

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics U.S.A., Inc. 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 09/01/20 - 10/05/20 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M2009170151-01-R1.ZNF

FCC ID:

ZNFK200TM

APPLICANT:

LG ELECTRONICS U.S.A., INC.

DUT Type:
Application Type:
FCC Rule Part(s):
Model:
Additional Model(s):

Portable Handset Certification CFR §2.1093 LM-K200TM LMK200TM, K200TM

Equipment	Band & Mode	Tx Frequency		SA	AR	
Class	band & Mode	TXTTequency	1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.33	0.43	0.43	N/A
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.15	0.35	0.67	N/A
PCE	UMTS 850	826.40 - 846.60 MHz	0.32	0.35	0.45	N/A
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.18	1.02	0.91	2.64
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.26	0.85	1.16	2.98
PCE	LTE Band 71	665.5 - 695.5 MHz	0.31	0.35	0.47	N/A
PCE	LTE Band 12	699.7 - 715.3 MHz	0.18	0.44	0.51	N/A
PCE	LTE Band 13	779.5 - 784.5 MHz	0.38	0.59	0.62	N/A
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.36	0.41	0.42	N/A
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.20	1.08	0.95	3.03
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.24	0.57	0.85	3.04
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.25	0.42	0.63	N/A
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.35	0.45	0.45	N/A
DSS/DTS	Bluetooth	2402 - 2480 MHz	N/A	N/A	N/A	N/A
Simultaneou	s SAR per KDB 690783 D	01v01r03:	0.73	1.53	1.40	3.13

Note: This revised Test Report (S/N: 1M2009170151-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

09/11/2019

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 4 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 1 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopyin microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of co copying and thereof, please contact INFO@PCTEST.COM.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	10
3	INTROD	JCTION	. 11
4	DOSIME	TRIC ASSESSMENT	. 12
5	DEFINITI	ON OF REFERENCE POINTS	13
6	TEST CC	NFIGURATION POSITIONS	14
7	RF EXPO	SURE LIMITS	. 18
8	FCC ME	ASUREMENT PROCEDURES	19
9	RF CONI	DUCTED POWERS	24
10	SYSTEM	VERIFICATION	52
11	SAR DAT	A SUMMARY	56
12	FCC MUI	_TI-TX AND ANTENNA SAR CONSIDERATIONS	73
13	SAR ME	ASUREMENT VARIABILITY	79
14	ADDITIO	NAL TESTING PER FCC GUIDANCE	. 80
15	EQUIPM	ENT LIST	83
16	MEASUR	EMENT UNCERTAINTIES	. 84
17	CONCLU	SION	85
18	REFERE	NCES	86
APPEN APPEN APPEN	DIX B:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS	
APPEN	IDIX D:	SAR SYSTEM VALIDATION	
APPEN	IDIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX F:	POWER REDUCTION VERIFICATION	

APPENDIX G: PROBE AND DIPOLE CALIBRATION CERTIFICATES

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 2 of 87
202	20 PCTEST				REV 21.4 M

©

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

DEVICE UNDER TEST 1

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device utilizes a power reduction mechanism for some wireless modes and bands for SAR compliance under portable hotspot conditions and under some conditions when the device is being used in close proximity to the user's hand. All hotspot SAR evaluations for this device were performed at the maximum allowed output power when hotspot is enabled. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device when being used in phablet use conditions. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dege 2 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 3 of 87
202	20 PCTEST				REV 21.4 M

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

1.3.1 **Maximum Output Power**

				GSM	/GPRS/ED	GE 850					
			Voice	Dat	a - Burst Ave	rage GMSK (in	dBm)	Data	- Burst Avera	age 8-PSK (in d	lBm)
Power Level			(in dBm)		•	<u> </u>	-				
	Max allows	d nowor	1 TX Slot	1 TX Slots	2 TX Slots		4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slot
Max	Max allowe Nomi		33.7 33.2	33.7 33.2	30.7 30.2	29.7 29.2	28.7	26.7	24.7	23.7 23.2	22.7
	Nomi		55.2		GPRS/EDG		28.2	20.2	24.2	23.2	22.2
			Voice					_			
Power Level		(in dBm)		Dat	a - Burst Ave	rage GMSK (in	dBm)	Data	a - Burst Avera	age 8-PSK (in d	lBm)
			1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slo
Max	Max allowe		30.7	30.7	27.7	26.7	25.7	26.2	23.7	22.7	21.7
max	Nomi	nal	30.2	30.2	27.2	26.2	25.2	25.7	23.2	22.2	21.2
				UMTS	Band 5 (8	50 MHz)					
						Modulate	d Average Out	put Power			
							(in dBm)				
		Power Le	evel		-	3GPP					
						WCDMA		3GPP HSUPA			
						Rel 99	Rel 5	Rel 6			
		Mari		Max allowed	d power	25.2	25.2	24.2			
		Max		Nomin	al	24.7	24.7	23.7			
				UMTS E	Band 4 (17	'50 MHz)					
						Modulated Average Output Power					
							(in dBm)				
		Power Le	evel			3GPP					
						WCDMA		3GPP HSUPA			
						Rel 99	Rel 5	Rel 6			
				Max allowed	d power	24.2	24.2	23.2			
		Max		Nomin	al	23.7	23.7	22.7			
		lister of Mard		Max allowed	d power	22.2	22.2	21.2			
		Hotspot Mod	e Active	Nomin	al	21.7	21.7	20.7			
		Drewinsity Cone	a	Max allowed	d power	22.2	22.2	21.2			
		Proximity Sens	or Active	Nomin	al	21.7	21.7	20.7			
				UMTS E	Band 2 (19	00 MHz)					
						Modulated	d Average Out	tput Power			
							(in dBm)				
		Power Le	evel		-	3GPP		1			
						WCDMA		3GPP HSUPA			
						Rel 99	Rel 5	Rel 6			
				Max allowed	l power	24.7	24.7	23.7	-		
		Max		Nomin	· .	24.2	24.2	23.2	1		
				Max allowed		23.2	23.2	22.2	1		
		11							1		
		Hotspot Mod	e Active –	Nomin	al	22.7	22.7	21.7			
		Hotspot Mod		Nomin Max allowed		22.7 23.2	22.7 23.2	21.7			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 4 of 87
© 202	0 PCTEST				REV 21.4 M

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

		Modulated A	Average Output Pov	ver (in dBm)
Mode / Band		Max	Hotspot Mode Active	Proximity Sensor Active
LTE FDD Band 71	Max allowed power	25.2	25.2	25.2
	Nominal	24.7	24.7	24.7
LTE FDD Band 12	Max allowed power	25.2	25.2	25.2
LIE FDD Ballu 12	Nominal	24.7	24.7	24.7
LTE FDD Band 13	Max allowed power	25.2	25.2	25.2
LIE FDD Ballu 15	Nominal	24.7	24.7	24.7
LTE FDD Band 5	Max allowed power	25.2	25.2	25.2
LIE FDD Ballu S	Nominal	24.7	24.7	24.7
LTE FDD Band 26	Max allowed power	25.2	25.2	25.2
LIE FDD Ballu 20	Nominal	24.7	24.7	24.7
LTE FDD Band 4	Max allowed power	24.2	22.2	22.2
LIE FDD Ballu 4	Nominal	23.7	21.7	21.7
LTE FDD Band 66	Max allowed power	24.2	22.2	22.2
LIE FDD Ballu 00	Nominal	23.7	21.7	21.7
LTE FDD Band 2	Max allowed power	24.7	23.2	23.2
LIE FDD Band 2	Nominal	24.2	22.7	22.7
LTE FDD Band 25	Max allowed power	24.7	23.2	23.2
LIE FUU Ballo 25	Nominal	24.2	22.7	22.7
LTE TOD Band 41 (DC2)	Max allowed power	25.2	25.2	25.2
LTE TDD Band 41 (PC3)	Nominal	24.7	24.7	24.7
LTE TDD Band 41 (PC2)	Max allowed power	27.2	27.2	27.2
LIE IDD Band 41 (PC2)	Nominal	26.7	26.7	26.7

1.3.2

2.4 GHz Maximum Bluetooth and WLAN Output Power

			IE	EE 802	2.11 ((in dB	n)		
Mode	Band	b			g			n	
	mum / al Power	Max	Nom.	Ma	ix	Nom.	Ma	х	Nom.
2.4		21.5	20.5	19	.5	18.5	19.	0	18.0
GHz	2.45			ch. 1:	16.0	15.0	ch. 1:	15.5	14.5
WIFI	GHz			ch. 2:	18.0	17.0	ch. 2:	17.5	16.5
				ch. 10:	18.0	17.0	ch. 10:	17.5	16.5
				ch. 11:	16.0	15.0	ch. 11:	15.5	14.5

Bluetooth (in dBm)						
Maximum 7.0						
Nominal	6.0					
Bluetooth LE (in dBm)						

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 5 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

REV 21.4 M 09/11/2019
 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Mode	Band		IE	EE 802.	.11 (ir	n dBm)		
Mode	Danu	b			g			n	
	mum / al Power	Max	Nom.	Ma	х	Nom.	Ma	х	Nom.
		18.0	17.0	18.	0	17.0	18.	0	17.0
2.4	2.45			ch. 1:	14.5	13.5	ch. 1:	14.5	13.5
GHz	GHz			ch. 2:	16.5	15.5	ch. 2:	16.5	15.5
WIFI				ch. 10:	16.5	15.5	ch. 10:	16.5	15.5
				ch. 11:	14.5	13.5	ch. 11:	14.5	13.5

1.3.3 2.4 GHz Reduced WLAN Output Power

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix E. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1750	Yes	Yes	No	Yes	Yes	Yes
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 71	Yes	Yes	No	Yes	Yes	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 66 (AWS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 25 (PCS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 41	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No

 Table 1-1

 Device Edges/Sides for SAR Testing

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 6 of 87
0 202	D PCTEST				REV 21.4 M

REV 21.4 M 09/11/2019

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

© 2020 PCTEST

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

	Simultaneou	is Trans	smissio	n Scena	arios	
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
3	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
4	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
5	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
6	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
7	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
8	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered

Table 1-2Simultaneous Transmission Scenarios

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. This device supports VOLTE.
- 6. This device supports VOWIFI.
- 7. This device supports Bluetooth Tethering.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, head Bluetooth SAR was not required; $[(5/5)^* \sqrt{2.480}] = 1.6 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 7 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn and hotspot Bluetooth SAR was not required; $[(5/10)^* \sqrt{2.480}] = 0.8 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v06, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

 $\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 7.5$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, phablet Bluetooth SAR was not required; $[(5/5)^* \sqrt{2.480}] = 1.6 < 7.5$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for 2.4 GHz WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 9 of 97
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset	Page 8 of 87
	03/01/20 - 10/03/20	i ortable rialiuser	DEV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device supports both Power Class 2 (PC2) and Power Class 3 (PC3) for LTE Band 41. Per May 2017 TCB Workshop Notes. SAR tests were performed with Power Class 3 (given the specific UL/DL limitations for Power Class 2). Additionally, SAR testing for the power class condition was evaluated for the highest configuration in Power Class 3 for each test configuration to confirm the results were scalable linearly (See Section 14.1).

1.7 **Guidance Applied**

- IEEE 1528-2013 .
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot) •
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE Band 41 Power Class 2/3)

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 9 of 87
© 202	0 PCTEST				REV 21.4 M

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

2 LTE INFORMATION

	L	TE Information			
orm Factor			Portable Handset		
requency Range of each LTE transmission band			Band 71 (665.5 - 695.5		
			Band 12 (699.7 - 715.3		
	LTE Band 13 (779.5 - 784.5 MHz)				
	LTE Band 26 (Cell) (814.7 - 848.3 MHz)				
			and 5 (Cell) (824.7 - 848		
			66 (AWS) (1710.7 - 17		
			d 4 (AWS) (1710.7 - 17 d 25 (PCS) (1850.7 - 19		
			d 2 (PCS) (1850.7 - 190 Band 41 (2498.5 - 2687.)		
hannel Bandwidths			71: 5 MHz, 10 MHz, 15 M		
			12: 1.4 MHz, 3 MHz, 5 M		
			E Band 13: 5 MHz, 10 M		
): 1.4 MHz, 3 MHz, 5 MH		
			Cell): 1.4 MHz, 3 MHz, 5		
			4 MHz, 3 MHz, 5 MHz, 1		
			4 MHz, 3 MHz, 5 MHz, 1		
			4 MHz, 3 MHz, 5 MHz, 1		
			MHz, 3 MHz, 5 MHz, 1		Z
annal Numbers and Fraguenaics (MHz)	Low		11: 5 MHz, 10 MHz, 15 M		Lliab
hannel Numbers and Frequencies (MHz) TE Band 71: 5 MHz	Low 665.5 (Low-Mid	Mid 680 5 (133297)	Mid-High	High
TE Band 71: 5 MHz		133147)	680.5 (133297)		133447)
E Band 71: 10 MHz E Band 71: 15 MHz		(133172) (133197)	680.5 (133297) 680.5 (133297)		(33422) (133397)
E Band 71: 15 MHZ E Band 71: 20 MHz		133222)	680.5 (133297)		133372)
E Band 12: 1.4 MHz		(23017)	707.5 (23095)		(23173)
E Band 12: 3 MHz		(23025)	707.5 (23095)		(23165)
E Band 12: 5 MHz		(23035)	707.5 (23095)		(23155)
E Band 12: 10 MHz		23060)	707.5 (23095)		23130)
E Band 13: 5 MHz		(23205)	782 (23230)		(23255)
E Band 13: 10 MHz		VA	782 (23230)		VA
E Band 26 (Cell): 1.4 MHz		(26697)	831.5 (26865)		(27033)
E Band 26 (Cell): 3 MHz		(26705)	831.5 (26865)		(27025)
E Band 26 (Cell): 5 MHz		(26715)			(27015)
E Band 26 (Cell): 10 MHz	819 (;	26740)	831.5 (26865)	844 (26990)	
E Band 26 (Cell): 15 MHz	821.5	(26765)	831.5 (26865)	841.5	(26965)
E Band 5 (Cell): 1.4 MHz	824.7	(20407)	836.5 (20525)	848.3	(20643)
E Band 5 (Cell): 3 MHz	825.5	(20415)	836.5 (20525)	847.5	(20635)
E Band 5 (Cell): 5 MHz	826.5	(20425)	836.5 (20525)	846.5	(20625)
E Band 5 (Cell): 10 MHz	829 (20450)		836.5 (20525)	844 (20600)	
E Band 66 (AWS): 1.4 MHz	1710.7 (131979)		1745 (132322)	1779.3	(132665)
E Band 66 (AWS): 3 MHz	1711.5	(131987)	1745 (132322)	1778.5	(132657)
E Band 66 (AWS): 5 MHz	1712.5	(131997)	1745 (132322)	1777.5	(132647)
E Band 66 (AWS): 10 MHz		132022)	1745 (132322)		132622)
E Band 66 (AWS): 15 MHz		(132047)	1745 (132322)		(132597)
E Band 66 (AWS): 20 MHz		132072)	1745 (132322)		132572)
E Band 4 (AWS): 1.4 MHz		(19957)	1732.5 (20175)		(20393)
E Band 4 (AWS): 3 MHz		(19965)	1732.5 (20175)		(20385)
E Band 4 (AWS): 5 MHz		(19975)	1732.5 (20175)		(20375)
E Band 4 (AWS): 10 MHz		(20000)	1732.5 (20175)		(20350)
E Band 4 (AWS): 15 MHz E Band 4 (AWS): 20 MHz		(20025)	1732.5 (20175)		(20325)
E Band 25 (PCS): 1.4 MHz		(20050) (26047)	1732.5 (20175) 1882.5 (26365)		(20300) (26683)
E Band 25 (PCS): 3 MHz		(26055)	1882.5 (26365)		(26675)
E Band 25 (PCS): 5 MHz		(26065)	1882.5 (26365)		(26665)
E Band 25 (PCS): 10 MHz		(26090)	1882.5 (26365)		(26640)
E Band 25 (PCS): 15 MHz		(26115)	1882.5 (26365)		(26615)
E Band 25 (PCS): 20 MHz		(26140)	1882.5 (26365)		(26590)
E Band 2 (PCS): 1.4 MHz		(18607)	1880 (18900)		(19193)
E Band 2 (PCS): 3 MHz		(18615)	1880 (18900)		(19185)
E Band 2 (PCS): 5 MHz		(18625)	1880 (18900)		(19175)
E Band 2 (PCS): 10 MHz		(18650)	1880 (18900)	1905 ((19150)
E Band 2 (PCS): 15 MHz		(18675)	1880 (18900)		(19125)
Band 2 (PCS): 20 MHz		(18700)	1880 (18900)	1900 ((19100)
E Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
E Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
Category			DL UE Cat 5, UL UE Cat		
dulations Supported in UL E MPR Permanently implemented per 3GPP TS			QPSK, 16QAM, 64QAM	1	
101 section 6.2.3~6.2.5? (manufacturer attestation			YES		
be provided)	1		120		
MPR (Additional MPR) disabled for SAR Testing?	[YES		
E Carrier Aggregation Possible Combinations	_				
	The te	chnical description inc	udes all the possible car	rrier aggregation combi	inations
E Additional Information	Release 8 Specificati	ions. The following LTE	s on 3GPP Release 10. Release 10 Features an loading, eMBMS, Cross	re not supported: Carrie	er Aggregation, Re

PCTEST Approved by: FCC ID: ZNFK200TM SAR EVALUATION REPORT LG Quality Manager DUT Type: Document S/N: Test Dates: Page 10 of 87 1M2009170151-01-R1.ZNF 09/01/20 - 10/05/20 Portable Handset © 2020 PCTEST REV 21.4 M

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

SAR =	d	$\left(\frac{dU}{dU} \right)$	d	$\left(\begin{array}{c} dU \end{array} \right)$
SAN -	dt	$\left(\frac{dm}{dm}\right)$	$\frac{dt}{dt}$	$\left(\frac{dU}{\rho dv}\right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 11 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 11 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

DOSIMETRIC ASSESSMENT 4

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

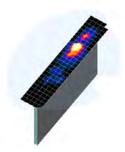


Figure 4-1 Sample SAR Area Scan

09/11/2019

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

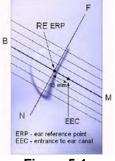
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

		Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (I		Minimum Zoom Scan
	Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
				∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	Δz _{zoom} (n>1)*	
	≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
	2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
	3-4 GHz	≤ 12	≤5	≤ 4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
	4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	≤ 1.5*∆z _{zoom} (n-1)	≥ 25
	5-6 GHz	≤ 10	≤4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 12 of 97
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 12 of 87
020 PCTEST				REV 21.4 M


© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

09/11/2019

Figure 5-1 **Close-Up Side view** of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

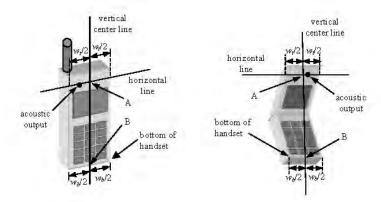


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D. 40 (07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 13 of 87
202	0 PCTEST				REV 21.4 M

C

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopyi microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of cc nical, including photocopying and thereof, please contact INFO@PCTEST.COM.

