

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 15.247 WLAN 802.11b/g/n

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 4/18 - 4/27/2016. 5/5/2016

Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1604180790.ZNF

F	CC	ID:	

ZNFK210

APPLICANT:

LG Electronics MobileComm U.S.A

Application Type: Model(s): EUT Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification LG-K210, LGK210, K210, LG-K450, LGK450, K450 Portable Handset Digital Transmission System (DTS) Part 15.247 KDB 558074 v03r03

		Conducted Power				
	Tx Frequency (MHz)	Avg Conducted		Peak Conducted		
Mode		Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	
802.11b	2412 - 2462	49.659	16.96	92.897	19.68	
802.11g	2412 - 2462	37.931	15.79	232.809	23.67	
802.11n	2412 - 2462	39.719	15.99	237.684	23.76	

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 v03r03. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

ndy Ortanez President

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 1 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 1 of 57
© 2016 DCTEST Engineering	Laboratory Inc			

TABLE OF CONTENTS

FCC	PART	T 15.247 MEASUREMENT REPORT	
1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
2.0	PRC	DDUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	AC Line Conducted Emissions	6
	3.3	Radiated Emissions	7
	3.4	Environmental Conditions	7
4.0	ANT	FENNA REQUIREMENTS	8
5.0	MEA	ASUREMENT UNCERTAINTY	9
6.0	TES	T EQUIPMENT CALIBRATION DATA	10
7.0	TES	ST RESULTS	11
	7.1	Summary	11
	7.2	6dB Bandwidth Measurement	
	7.3	Output Power Measurement	
	7.4	Power Spectral Density	20
	7.5	Conducted Emissions at the Band Edge	
	7.6	Conducted Spurious Emissions	
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	
		7.7.1 Radiated Spurious Emission Measurements	
		7.7.2 Radiated Restricted Band Edge Measurements	43
	7.8	Radiated Spurious Emissions Measurements – Below 1GHz	
	7.9	Line-Conducted Test Data	53
8.0	CON	NCLUSION	57

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 2 of 57
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3 12/01/2015

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	LG Electronics MobileComm U.S.A			
APPLICANT ADDRESS:	1000 Sylvan Avenue			
	Englewood Cliffs, NJ 07632, United States			
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.			
TEST SITE ADDRESS:	7185 Oakland Mills Road, Columbia, MD 21046 USA			
FCC RULE PART(S):	Part 15.247			
BASE MODEL:	LG-K210, LGK210, K210, LG-K450, LGK450, K450			
FCC ID:	ZNFK210			
FCC CLASSIFICATION:	Digital Transmission System (DTS)			
Test Device Serial No.:	2HVZJ, 2HVZL Production Pre-Production Engineering			
DATE(S) OF TEST:	4/18 - 4/27/2016, 5/5/2016			
TEST REPORT S/N:	0Y1604180790.ZNF			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 2 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 3 of 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 4 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 4 of 57
© 2016 DCTEST Engineering	aboratory Inc			//33

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFK210**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE)

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 v03r03. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles				
802.11 Mode/Band		Duty Cycle [%]		
		ANT1		
	b	99.9		
2.4GHz	g	99.3		
	n	99.5		

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)

6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n)

2.3 Test Configuration

The LG Portable Handset FCC ID: ZNFK210 was tested per the guidance of KDB 558074 v03r03. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of E7
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 5 of 57
© 2016 PCTEST Engineering	aboratory Inc	•		V 3 3

DESCRIPTION OF TESTS 3.0

Evaluation Procedure 3.1

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 v03r03 were used in the measurement of the LG Portable Handset FCC ID: ZNFK210.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR guasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 9.15.0.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 6 of 57
© 2016 PCTEST Engineering Laboratory Inc				

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the sature area is used as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz, a 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFK210	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 7 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 7 of 57
© 2016 DOTECT Engineering	abaratan (Inc			V 2 2

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the Portable Handset are **permanently attached**.
- There are no provisions for connections to an external antenna.

Conclusion:

The LG Portable Handset FCC ID: ZNFK210 unit complies with the requirement of §15.203.

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 4-1. Frequency/ Channel Operations

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 57		
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Fage o 01 57		
© 2016 PCTEST Engineering Laboratory, Inc.						

MEASUREMENT UNCERTAINTY 5.0

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 9 of 57
© 2016 PCTEST Engineering	aboratory Inc			V 3 3

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	4/28/2015	Annual	4/28/2016	RE1
-	WL40-1	Conducted Cable Set (40GHz)	4/20/2015	Annual	4/20/2016	WL40-1
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	7/22/2015	Annual	7/22/2016	MY49432391
Agilent	N9020A	MXA Signal Analyzer	11/5/2015	Annual	11/5/2016	US46470561
Agilent	N9038A	MXE EMI Receiver	4/24/2015	Annual	4/24/2016	MY51210133
Anritsu	MA2411B	Pulse Sensor	10/14/2015	Biennial	10/14/2017	846215
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Emco	6502	Active Loop Antenna (10k - 30 MHz)	6/24/2014	Biennial	6/24/2016	267
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	11/11/2014	Biennial	11/11/2016	114451
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014	Biennial	6/17/2016	135427
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	4/20/2015	Annual	4/20/2016	251425001
K & L	11SH10-3075/U18000	High Pass Filter	7/18/2015	Annual	7/18/2016	11SH10-3075/U18000-2
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	4/28/2015	Annual	4/28/2016	NMLC-1
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	6/2/2015	Annual	6/2/2016	103200
Rhode & Schwarz	TS-PR18	Pre-Amplifier	3/7/2016	Annual	3/7/2017	101622
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/17/2015	Annual	7/17/2016	100348
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100040
Schwarzbeck	VULB-9161SE	Trilog Super Broadband Test Antenna	11/13/2015	Biennial	11/13/2017	9161-4075
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 of 57	
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 10 of 57	
© 2016 PCTEST Engineering Laboratory, Inc.					

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFK210
FCC Classification:	Digital Transmission System (DTS)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER	MODE (TX)				
15.247(a)(2)	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	Transmitter Output Power	< 1 Watt	CONDUCTED	PASS	Sections 7.3
15.247(e)	Transmitter Power Spectral Density	< 8dBm / 3kHz Band		PASS	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	Conducted ≥ 30dBc		PASS	Sections 7.5, 7.6
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 7.7, 7.8
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.0.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.2.

