1	20.16	20.17	20.20
6		Subtest 2	20.21	20.19	20.21
6	HSUPA	Subtest 3	21.13	21.14	21.18
6		Subtest 4	19.68	19.70	19.77
6		Subtest 5	20.13	20.15	20.17
8		Subtest 1	22.43	22.36	22.26
8		Subtest 2	22.42	22.38	22.26
8	DC-HSDPA	Subtest 3	22.03	21.89	21.75
8		Subtest 4	22.03	21.89	21.75

WCDMA Average Conducted output powers

WCDMA1700

3GPP		3GPP 34.121	W	CDMA Band 4 [d	Bm]
Release Version	Mode	Subtest	UL 1312 DL 1537	UL 1412 DL 1638	UL 1512 DL 1738
99	WCDMA	12.2 kbps RMC	22.70	22.81	22.67
99	WCDMA	12.2 kbps AMR	22.72	22.82	22.67
5		Subtest 1	21.68	21.80	21.63
5	HSDPA	Subtest 2	21.72	21.84	21.66
5	ISDFA	Subtest 3	21.25	21.38	21.20
5		Subtest 4	21.24	21.36	21.16
6		Subtest 1	19.72	19.84	19.65
6		Subtest 2	19.75	19.87	19.69
6	HSUPA	Subtest 3	20.73	20.85	20.67
6		Subtest 4	19.21	19.39	19.21
6		Subtest 5	19.69	19.79	19.62
8		Subtest 1	21.79	21.70	21.56
8	DC-HSDPA	Subtest 2	21.85	21.76	21.56
8		Subtest 3	21.34	21.23	21.08
8		Subtest 4	21.34	21.23	21.07

WCDMA1900

3GPP		3GPP 34.121	N	/CDMA Band 2 [d	Bm]
Release Version	Mode	Subtest	UL 9262 DL 9662	UL 9400 DL 9800	UL 9538 DL 9938
99	WCDMA	12.2 kbps RMC	22.91	22.81	22.85
99	WCDMA	12.2 kbps AMR	22.92	22.83	22.87
5		Subtest 1	21.94	21.86	21.90
5		Subtest 2	21.96	21.88	21.92
5	HSDPA	Subtest 3	21.48	21.43	21.53
5		Subtest 4	21.47	21.41	21.52
6		Subtest 1	19.97	19.97	19.92
6		Subtest 2	20.02	19.91	19.99
6	HSUPA	Subtest 3	21.00	20.91	20.99
6		Subtest 4	19.46	19.39	19.43
6		Subtest 5	20.02	19.93	19.88
8		Subtest 1	21.93	21.61	21.90
8	DC-HSDPA	Subtest 2	21.93	21.65	21.92
8		Subtest 3	21.42	21.14	21.41
8		Subtest 4	21.42	21.15	21.42

- LTE Band 2

HС

HCT CO., LTD

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR	
				18607	18900	19193	[dB]	[dP]
				1850.7 MHz	1880 MHz	1909.3 MHz	[ub]	[dB]
		1	0	22.69	22.99	22.75	0	0
		1	3	22.72	23.02	22.85	0	0
		1	5	22.74	22.98	22.86	0	0
	QPSK	3	0	22.72	22.94	22.79	0	0
		3	1	22.69	22.87	22.71	0	0
		3	3	22.75	22.94	22.67	0	0
1.4 MHz		6	0	21.67	21.93	21.72	0-1	1
		1	0	21.97	21.88	21.78	0-1	1
		1	3	22.00	21.92	21.80	0-1	1
		1	5	22.01	21.91	21.80	0-1	1
	16QAM	3	0	21.83	22.08	21.77	0-1	1
		3	1	21.79	22.03	21.72	0-1	1
		3	3	21.86	22.07	21.79	0-1	1
		6	0	20.56	21.03	20.83	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR	
			Offset	18615	18900	19185	[dB]	[dB]
				1851.5 MHz	1880 MHz	1908.5 MHz	[UB]	[UD]
		1	0	22.94	22.93	22.69	0	0
		1	7	22.88	22.99	22.75	0	0
		1	14	22.61	22.92	22.78	0	0
	QPSK	8	0	21.70	21.98	21.69	0-1	1
		8	3	21.72	21.99	21.73	0-1	1
		8	7	21.78	21.98	21.72	0-1	1
2 MI I-		15	0	21.71	21.92	21.73	0-1	1
3 MHz		1	0	21.46	22.16	21.67	0-1	1
		1	7	21.57	22.18	21.71	0-1	1
		1	14	21.56	22.16	21.69	0-1	1
	16QAM	8	0	20.79	21.00	20.76	0-2	2
		8	3	20.82	20.99	20.76	0-2	2
		8	7	20.87	20.98	20.78	0-2	2
		15	0	20.73	20.91	20.70	0-2	2

Bandwidth	Modulation	RB Size	RB	Max. Av	MPR Allowed Per 3GPP	MPR		
			Offset	18625	18900	19175	[dB]	[dB]
				1852.5 MHz	1880 MHz	1907.5 MHz	[ub]	[ub]
		1	0	22.70	22.95	22.78	0	0
		1	12	22.85	23.02	22.72	0	0
		1	24	23.06	22.89	22.80	0	0
	QPSK	12	0	21.91	21.90	21.78	0-1	1
		12	6	22.02	21.99	21.73	0-1	1
		12	11	21.95	21.95	21.71	0-1	1
5 MHz		25	0	21.87	21.92	21.70	0-1	1
5 1011 12		1	0	21.97	22.08	21.86	0-1	1
		1	12	22.05	22.09	21.77	0-1	1
		1	24	22.05	22.04	21.80	0-1	1
	16QAM	12	0	20.87	21.05	20.86	0-2	2
		12	6	20.85	21.07	20.85	0-2	2
		12	11	20.85	21.10	20.83	0-2	2
		25	0	20.84	20.88	20.70	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	MPR Allowed Per 3GPP	MPR		
			Offset	18650	18900	19150	[dB]	[dB]
				1855 MHz	1880 MHz	1905 MHz	[UD]	[UD]
		1	0	22.63	23.09	22.83	0	0
		1	24	22.98	22.93	22.82	0	0
		1	49	22.75	22.77	22.30	0	0
	QPSK	25	0	21.80	21.96	21.74	0-1	1
		25	12	21.90	21.96	21.75	0-1	1
		25	24	21.94	21.94	21.69	0-1	1
10 MHz		50	0	21.98	21.94	21.73	0-1	1
		1	0	21.56	22.12	21.76	0-1	1
		1	24	21.89	22.16	21.76	0-1	1
		1	49	21.74	22.11	21.34	0-1	1
	16QAM	25	0	20.88	20.93	20.84	0-2	2
		25	12	20.80	20.97	20.84	0-2	2
		25	24	20.93	20.97	20.83	0-2	2
		50	0	20.88	20.95	20.81	0-2	2

Bandwidth	Modulation	Iodulation RB Size		Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR	
			Offset	18675	18900	19125		
				1857.5 MHz	1880 MHz	1902.5 MHz	[dB]	[dB]
		1	0	22.66	23.15	22.78	0	0
		1	36	23.02	22.96	22.78	0	0
		1	74	22.97	22.95	22.44	0	0
	QPSK	36	0	21.96	22.04	21.86	0-1	1
		36	18	22.02	22.03	21.86	0-1	1
		36	38	22.09	22.01	21.80	0-1	1
15 MHz		75	0	22.04	22.04	21.80	0-1	1
		1	0	21.61	21.83	22.07	0-1	1
		1	36	21.87	21.84	22.09	0-1	1
		1	74	21.93	21.74	21.94	0-1	1
	16QAM	36	0	20.94	20.96	20.81	0-2	2
		36	18	21.01	20.98	20.79	0-2	2
		36	38	21.06	20.95	20.78	0-2	2
		75	0	21.03	20.98	20.79	0-2	2

Bandwidth	Modulation	Modulation RB Size		RB	Max.Av	erage Powe	MPR Allowed Per 3GPP	MPR
			Offset	18700	00 18900 19100	[dP]	[dB]	
				1860 MHz	1880 MHz	1900 MHz	[dB]	[UD]
		1	0	22.76	23.11	22.86	0	0
		1	49	22.99	23.01	22.83	0	0
		1	99	23.06	22.88	22.80	0	0
	QPSK	50	0	21.91	21.95	21.93	0-1	1
		50	25	21.99	21.93	21.47	0-1	1
		50	49	22.03	21.91	21.78	0-1	1
20 MHz		100	0	21.97	21.92	21.97	0-1	1
		1	0	22.02	22.17	22.18	0-1	1
		1	49	22.19	22.16	22.14	0-1	1
		1	99	22.17	22.04	22.10	0-1	1
	16QAM	50	0	20.95	20.96	20.72	0-2	2
		50	25	21.01	20.98	20.79	0-2	2
		50	49	21.05	20.95	20.77	0-2	2
		100	0	21.00	20.94	20.82	0-2	2

- LTE Band 4

Bandwidth	Modulation	RB Size	RB	Max.Average Power (dBm)		r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	19957	20175	20393	[dB]	[dB]
				1710.7 MHz	1732.5 MHz	1754.3 MHz	[ub]	[UD]
		1	0	22.75	22.94	23.10	0	0
	1	3	22.77	22.99	23.17	0	0	
		1	5	22.78	22.95	23.11	0	0
	QPSK	3	0	22.78	22.82	23.08	0	0
		3	1	22.71	22.80	23.02	0	0
		3	3	22.79	22.85	23.04	0	0
1 4 MU-		6	0	21.72	21.91	22.04	0-1	1
1.4 MHz		1	0	21.76	22.08	21.92	0-1	1
		1	3	21.83	22.11	21.95	0-1	1
		1	5	21.81	22.08	21.92	0-1	1
16	16QAM	3	0	21.75	21.89	22.12	0-1	1
		3	1	21.69	21.84	22.08	0-1	1
		3	3	21.77	21.90	22.10	0-1	1
		6	0	20.84	20.70	21.11	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	verage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	19965	20175	20385	[dB]	[dP]
				1711.5 MHz	1732.5 MHz	1753.5 MHz	[ub]	[dB]
		1	0	22.70	22.90	23.10	0	0
		1	7	22.78	22.97	23.11	0	0
		1	14	22.76	22.93	23.03	0	0
	QPSK	8	0	21.79	21.92	22.10	0-1	1
		8	3	21.80	21.95	22.08	0-1	1
		8	7	21.82	21.96	22.06	0-1	1
2 MI I-		15	0	21.76	21.85	22.04	0-1	1
3 MHz		1	0	21.57	22.03	21.93	0-1	1
		1	7	21.59	22.09	21.94	0-1	1
		1	14	21.60	22.06	21.83	0-1	1
	16QAM	8	0	20.89	20.89	21.06	0-2	2
		8	3	20.89	20.90	21.05	0-2	2
		8	7	20.91	20.90	21.01	0-2	2
		15	0	20.79	20.81	20.97	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	19975	20175	20375	[dD]	
				1712.5 MHz	1732.5 MHz	1752.5 MHz	[dB]	[dB]
		1	0	22.74	22.98	23.14	0	0
		1	12	22.80	23.00	23.14	0	0
		1	24	22.80	23.00	23.03	0	0
	QPSK	12	0	21.79	21.87	22.12	0-1	1
		12	6	21.82	21.9	22.12	0-1	1
		12	11	21.84	21.92	22.08	0-1	1
5 MHz		25	0	21.79	21.83	22.07	0-1	1
		1	0	21.90	22.18	22.11	0-1	1
		1	12	21.95	22.17	22.10	0-1	1
		1	24	21.96	22.15	22.00	0-1	1
	16QAM	12	0	20.86	20.95	21.12	0-2	2
		12	6	20.89	20.96	21.13	0-2	2
		12	11	20.94	20.96	21.08	0-2	2
		25	0	20.82	20.82	20.98	0-2	2

Bandwidth	Modulation	RB Size	RB					MPR
			Offset	20000	20175	20350	[dB]	[dB]
				1712.5 MHz	1732.5 MHz	1752.5 MHz	[UD]	[UD]
		1	0	22.79	23.01	23.18	0	0
		1	24	22.87	22.92	23.16	0	0
		1	49	22.86	23.06	22.90	0	0
	QPSK	25	0	21.79	21.86	21.93	0-1	1
		25	12	21.85	21.87	22.01	0-1	1
		25	24	21.87	21.92	21.96	0-1	1
10 MHz		50	0	21.84	21.87	21.95	0-1	1
		1	0	21.65	22.15	21.95	0-1	1
		1	24	21.73	22.09	21.96	0-1	1
		1	49	21.69	22.15	21.88	0-1	1
16	16QAM	25	0	20.81	20.82	21.08	0-2	2
		25	12	20.86	20.81	21.10	0-2	2
		25	24	20.87	20.87	21.11	0-2	2
		50	0	20.81	20.81	21.01	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20025	20175	20325		
				1717.5 MHz	1732.5 MHz	1747.5 MHz	[dB]	[dB]
		1	0	22.82	23.03	22.99	0	0
		1	36	22.81	23.01	23.16	0	0
		1	74	22.89	23.01	22.87	0	0
	QPSK	36	0	22.05	21.90	22.16	0-1	1
		36	18	21.75	21.99	22.17	0-1	1
		36	38	21.9	22.09	22.17	0-1	1
15 MHz		75	0	21.92	22.04	22.18	0-1	1
		1	0	21.65	22.15	22.13	0-1	1
		1	36	21.77	22.13	22.20	0-1	1
		1	74	21.67	22.18	22.13	0-1	1
	16QAM	36	0	20.87	20.94	21.02	0-2	2
		36	18	20.88	20.94	21.05	0-2	2
		36	38	20.87	21.01	21.07	0-2	2
		75	0	20.88	20.95	21.07	0-2	2

Bandwidth	Modulation	lation RB Size		Max.Average Power (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20175		
				1732.5 MHz	[dB]	[dB]
		1	0	23.02	0	0
		1	49	22.98	0	0
		1	99	23.04	0	0
	QPSK	50	0	21.88	0-1	1
		50	25	21.87	0-1	1
		50	49	21.93	0-1	1
00 MU-		100	0	21.90	0-1	1
20 MHz		1	0	22.14	0-1	1
		1	49	22.08	0-1	1
		1	99	22.18	0-1	1
	16QAM	50	0	20.88	0-2	2
		50	25	20.85	0-2	2
		50	49	20.90	0-2	2
		100	0	20.89	0-2	2

Note: LTE Band 4 (AWS) at 20 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

- LTE Band 5

Bandwidth	Modulation	RB Size	RB	Max.Av	verage Powe	MPR Allowed Per 3GPP	MPR	
			Offset	20407	20525	20643	[dB]	[dB]
				824.7 MHz	836.5 MHz	848.3 MHz	[UB]	[UD]
		1	0	23.24	23.28	23.37	0	0
		1	3	23.28	23.32	23.44	0	0
		1	5	23.23	23.26	23.38	0	0
	QPSK	3	0	23.28	23.25	23.21	0	0
		3	1	23.22	23.20	23.19	0	0
		3	3	23.23	23.25	23.21	0	0
1 4 1411-		6	0	22.22	22.25	22.33	0-1	1
1.4 MHz		1	0	22.24	22.47	22.11	0-1	1
		1	3	22.27	22.51	22.13	0-1	1
		1	5	22.24	22.46	22.11	0-1	1
	16QAM	3	0	22.26	22.32	22.28	0-1	1
		3	1	22.20	22.26	22.23	0-1	1
		3	3	22.24	22.32	22.26	0-1	1
		6	0	21.34	21.12	21.35	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	verage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20415	20525	20635	[dB]	[dB]
				825.5 MHz	836.5 MHz	847.5 MHz	[UB]	[UD]
		1	0	23.16	23.25	23.33	0	0
		1	7	23.19	23.29	23.40	0	0
		1	14	23.12	23.24	23.36	0	0
	QPSK	8	0	22.28	22.26	22.30	0-1	1
		8	3	22.25	22.29	22.33	0-1	1
		8	7	22.23	22.25	22.30	0-1	1
		15	0	22.21	22.22	22.25	0-1	1
3 MHz		1	0	22.03	22.42	22.15	0-1	1
		1	7	22.07	22.48	22.14	0-1	1
		1	14	21.99	22.41	22.06	0-1	1
16QAM	8	0	21.36	21.28	21.26	0-2	2	
		8	3	21.33	21.29	21.27	0-2	2
		8	7	21.32	21.27	21.26	0-2	2
		15	0	21.23	21.22	21.16	0-2	2

Bandwidth	Modulation	RB Size	RB Offset	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP [dB]	MPR [dB]
				20425	20525	20625	[dP]	[dB]
				826.5 MHz	836.5 MHz	846.5 MHz	[dB]	[ub]
	1	0	23.24	23.33	23.30	0	0	
		1	12	23.22	23.29	23.35	0	0
		1	24	23.16	23.25	23.34	0	0
	QPSK	12	0	22.27	22.25	22.28	0-1	1
		12	6	22.23	22.26	22.29	0-1	1
		12	11	22.21	22.23	22.27	0-1	1
5 MHz		25	0	22.19	22.20	22.24	0-1	1
		1	0	22.35	22.65	22.31	0-1	1
		1	12	22.32	22.67	22.29	0-1	1
		1	24	22.28	22.61	22.20	0-1	1
16	16QAM	12	0	21.33	21.35	21.32	0-2	2
		12	6	21.30	21.37	21.29	0-2	2
		12	11	21.29	21.35	21.28	0-2	2
		25	0	21.22	21.24	21.16	0-2	2

FCC ID: ZNFK350F

Bandwidth	Modulation	dulation RB Size		Max.Average Power (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20525	[dP]	
				836.5 MHz	[dB]	[dB]
		1	0	23.32	0	0
		1	24	23.27	0	0
		1	49	23.30	0	0
QPSK	25	0	22.19	0-1	1	
		25	12	22.21	0-1	1
		25	24	22.23	0-1	1
10 MHz		50	0	22.20	0-1	1
		1	0	22.07	0-1	1
		1	24	22.04	0-1	1
		1	49	22.08	0-1	1
	16QAM	25	0	21.20	0-2	2
		25	12	21.21	0-2	2
		25	24	21.23	0-2	2
		50	0	21.17	0-2	2

Note: LTE Band 5 at 10 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

- LTE Band 7

Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	er (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20775	21100	21425	[dD]	
				2502.5MHz	2535MHz	2567.5MHz	[dB]	[dB]
		1	0	22.80	22.81	22.83	0	0
		1	12	22.83	22.80	22.82	0	0
		1	24	22.82	22.88	22.79	0	0
	QPSK	12	0	21.84	21.76	21.88	0-1	1
		12	6	21.84	21.78	21.86	0-1	1
		12	11	21.84	21.77	21.84	0-1	1
		25	0	21.81	21.74	21.80	0-1	1
5 MHz		1	0	22.19	21.81	22.02	0-1	1
		1	12	22.17	21.84	21.99	0-1	1
		1	24	22.09	21.88	21.92	0-1	1
16QAM	16QAM	12	0	21.04	20.79	20.97	0-2	2
		12	6	21.04	20.80	20.94	0-2	2
		12	11	21.02	20.79	20.92	0-2	2
		25	0	20.9	20.67	20.85	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20800	21100	21400	21400	
				2505MHz	2535MHz	2565MHz	[dB]	[dB]
		1	0	22.98	22.87	22.97	0	0
		1	24	22.91	22.87	22.97	0	0
		1	49	22.87	22.90	22.86	0	0
	QPSK	25	0	21.88	21.76	21.91	0-1	1
		25	12	21.86	21.75	21.91	0-1	1
		25	24	21.78	21.76	21.84	0-1	1
10 MHz		50	0	21.82	21.74	21.87	0-1	1
		1	0	21.85	22.06	21.90	0-1	1
		1	24	21.78	22.07	21.87	0-1	1
		1	49	21.75	22.11	21.76	0-1	1
16QAM	25	0	20.88	20.74	20.99	0-2	2	
		25	12	20.84	20.74	20.98	0-2	2
		25	24	20.80	20.76	20.90	0-2	2
		50	0	20.79	20.72	20.89	0-2	2

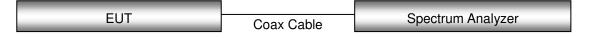
Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20825	21100	21375		
				2507.5MHz	2535MHz	2562.5MHz	[αΒ]	[dB]
		1	0	23.02	22.88	22.94	0	0
		1	36	22.91	22.83	22.99	0	0
		1	74	22.85	22.94	22.85	0	0
	QPSK	36	0	21.97	21.85	22.03	Per 3GPP [dB] [d] 0 0	1
		36	18	21.91	21.86	22.03	0-1	1
		36	38	21.88	21.87	21.98	0-1	1
15 MHz		75	0	21.93	21.88	22.02	0-1	1
		1	0	21.84	22.09	22.20	0-1	1
		1	36	21.75	22.04	22.14	0-1	1
		1		21.69	22.12	22.08	0-1	1
	16QAM	16QAM 36		20.92	20.83	20.94	0-2	2
		36	18	20.87	20.84	20.92	0-2	2
		36	38	20.82	20.85	20.88	0-2	2
		75	0	20.86	20.83	20.93	0-2	2

Bandwidth	Modulation	RB Size	RB	Max.Av	erage Powe	r (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	20850	21100	21350	[dP]	[dB]
				2510MHz	2535MHz	2.85 22.94 0	[UD]	
		1	0	23.09	22.85	22.94	0	0
		1	49	22.92	22.86	22.98	0	0
		1	99	22.87	22.94	22.89	0	0
	QPSK	50	0	21.91	21.77	21.94	0-1	1
		50	25	21.83	21.77	21.94	0-1	1
		50	49	21.80	21.84	21.96	0-1	1
20 MHz		100	0	21.84	21.80	21.92	0-1	1
		1	0	22.17	22.16	22.20	0-1	1
		1	49	22.11	22.13	22.14	0-1	1
		1	99	22.04	22.20	22.14	0-1	1
	16QAM	50	0	20.86	20.74	20.87	0-2	2
		50	25	20.78	20.76	20.88	0-2	2
		50	49	20.76	20.80	20.88	0-2	2
		100	0	20.80	20.75	20.86	0-2	2

9.4 WiFi

	IEE	E 802.11 Average RF F	Power
Mode	Freq.	Channel	IEEE 802.11 (2.4 GHz) Conducted Power
Wode	[MHz]	Gildiniei	[dBm]
	2 412	1	14.81
802.11b	2 437	6	15.99
	2 462	11	14.20
	2 412	1	11.47
802.11g	2 437	6	12.76
	2 462	11	11.52
	2 412	1	11.73
802.11n (HT20)	2 437	6	11.91
	2 462	11	11.73

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:


• Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.

