

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383. Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

SAR TEST REPORT

Applicant Name:

LG Electronics, MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 Date of Issue: 06. 10, 2016 Test Report No.: HCT-A-1605-F011-1 Test Site: HCT CO., LTD.

FCC ID:

ZNFK220

According to the Evaluation report, all of the data contained herein is reused from the reference FCC ID: ZNFK220H report.

Equipment Type:

GSM WCDMA Phone with BT, WLAN & NFC

Model Name: Additional Model Name:

Testing has been carried out in accordance with:

47CFR §2.1093 ANSI/ IEEE C95.1 – 1992 IEEE 1528-2013

Date of Test:

05/04/2016 ~ 05/11/2016

LG-K220

LGK220, K220

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

arkinto

In-Ho Park Test Engineer / SAR Team Certification Division

Reviewed By

Dong-Seob Kim Technical Manager / SAR Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

F-TP22-03 (Rev.00)

DOCUMENT HISTORY

Version	DATE	DESCRIPTION
HCT-A-1605-F011	05. 26, 2016	First Approval Report
HCT-A-1605-F011-1	06. 10, 2016	Revised BT LE maximum tune-up power on the report. Revised the cover page. (Add the note)

Table of Contents

1. Attestation of Test Result of Device Under Test		
2. Device Under Test Description		5
3. INTRODUCTION	1	3
4. DESCRIPTION OF TEST EQUIPMENT	1	4
5. SAR MEASUREMENT PROCEDURE	1	5
6. DESCRIPTION OF TEST POSITION	1	7
7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2	0
8. FCC SAR GENERAL MEASUREMENT PROCEDURES		
9. Output Power Specifications	2	5
10. SYSTEM VERIFICATION	2	8
11. SAR TEST DATA SUMMARY	-	-
12. Simultaneous SAR Analysis	3	7
13. SAR Measurement Variability and Uncertainty	3	9
14. MEASUREMENT UNCERTAINTY	4	0
15. SAR TEST EQUIPMENT	4	1
16. CONCLUSION	4	2
17. REFERENCES	4	3
Attachment 1. – SAR Test Plots	4	5
Attachment 2. – Dipole Verification Plots	5	9
Attachment 3. – Probe Calibration Data		
Attachment 4. – Dipole Calibration Data	7	8
Attachment 5. – SAR Tissue Characterization 1	0	3
Attachment 6. – SAR SYSTEM VALIDATION 1	0	4

1. Attestation of Test Result of Device Under Test

Test Laboratory	
Company Name:	HCT Co., LTD
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of Korea
Telephone	+82 31 645 6300
Fax.	+82 31 645 6400

Attestation of SAR test result									
Trade Name:	LG Electronics, MobileComm U.S.A., Inc.								
FCC ID:	ZNFK220								
Model:	LG-K220								
Additional Model Name:	LGK220, K220								
EUT Type	GSM WCDMA P	hone with BT, W	LAN & NFC						
Application Type:	Certification								
The Highest Reported	SAR (W/Kg)								
	Tx. Frequency	Equipment	Reported 1g SAR (W/kg)						
Band	(MHz)	Class	Head	Body-Worn	Hotspot				
GSM/GPRS/EDGE 850	824.2 ~ 848.8	PCE	0.39	0.57	0.57				
GSM/GPRS/EDGE 1900	1 850.2 ~ 1 909.8	PCE	0.43	0.55	0.55				
UMTS 850	826.4 ~ 846.6	PCE	0.28	0.38	0.38				
UMTS 1900	1 852.4 ~ 1 907.6	PCE	0.61	0.78	0.78				
802.11b	2 412 ~ 2 462	DTS	0.90	0.24	0.24				
Bluetooth	2 402 ~ 2 480	2 402 ~ 2 480 DSS/DTS N/A							
Simultaneous SAR	per KDB 690783 D0 ⁻	1v01r03	1.50	1.02	1.02				
Date(s) of Tests:	te(s) of Tests: 05/04/2016 ~ 05/11/2016								

2. Device Under Test Description

2.1 DUT specification

Device Wireless specification overview								
Band & Mode	Operating Mode	Tx Frequency						
GSM/GPRS/EDGE 850	Voice / Data	824.2 – 848.8 MHz						
GSM/GPRS/EDGE 1900	Voice / Data	1 850.2 – 1 909.8 MHz						
UMTS 850	Voice / Data	826.4 – 846.6 MHz						
UMTS 1900	Voice / Data	1 852.4 – 1 907.6 MHz						
2.4 GHz WLAN	Data	2 412.0 – 2 462.0 MHz						
Bluetooth	Data	2 402.0 – 2 480.0 MHz						
NFC	Data 13.56 MHz							
Device Description								
Device Dimension	Overall (Length x Width) : 148.89 mm x 74.	9 mm						
Battery Options	Standard							
	Mode	Serial Number						
	GSM850, UMTS850, SM1900, UMTS 1900	2JH9E						
Device Serial Numbers	2.4 GHz WLAN	2JH9M						
	Several samples with identical hardware were used to SAR testing. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics are within operational tolerances expected for production units.							

2.2 DUT Wireless mode

Wireless Modulation	Band		Operating Mode	Duty Cycle
GSM	850 1900	Voice(GMSK) GPRS (GMSK) EGPRS (8PSK)	GPRS/ EDGE Multi-Slot Class: Class 12 – 4 Up, 4 Down Mode class B	GSM Voice: 12.5% GPRS/EDGE: 1 Slot: 12.5% 2 Slots : 25% 3 Slots : 37.5% 4 Slots : 50%
WCDMA (UMTS)	Band 5 Band 2	UMTS Rel.99 (Vo HSDPA (Rel. 5) HSUPA (Rel. 6) HSPA+ (Rel. 7) (DC-HSDPA (Rel.	Uplink QPSK Only)	100 %
2.4 GHz WL	2.4 GHz WLAN Data 802.11 b, 802.11 g, 802.11 n (HT20)		99.75 %	
Bluetooth		Data	4.2 LE	N/A

2.3 TEST METHODOLOGY and Procedures

The tests documented in this report were performed in accordance with IEEE Standard 1528-2013 & IEEE 1528-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 3G SAR Procedures v03r01
- FCC KDB Publication 941225 D06 Hot Spot SAR v02r01
- FCC KDB Publication 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB Publication 447498 D01 General SAR Guidance v06
- FCC KDB Publication 648474 D04 Handset SAR v01r03
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02
- October 2013 TCB Workshop Notes (GPRS testing criteria)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)

2.4 Nominal and Maximum Output Power Specifications This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

Mode / Band		Voice (dBm)	.					Burst Average 8-PSK EGPRS (dBm)			
		1 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	
GSM/GPRS/EDGE 850	Maximum	33.7	33.7	31.2	30.2	29.2	27.2	27.2	26.2	25.2	
GSM/GFRS/EDGE 650	Nominal	33.2	33.2	30.7	29.7	28.7	26.7	26.7	25.7	24.7	
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	28.2	27.2	26.2	26.7	26.7	25.7	24.7	
Gow/Grno/EDGE 1900	Nominal	30.2	30.2	27.7	26.7	25.7	26.2	26.2	25.2	24.2	

Mode / Band		3GPP HSDPA(dBm)			3GPP HSUPA(dBm)				DC-HSDPA(dBm)						
Mode / E	sand	WCDMA	Sub test1	Sub test2	Sub test3	Sub test4	Sub test1	Sub test2	Sub test3	Sub test4	Sub Test5	Sub test1	Sub test2	Sub test3	Sub test4
UMTS Band 5	Maximum	24.2	23.2	23.2	22.7	22.7	21.2	21.2	22.2	20.7	21.2	22.7	22.7	22.2	22.2
(850 MHz)	Nominal	23.7	22.7	22.7	22.2	22.2	20.7	20.7	21.7	20.2	20.7	22.2	22.2	21.7	21.7
UMTS Band 2	Maximum	23.7	22.7	22.7	22.2	22.2	20.7	20.7	21.7	20.2	20.7	22.2	22.2	21.7	21.7
(1900 MHz)	Nominal	23.2	22.2	22.2	21.7	21.7	20.2	20.2	21.2	19.7	20.2	21.7	21.7	21.2	21.2

Mode	e / Band	Modu	ılated Average (dBm)
		Maximum	16.5
IEE 802.	11b (2.4 GHz)	Nominal	15.5
	11~ (0.4.011-)	Maximum	14.0
IEEE 802.	.11g (2.4 GHz)	Nominal	13.0
	11 ₀ (0.4 CU-)	Maximum	12.5
IEEE 802.	.11n (2.4 GHz)	Nominal	11.5
	DH5	Maximum	9
	DHD	Nominal	8
	2-DH5	Maximum	6
Diveteeth	2-085	Nominal	5
Bluetooth	3-DH5	Maximum	6
	3-085	Nominal	5
	LE	Maximum	0
	LE	Nominal	-1.0

Device Edges / Sides for SAR Testing									
Mode Rear Front Left Right Bottom Top									
GSM/GPRS 850	Yes	Yes	Yes	Yes	Yes	No			
GSM/GPRS 1900	Yes	Yes	Yes	No	Yes	No			
UMTS 850	Yes	Yes	Yes	Yes	Yes	No			
UMTS 1900	Yes	Yes	Yes	No	Yes	No			
2.4 GHz WLAN	Yes	Yes	No	Yes	No	Yes			

2.5 DUT Antenna Locations

Particular EUT edges were not required to be evaluated for Wireless Router SAR if the edges were > 25 mm from the transmitting antenna according to FCC KDB 941225 D06v02r01 on page 2. The distance between the transmit antennas and the edges of the device are included in the filing. The overall dimensions of this device are > 9 X 5 cm. A diagram showing device antenna can be found in SAR_setup_photos. Since the diagonal dimension of this device is > 160 mm and < 200 mm, it is considered a "phablet".

* Note: All test configurations are based on front view position.

2.6 SAR Summation Scenario

According to FCC KDB 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Simultaneous transmission paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

Simultaneous Transmission Scenarios									
Applicable Combination	Head	Body-Worn	Hotspot						
GSM Voice + 2.4 GHz WiFi	Yes	Yes	N/A						
GSM Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A						
GPRS/EDGE + 2.4 GHz WiFi	Yes	Yes	Yes						
GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes	N/A						
UMTS + 2.4 GHz WiFi	Yes	Yes	Yes						
UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A						

1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share antenna path and cannot transmit simultaneously/

2. All licensed modes share the same antenna path and cannot transmit simultaneously.

3. UMTS +WLAN scenario also represents the UMTS Voice/DATA + WLAN hotspot scenario.

4. Per the manufacturer, GPRS support VOIP service.

5. The highest reported SAR for each exposure condition is used for SAR summation purpose.

2.7 SAR Test Exclusions Applied

(A) BT & LE

Per FCC KDB 447498 D01v06, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

 $\frac{Max Power of Channel(mW)}{Test Separation Distance (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance [mm]	≤ 3.0
Bluetooth	2 480	8	10	1.3
Bluetooth LE	2 480	1	10	0.2

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(8/10)^*\sqrt{2.480}] = 1.3 < 3.0$.

Based on the maximum conducted power of Bluetooth LE and antenna to use separation distance, Bluetooth LE SAR was not required $[(1/10)^*\sqrt{2.480}] = 0.2 < 3.0$.

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v06 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR = $\frac{\sqrt{f(GHZ)}}{7.5} * \frac{(Max Power of channel mW)}{Min Seperation Distance}$.

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance (Body) [mm]	Estimated SAR (Body) [W/kg]
Bluetooth	2 480	8	10	0.168
Bluetooth LE	2 480	1	10	0.021

Note :

1) Held-to ear configurations are not applicable to Bluetooth and Bluetooth LE operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v06.

2) The frequency of Bluetooth and Bluetooth LE using for estimated SAR was selected highest channel of Bluetooth LE for highest estimated SAR.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

Per FCC KDB 648474 D04v01r02, this device is considered a "Phablet" since the diagonal dimension is greater than 160 mm and less than 200 mm. Therefore, extremity SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR >1.2 W/kg. When hotspot mode applies, 10g SAR required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1g SAR > 1.2 W/kg.