6 **TEST CONFIGURATION POSITIONS**

6.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 **Positioning for Cheek**

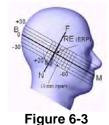
1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- The phone was then rotated around the vertical centerline until the phone (horizontal line) was 4. symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":


- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- The phone was then rotated around the horizontal line by 15 degrees. 2.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

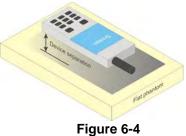
	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 44 607
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 14 of 87
202	0 PCTEST				REV 21.4 M

© 2

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents hereof, please contact INFO@PCTEST.COM.

Side view w/ relevant markings

Figure 6-2 Front, Side and Top View of Ear/15º Tilt Position


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

09/11/2019

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 15 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 15 of 87	
202						

^{© 2020} PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.8 **Phablet Configurations**

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 16 of 87
© 202	20 PCTEST				REV 21.4 M

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 **Proximity Sensor Considerations**

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a nonreduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix F.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 17 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 17 of 87
02	20 PCTEST				REV 21 4 M

© 2

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS			
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)	
Peak Spatial Average SAR _{Head}	1.6	8.0	
Whole Body SAR	0.08	0.4	
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20	

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 18 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 10 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 19 of 87	
202						

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 20 of 87
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Fage 20 01 07
020 PCTEST				REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations ii. and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- Per Section 5.2.4 and 5.3. SAR tests for higher order modulations and lower bandwidths d. configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 01 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 21 of 87	
202	2020 PCTEST					

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.4 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 22 of 87
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Fage 22 01 07
20 PCTEST				REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.6.5 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.4). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕚 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 23 of 87
© 202	0 PCTEST				REV 21.4 M

REV 21.4 M

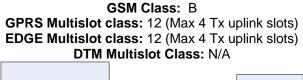
© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.1 **GSM Conducted Powers**

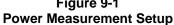
Table 9-1 **Maximum Conducted Power**

		N	laximum B	urst-Aver	aged Out	out Power				
		Voice		GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	33.55	33.56	30.35	29.53	28.51	26.70	24.43	23.61	22.45
GSM 850	190	33.62	33.68	30.51	29.67	28.63	26.66	24.54	23.70	22.61
	251	33.65	33.67	30.70	29.69	28.70	26.62	24.67	23.65	22.68
	512	30.57	30.52	27.60	26.55	25.31	26.20	23.57	22.68	21.56
GSM 1900	661	30.51	30.48	27.47	26.38	25.23	26.09	23.41	22.46	21.36
	810	30.65	30.69	27.53	26.34	25.39	26.10	23.39	22.42	21.29

		Calcula	ted Maxim	num Fram	e-Average	d Output	Power				
		Voice		GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	24.35	24.36	24.16	25.10	25.33	17.50	18.24	19.18	19.27	
GSM 850	190	24.42	24.48	24.32	25.24	25.45	17.46	18.35	19.27	19.43	
	251	24.45	24.47	24.51	25.26	25.52	17.42	18.48	19.22	19.50	
	512	21.37	21.32	21.41	22.12	22.13	17.00	17.38	18.25	18.38	
GSM 1900	661	21.31	21.28	21.28	21.95	22.05	16.89	17.22	18.03	18.18	
	810	21.45	21.49	21.34	21.91	22.21	16.90	17.20	17.99	18.11	
GSM 850	Frame	24.00	24.00	24.01	24.77	25.02	17.00	18.01	18.77	19.02	
GSM 1900	Avg.Targets:	21.00	21.00	21.01	21.77	22.02	16.50	17.01	17.77	18.02	


	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 04 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 24 of 87
02	20 PCTEST				REV 21.4 M

© 20


09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 25 of 87
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Fage 25 01 07
© 202	0 PCTEST				REV 21.4 M

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.2 **UMTS Conducted Powers**

3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]		AWS Band [dBm]			PCS Band [dBm]			MPR [dB]	
Version			4132	4183	4233	1312	1412	1513	9262	9400	9538	
99	WCDMA	12.2 kbps RMC	25.04	25.20	25.04	24.06	24.19	24.08	24.38	24.64	24.44	-
99	W CDIVIA	12.2 kbps AMR	24.97	25.04	25.03	23.98	24.20	24.07	24.45	24.55	24.39	-
6		Subtest 1	24.09	24.06	24.03	22.93	23.04	23.04	23.30	23.41	23.25	0
6	HSDPA	Subtest 2	24.10	24.17	24.10	22.70	22.90	22.97	23.27	23.35	23.24	0
6	HODEA	Subtest 3	23.50	23.73	23.66	22.39	22.50	22.49	22.90	22.95	22.84	0.5
6		Subtest 4	23.44	23.59	23.61	22.45	22.55	22.45	22.82	22.94	22.84	0.5
6		Subtest 1	24.07	24.20	24.08	22.85	22.57	22.80	23.09	22.64	22.58	0
6		Subtest 2	22.58	22.55	22.48	21.38	21.43	21.41	21.85	22.22	22.16	1
6	HSUPA	Subtest 3	22.94	22.83	23.05	21.75	21.85	21.70	22.21	22.33	22.20	1
6		Subtest 4	22.90	23.00	23.49	21.87	22.40	21.74	22.68	22.33	22.44	0.5
6		Subtest 5	23.98	24.19	24.09	22.82	22.96	22.84	23.11	23.15	22.98	0

Table 9-2 Maximum Conducted Power

Table 9-3 **Reduced Conducted Power**

3GPP Release	3GPP		AWS Band [dBm]			PCS	6 Band [d	Bm]	MPR [dB]	
Version		Custos	1312	1412	1513	9262	9400	9538		
99	WCDMA	12.2 kbps RMC	22.04	22.02	21.94	22.75	22.84	22.91	-	
99	VCDIVIA	12.2 kbps AMR	21.96	22.10	21.86	22.68	22.83	22.83	-	
6		Subtest 1	20.56	20.49	20.40	21.69	21.87	21.72	0	
6	HSDPA	Subtest 2	20.49	20.57	20.51	21.65	21.84	21.78	0	
6	HODE A	Subtest 3	20.01	19.99	19.97	21.19	21.38	21.34	0.5	
6		Subtest 4	20.01	19.98	19.97	21.19	21.38	21.34	0.5	
6		Subtest 1	20.43	20.47	20.52	21.18	21.33	21.69	0	
6		Subtest 2	19.26	19.37	19.46	20.51	20.70	20.69	1	
6	HSUPA	Subtest 3	19.20	19.30	19.21	20.40	20.59	20.20	1	
6		Subtest 4	19.29	19.85	19.89	21.20	21.31	21.21	0.5	
6		Subtest 5	20.44	20.48	20.40	21.63	21.82	21.72	0	

This device does not support DC-HSDPA.

Base Station Simulator	RF Connector	Wireless Device
	Figure 9-2	

Power Measurement Setup

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Da an 00 of 07	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 26 of 87	
202	DPCTEST				REV 21.4 M	

REV 21.4 M 09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.3 **LTE Conducted Powers**

9.3.1 LTE Band 71

Table 9-4 LTE Band 71 Conducted Powers - 20 MHz Bandwidth										
			LTE Band 71 20 MHz Bandwidth							
			Mid Channel							
Modulation	RB Size	RB Offset	133297 (680.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]	30FF [0b]						
	1	0	24.23		0					
	1	50	24.42	0	0					
	1	99	24.17		0					
QPSK	50	0	23.78		1					
	50	25	23.87	0-1	1					
	50	50	23.61	0-1	1					
	100	0	23.70		1					
	1	0	23.88		1					
	1	50	23.48	0-1	1					
	1	99	23.67		1					
16QAM	50	0	22.79		2					
	50	25	22.93	0-2	2					
	50	50	22.76	0-2	2					
	100	0	22.66		2					
	1	0	22.46		2					
	1	50	22.63	0-2	2					
	1	99	22.64		2					
64QAM	50	0	21.60		3					
	50	25	21.89	0-3	3					
	50	50	21.52	0-3	3					
	100	0	21.67		3					

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 27 of 87
020 PCTEST				REV 21.4 M 09/11/2019

© 2

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

LI	E Band	/1 Cond	ucted Powers	- 15 MHZ Ban	dwidth	
			LTE Band 71 15 MHz Bandwidth			
			Mid Channel			
Modulation	RB Size	RB Offset	133297 (680.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			Conducted Power [dBm]			
	1	0	24.30		0	
	1	36	24.56	0	0	
	1	74	24.38		0	
QPSK	36	0	23.67		1	
	36	18	23.53	0-1	1	
	36	37	23.54	0-1	1	
	75	0	23.53		1	
	1	0	23.82	0-1	1	
	1	36	23.60		1	
	1	74	23.55		1	
16QAM	36	0	22.66		2	
	36	18	22.62	0-2	2	
	36	37	22.53	0-2	2	
	75	0	22.61		2	
	1	0	22.47		2	
	1	36	22.42	0-2	2	
	1	74	22.21		2	
64QAM	36	0	21.53		3	
	36	18	21.49	0-3	3	
	36	37	21.48	0-3	3	
	75	0	21.46		3	

Table 9-5 I TE Band 71 C 15 MHz Bandwidth d

Note: LTE Band 71 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

> Table 9-6 LTE Band 71 Conducted Powers - 10 MHz Bandwidth

				LTE Band 71	To Mile Balla		
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	133172 (668.0 MHz)	133297 (680.5 MHz)	133422 (693.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1		
	1	0	24.65	24.45	24.25		0
	1	25	24.62	24.65	24.60	0	0
	1	49	24.57	24.63	24.08		0
QPSK	25	0	23.63	23.56	23.53		1
	25	12	23.60	23.57	23.41	- 0-1	1
	25	25	23.59	23.44	23.37	0-1	1
	50	0	23.50	23.62	23.37		1
	1	0	23.65	23.39	23.84	0-1	1
	1	25	23.57	23.59	23.80		1
	1	49	23.53	23.52	23.60		1
16QAM	25	0	22.67	22.54	22.55		2
	25	12	22.56	22.63	22.36	0-2	2
	25	25	22.73	22.59	22.33	0-2	2
	50	0	22.65	22.45	22.40		2
	1	0	22.13	22.01	22.16		2
	1	25	22.39	22.31	22.28	0-2	2
	1	49	21.95	21.85	22.05		2
64QAM	25	0	21.61	21.61	21.36		3
	25	12	21.50	21.60	21.33	0-3	3
	25	25	21.49	21.48	21.30	0-3	3
	50	0	21.49	21.55	21.35	7	3

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 20 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 28 of 87	
202	20 PCTEST				REV 21.4 M	

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

				LTE Band 71 5 MHz Bandwidth							
	Low Channel Mid Channel High Channel										
			133147	133297	133447						
Modulation	RB Size	RB Offset	(665.5 MHz)	(680.5 MHz)	(695.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	24.60	24.46	24.39		0				
	1	12	24.78	24.69	24.61	0	0				
	1	24	24.78	24.47	24.25		0				
QPSK	12	0	23.62	23.56	23.43		1				
	12	6	23.55	23.61	23.37	0-1	1				
	12	13	23.54	23.59	23.31		1				
	25	0	23.62	23.54	23.37		1				
	1	0	23.17	23.05	23.12		1				
	1	12	23.50	23.28	23.67	0-1	1				
	1	24	23.00	22.87	23.05		1				
16QAM	12	0	22.62	22.55	22.16		2				
	12	6	22.65	22.60	22.27	- 0-2	2				
	12	13	22.58	22.56	22.23	0-2	2				
	25	0	22.47	22.47	22.32		2				
	1	0	22.40	22.24	22.47		2				
	1	12	22.57	22.42	22.61	0-2	2				
	1	24	22.33	22.16	21.87] [2				
64QAM	12	0	21.70	21.42	21.34		3				
	12	6	21.67	21.48	21.37		3				
	12	13	21.60	21.42	21.41	0-3	3				
	25	0	21.41	21.43	21.40	1 1	3				

Table 9-7
LTE Band 71 Conducted Powers - 5 MHz Bandwidth

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	i	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 20 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 29 of 87
202	20 PCTEST				REV 21.4 M

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

©

LTE Band 12 Conducted Powers - 10 MHz Bandwidth									
			LTE Band 12						
		•	10 MHz Bandwidth						
			Mid Channel						
			23095	MPR Allowed per					
Modulation	RB Size	RB Offset (707.5 MHz)	3GPP [dB]	MPR [dB]					
			Conducted Power						
			[dBm]						
	1	0	24.50		0				
	1	25	24.80	0	0				
	1	49	24.62		0				
QPSK	25	0	23.77		1				
	25	12	23.71	0-1	1				
	25	25	23.59	0-1	1				
	50	0	23.64		1				
	1	0	23.23		1				
	1	25	23.53	0-1	1				
	1	49	23.08		1				
16QAM	25	0	22.57		2				
	25	12	22.59	0-2	2				
	25	25	22.42	0-2	2				
	50	0	22.50		2				
	1	0	22.22		2				
	1	25	22.14	0-2	2				
	1	49	22.36		2				
64QAM	25	0	21.40		3				
	25	12	21.43	0-3	3				
	25	25	21.39	0-3	3				
	50	0	21.28		3				

Table 9-8 The second state

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

				LTE Band 12 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.51	24.55	24.36		0
	1	12	24.57	24.58	24.50	0	0
	1	24	24.31	24.37	24.57		0
QPSK	12	0	23.40	23.45	23.31		1
	12	6	23.36	23.54	23.37	0-1	1
	12	13	23.24	23.26	23.39	0-1	1
	25	0	23.35	23.43	23.32		1
	1	0	22.82	22.80	22.91		1
	1	12	22.97	23.28	23.06	0-1	1
	1	24	22.80	22.70	23.15		1
16QAM	12	0	22.39	22.25	22.40		2
	12	6	22.27	22.45	22.39		2
	12	13	22.11	22.28	22.32	0-2	2
	25	0	22.39	22.34	22.31		2
	1	0	22.22	22.08	22.20		2
	1	12	22.43	22.65	22.44	0-2	2
	1	24	22.37	22.03	22.51		2
64QAM	12	0	21.33	21.23	21.29		3
	12	6	21.37	21.29	21.42		3
	12	13	21.07	21.07	21.25	0-3	3
	25	0	21.25	21.19	21.12	_	3
		(e)	PCTEST				Approved by:
FCC ID: ZNF	<200TM	÷	Provo to be parts of 👘	SAR EVALUAT	ION REPORT	LG	Quality Manag
Oocument S/	N:	Tes	t Dates:	DUT Type:			Dage 20 cf 97
M200917015	1-01-R1.ZNF	09/0	1/20 - 10/05/20	Portable Handset			Page 30 of 87
PCTEST		00/0	.,20 .0,00,20	. enable i landou			REV 21.4 M