• For transmission mode with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.

• For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.

• For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Test Configuration

10. SYSTEM VERIFICATION

10.1 Tissue Verification

The Head /body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

Table for Head Tissue Verification													
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε				
			820	0.905	40.510	0.899	41.578	0.67%	-2.57%				
01/04/2016	19.9	835H	835	0.916	40.350	0.900	41.500	1.78%	-2.77%				
			850	0.934	40.150	0.916	41.500	1.97%	-3.25%				
			1710	1.316	40.170	1.348	40.142	-2.37%	0.07%				
01/06/2016	21.3	1800H	1750	1.360	40.010	1.371	40.079	-0.80%	-0.17%				
			1800	1.409	39.778	1.400	40.000	0.64%	-0.56%				
			1850	1.358	39.480	1.400	40.000	-3.00%	-1.30%				
01/04/2016	21.6	1900H	1900	1.408	39.314	1.400	40.000	0.57%	-1.72%				
			1910	1.413	39.320	1.400	40.000	0.93%	-1.70%				
			2400	1.784	38.050	1.756	39.290	1.59%	-3.16%				
01/05/2016	19.7	2450H	2450	1.830	37.700	1.800	39.200	1.67%	-3.83%				
			2500	1.898	37.530	1.855	39.140	2.32%	-4.11%				
			2500	1.909	39.340	1.855	39.140	2.91%	0.51%				
01/06/2016	20.2	2600H	2550	1.965	39.190	1.909	39.070	2.93%	0.31%				
			2600	2.020	39.000	1.964	39.010	2.85%	-0.03%				

Table for Body Tissue Verification													
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε				
			820	0.943	56.720	0.969	55.258	-2.68%	2.65%				
01/11/2016	20.7	835B	835	0.947	56.600	0.970	55.200	-2.37%	2.54%				
			850	0.963	56.450	0.988	55.154	-2.53%	2.35%				
			1710	1.402	55.710	1.463	53.537	-4.17%	4.06%				
01/13/2016	21.9	1800B	1750	1.451	55.520	1.488	53.432	-2.49%	3.91%				
			1800	1.539	55.351	1.520	53.300	1.25%	3.85%				
			1850	1.489	55.110	1.520	53.300	-2.04%	3.40%				
01/11/2016	20.8	1900B	1900	1.542	55.002	1.520	53.300	1.45%	3.19%				
			1910	1.555	55.000	1.520	53.300	2.30%	3.19%				
			2400	1.862	51.700	1.902	52.770	-2.10%	-2.03%				
01/05/2016	19.7	2450B	2450	1.930	51.600	1.950	52.700	-1.03%	-2.09%				
			2500	1.995	51.530	2.021	52.640	-1.29%	-2.11%				
			2500	2.066	54.620	2.021	52.640	2.23%	3.76%				
02/06/2016	20.2	2600B	2550	2.128	54.340	2.092	52.570	1.72%	3.37%				
			2600	2.200	54.300	2.163	52.510	1.71%	3.41%				

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz / 1800 MHz/ 1 900 MHz / 2 450 MHz / 2 600 MHz by using the system Verification kit. (Graphic Plots Attached)

Freq.	Date		Dinala	Liquid	Amb. Temp.	Liquid Temp.	1 W Target SAR _{1g} (SPEAG)	Measured SAR _{1g}	1 W Normalized SAR _{1g}	Deviation	Limit [%]
[MHz]					[°C]	[°C]	[W/kg]	[W/kg]	[W/kg]	[%]	[%]
835	01/04/2016	3797	441	Head	20.1	19.9	9.21	0.914	9.14	- 0.76	± 10
835	01/11/2016	3797	441	Body	21.0	20.7	9.34	0.963	9.63	3.10	± 10
1 800	01/06/2016	1609	04007	Head	21.8	21.3	38.3	3.74	37.4	- 2.35	± 10
1 800	01/13/2016	1605	2d007	Body	22.2	21.9	38.3	3.82	38.2	- 0.26	± 10
1 900	01/04/2016	1609	5d032	Head	22.0	21.6	41.1	4.21	42.1	2.43	± 10
1 900	01/11/2016	1605	50032	Body	21.3	20.8	40.9	4.14	41.4	1.22	± 10
2 450	01/05/2016	3797	740	Head	19.9	19.7	53.4	5.41	54.1	1.31	± 10
2 450	01/05/2016	3797	743	Body	19.9	19.7	52.1	5.22	52.2	0.19	± 10
2 600	01/06/2016	3797	1015	Head	20.4	20.2	56.5	5.79	57.9	2.48	± 10
2 600	01/06/2016	3797	1015	Body	20.4	20.2	55.4	5.86	58.6	5.78	± 10

System Verification Results

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

NOTE;

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

11. SAR TEST DATA SUMMARY

11.1 HEAD SAR Measurement Results

GSM 850 Head SAR													
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Test Position Duty SAR		Scaling	Scaled SAR	Plot No.		
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INU.		
836.6	190	GSM	33.7	33.53	-0.12	Left Cheek	1:8.3	0.281	1.040	0.292	-		
836.6	190	GSM	33.7	33.53	0.06	Left Tilt	1:8.3	0.145	1.040	0.151	-		
836.6	190	GSM	33.7	33.53	-0.11	Right Cheek	1:8.3	0.299	1.040	0.311	-		
836.6	190	GSM	33.7	33.53	-0.02	Right Tilt	1:8.3	0.162	1.040	0.168	-		
836.6	190	GPRS 4Tx	28.7	28.56	-0.15	Left Cheek	1:2.07	0.351	1.033	0.362	-		
836.6	190	GPRS 4Tx	28.7	28.56	-0.10	Left Tilt	1:2.07	0.203	1.033	0.210	-		
836.6	190	GPRS 4Tx	28.7	28.56	-0.17	Right Cheek	1:2.07	0.408	1.033	0.421	1		
836.6	190	GPRS 4Tx	28.7	28.56	-0.12	Right Tilt	1:2.07	0.233	1.033	0.241	-		
	ANSI/ IE	EE C95.1 - 1	992– Safet	y Limit		Head							
		Spatial F	Peak					1.6 W/kg					
	Uncontrolle	d Exposure/	General Po	opulation			Avera	aged over 1	gram				

FCC ID: ZNFK350F

	GSM 1900 Head SAR												
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.		
MHz	Ch.		(dB)	(dB)	(dB)	BB) Cycle (W/kg) Fact		I doloi	(W/kg)	NO.			
1880.0	661	GSM	30.2	30.05	-0.03	Left Cheek	1:8.3	0.295	1.035	0.305	-		
1880.0	661	GSM	30.2	30.05	-0.03	Left Tilt	1:8.3	0.187	1.035	0.194	-		
1880.0	661	GSM	30.2	30.05	-0.11	Right Cheek	1:8.3	0.211	1.035	0.218	-		
1880.0	661	GSM	30.2	30.05	0.01	Right Tilt	1:8.3	0.161	1.035	0.167	-		
1880.0	661	GPRS 4Tx	25.2	24.71	-0.08	Left Cheek	1:2.07	0.388	1.119	0.434	2		
1880.0	661	GPRS 4Tx	25.2	24.71	-0.14	Left Tilt	1:2.07	0.237	1.119	0.265	-		
1880.0	661	GPRS 4Tx	25.2	24.71	-0.17	Right Cheek	1:2.07	0.269	1.119	0.301	-		
1880.0	661	GPRS 4Tx	25.2	24.71	-0.13	Right Tilt 1:2.07 0.208 1.119 0.233							
	ANSI/ IE	EE C95.1 - 1	992– Safet	y Limit		Head							
		Spatial F	Peak					1.6 W/kg					
	Uncontrolle	d Exposure/	General Po	opulation			Avera	iged over 1	l gram				

	UMTS 850 Head SAR													
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot			
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.			
836.6	4183	RMC	23.7	23.23	-0.19	Left Cheek	1:1	0.274	1.114	0.305	-			
836.6	4183	RMC	23.7	23.23	-0.15	Left Tilt	1:1	0.148	1.114	0.165	-			
836.6	4183	RMC	23.7	23.23	0.04	Right Cheek	1:1	0.315	1.114	0.351	3			
836.6	4183	RMC	23.7	23.23	-0.15	Right Tilt	1:1	0.182	1.114	0.203	-			
	ANSI/ IEI	EE C95.1 - 1	992– Safet	y Limit				Head						
		Spatial F	Peak					1.6 W/kg						
	Uncontrolle	d Exposure/	General Po	opulation			Avera	aged over 1	gram					

	UMTS 1700 Head SAR													
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.			
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INO.			
1 732.4	1412	RMC	23.2	22.81	0.09	Left Cheek	1:1	0.421	1.094	0.461	4			
1 732.4	1412	RMC	23.2	22.81	0.01	Left Tilt	1:1	0.281	1.094	0.307	-			
1 732.4	1412	RMC	23.2	22.81	-0.05	Right Cheek	1:1	0.289	1.094	0.316	-			
1 732.4	1412	RMC	23.2	22.81	-0.18	Right Tilt	1:1	0.242	1.094	0.265	-			
	ANSI/ IEI	EE C95.1 - 1	992– Safet	y Limit				Head						
		Spatial I	Peak				1.6	8 W/kg (mV	V/g)					
	Uncontrolle	d Exposure/	General Po	opulation			Avera	aged over 1	l gram					

	UMTS 1900 Head SAR												
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot		
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.		
1 852.4	9262	RMC	23.2	22.91	0.03	Left Cheek	1:1	0.699	1.069	0.747	-		
1 880.0	9400	RMC	23.2	22.81	0.01	Left Cheek	1:1	0.773	1.094	0.846	-		
1 907.6	9538	RMC	23.2	22.85	0.02	Left Cheek	1:1	0.784	1.084	0.850	5		
1 880.0	9400	RMC	23.2	22.81	-0.03	Left Tilt	1:1	0.386	1.094	0.422	-		
1 880.0	9400	RMC	23.2	22.81	0.09	Right Cheek	1:1	0.409	1.094	0.447	-		
1 880.0	9400	RMC	23.2	22.81	-0.04	Right Tilt	1:1	0.325	1.094	0.356	-		
	ANSI/ IEI	EE C95.1 - 1	992– Safet	y Limit				Head					
		Spatial F	Peak					1.6 W/kg					
	Uncontrolle	d Exposure/	General Po	opulation			Avera	aged over 1	l gram				

				l	.TE B	and 2	2 (PCS) He	ead S	AR					
Frequ	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Lest Position RB Size					Scaling	Scaled SAR	Plot
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)			onset	Cycle	(W/kg)	Factor	(W/kg)	No.
1 880.0	18900	QPSK	20	23.2	23.11	0.05	Left Cheek	1	0	1:1	0.748	1.021	0.764	6
1 860.0	18700	QPSK	20	22.2	22.03	0.01	Left Cheek	50	49	1:1	0.605	1.040	0.629	-
1 880.0	18900	QPSK	20	23.2	23.11	-0.05	Left Tilt	1	0	1:1	0.378	1.021	0.386	-
1 860.0	18700	QPSK	20	22.2	22.03	-0.01	Left Tilt	50	49	1:1	0.286	1.040	0.297	-
1 880.0	18900	QPSK	20	23.2	23.11	-0.15	Right Cheek	1	0	1:1	0.344	1.021	0.351	-
1 860.0	18700	QPSK	20	22.2	22.03	-0.07	Right Cheek	50	49	1:1	0.296	1.040	0.308	-
1 880.0	18900	QPSK	20	23.2	23.11	-0.19	Right Tilt	1	0	1:1	0.330	1.021	0.337	-
1 860.0	18700	QPSK	20	22.2	22.03	-0.07	Right Tilt	50	49	1:1	0.263	1.040	0.273	-
	ANSI/	IEEE C95.	.1 - 1992	– Safety	Limit		Head							
		Spa	atial Peal	ĸ						1.6 W/kg	9			
	Uncontro	olled Expos	sure/ Ge	neral Pop	oulation				Avera	ged over	1 gram			

					TE B	and 4	(AWS) H	ead S	AR					
Frequ	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB offset	Duty Cycle	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)			011361	Oycie	(W/kg)	T actor	(W/kg)	INU.
1 732.5	20175	QPSK	20	23.2	23.04	0.14	Left Cheek	1	99	1:1	0.443	1.038	0.460	7
1 732.5	20175	QPSK	20	22.2	21.93	-0.00	Left Cheek	50	49	1:1	0.335	1.064	0.356	-
1 732.5	20175	20	23.2	23.04	0.03	Left Tilt	1	99	1:1	0.284	1.038	0.295	-	
1 732.5	2.5 20175 QPSK 20				21.93	0.02	Left Tilt	50	49	1:1	0.212	1.064	0.226	-
1 732.5	20175	QPSK	20	23.2	23.04	-0.17	Right Cheek	1	99	1:1	0.294	1.038	0.305	-
1 732.5	20175	QPSK	20	22.2	21.93	-0.03	Right Cheek	50	49	1:1	0.228	1.064	0.243	-
1 732.5	20175	QPSK	20	23.2	23.04	-0.06	Right Tilt	1	99	1:1	0.244	1.038	0.253	-
1 732.5	20175	QPSK	20	22.2	21.93	0.01	Right Tilt	50	49	1:1	0.185	1.064	0.197	-
	ANSI/	IEEE C95.	1 - 1992	- Safety	Limit					Head				
		Spa	tial Peal	<						1.6 W/kg	9			
	Uncontro	lled Expos	sure/ Ge	neral Pop	oulation				Avera	ged over	1 gram			

FCC ID: ZNFK350F

					.TE B	and 5	5 (Cell) He	ead S	٩R					
Freq	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)			offset	Cycle	(W/kg)	Factor	(W/kg)	INO.
836.5	20525	QPSK	10	23.7	23.32	-0.19	Left Cheek	1	0	1:1	0.240	1.091	0.262	-
836.5	20525	QPSK	10	22.7	22.23	0.14	Left Cheek	25	24	1:1	0.209	1.114	0.233	-
836.5	20525	QPSK	10	23.7	23.32	0.02	Left Tilt	1	0	1:1	0.137	1.091	0.150	-
836.5	20525	QPSK	10	22.7	22.23	0.03	Left Tilt	25	24	1:1	0.113	1.114	0.126	-
836.5	20525	QPSK	10	23.7	23.32	-0.14	Right Cheek	1	0	1:1	0.271	1.091	0.296	8
836.5	20525	QPSK	10	22.7	22.23	0.14	Right Cheek	25	24	1:1	0.243	1.114	0.271	-
836.5	20525	QPSK	10	23.7	23.32	-0.11	Right Tilt	1	0	1:1	0.152	1.091	0.166	-
836.5	20525	QPSK	10	22.7	22.23	-0.17	Right Tilt	25	24	1:1	0.149	1.114	0.166	-
	ANSI/	IEEE C95.	1 - 1992	– Safety	Limit					Head				
		Spa	tial Peał	ĸ						1.6 W/kg	9			
	Uncontro	olled Expos	sure/ Gei	neral Pop	oulation				Averag	ged over	1 gram			

					LT	E Bar	d 7 Head	SAR						
Freq	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)			offset	Cycle	(W/kg)	Factor	(W/kg)	No.
2 510	20850	QPSK	20	23.2	23.09	0.120	Left Cheek	1	0	1:1	0.020	1.026	0.021	-
2 560	21350	QPSK	20	22.2	21.96	0.190	Left Cheek	50	49	1:1	0.034	1.057	0.036	-
2 510							Left Tilt	1	0	1:1	0.016	1.026	0.016	-
2 560					21.96	0.140	Left Tilt	50	49	1:1	0.021	1.057	0.022	-
2 510	20850	QPSK	20	23.2	23.09	-0.160	Right Cheek	1	0	1:1	0.027	1.026	0.028	-
2 560	21350	QPSK	20	22.2	21.96	0.000	Right Cheek	50	49	1:1	0.067	1.057	0.071	9
2 510	20850	QPSK	20	23.2	23.09	0.180	Right Tilt	1	0	1:1	0.00455	1.026	0.005	-
2 560	21350	QPSK	20	22.2	21.96	0.110	Right Tilt	50	49	1:1	0.00764	1.057	0.008	-
	ANSI/	IEEE C95.	.1 - 1992	- Safety	Limit					Head				
		Spa	atial Peal	ĸ						1.6 W/kg	9			
	Uncontro	olled Expos	sure/ Ge	neral Pop	oulation				Averag	ged over	1 gram			

							DTS	Head SA	١R						
Freque	ency	Mode	Band width		Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Area Scan Peak SAR	Meas. SAR	Scaling Factor	Scaling Factor	Scaled SAR	Plot No.
MHz										(W/kg)	(W/kg)		(Duty)	(W/kg)	
2 437	6	802.11b	22	1	16.0	15.99	0.188	Left Cheek	99.19	1.1	0.718	1.002	1.008	0.726	10
2 437							0.183	Left Tilt	99.19	0.795	0.506	1.002	1.008	0.511	-
2 437	6	802.11b	22	1	16.0	15.99	0.138	Right Cheek	99.19	0.475	0.334	1.002	1.008	0.338	-
2 437	6	802.11b	22	1	16.0	15.99		Right Tilt	99.19	0.305		1.002	1.008		-
	A	NSI/ IEEI	E C95.	1 - 1992	2– Safety I	imit					Head				
			Spa	tial Pea	k						1.6 W/k	g			
	Unc	controlled	Expos	ure/ Ge	neral Pop	ulation				Avera	ged ove	r 1 gram			

				GSM/	UMTS	Body-V	Vorn S	AR				
Frequ	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INU.
836.6	190	GSM 850 GSM	33.7	33.53	0.102	Rear	1:8.3	10	0.364	1.040	0.379	11
836.6	190	GSM 850 GPRS 4Tx	28.7	28.56	-0.083	Rear	1:2.07	10	0.480	1.033	0.496	12
1880.0	661	GSM 1900 GSM	30.2	30.05	0.07	Rear	1:8.3	10	0.378	1.035	0.391	13
1 880.0	661	GSM 1900 GPRS 4Tx	25.2	24.71	0.10	Rear	1:2.07	10	0.422	1.119	0.472	14
836.6	4183	RMC	23.7	23.23	-0.080	Rear	1:1	10	0.403	1.114	0.449	15
1 732.4	1412	RMC	23.2	22.81	0.08	Rear	1:1	10	0.616	1.094	0.674	16
1 880.0	9400	RMC	23.2	22.81	-0.13	Rear	1:1	10	0.626	1.094	0.685	17
	ANSI/ IEE	E C95.1 - 1	992– Safe	ty Limit					Body			
		Spatial F	Peak					1.0	6 W/kg			
U	Incontrolle	d Exposure/	General P	opulation				Averaged	d over 1 gr	am		

11.2 Body-worn SAR Measurement Results

					Ľ	ГЕ Во	dy-W	orn S	AR						
Frequ	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB		Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position		offset	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
1 880	18900	LTE 2	20	23.2	23.11	0.19	Rear	1	0	1:1	10	0.635	1.021	0.648	18
1 880	18900	QPSK	20	22.2	22.03	-0.04	Rear	50	49	1:1	10	0.495	1.040	0.503	-
1 732.5	20175	LTE 4	20	23.2	23.04	0.18	Rear	1	99	1:1	10	0.576	1.038	0.598	19
1 732.5	20175	QPSK	20	22.2	21.93	0.14	Rear	50	49	1:1	10	0.472	1.064	0.502	-
836.5	20525	LTE 5	10	23.7	23.32	-0.174	Rear	1	0	1:1	10	0.357	1.091	0.390	20
836.5	20525	QPSK	10	22.7	22.23	0.025	Rear	25	24	1:1	10	0.296	1.114	0.330	-
2 510	20850	LTE 7	20	23.2	23.09	0.119	Rear	1	0	1:1	10	0.595	1.026	0.610	-
2 560	21350	QPSK	20	22.2	21.96	-0.146	Rear	50	49	1:1	10	0.693	1.057	0.732	21

						DTS	6 Boo	dy-Wo	orn S	SAR						
Freque	anov		Band	Data	Tune-	Meas.	Power	Test	Duty	Distance	Area Scan	Meas.	Sooling	Scaling	Scaled	Plat
Tieque	ency	Mode	width	Rate	Up Limit	Power	Drift	Position			Peak SAR	SAR	Scaling Factor	Factor	SAR	No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	(W/kg)	Facior	(Duty)	(W/kg)	INO.
2 437	6	802.11b	22	1	16.0	15.99	0.175	Rear	99.19	10	0.208	0.143	1.002	1.008	0.145	22
		ANSI/ IEE	E C95.1 -	1992– 5	Safety Lir	nit					Bc	ody				
			Spatia	l Peak							1.6 \	N/kg				
	Ur	ncontrolle	d Exposure	e/ Gener	al Popula	ation					Averaged of	over 1 gr	am			

11.3 Hotspot SAR Measurement Results

				0	GSM 85	50 Hots	pot SAF	{				
Frequ	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty Cycle	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position		(mm)	(W/kg)	Factor	(W/kg)	No.
836.6	190	GPRS 4Tx	28.7	28.56	-0.083	Rear	1:2.07	10	0.480	1.033	0.496	12
836.6						Front	1:2.07	10	0.414	1.033	0.428	-
836.6						Left	1:2.07	10	0.236	1.033	0.244	-
836.6	190	GPRS 4Tx	28.7	28.56	-0.132	Bottom	1:2.07	10	0.153	1.033	0.158	-
	ANSI/ IE	EEE C95.1 -	1992– Sa	fety Limit				E	Body			
		Spatial	Peak					1.6	6 W/kg			
U	Incontroll	ed Exposure	/ General	Populatio	n			Averaged	l over 1 gra	am		