FCC ID: ZNFK210	FC	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 11 of 57
@ 0040 DOTEOT Essistenting	ale a setta e color a			1/00

7.2 6dB Bandwidth Measurement §15.247(a.2)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 v03r03 - Section 8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

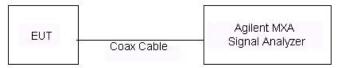
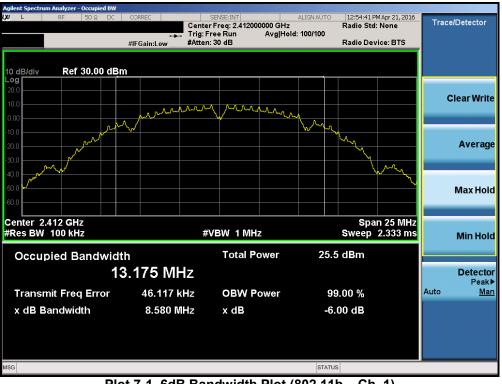


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

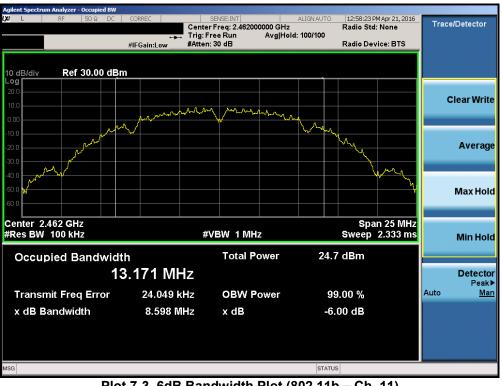

None

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 of 57		
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 12 of 57		
© 2016 PCTEST Engineerin	© 2016 PCTEST Engineering Laboratory. Inc.					

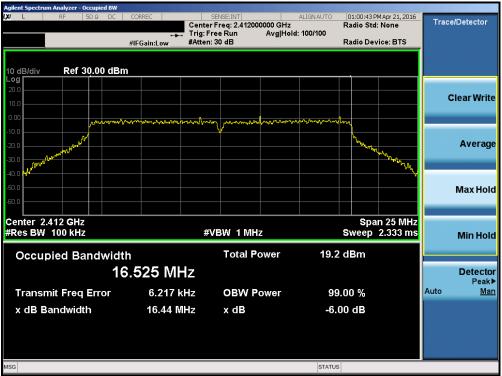
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
2412	1	b	1	8.580	0.500	Pass
2437	6	b	1	9.041	0.500	Pass
2462	11	b	1	8.598	0.500	Pass
2412	1	g	6	16.44	0.500	Pass
2437	6	g	6	16.41	0.500	Pass
2462	11	g	6	16.42	0.500	Pass
2412	1	n	6.5/7.2 (MCS0)	17.61	0.500	Pass
2437	6	n	6.5/7.2 (MCS0)	17.64	0.500	Pass
2462	11	n	6.5/7.2 (MCS0)	17.63	0.500	Pass

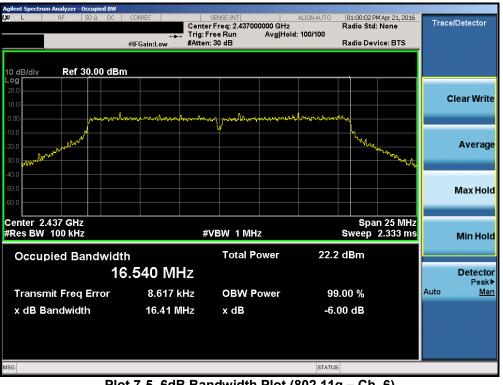
Table 7-2. Conducted Bandwidth Measurements

Plot 7-1. 6dB Bandwidth Plot (802.11b - Ch. 1)

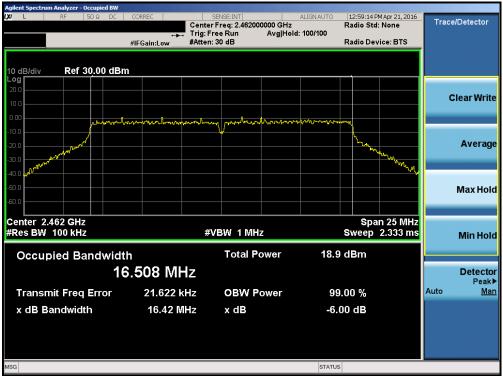

FCC ID: ZNFK210	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 12 of 57	
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 13 of 57	
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.				

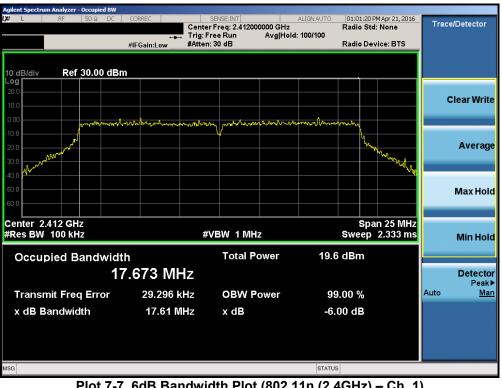
12/01/2015




Plot 7-3. 6dB Bandwidth Plot (802.11b - Ch. 11)

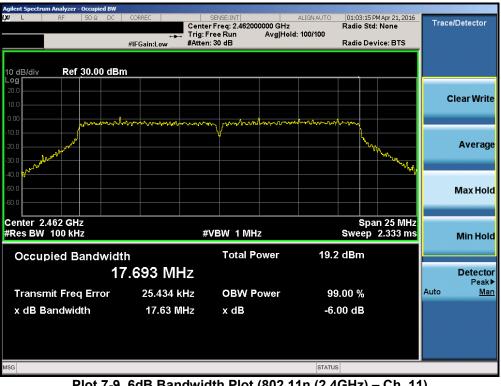
FCC ID: ZNFK210	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset	Page	
© 2016 PCTEST Engineering Laboratory, Inc.				




Plot 7-5. 6dB Bandwidth Plot (802.11g - Ch. 6)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 15 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 15 of 57
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3




Plot 7-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: ZNFK210		CTEST FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 16 of 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 17 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 17 of 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

7.3 Output Power Measurement §15.247(b.3)

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies.