Table 9-9 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

				LTE Band 12			
				3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 23025	Mid Channel 23095	High Channel 23165	MPR Allowed per	MPR [dB]
Wodulation	ND 5126	IND Onset	(700.5 MHz)	(707.5 MHz)	(714.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	24.54	24.60	24.36		0
	1	7	24.59	24.79	24.60	0	0
	1	14	24.46	24.30	24.57		0
QPSK	8	0	23.53	23.63	23.37		1
	8	4	23.46	23.54	23.48	- 0-1	1
	8	7	23.37	23.60	23.61		1
	15	0	23.51	23.41	23.44	<u> </u>	1
	1	0	22.90	23.01	22.87		1
	1	7	23.05	23.15	23.18	0-1	1
	1	14	22.88	22.87	23.06		1
16QAM	8	0	22.57	22.52	22.47		2
	8	4	22.50	22.61	22.69	0-2	2
	8	7	22.49	22.60	22.73	0-2	2
	15	0	22.42	22.59	22.27		2
	1	0	22.50	22.20	22.10		2
	1	7	22.60	22.29	22.61	0-2	2
	1	14	22.29	22.08	22.31		2
64QAM	8	0	21.39	21.29	21.29		3
	8	4	21.35	21.53	21.32	0-3	3
	8	7	21.25	21.30	21.43		3
	15	0	21.36	21.30	21.26	1 [3

Table 9-10 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

Table 9-11 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12			
	•			1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.59	24.51	24.58		0
	1	2	24.46	24.57	24.48		0
	1	5	24.44	24.64	24.57	0	0
QPSK	3	0	24.45	24.34	24.37	0	0
	3	2	24.39	24.41	24.53		0
	3	3	24.36	24.38	24.43		0
	6	0	23.47	23.52	23.57	0-1	1
	1	0	23.02	23.18	23.34	- 0-1	1
	1	2	23.28	23.40	23.33		1
	1	5	22.99	23.25	23.10		1
16QAM	3	0	23.30	23.35	23.25	0-1	1
	3	2	23.44	23.37	23.34		1
	3	3	23.09	23.37	23.33		1
	6	0	22.34	22.31	22.45	0-2	2
	1	0	22.55	22.35	22.42		2
	1	2	22.51	22.59	22.64		2
	1	5	22.40	22.43	22.30	0-2	2
64QAM	3	0	22.24	22.13	22.23		2
	3	2	22.12	22.09	22.25		2
	3	3	22.11	22.17	22.29		2
	6	0	21.35	21.23	21.35	0-3	3

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 24 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 31 of 87
© 202	0 PCTEST		•		REV 21.4 M

REV 21.4 M 09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

			LTE Band 13 10 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	24.91		0
	1	25	24.94	0	0
	1	49	24.96		0
QPSK	25	0	23.93		1
	25	12	23.83	0-1	1
-	25	25	23.76	0-1	1
	50	0	23.90		1
	1	0	23.44		1
	1	25	23.37	0-1	1
	1	49	23.05		1
16QAM	25	0	22.62		2
	25	12	22.71	0-2	2
	25	25	22.56	0-2	2
	50	0	22.77		2
	1	0	22.59		2
	1	25	22.96	0-2	2
	1	49	22.55		2
64QAM	25	0	21.56		3
	25	12	21.69	0-3	3
-	25	25	21.35	0-3	3
	50	0	21.60		3

Table 9-12 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

	LTE Band 13 5 MHz Bandwidth									
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	24.61		0					
	1	12	24.65	0	0					
	1	24	24.66		0					
QPSK	12	0	23.71		1					
	12	6	23.68	0-1	1					
	12	13	23.54	0-1	1					
	25	0	23.65		1					
	1	0	23.67		1					
	1	12	23.82	0-1	1					
	1	24	23.63		1					
16QAM	12	0	22.66		2					
	12	6	22.63	0-2	2					
	12	13	22.48	0-2	2					
	25	0	22.59		2					
	1	0	22.57		2					
	1	12	22.81	0-2	2					
	1	24	22.39		2					
64QAM	12	0	21.68		3					
	12	6	21.62	0-3	3					
	12	13	21.42	0-3	3					
	25	0	21.57		3					

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da na 00 af 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 32 of 87
202	0 PCTEST				REV 21.4 M

© 20

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.3.4

			LTE Band 26 (Cell) 15 MHz Bandwidth		
			Mid Channel		
Nodulation	RB Size	RB Offset	26865 (831.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	SGPP [dB]	
	1	0	24.89		0
	1	36	25.05	0	0
	1	74	24.92		0
QPSK	36	0	23.89		1
	36	18	23.73	0-1	1
	36	37	23.77	0-1	1
	75	0	23.85		1
	1	0	23.79		1
	1	36	23.95	0-1	1
	1	74	23.29		1
16QAM	36	0	22.65		2
	36	18	22.54	0-2	2
	36	37	22.61	0=2	2
	75	0	22.81		2
	1	0	22.47		2
	1	36	22.63	0-2	2
	1	74	22.53		2
64QAM	36	0	21.70		3
	36	18	21.73	0-3	3
	36	37	21.67	0-3	3
	75	0	21.73		3

Table 9-14 الفلد فيعاد م

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

> Table 9-15 LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

	LTE Band 26 (Cell)									
				10 MHz Bandwidth						
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	26740	26865	26990	MPR Allowed per	MPR [dB]			
			(819.0 MHz)	(831.5 MHz)	(844.0 MHz)	3GPP [dB]				
				Conducted Power [dBm						
	1	0	24.52	24.23	24.75		0			
	1	25	24.82	24.59	24.82	0	0			
	1	49	24.57	24.31	24.65		0			
QPSK	25	0	23.76	23.87	24.04		1			
	25	12	23.82	23.82	23.99	0-1	1			
	25	25	23.71	23.78	23.89	0-1	1			
	50	0	23.74	23.84	24.01		1			
	1	0	23.80	23.70	24.13		1			
	1	25	23.96	23.93	24.00	0-1	1			
	1	49	23.29	23.84	23.82		1			
16QAM	25	0	23.04	22.85	23.04		2			
	25	12	23.10	22.86	23.01	0.2	2			
	25	25	23.00	22.81	23.01	0-2	2			
	50	0	22.84	22.69	23.10		2			
	1	0	22.45	22.50	23.10		2			
	1	25	22.57	22.80	23.20	0-2	2			
	1	49	22.53	22.49	23.19	1	2			
64QAM	25	0	21.57	21.83	22.15		3			
	25	12	21.73	21.82	22.07		3			
	25	25	21.81	21.96	21.98	0-3	3			
	50	0	21.68	21.76	21.98]	3			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dama 00 at 07		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 33 of 87		
202	20 PCTEST						

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

			Ballu 20 (Cell) C	LTE Band 26 (Cell)		lawiath	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.50	24.58	24.46		0
	1	12	24.67	24.88	24.85	0	0
	1	24	24.70	24.58	24.55		0
QPSK	12	0	23.63	23.84	24.00		1
	12	6	23.72	23.85	23.91	0-1	1
	12	13	23.75	23.79	23.86	0-1	1
	25	0	23.76	23.77	23.97		1
	1	0	23.20	24.06	23.70	0-1	1
	1	12	23.72	24.14	24.09		1
	1	24	23.22	23.83	23.61		1
16QAM	12	0	22.57	22.66	22.99		2
	12	6	22.64	22.88	22.70	0-2	2
	12	13	22.79	22.66	22.76	0-2	2
	25	0	22.82	22.77	23.03		2
	1	0	22.87	22.52	22.63		2
	1	12	22.91	22.78	22.91	0-2	2
	1	24	22.91	22.53	22.88		2
64QAM	12	0	21.67	21.72	21.81		3
	12	6	21.73	21.97	21.69	0-3	3
	12	13	21.77	21.74	21.65	0-3	3
	25	0	21.70	21.75	21.95		3

Table 9-16 I TE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

Table 9-17
LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

	LTE Band 26 (Cell) 3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	24.40	24.40	24.74		0			
	1	7	24.39	24.50	24.93	0	0			
	1	14	24.33	24.39	24.65		0			
QPSK	8	0	23.66	23.74	23.95		1			
	8	4	23.65	23.81	23.93	- 0-1	1			
	8	7	23.59	23.79	23.90	0-1	1			
	15	0	23.60	23.79	23.91		1			
	1	0	23.52	23.52	23.47	0-1	1			
	1	7	23.69	24.20	23.59		1			
	1	14	23.46	23.90	23.80		1			
16QAM	8	0	22.49	22.84	22.80		2			
	8	4	22.39	22.81	22.85	0-2	2			
	8	7	22.29	22.78	22.94	0-2	2			
	15	0	22.68	22.82	22.87		2			
	1	0	22.53	22.36	23.20		2			
	1	7	22.68	22.50	22.96	0-2	2			
	1	14	22.51	22.57	22.81		2			
64QAM	8	0	21.60	21.85	21.60		3			
	8	4	21.58	21.94	21.85	0-3	3			
	8	7	21.72	21.91	21.85	0-3	3			
	15	0	21.57	21.90	21.77		3			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dawa 04 cf 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 34 of 87
202	DODOTEST				PEV 21.4 M

REV 21.4 M 09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

			banu 20 (Cell) C	conducted Powe		nawiath	
				LTE Band 26 (Cell) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.52	24.43	24.71		0
	1	2	24.68	24.55	24.75	1	0
	1	5	24.65	24.50	24.66		0
QPSK	3	0	24.38	24.59	24.81	0	0
	3	2	24.50	24.56	24.91] [0
	3	3	24.47	24.62	24.87] [0
	6	0	23.70	23.74	23.92	0-1	1
	1	0	23.43	23.38	23.54	0-1	1
	1	2	23.89	23.45	23.99		1
	1	5	23.74	23.44	23.95		1
16QAM	3	0	23.47	23.66	23.92	0-1	1
	3	2	23.49	23.93	23.95		1
	3	3	23.58	23.88	24.07		1
	6	0	22.64	22.69	22.87	0-2	2
	1	0	22.54	22.39	22.60		2
	1	2	22.53	22.48	22.78		2
	1	5	22.46	22.40	22.66	0-2	2
64QAM	3	0	22.55	22.82	23.10	<u> </u>	2
	3	2	22.67	22.89	22.66		2
	3	3	22.55	22.91	22.64		2
	6	0	21.56	21.56	21.95	0-3	3

 Table 9-18

 LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 35 of 87
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Tage 55 01 07
© 202	0 PCTEST				REV 21.4 M

REV 21.4 M 09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. 9.3.5

LTE Band 66 (AWS)

		TE Bana oc		LTE Band 66 (AWS)		<u>Danawian</u>	
Modulation	RB Size	RB Offset	Low Channel 132072 (1720.0 MHz)	20 MHz Bandwidth Mid Channel 132322 (1745.0 MHz)	High Channel 132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	· · · ·		
	1	0	23.82	24.01	23.71		0
	1	50	24.19	24.20	23.77	0	0
	1	99	23.98	23.95	23.95		0
QPSK	50	0	22.80	22.94	22.80		1
	50	25	22.81	22.81 22.82	0-1	1	
	50	50	22.73	22.85	22.65	0-1	1
	100	0	22.71	22.83	22.83		1
	1	0	22.76	22.70	22.04		1
	1	50	22.73	22.60	22.27	0-1	1
	1	99	22.63	22.50	22.64		1
16QAM	50	0	21.70	21.80	21.52		2
	50	25	21.87	21.67	21.52	0-2	2
	50	50	21.54	21.49	21.36	0-2	2
	100	0	21.62	21.64	21.40		2
	1	0	21.62	21.65	21.41		2
	1	50	21.66	21.69	21.69	0-2	2
	1	99	21.62	21.60	21.41		2
64QAM	50	0	20.72	20.85 20.64		3	
	50	25	20.85	20.73	20.70	0-3	3
	50	50	20.74	20.46	20.46	0-3	3
	100	0	20.69	20.55	20.57] Γ	3

Table 9-19 LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

Table 9-20 LTE Band 66 (AWS) Maximum Conducted Powers - 15 MHz Bandwidth

	LTE Band 66 (AWS) 15 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	23.74	23.57	23.81		0			
	1	36	23.87	23.68	24.01	0	0			
	1	74	23.68	23.24	23.75		0			
QPSK	36	0	22.83	22.95	22.82		1			
	36	18	22.92	22.89	22.80	0-1	1			
	36	37	22.87	22.77	22.66		1			
	75	0	22.88	22.75	22.69		1			
	1	0	22.65	22.59	22.66		1			
	1	36	22.65	22.48	22.70	0-1	1			
	1	74	22.45	22.24	22.47		1			
16QAM	36	0	21.93	21.92	21.86		2			
	36	18	21.95	21.85	21.82	0-2	2			
	36	37	21.83	21.77	21.52	02	2			
	75	0	21.77	21.77	21.65		2			
	1	0	22.15	21.87	22.09		2			
	1	36	22.14	21.34	22.18	0-2	2			
	1	74	22.17	21.20	21.91		2			
64QAM	36	0	21.04	21.18	20.84		3			
	36	18	21.05	21.01	21.07	0-3	3			
	36	37	20.82	20.86	20.79	0-3	3			
	75	0	20.88	20.77	20.58		3			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 36 of 87	
© 2020 PCTEST					REV 21.4 M	

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

	L	IE Band 60	o (Avv5) iviaxim	um Conducted	Powers - 10 MF	iz Bandwidth	
				LTE Band 66 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)		132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.91	23.76	23.80		0
	1	25	24.08	23.80	23.87	0	0
	1	49	23.97	23.78	23.61		0
QPSK	25	0	22.86	22.97	22.71		1
	25	12	22.96	22.94	22.68	0-1	1
	25	25	22.94	22.77	22.62		1
	50	0	22.82	22.79	22.72		1
	1	0	22.81	22.93	22.50	0-1	1
	1	25	22.90	22.40	22.64		1
	1	49	22.74	22.29	22.44		1
16QAM	25	0	21.84	21.91	21.85		2
	25	12	22.04	21.80	21.84	0-2	2
	25	25	22.02	21.75	21.55	0-2	2
	50	0	21.71	21.80	21.69		2
	1	0	21.60	21.46	22.09		2
	1	25	21.60	21.81	22.06	0-2	2
	1	49	21.61	21.36	21.89		2
64QAM	25	0	21.02	21.01	20.64		3
	25	12	21.02	20.91	20.83	0-3	3
	25	25	21.10	20.95	20.56	0.0	3
	50	0	20.87	20.90	20.58		3

Table 9-21 LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

Table 9-22 LTE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

	LTE Band 66 (AWS) 5 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			Conducted Power [dBm]						
	1	0	23.79	23.93	23.43		0		
	1	12	24.04	24.08	23.73	0	0		
	1	24	23.97	23.80	23.51		0		
QPSK	12	0	22.80	22.83	22.74		1		
	12	6	22.92	22.88	22.67	0-1	1		
	12	13	22.86	22.84	22.64		1		
	25	0	22.77	22.84	22.76		1		
	1	0	22.48	22.29	22.40	0-1	1		
	1	12	22.60	22.58	22.81		1		
	1	24	22.67	22.41	22.56		1		
16QAM	12	0	21.69	21.85	21.61		2		
	12	6	21.73	21.92	21.56	0-2	2		
	12	13	21.67	21.86	21.51	0-2	2		
	25	0	21.59	21.73	21.61		2		
	1	0	21.74	21.71	21.31		2		
	1	12	21.79	21.99	21.58	0-2	2		
	1	24	21.79	21.78	21.42		2		
64QAM	12	0	20.60	20.90	20.68		3		
	12	6	20.72	21.06	20.53	0-3	3		
	12	13	20.74	21.01	20.64	0.0	3		
	25	0	20.71	20.76	20.71		3		

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da na 07 af 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 37 of 87
© 202	0 PCTEST				REV 21.4 M

	L	IE Band 6	6 (AWS) Maxim	um Conducted	Powers - 3 MH	z Bandwidth	
				LTE Band 66 (AWS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.82	23.51	23.56		0
	1	7	24.20	23.76	23.83	0	0
	1	14	24.01	23.78	23.67		0
QPSK	8	0	22.82	22.81	22.60		1
	8	4	22.90	22.85	22.68	0-1	1
	8	7	22.81	22.82	22.62		1
	15	0	22.79	22.84	22.69		1
	1	0	22.71	22.62	22.52	0-1	1
	1	7	22.80	23.09	22.61		1
	1	14	22.70	22.76	22.46		1
16QAM	8	0	21.62	21.77	21.62		2
	8	4	21.62	21.65	21.50	0-2	2
	8	7	21.61	21.79	21.54	0-2	2
	15	0	21.73	21.91	21.70		2
	1	0	21.52	21.58	21.92		2
	1	7	21.75	21.76	22.12	0-2	2
	1	14	21.45	21.29	21.97		2
64QAM	8	0	20.81	20.68	20.78		3
	8	4	20.90	20.66	20.72	0-3	3
	8	7	20.70	20.62	20.63	0-5	3
	15	0	20.73	20.89	20.60		3

Table 9-23 LTE Band 66 (AWS) Maxir nducted Powers - 3 MHz Bandwidth

Table 9-24 LTE Band 66 (AWS) Maximum Conducted Powers -1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth			
	£		Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.66	23.94	23.31		0
	1	2	23.70	23.96	23.33		0
	1	5	23.77	24.07	23.25	- o -	0
QPSK	3	0	23.93	23.71	23.66	0	0
	3	2	23.80	23.86	23.66] [0
	3	3	23.75	23.87	23.65		0
	6	0	22.87	22.79	22.56	0-1	1
	1	0	22.57	22.33	22.59	- 0-1	1
	1	2	22.95	22.39	22.39		1
	1	5	22.97	22.76	22.36		1
16QAM	3	0	22.87	22.81	22.94	0-1	1
	3	2	22.87	22.90	23.10] [1
	3	3	22.87	22.79	22.69		1
	6	0	21.95	21.54	21.58	0-2	2
	1	0	21.57	22.20	21.97		2
	1	2	21.55	22.20	21.73		2
	1	5	21.52	22.20	21.69	0-2	2
64QAM	3	0	21.57	21.68	21.59	0-2	2
	3	2	21.66	21.50	21.77		2
	3	3	21.63	21.34	21.57		2
	6	0	20.67	20.89	20.62	0-3	3