				G	SM 19	00 Hots	pot SA	R				
Frequ	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty Cycle	Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	Position		(mm)	(W/kg)	Factor	(W/kg)	INO.
1 880.0	661	GPRS 4Tx	25.2	24.71	0.10	Rear	1:2.07	10	0.422	1.119	0.472	14
1 880.0							1:2.07	10	0.488	1.119	0.546	23
1 880.0	661	GPRS 4Tx	25.2	24.71	-0.04	Right	1:2.07	10	0.147	1.119	0.165	-
1 880.0	661	GPRS 4Tx	25.2	24.71	-0.04	Bottom	1:2.07	10	0.216	1.119	0.242	-
	ANSI/ I	EEE C95.1 -		fety Limit					Body			
		Spatia							i W/kg			
l	Jncontro	lled Exposure	e/ General	Populatio	n			Averaged	over 1 gra	ım		

				U	MTS 8	50 Hots	pot SA	R				
Frequ	Jency		Tune-	Meas.	Power	Test	Duty	Distance	Meas.	Scaling	Scaled	Plot
		Mode	Up Limit	Power	Drift	Position	Cycle		SAR	Factor	SAR	No.
MHz	Ch.		(dB)	(dB)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	Facior	(W/kg)	NO.
836.6	4183	RMC	23.7	23.23	-0.080	Rear	1:1	10	0.403	1.114	0.449	15
836.6	4183	RMC	23.7	23.23	-0.074	Front	1:1	10	0.308	1.114	0.343	-
836.6	4183	RMC	23.7	23.23	-0.007	Left	1:1	10	0.164	1.114	0.183	-
836.6	4183	RMC	23.7	23.23	-0.014	Bottom	1:1	10	0.134	1.114	0.149	-
	ANSI/ IEE	E C95.1 -	- 1992– Sa	fety Limit					Body			
		Spatia	l Peak	-				1.0	6 W/kg			
l	Incontrolle	d Exposur	e/ General	Population	n			Averaged	d over 1 gra	am		

				U	MTS 17	700 Hots	spot S <i>i</i>	AR				
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
1 732.4	1412	RMC	23.2	22.81	0.08	Rear	1:1	10	0.616	1.094	0.674	16
1 732.4	1412	RMC	23.2	22.81	-0.00	Front	1:1	10	0.648	1.094	0.709	24
1 732.4	1412	RMC	23.2	22.81	-0.06	Right	1:1	10	0.108	1.094	0.118	-
1 732.4	1412	RMC	23.2	22.81	0.03	Bottom	1:1	10	0.243	1.094	0.266	-
1	ANSI/ IEEE	C95.1 - 2	2005 – Sa	fety Limit					Body			
		Spatial	Peak					1.6 W	/kg (mW/g)			
Ur	ncontrolled I	Exposure	/ General	Populatio	n			Average	d over 1 gr	am		

T

				U	MTS 19	00 Hots	spot S <i>i</i>	AR				
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INO.
1 880.0	9400	RMC	23.2	22.81	-0.13	Rear	1:1	10	0.626	1.094	0.685	17
1 852.4	9262	RMC	23.2	22.91	0.00	Front	1:1	10	0.776	1.069	0.830	25
1 880.0	9400	RMC	23.2	22.81	-0.10	Front	1:1	10	0.754	1.094	0.825	-
1 907.6	9538	RMC	23.2	22.85	-0.01	Front	1:1	10	0.706	1.084	0.765	-
1 880.0	9400	RMC	23.2	22.81	-0.01	Right	1:1	10	0.189	1.094	0.207	-
1 880.0	9400	RMC	23.2	22.81	-0.14	Bottom	1:1	10	0.185	1.094	0.202	-
	ANSI/ IEEE	C95.1 -	1992– Sa	fety Limit					Body			
		Spatial	Peak					1.	6 W/kg			
Ur	ncontrolled I	Exposure	/ General	Populatio	n			Average	d over 1 gr	am		

					LTE E	Band	2 (PCS	S) Hot	spot	SAR					
Freq	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB offset	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position		onset	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INO.
1 880	18900	QPSK	20	23.2	23.11	0.19	Rear	1	0	1:1	10	0.635	1.021	0.648	18
1 860	18700	QPSK	20	22.2	22.03	-0.04	Rear	50	49	1:1	10	0.484	1.040	0.503	-
1 880	18900	QPSK	20	23.2	23.11	0.19	Front	1	0	1:1	10	0.761	1.021	0.777	26
1 860	18700	QPSK	20	22.2	22.03	0.19	Front	50	49	1:1	10	0.590	1.040	0.614	-
1 880	18900	QPSK	20	23.2	23.11	0.04	Right	1	0	1:1	10	0.169	1.021	0.173	-
1 860	18700	QPSK	20	22.2	22.03	0.07	Right	50	49	1:1	10	0.137	1.040	0.142	-
1 880	18900	QPSK	20	23.2	23.11	0.01	Bottom	1	0	1:1	10	0.203	1.021	0.207	-
1 860	18700	QPSK	20	22.2	22.03	0.00	Bottom	50	49	1:1	10	0.148	1.040	0.154	-
	ANSI/ IEEE C95.1 - 1992- Safety Limit										Body				
		Sp	atial Pea	ak			1.6 W/kg								
l	Uncontrol	led Expo	sure/ Ge	eneral Po	pulation	1				Average	ed over 1 g	jram			

					TE B	and 4	4 (AWS	S) Hot	tspot	SAR					
Frequ	uency		Band	Tune-		Power	Test		RB	Duty	Distance	Meas.	Scaling	Scaled	Plot
		Mode	width	Up Limit	Power	Drift	Position	RB Size	offset	Cycle		SAR	Factor	SAR	No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	1 0311011		Unact	Oycic	(mm)	(W/kg)	1 20101	(W/kg)	110.
1 732.5	20175	QPSK	20	23.2	23.04	0.18	Rear	1	99	1:1	10	0.576	1.038	0.598	19
1 732.5	20175	QPSK	20	22.2	21.93	0.14	Rear	50	49	1:1	10	0.472	1.064	0.502	-
1 732.5	20175	QPSK	20	23.2	23.04	0.02	Front	1	99	1:1	10	0.623	1.038	0.646	27
1 732.5	20175	QPSK	20	22.2	21.93	0.05	Front	50	49	1:1	10	0.505	1.064	0.537	-
1 732.5	20175	QPSK	20	23.2	23.04	-0.07	Right	1	99	1:1	10	0.114	1.038	0.118	-
1 732.5	20175	QPSK	20	22.2	21.93	-0.03	Right	50	49	1:1	10	0.090	1.064	0.096	-
1 732.5	20175	QPSK	20	23.2	23.04	-0.00	Bottom	1	99	1:1	10	0.231	1.038	0.240	-
1 732.5	20175	QPSK	20	22.2	21.93	-0.02	Bottom	50	49	1:1	10	0.185	1.064	0.197	-
	ANSI/ IEEE C95.1 - 1992- Safety Limit						Body								
		Sp	atial Pea	ak			1.6 W/kg								
ι	Uncontrolled Exposure/ General Population									Average	ed over 1 g	Iram			

	LTE Band 5 Hotspot SAR														
Freq	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB offset	Duty Cycle	Distance	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	FUSILION		Unset	Cycle	(mm)	(W/kg)	T actor	(W/kg)	NU.
836.5	20525	QPSK	10	23.7	23.32	-0.174	Rear	1	0	1:1	10	0.357	1.091	0.390	20
836.5	20525	QPSK	10	22.7	22.23	0.025	Rear	25	24	1:1	10	0.296	1.114	0.330	-
836.5	20525	QPSK	10	23.7	23.32	-0.089	Front	1	0	1:1	10	0.283	1.091	0.309	-
836.5	20525	QPSK	10	22.7	22.23	0.007	Front	25	24	1:1	10	0.238	1.114	0.265	-
836.5	20525	QPSK	10	23.7	23.32	-0.037	Left	1	0	1:1	10	0.178	1.091	0.194	-
836.5	20525	QPSK	10	22.7	22.23	0.008	Left	25	24	1:1	10	0.139	1.114	0.155	-
836.5	20525	QPSK	10	23.7	23.32	0.012	Bottom	1	0	1:1	10	0.118	1.091	0.129	-
836.5	20525	QPSK	10	22.7	22.23	-0.023	Bottom	25	24	1:1	10	0.106	1.114	0.118	-
	ANSI/ IEEE C95.1 - 1992- Safety Limit							Body							
		Sp	atial Pea	ak			1.6 W/kg								
l	Uncontroll	ed Expo	sure/ Ge	eneral Po	pulation	ı				Averag	ed over 1 g	gram			

FCC ID: ZNFK350F

					LT	'E Ba	nd 7 F	lotspo	ot SA	R					
Freq	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	RB Size	RB offset	7	Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position		onset	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INO.
2 510	20850	QPSK	20	23.2	23.09	0.119	Rear	1	0	1:1	10	0.595	1.026	0.610	-
2 560	21350	QPSK	20	22.2	21.96	-0.146	Rear	50	49	1:1	10	0.693	1.057	0.732	21
2 510	20850	QPSK	20	23.2	23.09	-0.166	Front	1	0	1:1	10	0.145	1.026	0.149	-
2 560	21350	QPSK	20	22.2	21.96	-0.162	Front	50	49	1:1	10	0.219	1.057	0.231	-
2 510	20850	QPSK	20	23.2	23.09	-0.155	Left	1	0	1:1	10	0.042	1.026	0.043	-
2 560	21350	QPSK	20	22.2	21.96	0.132	Left	50	49	1:1	10	0.039	1.057	0.041	-
2 510	20850	QPSK	20	23.2	23.09	-0.034	Bottom	1	0	1:1	10	0.285	1.026	0.292	-
2 560	21350	QPSK	20	22.2	21.96	0.006	Bottom	50	49	1:1	10	0.467	1.057	0.494	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit						Body								
		Sp	atial Pea	ak			1.6 W/kg								
l	Uncontrolled Exposure/ General Population									Average	ed over 1 g	gram			

						I	DTS F	lotspo	t SA	N R						
Freque	ency	Mode	Band width		Tune- Up Limit	Meas. Power	Power Drift	Test	· · ·	Distance	Area Scan Peak SAR			Scaling Factor	Scaled SAR	
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	Position	Cycle	(mm)	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	No.
2 437	6	802.11b	22	1	16.0	15.99	0.175	Rear	99.19	10	0.208	0.143	1.002	1.008	0.145	22
2 437	6	802.11b	22	1	16.0	15.99		Front	99.19	10	0.164		1.002	1.008		-
2 437	6	802.11b	22	1	16.0	15.99		Right	99.19	10	0.0718		1.002	1.008		-
2 437	6	802.11b	22	1	16.0	15.99		Тор	99.19	10	0.101		1.002	1.008		-
	ANSI/ IEEE C95.1 - 1992– Safety Limit							Body								
	Spatial Peak							1.6 W/kg								
	Uncontrolled Exposure/ General Population									1	Averaged ov	ver 1 gra	am			

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 648474 D04v01r03, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was \leq 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were not performed since the measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis information.
- Per KDB 648474 D04v01r03, this device is considered a "Phablet" since the diagonal dimension is > 160 mm and < 200 mm. When hotspot mode applies, extremity SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (with tolerance) is 1 g SAR > 1.2 W/kg.

GSM/GPRS Test Notes:

- 1. This EUT'S GSM and GPRS device class is B.
- 2. This device supports GPRS VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for head and body-worn compliance.
- 3. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 4. Justification for reduced test configurations per KDB 941225 D01v03r01: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power including tolerance was evaluated for SAR.
- 5. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.
- 6. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Consideration for LTE Devices in FCC KDB 941225 D05v02r05.
- According to FCC KDB 941225 D05v02r05: When the reported SAR is ≤ 0.8 W/kg, testing of the 100%RB allocation and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the 1RB, 50%RB and 100%RB allocation with highest output power for that channel. Only one channel, and as reported SAR values for 1RB allocation and 50%RB allocation were less than 1.45W/Kg only the highest power RB offset for each allocation was required.

- 3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to target MPR is indicated alongside the SAR results.
- 4. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator.
- 5. Pre-installed VOIP applications are considered.
- 6. SAR test reduction is applied using the following criteria:

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is >0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are >0.8 W/kg, Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation <1.45 W/kg. Testing for 16-QAM modulation is not required because the reported SAR for QPSK is <1.45 W/kg and its output power is not more than 0.5 dB higher than that a QPSK. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth.

UMTS Notes:

- 1. The 12.2 kbps RMC mode is the primary mode per KDB 941225 D01v03r01.
- 2. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and Adjusted SAR value was less than 1.2 W/kg.
- 3. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the channel highest output power channel was used.
- 4. UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. For initial test position, the highest extrapolated peak SAR will be used. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR results is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test position are measured.
- Per KDB 248227 D01v02r02 justification for test configurations of 2.4 GHz WiFi Single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11 g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
- 3. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rated, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated WLAN test reports.

12. Simultaneous SAR Analysis

12.1 Simultaneous Transmission Summation for Head

S	Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN									
Exposure	Band	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR						
condition	Dallu	(W/kg)	(W/kg)	(W/kg)						
	GSM 850	0.311	0.726	1.037						
	GPRS 850	0.421	0.726	1.147						
	GSM 1900	0.305	0.726	1.031						
	GPRS 1900	0.434	0.726	1.160						
	UMTS 850	0.351	0.726	1.077						
Head SAR	UMTS 1700	0.461	0.726	1.187						
	UMTS 1900	0.850	0.726	1.576						
	LTE Band 2	0.764	0.726	1.490						
	LTE Band 4	0.460	0.726	1.186						
	LTE Band 5	0.296	0.726	1.022						
	LTE Band 7	0.071	0.726	0.797						

12.2 Simultaneous Transmission Summation for Body-Worn

	Simultaneous T	ransmission Summ	ation Scenario wit	h 2.4 GHz WLAN	
Exposure	Distance	Band	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR
condition	(mm)		(W/kg)	(W/kg)	(W/kg)
		GSM 850	0.379	0.145	0.524
		GPRS 850	0.496	0.145	0.641
		GSM 1900	0.391	0.145	0.536
		GPRS 1900	0.472	0.145	0.617
		UMTS 850	0.449	0.145	0.594
Body-worn	10	UMTS 1700	0.674	0.145	0.819
		UMTS 1900	0.685	0.145	0.830
		LTE Band 2	0.648	0.145	0.793
		LTE Band 4	0.598	0.145	0.743
		LTE Band 5	0.390	0.145	0.535
		LTE Band 7	0.732	0.145	0.877

	Simultaneous	Transmission Sun	nmation Scenario v	vith Bluetooth	
Exposure	Distance	Band	WWAN SAR	Bluetooth SAR	∑ 1-g SAR
condition	(mm)	Ballu	(W/kg)	(W/kg)	(W/kg)
		GSM 850	0.379	0.10	0.479
		GPRS 850	0.496	0.10	0.596
		GSM 1900	0.391	0.10	0.491
		GPRS 1900	0.472	0.10	0.572
		UMTS 850	0.449	0.10	0.549
Body-worn	10	UMTS 1700	0.674	0.10	0.774
		UMTS 1900	0.685	0.10	0.785
		LTE Band 2	0.648	0.10	0.748
		LTE Band 4	0.598	0.10	0.698
		LTE Band 5	0.390	0.10	0.490
		LTE Band 7	0.732	0.10	0.832

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v06. Estimated SAR results were used for SAR summation for body-worn back side at 10 mm to determine simultaneous transmission SAR test exclusion.

SAR

0.877

12.3 Silliui											
	Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN										
Exposure	Distance	Band	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAF						
condition	(mm)	Banu	(W/kg)	(W/kg)	(W/kg)						
		GSM 850	0.496	0.145	0.641						
		GSM 1900	0.546	0.145	0.691						
		UMTS 850	0.449	0.145	0.594						
		UMTS 1700	0.709	0.145	0.854						
Hotspot	10	10	10	10	10	10	UMTS 1900	0.830	0.145	0.975	
		LTE Band 2	0.777	0.145	0.922						
		LTE Band 4	0.646	0.145	0.791						
		LTE Band 5	0.390	0.145	0.535						

12.3 Simultaneous Transmission Summation for Hotspot

12.4 Simultaneous Transmission Conclusion

LTE Band 7

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013.

0.732

0.145

13. SAR Measurement Variability and Uncertainty

In accordance with KDB procedure 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz, SAR additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement variability was assessed using the following procedures for each frequency band:

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR ; steps 2) through 4) do not apply.

2) When the original highest measured 1g SAR is \geq 0.80 W/kg or 10g SAR \geq 2.0W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg for 1g SAR or \geq 3.625 W/kg for 10g SAR (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg for 1g SAR or \geq 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

14. MEASUREMENT UNCERTAINTY

	Tol	Prob.			Standard Uncertainty	
Error Description	(± %)	dist.	Div.	Ci	(± %)	V _{eff}
L. Measurement System						
Probe Calibration	6.00	Ν	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	œ
Boundary Effects	1.00	R	1.73	1	0.58	œ
Linearity	4.70	R	1.73	1	2.71	œ
System Detection Limits	1.00	R	1.73	1	0.58	œ
Readout Electronics	0.30	N	1.00	1	0.30	œ
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	œ
2.Test Sample Related	·					
Device Positioning	2.25	Ν	1.00	1	2.25	9
Device Holder	3.60	Ν	1.00	1	3.60	∞
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup	·		•	· I		
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.70	N	1	0.64	1.73	∞
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	œ
Liquid Permitivity(meas.)	1.90	N	1	0.6	1.14	∞
Combind Standard Uncertainty					10.67	
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					21.34	

15. SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	Robot TX90 XLspeag	F13/5R4XF1/A/01	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	CS8Cspeag-TX90	F13/5R4XF1/C/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F01/5K09A1/C/01	N/A	N/A	N/A
SCHMID & PARTNER	Light Alignment Sensor	273	N/A	N/A	N/A
SCHMID & PARTNER	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D21142605	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4	1225	03/18/2015	Annual	03/18/2016
SPEAG	DAE4	648	04/28/2015	Annual	04/28/2016
SPEAG	DAE3	446	01/21/2015	Annual	01/21/2016
SPEAG	E-Field Probe EX3DV4	3797	11/24/2015	Annual	11/24/2016
SPEAG	E-Field Probe ET3DV6	1609	01/27/2015	Annual	01/27/2016
SPEAG	E-Field Probe ET3DV6	1605	04/27/2015	Annual	04/27/2016
SPEAG	Dipole D835V2	441	01/23/2015	Annual	01/23/2016
SPEAG	Dipole D1800V2	2d007	02/19/2015	Annual	02/19/2016
SPEAG	Dipole D1900V2	5d032	05/20/2015	Annual	05/20/2016
SPEAG	Dipole D2450V2	743	05/19/2015	Annual	05/19/2016
SPEAG	Dipole D2600V2	1015	03/25/2015	Annual	03/25/2016
Agilent	Power Meter N1991A	MY45101406	10/03/2015	Annual	10/03/2016
Agilent	Power Sensor N1921A	MY55220026	08/19/2015	Annual	08/19/2016
SPEAG	DAKS 3.5	1038	05/26/2015	Annual	05/26/2016
HP	Dirextional Bridge	86205A	05/20/2015	Annual	05/20/2016
Agilent	Base Station E5515C	GB44400269	02/09/2015	Annual	02/09/2016
HP	Signal Generator N5182A	MY4770230	05/13/2015	Annual	05/13/2016
Agilent	MXA Signal Analyzer N9020A	MY50510407	03/23/2015	Annual	03/23/2016
HP	Network Analyzer 8753ES	JP39240221	03/23/2015	Annual	03/23/2016
R&S	Wideband Radio Communication Tester CMW500	115733	09/18/2015	Annual	09/18/2016
Hewlett Packard	11636B/Power Divider	58698	03/02/2015	Annual	03/02/2016

NOTE:

1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/ IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

17. REFERENCES

[1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.

[2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[3] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992

[4] ANSI/IEEE C 95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006.

[5] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zorich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation and procedures – Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.

[21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.

[22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Band) Issue 5, March 2015.

[23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz – 300 GHz, 2009

[24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.

[25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01.

[26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.

[27] SAR Evaluation for Laptop, Notebook, Netbook and Tablet computers KDB 616217 D04.

[28] SAR Measurement and Reporting Requirements for 100 MHz – 6 GHz, KDB 865664 D01, D02.

[29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01, D02.