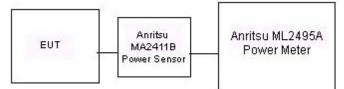
The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 v03r03 – Section 9.1.2 PKPM1 Peak Power Method KDB 558074 v03r03 – Section 9.2.3.2 Method AVGPM-G

Test Settings

Method PKPM1 (Peak Power Measurement)


Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

<u>Test Notes</u>

None

FCC ID: ZNFK210	FOR THE LABORATION . OF	CC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 18 of 57
© 2016 PCTEST Engineering I	aboratory Inc			V 3 3

			2.4GHz Conducted Power [dBm]			
Freq [MHz]	Channel	Detector	IEEE 1	IEEE Transmission Mode		
			802.11b	802.11g	802.11n	
2412	1	AVG	16.96	12.71	13.10	
		PEAK	19.68	21.47	21.75	
2417	2	AVG	N/A	15.72	15.99	
		PEAK	N/A	23.63	23.76	
2437	6	AVG	16.72	15.60	15.91	
		PEAK	19.44	23.47	23.69	
2437	10	AVG	N/A	15.79	15.77	
		PEAK	N/A	23.67	23.62	
2462	11	AVG	16.64	12.78	12.79	
		PEAK	19.35	21.56	21.55	

Table 7-3. Conducted Output Power Measurements

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 19 of 57
@ 2016 DOTECT Engineering	Laborates, Jac			1/22

7.4 Power Spectral Density §15.247(e)

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 v03r03 - Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

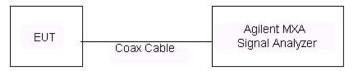


Figure 7-3. Test Instrument & Measurement Setup

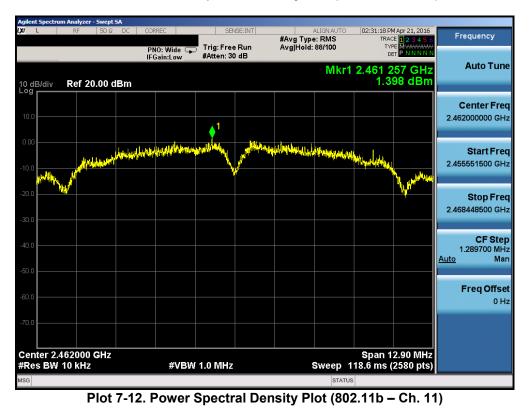
Test Notes

None

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 20 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 20 of 57
© 2016 PCTEST Engineering	a Laboratory, Inc.			V 3.3

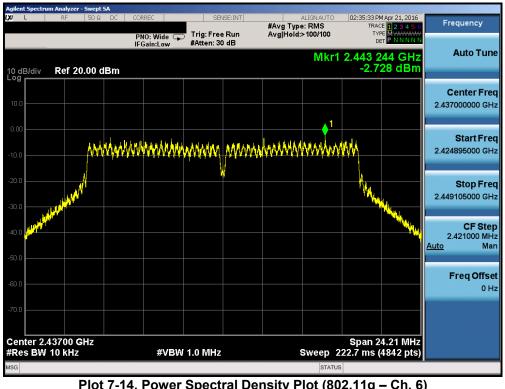
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	2.59	8.00	-5.41	Pass
2437	6	b	1	3.04	8.00	-4.96	Pass
2462	11	b	1	1.40	8.00	-6.60	Pass
2412	1	g	6	-5.32	8.00	-13.32	Pass
2437	6	g	6	-2.73	8.00	-10.73	Pass
2462	11	g	6	-5.96	8.00	-13.96	Pass
2412	1	n	6.5/7.2 (MCS0)	-5.11	8.00	-13.11	Pass
2437	6	n	6.5/7.2 (MCS0)	-3.04	8.00	-11.04	Pass
2462	11	n	6.5/7.2 (MCS0)	-6.67	8.00	-14.67	Pass

Table 7-4. Conducted Power Density Measurements

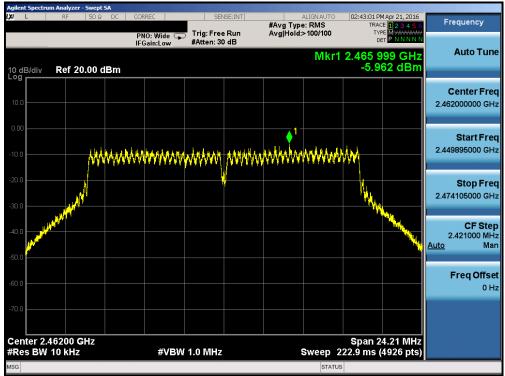

Plot 7-10. Power Spectral Density Plot (802.11b – Ch. 1)

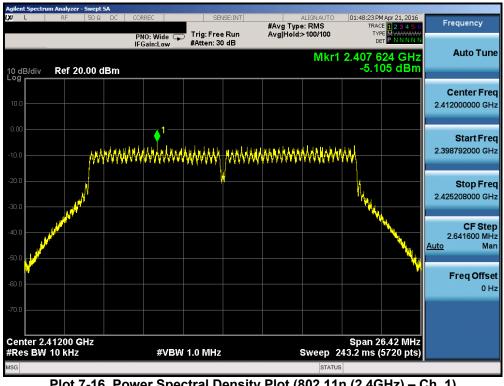
FCC ID: ZNFK210	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 21 01 57
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3

Plot 7-11. Power Spectral Density Plot (802.11b - Ch. 6)

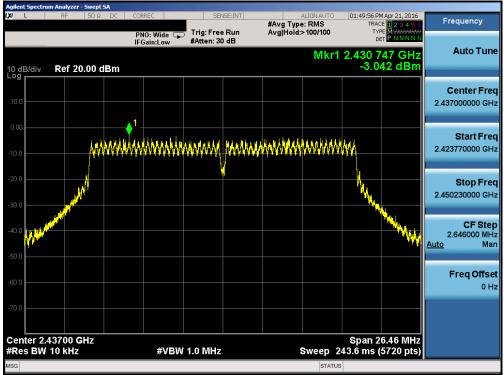

FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION) PCTEST Reviewed by: 🕑 LG FCC ID: ZNFK210 Quality Manager Test Report S/N: Test Dates: EUT Type: Page 22 of 57 0Y1604180790.ZNF 4/18 - 4/27/2016, 5/5/2016 Portable Handset V 3.3

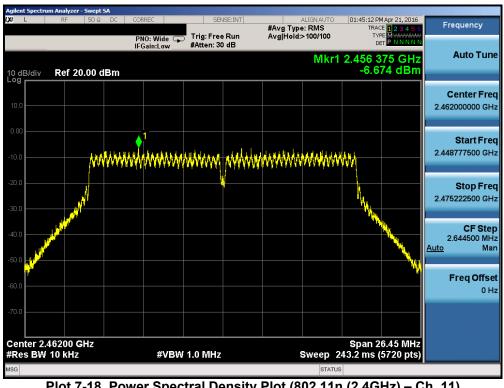
© 2016 PCTEST Engineering Laboratory, Inc.