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Do go 20 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 38 of 87
© 202	0 PCTEST				REV 21.4 M

	L	IE Band 6	6 (AWS) Reduc	ed Conducted F	owers - 20 MH	z Bandwidth		
				LTE Band 66 (AWS) 20 MHz Bandwidth				
			Low Channel	Mid Channel	High Channel			
			132072	132322	132572	MPR Allowed per		
Modulation	RB Size	RB Size	RB Offset	(1720.0 MHz)	(1745.0 MHz)	(1770.0 MHz)	3GPP [dB]	MPR [dB]
			· · · ·	Conducted Power [dBm	· · · ·			
	1	0	21.56	21.79	21.32		0	
	1	50	21.80	21.74	21.67	0	0	
	1	99	21.52	21.46	21.58		0	
QPSK	50	0	21.71	21.49	21.52		0	
	50	25	21.69	21.45	21.38	0-1	0	
	50	50	21.63	21.44	21.42		0	
	100	0	21.33	21.38	21.32		0	
	1	0	21.49	21.45	21.20	0-1	0	
	1	50	21.87	21.51	21.57		0	
	1	99	21.50	21.45	21.21		0	
16QAM	50	0	21.56	21.84	21.32		0	
	50	25	21.40	21.71	21.83	0-2	0	
	50	50	21.60	21.62	21.41	0-2	0	
	100	0	21.55	21.60	21.47		0	
	1	0	21.83	21.54	21.33		0	
	1	50	21.88	21.86	21.60	0-2	0	
	1	99	21.63	21.84	21.84		0	
64QAM	50	0	20.91	20.71	20.87	0-3	1	
	50	25	20.78	20.64	20.84		1	
	50	50	20.53	20.62	20.55	0-3	1	
	100	0	20.44	20.40	20.46		1	

Table 9-25 I TE Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

Table 9-26						
LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth						

	LTE Band 66 (AWS) 15 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm						
	1	0	21.35	21.79	21.35		0			
	1	36	21.81	21.79	21.60	0	0			
	1	74	21.34	21.54	21.16		0			
QPSK	36	0	21.77	21.82	21.68		0			
	36	18	21.89	21.89	21.61	0-1	0			
	36	37	21.65	21.72	21.54	0-1	0			
	75	0	21.67	21.70	21.54		0			
	1	0	21.39	21.68	21.59		0			
	1	36	21.75	21.32	21.78	0-1	0			
	1	74	21.36	21.21	21.29		0			
16QAM	36	0	21.74	21.82	21.62		0			
	36	18	21.86	21.78	21.66	0-2	0			
	36	37	21.76	21.81	21.58	0-2	0			
	75	0	21.59	21.79	21.65		0			
	1	0	22.19	21.59	22.12		0			
	1	36	21.99	21.31	21.99	0-2	0			
	1	74	21.87	21.33	21.86		0			
64QAM	36	0	20.79	20.91	20.78		1			
	36	18	20.81	20.97	20.73	0-3	1			
	36	37	20.71	20.99	20.67	0-3	1			
	75	0	20.72	20.82	20.60	I F	1			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	💽 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 39 of 87	
202	A DOTEST				DEV/ 24 / M	

	L	TE Band 6	6 (AWS) Reduc	ed Conducted F	owers - 10 MH	z Bandwidth	
				LTE Band 66 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
			132022	132322	132622	MPR Allowed per	
Modulation	RB Size	RB Offset	(1715.0 MHz)	(1745.0 MHz)	(1775.0 MHz)	3GPP [dB]	MPR [dB]
			. ,	Conducted Power [dBm	. ,		
	1	0	21.63	21.61	21.40		0
	1	25	21.03	21.68	21.62	0	0
	1	49	21.53	21.00	21.40	-	0
QPSK	25	49	21.59	21.41	21.40		0
QI OIT	25	12	21.68	21.05	21.60	0-1	0
	25	25	21.08	21.70	21.00		0
	50	0	21.63	21.72	21.49		0
	1	0	21.93	21.72	21.84		0
	1	25	22.06	21.32	21.90	0-1	0
	1	49	21.66	21.37	21.58		0
16QAM	25	0	21.68	21.76	21.50		0
	25	12	21.70	21.74	21.61		0
	25	25	21.69	21.76	21.49	0-2	0
	50	0	21.61	21.87	21.56		0
	1	0	21.58	21.62	22.20		0
	1	25	21.79	21.68	21.89	0-2	0
	1	49	21.39	21.38	22.15	1 1	0
64QAM	25	0	20.86	20.91	20.76		1
	25	12	20.89	20.83	20.79		1
	25	25	20.91	20.91	20.85	0-3	1
	50	0	20.78	20.89	20.67	1	1

Table 9-27 LTE Band 66 (AWS) Poducod Co nducted Powers - 10 MHz Bandwidth

Table 9-28 LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	21.45	21.39	21.51		0
	1	12	22.05	21.58	21.55	0	0
	1	24	21.61	21.42	21.44		0
QPSK	12	0	21.62	21.69	21.64		0
	12	6	21.74	21.63	21.60	0-1	0
	12	13	21.70	21.72	21.53		0
	25	0	21.62	21.69	21.64		0
	1	0	21.39	21.60	21.18	0-1	0
	1	12	21.86	21.82	21.21		0
	1	24	21.83	21.73	21.14		0
16QAM	12	0	21.41	21.55	21.57		0
	12	6	21.64	21.52	21.54	0-2	0
	12	13	21.58	21.57	21.47	0-2	0
	25	0	21.72	21.60	21.64		0
	1	0	21.85	21.82	21.63		0
	1	12	22.11	22.06	21.79	0-2	0
	1	24	21.88	22.06	21.78		0
64QAM	12	0	20.40	20.71	20.39		1
	12	6	20.66	20.78	20.60	0-3	1
	12	13	20.58	20.95	20.63	0-5	1
	25	0	20.78	20.83	20.74		1

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 40 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 40 of 87
© 202	0 PCTEST	•	•		REV 21.4 M

	L		o (Aws) Reduc	LTE Band 66 (AWS)	Powers - 5 Min	z Bandwidth				
	3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel	MPR Allowed per	MPR [dB]			
Modulation	RB Size	RB Offset	131987	132322	132657					
wouldtion	ND SIZE	KB Oliset	(1711.5 MHz)	(1745.0 MHz)	(1778.5 MHz)	3GPP [dB]				
				Conducted Power [dBm	<u>]</u>					
	1	0	21.52	21.42	21.59		0			
	1	7	22.00	21.66	21.54	0	0			
	1	14	21.75	21.52	21.44		0			
QPSK	8	0	21.83	21.61	21.58		0			
	8	4	21.70	21.67	21.53	0-1	0			
	8	7	21.71	21.81	21.46		0			
	15	0	21.68	21.73	21.55		0			
	1	0	21.76	21.55	21.77		0			
	1	7	21.86	21.90	21.75	0-1	0			
	1	14	21.57	21.54	21.65		0			
16QAM	8	0	21.75	21.66	21.57		0			
	8	4	21.63	21.48	21.51	0-2	0			
	8	7	21.75	21.56	21.36	02	0			
	15	0	21.90	21.69	21.67		0			
	1	0	21.45	21.33	21.26		0			
	1	7	21.78	21.40	21.80	0-2	0			
	1	14	21.50	21.27	21.79		0			
64QAM	8	0	20.81	20.87	20.95		1			
	8	4	20.72	20.70	20.74	- 0-3 -	1			
	8	7	20.73	20.78	20.83		1			
	15	0	20.71	20.89	20.57		1			

Table 9-29 I TE Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

Table 9-30 LTE Band 66 (AWS) Reduced Conducted Powers -1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel 132322 (1745.0 MHz)	High Channel		
Modulation	RB Size	RB Offset	0ffset 131979 (1710.7 MHz)		132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	ı]		
	1	0	21.64	21.61	21.47		0
	1	2	21.80	21.77	21.53] [0
	1	5	21.68	21.71	21.37	0	0
QPSK	3	0	21.64	21.49	21.56	v	0
	3	2	21.69	21.52	21.62		0
	3	3	21.67	21.50	21.60		0
	6	0	21.66	21.60	21.56	0-1	0
	1	0	21.83	21.72	21.26		0
	1	2	21.91	21.63	21.15		0
	1	5	21.81	21.61	21.30	0-1	0
16QAM	3	0	21.62	21.41	21.39	0-1	0
	3	2	21.62	21.52	21.30		0
	3	3	21.48	21.22	21.18		0
	6	0	21.60	22.03	21.25	0-2	0
	1	0	21.79	21.53	21.45		0
	1	2	22.16	21.51	21.42		0
	1	5	22.14	21.53	21.27	0-2	0
64QAM	3	0	21.47	21.87	21.53	0-2	0
	3	2	21.76	21.79	21.46		0
	3	3	21.50	21.77	21.46	7	0
	6	0	20.82	21.08	20.52	0-3	1

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	Dates: DUT Type:		Dage 41 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 41 of 87	
1202	0 DOTEST				DEV/ 21 / M	

© 2020 PCTEST

9.3.6

LTE Band 25 (PCS)

LTE band 25 (FCS) Maximum Conducted Fowers - 20 MHZ Bandwidth									
				LTE Band 25 (PCS) 20 MHz Bandwidth					
			Low Channel	Mid Channel	High Channel				
			26140	26365	26590	MPR Allowed per			
Modulation	RB Size	RB Offset	(1860.0 MHz)	(1882.5 MHz)	(1905.0 MHz)	3GPP [dB]	MPR [dB]		
				Conducted Power [dBm					
	1	0	24.51	24.51	24.44		0		
	1	50	24.70	24.63	24.67	0	0		
	1	99	24.48	24.46	24.29		0		
QPSK	50	0	23.52	23.38	23.13		1		
	50	25	23.49	23.44	23.28	0-1	1		
	50	50	23.33	23.31	23.07		1		
	100	0	23.38	23.34	23.20		1		
	1	0	23.00	22.87	23.01	0-1	1		
	1	50	23.06	23.19	22.74		1		
	1	99	22.87	22.69	22.69		1		
16QAM	50	0	22.11	22.13	22.00		2		
	50	25	22.42	22.27	22.11	0-2	2		
	50	50	22.21	22.04	21.89	0-2	2		
	100	0	22.36	22.14	21.96		2		
	1	0	22.20	22.44	22.05		2		
	1	50	22.03	22.65	22.03	0-2	2		
	1	99	22.01	22.45	22.05		2		
64QAM	50	0	21.11	21.33	20.98		3		
	50	25	21.22	21.28	20.99	0-3	3		
	50	50	21.18	21.17	20.88	0-3	3		
	100	0	21.30	21.24	21.10		3		

Table 9-31 LTE Band 25 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

Table 9-32 LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

	LTE Band 25 (PCS)									
		T		15 MHz Bandwidth		1				
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	26115	26365	26615	MPR Allowed per	MPR [dB]			
modulation	ND 0120	ND Onset	(1857.5 MHz)	(1882.5 MHz)	(1907.5 MHz)	3GPP [dB]				
			(Conducted Power [dBm]					
	1	0	23.98	23.81	24.07		0			
	1	36	24.28	24.29	24.44	0	0			
	1	74	24.01	23.76	24.07		0			
QPSK	36	0	23.15	23.29	23.33		1			
	36	18	23.18	23.30	23.31	- 0-1	1			
	36	37	23.09	23.19	23.18		1			
	75	0	23.10	23.26	23.11		1			
	1	0	22.77	22.84	23.17	0-1	1			
	1	36	23.10	23.55	23.70		1			
	1	74	22.72	22.80	23.24		1			
16QAM	36	0	22.26	22.35	22.39		2			
	36	18	22.31	22.48	22.39	0-2	2			
	36	37	22.13	22.35	22.10	0-2	2			
	75	0	22.08	22.37	22.13		2			
	1	0	22.57	22.00	22.42		2			
	1	36	22.70	21.86	22.66	0-2	2			
	1	74	22.65	21.80	22.53]	2			
64QAM	36	0	21.08	21.41	21.47		3			
	36	18	21.23	21.45	21.38		3			
	36	37	21.04	21.33	21.25	0-3	3			
	75	0	21.10	21.35	21.09		3			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 42 of 87
202	0 PCTEST		•		REV 21.4 M

© 2020 PCTEST

	L		25 (PCS) Maxim	um Conducted						
	LTE Band 25 (PCS) 10 MHz Bandwidth									
Modulation	RB Size	RB Size	RB Offset	Low Channel 26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm]					
	1	0	24.15	24.09	24.43		0			
	1	25	24.65	24.26	24.59	0	0			
	1	49	24.15	24.04	24.21		0			
QPSK	25	0	23.19	23.34	23.21		1			
	25	12	23.17	23.38	23.25	0-1	1			
	25	25	23.09	23.28	23.16		1			
	50	0	23.03	23.34	23.26		1			
	1	0	23.07	23.06	23.07		1			
	1	25	23.10	23.04	23.17	0-1	1			
	1	49	22.92	22.82	23.13		1			
16QAM	25	0	22.20	22.47	22.21		2			
	25	12	22.20	22.41	22.38	0-2	2			
	25	25	22.10	22.33	22.23	0-2	2			
	50	0	21.92	22.34	22.22		2			
	1	0	21.76	21.92	22.53		2			
	1	25	21.87	21.95	22.62	0-2	2			
	1	49	21.66	21.48	22.50]	2			
64QAM	25	0	21.19	21.48	21.43		3			
	25	12	21.29	21.40	21.41	0-3	3			
	25	25	21.19	21.37	21.19	0-3	3			
	50	0	21.21	21.34	21.35] [3			

Table 9-33 LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

Table 9-34
LTE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

	LTE Band 25 (PCS)								
	1		Law Obarrad	5 MHz Bandwidth	Wet Observal	1			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm]				
	1	0	23.99	23.98	24.06		0		
	1	12	24.07	24.36	23.99	0	0		
	1	24	23.96	24.20	24.06		0		
QPSK	12	0	23.10	23.30	23.19		1		
	12	6	23.14	23.30	23.16	- 0-1	1		
	12	13	23.06	23.26	23.16		1		
	25	0	22.97	23.25	23.28		1		
	1	0	22.66	22.90	22.68	0-1	1		
	1	12	23.28	23.18	22.78		1		
	1	24	23.19	22.94	22.76		1		
16QAM	12	0	21.90	22.22	22.21		2		
	12	6	21.95	22.20	22.21	0-2	2		
	12	13	21.88	22.12	22.06	0-2	2		
	25	0	21.89	22.23	22.27		2		
	1	0	21.89	22.33	22.02		2		
	1	12	22.30	22.48	22.30	0-2	2		
	1	24	21.91	22.23	22.07		2		
64QAM	12	0	20.99	21.37	21.14		3		
	12	6	21.04	21.38	21.16	0-3	3		
	12	13	21.07	21.37	21.02	0-3	3		
	25	0	20.93	21.29	21.37]	3		

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 42 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 43 of 87
0 202	0 PCTEST				REV 21 / M

			25 (1 00) Maxin	LTE Band 25 (PCS)		2 Danawiatii			
3 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
	Conducted Power [dBm]								
	1	0	23.95	24.04	24.23		0		
	1	7	24.27	24.21	24.43	0	0		
	1	14	24.19	23.99	24.29		0		
QPSK	8	0	23.06	23.26	23.31		1		
	8	4	23.11	23.27	23.23	0-1	1		
	8	7	23.09	23.27	23.21		1		
	15	0	23.08	23.27	23.36		1		
	1	0	22.76	23.00	23.09		1		
	1	7	23.02	23.08	23.25	0-1	1		
	1	14	22.42	23.03	23.08		1		
16QAM	8	0	21.75	22.30	22.39		2		
	8	4	21.64	22.24	22.31	0-2	2		
	8	7	21.70	22.23	22.28	0-2	2		
	15	0	22.12	22.35	22.23		2		
	1	0	21.83	21.96	22.46		2		
	1	7	22.03	22.21	22.65	0-2	2		
	1	14	22.21	21.70	22.56		2		
64QAM	8	0	21.11	21.11	21.17		3		
	8	4	20.90	21.15	21.21	0-3	3		
	8	7	20.96	21.28	21.06	0-3	3		
	15	0	21.02	21.25	21.18] [3		

Table 9-35 LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

Table 9-36
LTE Band 25 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth

	LTE Band 25 (PCS)							
1.4 MHz Bandwidth								
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm]			
	1	0	24.07	23.91	24.27		0	
	1	2	24.11	23.98	24.34		0	
	1	5	24.14	23.98	24.32	0	0	
QPSK	3	0	24.17	24.18	24.15	U	0	
	3	2	24.09	24.30	24.14		0	
	3	3	24.04	24.28	24.31		0	
	6	0	23.14	23.21	23.20	0-1	1	
	1	0	23.24	23.12	22.73		1	
	1	2	23.32	22.96	22.82	0-1	1	
	1	5	23.18	22.86	22.90		1	
16QAM	3	0	22.96	23.08	23.04	0-1	1	
	3	2	22.94	23.36	23.02		1	
	3	3	23.12	23.23	23.20		1	
	6	0	21.96	22.22	22.35	0-2	2	
	1	0	21.70	21.75	22.66		2	
	1	2	21.57	21.88	22.27]	2	
	1	5	21.64	21.68	22.33	0-2	2	
64QAM	3	0	21.87	22.31	22.54	0-2	2	
	3	2	21.96	22.39	22.38		2	
	3	3	21.94	22.37	22.32		2	
	6	0	20.87	21.23	21.16	0-3	3	