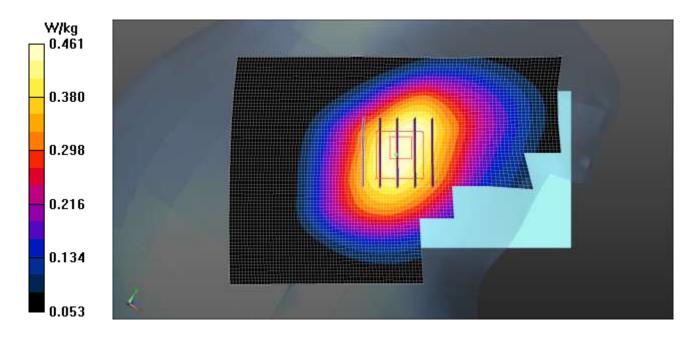
Attachment 1. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	19.9 °C
Ambient Temperature:	20.1 °C
Test Date:	01/04/2016
Plot No.:	1

DUT: LG-K350F; Type: Bar

Communication System: UID 0, GSM850 GPRS 4TX (0); Frequency: 836.6 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.918 S/m; ϵ_r = 40.313; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:


- Probe: EX3DV4 SN3797; ConvF(8.98, 8.98, 8.98); Calibrated: 2015-11-24;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/GSM850 Head Right Touch GPRS 4Tx 190ch/Area Scan (71x111x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.470 W/kg

LG-K350F/GSM850 Head Right Touch GPRS 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

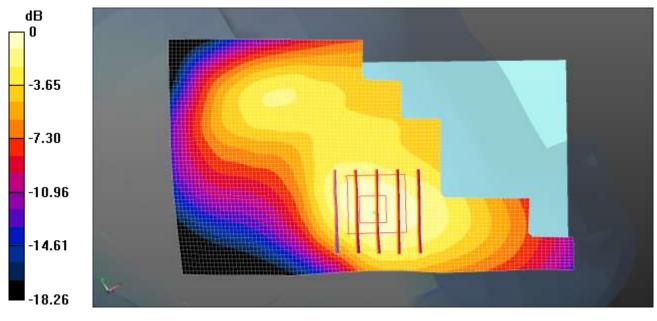
Reference Value = 5.819 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.508 W/kg SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.312 W/kg Maximum value of SAR (measured) = 0.461 W/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:21.6 °CAmbient Temperature:22.0 °CTest Date:01/04/2016Plot No.:2

DUT: LG-K350F; Type: BAR

Communication System: UID 0, GSM 1900 4TX (0); Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.391 S/m; ϵ_r = 39.376; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: ET3DV6 SN1609; ConvF(5.18, 5.18, 5.18); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/GSM1900 Left Touch 4Tx 661ch/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.424 W/kg

LG-K350F/GSM1900 Left Touch 4Tx 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.654 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.594 W/kg SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.234 W/kg Maximum value of SAR (measured) = 0.433 W/kg

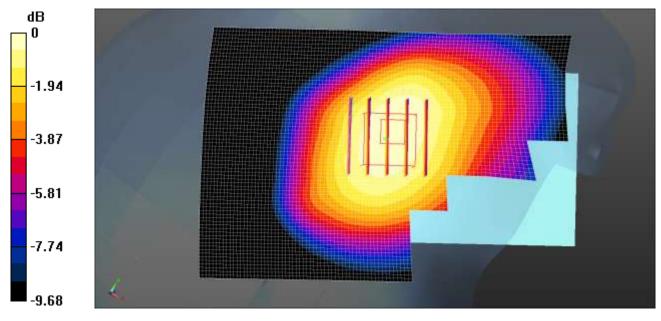
0 dB = 0.433 W/kg = -3.64 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:19.9 °CAmbient Temperature:20.1 °CTest Date:01/04/2016Plot No.:3

DUT: LG-K350F; Type: Bar

Communication System: UID 0, WCDMA850 (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.918 S/m; ϵ_r = 40.313; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:


- Probe: EX3DV4 SN3797; ConvF(8.98, 8.98, 8.98); Calibrated: 2015-11-24;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/WCDMA850 Head Right Touch 4183ch/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.359 W/kg

LG-K350F/WCDMA850 Head Right Touch 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 3.407 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.391 W/kg **SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.241 W/kg** Maximum value of SAR (measured) = 0.354 W/kg

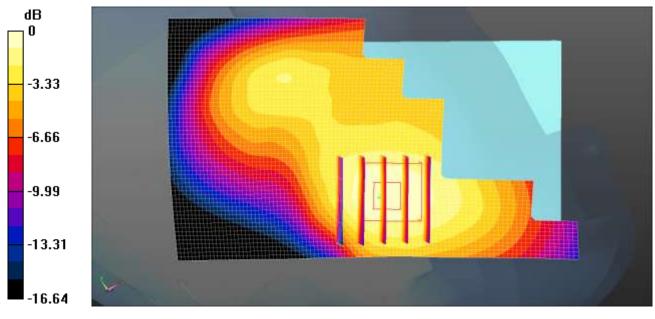
0 dB = 0.354 W/kg = -4.51 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:21.3 °CAmbient Temperature:21.8 °CTest Date:01/06/2016Plot No.:4

DUT: LG-K350F; Type: BAR

Communication System: UID 0, WCDMA IV (0); Frequency: 1732.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.339 S/m; ϵ_r = 40.105; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: ET3DV6 SN1609; ConvF(5.38, 5.38, 5.38); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/WCDMA1700 Left Touch 1412ch/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.443 W/kg

LG-K350F/WCDMA1700 Left Touch 1412ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.154 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.615 W/kg SAR(1 g) = 0.421 W/kg; SAR(10 g) = 0.271 W/kg Maximum value of SAR (measured) = 0.462 W/kg

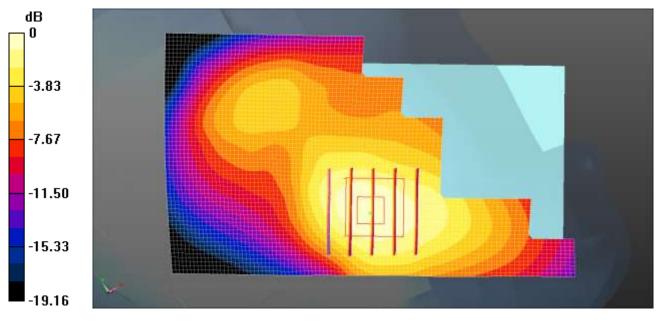
0 dB = 0.462 W/kg = -3.35 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:21.6 °CAmbient Temperature:22.0 °CTest Date:01/04/2016Plot No.:5

DUT: LG-K350F; Type: BAR

Communication System: UID 0, WCDMA1900 (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1907.6 MHz; σ = 1.412 S/m; ϵ_r = 39.318; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: ET3DV6 SN1609; ConvF(5.18, 5.18, 5.18); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/WCDMA1900 Left Touch 9538ch/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.853 W/kg

LG-K350F/WCDMA1900 Left Touch 9538ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.854 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.784 W/kg; SAR(10 g) = 0.472 W/kg Maximum value of SAR (measured) = 0.869 W/kg

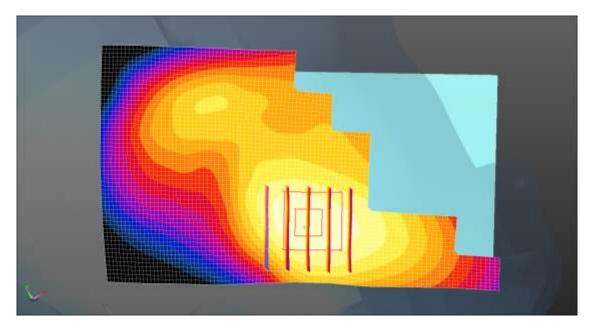
0 dB = 0.869 W/kg = -0.61 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:21.6 °CAmbient Temperature:22.0 °CTest Date:01/04/2016Plot No.:6

DUT: LG-K350F; Type: BAR

Communication System: UID 0, LTE Band 2 (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.391 S/m; ϵ_r = 39.376; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: ET3DV6 SN1609; ConvF(5.18, 5.18, 5.18); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/LTE Band 2 Head Left touch QPSK 20MHz 1RB 0offset 18900/Area Scan (61x111x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.836 W/kg

LG-K350F/LTE Band 2 Head Left touch QPSK 20MHz 1RB 0offset 18900/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.126 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.748 W/kg; SAR(10 g) = 0.457 W/kg Maximum value of SAR (measured) = 0.822 W/kg

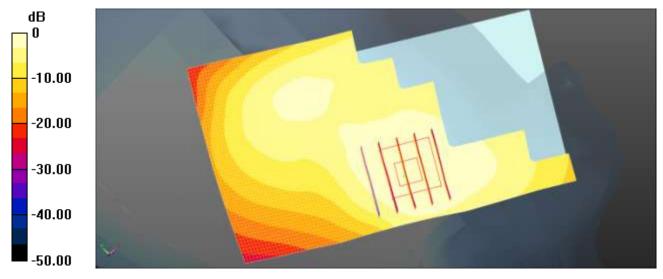
0 dB = 0.822 W/kg = -0.85 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:21.3 °CAmbient Temperature:21.8 °CTest Date:01/06/2016Plot No.:7

DUT: LG-K350F; Type: BAR

Communication System: UID 0, LTE Band 4 (0); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.339 S/m; ϵ_r = 40.104; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: ET3DV6 SN1609; ConvF(5.38, 5.38, 5.38); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM with CRP v5.0_R
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/LTE Band 4 Head Left touch QPSK 20MHz 1RB 99offset 20175/Area Scan (61x111x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.468 W/kg

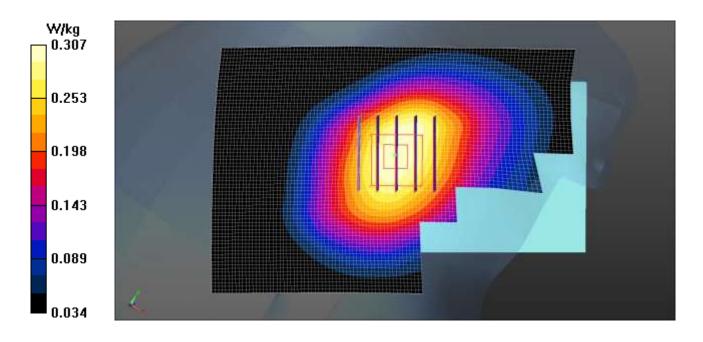
LG-K350F/LTE Band 4 Head Left touch QPSK 20MHz 1RB 99offset 20175/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.410 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.646 W/kg **SAR(1 g) = 0.443 W/kg; SAR(10 g) = 0.284 W/kg** Maximum value of SAR (measured) = 0.486 W/kg

0 dB = 0.468 W/kg = -3.30 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	19.9 °C
Ambient Temperature:	20.1 °C
Test Date:	01/04/2016
Plot No.:	8

Communication System: UID 0, LTE Band 5 (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.918 S/m; ϵ_r = 40.316; ρ = 1000 kg/m³ Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN3797; ConvF(8.98, 8.98, 8.98); Calibrated: 2015-11-24;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/LTE Band5 Head Right Touch QPSK 10MHz 1RB 0offset 20525ch/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.311 W/kg

LG-K350F/LTE Band5 Head Right Touch QPSK 10MHz 1RB 0offset 20525ch/Zoom Scan (5x5x7)/Cube

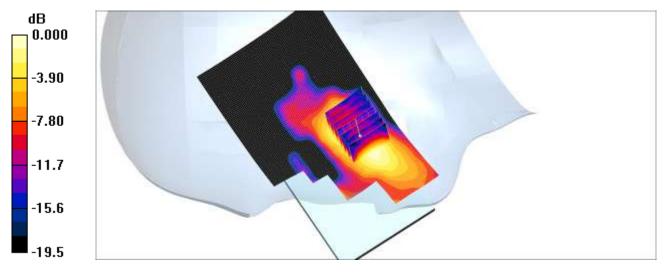
0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.706 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.333 W/kg SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.207 W/kg Maximum value of SAR (measured) = 0.307 W/kg

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:20.2 °CAmbient Temperature:20.4 °CTest Date:01/06/2016Plot No.:9

DUT: LG-K350F; Type: Bar

Communication System: LTE Band 7; Frequency: 2560 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; σ = 1.98 mho/m; ϵ_r = 39.2; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:


- Probe: EX3DV4 SN3797; ConvF(6.68, 6.68, 6.68); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 7 Head Right Touch QPSK 20MHz 50RB 49offset 21350ch/Area Scan (81x141x1):

Measurement grid: dx=12mm, dy=12mmMaximum value of SAR (interpolated) = 0.100 mW/g

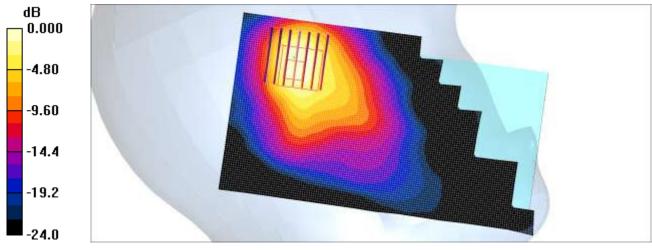
LTE Band 7 Head Right Touch QPSK 20MHz 50RB 49offset 21350ch/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.000 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 0.131 W/kg **SAR(1 g) = 0.067 mW/g; SAR(10 g) = 0.036 mW/g** Maximum value of SAR (measured) = 0.098 mW/g

 $0 \, dB = 0.098 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	19.7 °C
Ambient Temperature:	19.9 °C
Test Date:	01/05/2016
Plot No.:	10

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.83 mho/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.9, 6.9, 6.9); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Head Left Touch 1Mbps 6ch/Area Scan (81x141x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.10 mW/g

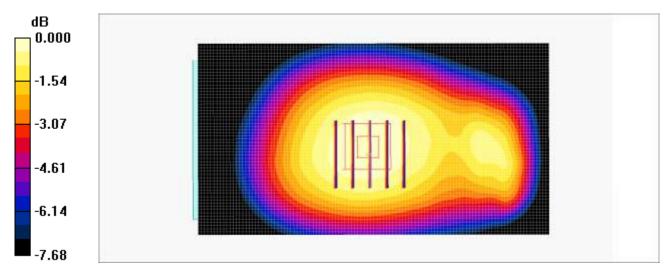
802.11b Head Left Touch 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.21 V/m; Power Drift = 0.188 dBPeak SAR (extrapolated) = 1.43 W/kgSAR(1 g) = 0.718 mW/g; SAR(10 g) = 0.339 mW/gMaximum value of SAR (measured) = 1.09 mW/g

 $0 \, dB = 1.09 \, mW/g$

HCT CO., LTD
Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
20.7 °C
21.0 °C
01/11/2016
11

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.948 mho/m; ϵ_r = 56.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(9.17, 9.17, 9.17); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear Body Worn 190ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.409 mW/g

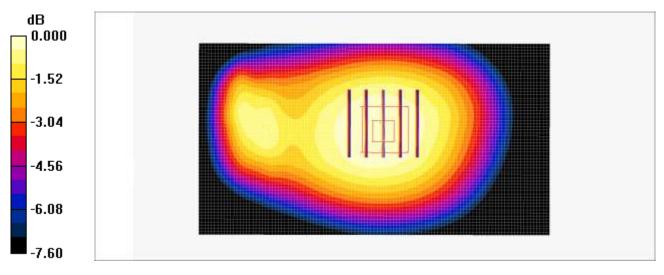
GSM850 Body Rear Body Worn 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.7 V/m; Power Drift = 0.102 dB Peak SAR (extrapolated) = 0.445 W/kg SAR(1 g) = 0.364 mW/g; SAR(10 g) = 0.279 mW/g Maximum value of SAR (measured) = 0.412 mW/g

 $0 \, dB = 0.412 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	20.7 °C
Ambient Temperature:	21.0 °C
Test Date:	01/11/2016
Plot No.:	12
Test Date:	01/11/2016

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:2.075 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.948 mho/m; ϵ_r = 56.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(9.17, 9.17, 9.17); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear GPRS 4Tx 190ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.552 mW/g

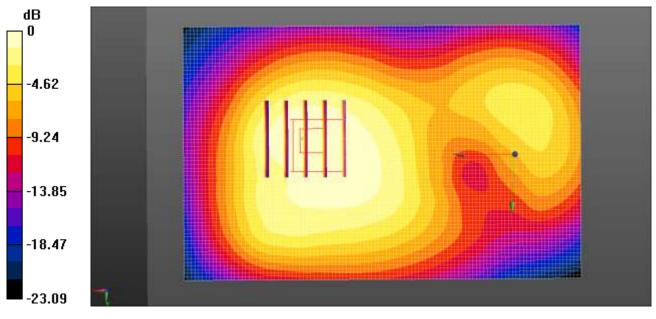
GSM850 Body Rear GPRS 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.2 V/m; Power Drift = -0.083 dB Peak SAR (extrapolated) = 0.580 W/kg SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.368 mW/g Maximum value of SAR (measured) = 0.539 mW/g

 $^{0 \,} dB = 0.539 \, mW/g$

HCT CO., LTD
Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
20.8 °C
21.3 °C
01/11/2016
13

Communication System: UID 0, GSM 1900 (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m; ϵ_r = 55.032; ρ = 1000 kg/m³ Phantom section: Center Section


DASY5 Configuration:

- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/GSM1900 body rear 661/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.432 W/kg

LG-K350F/GSM1900 body rear 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

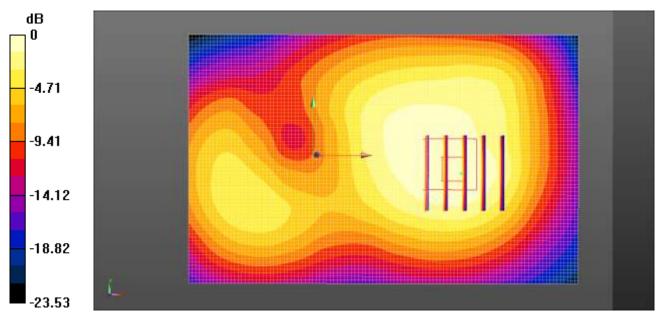
Reference Value = 6.724 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.557 W/kg SAR(1 g) = 0.378 W/kg; SAR(10 g) = 0.247 W/kg Maximum value of SAR (measured) = 0.404 W/kg

0 dB = 0.432 W/kg = -3.64 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	20.8 °C
Ambient Temperature:	21.3 °C
Test Date:	01/11/2016
Plot No.:	14
Test Date:	01/11/2016

Communication System: UID 0, GSM 1900 4TX (0); Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m; ϵ_r = 55.032; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/GSM1900 body rear 4Tx 661/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.464 W/kg

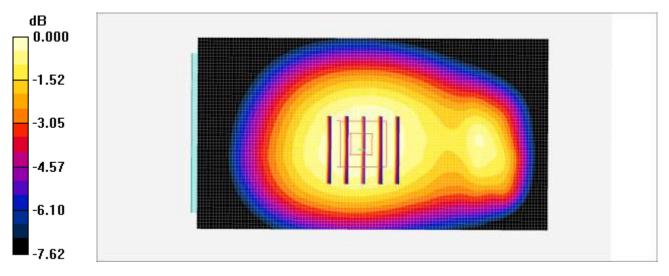
LG-K350F/GSM1900 body rear 4Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 6.972 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.643 W/kg SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.272 W/kg Maximum value of SAR (measured) = 0.451 W/kg

0 dB = 0.464 W/kg = -3.34 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	20.7 °C
Ambient Temperature:	21.0 °C
Test Date:	01/11/2016
Plot No.:	15

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.948 mho/m; ϵ_r = 56.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(9.17, 9.17, 9.17); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA850 Body Rear 4183ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.460 mW/g

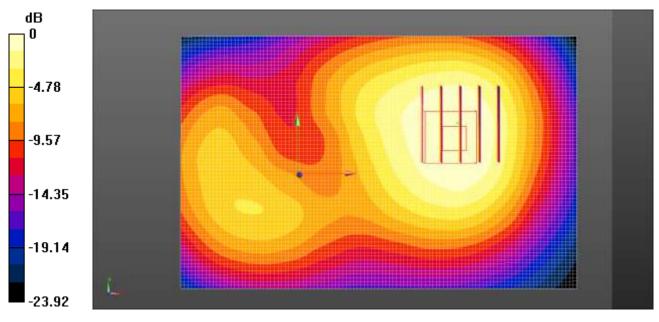
WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = -0.080 dB Peak SAR (extrapolated) = 0.491 W/kg SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.308 mW/g Maximum value of SAR (measured) = 0.455 mW/g

 $^{0 \,} dB = 0.455 \, mW/g$

HCT CO., LTD
Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
21.9 °C
22.2 °C
01/13/2016
16

Communication System: UID 0, WCDMA IV (0); Frequency: 1732.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.428 S/m; ϵ_r = 55.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY5 Configuration:

- Probe: ET3DV6 SN1605; ConvF(4.66, 4.66, 4.66); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

WCDMA1700 body rear 1412/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.696 W/kg

WCDMA1700 body rear 1412/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.405 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.839 W/kg SAR(1 g) = 0.616 W/kg; SAR(10 g) = 0.411 W/kg

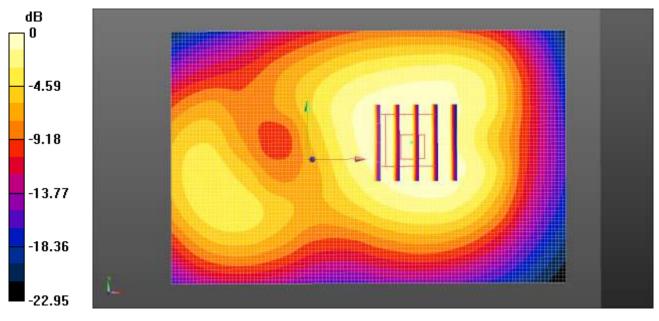
Maximum value of SAR (measured) = 0.659 W/kg

0 dB = 0.696 W/kg = -1.58 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	20.8 °C
Ambient Temperature:	21.3 °C
Test Date:	01/11/2016
Plot No.:	17

Communication System: UID 0, WCDMA1900 (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m; ϵ_r = 55.032; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/WCDMA1900 body rear 9400/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.668 W/kg

LG-K350F/WCDMA1900 body rear 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

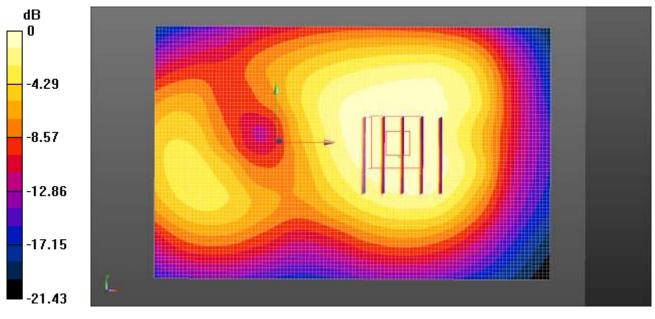
dy=8mm, dz=5mm Reference Value = 8.128 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.922 W/kg SAR(1 g) = 0.626 W/kg; SAR(10 g) = 0.409 W/kg Maximum value of SAR (measured) = 0.669 W/kg

0 dB = 0.668 W/kg = -1.75 dBW/kg

HCT CO., LTD
Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
20.8 °C
21.3 °C
01/11/2016
18

Communication System: UID 0, LTE Band 2 (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m; ϵ_r = 55.032; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/LTE Band 2 Body rear QPSK 20MHz 1RB 0offset 18900/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.674 W/kg

LG-K350F/LTE Band 2 Body rear QPSK 20MHz 1RB 0offset 18900/Zoom Scan (5x5x7)/Cube 0:

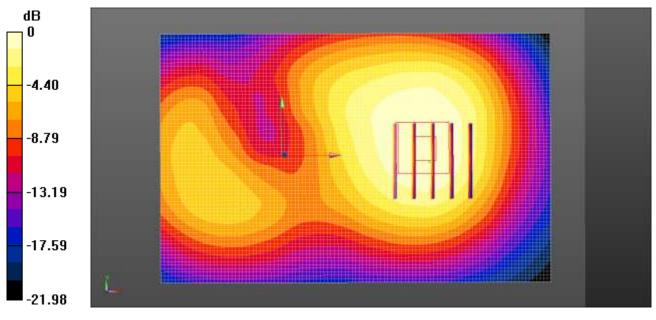
Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.063 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.918 W/kg SAR(1 g) = 0.635 W/kg; SAR(10 g) = 0.421 W/kg Maximum value of SAR (measured) = 0.677 W/kg

0 dB = 0.674 W/kg = -1.71 dBW/kg

WCDMA/LTE Phone with WLAN and Bluetooth

Communication System: UID 0, LTE Band 4 (0); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.428 S/m; ϵ_r = 55.6; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.66, 4.66, 4.66); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/LTE Band 4 Body rear QPSK 20MHz 1RB 99offset 20175/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.635 W/kg

LG-K350F/LTE Band 4 Body rear QPSK 20MHz 1RB 99offset 20175/Zoom Scan (5x5x7)/Cube 0:

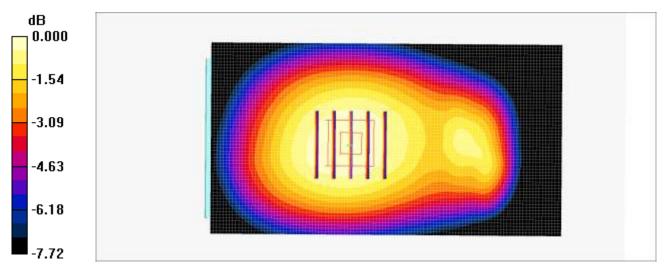
Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.248 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.759 W/kg SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.391 W/kg Maximum value of SAR (measured) = 0.611 W/kg

0 dB = 0.635 W/kg = -1.97 dBW/kg

D., LTD
PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
016

Communication System: LTE Band 5; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.948 mho/m; ϵ_r = 56.6; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:


- Probe: EX3DV4 SN3797; ConvF(9.17, 9.17, 9.17); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 5 Body Rear QPSK 10MHz 1RB 0offset 20525ch/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.404 mW/g

LTE Band 5 Body Rear QPSK 10MHz 1RB 0offset 20525ch/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.9 V/m; Power Drift = -0.174 dB Peak SAR (extrapolated) = 0.440 W/kg SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.272 mW/g Maximum value of SAR (measured) = 0.407 mW/g

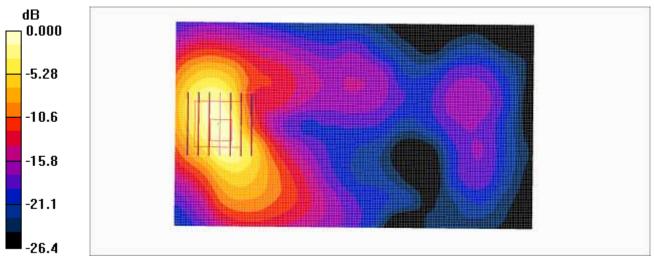
 $0 \, dB = 0.407 \, mW/g$

Test Laboratory:HCT CO., LTDEUT Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and BluetoothLiquid Temperature:20.2 °CAmbient Temperature:20.4 °CTest Date:01/06/2016Plot No.:21

DUT: LG-K350F; Type: Bar

Communication System: LTE Band 7; Frequency: 2560 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; σ = 2.14 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:


- Probe: EX3DV4 SN3797; ConvF(6.75, 6.75, 6.75); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 7 Body Rear QPSK 20MHz 50RB 49offset 21350ch/Area Scan (81x141x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 1.11 mW/g

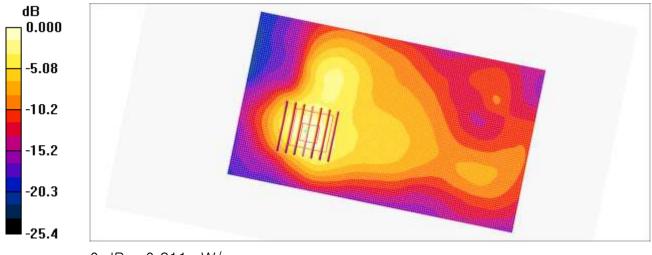
LTE Band 7 Body Rear QPSK 20MHz 50RB 49offset 21350ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.30 V/m; Power Drift = -0.146 dB Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 0.693 mW/g; SAR(10 g) = 0.309 mW/g Maximum value of SAR (measured) = 1.05 mW/g

 $0 \, dB = 1.05 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	19.7 °C
Ambient Temperature:	19.9 °C
Test Date:	01/05/2016
Plot No.:	22

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.91 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.91, 6.91, 6.91); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Body Rear 1Mbps 6ch/Area Scan (81x141x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.208 mW/g

802.11b Body Rear 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

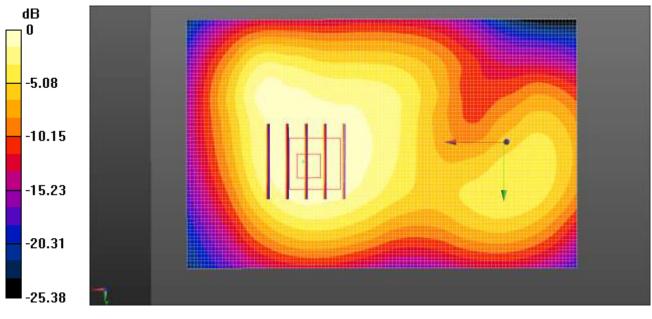
Reference Value = 5.35 V/m; Power Drift = 0.175 dB Peak SAR (extrapolated) = 0.294 W/kg SAR(1 g) = 0.143 mW/g; SAR(10 g) = 0.068 mW/g Maximum value of SAR (measured) = 0.211 mW/g

 $0 \, dB = 0.211 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	20.8 °C
Ambient Temperature:	21.3 °C
Test Date:	01/11/2016
Plot No.:	23

Communication System: UID 0, GSM 1900 4TX (0); Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m; ϵ_r = 55.032; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/GSM1900 body front 4Tx 661/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.539 W/kg

LG-K350F/GSM1900 body front 4Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

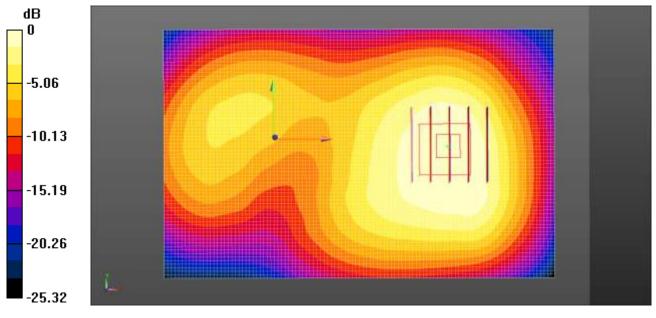
Reference Value = 8.687 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.718 W/kg SAR(1 g) = 0.488 W/kg; SAR(10 g) = 0.312 W/kg Maximum value of SAR (measured) = 0.527 W/kg

0 dB = 0.539 W/kg = -2.69 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	21.9 °C
Ambient Temperature:	22.2 °C
Test Date:	01/13/2016
Plot No.:	24

Communication System: UID 0, WCDMA IV (0); Frequency: 1732.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.428 S/m; ϵ_r = 55.6; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.66, 4.66, 4.66); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/WCDMA1700 body front 1412/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.720 W/kg

LG-K350F/WCDMA1700 body front 1412/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

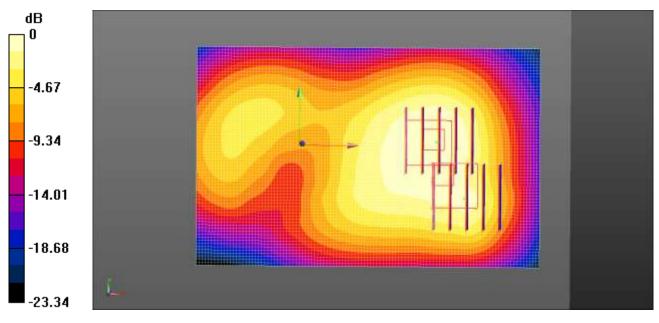
Reference Value = 11.56 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.858 W/kg SAR(1 g) = 0.648 W/kg; SAR(10 g) = 0.431 W/kg Maximum value of SAR (measured) = 0.702 W/kg

0 dB = 0.720 W/kg = -1.42 dBW/kg

HCT CO., LTD
Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
20.8 °C
21.3 °C
01/11/2016
25

Communication System: UID 0, WCDMA1900 (0); Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.491 S/m; ϵ_r = 55.108; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

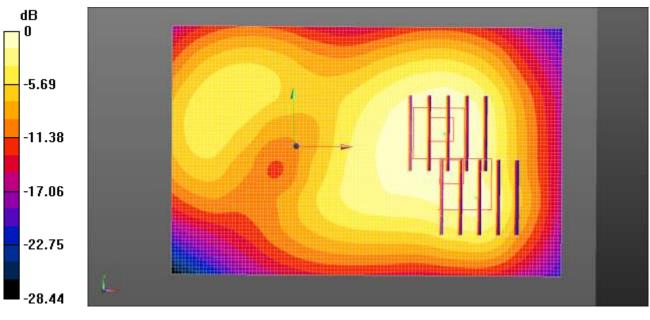
WCDMA1900 body front 9262/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.857 W/kg WCDMA1900 body front 9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 10.74 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.776 W/kg; SAR(10 g) = 0.498 W/kg Maximum value of SAR (measured) = 0.835 W/kg WCDMA1900 body front 9262/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.74 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.618 W/kg; SAR(10 g) = 0.370 W/kg Maximum value of SAR (measured) = 0.738 W/kg

0 dB = 0.857 W/kg = -0.67 dBW/kg


Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
Liquid Temperature:	20.8 °C
Ambient Temperature:	21.3 °C
Test Date:	01/11/2016
Plot No.:	26

Communication System: UID 0, LTE Band 2 (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m; ϵ_r = 55.032; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:

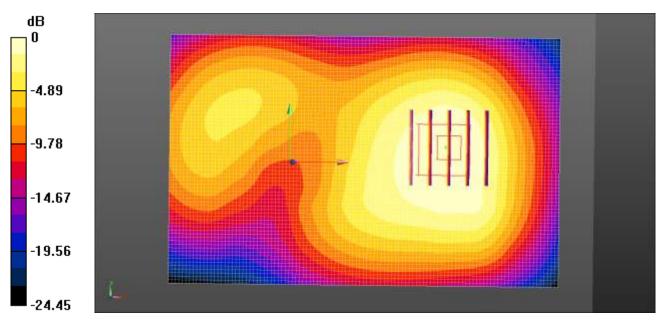
- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LTE Band 2 Body front QPSK 20MHz 1RB 0offset 18900/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.832 W/kg LTE Band 2 Body front QPSK 20MHz 1RB 0offset 18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.213 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.486 W/kg Maximum value of SAR (measured) = 0.821 W/kg LTE Band 2 Body front QPSK 20MHz 1RB 0offset 18900/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.213 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.612 W/kg; SAR(10 g) = 0.365 W/kg Maximum value of SAR (measured) = 0.721 W/kg

0 dB = 0.832 W/kg = -0.80 dBW/kg

HCT CO., LTD
Cellular/PCS GSM/WCDMA/LTE Phone with WLAN and Bluetooth
21.9 °C
22.2 °C
01/13/2016
27

Communication System: UID 0, LTE Band 4 (0); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.428 S/m; ϵ_r = 55.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY5 Configuration:

- Probe: ET3DV6 SN1605; ConvF(4.66, 4.66, 4.66); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

LG-K350F/LTE Band 4 Body front QPSK 20MHz 1RB 99offset 20175/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.687 W/kg

LG-K350F/LTE Band 4 Body front QPSK 20MHz 1RB 99offset 20175/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.422 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.813 W/kg SAR(1 g) = 0.623 W/kg; SAR(10 g) = 0.418 W/kg Maximum value of SAR (measured) = 0.674 W/kg

0 dB = 0.687 W/kg = -1.63 dBW/kg

Attachment 2. – Dipole Verification Plots

Verification Data (835 MHz Head)

Test Laboratory: HCT CO., LTD

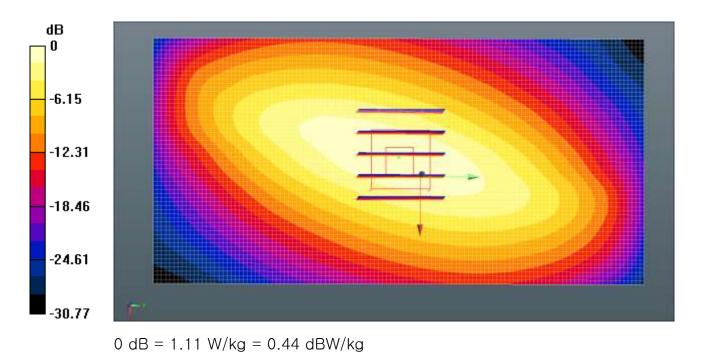
 Input Power
 100 mW (20 dBm)

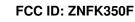
 Liquid Temp:
 19.9 ℃

Test Date: 01/04/2016

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.916 S/m; ϵ_r = 40.35; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:


- Probe: EX3DV4 SN3797; ConvF(8.98, 8.98, 8.98); Calibrated: 2015-11-24;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

835MHz Head Verification/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.11 W/kg

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 36.25 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.41 W/kg SAR(1 g) = 0.914 W/kg; SAR(10 g) = 0.574 W/kg

Maximum value of SAR (measured) = 0.999 W/kg

Verification Data (835 MHz Body)

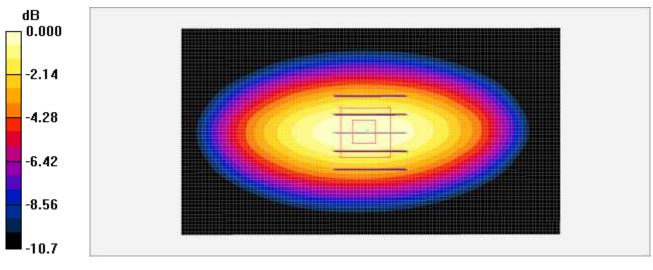
Test Laboratory: HCT CO., LTD

 Input Power
 100 mW (20 dBm)

 Liquid Temp:
 20.7 ℃

 Test Date:
 01/11/2016

DUT: Dipole 835 MHz; Type: D835V2


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.947 mho/m; ϵ_r = 56.6; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(9.17, 9.17, 9.17); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

835 MHz Body Verification/Area Scan (111x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 mW/g

835 MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.3 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 1.43 W/kg SAR(1 g) = 0.963 mW/g; SAR(10 g) = 0.627 mW/g Maximum value of SAR (measured) = 1.04 mW/g

 $0 \, dB = 1.04 \, mW/g$

Verification Data (1 800 MHz Head)

 Test Laboratory:
 HCT CO., LTD

 Input Power
 100 mW (20 dBm)

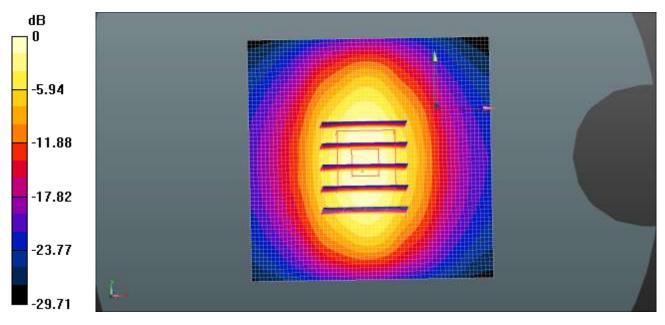
 Liquid Temp:
 21.3 °C

 Test Date:
 01/06/2016

DUT: Dipole 1800 MHz D1800V2; Type: D1800V2

Communication System: UID 0, CW; Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.409 S/m; ϵ_r = 39.778; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: ET3DV6 SN1609; ConvF(5.38, 5.38, 5.38); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

Verification 1800MHz/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.31 W/kg

Verification 1800MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.87 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 6.87 W/kg

SAR(1 g) = 3.74 W/kg; SAR(10 g) = 1.89 W/kg

Maximum value of SAR (measured) = 4.16 W/kg

0 dB = 4.31 W/kg = 6.34 dBW/kg

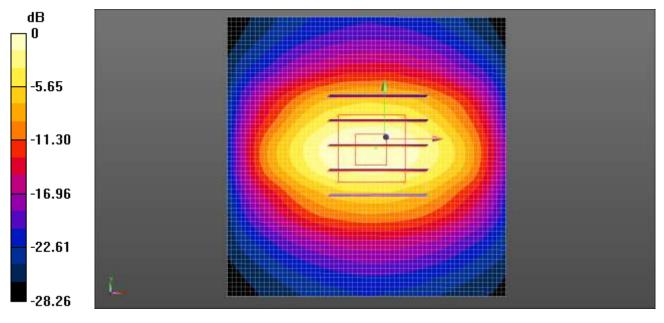
Verification Data (1 800 MHz Body)

Test Laboratory:HCT CO., LTDInput Power100 mW (20 dBm)Liquid Temp:21.9 °CTest Date:01/13/2016

DUT: Dipole 1800 MHz D1800V2; Type: D1800V2

Communication System: UID 0, CW; Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.539 S/m; ϵ_r = 55.351; ρ = 1000 kg/m³ Phantom section: Center Section

DASY5 Configuration:


- Probe: ET3DV6 SN1605; ConvF(4.66, 4.66, 4.66); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

1800MHz Verification/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.31 W/kg

1800MHz Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.41 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 6.09 W/kg

SAR(1 g) = 3.82 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 4.30 W/kg

0 dB = 4.31 W/kg = 6.34 dBW/kg

Verification Data (1 900 MHz Head)

 Test Laboratory:
 HCT CO., LTD

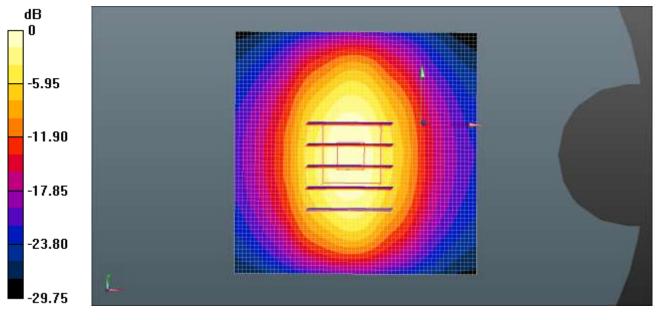
 Input Power
 100 mW (20 dBm)

 Liquid Temp:
 21.6 °C

 Test Date:
 01/04/2016

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.408 S/m; ϵ_r = 39.314; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ET3DV6 SN1609; ConvF(5.18, 5.18, 5.18); Calibrated: 2015-01-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2015-03-18
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);

1900MHz Verification/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.87 W/kg

1900MHz Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 60.84 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 7.64 W/kg SAR(1 g) = 4.21 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 4.64 W/kg

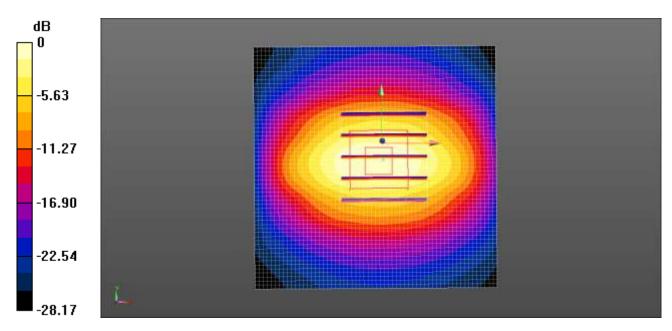
0 dB = 4.87 W/kg = 6.88 dBW/kg

Verification Data (1 900 MHz Body)

Test Laboratory:HCT CO., LTDInput Power100 mW (20 dBm)Liquid Temp:20.8 °CTest Date:01/11/2016

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.542 S/m; ϵ_r = 55.002; ρ = 1000 kg/m³ Phantom section: Center Section


DASY5 Configuration:

- Probe: ET3DV6 SN1605; ConvF(4.54, 4.54, 4.54); Calibrated: 2015-04-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2015-01-21
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);

1900MHz Verification/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.69 W/kg

1900MHz Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.54 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 6.88 W/kg **SAR(1 g) = 4.14 W/kg; SAR(10 g) = 2.21 W/kg**

Maximum value of SAR (measured) = 4.64 W/kg

0 dB = 4.69 W/kg = 6.71 dBW/kg

Verification Data (2 450 MHz Head)

Test Laboratory: HCT CO., LTD

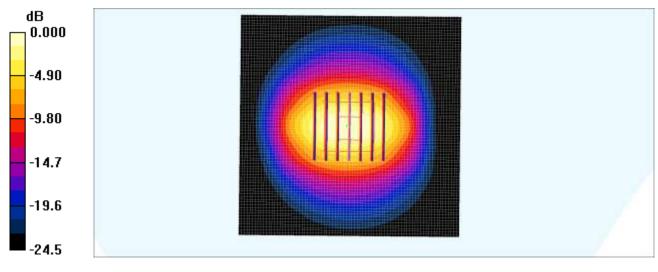
Input Power	100 mW (20 dBm)
	()

Liquid Temp: 19.7 ℃

Test Date: 01/05/2016

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.83 mho/m; ϵ_r = 37.7; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.9, 6.9, 6.9); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Head Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 8.55 mW/g

2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.0 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.41 mW/g; SAR(10 g) = 2.41 mW/g