Per FCC KDB 941225 D01v03r01, 12.2 kbps RMC is the primary mode and HSPA (HSUPA/HSDPA with RMC) is the secondary mode.

Per FCC KDB 941225 D01v03r01, The SAR test exclusion is applied to the secondary mode by the following equation.

Adjusted SAR = Highest Reported SAR *
$$\frac{Secondary Max tune - up (mW)}{Primary Max tune tune - up (mW)} \le 1.2 \text{ W/kg.}$$

Based on the highest Reported SAR, the secondary mode is not required.

 $[0.782 * (186/234)] = 0.621 \text{ W/kg} \le 1.2 \text{ W/kg}$

And the maximum output power and tune-up tolerance in secondary mode is \leq 0.25 dB higher than the primary mode.

3. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., , New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

 σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 & DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

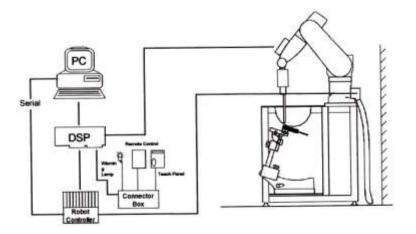


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)

a. The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.

			\leq 3 GHz	> 3 GHz			
Maximum distance from closes (geometric center of probe sens			5±1 mm	$1/2 \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle from pronormal at the measurement location		phantom surface	30°±1°	20°±1°			
			≤ 2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm			
Maximum area scan Spatial res	olution: Δ	κ _{Area,} Δy _{Area}	When the x or y dimension of the measurement plane orientation, measurement resolution must be dimension of the test device with point on the test device.	is smaller than the above, the $e \le$ the corresponding x or y			
Maximum zoom scan Spatial re	esolution:	$\Delta x_{zoom} \Delta y_{zoom}$	≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 GHz: ≤5 mm* 4-6 GHz: ≤4 mm*			
	uniform	grid: $\Delta z_{zoom}(n)$	≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm			
Maximum zoom scan Spatial resolution normal to phantom surface	graded	$\Delta z_{zoom}(1)$; between 1 st two Points closest to phantom surface	≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm			
	grid	∆z _{zoom} (n>1): between subsequent Points	$\leq 1.5 \cdot \Delta z_{zoom}(n-1)$				
Minimum zoom scan volume	x, y, z	·	≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm			
2011 for details. * When zoom scan is required	d and the room, $\leq 7 \text{ mm}$	eported SAR from the ar- n and ≤ 5 mm zoom scan	ce to the tissue medium; see draft ea scan based 1-g SAR estimation resolution may be applied, respec	procedures of KDB			

6. DESCRIPTION OF TEST POSITION

6.1 EAR REFERENCE POINT

Figure 6-2 shows the front, back and side views of the SAM phantom. The center-of-mouth reference point is labeled "M", the left ear reference point (ERP) is marked "LE", and the right ERP is marked "RE." Each ERP is on the B-M (back-mouth) line located 15 mm behind the entrance-to-ear-canal (EEC) point, as shown in Figure 6-1. The Reference Plane is defined as passing through the two ear reference point and point M. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (See Figure 5-1), Line B-M is perpendicular to the N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

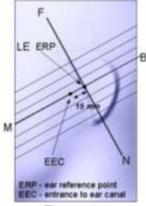


Figure 6-1 Close-up side view of ERP

6.2 HEAD POSITION

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The device under test was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point"(see Figure 6-3). The acoustic output was than located at the same level as the center of the ear reference point. The device under test was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

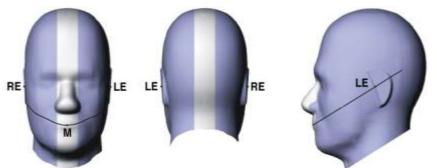
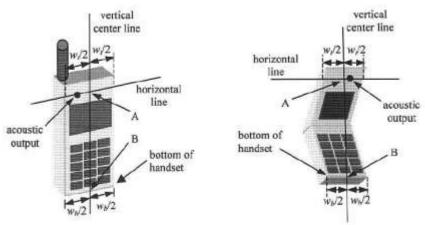
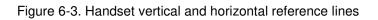




Figure 6-2 Front, back and side views of SAM Twin Phantom

6.3 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

6.4 Body-Worn Accessory Configurations

Body-Worn operating configurations are tested with the belt-dips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03 Body-Worn accessory exposure is typically related to voice mode operations when handsets are carried in body-Worn accessories. The body-Worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-Worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-Worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body- Worn accessory, measured without a headset connected to the handset, Sample Body-Worn Diagram is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and

frequency band should be repeated for that body- Worn accessory with a headset

Accessories for Body-Worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-dip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

attached to the handset.

Body-Worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-Worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-Worn transmitters. SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear. the phablets procedures outlined in KDB Publication 648474 *D04* v01r02 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worm accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna ≤ 25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1-g SAR > 1.2 W/kg.

6.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (LxW \geq 9cmx5 cm) are based on *a* composite test separation distance of 10 mm from the front back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-Worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-Worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot* feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

8. FCC SAR GENERAL MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as Reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

8.2.1 GSM, GPRS AND EDGE

The following procedures may be considered for each frequency band to determine SAR test reduction for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance. GSM voice mode transmits with 1 time slot. GPRS and EDGE may transmit up to 4 time slots in the 8 time-slot frame according to the multi-slot class implemented in a device.

8.2.2 SAR Test Reduction

In FCC KDB 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB 941225 D01v03r01 - 3G SAR Measurement Procedures The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more than 5 % occurred, the tests were repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and speading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR measurements

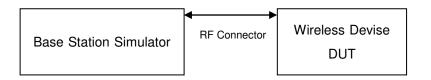
SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

8.4.4 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel 6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2kbps RMC configuration in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.5 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.


8.4.6 DC-HSDPA

UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

DC-HSDPA Considerations:

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12(QPSK) was confirmed to be used during DC-HSDPA measurements
- Measured maximum output powers for DC-HSDPA were not greater than 1/4 dB higher than the WCDMA 12.2 kbps RMC maximum output and as a result, SAR is not required for DC-HSDPA
- The DUT supports UE category 24 for HSDPA.

It is expected by the manufacturer that MPR for some HSUPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

8.5 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.5.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR system to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.5.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating nest to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test positions are measured.

8.5.3 2.4 GHz SAR test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS is that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.5.4 OFDM Transmission Mode and SAR Test channel Selection

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate and lowest order 802.11 g/n mode. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.5.5 Initial Test configuration Procedure

For OFDM, in both 2.4 GHZ, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

8.5.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position on procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg for 1g SAR and ≤ 3.0 W/kg for 10g SAR, no additional SAR tests for the subsequent test configurations are required.

9. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

9.1 GSM

		Voice	GPI	RS(GMSK) Data – C	S1	EDGE Data				
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)	
	128	33.53	33.53	31.00	30.09	29.05	26.93	26.84	25.93	24.95	
GSM 850	190	33.46	33.44	30.92	29.99	28.97	26.88	26.75	25.83	24.84	
000	251	33.47	33.45	30.97	30.05	28.99	26.81	26.74	25.80	24.83	
	512	30.61	30.62	27.81	26.72	25.70	26.42	26.31	25.22	24.21	
GSM 1900	661	30.57	30.56	27.91	26.86	25.88	26.61	26.47	25.38	24.36	
1300	810	30.53	30.53	28.07	27.01	26.03	26.53	26.41	25.42	24.35	

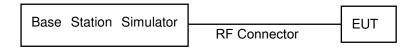
GSM Conducted output powers (Burst-Average)

GSM Conducted output powers (Frame-Average)

		Voice	GP	RS(GMSK	<) Data – (CS1	EDGE Data				
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)	
	128	24.50	24.50	24.98	25.83	26.04	17.90	20.82	21.67	21.94	
GSM 850	190	24.43	24.41	24.90	25.73	25.96	17.85	20.73	21.57	21.83	
000	251	24.44	24.42	24.95	25.79	25.98	17.78	20.72	21.54	21.82	
	512	21.58	21.59	21.79	22.46	22.69	17.39	20.29	20.96	21.20	
GSM 1900	661	21.54	21.53	21.89	22.60	22.87	17.58	20.45	21.12	21.35	
1300	810	21.50	21.50	22.05	22.75	23.02	17.50	20.39	21.16	21.34	

Note:

Time slot average factor is as follows:


1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power - 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power - 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power - 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power - 3.01 dB

GSM Class : B GSM voice/GPRS VOIP: Head SAR , Body worn SAR GPRS/EDGE Multi-slots 12 : Hotspot SAR with GPRS/EDGE Multi-slot Class 12 with CS 1 (GMSK)

9.2 UMTS

<u>HSPA+</u>

This DUT is only capable of QPSK HSPA+ in uplink. Therefore, the RF conducted power is not measured according to 941225 D01 3G SAR.

WCDMA850

3GPP		3GPP 34.121	۷	VCDMA Band 5 [d	Bm]
Release Version	Mode	Subtest	UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458
99	WCDMA	12.2 kbps RMC	24.08	24.02	23.84
99	WCDMA	12.2 kbps AMR	24.04	24.02	23.84
5		Subtest 1	22.88	22.86	22.66
5	110000	Subtest 2	22.88	22.84	22.65
5	HSDPA	Subtest 3	22.36	22.34	22.13
5		Subtest 4	22.34	22.32	22.13
6		Subtest 1	20.95	20.95	20.72
6		Subtest 2	20.84	20.84	20.64
6	HSUPA	Subtest 3	21.84	21.84	21.61
6		Subtest 4	20.42	20.45	20.21
6		Subtest 5	20.94	20.95	20.73
8		Subtest 1	22.22	22.00	22.39
8		Subtest 2	22.27	22.05	22.41
8	DC-HSDPA	Subtest 3	21.78	21.55	21.98
8		Subtest 4	21.78	21.55	21.98

WCDMA Average Conducted output powers

WCDMA1900

3GPP		3GPP 34.121	٧	VCDMA Band 2 [d	Bm]
Release Version	Mode	Subtest	UL 9262 DL 9662	UL 9400 DL 9800	UL 9538 DL 9938
99	WCDMA	12.2 kbps RMC	23.37	23.55	23.33
99	WCDMA	12.2 kbps AMR	23.36	23.58	23.34
5		Subtest 1	22.43	22.65	22.46
5		Subtest 2	22.45	22.64	22.46
5	HSDPA	Subtest 3	21.95	22.14	21.97
5		Subtest 4	21.94	22.13	21.98
6		Subtest 1	20.44	20.68	20.46
6		Subtest 2	20.45	20.63	20.48
6	HSUPA	Subtest 3	21.44	21.62	21.47
6		Subtest 4	19.95	20.12	19.98
6		Subtest 5	20.52	20.69	20.47
8		Subtest 1	21.70	21.78	21.70
8		Subtest 2	21.76	21.82	21.75
8	DC-HSDPA	Subtest 3	21.24	21.31	21.24
8		Subtest 4	21.25	21.31	21.25

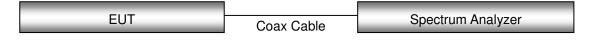
WCDMA Average Conducted output powers

9.3 WiFi

Mode	Freq.	Channel	IEEE 802.11 (2.4 GHz) Conducted Power
Mode	[MHz]	Chaimer	[dBm]
	2 412	1	15.14
802.11b	2 437	6	16.30
	2 462	11	14.59
	2 412	1	12.47
802.11g	2 437	6	13.88
	2 462	11	12.31
	2 412	1	12.17
802.11n (HT20)	2 437	6	12.27
(11120)	2 462	11	11.63

IEEE 802.11 Average RF Power

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:


• Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.

• For transmission mode with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.

• For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.