Plot 7-13. Power Spectral Density Plot (802.11g - Ch. 1)


Plot 7-14. Power Spectral Density Plot (802.11g - Ch. 6)

FCC ID: ZNFK210	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 57	
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 23 of 57	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-15. Power Spectral Density Plot (802.11g - Ch. 11)


Plot 7-16. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: ZNFK210	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 24 of 57
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3

Plot 7-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

Plot 7-18. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 25 01 57
© 2016 PCTEST Engineering I	Laboratory, Inc.	•		V 3.3

7.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, and 6.5/7.2Mbps for "n" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 9.1).

Test Procedure Used

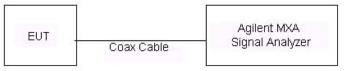
KDB 558074 v03r03 – Section 11.3

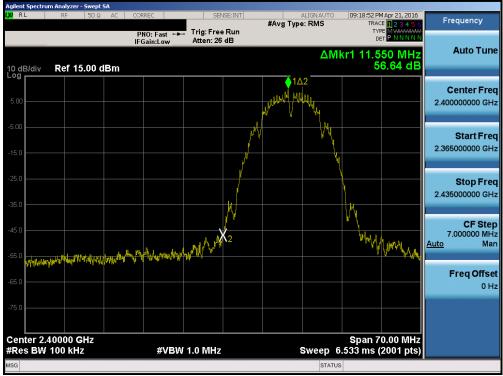
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



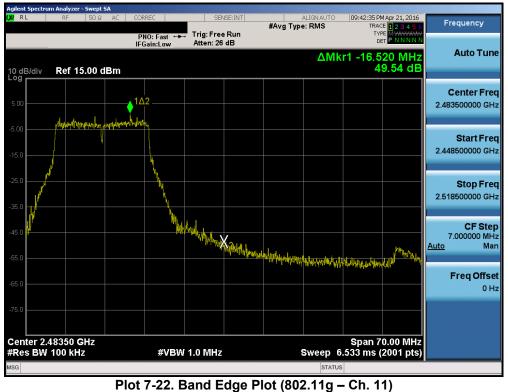

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

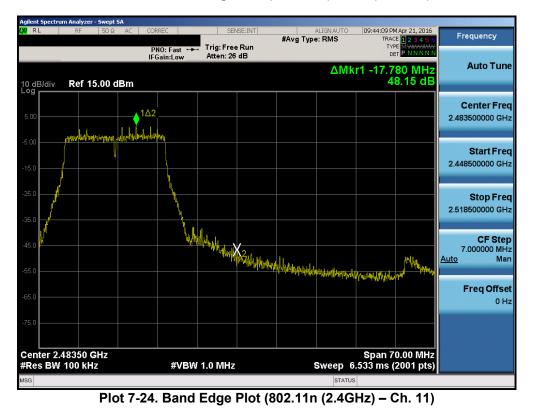
FCC ID: ZNFK210	FC	CC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 26 of 57
© 2016 PCTEST Engineering I	aboratory Inc.	· ·		V 3 3

Plot 7-19. Band Edge Plot (802.11b - Ch. 1)


Plot 7-20. Band Edge Plot (802.11b - Ch. 11)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 27 01 57
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3

Plot 7-21. Band Edge Plot (802.11g- Ch. 1)



FCC ID: ZNFK210	FCC	C Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 26 01 57
© 2016 PCTEST Engineering L	aboratory, Inc.			V 3.3 12/01/2015

Plot 7-23. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: ZNFK210	FC(C Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 29 01 57
© 2016 PCTEST Engineering I	Laboratory, Inc.	÷		V 3.3

7.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", and "n" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 v03r03.

Test Procedure Used

KDB 558074 v03r03 – Section 11.3 KDB 662911 v02r01 – Section E)3)b)

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

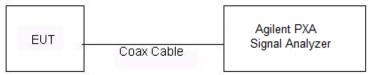


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 30 of 57
© 2016 DOTEST Engineering	Laboratory Inc.	•		1/22

Test Notes


- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 31 of 57
© 2016 PCTEST Engineering	aboratory Inc			V 3 3

	Spectrum	Analyzer		A									
l <mark>XI</mark> RI	-	RF	50 Ω	AC	CORR	EC	SEI	VSE:INT	#Avg Typ			09 PM Apr 21, 2016 TRACE 1 2 3 4 5 6	Frequency
					PN	D:Fast 🗔	Trig: Free		word the	e. raws		TYPE MWWWWW	
						in:Low	Atten: 26	dB				DET PNNNNN	Auto Tuno
										P	//kr1 3. 1	183 2 GHz	Auto Tune
10 dE	3/div	Ref 1	5.00 di	Bm							-4	4.17 dBm	
Log				1									
													Center Freq
5.00													5.015000000 GHz
				ļ									
-5.00													Start Freq
													30.000000 MHz
-15.0													30.000000 WHZ
												-20.76 dBm	
-25.0													Stop Freq
													10.000000000 GHz
-35.0													
						<u>_</u> 1							
-45.0				_/	المرابقية.		مرابع مرابع	a and tabella	a debut at at 1	la han ila		han da handa	CF Step 997.000000 MHz
	1. Partilitation of	-the set the	ann, den	***/h	and the second second	(Dillo)	upper Hings	Party of the second sec	a na serie de la contra de la contra La fontación de la contra de la contra	and the state	and the second second	and a second	Auto Man
-55.0	در در معطیر مراجع معامل	اللنظر وحارمات	an atom (And	<u>مر</u>		All all all a	LI COLUMN DI LI COLUMN		o Ilan o atea e Refe	n on Annual I.			
-65.0													Freq Offset
00.0													0 Hz
-75.0													
-75.0													
Star	t 30 M	Hz									Stop	10.000 GHz	
#Res	s BW 1	.0 MH	z			#VBV	V 3.0 MHz		S	weep	18.00 ms	(30001 pts)	
MSG										STA	TUS		
				_	_								

Plot 7-25. Conducted Spurious Plot (802.11b - Ch. 1)

Plot 7-26. Conducted Spurious Plot (802.11b - Ch. 1)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 22 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 32 of 57
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3 12/01/2015