Maximum value of SAR (measured) = 8.54 mW/g

 $0 \, dB = 8.54 mW/g$

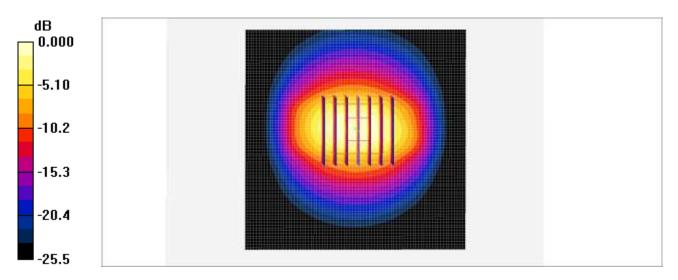
Verification Data (2 450 MHz Body)

Test Laboratory:	HCT CO., LTD	
Input Power	100 mW (20 dBm)	
Liquid Temp:	19.7 ℃	
Test Date:	01/05/2016	

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.93 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:


- Probe: EX3DV4 SN3797; ConvF(6.91, 6.91, 6.91); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Body Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 8.47 mW/g

2450MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.4 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.22 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 8.36 mW/g

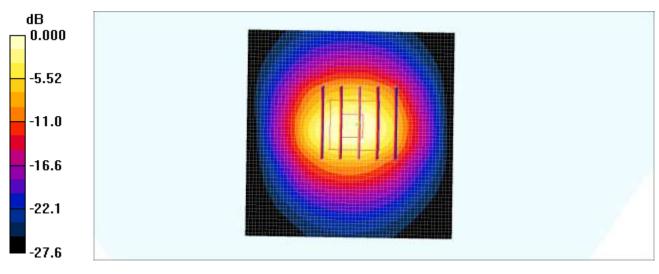
 $0 \, dB = 8.36 \, mW/g$

Verification Data (2 600 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	20.2 ℃
Test Date:	01/06/2016

DUT: Dipole 2600MHz; Type: D2600V2

Communication System: CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.02 mho/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.68, 6.68, 6.68); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2600MHz Head Verification/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.69 mW/g

2600MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.8 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 5.79 mW/g; SAR(10 g) = 2.47 mW/g Maximum value of SAR (measured) = 6.48 mW/g

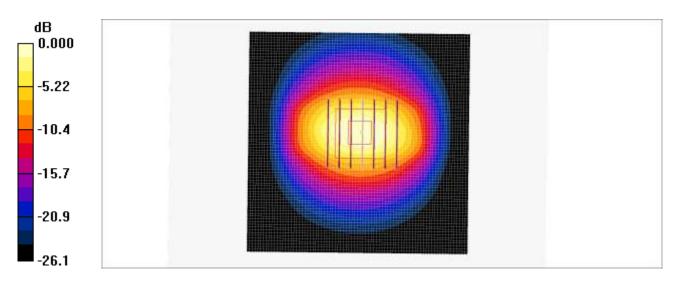
 $0 \, dB = 6.48 \, mW/g$

Verification Data (2 600 MHz Body)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	20.2 ℃
Test Date:	01/06/2016

DUT: Dipole 2600 MHz; Type: D2600V2

Communication System: CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.2 mho/m; ϵ_r = 54.3; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.75, 6.75, 6.75); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Body Verification/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 9.42 mW/g

2450MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.2 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 13.8 W/kg SAR(1 g) = 5.86 mW/g; SAR(10 g) = 2.51 mW/g Maximum value of SAR (measured) = 9.47 mW/g

 $0 \, dB = 9.47 \, mW/g$

Attachment 3. – Probe Calibration Data

Engineering AG sughausstrasse 43, 8004 Zuri	ry of ch. Switzerland	RACMRA C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servic lutilateral Agreement for the	e is one of the signatories	to the EA	reditation No.: SCS 0108
lient HCT (Dymstee	5)	Certificate No:	EX3-3797_Nov15
CALIBRATION	CERTIFICATE		
Dbject	EX3DV4 - SN:379	97	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes		
Calibration date:	November 24, 20	15	
	the state of the state of the state	8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	
		y facility: environment temperature (22 ± 3)°C i	and humidity < 70%.
Calibration Equipment used (M8		y facility: environment temperature (22 ± 3)°C (Cal Date (Certificate No.)	and humidity < 70%.
Calibration Equipment used (M8 Primary Standards	TE critical for calibration)		
Calibration Equipment used (M8 Primary Standards Power meter E44198	TE entical for calibration)	Gal Date (Certificate No.)	Schedulet Calibration
Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A	TE ortical for calibration)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	Scheduled Calibration Mar-16 Mar-16 Mar-16
Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132)	Schedulet Calibration Mar-16 Mar-16 Mar-16 Mar-16
Calibration Equipment used (M8 Primary Standards Power meter E44198 Power nentor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: 55654 (3c) BN: 55277 (20x) SN: 55129 (30b)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133)	Schedulett Calibration Mar-16 Mar-16 Mar-16 Mar-18 Mar-18
Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14)	Schedulet Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	ID GB41293874 MY41498087 SN: 55654 (3c) BN: 55277 (20x) SN: 55129 (30b)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133)	Schedulett Calibration Mar-16 Mar-16 Mar-16 Mar-18 Mar-18
Calibration Equipment used (M8 Primary Standards Power meter E44108 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16
Calibration Equipment used (M8 Primary Standards Power meter E44108 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 70 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 55129 (30b) SN: 660 3D	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-18 Mar-18 Dec-15 Jan-16 Scheduled Check
Calibration Equipment used (M8 Primary Standards Power meter E44108 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 650 ID US3642001700	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16
Calibration Equipment used (M8 Primary Standards Power meter E44108 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 55129 (30b) SN: 660 3D	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-18 Mar-18 Dec-15 Jan-16 Scheduled Check
Calibration Equipment used (M8 Primary Standards Power meter E44108 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	IC estical for calibration) IO GB41293874 MY41498087 SN: 55854 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 560 ID US3642U01700 US37390585 Name	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16
Calibration Equipment used (M8 Primary Standards Power meter E44198 Power menor E44198 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 70 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Asabyzer HP 8753E	ID GB41293874 MY41498087 SN: 55654 (3c) SN: 55524 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 660 ID US3642U01700 US37390585 US37390585	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15)	Schedulett Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-18 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
Calibration Equipment used (M8 Primary Standards Power sensor E44108 Power sensor E44108 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E330V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	IC estical for calibration) IO GB41293874 MY41498087 SN: 55854 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 560 ID US3642U01700 US37390585 Name	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13)	Schedulet Calibration Mar-16 Mar-16 Mar-16 Mar-18 Mar-18 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
Calibration Equipment used (M8 Primary Standards Power meter E44108 Power sensor E44108 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 560 ID US3642U01700 US3642U01700 US37390585 Name Claudio Leubler	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-16

Certificate No: EX3-3797_Nov15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG

- S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
3 rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., 8 = 0 is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) In the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3797_Nov15

Page 2 of 11

EX3DV4 - SN:3797

November 24, 2015

Probe EX3DV4

SN:3797

Manufactured: April 5, 2011 Calibrated:

November 24, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3797_Nov15

Page 3 of 11

EX3DV4- SN:3797

November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ⁴	0.62	0.58	0.56	± 10.1.%
DCP (mV) ⁸	99.5	97.0	98.4	3

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^t (k=2)
0	CW	X	0.0	0.0	1.0	0.00	177.5	±2.5 %
		Y	0.0	0.0	1.0		176.9	
		Z	0.0	0.0	1.0		171.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁴ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
⁹ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field under field value.

Certificate No: EX3-3797_Nov15

Page 4 of 11

EX3DV4- SN:3797

November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.38	9.38	9.38	0.32	0.96	± 12.0 %
835	41.5	0.90	8.98	8.98	8.98	0.16	1.78	± 12.0 %
900	41.5	0.97	8.86	8.86	8.86	0.21	1.53	± 12.0 %
1450	40.5	1.20	7.73	7.73	7.73	0.15	1,77	± 12.0 %
1750	40.1	1.37	7.85	7.85	7.85	0,35	0.80	± 12.0 %
1900	40.0	1.40	7.61	7.61	7.61	0.34	0.80	± 12.0 %
1950	40.0	1.40	7.32	7.32	7.32	0.39	0.83	± 12.0 %
2300	39.5	1.67	7,27	7.27	7.27	0.39	0.85	± 12.0 %
2450	39.2	1.80	6.90	6.90	6.90	0.40	0.80	± 12.0 %
2600	39.0	1.96	6.68	6.68	6.68	0.46	0.80	± 12.0 %
3500	37.9	2.91	6.61	6.61	6.61	0.39	0.99	± 13,1 %
5200	36.0	4.66	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.59	4.59	4.59	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.52	4.52	4.52	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.21	4.21	4.21	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.20	4.20	4,20	0.50	1.80	± 13,1 %

Calibration Parameter Determined in Head Tissue Simulating Media

¹² Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity of its are extended to ± 10 MHz.
¹⁴ At frequencies below 3 GHz, the validity of tissue parameters (is and is) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and is) can be relaxed to ± 10%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
¹⁴ At frequencies below 3 GHz, the validity of tissue parameters (c and is) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated target tissue parameters.
¹⁵ At hey applied to the determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3797_Nov15

Page 5 of 11

EX3DV4~ SN:3797

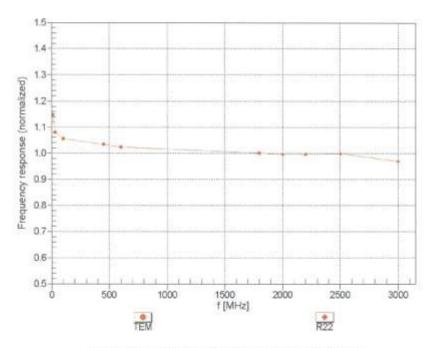
November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

f(MHz) [⊂]	Relative Permittivity	Conductivity (S/m) ^P	ConvF X	ConvF Y	ConvF Z	Alpha	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9,39	9.39	9.39	0.29	1.16	± 12.0 %
835	55.2	0.97	9.17	9.17	9.17	0.32	1.09	± 12.0 %
1750	53.4	1.49	7.52	7.52	7.52	0.42	0.80	± 12.0 %
1900	53.3	1.52	7,32	7.32	7.32	0.31	0.97	± 12.0 %
2450	52.7	1.95	6.91	6.91	6.91	0.34	0.85	± 12.0 %
2600	52.5	2.16	6.75	6.75	6.75	0.16	0.99	± 12.0 %
5200	49.0	5.30	4.24	4.24	4.24	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.07	4.07	4.07	0.50	1,90	± 13.1 %
5500	48.6	5.65	3.80	3.80	3.80	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.54	3.54	3.54	0.60	1.90	± 13.1 %
5800	48.2	8.00	3.84	3.84	3.84	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

Certificate No: EX3-3797_Nov15

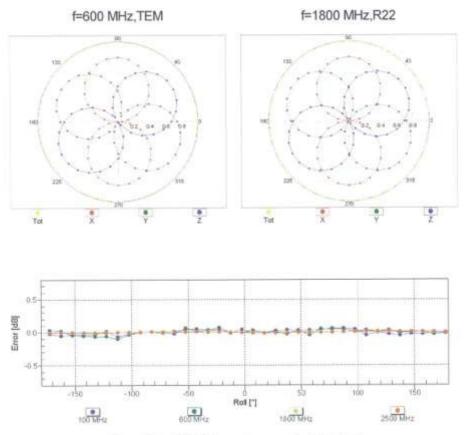

Page 6 of 11

EX3DV4-SN:3797

November 24, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Certificate No: EX3-3797_Nov15

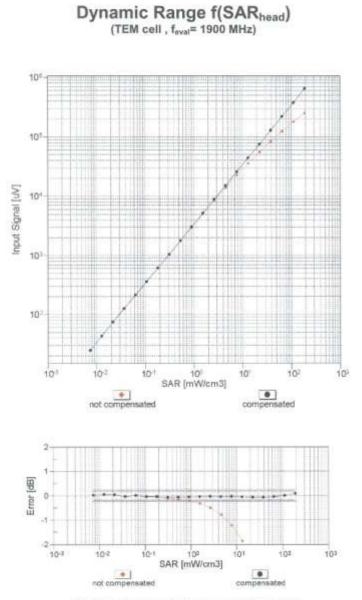

Page 7 of 11

Receiving Pattern (\u00f6), 9 = 0°

EX3DV4- SN:3797

November 24, 2015

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3797_Nov15

Page 8 of 11

EX3DV4- SN:3797

November 24, 2015

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3797_Nov15

Page 9 of 11

EX3DV4-- SN:3797

November 24, 2015

Conversion Factor Assessment f = 1900 MHz,WGLS R22 (H_convF) f = 835 MHz, WGLS R9 (H_convF) 4.0 2.6 2.0 2 17 20 20 M00MJ UNS MOD/N -MR IN 18 1.5 1.0 0.8 1120 10 10 18 41000 . Deviation from Isotropy in Liquid Error (ø, 9), f = 900 MHz 1.0 0.8 0.6 0.4 Deviation 0.2 0.0 -0.4 -0.6 -0.8 -1.0 0 45 90 135 +/08-01 180 225 60 50 270 40 30 A lqagj 20 315 10 0 -1.0 -0.8 -0.5 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3797_Nov15

Page 10 of 11

EX3DV4-- SN:3797

November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	67,5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3797_Nov15

Page 11 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

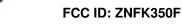
Client HCT (Dymstec)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Certificate No: ET3-1609 Jan15


s

S

bject	ET3DV6 - SN:1609					
albration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes					
alibration date:	January 27, 2015					
		sbability are given on the following pages and a facility: environment temperature (22 \pm 3)*C at				
Calibration Equipment used (M	&TE critical for calibration)					
	4	Cal Date (Certificate No.)	Scheduled Calibration			
Primary Standards	ID	Cal Date (Certificate No.) 03-Apr-14 (No. 217-01951)	Scheduled Calibration Apr-15			
Primary Standards Power meter E44198	ID GB41283874	03-Apr-14 (No. 217-01911)	and the provide state and the state of the s			
Primary Standards Power meter E44198 Power sensor E4412A	ID GB41293874 MY41498087		Apr-15			
Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuetor	ID GB41283874 MY41498057 SN: S5054 (3c)	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911)	Apr-15 Apr-15			
Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuetor Reference 20 dB Attenuetor	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915)	Apr-15 Apr-15 Apr-15			
Primary Standards Power meter E44198 Power service E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	ID GB41283874 MY41498057 SN: S5054 (3c)	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919)	Apr-15 Apr-15 Apr-15 Apr-15			
Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuetor Reference 20 dB Attenuetor	ID GB41293874 MY41498067 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b)	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920)	Apr-15 Apr-15 Apr-15 Apr-15 Apr-15			
Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuetor Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	1D GB41293874 MY41495087 SN: S5054 (3c) SN: S5277 (20x) SN: S5128 (30b) SN: 3013	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-14 (No. ES3-3013, Dec14)	Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-15			
Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-14 (No. ES3-3013_Dec14) 14-Jan-15 (No. DAE4-660_Jan15)	Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-15 Jan-16			
Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuetor Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID GB41293674 MY41498067 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 560 ID	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01910) 03-Apr-14 (No. 217-01920) 30-Dec 14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house)	Apr-15 Apr-15 Apr-15 Apr-15 Dec-15 Jan-16 Scheduled Check			
Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293674 MY41498067 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US37390585	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01920) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-89 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-15			
Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293674 MY41498067 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 560 ID US3642U01700	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Jan-15 Jan-16 Scheduled Check In house check, Apr-16			

Certificate No: ET3-1609_Jan15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

s

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

Aloganit.	
TSL	tissue simulating liquid
NORMx, v.z	sensitivity in free space
	sensitivity in TSL / NORMx,y,z
12.22.03.0	diode compression point
	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization @	e rotation around probe axis
	a rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e. 8 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system
	TSL NORMx,y,z ConvF DCP CF A, B, C, D Polarization & Polarization 3

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f s 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensibility in TSL corresponds to NORMx.y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MH₇
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1609_Jan15

Page 2 of 11

January 27, 2015

Probe ET3DV6

SN:1609

Manufactured: July 27, 2001 Calibrated:

January 27, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Centificate No: ET3-1609_Jan15

Page 3 of 11

January 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)2) ^A	2.00	1.80	1.82	± 10.1 %
DCP (mV) ^B	100.6	100.4	101.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	266.1	±3.5 %
-		Y	0.0	0.0	1.0		272.1	
		Z	0.0	0.0	1.0		268.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
⁸ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ET3-1609_Jan15

Page 4 of 11

January 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Calibration Parameter	Determined	in Head	Tissue	Simulating	Media
------------------------------	------------	---------	--------	------------	-------

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) P	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^o (mm)	Unct. (k=2)
835	41.5	0.90	6.45	6.45	6.45	0.29	3.00	± 12.0 %
900	41.5	0.97	6.32	6.32	6.32	0.32	3.00	± 12.0 %
1450	40.5	1.20	5.68	5.68	5.68	0.78	1.88	± 12.0 %
1750	40.1	1.37	5,38	5.38	5.38	0.73	2.10	± 12.0 %
1900	40.0	1.40	5.18	5.18	5.18	0.75	2.17	± 12.0 %
1950	40.0	1.40	5.00	5.00	5.00	0.78	2.22	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.80	1.73	± 12.0 %

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity or above 3 GHz, the validity of tissue parameters (is and in) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies below 3 GHz, the validity of tissue parameters (is and in) is restricted to ± 5%. The uncertainty is the RSS of the ConvF included target fissue parameters.

Certificate No: ET3-1609_Jan15

Page 5 of 11

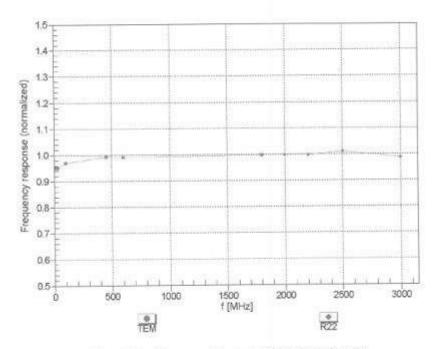
January 27, 2015

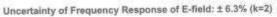
DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Calibration Paramete	Determined in	Body Tissue	Simulating Media
-----------------------------	---------------	-------------	------------------

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^C (mm)	Unct. (k=2)
835	55.2	0.97	6.35	6.35	6.35	0.47	2.05	± 12.0 %
1750	53.4	1.49	4,95	4.95	4.95	0.80	2.40	± 12.0 %
1900	53.3	1.52	4.74	4.74	4.74	0.80	2.34	± 12.0 %
2450	52.7	1.95	4.33	4.33	4.33	0.80	1.29	± 12.0 %

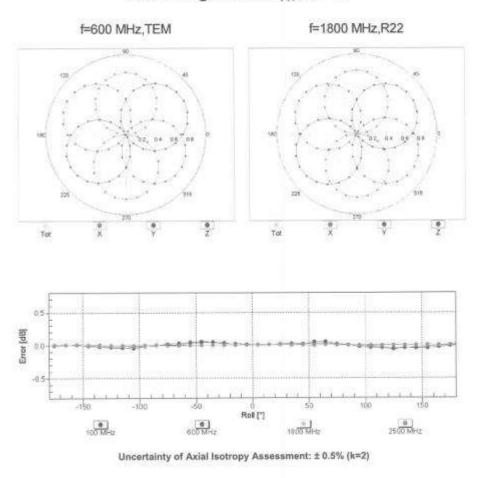
⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 126, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
⁶ At frequencies below 3 GHz, the validity of tissue parameters (s and n) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies parameters. At he validity of tissue parameters.
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the namaring deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: ET3-1609_Jan15


Page 6 of 11

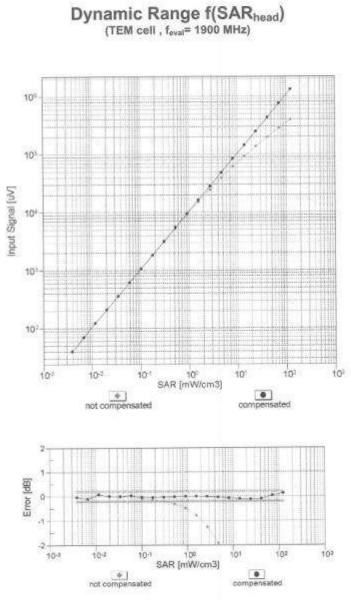
January 27, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Page 7 of 11

January 27, 2015

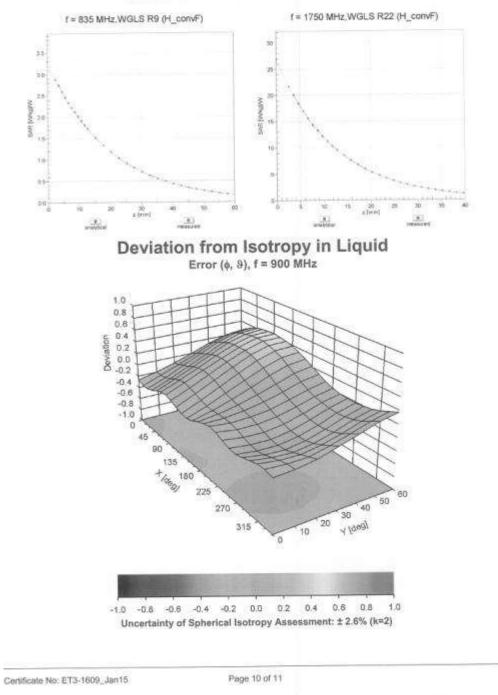

Receiving Pattern (ϕ), 9 = 0°

Certificate No: ET3-1609_Jan15

Page 8 of 11

January 27, 2015

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1609_Jan15

Page 9 of 11

January 27, 2015

Conversion Factor Assessment

January 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-105.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1609_Jan15