• For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Test Configuration

10. SYSTEM VERIFICATION

10.1 Tissue Verification

The Head /body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

	Table for Head Tissue Verification													
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε					
			820	0.909	40.497	0.899	41.578	1.11%	-2.60%					
05/11/2016	20.2	835H	835	0.921	40.400	0.900	41.500	2.33%	-2.65%					
			850	0.934	40.142	0.916	41.500	1.97%	-3.27%					
	21.0	0 1900H	1850	1.365	39.773	1.400	40.000	-2.50%	-0.57%					
05/10/2016			1900	1.440	39.700	1.400	40.000	2.86%	-0.75%					
			1910	1.447	39.684	1.400	40.000	3.36%	-0.79%					
			2400	1.751	38.024	1.756	39.290	-0.28%	-3.22%					
05/04/2016	20.2	2450H	2450	1.810	37.800	1.800	39.200	0.56%	-3.57%					
			2500	1.867	37.693	1.855	39.140	0.65%	-3.70%					

	Table for Body Tissue Verification													
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε					
			820	0.9388	56.652	0.969	55.258	-3.12%	2.52%					
05/09/2016	20.6	835B	835	0.954	56.500	0.970	55.200	-1.65%	2.36%					
			850	0.969	56.321	0.988	55.154	-1.92%	2.12%					
		1900B	1850	1.517	50.872	1.520	53.300	-0.20%	-4.56%					
05/10/2016	21.0		1900	1.570	50.700	1.520	53.300	3.29%	-4.88%					
			1910	1.577	50.756	1.520	53.300	3.75%	-4.77%					
			2400	1.874	51.331	1.902	52.770	-1.47%	-2.73%					
05/04/2016	20.2	2450B	2450	1.940	51.200	1.950	52.700	-0.51%	-2.85%					
			2500	2.009	51.073	2.021	52.640	-0.59%	-2.98%					

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz / 1 900 MHz / 2 450 MHz by using the system Verification kit. (Graphic Plots Attached)

Freq.	Date	Probe (S/N)	Dipole (S/N)	Liquid	Amb. Temp.	Liquid Temp.	1 W Target SAR _{1g} (SPEAG)	Measured SAR _{1g}	1 W Normalized SAR _{1g}	Deviation	Limit [%]
[MHz]		, ,			[°C]	[°C]	[W/kg]	[W/kg]	[W/kg]	[%]	[%]
835	05/11/2016	3863	4d165	Head	20.5	20.2	9.06	0.942	9.42	+ 3.97	± 10
835	05/09/2016	3863	40165	Body	20.8	20.6	9.47	0.932	9.32	- 1.58	± 10
1 900	05/10/2016	3863	5d061	Head	21.3	21.0	38.6	4.07	40.7	+ 5.44	± 10
1 900	05/10/2016	3863	50061	Body	21.3	21.0	39.7	4.14	41.4	+ 4.28	± 10
2 450	05/04/2016	3863	005	Head	20.5	20.2	50.6	5.44	54.4	+ 7.51	± 10
2 450	05/04/2016	3863	965	Body	20.5	20.2	49.2	5.00	50.0	+ 1.63	± 10

System Verification Results

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

NOTE;

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

11. SAR TEST DATA SUMMARY

11.1 HEAD SAR Measurement Results

				GSM	850 He	ead SAR					
Freq	Frequency		Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INO.
836.6	190	GSM	33.7	33.46	-0.055	Left Cheek	1:8.3	0.251	1.057	0.265	-
836.6	190	GSM	33.7	33.46	-0.036	Left Tilt	1:8.3	0.150	1.057	0.159	-
836.6	190	GSM	33.7	33.46	-0.199	Right Cheek	1:8.3	0.286	1.057	0.302	-
836.6	190	GSM	33.7	33.46	-0.021	Right Tilt	1:8.3	0.154	1.057	0.163	-
836.6	190	GPRS 4Tx	29.2	28.97	-0.045	Left Cheek	1:2.075	0.302	1.054	0.318	-
836.6	190	GPRS 4Tx	29.2	28.97	0.097	Left Tilt	1:2.075	0.186	1.054	0.196	-
836.6	190	GPRS 4Tx	29.2	28.97	0.053	Right Cheek	1:2.075	0.367	1.054	0.387	1
836.6	190	GPRS 4Tx	29.2	28.97	0.122	Right Tilt	1:2.075	0.196	1.054	0.207	-
	ANSI/ IEI	EE C95.1 - 1992				Head					
		Spatial Pea				1.6 W/kg					
	Uncontrolle	d Exposure/ Ge	neral Popu	lation			Avera	ged over 1	gram		

				GSM	1900 H	ead SAR					
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Facior	(W/kg)	INO.
1 880.0	661	GSM	30.7	30.57	0.036	Left Cheek	1:8.3	0.324	1.030	0.334	-
1 880.0	661	GSM	30.7	30.57	0.041	Left Tilt	1:8.3	0.237	1.030	0.244	-
1 880.0	661	GSM	30.7	30.57	0.058	Right Cheek	1:8.3	0.189	1.030	0.195	-
1 880.0	661	GSM	30.7	30.57	0.078	Right Tilt	1:8.3	0.144	1.030	0.148	-
1 880.0	661	GPRS 4Tx	26.2	25.88	-0.164	Left Cheek	1:2.075	0.397	1.076	0.427	2
1 880.0	661	GPRS 4Tx	26.2	25.88	0.128	Left Tilt	1:2.075	0.288	1.076	0.310	-
1 880.0	661	GPRS 4Tx	26.2	25.88	-0.125	Right Cheek	1:2.075	0.234	1.076	0.252	-
1 880.0	661	GPRS 4Tx	26.2	25.88	0.131	Right Tilt	1:2.075	0.176	1.076	0.189	-
	ANSI/ IEE	EE C95.1 - 1992	2– Safety L	imit				Head			
		Spatial Pea	k					1.6 W/kg			
	Uncontrolle	d Exposure/ Ge	neral Popu	Ilation			Avera	ged over 1	gram		

				UMTS	6 850 H	ead SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INO.
836.6	4183	RMC	24.2	24.02	0.066	Left Cheek	1:1	0.241	1.042	0.251	-
836.6	4183	RMC	24.2	24.02	-0.082	Left Tilt	1:1	0.167	1.042	0.174	-
836.6	4183	RMC	24.2	24.02	0.169	Right Cheek	1:1	0.270	1.042	0.281	3
836.6	4183	RMC	24.2	24.02	0.031	Right Tilt	1:1	0.167	1.042	0.174	-
	ANSI/ IEE	E C95.1 - 1992	2- Safety L	imit				Head			
		Spatial Pea	k					1.6 W/kg			
	Uncontrolle	d Exposure/ Ge	neral Popu	lation			Avera	ged over 1	gram		

				UMTS	1900 H	lead SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.
1 880.0	9400	RMC	23.7	23.55	-0.144	Left Cheek	1:1	0.585	1.035	0.605	4
1 880.0	9400	RMC	23.7	23.55	-0.005	Left Tilt	1:1	0.453	1.035	0.469	-
1 880.0	9400	RMC	23.7	23.55	-0.052	Right Cheek	1:1	0.363	1.035	0.376	-
1 880.0	9400	RMC	23.7	23.55	-0.113	Right Tilt	1:1	0.298	1.035	0.308	-
	ANSI/ IEE	E C95.1 - 1992	2 – Safety L	_imit				Head			
		Spatial Pea	k				1.6	8 W/kg (mV	V/g)		
	Uncontrolle	d Exposure/ Ge	eneral Popu	lation			Avera	aged over 1	gram		

							DTS	Head S	٩R						
Frequ	ency	Mode	Band width		Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cvcle	Area Scan Peak SAR	Meas. SAR	Scaling	Scaling Factor	Scaled SAR	Plot
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)		Cycle	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	No.
2 437	6	802.11b	22	1	16.5	16.30	-0.038	Left Cheek	99.75	1.35	0.855	1.047	1.003	0.898	5
2 412	1	802.11b	22	1	16.5	15.14	0.130	Left Cheek	99.75	0.814	0.534	1.368	1.003	0.733	-
2 437	6	802.11b	22	1	16.5	16.30	-0.017	Left Tilt	99.75	0.6	0.403	1.047	1.003	0.423	-
2 437	6	802.11b	22	1	16.5	16.30		Right Cheek	99.75	0.521		1.047	1.003		-
2 437	6	802.11b	22	1	16.5	16.30		Right Tilt	99.75	0.292		1.047	1.003		-
	A	NSI/ IEEE	C95.1	- 1992-	- Safety L	imit					Head	I			
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak										1.6 W/	kg			
	Unc	ontrolled E	Exposu	ire/ Gen	eral Popu	ulation				Avera	iged ove	er 1 gram			

11.2 Body-worn SAR Measurement Results

		ł		GS	M/UM	ITS Bo	ody-We	orn SA	١R				
Frequ	uency	Мо	de	Tune- Up Limit	Meas. Power	Power Drift	Test Position		Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.			(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INO.
836.6	190	GSM 850	GSM	33.7	33.46	0.178	Rear	1:8.3	10	0.450	1.057	0.476	6
836.6	190	GSM 850	GPRS 4Tx	29.2	28.97	-0.116	Rear	1:2.075	10	0.545	1.054	0.574	7
1880.0	661	GSM 1900	GSM	30.7	30.57	0.103	Rear	1:8.3	10	0.422	1.030	0.435	8
1 880.0	661	GSM 1900	GPRS 4Tx	26.2	25.88	-0.052	Rear	1:2.075	10	0.512	1.076	0.551	9
836.6	4183	UMTS 850	RMC	24.2	24.02	0.001	Rear	1:1	10	0.361	1.042	0.376	10
1 880.0	9400	UMTS 1900	RMC	23.7	23.55	-0.061	Rear	1:1	10	0.756	1.035	0.782	11
	A	NSI/ IEEE C9	5.1 - 1992– S	afety Lim	it					Body			
		Sp	patial Peak							1.6 W/kg			
	Un	controlled Exp	osure/ Genera	al Populat	tion				Avera	aged over 1 g	gram		

						DT	rs Bo	dy-W	orn S	SAR						
Freque	nov		Band	Data	Tune-	Meas.	Power	Test	Duty	Distance	Area Scan	Meas.	Scaling	Scaling	Scaled	Plot
Tieque	псу	Mode	width	Rate	Up Limit	Power	Drift	Position		Distance	Peak SAR	SAR	Factor	Factor	SAR	No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	NO.
2 437	6	802.11b	22	1	16.5	16.30	-0.148	Rear	99.75	10	0.336	0.224	1.047	1.003	0.235	12
	A	NSI/ IEEE	C95.1	- 1992–	Safety Lin	nit					B	lody				
			Spatia	ıl Peak							1.6	W/kg				
	Unc	ontrolled I	Exposur	e/ Gene	ral Popula	tion					Averaged	over 1	gram			

11.3 Hotspot SAF	R Measurement Results

				GS	SM 850	Hotspot	t SAR					
Frequ	iency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	Facioi	(W/kg)	INO.
836.6	190	GPRS 4Tx	29.2	28.97	-0.116	Rear	1:2.075	10	0.545	1.054	0.574	7
836.6	190	GPRS 4Tx	29.2	28.97	-0.151	Front	1:2.075	10	0.393	1.054	0.414	-
836.6	190	GPRS 4Tx	29.2	28.97	0.029	Left	1:2.075	10	0.213	1.054	0.225	-
836.6	190	GPRS 4Tx	29.2	28.97	-0.017	Right	1:2.075	10	0.297	1.054	0.313	-
836.6	190	GPRS 4Tx	29.2	28.97	0.001	Bottom	1:2.075	10	0.274	1.054	0.289	-
	ANSI/ I	EEE C95.1 - 19		y Limit					Body			
		Spatial P							6 W/kg			
	Uncontrol	led Exposure/	General Po	pulation				Averaged	l over 1 gra	m		

				GS	SM 190	0 Hotspo	ot SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
1 880	661	GPRS 4Tx	26.2	25.88	-0.052	Rear	1:2.075	10	0.512	1.076	0.551	9
1 880	661	GPRS 4Tx	26.2	25.88	-0.112	Front	1:2.075	10	0.390	1.076	0.420	-
1 880	661	GPRS 4Tx	26.2	25.88	-0.041	Left	1:2.075	10	0.382	1.076	0.411	-
1 880	661	GPRS 4Tx	26.2	25.88	-0.021	Bottom	1:2.075	10	0.359	1.076	0.386	-
		EEE C95.1 - 1 Spatial F /led Exposure	Peak	,				1.6	Body 6 W/kg d over 1 gra	ım		