Agilent Spectrum Analyzer - S		RREC	SENSE:INT		ALIGNAUTO	00-01-10 PM	Arr 21, 2016	
		-	rig: Free Run	#Avg Type		09:21:12 PM TRACE	Apr 21, 2016 1 2 3 4 5 6 M WARMANN	Frequency
	P IF		itten: 26 dB			DET	PNNNNN	Auto Tune
10 dB/div Ref 15.0	00 dBm				M	(r1 2.492 -43.0	6 GHz 2 dBm	AutoTune
								Center Free
5.00								5.015000000 GH
-5.00								
								Start Free 30.000000 MH;
-15.0							-20.59 dBm	
-25.0								Stop Free
-35.0								10.00000000 GH
55.5	↓ 1							CF Step
-45.0	And		Profiling which and a state of the			· · · · · · · · · · · · · · · · · · ·		997.000000 MH
-55.0	ten julier million		and a second		nuletti yan ke sara		and a state of the second	<u>Auto</u> Mar
								Freq Offset
-65.0								0 Hz
-75.0								
Start 30 MHz #Res BW 1.0 MHz		#VBW 3.0	0 MHz	s	weep 18	Stop 10. 00 ms (30	000 GHz	
MSG					STATUS		pico/	

Plot 7-27. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 7-28. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 33 of 57
© 2016 PCTEST Engineering	Laboratory, Inc.	· · · · · · · · · · · · · · · · · · ·		V 3.3

	Spectru								_					_				
I <mark>XI</mark> RI	-	RF	50	ΩC	AC	COF	RREC			SENSE:INT	#A		ALIGNAUT e: RMS	0	TR/	PM Apr 21, 2 ACE <mark>1 2 3 4</mark>	5.6	Frequency
							NO: Fa Gain:L	ist Ģ ow	Atten:	ee Run 26 dB					1		IN N	
10 dE	3/div	Ref	15.0	0 dE	3m								N	/lkr1	2.48 -39	8 9 G .63 dE	Hz 3m	Auto Tur
Log 5.00																		Center Fre 5.015000000 GH
-5.00 -15.0																-20.86	dBm	Start Fre 30.000000 Mi
-25.0 -35.0						.1—												Stop Fre 10.000000000 GH
45.0 55.0	a para sa		alin men man	1		The second	a da al a sua sua sua sua sua sua sua sua sua s	in states	n feateringer New teringer	())) tennetissenen 1. januaria () and ()		a ing Kanagara Tanang Kanagara	and the special data		n papatén ang	ay dy ke yan iyo n alay ah ikas	alita Alita	CF Ste 997.000000 MI <u>Auto</u> Ma
65.0																		Freq Offs 0 F
-75.0																		
	t 30 N s BW		Hz				#	VBW	3.0 MF	z		s	weep	ع 18.0	Stop 10 0 ms (0.000 G 30001 p	Hz ots)	
ISG														TUS				

Plot 7-29. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 7-30. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 34 01 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-5 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedures Used

KDB 558074 v03r03 - Section 12.1, 12.2.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 v03r03

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 v03r03

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: ZNFK210	FC	CC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 35 of 57

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

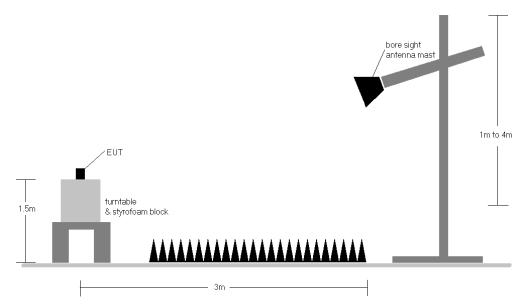


Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 v03r03 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-10.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 36 of 57

investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.

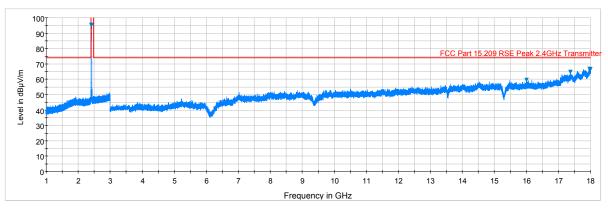
8. The "-" in the tables below denote a noise-floor measurement.

Sample Calculations

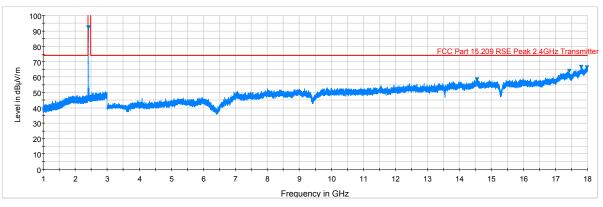
Determining Spurious Emissions Levels

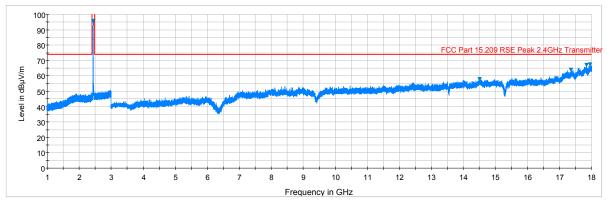
- Field Strength Level [dBuV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m] 0
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] 0
- Margin [dB] = Field Strength Level [dBµV/m] Limit [dBµV/m] 0

Radiated Band Edge Measurement Offset


o The amplitude offset shown in the radiated restricted band edge plots in Section 6.8 was calculated using the formula:

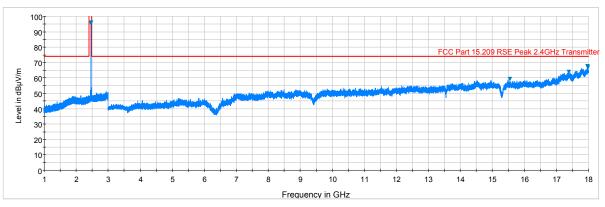
Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain


FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 37 of 57
© 2016 DCTEST Engineering I	aboratory Inc	· · · · ·		//33

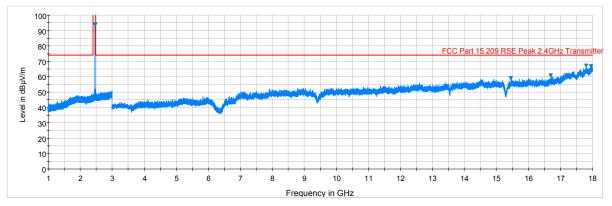

7.7.1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Plot 7-31. Radiated Spurious Plot above 1GHz (802.11b - Ch. 1, Ant. Pol. H)