Page 11 of 11

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

HCT (Dymstec) Client

ac-MR

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ET3-1605_Apr15

S

С

S

The local	ET3DV6 - SN:160	he	the second s
Dbject	E130V6-314.10	10	
Calibration procedure(s)		A CAL-23.v5, QA CAL-25.v6 dure for dosimetric E-field probes	
	Calibration proce	dure for dusimetric c-field proces	
Calibration date:	April 27, 2015		
This railbration cedificate docur	nents the traceability to natio	anal standards, which realize the physical units	of measurements (SI).
		obability are given on the following pages and	
All calibrations have been cond	ucted in the closed laborator	y facility: environment temperature (22 ± 3)*C a	and humidity < 70%.
		•	
Calibration Equipment used (Mi	TE entical for calibration)		
and a second second second second from			
	1.00	Table Carlos and Ala	Late as we wanted
	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power meter E4419B Power sensor E4412A	GB41293874 MY41498087	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	Mar-16 Mar-16
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	G841293874 MY41498087 SN: S5054 (3c)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129)	Mar-16 Mar-16 Mar-16
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133)	Mar-16 Mar-16 Mar-18 Mar-15 Mar-16
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013_Dec14)	Mar-16 Mar-16 Mar-18 Mar-15 Mar-16 Dec-15
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b)	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133)	Mar-16 Mar-16 Mar-18 Mar-15 Mar-16
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (305) SN: 3013	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013_Dec14)	Mar-16 Mar-16 Mar-18 Mar-15 Mar-16 Dec-15
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 3013 SN: 660	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013_Dec14) 14-Jan-15 (No. DAE4-660_Jan15)	Mar-16 Mar-16 Mar-18 Mar-16 Mar-16 Dec-15 Jan-16
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 3013 SN: 660	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-860_Jan15) Check Date (in house)	Mar-16 Mar-16 Mar-18 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in frouse) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-15
Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (305) SN: 3013 SN: 660 ID US3542U01700 US37390585 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in frouse) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in frouse) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-15
Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (305) SN: 3013 SN: 660 ID US3542U01700 US37390585 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in frouse) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-15
Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (305) SN: 3013 SN: 660 ID US3542U01700 US37390585 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in frouse) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function	Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-16 In house check: Oct-15
Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	GB41293874 MY41496087 SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrali	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-16 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in frouse) 4-Aug-99 (in frouse) 4-Aug-99 (in frouse check Apr-13) 18-Oct-01 (in house check Oct-14) Function Eaboratory/Technician	Mar-16 Mar-16 Mar-18 Mar-16 Dec-15 Jan-16 Scheduled Check In house check: Apr-15 In house check: Oct-15

Certificate No: ET3-1605_Apr15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kafibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Giosaary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A. B. C. D	modulation dependent linearization parameters
Polarization @	e rotation around probe axis
Polanzauon φ	
Polarization 9	a rotation around an axis that is in the plane normal to probe axis (at measurement center).
	i.e., a = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the sar (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media, VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1605_Apr15

Page 2 of 11

The Swiss Accreditation Serv Multilateral Agreement for the Glossary: TSL t

ET30V6 - SN:1605

April 27, 2015

Probe ET3DV6

SN:1605

Manufactured: July 27, 2001 Calibrated:

April 27, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1605_Apr15

Page 3 of 11

ET30V6~ SN:1605

April 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Basic Calibration Parameters

Construction of the second second	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (uV/(V/m)2) ^A	1.49	1.91	1.61	± 10.1 %
DCP (mV) ^{tr}	100.4	99.7	100.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	189.6	±3.0 %
		Y	0.0	0.0	1.0		194.2	
		Z	0.0	0.0	1.0		177,7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TGL (see Pages 5 and 8).
⁹ Numerical linearization parameter: uncertainty not required.
⁹ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ET3-1605_Apr15

Page 4 of 11

April 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.64	6,64	6.64	0.26	3.00	± 12.0 %
835	41.5	0.90	6,33	6.33	6.33	0.28	3.00	± 12.0 %
900	41.5	0.97	6.14	6.14	6.14	0.31	3.00	± 12.0 %
1450	40.5	1.20	5.37	5.37	5.37	0.45	2.64	± 12.0 %
1750	40.1	1.37	5.20	5.20	5.20	0.73	2.15	± 12.0 %
1900	40.0	1.40	5.01	5.01	5.01	0.80	2.12	± 12.0 %
1950	40.0	1.40	4.94	4.94	4.94	0.80	2.05	± 12.0 %
2300	39.5	1.67	4.77	4.77	4.77	0.80	1.88	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.85	1.75	± 12.0 %

⁵ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 84, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity walking calibration of the second of a standard to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target (lissue parameters. ⁶ Applicable are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and helow ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ET3-1605_Apr15

Page 5 of 11

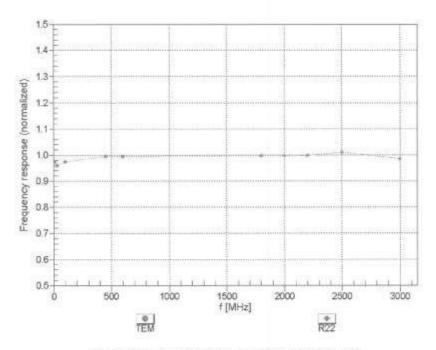
April 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.21	6.21	6.21	0.30	2.71	± 12.0 %
835	55.2	0.97	6,11	6.11	6.11	0.30	3.00	± 12.0 %
1750	53.4	1,49	4.66	4.66	4.66	0.80	2.52	± 12.0 %
1900	53.3	1.52	4.54	4.54	4.54	0.80	2,32	± 12.0 %
2450	52.7	1.95	4.18	4.18	4,18	0.79	1.80	± 12.0 %

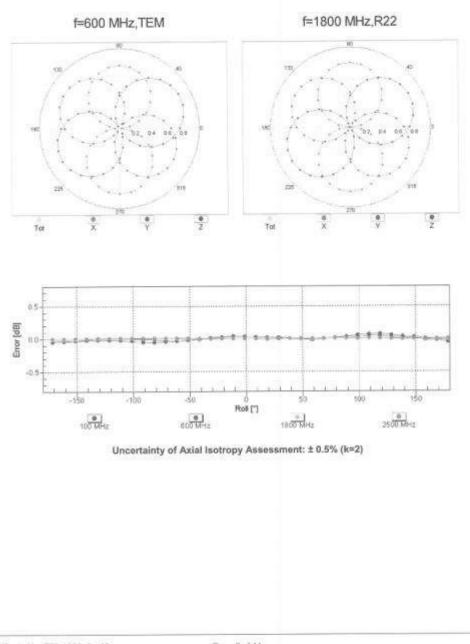
² Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 125, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
* At frequencies below 3 GHz, the validity of issue parameters (it and in) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of lissue parameters (it and in) can be relaxed to ± 10%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
* A frequencies below 3 GHz, the validity of lissue parameters (it and in) can be relaxed to ± 10%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
* A plota/Depth are determined during cabhrelon. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe to diameter from the boundary.


Certificate No: ET3-1605_Apr15

Page 6 of 11

April 27, 2015

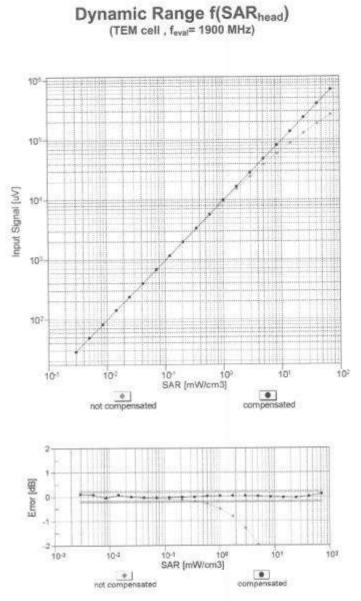
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Certificate No: ET3-1605_Apr15

Page 7 of 11

April 27, 2015

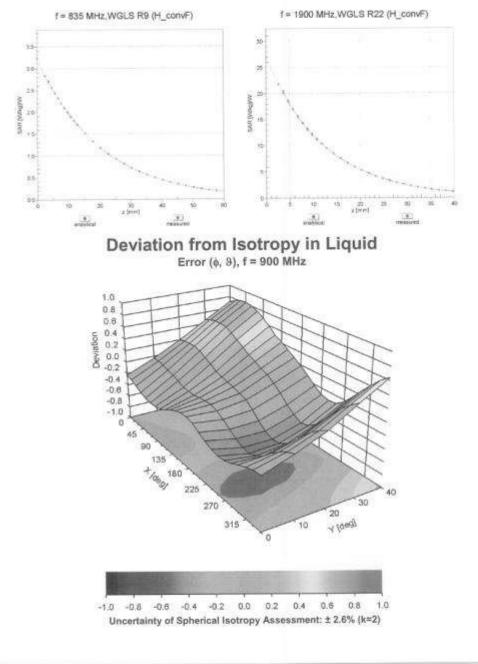

Receiving Pattern (\u00fc), 9 = 0°

Certificate No: ET3-1605_Apr15

Page 8 of 11

April 27, 2015

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1605_Apr15

Page 9 of 11

April 27, 2015

Conversion Factor Assessment

Certificate No: ET3-1605_Apr15

Page 10 of 11

April 27, 2015

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1605

Sensor Arrangement	Triangular
Connector Angle (*)	58.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1605_Apr15

Page 11 of 11

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura Sissi Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: D835V2-441_Jan15

С

Power meter EPM-442A GB37460704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01918) Apr-15 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Vpp+N mismatch combination SN: 5058 (20k) 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF gamerator R&S SMT-06 100005 04-Aug-99 (in house check Cd-13) In house check: Cd-1	loject	D835V2 - SN: 441					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	alibration procedure(s)		dure for dipole validation kits abo	we 700 MHz			
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter EPM-442A GB37460704 07-Oct-14 (No. 217-02020) Oct-15 Prower sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Prower sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Prower sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01918) Apr-15 Prower sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01921) Oct-15 Prower sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01921) Apr-15 Prower sensor HP 8481A MY41092317 03-Apr-14 (No. 217-01921) Apr-15 Prower sensor HP 8481A MY41092317 03-Apr-14 (No. 217-01921) Apr-15 Prower sensor HP 8481A MY41092317 03-Apr-14 (No. 217-01921) Apr-15 Prower sensor HP 8481A SN: 5047.2 / 08327 03-Apr-14 (No. DAE4-601_Aug14) Aug-15 Prower sensor HP 8481A IS (Soft Sensor Sen	alibration date:	January 23, 2015					
Power meter EPM-442A GB37460704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01918) Apr-15 Power sensor HP 8481A MY41092317 03-Apr-14 (No. 217-01918) Apr-15 Power sensor HP 8481A SN: 5058 (20k) 03-Apr-14 (No. 217-01921) Apr-15 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 AE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 Retwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house	d calibrations have been conduc	cted in the closed laborator					
Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Noterence 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Sype-N mismatch combination SN: 5058 (20k) 03-Apr-14 (No. 217-01921) Apr-15 Neterence Probe ES30V3 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 SN: 3205 30-Dec-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-4 Calibrated by: Michael Weber Laboratory Technician Michael Weber							
Intervence 20 dB Attenuator MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Intervence 20 dB Attenuator SN: 5058 (20k) D3-Apr-14 (No. 217-01918) Apr-15 Intervence Probe ES3DV3 SN: 5047.2 / 06327 D3-Apr-14 (No. 217-01918) Apr-15 Intervence Probe ES3DV3 SN: 5047.2 / 06327 D3-Apr-14 (No. 217-01921) Apr-15 Intervence Probe ES3DV3 SN: 5047.2 / 06327 D3-Apr-14 (No. 217-01921) Apr-15 Intervence Probe ES3DV3 SN: 5047.2 / 06327 D3-Apr-14 (No. ES3-3205_Dec14) Dec-15 Intervence Probe ES3DV3 SN: 5047.2 / 06327 D3-Apr-14 (No. DAE4-601_Aug14) Aug-15 Intervence Probe ES3DV3 ID # Check Date (in house) Scheduled Check If generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 It generator R&S SMT-06 US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-1 In house check: Oct-1 US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-1 Calibrated by: Name Function Signature	rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
oference 20 dB Attenuator ype-N mismatch combination oference Probe ES30V3 AE4 SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 AE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 econdary Standards ID # Check Date (in house) Scheduled Check F generator R&S SMT-06 etwork Analyzer HP 8753E 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 In house check: Oct-1 atlbrated by: Name Function Signature	and the second			and an other participants and a participant of the second se			
wps-N mismatch combination oterence Probe ES30V3 SN: 5047.2 / 08327 03-Apr-14 (No. 217-01921) Apr-15 AE4 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 AE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 econdary Standards ID # Check Date (in house) Scheduled Check F generator R&S SMT-06 etwork Analyzer HP 8753E 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 In house check: Oct-1 alibrated by: Name Function Signature	ower meter EPM-442A	GB37460704	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15			
Note Function Signature Name Function Signature Name Function Signature	ower meter EPM-442A ower sensor HP 8481A	GB37460704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-16			
AE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 econdary Standards ID # Check Date (in house) Scheduled Check F generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 letwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-1 albrated by: Name Function Signature	ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	GB37460704 U537292783 MY41082317	07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Oct-15 Oct-15 Oct-15 Apr-15			
econdary Standards ID # Check Date (in house) Scheduled Check F generator R&S SMT-06 letwork Analyzer HP 8753E 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 In house check: Oct-1 In house check: Oct-1 In house check: Oct-1 alibrated by: Name Function Signature Michael Weber Laboratory Technician Michael Weber	ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A oterence 20 dB Attenuator ype-N mismatch combination	GB37460704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15			
IF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 Introduction US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-1 In house check: Oct-14 In house check: Oct-14 In house check: Oct-14 Salbrated by: Name Function Michael Weber Laboratory Technician Michael Weber	ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination leference Probe ES30V3	GB37460704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15			
IF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-1 Vetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-1 Name Function Signature Calibrated by: Michael Weber Laboratory Technician	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3	GB37460704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15			
Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-1 Calibrated by: Name Function Signature	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Neterence 20 dB Attenuator Type-N mismatch combination Neterence Probe ES30V3 DAE4	GB37460704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15			
Calibrated by: Michael Weber Laboratory Technician	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Neterence 20 dB Attenuator Type-N mismatch combination Neterence Probe ES30V3 DAE4 Secondary Standards	GB37460704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15			
Calibrated by: Michael Weber Laboratory Technician	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37460704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16			
Millele	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37460704 US37292783 MY41092317 SN: 5058 (20k) SN: 6047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check			
pproved by: Katja Pokovic Technical Manager	Iower meter EPM-442A Iower sensor HP 8481A Iower sensor HP 8481A Ioterence 20 dB Attenuator ypp-N mismatch combination Ioterence Probe ES30V3 IAE4 Secondary Standards IF generator R&S SMT-06 Ietwork Analyzer HP 8753E	GB37460704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 54206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16			
	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reterence 20 dB Attenuator ype-N mismatch combination Reterence Probe ES30V3 DAE4 Secondary Standards RE generator R&S SMT-06 Retwork Analyzer HP 8753E	GB37460704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 54206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Apt-15 Apt-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16			
issued: January 26, 20	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06 Retwork Analyzer HP 8753E Calibrated by:	GB37460704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Michael Waber	07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function Laboratory Technician	Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16			

Certificate No: D835V2-441_Jan15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-441_Jan15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	.41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	41.5±6%	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.21 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.54 W/kg

Body TSL parameters

The following parameters and calculations were ap	pried.	_
	Temperature	F

to the former second second from

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	55.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	102000	****

SAR result with Body TSL

SAR averaged over 1 cm ^o (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2,40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ² (10 g) of Body TSL SAR measured	condition 250 mW input power	1.57 W/kg

Certificate No: D835V2-441_Jan15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 1.0 jΩ
Return Loss	- 34.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω - 2.7 jΩ	
Return Loss	- 27.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.369 ns
accounted actually force an earliering	100000000

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 09, 2001	

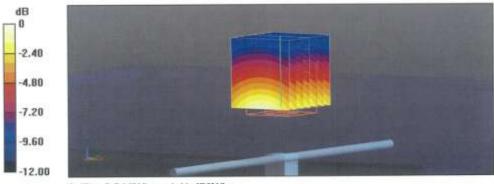
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 22.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441

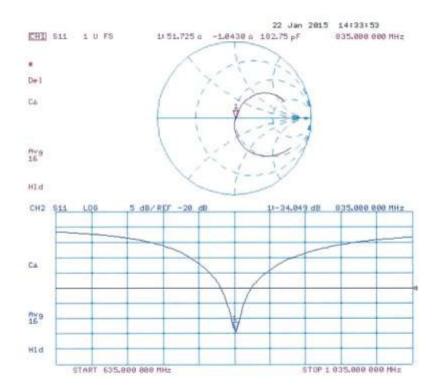

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ϵ_r = 41.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.43 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.49 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.76 W/kg


0 dB = 2.76 W/kg = 4.41 dBW/kg

Certificate No: D835V2-441_Jan15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-441_Jan15

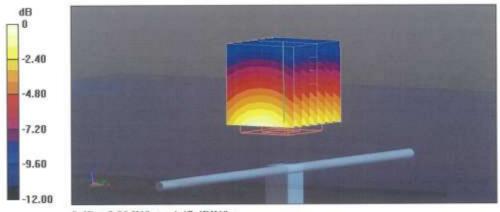
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 23.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441

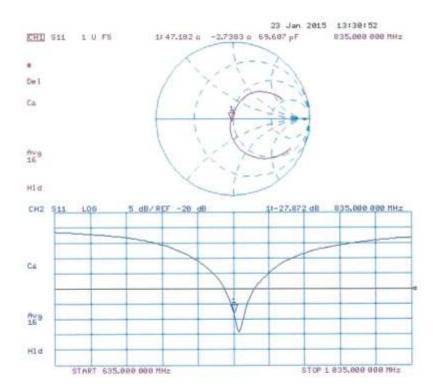

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.59 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.80 W/kg


0 dB = 2.80 W/kg = 4.47 dBW/kg

Certificate No: D835V2-441_Jan15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-441_Jan15

Page 8 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

С

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec) Certificate No: D1800V2-2d007_Feb15

Priss calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibrations Equipment used (M&TE critical for calibration) Primary Standards 1D # Cal Date (Certificate No.) Scheduled Calibration Power measure FPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41082317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41082317 07-Oct-14 (No. 217-01921) Apr-15 Structure Proble ES30V3 SN: 5047.2 / 08327 03-Apr-14 (No. 217-01921) Apr-15 Structure Proble ES30V3 SN: 5047.2 / 08327 03-Apr-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house check Oct-1	Object	D1800V2 - SN: 2	d007	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.	Calibration procedure(s)	CONTRACTOR AND CONTRACTOR IN	dure for dipole validation kits abo	ove 700 MHz
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	February 19, 201	5	
Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01916) Apr-15 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01921) Apr-15 SN: 5047_2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 DAE4 SN: 5047_2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (In house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (In house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Calibrated by: Name Function </td <td>The measurements and the unce</td> <td>rtainties with confidence p cted in the closed laborator</td> <td>robability are given on the following pages ar</td> <td>d are part of the certificate.</td>	The measurements and the unce	rtainties with confidence p cted in the closed laborator	robability are given on the following pages ar	d are part of the certificate.
Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-01916) Apr-15 Sh: 5058 (20k) 03-Apr-14 (No. 217-01916) Apr-15 Sh: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Sh: 5047.2 / 06327 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 Sh: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards 1D # Check Date (In house) Scheduled Check Secondary Standards 100005 04-Aug-99 (In house check Oct-13) In house check: Oct-16 Network Analyzer HP 6753E US37390585 S4206 18-Oct-01 (In house check Oct-14) In house check: Oct-15				
Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Iteference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Sype-N mismatch combination SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 SN: 3205 30-Dec-14 (No. 217-01921) Apr-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (In house) Scheduled Check SF generator R&S SMT-05 100005 04-Aug-99 (In house check Oct-13) In house check: Oct-16 Name Function In house check: Oct-14 In house check: Oct-15 Calibrated by: Name Function Signature	himary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Notes SN: 5058 (20k) 03-Apr-14 (No. 217-01916) Apr-15 SN: 5058 (20k) 03-Apr-14 (No. 217-01916) Apr-15 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 5047.2 / 06327 03-Apr-14 (No. ES3-3205_Dec14) Dec-15 SN: 5047.2 / 06327 03-Apr-14 (No. ES3-3205_Dec14) Dec-15 SN: 501 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (In house) Scheduled Check SF generator R&S SMT-06 100005 04-Aug-09 (In house check Oct-13) In house check: Oct-16 Name Function In house check: Oct-16 In house check: Oct-16 Calibrated by: Name Function Signature				
ype-N mismatch combination leference Probe ES30V3 SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 iecondary Standards ID # Check Date (in house) Scheduled Check IF generator R&S SMT-06 letwork Analyzer HP 8753E 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 In house check: Oct-16 Salibrated by: Name Function Signature Name Function Signature Michael Weber Laboratory Technician Signature	ower meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Interference Probe ES30V3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 IAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Recondary Standards ID # Check Date (in house) Scheduled Check IF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Iebwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-16 Calibrated by: Name Function Signature Michael Weber Laboratory Technician Signature	fower meter EPM-442A fower sensor HP 8481A fower sensor HP 8481A	GB37480704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
NAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 iecondary Standards ID # Check Date (in house) Scheduled Check IF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Ietwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Salibrated by: Name Function Signature	fower meter EPM-442A fower sensor HP 8481A fower sensor HP 8481A Reference 20 dB Attenuator	GB37480704 U537292783 MY41092317 SN: 5058 (20k)	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916)	Oct-15 Oct-15 Oct-15 Apr-15
Secondary Standards ID # Check Date (in house) Scheduled Check 3F generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Signature Michael Weber Laboratory Technician Integer of the second se	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination	GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
HF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Signature Name Function Signature Michael Weber Laboratory Technician In House check: Oct-16	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES30V3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
Name Function Signature Calibrated by: Michael Weber Laboratory Technician Michael Weber	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES30V3	GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15
Calibrated by: Name Function Signature	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Peference 20 dB Attenuator Type-N mismatch combination Peference Probe ES30V3 DAE4 Secondary Standards	GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
Calibrated by: Michael Weber Laboratory Technician	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 U537292783 MY41092317 SN: 5058 (20k) SN: 5047.2706327 SN: 3205 SN: 601 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Calibrated by: Michael Weber Laboratory Technician	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 U537292783 MY41092317 SN: 5058 (20k) SN: 5047.2706327 SN: 3205 SN: 601 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
Approved by: Katja Pokovic Technical Mariager	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (In house) 04-Aug-99 (In house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Approved by: Kalja Pokovic Technical Manager	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (In house) 04-Aug-09 (In house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (In house) 04-Aug-09 (In house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
	Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 601 ID # 100005 US37390585 S4206 Name Michael Waber	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. E35-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (In house) 04-Aug-09 (In house check Oct-13) 18-Oct-01 (In house check Oct-14) Function Laboratory Technician	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16