				UN	ITS 850) Hotspo	t SAR					
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	Facioi	(W/kg)	INO.
836.6	4183	RMC	24.2	24.02	0.001	Rear	1:1	10	0.361	1.042	0.376	10
836.6	4183	RMC	24.2	24.02	0.098	Front	1:1	10	0.325	1.042	0.339	-
836.6	4183	RMC	24.2	24.02	0.016	Left	1:1	10	0.144	1.042	0.150	-
836.6	4183	RMC	24.2	24.02	0.093	Right	1:1	10	0.237	1.042	0.247	-
836.6	4183	RMC	24.2	24.02	0.074	Bottom	1:1	10	0.219	1.042	0.228	-
		EEE C95.1 - 19 Spatial P led Exposure/	eak					1.6	Body 8 W/kg over 1 gra	m		

				UM	TS 190	0 Hotsp	ot SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Distance	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INO.
1 880.0	9400	RMC	23.7	23.55	-0.061	Rear	1:1	10	0.756	1.035	0.782	11
1 880.0	9400	RMC	23.7	23.55	-0.023	Front	1:1	10	0.585	1.035	0.605	-
1 880.0	9400	RMC	23.7	23.55	-0.003	Left	1:1	10	0.581	1.035	0.601	-
1 880.0						Bottom	1:1	10	0.534	1.035	0.553	-
		EEE C95.1 - 1 Spatial F lled Exposure/	Peak	,				1.6	Body S W/kg over 1 gra	m		

]	DTS F	lotspo	t SAI	R						
Frequ	ency	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance	Area Scan Peak SAR	Meas. SAR	Scaling Factor	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	1 051001	Cycle	(mm)	(W/kg)	(W/kg)	1 actor	(Duty)	(W/kg)	NO.
2 437	6	802.11b	22	1	16.5	16.30	-0.148	Rear	99.75	10	0.336	0.224	1.047	1.003	0.235	12
2 437	6	802.11b	22	1	16.5	16.30		Front	99.75	10	0.198		1.047	1.003		-
2 437	6	802.11b	22	1	16.5	16.30		Right	99.75	10	0.104		1.047	1.003		-
2 437	6	802.11b	22	1	16.5	16.30		Тор	99.75	10	0.135		1.047	1.003		-
		ANSI/ IEE	Spatia	l Peak	,						Boc 1.6 W Averaged ov	/kg	im			

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 648474 D04v01r03, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was \leq 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
- Per KDB 648474 D04v01r02, this device is considered a "Phablet" since the diagonal dimension is > 160 mm and < 200 mm. When hotspot mode applies, extremity SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (with tolerance) is 1 g SAR > 1.2 W/kg.

GSM/GPRS Test Notes:

- 1. This EUT'S GSM and GPRS device class is B.
- 2. This device supports GPRS VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for head and body-worn compliance.
- 3. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 4. Justification for reduced test configurations per KDB 941225 D01v03r01: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power including tolerance was evaluated for SAR.
- 5. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.
- 6. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- When the maximum output power variation across the required test channels are over than 1/2 dB, instead of the middle channel, the highest output power channel was selected for SAR test according to Per FCC KDB 447498 D01v06.

UMTS Notes:

- 1. The 12.2 kbps RMC mode is the primary mode per KDB 941225 D01v03r01.
- 2. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and Adjusted SAR value was less than 1.2 W/kg.
- 3. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the channel highest output power channel was used.
- 4. UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. For initial test position, the highest extrapolated peak SAR will be used. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR results is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test position are measured.
- Per KDB 248227 D01v02r02 justification for test configurations of 2.4 GHz WiFi Single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11 g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
- 3. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rated, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated WLAN test reports.

12. Simultaneous SAR Analysis

12.1 Simultaneous Transmission Summation for Head

Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN					
Exposure	Band	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR	
condition	Danu	(W/kg)	(W/kg)	(W/kg)	
	GSM 850	0.302	0.898	1.200	
	GPRS 850	0.387	0.898	1.285	
Head SAB	GSM 1900	0.334	0.898	1.232	
Head SAR	GPRS 1900	0.427	0.898	1.325	
	UMTS 850	0.281	0.898	1.179	
	UMTS 1900	0.605	0.898	1.503	

12.2 Simultaneous Transmission Summation for Body-Worn

Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN						
Exposure	Distance	Band	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR	
condition	(mm)	Ballu	(W/kg)	(W/kg)	(W/kg)	
		GSM 850	0.476	0.235	0.711	
		GPRS 850	0.574	0.235	0.809	
Deduuserre	10	GSM 1900	0.435	0.235	0.670	
Body-worn	10	GPRS 1900	0.551	0.235	0.786	
		UMTS 850	0.376	0.235	0.611	
		UMTS 1900	0.782	0.235	1.017	

Simultaneous Transmission Summation Scenario with Bluetooth					
Exposure	Distance	Dond	WWAN SAR	Bluetooth SAR	∑ 1-g SAR
condition	(mm)	Band	(W/kg)	(W/kg)	(W/kg)
		GSM 850	0.476	0.168	0.644
	10	GPRS 850	0.574	0.168	0.742
Datawar		GSM 1900	0.435	0.168	0.603
Body-worn		GPRS 1900	0.551	0.168	0.719
		UMTS 850	0.376	0.168	0.544
		UMTS 1900	0.782	0.168	0.950

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v06. Estimated SAR results were used for SAR summation for body-worn back side at 10 mm to determine simultaneous transmission SAR test exclusion.

12.3 Simultaneous Transmission Summation for Hotspot

Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN					
Exposure	Distance	Pond	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR
condition	ondition (mm)	Band	(W/kg)	(W/kg)	(W/kg)
	10	GSM 850	0.574	0.235	0.809
Listenst		GSM 1900	0.551	0.235	0.786
Hotspot		UMTS 850	0.376	0.235	0.611
		UMTS 1900	0.782	0.235	1.017

12.4 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013.

13. SAR Measurement Variability and Uncertainty

In accordance with KDB procedure 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz, SAR additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement variability was assessed using the following procedures for each frequency band:

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR ; steps 2) through 4) do not apply.

2) When the original highest measured 1g SAR is \geq 0.80 W/kg or 10g SAR \geq 2.0W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is > 1.45 W/kg for 1g SAR or \geq 3.625 W/kg for 10g SAR (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg for 1g SAR or \geq 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency		Modulation	Battery	Configuration	Original SAR	Repeated SAR	Largest to Smallest	Plot
MHz	Channel				(W/kg)	(W/kg)	SAR Ratio	No.
2 437	6	802.11b	Standard	Left Cheek	0.855	0.852	1.00	13

14. MEASUREMENT UNCERTAINTY

	Tol	Prob.			Standard Uncertainty	
Error Description			Div.	ci		V _{eff}
	(± %)	dist.	list.		(± %)	
1. Measurement System		1	1	1 1		
Probe Calibration	6.00	Ν	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	œ
System Detection Limits	1.00	R	1.73	1	0.58	œ
Readout Electronics	0.30	N	1.00	1	0.30	œ
Response Time	0.8	R	1.73	1	0.46	œ
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	œ
Probe Positioning	2.90	R	1.73	1	1.67	œ
Max SAR Eval	1.00	R	1.73	1	0.58	œ
2.Test Sample Related	•					
Device Positioning	2.25	N	1.00	1	2.25	∞
Device Holder	3.60	N	1.00	1	3.60	œ
Power Drift	5.00	R	1.73	1	2.89	œ
3.Phantom and Setup	I					
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.70	N	1	0.64	1.73	œ
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	1.90	N	1	0.6	1.14	∞
Combind Standard Uncertainty			<u> </u>	<u>. </u>	10.67	
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					21.34	

15. SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/ 5L76A1/ A/ 01	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/ 5K08A1/ A/ 01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F01/ 5L76A1/ C/ 01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F01/ 5K08A1/ C/ 01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D22134006 A	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D22134001 1	N/A	N/A	N/A
SPEAG	DAE3	466	02/17/2016	Annual	02/17/2017
SPEAG	E-Field Probe EX3DV4	3863	08/27/2015	Annual	08/27/2016
SPEAG	Dipole D835V2	4d165	11/24/2015	Annual	11/24/2016
SPEAG	Dipole D1900V2	5d061	04/25/2016	Annual	04/25/2017
SPEAG	Dipole D2450V2	965	04/19/2016	Annual	04/19/2017
Agilent	Power Meter N1991A	MY45101406	10/03/2015	Annual	10/03/2016
Agilent	Power Sensor N1921A	MY55220026	08/19/2015	Annual	08/19/2016
SPEAG	DAKS 3.5	1038	05/26/2015	Annual	05/26/2016
HP	Directional Bridge	86205A	05/20/2015	Annual	05/20/2016
Agilent	Base Station E5515C	GB44400269	02/05/2016	Annual	02/05/2017
HP	Signal Generator N5182A	MY47070230	05/13/2016	Annual	05/13/2017
Hewlett Packard	11636B/Power Divider	58698	02/27/2016	Annual	02/27/2017
TESTO	175-H1/Thermometer	40332651310	02/12/2016	Annual	02/12/2017
TESTO	175-H1/Thermometer	40331939309	02/12/2016	Annual	02/12/2017
EMPOWER	RF Power amplifier	1011	10/20/2015	Annual	10/20/2016
Agilent	Attenuator(3dB)	52744	10/20/2015	Annual	10/20/2016
Agilent	Attenuator(20dB)	52664	10/20/2015	Annual	10/20/2016
HP	Notebook(DAKS)	-	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	10/20/2015	Annual	10/20/2016

NOTE:

1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/ IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

17. REFERENCES

[1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.

[2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[3] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992

[4] ANSI/IEEE C 95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006.

[5] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zorich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation and procedures – Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.

[21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.

[22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Band) Issue 5, March 2015.

[23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz – 300 GHz, 2009

[24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.

[25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01.

[26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.

[27] SAR Evaluation for Laptop, Notebook, Netbook and Tablet computers KDB 616217 D04.

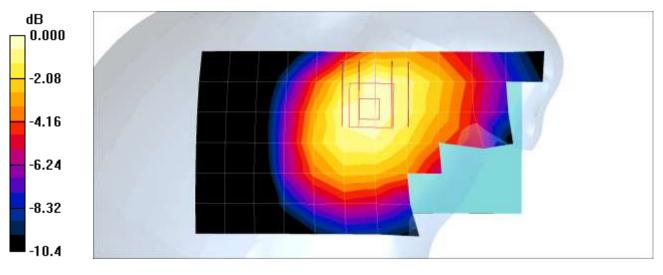
[28] SAR Measurement and Reporting Requirements for 100 MHz – 6 GHz, KDB 865664 D01, D02.

[29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01, D02.