Plot 7-32. Radiated Spurious Plot above 1GHz (802.11b - Ch. 1, Ant. Pol. V)


Plot 7-33. Radiated Spurious Plot above 1GHz (802.11b – Ch. 6, Ant. Pol. H)

FCC ID: ZNFK210		🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset	Page 38 of 57	
© 2016 PCTEST Engineering I	aboratory, Inc.			V 3.3

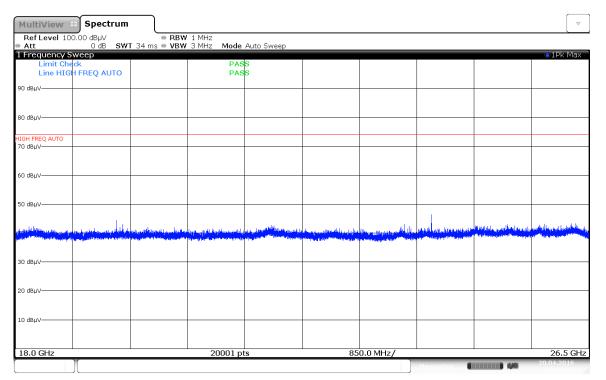


Plot 7-34. Radiated Spurious Plot above 1GHz (802.11b - Ch. 6, Ant. Pol. V)

Plot 7-35. Radiated Spurious Plot above 1GHz (802.11b - Ch. 11, Ant. Pol. H)

Plot 7-36. Radiated Spurious Plot above 1GHz (802.11b – Ch. 11, Ant. Pol. V)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 57		
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset	Portable Handset			
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3		


12/01/2015

Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

MultiView	Spectrum								▽
Ref Level 100 Att			VIMHz VIMHz Mode						
1 Frequency S		34 ms 🛡 VBV		Auto Sweep					●1Pk Max
Limit Che	ck		PAS	S					UPK Max
Line HIG	FREQ AUTO		PAS						
	_								
90 dBµV									
80 dBµV									
HIGH FREQ AUTO			+						
70 dBµV									
60 dBµV									
00 0000									
50 dBµV									
ويرابين التنبي المطاطعا التون	an an halloweller is the bill take to	ومعتاد ومأوالا وحرارين	Lealer I Ward der Hildeland	den by John March Mary Lake	and the state of t	a alter a new with the	ALEAN AND AND AND AND AND AND AND AND AND A	the tradition of the billing of the	the college breathback
prove of the State of product provides	the president of the state of the last	the place for the first strengt prove of the	Congression and a standards of Displayers	the state of the second se	and a second second second		And the second state of the second states	A REPORT OF A DESCRIPTION OF A DESCRIPTI	an sheard teac
30 dBµV									
20 dBµV									
10 dBµV			-						
18.0 GHz			20001 pt			0.0 MHz/			26.5 GH:
18.0 GHZ			2000 I pi	S	85	U.U MHZ/			26.5 GH

Plot 7-38. Radiated Spurious Plot above 18GHz (Pol. V)

FCC ID: ZNFK210	FC	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 57		
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset				
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3		

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

802.11b
1 Mbps
3 Meters
2412MHz
01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	-	-	-116.00	40.30	31.30	53.98	-22.68
4824.00	Peak	Н	-	-	-104.01	40.30	43.29	73.98	-30.69
12060.00	Avg	н	-	-	-116.10	51.13	42.03	53.98	-11.95
12060.00	Peak	Н	-	-	-103.02	51.13	55.11	73.98	-18.87

Table 7-6. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	-	-	-116.74	39.99	30.25	53.98	-23.73
4874.00	Peak	н	-	-	-104.10	39.99	42.89	73.98	-31.09
7311.00	Avg	н	-	-	-117.07	43.71	33.64	53.98	-20.34
7311.00	Peak	Н	-	-	-104.24	43.71	46.47	73.98	-27.51
12185.00	Avg	н	-	-	-115.75	51.17	42.42	53.98	-11.56
12185.00	Peak	Н	-	-	-103.34	51.17	54.83	73.98	-19.15

Table 7-7. Radiated Measurements

FCC ID: ZNFK210	FCC	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 41 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 41 of 57

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

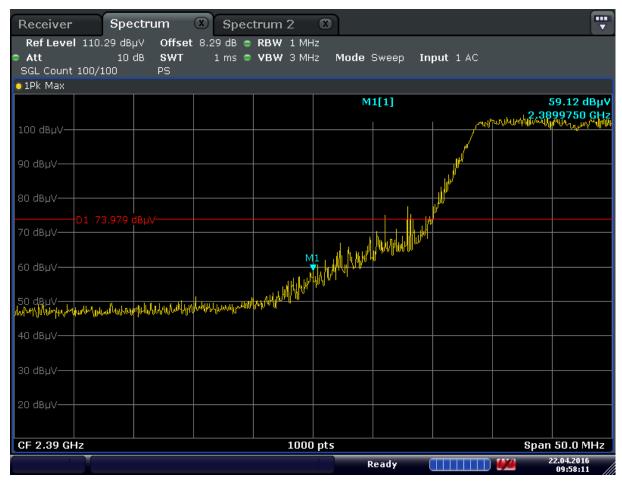
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	-	-	-117.34	39.90	29.56	53.98	-24.42
4924.00	Peak	Н	-	-	-105.20	39.90	41.70	73.98	-32.28
7386.00	Avg	Н	-	-	-116.80	44.29	34.49	53.98	-19.49
7386.00	Peak	Н	-	-	-104.82	44.29	46.47	73.98	-27.51
12310.00	Avg	Н	-	-	-116.44	51.67	42.23	53.98	-11.75
12310.00	Peak	Н	-	-	-104.37	51.67	54.30	73.98	-19.68

Table 7-8. Radiated Measurements

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 42 of 57	
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 42 of 57	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