Certificate No: D1800V2-2d007_Feb15

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d007_Feb15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.12 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 "C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.67 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.10 W/kg

Certificate No: D1800V2-2d007_Feb15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.3 Ω - 6.9 μΩ
Return Loss	- 22.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.9 Ω - 7.1 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,204 ns
There are a second for a second second	120802-508

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipolet, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 23, 2001

Certificate No: D1800V2-2d007_Feb15

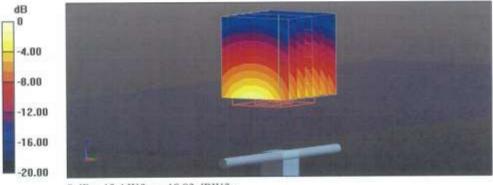
Page 4 of 8

Date: 19.02.2015

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d007

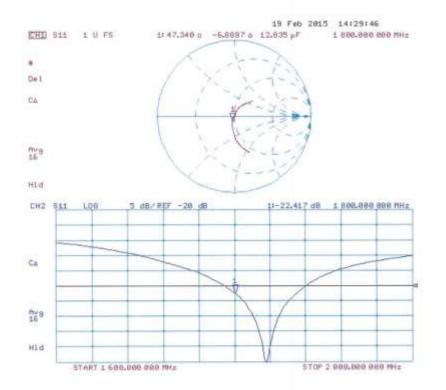

Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; σ = 1.44 S/m; ϵ_r = 38.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.45 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (measured) = 12.4 W/kg


0 dB = 12.4 W/kg = 10.93 dBW/kg

Certificate No: D1800V2-2d007_Feb15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1800V2-2d007_Feb15

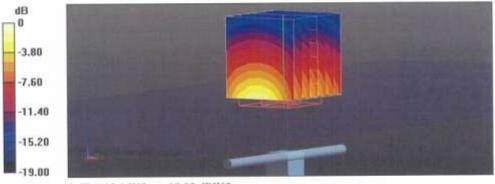
Page 6 of 8

Date: 19.02.2015

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d007

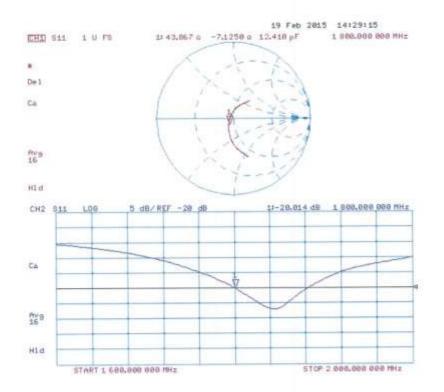

Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; σ = 1.53 S/m; ε_r = 51.7; p = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.77, 4.77, 4.77); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.07 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.67 W/kg; SAR(10 g) = 5.1 W/kg Maximum value of SAR (measured) = 12.1 W/kg


0 dB = 12.1 W/kg = 10.83 dBW/kg

Certificate No: D1800V2-2d007_Feb15

Page 7 of 8



Impedance Measurement Plot for Body TSL

Certificate No: D1800V2-2d007_Feb15

Page 8 of 8

chmid & Partner Engineering AG ughausstrasse 43, 8004 Zurich	, Switzerland		Conside essines d'étalognage
ccredited by the Swiss Accreditation se Swiss Accreditation Service ultilateral Agreement for the re-	is one of the signatories	to the EA	accreditation No.: SCS 0108
lent HCT (Dymstec)			o: D1900V2-5d032_May15
ALIBRATION C	ERTIFICATE		
bject	D1900V2 - SN: 50	1032	
alibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits ab	ove 700 MHz
alibration date:	May 20, 2015		
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical u robability are given on the following pages o y facility: environment temperature (22 ± 3)	and are part of the certificate.
he measurements and the unce It calibrations have been conduc Calibration Equipment used (M&T	ruinties with confidence pr sted in the closed laborator TE critical for calibration)	robability are given on the following pages t y facility; environment temperature (22 ± 3)	ind are part of the certificate.
he measurements and the unce It calibrations have been conduc alibration Equipment used (M&T rimary Standards	ruinties with confidence pr sted in the closed laborator TE critical for calibration)	obability are given on the following pages of y facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration
he measurements and the unce It calibrations have been conduct alibration Equipment used (M&T rimary Standards ower meter EPM-442A	rtainties with confidence pr sted in the closed laborator TE critical for calibration)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	ind are part of the certificate.
he measurements and the unce It calibrations have been conduct alibration Equipment used (M&T rimary Standards rower meter EPM-442A rower sensor HP 6481A	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	rfC and humidity < 70%. Scheduled Calibration Oct-15
he measurements and the unce It calibrations have been conduct calibration Equipment used (M&T himary Standard) hower metar EPM-442A hower sensor HP 8481A hower sensor HP 8481A	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41082317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	rC and humidity < 70%. Scheduled Calibration Oct-15 Oct-15
he measurements and the unce of calibrations have been conduct calibration Equipment used (M&T Primary Standard) Primary St	rtainties with confidence pr sted in the closed laborator TE cnlical for calibration) ID # GB37490704 US37292783 MY41082317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02131)	PC and humidity < 70%. Scheduled Calibration Qct-15 Qct-15 Qct-15
The measurements and the unce W calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power metar EPM-442A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41082317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Incl are part of the certificate. If C and humidity < 70%. Scheduled Calibration Cct-15 Cct-15 Cct-15 Mar-16
The measurements and the unce NI calibrations have been conduc Calibration Equipment used (M&T Primary Standards Prover sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3	rtainties with confidence pr sted in the closed laborator TE critical for calibration) ID # GIB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 5057.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Incl are part of the certificate. If C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Primary Standards Prover metar EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4	rtainties with confidence pr sted in the closed laborator TE critical for calibration) ID # GB37490704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 5054.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02134) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	*C and humidity < 70%. *C and humidity < 70%. Cct-15 Cct-15 Cct-15 Cct-15 Mar-16 Mar-16 Dec-15 Aug-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB37490704 US37292783 MY41082317 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. DAE4-601_Aug14) 18-Aug-14 (No. DAE4-601_Aug14)	*C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV/3 QAE4 Secondary Standards RF generator R&S SMT-06	rtainties with confidence pr sted in the closed laborator TE critical for calibration) ID # GB37490704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 5054.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02134) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Incl are part of the certificate. If C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB37490704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (20k) SN: 50547 2 / 06327 SN: 3205 SN: 601 ID # 100005	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. DAE4-601_Aug14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Incl are part of the certificate. If C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAEc OBEC Sandards RF generator R&S SMT-06	rtainties with confidence pr sted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Inclure part of the certificate. I*C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
The measurements and the unce Alt calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	rubinties with confidence pr ted in the closed laborator TE critical for calibration) ID # GIB37480704 US37292783 MY41082317 SN: 5058 (20k) SN: 5058 (cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Inclure part of the certificate. I*C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D1900V2-5d032_May15

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d032_May15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$38.9\pm6~\%$	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 "C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	41.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.33 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1000	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR averaged over 10 cm ² (10 g) of Body TSL SAR measured	condition 250 mW input power	5.41 W/kg

Certificate No: D1900V2-5d032_May15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω + 5.2 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω + 5.5 jΩ
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 17, 2003

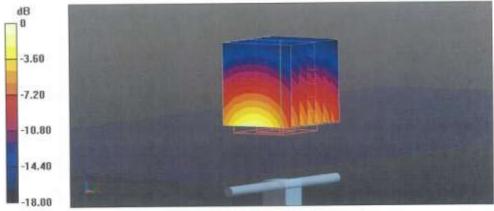
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 20.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d032

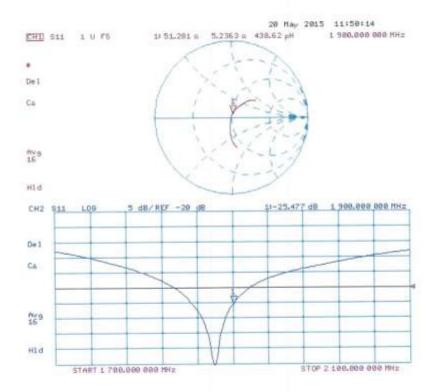

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.37 S/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.00 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.33 W/kg Maximum value of SAR (measured) = 12.7 W/kg


0 dB = 12.7 W/kg = 11.04 dBW/kg

Certificate No: D1900V2-5d032_May15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d032_May15

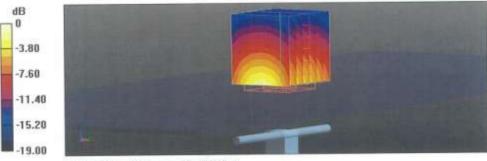
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 20.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d032

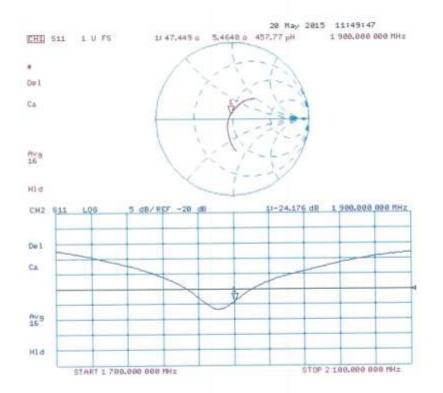

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.51 S/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.41 W/kg Maximum value of SAR (measured) = 12.8 W/kg



0 dB = 12.8 W/kg = 11.07 dBW/kg

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d032_May15

Page 8 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: D2450V2-743_May15

S

C

S

bject	D2450V2 - SN: 74	13	
alibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
alibration date:	May 19, 2015		
he measurements and the unce	rtainties with confidence pr	anal standards, which realize the physical uni- obability are given on the following pages an γ facility: environment temperature (22 ± 3)*C	d are part of the certificate.
rimary Standarda	10#	Cal Date (Certificate No.)	Scheduled Calibration
page a second	ID # GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
war mater EPM-442A		and the second state of th	and a state of the second s
ower meter EPM-442A ower sensor HP 8481A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15 Oct-15 Oct-15
wer meter EPM-442A wer sensor HP 8481A wer sensor HP 8481A	GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15 Oct-15 Mar-16
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator	GB37480704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 05327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3 IAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3 IAE4 secondary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3 JAE4 lecondary Standards IF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Syge-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 0AE4 Secondary Standards RE generator R&S SMT-06 Retwork Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Doc-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standarda Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Doc-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2450V2-743_May15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwing C Service S Swiss

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-743_May15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASYS	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$37.9\pm6~\%$	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	6.32 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	50.7 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.20 W/kg

Certificate No: D2450V2-743_May15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 4.4 jΩ	
Return Loss	- 24.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 6.1 jΩ	
Return Loss	- 24.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

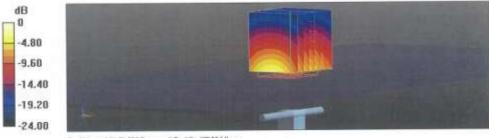
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

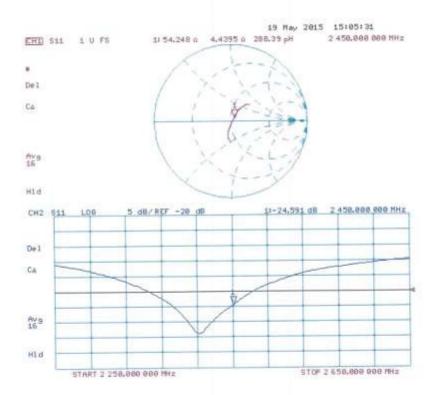

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $v_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.4 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.32 W/kg Maximum value of SAR (measured) = 17.7 W/kg



0 dB = 17.7 W/kg = 12.48 dBW/kg

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-743_May15

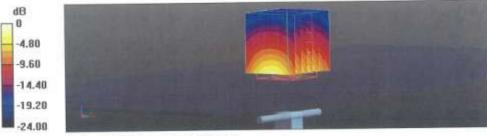
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 19.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

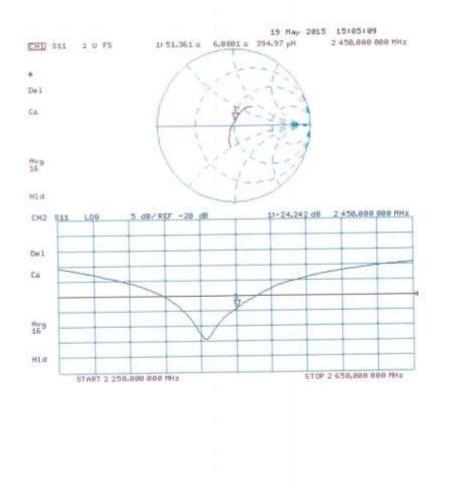

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.12 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.7 W/kg



0 dB = 17.7 W/kg = 12.48 dBW/kg

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-743_May15

Page 8 of 8

chmid & Partner Engineering AG ughausstrasse 43, 6004 Zuric	y of	S S S S S S S S S S S S S S S S S S S	Servizio svizzero di taratura
coredited by the Swiss Accredite he Swiss Accreditation Service ultilateral Agreement for the n	e is one of the signatories	s to the EA	ccreditation No.: SCS 0108
Bent HCT (Dymstec)		Certificate N	o: D2600V2-1015_Mar15
CALIBRATION O	CERTIFICATE		CANADA SHARE
Object	D2600V2 - SN: 10	015	
Calibration procedure(s)	QA CAL-05.v9 Calibration procee	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	March 25, 2015		
The measurements and the unce	ertainties with confidence pr	onal standards, which realize the physical un robability are given on the following pages any facility, environment temperature (22 ± 3)*	nd are part of the certificate.
The measurements and the unce All calibrations have been condu	artainties with confidence pr cted in the closed laborator	robability are given on the following pages ar	nd are part of the certificate.
The measurements and the unce	artainties with confidence pr cted in the closed laborator	robability are given on the following pages ar	nd are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power metar EPM-442A	atainties with confidence pr cted in the closed laborator TE ortical for calibration) ID # GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481A	atainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A	atainties with confidence proceed in the closed laborator TE oritical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	atainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	atainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5057.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	atainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	atainties with confidence proceed in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5057.2 / 05327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921)	C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power matur EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	atainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power matur EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	atainties with confidence pr cted in the closed laborator TE ortical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 556 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	cobability are given on the following pages a y facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 18-Aug-14 (No. 283-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	atainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) ID # 100005	cobability are given on the following pages a cal bate (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-08 Network Analyzer HP 8753E	atainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	atainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092517 SN: 5058 (20k) SN: 5058 (cobability are given on the following pages a ry facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.00 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.40 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	2.20 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.27 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω - 2.1 jΩ
Return Loss	- 33,5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 1.9 jΩ	
Return Loss	- 27.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

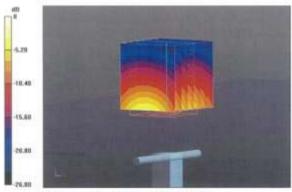
Manufactured by	SPEAG	
Manufactured on	October 30, 2007	

Date: 20.03.2015

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

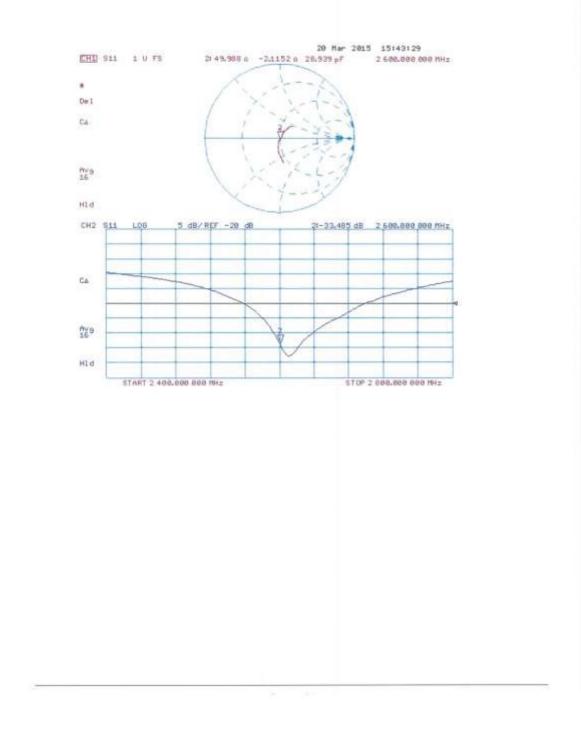
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1015


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2$ S/m; $\varepsilon_r = 37.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.49, 4.49, 4.49); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

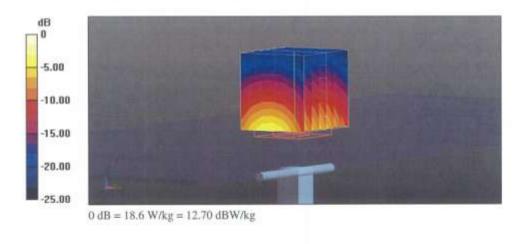
Impedance Measurement Plot for Head TSL

Date: 25.03.2015

DASY5 Validation Report for Body TSL

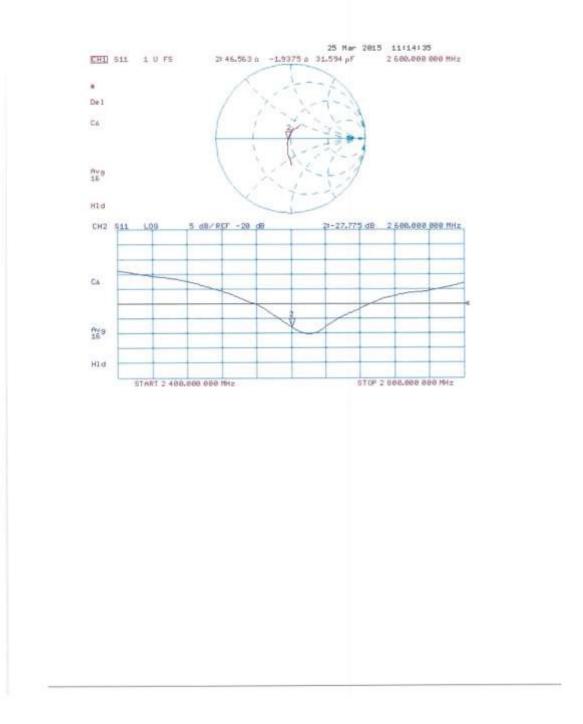
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1015


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $v_r = 50.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.13, 4.13, 4.13); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.03 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 29.2 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.27 W/kg Maximum value of SAR (measured) = 18.6 W/kg

Impedance Measurement Plot for Body TSL

Attachment 5. – SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients		Frequency (MHz)						
(% by weight)	835		1 900		2 450 – 2 700		5 200 - 5 800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.45	53.06	54.9	70.17	71.88	73.2	65.52	78.66
Salt (NaCl)	1.45	0.94	0.18	0.39	0.16	0.1	0.0	0.0
Sugar	57.0	44.9	0.0	0	0.0	0.0	0.0	0.0
HEC	1.0	1.0	0.0	0	0.0	0.0	0.0	0.0
Bactericide	0.1	0.1	0.0	0	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	19.97	0.0	17.24	10.67
DGBE	0.0	0.0	44.92	29.44	7.99	26.7	0.0	0.0
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	10.67

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose			
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose			
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]					
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether					
	Composition of the Tissue Equi	valent Matte	er			

Attachment 6. – SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR		Ducks	Pro	be			Dielectric F	Parameters	CW	Validatio	n	Modula	tion Va	lidation		
System No.	Probe	Probe Type	Calibration Point		Calibration		Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR
3	3797	EX3DV4	Head	835	441	2015.02.11	41.6	0.89	PASS	PASS	PASS	GMSK	PASS	N/A		
3	3797	EX3DV4	Head	835	441	2015.02.11	41.6	0.89	PASS	PASS	PASS	N/A	N/A	N/A		
3	3797	EX3DV4	Body	835	441	2015.2.11	55.4	0.97	PASS	PASS	PASS	GMSK	PASS	N/A		
3	3797	EX3DV4	Body	835	441	2015.2.11	55.4	0.97	PASS	PASS	PASS	N/A	N/A	N/A		
2	1609	ET3DV6	Head	1800	2d007	2015.03.02	40.2	1.41	PASS	PASS	PASS	GMSK	PASS	N/A		
2	1609	ET3DV6	Head	1800	2d007	2015.03.02	40.2	1.41	PASS	PASS	PASS	N/A	N/A	N/A		
4	1605	ET3DV6	Body	1800	2d007	2015.05.11	53.1	1.54	PASS	PASS	PASS	GMSK	PASS	N/A		
4	1605	ET3DV6	Body	1800	2d007	2015.05.11	53.1	1.54	PASS	PASS	PASS	N/A	N/A	N/A		
2	1609	ET3DV6	Head	1900	5d032	2015.06.04	40.1	1.39	PASS	PASS	PASS	N/A	N/A	N/A		
2	1609	ET3DV6	Head	1900	5d032	2015.06.04	40.1	1.39	PASS	PASS	PASS	GMSK	PASS	N/A		
4	1605	ET3DV6	Body	1900	5d032	2015.06.04	52.4	1.51	PASS	PASS	PASS	GMSK	PASS	N/A		
4	1605	ET3DV6	Body	1900	5d032	2015.06.04	52.4	1.51	PASS	PASS	PASS	N/A	N/A	N/A		
3	3797	EX3DV4	Head	2450	743	2015.06.2	38.5	1.81	PASS	PASS	PASS	OFDM	N/A	PASS		
3	3797	EX3DV4	Body	2450	743	2015.06.03	53.5	1.92	PASS	PASS	PASS	OFDM	N/A	PASS		
3	3797	EX3DV4	Head	2600	1015	2015.04.10	38.8	1.97	PASS	PASS	PASS	N/A	N/A	N/A		
3	3797	EX3DV4	Body	2600	1015	2015.04.10	52.9	2.13	PASS	PASS	PASS	N/A	N/A	N/A		

SAR System Validation Summary 1g

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.