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 44 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 44 of 87
202	DODOTEST				PEV 21.4 M

	L		25 (PCS) Reduc	ced Conducted	Powers - 20 IVIT	z banuwiuth				
				LTE Band 25 (PCS) 20 MHz Bandwidth						
Low Channel Mid Channel High Channel										
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm						
	1	0	22.41	22.41	22.51		0			
	1	50	22.68	22.37	22.52	0	0			
	1	99	22.33	22.38	22.47		0			
QPSK	50	0	22.82	22.80	22.71		0			
	50	25	22.67	22.65	22.68	0-1	0			
	50	50	22.28	22.43	22.22	0-1	0			
	100	0	22.48	22.46	22.32		0			
	1	0	22.20	22.07	22.00		0			
	1	50	22.54	22.26	22.36	0-1	0			
	1	99	22.09	22.20	22.07		0			
16QAM	50	0	21.93	21.99	21.76		0.5			
	50	25	22.23	22.00	21.95	0-2	0.5			
	50	50	22.11	21.97	21.85	02	0.5			
	100	0	22.00	22.03	21.96		0.5			
	1	0	22.06	21.94	22.17		0.5			
	1	50	22.41	21.95	22.07	0-2	0.5			
	1	99	22.00	21.98	21.72		0.5			
64QAM	50	0	21.42	21.37	21.14		1.5			
	50	25	21.37	21.33	21.18	0-3	1.5			
	50	50	21.01	20.91	20.83	0-0	1.5			
	100	0	21.08	20.82	20.88		1.5			

Table 9-37 I TE Band 25 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

	Table 9-38	
LTE Band 25 (PCS) R	educed Conducted Powe	ers - 15 MHz Bandwidth

	LTE Band 25 (PCS) 15 MHz Bandwidth							
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm]			
	1	0	22.48	22.78	22.56		0	
	1	36	22.44	22.82	22.49	0	0	
	1	74	22.65	22.37	22.41		0	
QPSK	36	0	22.74	22.85	22.86		0	
	36	18	22.85	22.88	22.87	0-1	0	
	36	37	22.78	22.82	22.74	0-1	0	
	75	0	22.67	22.90	22.81		0	
	1	0	22.60	22.68	23.00		0	
	1	36	23.07	22.61	23.04	0-1	0	
	1	74	22.74	22.22	22.90		0	
16QAM	36	0	22.36	22.34	22.41		0.5	
	36	18	22.44	22.49	22.25	0-2	0.5	
	36	37	22.37	22.33	22.16	0-2	0.5	
	75	0	22.22	22.41	22.19		0.5	
	1	0	22.24	22.19	21.84		0.5	
	1	36	22.34	22.23	22.70	0-2	0.5	
	1	74	22.12	21.69	22.66		0.5	
64QAM	36	0	21.23	21.36	21.43		1.5	
	36	18	21.33	21.50	21.42	0-3	1.5	
	36	37	21.26	21.25	21.24	0-3	1.5	
	75	0	21.32	21.21	21.31		1.5	

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	Test Dates: DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 45 of 87
1202	O DOTEST				DEV/ 21 / M

	L		25 (PCS) Reduc	ced Conducted							
				LTE Band 25 (PCS) 10 MHz Bandwidth							
	Low Channel Mid Channel High Channel										
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted Power [dBm							
	1	0	22.51	22.79	22.52		0				
	1	25	22.80	22.87	22.70	0	0				
	1	49	22.72	22.77	22.53		0				
QPSK	25	0	22.68	22.91	22.74		0				
	25	12	22.80	22.89	22.76	0.1	0				
	25	25	22.75	22.86	22.72	- 0-1 -	0				
	50	0	22.71	22.89	22.76		0				
	1	0	22.93	22.49	22.88		0				
	1	25	22.73	22.45	22.86	0-1	0				
	1	49	22.93	22.50	22.83		0				
16QAM	25	0	22.11	22.45	22.17		0.5				
	25	12	22.14	22.43	22.21	0-2	0.5				
	25	25	22.21	22.22	22.29	0-2	0.5				
	50	0	22.21	22.36	22.12		0.5				
	1	0	22.01	22.33	22.20		0.5				
	1	25	22.22	22.33	22.54	0-2	0.5				
	1	49	22.13	22.00	22.67		0.5				
64QAM	25	0	21.34	21.43	21.30		1.5				
	25	12	21.36	21.51	21.48	0-3	1.5				
	25	25	21.33	21.40	21.28	0-3	1.5				
	50	0	21.24	21.39	21.22		1.5				

Table 9-39 I TE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

Table 9-40
LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

	LTE Band 25 (PCS)							
				5 MHz Bandwidth				
Modulation	RB Size	RB Offset	26065	26365	26665	MPR Allowed per	MPR [dB]	
modulation	112 0120		(1852.5 MHz)	(1882.5 MHz)	(1912.5 MHz)	3GPP [dB]		
			(Conducted Power [dBm]			
	1	0	22.49	22.51	22.61		0	
	1	12	23.04	22.68	22.88	0	0	
	1	24	22.64	22.49	22.65		0	
QPSK	12	0	22.70	22.88	22.73		0	
	12	6	22.72	22.89	22.74	0-1	0	
	12	13	22.70	22.86	22.67	0-1	0	
	25	0	22.74	22.83	22.85		0	
	1	0	22.18	22.67	22.53		0	
	1	12	22.74	22.96	22.70	0-1	0	
	1	24	22.43	22.68	22.53		0	
16QAM	12	0	21.84	22.38	22.31		0.5	
	12	6	21.99	22.39	22.35	0-2	0.5	
	12	13	21.85	22.41	22.09	0-2	0.5	
	25	0	22.18	22.27	22.26		0.5	
	1	0	22.14	22.24	21.93		0.5	
	1	12	22.43	22.22	22.05	0-2	0.5	
	1	24	22.23	22.25	21.72		0.5	
64QAM	12	0	21.09	21.38	21.26		1.5	
	12	6	21.06	21.40	21.37	0-3	1.5	
	12	13	21.09	21.30	21.24	0-3	1.5	
	25	0	21.12	21.31	21.34		1.5	

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 46 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 46 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

			25 (PCS) Redu	ced Conducted	FOWERS - 5 IVITA	2 Danuwiuth					
	LTE Band 25 (PCS) 3 MHz Bandwidth										
Modulation	RB Size	RB Offset	Low Channel 26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.45	22.72	22.62		0				
	1	7	22.61	22.78	22.63	0	0				
	1	14	22.67	22.82	22.62		0				
QPSK	8	0	22.68	22.79	22.87		0				
	8	4	22.73	22.81	22.72	0-1	0				
	8	7	22.70	22.76	22.74	0-1	0				
	15	0	22.79	22.88	22.86		0				
	1	0	22.65	22.34	22.95		0				
	1	7	22.84	22.70	22.71	0-1	0				
	1	14	22.70	22.65	22.87		0				
16QAM	8	0	22.49	22.17	22.19		0.5				
	8	4	22.20	22.09	22.19	0-2	0.5				
	8	7	22.17	22.23	22.19	0-2	0.5				
	15	0	22.18	22.35	22.43		0.5				
	1	0	21.97	22.15	22.14		0.5				
	1	7	21.90	22.20	22.10	0-2	0.5				
	1	14	21.91	22.08	22.60	1	0.5				
64QAM	8	0	21.27	21.41	21.26		1.5				
	8	4	21.43	21.27	21.42		1.5				
	8	7	21.30	21.49	21.43	0-3	1.5				
	15	0	21.07	21.41	21.17	1	1.5				

Table 9-41 LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

Table 9-42
LTE Band 25 (PCS) Reduced Conducted Powers -1.4 MHz Bandwidth

	LTE Band 25 (PCS)											
	-	1		1.4 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel							
Modulation	RB Size	RB Offset	26047	26365	26683	MPR Allowed per	MPR [dB]					
modulation	112 0120		(1850.7 MHz)	(1882.5 MHz)	(1914.3 MHz)	3GPP [dB]						
				Conducted Power [dBm								
	1	0	22.45	22.55	22.57		0					
	1	2	22.69	22.68	22.88		0					
	1	5	22.69	22.72	22.65	0	0					
QPSK	3	0	22.75	22.71	22.79	U	0					
	3	2	22.66	22.72	22.69		0					
	3	3	22.66	22.67	22.68		0					
	6	0	22.69	22.79	22.84	0-1	0					
	1	0	22.94	22.38	22.92		0					
	1	2	22.94	22.43	22.85		0					
	1	5	22.74	22.64	22.97	0-1	0					
16QAM	3	0	22.54	22.69	22.81	0-1	0					
	3	2	22.33	22.81	22.62		0					
	3	3	22.46	22.67	22.53		0					
	6	0	22.43	22.20	22.27	0-2	0.5					
	1	0	22.03	21.89	22.70		0.5					
	1	2	22.10	22.07	22.15		0.5					
	1	5	21.83	21.88	22.59	0-2	0.5					
64QAM	3	0	22.37	22.28	21.86	0-2	0.5					
	3	2	22.45	22.18	22.12		0.5					
	3	3	22.33	22.15	22.04		0.5					
	6	0	21.24	21.20	21.55	0-3	1.5					

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 47 at 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 47 of 87
202	O POTEST				REV 21 4 M

LTE Band 41 9.3.7

				100000000	LTE Band 41		Sanawiatii		
	1			2	0 MHz Bandwidth	1		TT	
Modulation			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Sm]		-	
	1	0	24.40	24.62	24.73	24.90	24.63		0
	1	50	24.44	24.92	24.93	24.83	24.80	0	0
	1	99	24.38	24.75	24.84	24.54	24.67]	0
QPSK	50	0	23.83	23.82	24.19	23.92	23.63		1
	50	25	23.93	23.84	24.20	24.19	23.82	0-1	1
	50	50	23.57	23.84	23.88	23.71	23.67		1
	100	0	23.61	23.76	23.81	23.82	23.68		1
	1	0	23.42	24.03	24.05	24.02	23.81	0-1	1
	1	50	23.70	24.16	24.02	23.67	23.98		1
	1	99	23.48	24.04	24.04	23.57	24.17		1
16QAM	50	0	22.59	22.77	23.03	22.84	22.69		2
	50	25	22.70	22.92	23.15	23.06	22.72	0-2	2
	50	50	22.64	23.01	22.89	22.61	22.57	0-2	2
	100	0	22.61	22.98	22.86	22.67	22.59		2
	1	0	23.18	23.20	22.78	22.80	23.18		2
	1	50	23.16	23.02	22.58	22.74	23.20	0-2	2
	1	99	23.10	23.07	22.61	22.28	23.05		2
64QAM	50	0	21.52	21.91	21.93	21.78	21.75		3
	50	25	21.62	21.95	22.00	21.97	21.73	0-3	3
	50	50	21.54	21.82	21.91	21.65	21.47		3
	100	0	21.53	21.66	21.82	21.66	21.82		3

Table 9-43 LTE Band 41 PC3 Conducted Powers - 20 MHz Bandwidth

Table 9-44
LTE Band 41 PC3 Conducted Powers - 15 MHz Bandwidth

	LTE Band 41 15 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dB	im]					
	1	0	24.30	24.37	24.67	24.45	24.35		0		
	1	36	24.56	24.57	24.66	24.86	24.37	0	0		
	1	74	24.57	24.46	24.46	24.45	24.08		0		
QPSK	36	0	23.53	23.76	23.62	23.94	23.67	0-1	1		
	36	18	23.62	23.86	23.71	24.03	23.58		1		
	36	37	23.64	23.72	23.60	23.97	23.52		1		
	75	0	23.62	23.76	23.63	23.31	23.60		1		
	1	0	23.56	23.69	23.07	24.00	23.92	0-1	1		
	1	36	23.62	23.83	23.25	23.87	23.63		1		
	1	74	23.90	23.63	23.51	23.55	23.22		1		
16QAM	36	0	22.47	22.56	22.52	23.11	22.48	_	2		
	36	18	22.64	22.61	22.62	23.03	22.25	0-2	2		
	36	37	22.57	22.40	22.52	22.20	22.10	02	2		
	75	0	22.52	22.50	22.52	22.16	22.06		2		
	1	0	22.64	22.73	22.63	22.66	22.56	_	2		
	1	36	22.90	22.89	22.90	22.53	22.51	0-2	2		
	1	74	22.75	22.52	22.71	22.43	22.34		2		
64QAM	36	0	21.88	21.48	21.27	21.65	21.48		3		
	36	18	21.90	21.60	21.52	21.74	21.44	0-3	3		
	36	37	21.80	21.54	21.53	21.51	21.37		3		
	75	0	21.89	21.62	21.56	21.25	21.55		3		

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	t Dates: DUT Type:		Dage 49 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 48 of 87	
© 202	0 PCTEST				REV 21.4 M	

	LTE Band 41 PC3 CONducted PowerS - 10 MHZ Bandwidth										
				1	0 MHz Bandwidth						
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			-	Ca	nducted Power [dB	lm]					
	1	0	24.32	24.39	24.66	24.26	24.19		0		
	1	25	24.62	24.87	24.69	24.60	24.19	0	0		
	1	49	24.40	24.28	24.56	24.20	24.09		0		
QPSK	25	0	23.71	23.59	23.98	23.85	23.27		1		
	25	12	23.63	23.67	23.96	23.98	23.37	0-1	1		
	25	25	23.63	23.65	23.89	23.88	23.33		1		
	50	0	23.67	23.74	23.93	23.82	23.23		1		
	1	0	23.67	23.76	23.97	23.38	23.60	0-1	1		
	1	25	23.97	23.57	23.80	23.52	23.77		1		
	1	49	23.86	23.60	23.93	23.24	23.20		1		
16QAM	25	0	22.91	22.56	22.93	22.92	22.55		2		
	25	12	22.92	22.57	23.04	22.94	22.33	0-2	2		
	25	25	22.80	22.40	22.87	22.41	22.51	0-2	2		
	50	0	22.75	22.45	22.82	22.75	22.38		2		
	1	0	22.87	22.63	22.07	22.76	22.67		2		
	1	25	22.97	22.81	22.04	22.56	22.71	0-2	2		
	1	49	22.84	22.55	22.52	22.40	22.44		2		
64QAM	25	0	21.70	21.55	21.57	22.14	21.48	- 0-3 -	3		
	25	12	21.94	21.58	21.58	21.85	21.59		3		
	25	25	21.90	21.41	21.61	21.84	21.33		3		
	50	0	21.73	21.43	21.78	21.97	21.36		3		

Table 9-45 LTE Band 41 PC3 Conducted Powers - 10 MHz Bandwidth

Table 9-46 LTE Band 41 PC3 Conducted Powers - 5 MHz Bandwidth

	LTE Band 41 5 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [de	3m]					
	1	0	24.61	24.25	24.71	24.44	24.14		0		
	1	12	25.05	24.77	25.12	24.56	24.75	0	0		
	1	24	24.73	24.26	24.75	24.39	24.31		0		
QPSK	12	0	23.89	23.51	23.64	23.88	23.28	0-1	1		
	12	6	23.92	23.49	23.63	23.78	23.37		1		
	12	13	23.95	23.44	23.61	23.72	23.25		1		
	25	0	24.04	23.40	23.64	23.77	23.28		1		
	1	0	23.75	23.77	23.69	23.97	23.63	0-1	1		
	1	12	24.11	23.97	24.16	23.93	23.84		1		
	1	24	23.86	23.65	23.71	23.45	23.36		1		
16QAM	12	0	22.74	22.73	22.78	23.04	22.39		2		
	12	6	22.80	22.61	22.87	22.95	22.34	- 0-2	2		
	12	13	22.65	22.49	22.86	22.40	22.37	0-2	2		
	25	0	22.65	22.38	22.73	22.63	22.23		2		
	1	0	22.85	22.67	22.39	22.77	22.53		2		
	1	12	23.00	22.89	22.43	22.84	22.56	0-2	2		
	1	24	22.65	22.53	22.67	22.73	22.55		2		
64QAM	12	0	21.66	21.43	21.83	21.83	21.25		3		
	12	6	21.62	21.64	21.66	21.74	21.38	0-3	3		
I	12	13	21.63	21.26	21.59	21.68	21.31	0-3	3		
I	25	0	21.72	21.46	21.91	21.78	21.32	1	3		

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 of 07
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 49 of 87
20 PCTEST				REV 21.4 M

© 2020 PCTEST

Table 9-47
LTE Band 41 PC2 Conducted Powers - 20 MHz Bandwidth

	LTE Band 41											
	20 MHz Bandwidth											
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel 41490 (2680.0 MHz) MPR Allowed per 3GPP [dB]					
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)			MPR [dB]			
				Co	nducted Power [dB	lm]						
	1	0	26.02	26.24	26.13	26.35	26.25		0			
	1	50	26.22	26.15	26.43	25.98	26.41	0	0			
	1	99	26.28	26.23	26.03	26.05	26.12		0			
QPSK	50	0	25.44	25.62	25.34	25.50	25.42		1			
	50	25	25.53	25.58	25.31	25.44	25.41	0-1	1			
	50	50	25.42	25.57	25.41	25.26	25.28	0-1	1			
	100	0	25.46	25.54	25.35	25.21	25.44		1			