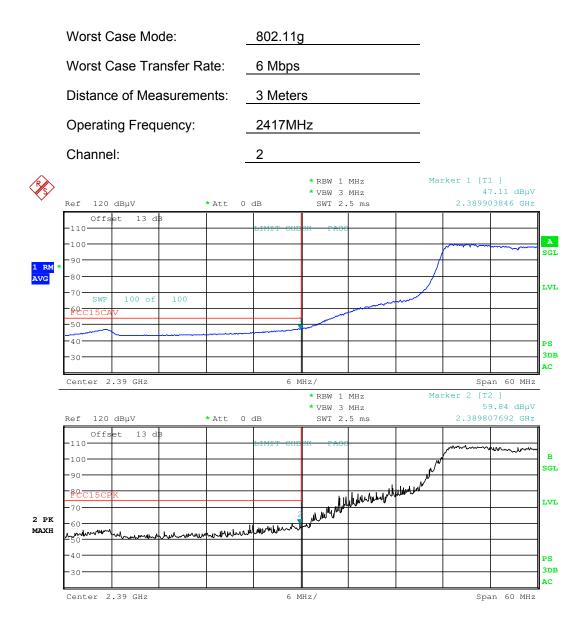
V 3.3 12/01/2015

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


Worst Case Mode:	802.11g					
Worst Case Transfer Rate:	6 Mbps					
Distance of Measurements:	3 Meters					
Operating Frequency:	2412MHz					
Channel:	1					
Ref Level 110.29 dBµV Offset 8.29 d	Spectrum 2 dB e RBW 1 MH ns e VBW 3 MH		Sweep In	put 1 AC		Ţ
		м	1[1]			15.23 dBμV
100 dBµV					2.38	95750 GHz
90 dBuV				e with	guadanan partatranan	-and the apply of
90 авру-				- {		
80 dBµV				_/		
70 dBµV						
				J. W. Marker		
60 dBµV			كمولي المعادية			
50 dBµV	M1	a Jord ugh more all ugh	ully all and a second second			
A. A. B. Warran market and a stranger and and and and and a stranger and a stranger and a stranger and a stranger	and where the and the stand of	where a				
-9734040342.04m30mba.0mman.0mman.00mman.00mman.00mman.00mman.00mman.00mman.00mman.00mman.00mman.00mman.00mman.0						
30 dBµV						
20 dBµV						
CF 2.39 GHz	1000	pts				50.0 MHz
		R	ead y (4/4 2	2.04.2016 09:58:55

Date: 22.APR.2016 09:58:56

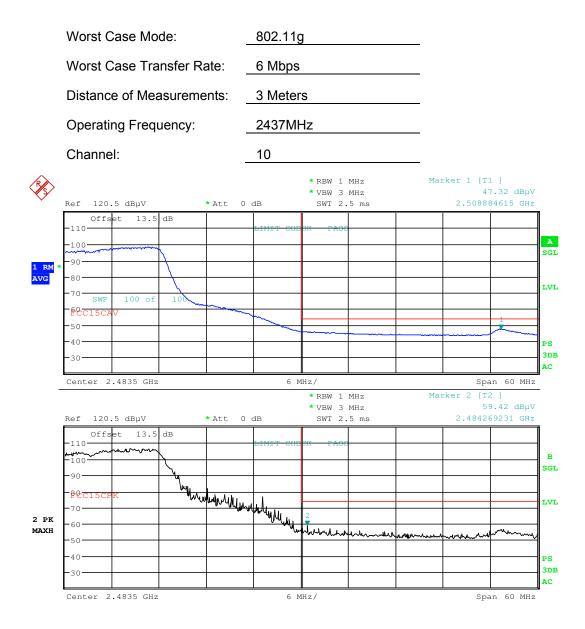
FCC ID: ZNFK210	FC	C Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 43 of 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3


Date: 22.APR.2016 09:58:12

Plot 7-40. Radiated Restricted Lower Band Edge Measurement (Peak)

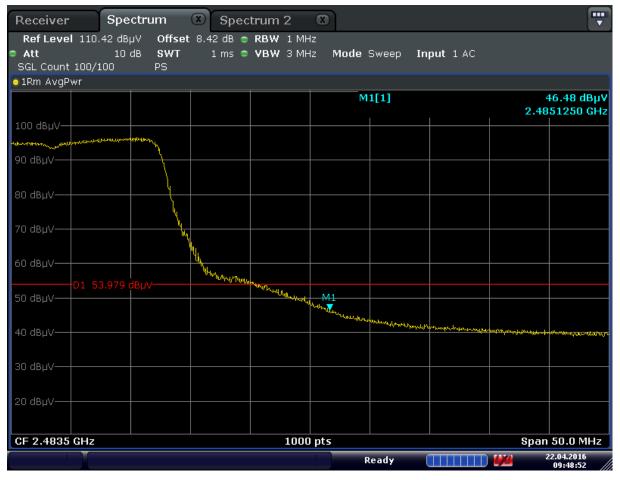
FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 44 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 44 of 57
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


Date: 5.MAY.2016 18:42:55

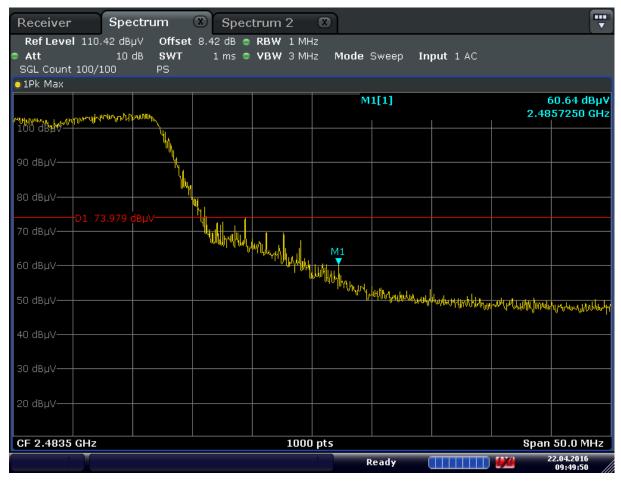
FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 45 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 45 of 57
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


Date: 5.MAY.2016 18:49:06

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 46 of 57
© 2016 PCTEST Engineering	0 2016 PCTEST Engineering Laboratory, Inc.			