Attachment 1. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.2 °C
Ambient Temperature:	20.5 °C
Test Date:	05/11/2016
Plot No.:	1

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:2.075 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.922 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.46, 9.46, 9.46); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Right Touch 4Tx 190ch/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.415 mW/g

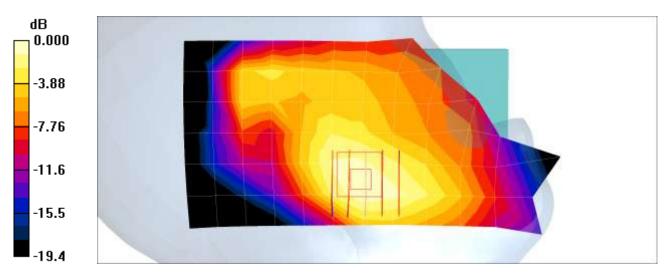
GSM850 Right Touch 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.80 V/m; Power Drift = 0.053 dB Peak SAR (extrapolated) = 0.464 W/kg SAR(1 g) = 0.367 mW/g; SAR(10 g) = 0.278 mW/g Maximum value of SAR (measured) = 0.417 mW/g

 $0 \, dB = 0.417 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.3 °C
Test Date:	05/10/2016
Plot No.:	2

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.84, 7.84, 7.84); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Left touch 4Tx 661ch/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.475 mW/g

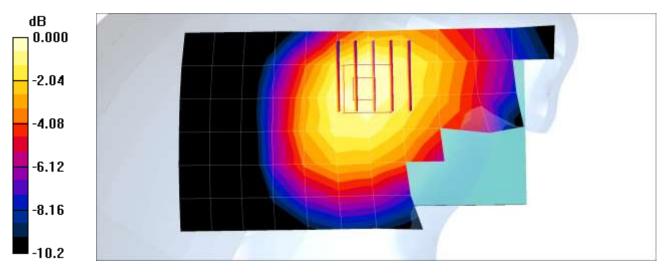
GSM1900 Left touch 4Tx 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.73 V/m; Power Drift = -0.164 dB Peak SAR (extrapolated) = 0.582 W/kg SAR(1 g) = 0.397 mW/g; SAR(10 g) = 0.258 mW/g Maximum value of SAR (measured) = 0.499 mW/g

 $0 \, dB = 0.499 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.2 °C
Ambient Temperature:	20.5 ℃
Test Date:	05/11/2016
Plot No.:	3

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.922 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.46, 9.46, 9.46); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA850 Right Touch 4183ch/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.304 mW/g

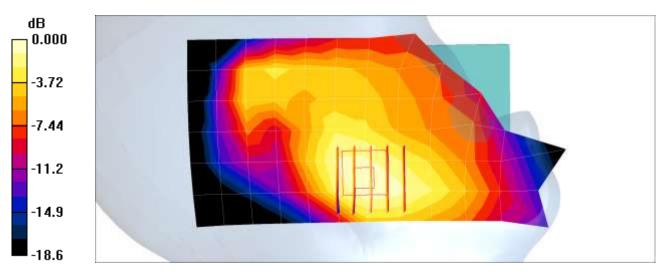
WCDMA850 Right Touch 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.76 V/m; Power Drift = 0.169 dB Peak SAR (extrapolated) = 0.346 W/kg SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.204 mW/g Maximum value of SAR (measured) = 0.307 mW/g

 $0 \, dB = 0.307 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.3 °C
Test Date:	05/10/2016
Plot No.:	4

Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.84, 7.84, 7.84); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA1900 Left Touch 9400ch/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.707 mW/g

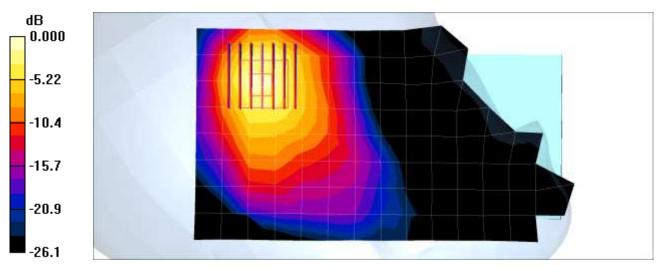
WCDMA1900 Left Touch 9400ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.89 V/m; Power Drift = -0.144 dB Peak SAR (extrapolated) = 0.845 W/kg SAR(1 g) = 0.585 mW/g; SAR(10 g) = 0.384 mW/g Maximum value of SAR (measured) = 0.728 mW/g

 $0 \, dB = 0.728 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.2 °C
Ambient Temperature:	20.5 °C
Test Date:	05/04/2016
Plot No.:	5

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.8 mho/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.04, 7.04, 7.04); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Left touch 6ch 1Mbps Repeat/Area Scan (9x15x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.14 mW/g

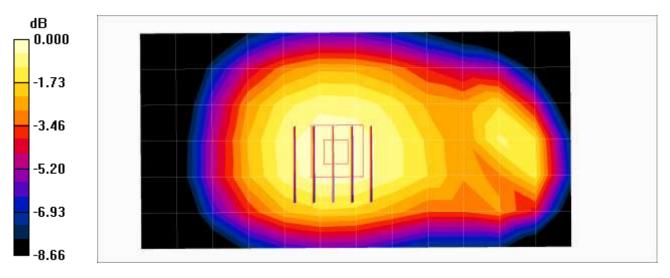
802.11b Left touch 6ch 1Mbps Repeat/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 0.855 mW/g; SAR(10 g) = 0.396 mW/g Maximum value of SAR (measured) = 1.29 mW/g

 $0 \, dB = 1.29 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.6 °C
Ambient Temperature:	20.8 °C
Test Date:	05/09/2016
Plot No.:	6

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.956 mho/m; ϵ_r = 56.5; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.4, 9.4, 9.4); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear Body Worn 190ch/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.491 mW/g

GSM850 Body Rear Body Worn 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.1 V/m; Power Drift = 0.178 dB Peak SAR (extrapolated) = 0.552 W/kg SAR(1 g) = 0.450 mW/g; SAR(10 g) = 0.345 mW/g Maximum value of SAR (measured) = 0.510 mW/g

 $0 \, dB = 0.510 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.6 °C
Ambient Temperature:	20.8 °C
Test Date:	05/09/2016
Plot No.:	7

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:2.075 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.956 mho/m; ϵ_r = 56.5; ρ = 1000 kg/m³ Phantom section: Center Section

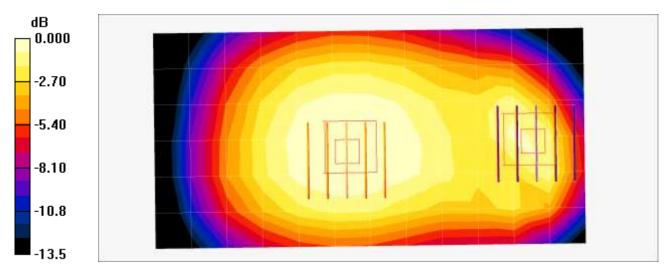
DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.4, 9.4, 9.4); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear 4Tx 190ch/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.604 mW/g

GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.2 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 0.678 W/kg


SAR(1 g) = 0.545 mW/g; SAR(10 g) = 0.417 mW/g

Maximum value of SAR (measured) = 0.622 mW/g

GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

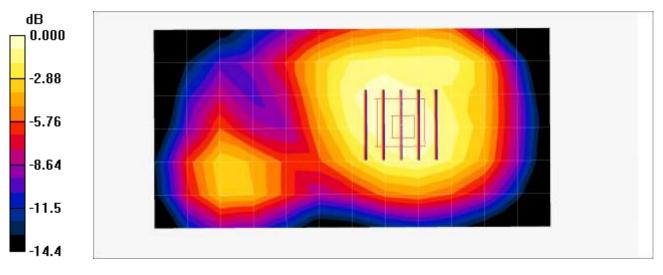
Reference Value = 26.2 V/m; Power Drift = -0.116 dBPeak SAR (extrapolated) = 0.717 W/kgSAR(1 g) = 0.419 mW/g; SAR(10 g) = 0.250 mW/g

Maximum value of SAR (measured) = 0.577 mW/g

 $0 \, dB = 0.577 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.3 °C
Test Date:	05/10/2016
Plot No.:	8

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.48, 7.48, 7.48); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Body Rear Body Worn 661ch/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.515 mW/g

GSM1900 Body Rear Body Worn 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = 0.103 dB Peak SAR (extrapolated) = 0.637 W/kg SAR(1 g) = 0.422 mW/g; SAR(10 g) = 0.276 mW/g Maximum value of SAR (measured) = 0.534 mW/g

 $0 \, dB = 0.534 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.3 °C
Test Date:	05/10/2016
Plot No.:	9

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

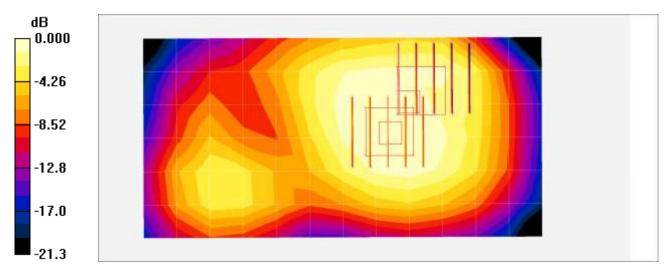
- Probe: EX3DV4 SN3863; ConvF(7.48, 7.48, 7.48); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Body Rear 4Tx 661ch/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.622 mW/g

GSM1900 Body Rear 4Tx 661ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.512 mW/g; SAR(10 g) = 0.334 mW/g


Maximum value of SAR (measured) = 0.653 mW/g

GSM1900 Body Rear 4Tx 661ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 14.5 V/m; Power Drift = -0.052 dB

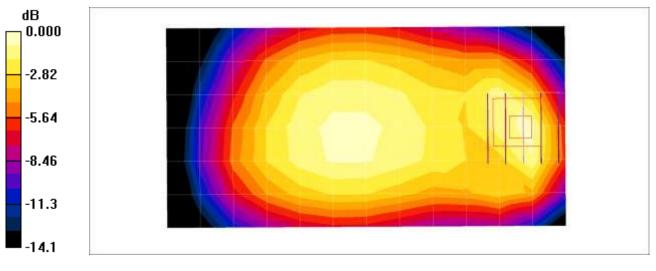
Peak SAR (extrapolated) = 0.724 W/kg

SAR(1 g) = 0.421 mW/g; SAR(10 g) = 0.249 mW/g Maximum value of SAR (measured) = 0.607 mW/g

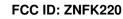
 $0 \, dB = 0.607 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.6 °C
Ambient Temperature:	20.8 °C
Test Date:	05/09/2016
Plot No.:	10

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.956 mho/m; ϵ_r = 56.5; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.4, 9.4, 9.4); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186


WCDMA850 Body Rear 4183ch/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.434 mW/g

WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

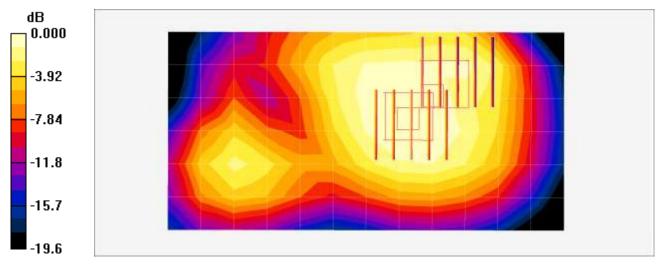
Reference Value = 21.8 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 0.619 W/kg SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.213 mW/g Maximum value of SAR (measured) = 0.501 mW/g

 $0 \, dB = 0.501 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.3 °C
Test Date:	05/10/2016
Plot No.:	11

Communication System: WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:


- Probe: EX3DV4 SN3863; ConvF(7.48, 7.48, 7.48); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA1900 Body Rear 9400ch/Area Scan (7x13x1): Measurement grid: dx=15mm,


dy=15mm Maximum value of SAR (measured) = 0.921 mW/g WCDMA1900 Body Rear 9400ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.4 V/m; Power Drift = -0.061 dB Peak SAR (extrapolated) = 1.12 W/kg SAR(1 g) = 0.756 mW/g; SAR(10 g) = 0.504 mW/g Maximum value of SAR (measured) = 0.943 mW/g WCDMA1900 Body Rear 9400ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm,

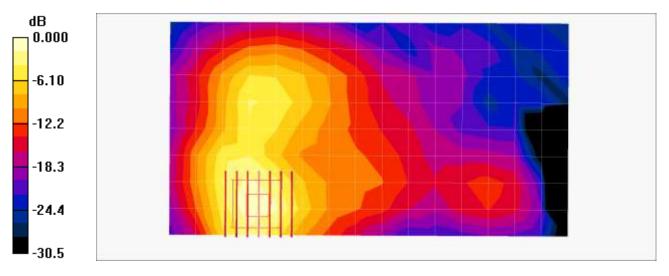
dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.061 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.645 mW/g; SAR(10 g) = 0.392 mW/g Maximum value of SAR (measured) = 0.912 mW/g

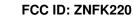
 $0 \, dB = 0.912 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.2 °C
Ambient Temperature:	20.5 °C
Test Date:	05/04/2016
Plot No.:	12