Figure 9-3 Power Measurement Setup

D	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	.G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 50 of 87	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset			
© 202	0 PCTEST	·	•		REV 21.4 M	

9.4 WLAN Conducted Powers

2.4GHz Conducted Power [dBm]									
		IEEE .	Transmission	Mode					
Freq [MHz]	Channel	802.11b	802.11g	802.11n					
		Average	Average	Average					
2412	1	20.74	15.69	15.24					
2417	2	N/A	17.49	16.99					
2422	3	N/A	19.36	18.97					
2437	6	21.42	19.39	18.94					
2452	9	N/A	19.35	18.74					
2457	10	N/A	17.12	16.94					
2462	11	20.99	15.41	14.99					

Table 9-48 2.4 GHz WLAN Maximum Average RF Power

Table 9-49 2.4 GHz WLAN Reduced Average RF Power

	2.4GHz C	onducted Pov	ver [dBm]					
		IEEE Transmission Mode						
Freq [MHz]	Channel	802.11b	802.11g	802.11n				
		Average	Average	Average				
2412	1	17.17	14.36	14.37				
2417	2	N/A	16.38	16.35				
2422	3	N/A	17.98	17.96				
2437	6	18.00	17.99	17.98				
2452	9	N/A	17.97	17.99				
2457	10	N/A	16.30	16.25				
2462	11	17.68	14.16	14.25				

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for • the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; • and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

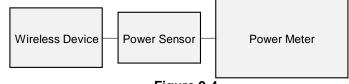


Figure 9-4 **Power Measurement Setup**

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 51 of 87	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset			
202	0 PCTEST				REV 21.4 M	

© 2020 PCTEST

10 SYSTEM VERIFICATION

10.1 Tissue Verification

		Me	asured	Head Tis	sue Prop	erties			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			680	0.889	44.108	0.888	42.305	0.11%	4.26%
			695	0.895	44.084	0.889	42.227	0.67%	4.40%
			700	0.896	44.073	0.889	42.201	0.79%	4.44%
			710	0.900	44.000	0.890	42.149	1.12%	4.39%
09/21/2020	750 Head	22.3	725	0.904	43.980	0.891	42.071	1.46%	4.54%
			750	0.914	43.882	0.894	41.942	2.24%	4.63%
			770	0.920	43.800	0.895	41.838	2.79%	4.69%
			785	0.925	43.786	0.896	41.760	3.24%	4.85%
			800	0.932	43.735	0.897	41.682	3.90%	4.93%
			820	0.929	42.533	0.899	41.578	3.34%	2.30%
09/16/2020	835 Head	21.9	835	0.934	42.489	0.900	41.500	3.78%	2.38%
			850	0.940	42.441	0.916	41.500	2.62%	2.27%
			820	0.939	43.009	0.899	41.578	4.45%	3.44%
10/02/2020	835 Head	21.7	835	0.945	42.974	0.900	41.500	5.00%	3.55%
			850	0.950	42.920	0.916	41.500	3.71%	3.42%
			1710	1.363	39.617	1.348	40.142	1.11%	-1.31%
			1720	1.373	39.568	1.354	40.126	1.40%	-1.39%
0/40/2020	1750 Head	23.5	1745	1.398	39.444	1.368	40.087	2.19%	-1.60%
9/19/2020	1750 11680	23.0	1750	1.403	39.420	1.371	40.079	2.33%	-1.64%
			1770	1.424	39.327	1.383	40.047	2.96%	-1.80%
			1790	1.444	39.237	1.394	40.016	3.59%	-1.95%
			1850	1.361	41.049	1.400	40.000	-2.79%	2.62%
			1860	1.372	41.005	1.400	40.000	-2.00%	2.51%
			1880	1.393	40.916	1.400	40.000	-0.50%	2.29%
09/16/2020	1900 Head	22.7	1900	1.414	40.833	1.400	40.000	1.00%	2.08%
			1905	1.420	40.812	1.400	40.000	1.43%	2.03%
			1910	1.425	40.791	1.400	40.000		1.98%
			2400	1.784	40.024	1.756	39.289	1.59%	1.87%
			2450	1.840	39.823	1.800	39.200	2.22%	1.59%
			2480	1.875	39.703	1.833	39.162	2.29%	1.38%
			2500	1.898	39.636	1.855	39.136	2.32%	1.28%
			2510	1.910	39.604	1.866	39.123	2.36%	1.23%
			2535	1.939	39.518	1.893	39.092	2.43%	1.09%
09/16/2020	2450 Head	24.9	2550	1.957	39.456	1.909	39.073	2.51%	0.98%
			2560	1.969	39.414	1.920	39.060	2.55%	0.91%
			2600	2.017	39.252	1,964	39.009	2.70%	0.62%
			2650	2.077	39.060	2.018	38.945	2.92%	0.30%
			2680	2.112	38.933	2.051	38.907	2.97%	0.07%
			2700	2.136	38.852	2.073	38.882	3.04%	-0.08%
			2400	1.789	38.394	1.756	39.289	1.88%	-2.28%
			2450	1.830	38.329	1.800	39.200	1.67%	-2.22%
			2480	1.852	38.291	1.833	39.162	1.04%	-2.22%
			2400	1.867	38.252	1.855	39.102	0.65%	-2.26%
			2510	1.875	38.233	1.866	39.130	0.48%	-2.20%
			2535	1.896	38.197	1.893	39.092	0.16%	-2.29%
10/02/2020	2450 Head	22.6	2550	1.909	38.179	1.909	39.092		-2.29%
			2550	1.909	38.179	1.909	39.073	-0.10%	-2.29%
			2500	1.918	38.170	1.920	39.000	-0.87%	-2.20%
			2650	1.947	38.002	2.018	39.009	-1.49%	-2.23%
		-	2000	1.300	30.00Z	2.010	30.940	-1.+3/0	-2.72/0
			2680	2.014	37,967	2.051	38,907	-1.80%	-2.42%

Table 10-1

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates: DUT Type:			Dege 52 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 52 of 87
202	A DOTEST				DEV/ 21 / M

		easure							
Calibrated for Tests	Tissue Type	Tissue Temp During Calibration	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	% dev a
Performed on:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(°C)	(MHz)	σ (S/m)	Constant, ɛ	σ (S/m)	Constant, ɛ	-3.34%	0.570
			680 695	0.926	55.487 55.463	0.958	55.804 55.745	-3.34%	-0.57% -0.51%
			700	0.931	55.443	0.959	55.726	-2.92%	-0.51%
			710	0.932	55.443	0.959	55.687	-2.02 %	-0.46%
09/03/2020	750 Body	22.0	725	0.942	55.396	0.961	55.629	-1.98%	-0.429
	,		750	0.953	55.331	0.964	55.531	-1.14%	-0.369
			770	0.961	55.271	0.965	55.453	-0.41%	-0.339
			785	0.967	55.235	0.966	55.395	0.10%	-0.29%
			800	0.975	55.201	0.967	55.336	0.83%	-0.24%
			820	0.949	55.342	0.969	55.258	-2.06%	0.15%
09/01/2020	835 Body	21.6	835	0.956	55.310	0.970	55.200	-1.44%	0.20%
			850	0.961	55.289	0.988	55.154	-2.73%	0.24%
09/22/2020			820	0.939	53.206	0.969	55.258	-3.10%	-3.719
09/22/2020	835 Body	21.2	835 850	0.955	53.042 52.892	0.970	55.200 55.154	-1.55%	-3.919
			1710	1.487	52.892	0.988	53.537	1.64%	-4.105
			1720	1.500	52,466	1.469	53.511	2.11%	-1.959
			1745	1.529	52.386	1.485	53.445	2.96%	-1.989
09/15/2020	1750 Body	20.9	1750	1.534	52.367	1.488	53.432	3.09%	-1.99%
			1770	1.556	52.277	1.501	53.379	3.66%	-2.069
			1790	1.578	52.178	1.514	53.326	4.23%	-2.159
			1710	1.467	52.255	1.463	53.537	0.27%	-2.399
			1720	1.480	52.220	1.469	53.511	0.75%	-2.419
09/17/2020	1750 Body	21.5	1745	1.509	52.138	1.485	53.445	1.62%	-2.459
			1750	1.515	52.119	1.488	53.432	1.81%	-2.469
			1770	1.536	52.028	1.501	53.379	2.33%	-2.539
			1790	1.557	51.924	1.514	53.326	2.84%	-2.639
			1710 1720	1.485	51.762 51.721	1.463	53.537 53.511	1.50%	-3.32
			1720	1.497	51.721	1.469	53.511	2.69%	-3.30%
09/21/2020	1750 Body	20.9	1745	1.525	51.627	1.465	53.445	2.89%	-3.429
			1730	1.552	51.514	1.501	53.379	3.40%	-3.499
	1		1790	1.573	51.412	1.514	53.326	3.90%	-3.599
			1710	1.468	52.624	1.463	53.537	0.34%	-1.719
			1720	1.481	52.584	1.469	53.511	0.82%	-1.739
10/05/2020	1750 Body	21.2	1745	1.509	52.491	1.485	53.445	1.62%	-1.799
10/03/2020	1750 BUUy	21.2	1750	1.514	52.472	1.488	53.432	1.75%	-1.809
			1770	1.535	52.386	1.501	53.379	2.27%	-1.869
			1790	1.556	52.293	1.514	53.326	2.77%	-1.94%
			1850	1.521	51.331	1.520	53.300	0.07%	-3.699
			1860	1.530	51.289	1.520	53.300	0.66%	-3.779
09/14/2020	1900 Body	23.2	1880	1.553	51.245	1.520	53.300	2.17% 3.55%	-3.869
			1900	1.574	51.170	1.520	53.300	3.55%	-4.009
			1905 1910	1.581	51.135 51.123	1.520	53.300 53.300	4.01%	-4.08
			1850	1.500	51.123	1.520	53.300	-0.72%	-2.509
			1860	1.509	51.900	1.520	53.300	-0.07%	-2.569
			1880	1.519	51.860	1.520	53.300	1.32%	-2.709
9/17/2020	1900 Body	23.8	1900	1.562	51.790	1.520	53.300	2.76%	-2.839
			1905	1.568	51.774	1.520	53.300	3.16%	-2.869
			1910	1.573	51.757	1.520	53.300	3.49%	-2.899
			1850	1.517	52.702	1.520	53.300	-0.20%	-1.129
			1860	1.528	52.663	1.520	53.300	0.53%	-1.209
9/20/2020	1900 Body	24.3	1880	1.550	52.583	1.520	53.300	1.97%	-1.359
			1900	1.572	52.503	1.520	53.300	3.42%	-1.509
			1905	1.578	52.484	1.520	53.300	3.82% 4.14%	-1.539
			1910	1.583	52.466	1.520	53.300		
			1850 1860	1.493	53.243	1.520	53.300	-1.78% -1.12%	-0.119
	1		1860	1.503	53.209 53.145	1.520	53.300 53.300	-1.12%	-0.175
9/23/2020	1900 Body	24.7	1880	1.524	53.145	1.520	53.300	1.78%	-0.295
			1900	1.547	53.096	1.520	53.300	2.11%	-0.419
			1905	1.558	53.072	1.520	53.300	2.50%	-0.439
		l	1850	1.510	51.662	1.520	53.300	-0.66%	-3.079
			1860	1.521	51.629	1.520	53.300	0.07%	-3.149
9/28/2020	1900 Body	22.5	1880	1.543	51.559	1.520	53.300	1.51%	-3.279
arzorz020	1900 Body	22.5	1900	1.564	51.486	1.520	53.300	2.89%	-3.409
			1905	1.570	51.469	1.520	53.300	3.29%	-3.449
	L		1910	1.575	51.451	1.520	53.300	3.62%	-3.479
	-		2400	1.964	51.261	1.902	52.767	3.26%	-2.85%
	1		2450	2.034	51.063	1.950	52.700	4.31%	-3.119
			2480	2.075	50.957	1.993	52.662	4.11%	-3.249
	1		2500	2.102	50.881	2.021	52.636	4.01% 3.93%	-3.339
	1		2510		50.841	2.035	52.623 52.592	3.93%	-3.399
09/14/2020	2450 Body	23.2	2535 2550	2.150	50.737 50.677	2.071 2.092	52.592 52.573	3.81%	-3.539
			2560	2.172	50.638	2.092	52.573	3.80%	-3.669
	1		2600	2,243	50,492	2,163	52,509	3.70%	-3.849
			2650	2.314	50.283	2.103	52.445	3.58%	-4.129
	1		2680	2.357	50.152	2.277	52.407	3.51%	-4.309
	1		2700	2.385	50.073	2.305	52.382	3.47%	-4.419
			2400	1.983	52.018	1.902	52.767	4.26%	-1.429
	1		2450	2.044	51.895	1.950	52.700	4.82%	-1.539
			2480	2.077	51.815	1.993	52.662	4.21%	-1.619
	1		2500	2.100	51.751	2.021	52.636	3.91%	-1.689
	1		2510	2.113	51.719	2.035	52.623	3.83%	-1.729
09/28/2020	2450 Body	22.4	2535	2.146	51.644	2.071	52.592	3.62%	-1.809
			2550	2.166	51.609	2.092	52.573	3.54%	-1.839
	1		2560	2.179	51.586	2.106	52.560	3.47%	-1.859
			2600 2650	2.224	51.471 51.285	2.163	52.509 52.445	2.82%	-1.989
	1	1	2650	2.288	51.285	2.234	52.445 52.407	2.42%	-2.219

Table 10-2 dy Tissue Properties a....a

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset	Page 53 of 87	
202	0 PCTEST			REV 21.4 M	

© 2020 PCTEST

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

	System Verification Results – 1g												
						ystem Ve							
					TAF	RGET & N	IEASURI	ED					
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR ^{1g} (W/kg)	1 W Target SAR ^{1g} (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)	
L	750	HEAD	09/21/2020	23.9	22.2	0.200	1054	7406	1.700	8.630	8.500	-1.51%	
Е	835	HEAD	09/16/2020	22.7	22.2	0.200	4d047	3589	2.030	9.420	10.150	7.75%	
L	835	HEAD	10/02/2020	22.9	21.8	0.200	4d132	7406	1.960	9.650	9.800	1.55%	
L	1750	HEAD	09/19/2020	23.1	22.5	0.100	1150	7406	3.860	36.500	38.600	5.75%	
L	1900	HEAD	09/16/2020	21.9	22.7	0.100	5d148	7406	4.200	39.100	42.000	7.42%	
Р	2450	HEAD	09/16/2020	23.7	23.3	0.100	981	7308	5.150	52.300	51.500	-1.53%	
Е	2450	HEAD	10/02/2020	23.1	22.9	0.100	981	3589	5.350	52.300	53.500	2.29%	
E	2600	HEAD	10/02/2020	23.1	22.9	0.100	1064	3589	5.740	58.100	57.400	-1.20%	
Р	750	BODY	09/03/2020	22.4	22.0	0.200	1054	7551	1.760	8.530	8.800	3.17%	
Р	835	BODY	09/01/2020	22.4	21.5	0.200	4d132	7551	2.010	9.960	10.050	0.90%	
Р	835	BODY	09/22/2020	23.7	21.2	0.200	4d132	7308	1.870	9.960	9.350	-6.12%	
I	1750	BODY	09/15/2020	20.7	20.9	0.100	1150	7570	3.880	36.600	38.800	6.01%	
I	1750	BODY	09/17/2020	22.5	21.5	0.100	1148	7570	3.860	36.300	38.600	6.34%	
I	1750	BODY	09/21/2020	20.9	20.9	0.100	1008	7570	3.960	37.400	39.600	5.88%	
Н	1900	BODY	09/14/2020	23.3	22.4	0.100	5d080	7357	4.000	39.200	40.000	2.04%	
J	1900	BODY	09/17/2020	22.7	22.1	0.100	5d080	7571	4.170	39.200	41.700	6.38%	
J	1900	BODY	09/20/2020	21.3	22.3	0.100	5d080	7571	4.170	39.200	41.700	6.38%	
Р	2450	BODY	09/14/2020	22.7	22.6	0.100	981	7308	5.170	50.900	51.700	1.57%	
К	2450	BODY	09/28/2020	22.0	22.4	0.100	981	7409	5.280	50.900	52.800	3.73%	
К	2600	BODY	09/28/2020	22.0	22.4	0.100	1064	7409	5.490	55.600	54.900	-1.26%	

Table 10-3	
System Verification Results – 1g	J

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 54 of 87
202	O POTEST				REV 21.4 M

© 2020 PCTEST

	System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR10g (W/kg)	1 W Target SAR ¹⁰ g (W/kg)	1 W Normalized SAR ¹⁰ g (W/kg)	Deviation _{10g} (%)	
Ι	1750	BODY	09/15/2020	20.7	20.9	0.100	1150	7570	2.040	19.400	20.400	5.15%	
I	1750	BODY	10/05/2020	20.9	21.2	0.100	1008	7570	1.970	19.900	19.700	-1.01%	
J	1900	BODY	09/23/2020	22.3	22.7	0.100	5d080	7571	2.060	20.600	20.600	0.00%	
Н	1900	BODY	09/28/2020	21.3	22.5	0.100	5d080	7357	1.910	20.600	19.100	-7.28%	