Worst Case Mode:	802.11g
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11



Date: 22.APR.2016 09:48:53

Plot 7-43. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: ZNFK210	FOR THE ST. OF	CC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 47 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 47 of 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Date: 22.APR.2016 09:49:51

Plot 7-44. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 48 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 46 01 57
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-9 per Section 15.209.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

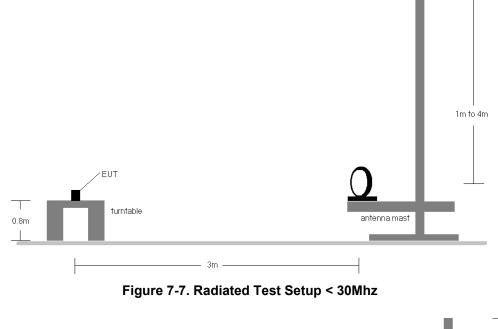
Table 7-9. Radiated Limits

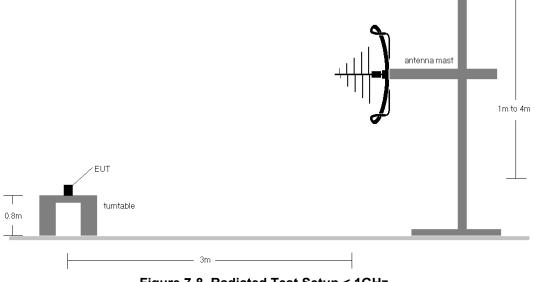
Test Procedures Used

ANSI C63.4-2013

Test Settings

Quasi-Peak Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 49 of 57
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.			

Test Setup

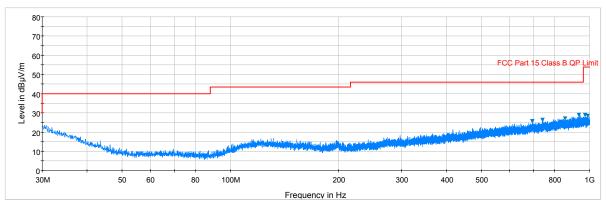
The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-8. Radiated Test Setup < 1GHz

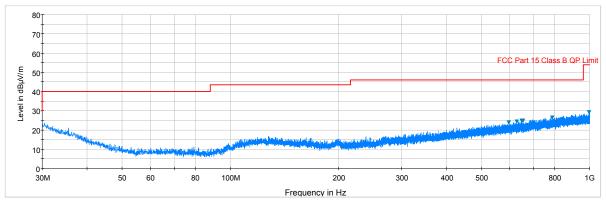
Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-9.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 50 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 50 01 57
© 2016 PCTEST Engineering I	2016 PCTEST Engineering Laboratory, Inc.			



- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1..
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.


FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 51 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 51 01 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-45. Radiated Spurious Plot below 1GHz (Pol. H)

Plot 7-46. Radiated Spurious Plot below 1GHz (Pol. V)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 52 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 52 01 57
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

7.9 Line-Conducted Test Data §15.207

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 – 30	60	50	

Table 7-10. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 7. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 8. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 9. Detector = quasi-peak
- 10. Sweep time = auto couple
- 11. Trace mode = max hold
- 12. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 53 of 57
© 0040 DOTEOT Excitore size	l abaastaa laa			1/00

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

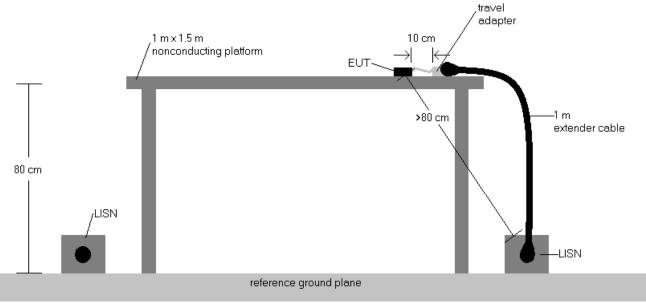
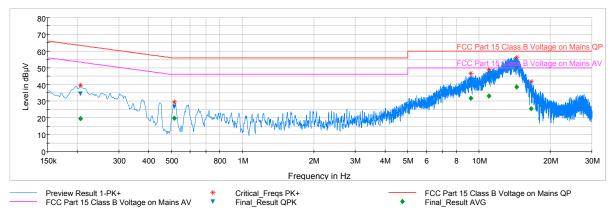


Figure 7-9. Test Instrument & Measurement Setup


Test Notes

- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFK210	PCTEST.	CC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 54 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 54 of 57
© 2016 PCTEST Engineering	aboratory Inc			V 3 3

Line-Conducted Test Data §15.207

Plot 7-47. Line Conducted	Plot with	802.11b	(L1)
			\- ·/

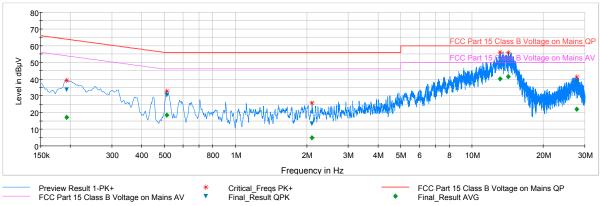

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.206	L1	-0.1	34.52	63.35	28.83	19.51	53.35	33.84
0.515	L1	0.0	26.67	56.00	29.33	19.78	46.00	26.22
9.247	L1	0.2	42.82	60.00	17.18	31.77	50.00	18.23
11.031	L1	0.2	44.26	60.00	15.74	33.15	50.00	16.85
14.447	L1	0.2	49.72	60.00	10.28	38.63	50.00	11.37
16.577	L1	0.2	36.04	60.00	23.96	25.43	50.00	24.57

Table 7-11. Line Conducted Data with 802.11b (L1)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 55 of 57
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 55 of 57
© 2016 PCTEST Engineering	Laboratory, Inc.	· · · · · · · · · · · · · · · · · · ·		V 3.3

Line-Conducted Test Data §15.207

Plot 7-48. Line Conducted Plot with 802.11b (N)

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.193	Ν	-0.2	33.58	63.92	30.34	17.17	53.92	36.75
0.512	Ν	-0.1	30.34	56.00	25.66	18.54	46.00	27.46
2.103	Ν	0.0	13.29	56.00	42.71	4.99	46.00	41.01
13.128	Ν	0.1	52.04	60.00	7.96	40.16	50.00	9.84
14.217	Ν	0.1	52.47	60.00	7.53	41.42	50.00	8.58
27.719	Ν	0.1	37.92	60.00	22.08	21.87	50.00	28.13

Table 7-12. Line Conducted Data with 802.11b (N)

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga EC of E7	
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 56 of 57	
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.				

CONCLUSION 8.0

The data collected relate only the item(s) tested and show that the LG Portable Handset FCC ID: ZNFK210 is in compliance with Part 15C of the FCC Rules.

FCC ID: ZNFK210		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dege 57 of 57		
0Y1604180790.ZNF	4/18 - 4/27/2016, 5/5/2016	Portable Handset		Page 57 of 57		
© 2016 PCTEST Engineering Laboratory Inc.						