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.92 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.11, 7.11, 7.11); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186


802.11b Body Rear 6ch 1Mbps/Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.312 mW/g

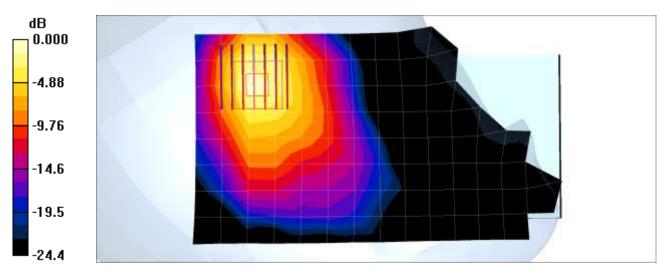
802.11b Body Rear 6ch 1Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.39 V/m; Power Drift = -0.148 dB Peak SAR (extrapolated) = 0.464 W/kg SAR(1 g) = 0.224 mW/g; SAR(10 g) = 0.108 mW/g Maximum value of SAR (measured) = 0.338 mW/g

 $0 \, dB = 0.338 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	GSM WCDMA Phone with BT, WLAN & NFC
Liquid Temperature:	20.2 °C
Ambient Temperature:	20.5 °C
Test Date:	05/04/2016
Plot No.:	13

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.8 mho/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.04, 7.04, 7.04); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Left touch 6ch 1Mbps/Area Scan (9x15x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.12 mW/g

802.11b Left touch 6ch 1Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 1.61 W/kg SAR(1 g) = 0.852 mW/g; SAR(10 g) = 0.404 mW/g Maximum value of SAR (measured) = 1.23 mW/g

 $0 \, dB = 1.23 \, mW/g$

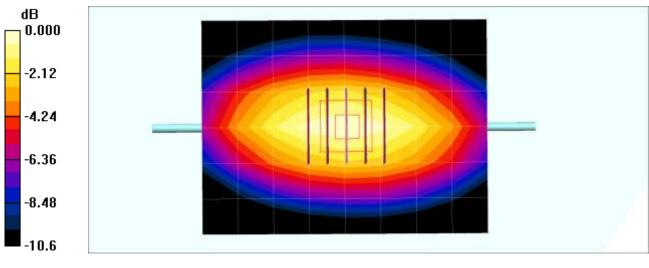
Attachment 2. – Dipole Verification Plots

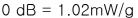
Verification Data (835 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.2 ℃ Test Date: 05/11/2016

DUT: Dipole 835 MHz; Type: D835V2


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.921 mho/m; ϵ_r = 40.4; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.46, 9.46, 9.46); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

835 MHz Head Verification/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.03 mW/g

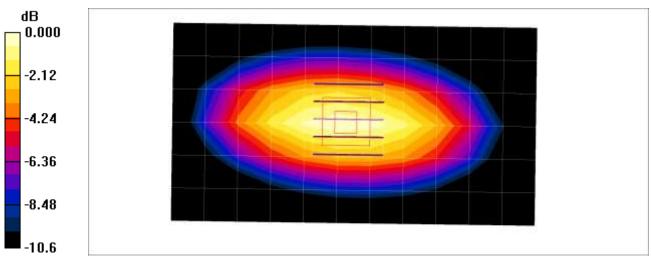
835 MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.6 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.942 mW/g; SAR(10 g) = 0.619 mW/g Maximum value of SAR (measured) = 1.02 mW/g

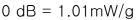
Verification Data (835 MHz Body)

Test Laboratory:HCT CO., LTDInput Power100 mW (20 dBm)Liquid Temp:20.6 ℃

Test Date: 05/09/2016

DUT: Dipole 835 MHz; Type: D835V2


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.954 mho/m; ϵ_r = 56.5; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(9.4, 9.4, 9.4); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

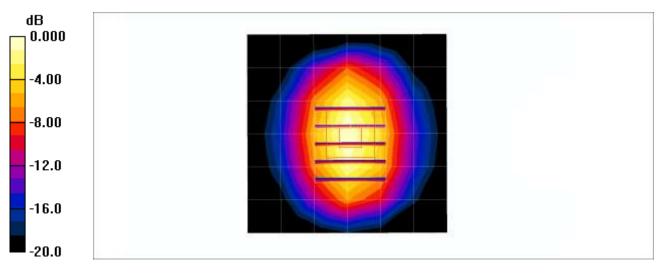
835 MHz Body Verification /**Area Scan (12x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.00 mW/g

835 MHz Body Verification /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.6 V/m; Power Drift = -0.006 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.932 mW/g; SAR(10 g) = 0.609 mW/g Maximum value of SAR (measured) = 1.01 mW/g

Verification Data (1 900 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	21.0 ℃
Test Date:	05/10/2016

DUT: Dipole 1900 MHz; Type: D1900V2


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.84, 7.84, 7.84); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.56 mW/g

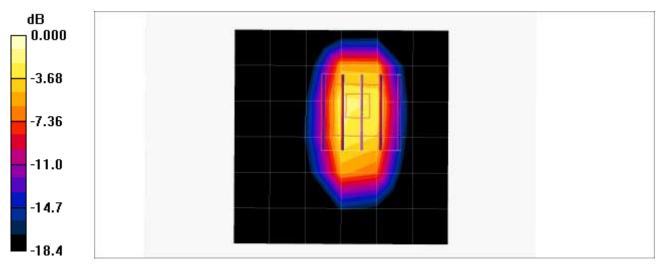
1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.1 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 7.77 W/kg **SAR(1 g) = 4.07 mW/g; SAR(10 g) = 2.08 mW/g** Maximum value of SAR (measured) = 4.46 mW/g

 $0 \, dB = 4.46 \, mW/g$

Verification Data (1 900 MHz Body)

Test Laboratory:HCT CO., LTDInput Power100 mW (20 dBm)Liquid Temp:21.0 °CTest Date:05/10/2016

DUT: Dipole 1900 MHz; Type: D1900V2


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ϵ_r = 50.7; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.48, 7.48, 7.48); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

1900 MHz Body Verification/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.01 mW/g

1900 MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.9 V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 8.57 W/kg SAR(1 g) = 4.14 mW/g; SAR(10 g) = 1.95 mW/g Maximum value of SAR (measured) = 4.67 mW/g

 $0 \, dB = 4.67 \, mW/g$

Verification Data (2 450 MHz Head)

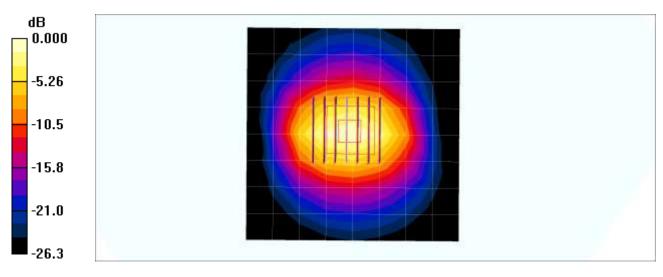
Test Laboratory: HCT CO., LTD

Input Power	100 mW (20 dBm)

Liquid Temp: 20.2 °C

Test Date: 05/04/2016

DUT: Dipole 2450 MHz; Type: D2450V2


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.81 mho/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.04, 7.04, 7.04); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Head Verification/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 8.67 mW/g

2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.6 V/m; Power Drift = -0.040 dB Peak SAR (extrapolated) = 12.5 W/kg SAR(1 g) = 5.44 mW/g; SAR(10 g) = 2.38 mW/g Maximum value of SAR (measured) = 8.57 mW/g

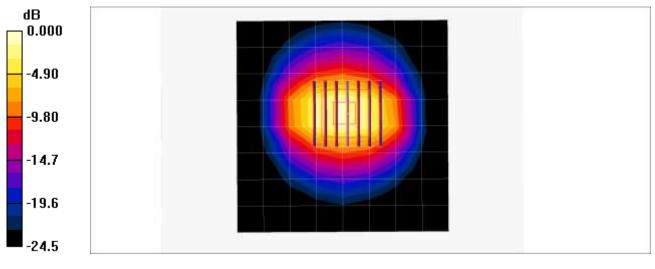
 $0 \, dB = 8.57 \, mW/g$

Verification Data (2 450 MHz Body)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	20.2 ℃
Test Date:	05/04/2016

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.94 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(7.11, 7.11, 7.11); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Body Verification/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 5.97 mW/g

2450MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.4 V/m; Power Drift = -0.084 dB Peak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5 mW/g; SAR(10 g) = 2.23 mW/g

Maximum value of SAR (measured) = 7.90 mW/g

 $0 \, dB = 7.90 \, mW/g$

Attachment 3. – Probe Calibration Data

Engineering AG eughausstrasse 43, 8004 Zuri	ry of	REA CO S	Schweizerischer Kalibrierdienst Service suisse d'étatennage Servizio svizzere di taratura Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servic Aultilateral Agreement for the r	e is one of the signatories	s to the EA	reditation No.: SCS 0108
HCT (Dymstee	:)	Certificate No:	EX3-3863_Aug15
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:38	63	
Calibration procedure(s)	QA CAL-25.v6	A CAL-12.v9, QA CAL-14.v4, QA dure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	August 27, 2015		
		obability are given on the following pages and v facility: environment temperature (22 = 3)°C (
All calibrations have been condu	acted in the closed laborator	y facility: environment temperature (22 ± 3)°C i	
NI calibrations have been condu	acted in the closed laborator		
ul calibrations have been condu Calibration Equipment used (M8 Primary Standards	ID 0841293874	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128)	and humidity < 70%. Scheduled Calibration Mar-16
NI calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A	ID 0841293874 NY41498087	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	and humidity < 70%. Scheduled Calibration Mar-16 Mar-16
NI calibrations have been condu calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator	ID 0841293874 MY41498087 SN: S5054 (3c)	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129)	and humidity < 70% Scheduled Calibration Mar-16 Mar-16 Mar-16
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x)	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132)	and humidity < 70% Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4419A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator	Acted in the closed laborator ATE critical for calibration) ID GB41293874 MY41438087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b)	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133)	and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x)	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132)	and humidity < 70% Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DVZ	ID OB41293874 NY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14)	and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15
All calibrations have been condu- Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID 0841293874 NY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 660	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15)	and humidity < 70% Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	Line closed laborator Line critical for calibration) ID 0841293874 NY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 660 ID	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. EB3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house)	and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Chack
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power bensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Lip critical for calibration) ID CB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 660 ID US3642U01700	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13)	and humidity < 70% Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Chack In house check: Apr-16
All calibrations have been condi- Calibration Equipment used (M8 Primary Standards Power meter E44198 Power bansor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C	Acted in the closed laborator ATE critical for calibration) ID OB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	And humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Chack In house check: Apr-16 In house check: Oct-15
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	inter closed laborator ID 0841293874 NY41498087 SN: 55054 (3c) SN: 55077 (20x) SN: 55277 (20x) SN: 55129 (30b) SN: 56129 (30b) SN: 660 ID US3642U01700 US37390585 Name	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02138) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. ES3-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-14) Function	And humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Scheduled Chack In house check: Apr-16 In house check: Oct-15
All calibrations have been condu Calibration Equipment used (M4 Primary Standards Power meter E44198 Power bansor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9robe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	Acted in the closed laborator TE critical for calibration) ID 0841293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 55129 (30b) SN: 560 ID US3642U01700 US37390585 Name Jeton Kastrab	y facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02132) 01-Apr-15 (No. 217-02133) 30-Dec-14 (No. E53-3013, Dec14) 14-Jan-15 (No. DAE4-660, Jan15) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13)	Schedulet Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Jan-16 Schedulet Chack In house check: Oct-15

Certificate No: EX3-3863_Aug15

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

wivooury.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization (o rotation around probe axis
Polarization 3	3 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in alexy procedure to determine the low process of 30 MHz to 6 GHz)". March 2010
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ⅓ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z: Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3863_Aug15

Page 2 of 11

EX3DV4 - SN:3863

August 27, 2015

Probe EX3DV4

SN:3863

Manufactured: Calibrated:

February 2, 2012 August 27, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3863_Aug15

Page 3 of 11

EX3DV4-SN:3863

August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^k$	0.37	0.35	0.45	± 10.1 %
DCP (mV) th	101.9	103.9	98.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^L (k=2)
0	CW	X	0.0	0.0	1.0	0.00	131.8	±2.7 %
		Y	0.0	0.0	1:0		129.9	
		Z	0.0	0.0	1.0		126.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical Innarization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3863_Aug15

Page 4 of 11

EX3DV4-SN:3863

August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863

f(MHz) ^c	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.89	11.89	11.89	0.00	1.00	± 13.3 %
450	43.5	0.87	10.31	10.31	10.31	0.17	1.30	± 13,3 %
750	41.9	0.89	9.83	9.83	9.83	0.24	1.21	± 12.0 %
835	41.5	0.90	9.46	9.46	9.46	0.21	1.30	± 12.0 %
900	41.5	0.97	9.28	9.28	9.28	0.26	1.11	± 12.0 %
1450	40.5	1.20	8.31	8.31	8.31	0.15	1,81	± 12.0 %
1750	40.1	1.37	8.18	8.18	8.18	0.36	0.90	± 12.0 %
1900	40.0	1.40	7.84	7.84	7.84	0.21	1.07	± 12.0 %
1950	40.0	1.40	7.60	7.60	7.60	0.31	0.80	± 12.0 %
2450	39.2	1.80	7.04	7.04	7.04	0.27	0.98	± 12.0 %
2600	39.0	1.96	6.84	6.84	6.84	0.27	1.04	± 12.0 %
3500	37.9	2.91	6,77	6.77	6.77	0,38	1.06	± 13.1 %
5250	35.9	4.71	4.94	4.94	4.94	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.44	4.44	4.44	0.45	1.80	± 13.1 %
5750	35.4	5.22	4.65	4.65	4.65	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.
*All requencies below 3 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
*All requencies below 10 or indicated target tissue parameters.
*All physical convF uncertainty for indicated target tissue parameters.
*All physical convF uncertainty for indicated target tissue parameters.
*All physical convF uncertainty for indicated target tissue parameters.
*Alphat/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance target than half the probe tip diameter from the boundary.

Certificate No: EX3-3863_Aug15

Page 5 of 11

EX3DV4-- SN:3863

August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863

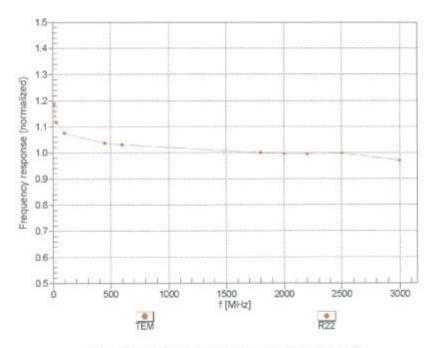
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ⁵	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^d (mm)	Unc (k=2)
150	61.9	0.80	11.68	11.68	11.68	0.00	1.00	± 13.3 %
450	56.7	0.94	10.67	10.67	10.67	0.10	1.20	± 13.3 %
750	55.5	0.96	9.76	9.76	9.76	0.25	1.16	± 12.0 %
835	55.2	0.97	9.40	9.40	9.40	0.23	1.44	± 12.0 %
1750	53.4	1.49	7.73	7.73	7.73	0.24	1.01	± 12.0 %
1900	53.3	1.52	7.48	7.48	7.48	0.39	0.80	± 12.0 %
2450	52.7	1.95	7.11	7.11	7.11	0.31	0.80	± 12.0 %
2600	52.5	2.16	6.97	6.97	6.97	0.33	0.80	± 12.0 %
5250	48.9	5.36	4,44	4.44	4,44	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.77	3.77	3.77	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.08	4.08	4.08	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

¹⁵ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CowF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CowF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. The validity of tissue parameters (c and r) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and r) is restricted to ± 5%. The uncertainty is the RSS of the CowF uncertainty for indicated target tissue parameters. ^(a) Although the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance target than that the probe tip diameter from the boundary.

Certificate No: EX3-3863_Aug15

Page 6 of 11



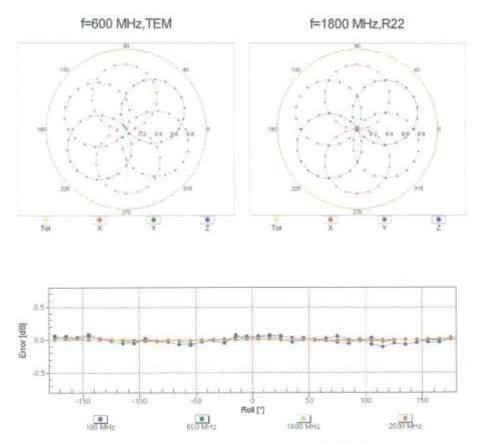
FCC ID: ZNFK220

EX30V4-- SN:3863

August 27, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Certificate No: EX3-3863_Aug15


Page 7 of 11

Receiving Pattern (\u00f6), 9 = 0°

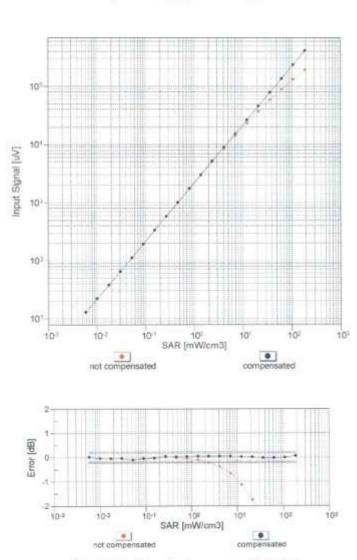
EX3DV4-- SN:3863

August 27, 2015

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3863_Aug15

Page 8 of 11



FCC ID: ZNFK220

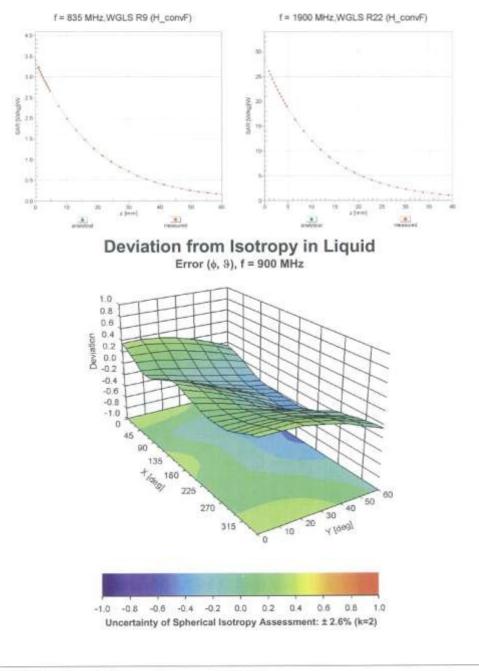
Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

EX3DV4-- SN:3863

August 27, 2015

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3863_Aug15


Page 9 of 11

EX3DV4-- SN:3863

August 27, 2015

Conversion Factor Assessment

Certificate No: EX3-3863_Aug15

Page 10 of 11

EX3DV4-- SN:3863

August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3863

Other Probe Parameters Sensor Arrangement Triangular 105.3 Connector Angle (") Mechanical Surface Detection Mode enabled Optical Surface Detection Mode disabled 337 mm Probe Overall Length Probe Body Diameter 10 mm 9 mm Tip Length Tip Diameter 2.5 mm Probe Tip to Sensor X Calibration Point 1 mm Probe Tip to Sensor Y Calibration Point 1 mm Probe Tip to Sensor Z Calibration Point 1 mm 1.4 mm Recommended Measurement Distance from Surface

Certificate No: EX3-3863_Aug15

Page 11 of 11

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG

Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

client HCT (Dymstec)

Certificate No: D835V2-4d165_Nov15

S

C

s

bject	D835V2 - SN; 4d1	165	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
albration date:	November 24, 20	15	
The measurements and the un	certainties with confidence pr ucted in the closed laborator	onal standards, which realize the physical uni obsbility are given on the following pages an y facility: environment temperature (22 ± 3)%	d are part of the certificate.
alibration Equipment used (M	&TE critical for calibration)		
	ATE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	601 V A 101 V D A 104 P O P P 255 A 0.	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222)	Scheduled Calibration Oct-16
rimary Standards ower meter EPM-442A	ID #	the second se	
rimary Standards Iower meter EPM-442A Iower sensor HP 8481A	ID # GB37480704	07-Oct-15 (No. 217-02222)	Oct-16 Oct-16 Oct-16
rrimary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292763	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Oct-16 Oct-16 Oct-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Oct-16 Oct-15 Oct-16 Mar-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14)	Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-16 Oct-15 Oct-16 Mar-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator (ype-N mismatch combination Reference Probe EX3DV4 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14)	Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Atternator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 508 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15)	Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house)	Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Chack
Primary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-15 Aug-16 Scheduled Chack In house check: Jun-18 In house check: Oct-16 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator rype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	10 # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in bourse) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-15 Aug-16 Scheduled Chack In house check: Jun-18 In house check: Oct-16 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator rype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2706327 SN: 7349 SN: 601 1D # 100872 US37360585 S4206 Name	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in boune) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Oct-16 Oct-16 Oct-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-16
Primary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator rype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2706327 SN: 7349 SN: 601 1D # 100872 US37360585 S4206 Name	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in boune) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Oct-16 Oct-16 Oct-16 Mar-16 Dec-15 Aug-16 Scheduled Chack In house check: Jun-18 In house check: Oct-16 Signature

Certificate No: D835V2-4d165_Nov15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura Si Servizio Calibratica Servize
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d165_Nov15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.06 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.49 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9,47 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.58 W/kg

Certificate No: D836V2-4d165_Nov15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 4.7 jΩ	
Return Loss	- 26,0 dB	_

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω - 6.8 jΩ	
Return Loss	- 22.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.440 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 28, 2012

Certificate No: D835V2-4d165_Nov15

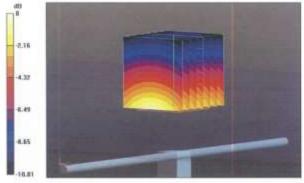
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d165

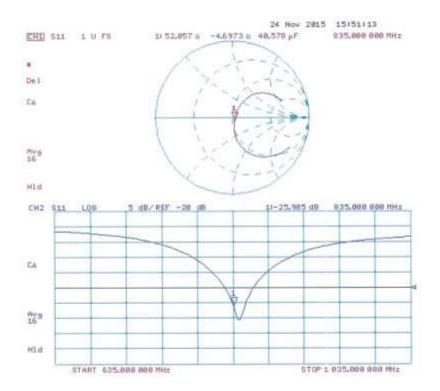

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_f = 42.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.77, 9.77, 9.77); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.39 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.40 W/kg SAR(1 g) = 2.29 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 3.03 W/kg


0 dB = 3.03 W/kg = 4.81 dBW/kg

Certificate No: D835V2-4d165_Nov15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d165_Nov15

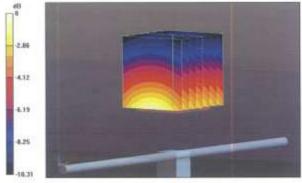
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d165

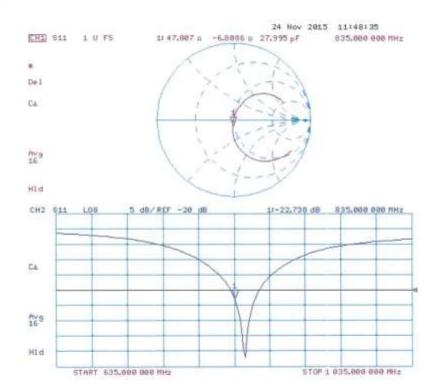

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ_e = 55.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.95 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.17 W/kg


0 dB = 3.17 W/kg = 5.01 dBW/kg

Certificate No: D835V2-4d165_Nov15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d165_Nov15