Table 10-4 System Verification Results - 10g

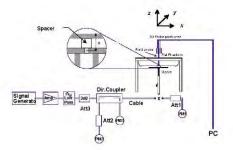


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 55 of 87
© 202	0 PCTEST				REV 21.4 M

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 GSM 850 Head SAR

						MEASU	JREMEN	T RESU	TS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test Position	Device Serial	# of Time Slots	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.62	0.07	Right	Cheek	18829	1	1:8.3	0.284	1.019	0.289	
836.60	190	GSM 850	GSM	33.7	33.62	0.05	Right	Tilt	18829	1	1:8.3	0.153	1.019	0.156	
836.60	190	GSM 850	GSM	33.7	33.62	-0.10	Left	Cheek	18829	1	1:8.3	0.259	1.019	0.264	
836.60	190	GSM 850	GSM	33.7	33.62	0.11	Left	Tilt	18829	1	1:8.3	0.135	1.019	0.138	
836.60	190	GSM 850	GPRS	28.7	28.63	-0.02	Right	Cheek	18829	4	1:2.076	0.322	1.016	0.327	A1
836.60	190	GSM 850	GPRS	28.7	28.63	-0.05	Right	Tilt	18829	4	1:2.076	0.170	1.016	0.173	
836.60	190	GSM 850	GPRS	28.7	28.63	0.10	Left	Cheek	18829	4	1:2.076	0.288	1.016	0.293	
836.60	i0 190 GSM 850 GPRS 28.7 28.63 0.0						Left	Tilt	18829	4	1:2.076	0.144	1.016	0.146	
			E C95.1 1992 Spatial Pe I Exposure/G	ak							Hea 1.6 W/kg veraged ov				

Table 11-2 GSM 1900 Head SAR

						MEASU	JREMEN	T RESU	LTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.7	30.51	-0.03	Right	Cheek	18811	1	1:8.3	0.071	1.045	0.074	
1880.00	661	GSM 1900	GSM	30.7	30.51	-0.14	Right	Tilt	18811	1	1:8.3	0.069	1.045	0.072	
1880.00	661	GSM 1900	GSM	30.7	30.51	-0.06	Left	Cheek	18811	1	1:8.3	0.107	1.045	0.112	
1880.00	661	GSM 1900	GSM	30.7	30.51	-0.04	Left	Tilt	18811	1	1:8.3	0.075	1.045	0.078	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.01	Right	Cheek	18811	4	1:2.076	0.084	1.114	0.094	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.14	Right	Tilt	18811	4	1:2.076	0.090	1.114	0.100	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.12	Left	Cheek	18811	4	1:2.076	0.138	1.114	0.154	A2
1880.00	661	GSM 1900	GPRS	25.7	25.23	-0.08	Left	Tilt	18811	4	1:2.076	0.096	1.114	0.107	
			E C95.1 1992 Spatial Pe	ak							Hea 1.6 W/kg	(mW/g)			
		Uncontrolled	I Exposure/G	eneral Popul	ation					a	veraged ov	ver 1 gram	-		

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 56 of 87
) 202	0 PCTEST				REV 21.4 M

© 20

Table 11-3 UMTS 850 Head SAR

					ME	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	25.2	25.20	0.20	Right	Cheek	18803	1:1	0.320	1.000	0.320	A3
836.60	4183	UMTS 850	RMC	25.2	25.20	0.15	Right	Tilt	18803	1:1	0.216	1.000	0.216	
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.11	Left	Cheek	18803	1:1	0.287	1.000	0.287	
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.07	Left	Tilt	18803	1:1	0.158	1.000	0.158	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT			•			Head			
			Spatial Pe								V/kg (mW/g)			
		Uncontrolled	l Exposure/G	eneral Popul	ation			,	,	averag	ed over 1 gra	am		

Table 11-4 UMTS 1750 Head SAR

					ME	EASURE	MENT R	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.2	24.19	0.12	Right	Cheek	18811	1:1	0.171	1.002	0.171	
1732.40	1412	UMTS 1750	RMC	24.2	24.19	-0.14	Right	Tilt	18811	1:1	0.140	1.002	0.140	
1732.40	1412	UMTS 1750	RMC	24.2	24.19	-0.12	Left	Cheek	18811	1:1	0.175	1.002	0.175	A4
1732.40	1412	UMTS 1750	RMC	24.2	24.19	-0.01	Left	Tilt	18811	1:1	0.140	1.002	0.140	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe								N/kg (mW/g)			
		Uncontrolled	l Exposure/G	eneral Popul	ation					averag	ed over 1 gra	am		

Table 11-5 UMTS 1900 Head SAR

					ME	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power Drift [dB]	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Driπ [αΒ]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.7	24.64	0.05	Right	Cheek	18811	1:1	0.159	1.014	0.161	
1880.00	9400	UMTS 1900	RMC	24.7	24.64	0.08	Right	Tilt	18811	1:1	0.170	1.014	0.172	
1880.00	9400	UMTS 1900	RMC	24.7	24.64	0.01	Left	Cheek	18811	1:1	0.258	1.014	0.262	A5
1880.00	9400	UMTS 1900	RMC	24.7	24.64	0.11	Left	Tilt	18811	1:1	0.192	1.014	0.195	
		ANSI / IEE	E C95.1 1992		MIT						Head			
		Uncontrolled	Spatial Pea Exposure/G		ation						V/kg (mW/g) jed over 1 gra			

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 57 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 57 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

Table 11-6	
LTE Band 71 Head SA	R

											uu 0/	<u></u>							
								MEAS	UREME	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	0.06	0	Right	Cheek	QPSK	1	50	18811	1:1	0.232	1.197	0.278	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	0.03	1	Right	Cheek	QPSK	50	25	18811	1:1	0.172	1.079	0.186	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	-0.01	0	Right	Tilt	QPSK	1	50	18811	1:1	0.111	1.197	0.133	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	0.05	1	Right	Tilt	QPSK	50	25	18811	1:1	0.082	1.079	0.088	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	0.06	0	Left	Cheek	QPSK	1	50	18811	1:1	0.257	1.197	0.308	A6
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	0.02	1	Left	Cheek	QPSK	50	25	18811	1:1	0.196	1.079	0.211	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	0.03	0	Left	Tilt	QPSK	1	50	18811	1:1	0.124	1.197	0.148	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	-0.01	1	Left	Tilt	QPSK	50	25	18811	1:1	0.094	1.079	0.101	
			ANSI / IEEE 0	C95.1 1992	- SAFETY LI	IMIT								Head					
				Spatial Pe										.6 W/kg (n					
			Uncontrolled E	xposure/G	eneral Popu	lation							ave	eraged over	1 gram				

Table 11-7 LTE Band 12 Head SAR

								MEAS	UREMI	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	h.		[WHZ]	Power [dBm]	Power [dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	0.10	0	Right	Cheek	QPSK	1	25	18811	1:1	0.144	1.096	0.158	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.15	1	Right	Cheek	QPSK	25	0	18811	1:1	0.098	1.104	0.108	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	0.15	0	Right	Tilt	QPSK	1	25	18811	1:1	0.063	1.096	0.069	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.12	1	Right	Tilt	QPSK	25	0	18811	1:1	0.042	1.104	0.046	
707.50	23095	Mid	LTE Band 12	24.80	0.01	0	Left	Cheek	QPSK	1	25	18811	1:1	0.166	1.096	0.182	A7		
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.05	1	Left	Cheek	QPSK	25	0	18811	1:1	0.121	1.104	0.134	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	0.06	0	Left	Tilt	QPSK	1	25	18811	1:1	0.079	1.096	0.087	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.11	1	Left	Tilt	QPSK	25	0	18811	1:1	0.059	1.104	0.065	
			ANSI / IEEE C	Spatial Pe	ak									Head .6 W/kg (n eraged over	•				

Table 11-8 LTE Band 13 Head SAR

								MEAS	UREMI	ENT RE	SULTS								
FR	EQUENCY	r	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MF12]	Power [dBm]	Fower [ubiii]	Dinit [UB]			FOSILION				Number	Cycle	(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.05	0	Right	Cheek	QPSK	1	49	18811	1:1	0.247	1.057	0.261	
782.00	23230	Mid	LTE Band 13	10	24.2	0.06	1	Right	Cheek	QPSK	25	0	18811	1:1	0.182	1.064	0.194		
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.17	0	Right	Tilt	QPSK	1	49	18811	1:1	0.136	1.057	0.144	
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	-0.02	1	Right	Tilt	QPSK	25	0	18811	1:1	0.095	1.064	0.101	
782.00 23230 Md LTE Band 13 10 24.2 23.93 -0.02 782.00 23230 Md LTE Band 13 10 25.2 24.96 0.17							0	Left	Cheek	QPSK	1	49	18811	1:1	0.360	1.057	0.381	A8	
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	0.09	1	Left	Cheek	QPSK	25	0	18811	1:1	0.240	1.064	0.255	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.07	0	Left	Tilt	QPSK	1	49	18811	1:1	0.202	1.057	0.214	
782.00	23230	Mid	LTE Band 13	1	Left	Tilt	QPSK	25	0	18811	1:1	0.133	1.064	0.142					
			ANSI / IEEE C			MIT								Head					
				Spatial Pe										.6 W/kg (n					
			Uncontrolled E	xposure/G	eneral Popul	ation							ave	eraged over	1 gram				

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset	Page 58 of 87

Table 11-9 LTE Band 26 (Cell) Head SAR

								MEAS	UREM	ENT RE	SULTS								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHZ]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	0.17	0	Right	Cheek	QPSK	1	36	18803	1:1	0.337	1.035	0.349	
831.50			LTE Band 26 (Cell)	15	24.2	23.89	0.10	1	Right	Cheek	QPSK	36	0	18803	1:1	0.276	1.074	0.296	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	-0.12	0	Right	Tilt	QPSK	1	36	18803	1:1	0.161	1.035	0.167	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	0.03	1	Right	Tilt	QPSK	36	0	18803	1:1	0.130	1.074	0.140	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	0.08	0	Left	Cheek	QPSK	1	36	18803	1:1	0.344	1.035	0.356	A9
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	-0.12	1	Left	Cheek	QPSK	36	0	18803	1:1	0.253	1.074	0.272	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	0.00	0	Left	Tilt	QPSK	1	36	18803	1:1	0.196	1.035	0.203	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	0.11	1	Left	Tilt	QPSK	36	0	18803	1:1	0.146	1.074	0.157	
			ANSI / IEEE C			MIT								Head					
			Uncontrolled E	Spatial Peak kposure/G		ation								.6 W/kg (n eraged over					

Table 11-10 LTE Band 66 (AWS) Head SAR

								MEAS	SUREMI	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	C	ı.		[MHz]	Power [dBm]	Power [dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.08	0	Right	Cheek	QPSK	1	50	18837	1:1	0.181	1.000	0.181	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.07	1	Right	Cheek	QPSK	50	0	18837	1:1	0.156	1.062	0.166	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.08	0	Right	Tilt	QPSK	1	50	18837	1:1	0.153	1.000	0.153	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.16	1	Right	Tilt	QPSK	50	0	18837	1:1	0.129	1.062	0.137	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.13	0	Left	Cheek	QPSK	1	50	18837	1:1	0.201	1.000	0.201	A10
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.07	1	Left	Cheek	QPSK	50	0	18837	1:1	0.148	1.062	0.157	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.18	0	Left	Tilt	QPSK	1	50	18837	1:1	0.182	1.000	0.182	
1745.00) 132322 Mid LTE Band 66 20 23.2 22.94 0.00									Tilt	QPSK	50	0	18837	1:1	0.135	1.062	0.143	
			ANSI / IEEE C			MIT								Head					
				Spatial Pe										.6 W/kg (n					
			Uncontrolled E	xposure/G	eneral Popu	lation							ave	eraged over	1 gram				

Table 11-11 LTE Band 25 (PCS) Head SAR

								Sanu	25	FUJ	пеао	JAN							
								MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY	r	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	0.11	0	Right	Cheek	QPSK	1	50	18811	1:1	0.174	1.000	0.174	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.16	1	Right	Cheek	QPSK	50	0	18811	1:1	0.146	1.042	0.152	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	0.12	0	Right	Tilt	QPSK	1	50	18811	1:1	0.161	1.000	0.161	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.02	1	Right	Tilt	QPSK	50	0	18811	1:1	0.141	1.042	0.147	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	0.12	0	Left	Cheek	QPSK	1	50	18811	1:1	0.237	1.000	0.237	A11
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.08	1	Left	Cheek	QPSK	50	0	18811	1:1	0.194	1.042	0.202	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	-0.08	0	Left	Tilt	QPSK	1	50	18811	1:1	0.182	1.000	0.182	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.03	1	Left	Tilt	QPSK	50	0	18811	1:1	0.144	1.042	0.150	
	(PCS) ANSI / IEEE C95.1 1992 - SAFETY LIMT Spatial Peak Uncontrolled Exposure/General Population													Head .6 W/kg (r eraged over	•				
F	FCC ID: ZNFK200TM								SAR	EVALU	IATION	REPOR	т		Ĵι	G		oved by: y Manager	-
-	Document S/N: Test Dates: DI 1M2009170151-01-R1 ZNE 09/01/20 - 10/05/20 Provide the second s									andset							Page	59 of 87	1

1M2009170151-01-R1.ZNF 09/01/20 - 10/05/20 © 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 21.4 M

Portable Handset

Table 11-12 LTE Band 41 Head SAR

								MEASU	IREMEN	T RESU	JLTS									
Power Class	FR	EQUENCI	r	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
	MHz	C	h.		[WH2]	Power [dBm]	Power [dbin]	Drint (ab)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	0.12	0	Right	Cheek	QPSK	1	50	18803	1:1.58	0.089	1.064	0.095	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	0.08	1	Right	Cheek	QPSK	50	25	18803	1:1.58	0.082	1.000	0.082	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	0.13	0	Right	Tilt	QPSK	1	50	18803	1:1.58	0.132	1.064	0.140	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	-0.13	1	Right	Tilt	QPSK	50	25	18803	1:1.58	0.100	1.000	0.100	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	0.12	0	Left	Cheek	QPSK	1	50	18803	1:1.58	0.166	1.064	0.177	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	0.16	1	Left	Cheek	QPSK	50	25	18803	1:1.58	0.130	1.000	0.130	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	-0.05	0	Left	Tilt	QPSK	1	50	18803	1:1.58	0.199	1.064	0.212	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	0.14	1	Left	Tilt	QPSK	50	25	18803	1:1.58	0.167	1.000	0.167	
Power Class 2	2593.00	40620	Mid	LTE Band 41	20	27.2	26.43	0.19	0	Left	Tilt	QPSK	1	50	18803	1:2.31	0.211	1.194	0.252	A12
				EE C95.1 1992 - Spatial Pea ed Exposure/Ge	ik			•				•			Head .6 W/kg (n eraged over					

Table 11-13 **DTS Head SAR**

							N	IEASUF	EMENT	RESUL	тѕ							
FREQUE	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	18.0	18.00	0.14	Right	Cheek	18746	1	99.9	0.226	-	1.000	1.001	-	
2437	6	802.11b	DSSS	22	18.0	18.00	0.11	Right	Tilt	18746	1	99.9	0.237	-	1.000	1.001	-	
2437	6	802.11b	DSSS	22	18.0	18.00	0.19	Left	Cheek	18746	1	99.9	0.656	0.351	1.000	1.001	0.351	A13
2437								Left	Tilt	18746	1	99.9	0.572	-	1.000	1.001	-	
		ANSI / I	EEE C95.1		ETY LIMIT								Hea	ad				
		Uncontro		ial Peak	al Population								1.6 W/kg averaged ov					

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 60 of 87
© 202	20 PCTEST				REV 21.4 M

11.2 Standalone Body-Worn SAR Data

				U			ay 11			u					
					ME	ASURE	MENT F	RESULT	S						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	# of Time		Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]	3	Number	Slots	Cycle		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.62	-0.03	10 mm	18803	1	1:8.3	back	0.357	1.019	0.364	
836.60	190	GSM 850	GPRS	28.7	28.63	-0.06	10 mm	18803	4	1:2.076	back	0.423	1.016	0.430	A14
1880.00	661	GSM 1900	GSM	30.7	30.51	-0.02	10 mm	18803	1	1:8.3	back	0.241	1.045	0.252	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.09	10 mm	18803	4	1:2.076	back	0.314	1.114	0.350	A15
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.11	10 mm	18803	N/A	1:1	back	0.348	1.000	0.348	A17
1712.40	1312	UMTS 1750	RMC	24.2	24.06	0.02	10 mm	18837	N/A	1:1	back	0.990	1.033	1.023	A19
1732.40	1412	UMTS 1750	RMC	24.2	24.19	0.05	10 mm	18837	N/A	1:1	back	0.963	1.002	0.965	
1752.60	1513	UMTS 1750	RMC	24.2	24.08	-0.01	10 mm	18837	N/A	1:1	back	0.851	1.028	0.875	
1852.40	9262	UMTS 1900	RMC	24.7	24.38	-0.02	10 mm	18811	N/A	1:1	back	0.705	1.076	0.759	
1880.00	9400	UMTS 1900	RMC	24.7	24.64	-0.08	10 mm	18811	N/A	1:1	back	0.734	1.014	0.744	
1907.60	9538	UMTS 1900	RMC	24.7	24.44	0.02	10 mm	18811	N/A	1:1	back	0.804	1.062	0.854	A21
			C95.1 1992 - S Spatial Peak Exposure/Gene			-				a	1.6 W/k	ody g (mW/g) over 1 gram			