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

S

С

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: D1900V2-5d061_Apr16

Ibject	D1900V2 - SN: 5	d061	
alibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ive 700 MHz
alibration date:	April 25, 2016		
he measurements and the unce	tainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(d are part of the certificate.
himary Standards	10.4	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
twer sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
	SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17
ower sensor NRP-Z91			
ower sensor NRP-Z91 eference 20 dB Attenuator	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
ower sensor NRP-Z91 elerence 20 dB Attenuator ype-N mismatch combination	SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02282)	Apr-17 Apr-17
ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination leference Probe EX30V4	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17
ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX30V4 AE4	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15)	Apr-17 Apr-17 Apr-17 Dec-16
ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX30V4 AE4 econdary Standards	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check
ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX30V4 VAE4 lecondary Standards fower mater EPM-442A	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-16 (No. DAE4-601_Dec15) Check Date (in house)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16
Vower sensor NRP-Z91 leterence 20 dB Attenuator ype-N mismatch combination leterence Probe EX30V4 VAE4 Secondary Standards Vower mater EPM-442A Vower sensor HP 8481A	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX30V4 VAE4 lecondary Standards fower matter EPM-442A fower sensor HP 8481A fower sensor HP 8481A	SN: 102245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: U537292783	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX30V4 AE4 lecondary Standards lower mater EPM-442A lower sensor HP 8481A lower sensor HP 8481A tF generator R&S SMT-06	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 607 2 / 06327 SN: 601 ID # SN: 6B37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 661 ID # SN: 6637480704 SN: U537282783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16
Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power mater EPM-442A Power sensor HP 8481A Ref generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 102245 SN: 5058 (20k) SN: 5057.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37282783 SN: MY41092317 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Reference 20 dB Attenuator Pype-N miamatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power sensor RPM-442A Power sensor RP 8481A Power sensor RP 8481A RF generator R&S SMT-08 Network Analyzer RP 8753E	SN: 102245 SN: 5058 (20k) SN: 5057.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41992317 SN: 100972 SN: US37390585 Name	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. 217-02295) 30-Dec-15 (No. 217-02295) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 Signature

Certificate No: D1900V2-5d061_Apr16

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura Sissi Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d061_Apr16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx_s dy, dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.6 W/kg ± 17.0 % (k=2)
S&R averaned over 10 cm ³ (10 n) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.01 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)
		and the second se
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.20 W/kg

Certificate No: D1900V2-5d061_Apr16

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.7 jΩ	
Return Loss	- 22.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω + 8.5 jΩ	
Return Loss	- 21.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

Page 4 of B

DASY5 Validation Report for Head TSL

Date: 25.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d061

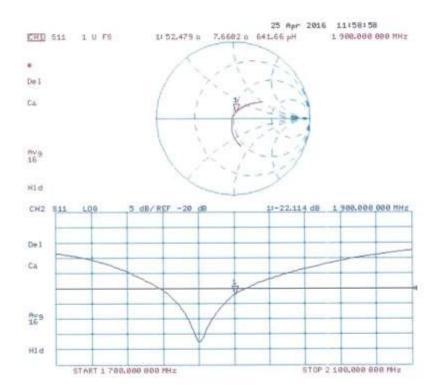
Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.37 S/m; ϵ _r = 40; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.12.2015;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.4 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.53 W/kg; SAR(10 g) = 5.01 W/kg Maximum value of SAR (measured) = 14.5 W/kg



0 dB = 14.5 W/kg = 11.61 dBW/kg

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d061_Apr16

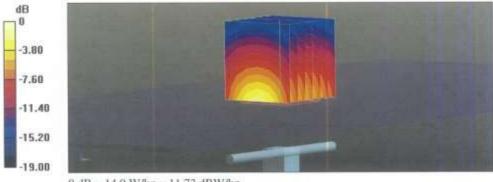
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 25.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d061

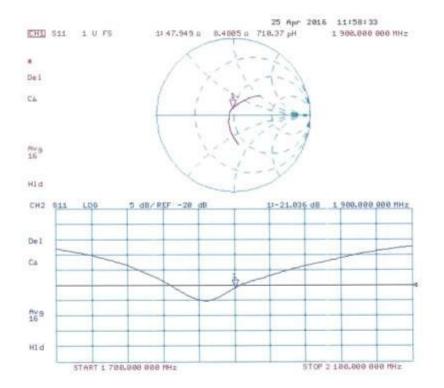

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.49 S/m; ϵ_e = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

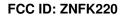
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.2 W/kg Maximum value of SAR (measured) = 14.9 W/kg



0 dB = 14.9 W/kg = 11.73 dBW/kg

Page 7 of 8



Impedance Measurement Plot for Body TSL

Certilicate No: D1900V2-5d061_Apr16

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: D2450V2-965_Apr16

S

C

s

lbject	D2450V2 - SN: 9	65	
allbration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
alibration date:	April 19, 2016		
he measurements and the unco	rtainties with confidence p sed in the closed laborator	onal standards, which resilize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
rimary Standarda	10.#	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
	SN: 103244	and the state was appeared.	
twer sensor NRP-291	3PE 103244	06-Apr-16 (No. 217-02288)	Apt-17
	SN: 103245	96-Apr-16 (No. 217-92288) 06-Apr-16 (No. 217-92289)	Apr-17 Apr-17
ower sensor NRP-Z91			
ower sensor NRP-Z91 leference 20 dB Attenuator	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
ower sensor NRP-Z91 eterence 20 dB Attenuator ype-N mismatch combination	SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02282)	Apr-17 Apr-17
ower sensor NRP-Z91 leterence 20 dB Attenuator ype-N mismatch combination leterence Probe EX30V4	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17
*ower sensor NRP-Z91 Reterence 20 dB Attenuator Ype-N mismatch combination Reterence Probe EX30V4 XAE4	SN: 103245 SN: 5058 (20k) SN: 5047.27 06327 SN: 7349	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15)	Apr-17 Apr-17 Apr-17 Dec-18
ower sensor NRP-Z91 lefarence 20 dB Attenuator ype-N mismatch combination lefarence Probe EX3DV4 XAE4 lecondary Standards	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16
iower sensor NRP-Z91 lefarence 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 XAE4 lecondary Standards ^l ower meter EPM-442A	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Iower sensor NRP-Z91 leterence 20 dB Attenuator ype-N mismatch combination leterence Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. 217-02295) 30-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Tower sensor NRP-Z91 letarence 20 dB Attenuator ype-N mismatch combination laterence Probe EX3DV4 DAE4 secondary Standards Tower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349, Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Retenance 20 dB Attenuator (ype-N mismatch combination Reterance Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. 217-02295) 30-Dec-15 (No. 217-02295) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Retenance 20 dB Attenuator (ype-N mismatch combination Reterance Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: 6837480704 SN: 0537292785 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349, Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RiF generator R&S SMT-08 Network Analyzer HP 8753E Calibrated by:	SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: 0537292785 SN: MY41092317 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. 217-02295) 30-Dec-15 (No. 217-02295) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Dec-18 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer HP 8753E	SN: 103245 SN: 5058 (20k) SN: 5047.2706327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: US37390585 Name	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-15 (No. 217-02295) 30-Dec-15 (No. 217-02295) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Dec-18 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16

Certificate No: D2450V2-965_Apr16

Page 1 of 8

Calibration Laboratory of Schmid & Partner

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'etalonnage Servizio svizzero di taratura S Swise Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-965_Apr16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	5.89 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 *C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	52.7 ± 6 %	1.98 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 "C		deler.

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.78 W/kg

Certificate No: D2450V2-965_Apr16

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω + 3.8 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω + 5.9 jΩ
Return Loss	- 24.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
	E1 10 11 20 20 41

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 19, 2014

Certificate No: D2450V2-965_Apr16

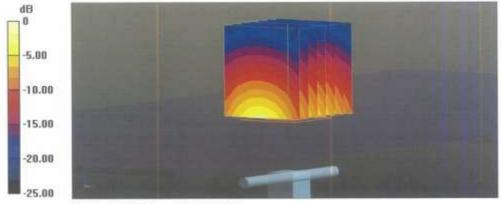
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 965

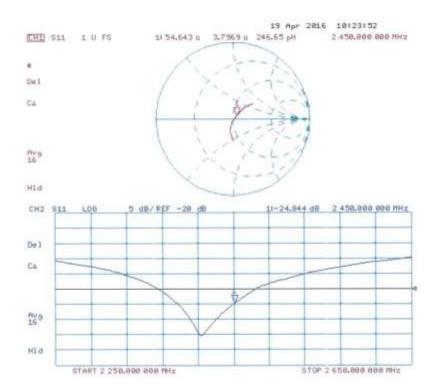

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.4 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.89 W/kg Maximum value of SAR (measured) = 20.7 W/kg


0 dB = 20.7 W/kg = 13.16 dBW/kg

Certificate No: D2450V2-965_Apr16

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-965_Apr16

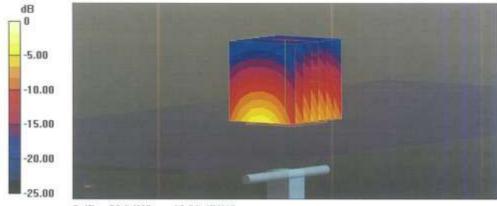
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 965

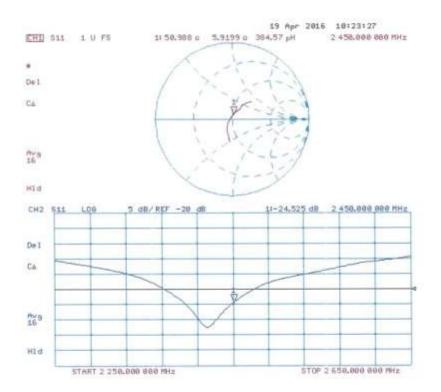

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.98 S/m; ϵ_r = 52.7; p = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 24.7 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.78 W/kg Maximum value of SAR (measured) = 20.0 W/kg


0 dB = 20.0 W/kg = 13.01 dBW/kg

Certificate No: D2450V2-965_Apr16

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-965_Apr16

Page 8 of 8

Attachment 5. – SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)								
(% by weight)	83	5	1 90	0	2 450 – 2 700				
Tissue Type	Head	Body	Head	Body	Head	Body			
Water	40.45	53.06	54.9	70.17	71.88	73.2			
Salt (NaCl)	1.45	0.94	0.18	0.39	0.16	0.1			
Sugar	57.0	44.9	0.0	0	0.0	0.0			
HEC	1.0	1.0	0.0	0	0.0	0.0			
Bactericide	0.1	0.1	0.0	0	0.0	0.0			
Triton X-100	0.0	0.0	0.0	0.0	19.97	0.0			
DGBE	0.0	0.0	44.92	29.44	7.99	26.7			
Diethylene glycol hexyl ether	-	-	-	-	-	-			

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose			
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose			
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]					
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-t	etramethylbu	tyl)phenyl] ether			
	Composition of the Tissue Equiv	valent Matte	er			

F-TP22-03 (Rev.00)

Attachment 6. – SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR		Ducho	Probe		Probe			Dielectric F	Parameters	CW	Validatio	'n	Modula	tion Va	lidation
System No.	Probe	Probe Type	Calibi Po	ration int	Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR	
1	3863	EX3DV4	Head	835	4d165	2015.12.01	40.8	0.89	PASS	PASS	PASS	GMSK	PASS	N/A	
1	3863	EX3DV4	Body	835	4d165	2015.12.02	54.8	0.98	PASS	PASS	PASS	GMSK	PASS	N/A	
1	3863	EX3DV4	Head	1900	5d061	2016.05.09	39.9	1.41	PASS	PASS	PASS	GMSK	PASS	N/A	
1	3863	EX3DV4	Body	1900	5d061	2016.05.10	53.1	1.51	PASS	PASS	PASS	GMSK	PASS	N/A	
1	3863	EX3DV4	Head	2450	965	2016.05.02	39.1	1.78	PASS	PASS	PASS	OFDM	N/A	PASS	
1	3863	EX3DV4	Body	2450	965	2016.05.03	52.4	1.96	PASS	PASS	PASS	OFDM	N/A	PASS	

SAR System Validation Summary 1g

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.