Table 11-14 GSM/UMTS Body-Worn SAR Data

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 61 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 61 of 87
© 202	0 PCTEST				REV 21.4 M

									bay-vv	orn S	АК								
								MEASU	REMENT	RESULT	S								
FR	EQUENC	r	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	c	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	mi k [ab]	Number	modulation	10 0120	ND Onset	opacing	olde	Cycle	(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	-0.01	0	18829	QPSK	1	50	10 mm	back	1:1	0.296	1.197	0.354	A23
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	-0.02	1	18829	QPSK	50	25	10 mm	back	1:1	0.227	1.079	0.245	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	-0.03	0	18803	QPSK	1	25	10 mm	back	1:1	0.401	1.096	0.439	A25
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.01	1	18803	QPSK	25	0	10 mm	back	1:1	0.318	1.104	0.351	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.16	0	18803	QPSK	1	49	10 mm	back	1:1	0.562	1.057	0.594	A27
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	-0.07	1	18803	QPSK	25	0	10 mm	back	1:1	0.421	1.064	0.448	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	-0.01	0	18829	QPSK	1	36	10 mm	back	1:1	0.396	1.035	0.410	A29
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	-0.04	1	18829	QPSK	36	0	10 mm	back	1:1	0.298	1.074	0.320	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.19	-0.04	0	18837	QPSK	1	50	10 mm	back	1:1	1.080	1.002	1.082	A31
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.11	0	18837	QPSK	1	50	10 mm	back	1:1	1.010	1.000	1.010	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	23.95	0.18	0	18837	QPSK	1	99	10 mm	back	1:1	0.661	1.059	0.700	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.81	-0.01	1	18837	QPSK	50	25	10 mm	back	1:1	0.850	1.094	0.930	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.01	1	18837	QPSK	50	0	10 mm	back	1:1	0.855	1.062	0.908	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	22.82	0.00	1	18837	QPSK	50	25	10 mm	back	1:1	0.601	1.091	0.656	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.83	-0.02	1	18837	QPSK	100	0	10 mm	back	1:1	0.798	1.089	0.869	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.19	-0.04	0	18837	QPSK	1	50	10 mm	back	1:1	1.070	1.002	1.072	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	0.03	0	18811	QPSK	1	50	10 mm	back	1:1	0.566	1.000	0.566	A33
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.05	1	18811	QPSK	50	0	10 mm	back	1:1	0.487	1.042	0.507	
			ANSI / IEEE O	C95.1 1992	- SAFETY LI	MIT								Bo	-	•			
				Spatial Pea										-	y (mW/g)				
			Uncontrolled E	xposure/G		Rlupp								-	wer 1 gra	im			

Table 11-15 I TE Body-Worn SAR

Note: Blue entry represent variability measurements.

Table 11-16 LTE Band 41 Body-Worn SAR

							ME	ASURE	IENT RE	SULTS										
Power Class	FR	EQUENC	Y	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
	MHz	0	Ch.		[WH2]	Power [dBm]	Fower [dbiii]	Drift [GB]		Number						Cycle	(W/kg)	Factor	(W/kg)	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	-0.08	0	18803	QPSK	1	50	10 mm	back	1:1.58	0.340	1.064	0.362	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	0.13	1	18803	QPSK	50	25	10 mm	back	1:1.58	0.273	1.000	0.273	
Power Class 2	2593.00	40620	Mid	LTE Band 41	20	27.2	26.43	0.00	0	18803	QPSK	1	50	10 mm	back	1:2.31	0.352	1.194	0.420	A35
		95.1 1992 - SAFE								Body										
			S	Spatial Peak							1.6 W	//kg (m\	V/g)							
	U	ncontr	olled Ex	posure/General F							average	ed over 1	l gram							

Table 11-17 **DTS Body-Worn SAR**

							MEAS	SUREME	ENT RE	SULTS	5							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	21.5	21.42	0.02	10 mm	18746	1	back	99.9	0.659	0.443	1.019	1.001	0.452	A37
		ANS	SI / IEEE (C95.1 1992	- SAFETY LIMIT	г							B	lody				
				Spatial Pe										kg (mW/g)				
		Unco	ntrolled E	xposure/G	eneral Populati	on							averaged	over 1 gram				

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 62 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 62 of 87
© 202	0 PCTEST	•	•		REV 21.4 M

11.3 Standalone Hotspot SAR Data

					ME			RESULTS							
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]				Number				(W/kg)		(W/kg)	
836.60	190	GSM 850	GPRS	28.7	28.63	-0.06	10 mm	18803	4	1:2.076	back	0.423	1.016	0.430	A14
836.60	190	GSM 850	GPRS	28.7	28.63	0.05	10 mm	18803	4	1:2.076	front	0.300	1.016	0.305	
836.60	190	GSM 850	GPRS	28.7	28.63	0.00	10 mm	18803	4	1:2.076	bottom	0.162	1.016	0.165	
836.60	190	GSM 850	GPRS	28.7	28.63	-0.12	10 mm	18803	4	1:2.076	right	0.285	1.016	0.290	
836.60	190	GSM 850	GPRS	28.7	28.63	0.07	10 mm	18803	4	1:2.076	left	0.261	1.016	0.265	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.09	10 mm	18803	4	1:2.076	back	0.314	1.114	0.350	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.17	10 mm	18803	4	1:2.076	front	0.167	1.114	0.186	
1850.20	512	GSM 1900	GPRS	25.7	25.31	-0.17	10 mm	18803	4	1:2.076	bottom	0.608	1.094	0.665	A16
1880.00	661	GSM 1900	GPRS	25.7	25.23	-0.05	10 mm	18803	4	1:2.076	bottom	0.566	1.114	0.631	
1909.80	810	GSM 1900	GPRS	25.7	25.39	-0.10	10 mm	18803	4	1:2.076	bottom	0.592	1.074	0.636	
1880.00	661	GSM 1900	GPRS	25.7	25.23	-0.14	10 mm	18803	4	1:2.076	right	0.035	1.114	0.039	
1880.00	661	GSM 1900	GPRS	25.7	25.23	0.13	10 mm	18803	4	1:2.076	left	0.112	1.114	0.125	
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.11	10 mm	18803	N/A	1:1	back	0.348	1.000	0.348	
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.02	10 mm	18803	N/A	1:1	front	0.296	1.000	0.296	
836.60	4183	UMTS 850	RMC	25.2	25.20	0.04	10 mm	18803	N/A	1:1	bottom	0.256	1.000	0.256	
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.10	10 mm	18803	N/A	1:1	right	0.452	1.000	0.452	A18
836.60	4183	UMTS 850	RMC	25.2	25.20	-0.03	10 mm	18803	N/A	1:1	left	0.320	1.000	0.320	
1712.40	1312	UMTS 1750	RMC	22.2	22.04	0.00	10 mm	18829	N/A	1:1	back	0.872	1.038	0.905	A20
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.00	10 mm	18829	N/A	1:1	back	0.853	1.042	0.889	
1752.60	1513	UMTS 1750	RMC	22.2	21.94	0.08	10 mm	18829	N/A	1:1	back	0.758	1.062	0.805	
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.01	10 mm	18829	N/A	1:1	front	0.418	1.042	0.436	
1712.40	1312	UMTS 1750	RMC	22.2	22.04	-0.04	10 mm	18829	N/A	1:1	bottom	0.814	1.038	0.845	
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.06	10 mm	18829	N/A	1:1	bottom	0.833	1.042	0.868	
1752.60	1513	UMTS 1750	RMC	22.2	21.94	0.05	10 mm	18829	N/A	1:1	bottom	0.792	1.062	0.841	
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.01	10 mm	18829	N/A	1:1	right	0.128	1.042	0.133	
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.02	10 mm	18829	N/A	1:1	left	0.161	1.042	0.168	
1880.00	9400	UMTS 1900	RMC	23.2	22.84	0.07	10 mm	18803	N/A	1:1	back	0.431	1.086	0.468	
1880.00	9400	UMTS 1900	RMC	23.2	22.84	0.07	10 mm	18803	N/A	1:1	front	0.248	1.086	0.269	
1852.40	9262	UMTS 1900	RMC	23.2	22.75	-0.07	10 mm	18803	N/A	1:1	bottom	0.883	1.109	0.979	
1880.00	9400	UMTS 1900	RMC	23.2	22.84	0.07	10 mm	18803	N/A	1:1	bottom	0.981	1.086	1.065	
1907.60	9538	UMTS 1900	RMC	23.2	22.91	-0.02	10 mm	18803	N/A	1:1	bottom	1.080	1.069	1.155	A22
1880.00	9400	UMTS 1900	RMC	23.2	22.84	0.02	10 mm	18803	N/A	1:1	right	0.058	1.086	0.063	
1880.00	9400	UMTS 1900	RMC	23.2	22.84	0.04	10 mm	18803	N/A	1:1	left	0.174	1.086	0.189	
1907.60	9538	UMTS 1900	RMC	23.2	22.91	-0.15	10 mm	18803	N/A	1:1	bottom	0.987	1.069	1.055	
			C95.1 1992 - S									ody			
		Uncontrollad	Spatial Peak		on					-		g (mW/g)			
		Uncontrolled	Exposure/Gen	erai Populati						a	veraged	over 1 gram			

Table 11-18 **GPRS/UMTS Hotspot SAR Data**

Note: Blue entry represent variability measurements.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 63 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

Table 11-19 LTE Band 71 Hotspot SAR

										T RESULT									
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	۱.		[WH2]	Power [dBm]	Fower [ubili]	Dint [ub]		Number							(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	-0.01	0	18829	QPSK	1	50	10 mm	back	1:1	0.296	1.197	0.354	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	-0.02	1	18829	QPSK	50	25	10 mm	back	1:1	0.227	1.079	0.245	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	-0.09	0	18829	QPSK	1	50	10 mm	front	1:1	0.244	1.197	0.292	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	-0.02	1	18829	QPSK	50	25	10 mm	front	1:1	0.186	1.079	0.201	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	-0.09	0	18829	QPSK	1	50	10 mm	bottom	1:1	0.136	1.197	0.163	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	0.00	1	18829	QPSK	50	25	10 mm	bottom	1:1	0.109	1.079	0.118	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	0.08	0	18829	QPSK	1	50	10 mm	right	1:1	0.390	1.197	0.467	A24
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	-0.06	1	18829	QPSK	50	25	10 mm	right	1:1	0.299	1.079	0.323	
680.50	133297	Mid	LTE Band 71	20	25.2	24.42	0.03	0	18829	QPSK	1	50	10 mm	left	1:1	0.198	1.197	0.237	
680.50	133297	Mid	LTE Band 71	20	24.2	23.87	0.01	1	18829	QPSK	50	25	10 mm	left	1:1	0.144	1.079	0.155	
		1	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mW	/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	d over 1	gram				

Table 11-20 LTE Band 12 Hotspot SAR

								MEASU	REMEN	r result	s								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[]	Power [dBm]	[]			Number							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	-0.03	0	18803	QPSK	1	25	10 mm	back	1:1	0.401	1.096	0.439	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.01	1	18803	QPSK	25	0	10 mm	back	1:1	0.318	1.104	0.351	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	-0.03	0	18803	QPSK	1	25	10 mm	front	1:1	0.304	1.096	0.333	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.00	1	18803	QPSK	25	0	10 mm	front	1:1	0.231	1.104	0.255	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	0.07	0	18803	QPSK	1	25	10 mm	bottom	1:1	0.129	1.096	0.141	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	-0.07	1	18803	QPSK	25	0	10 mm	bottom	1:1	0.098	1.104	0.108	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	-0.05	0	18803	QPSK	1	25	10 mm	right	1:1	0.467	1.096	0.512	A26
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	-0.07	1	18803	QPSK	25	0	10 mm	right	1:1	0.356	1.104	0.393	
707.50	23095	Mid	LTE Band 12	10	25.2	24.80	-0.03	0	18803	QPSK	1	25	10 mm	left	1:1	0.301	1.096	0.330	
707.50	23095	Mid	LTE Band 12	10	24.2	23.77	0.07	1	18803	QPSK	25	0	10 mm	left	1:1	0.216	1.104	0.238	
	ANSI / I	EEE C	95.1 1992 - SAFE	TY LIMIT										Body					
		5	Spatial Peak										1.6 W	//kg (mV	V/g)				
U	ncontro	lled Ex	posure/General	Population									average	ed over 1	gram				

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 64 of 87
© 202	0 PCTEST				REV 21.4 M

Table 11-21 LTE Band 13 Hotspot SAR

										0.000									
								MEASU	IREMENT	r result	S								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	ı.		[WITZ]	Power [dBm]	Power (abm)	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.16	0	18803	QPSK	1	49	10 mm	back	1:1	0.562	1.057	0.594	
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	-0.07	1	18803	QPSK	25	0	10 mm	back	1:1	0.421	1.064	0.448	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.08	0	18803	QPSK	1	49	10 mm	front	1:1	0.420	1.057	0.444	
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	0.01	1	18803	QPSK	25	0	10 mm	front	1:1	0.319	1.064	0.339	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	-0.01	0	18803	QPSK	1	49	10 mm	bottom	1:1	0.218	1.057	0.230	
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	0.04	1	18803	QPSK	25	0	10 mm	bottom	1:1	0.148	1.064	0.157	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	0.01	0	18803	QPSK	1	49	10 mm	right	1:1	0.590	1.057	0.624	A28
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	0.00	1	18803	QPSK	25	0	10 mm	right	1:1	0.416	1.064	0.443	
782.00	23230	Mid	LTE Band 13	10	25.2	24.96	-0.03	0	18803	QPSK	1	49	10 mm	left	1:1	0.411	1.057	0.434	
782.00	23230	Mid	LTE Band 13	10	24.2	23.93	0.03	1	18803	QPSK	25	0	10 mm	left	1:1	0.266	1.064	0.283	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mV	V/g)				
		Un	controlled Expo	sure/Genei	al Populatio	n							average	d over 1	gram				

Table 11-22 LTE Band 26 (Cell) Hotspot SAR

								MEASU	REMEN	r result	s								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	ı.		[WITZ]	Power [dBm]	Fower [ubili]	Dint [db]		Number							(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	-0.01	0	18829	QPSK	1	36	10 mm	back	1:1	0.396	1.035	0.410	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	-0.04	1	18829	QPSK	36	0	10 mm	back	1:1	0.298	1.074	0.320	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	0.05	0	18829	QPSK	1	36	10 mm	front	1:1	0.337	1.035	0.349	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	0.07	1	18829	QPSK	36	0	10 mm	front	1:1	0.266	1.074	0.286	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	0.02	0	18829	QPSK	1	36	10 mm	bottom	1:1	0.245	1.035	0.254	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	-0.04	1	18829	QPSK	36	0	10 mm	bottom	1:1	0.184	1.074	0.198	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.05	-0.02	0	18829	QPSK	1	36	10 mm	right	1:1	0.408	1.035	0.422	A30
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	23.89	-0.03	1	18829	QPSK	36	0	10 mm	right	1:1	0.312	1.074	0.335	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	-0.17	0	18829	QPSK	1	36	10 mm	left	1:1	0.254	1.035	0.263		
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	-0.04	1	18829	QPSK	36	0	10 mm	left	1:1	0.202	1.074	0.217		
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	//kg (mV	V/g)				
		Ur	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 65 of 87
© 202	20 PCTEST				REV 21.4 M

						<u> </u>				S) Hot	spor	JAI	•						
								MEASU	REMEN	r result	s								
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number						, -,	(W/kg)	Factor	(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	-0.04	0	18837	QPSK	1	50	10 mm	back	1:1	0.723	1.096	0.792	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	-0.04	0	18837	QPSK	50	0	10 mm	back	1:1	0.746	1.119	0.835	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.49	-0.01	0	18837	QPSK	50	0	10 mm	back	1:1	0.738	1.178	0.869	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.52	0.09	0	18837	QPSK	50	0	10 mm	back	1:1	0.540	1.169	0.631	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.38	0.00	0	18837	QPSK	100	0	10 mm	back	1:1	0.703	1.208	0.849	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	-0.06	0	18837	QPSK	1	50	10 mm	front	1:1	0.381	1.096	0.418	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	0.12	0	18837	QPSK	50	0	10 mm	front	1:1	0.387	1.119	0.433	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	-0.01	0	18837	QPSK	1	50	10 mm	bottom	1:1	0.787	1.096	0.863	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.79	0.15	0	18837	QPSK	1	0	10 mm	bottom	1:1	0.817	1.099	0.898	A32
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.67	0.13	0	18837	QPSK	1	50	10 mm	bottom	1:1	0.674	1.130	0.762	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	0.07	0	18837	QPSK	50	0	10 mm	bottom	1:1	0.795	1.119	0.890	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.49	-0.01	0	18837	QPSK	50	0	10 mm	bottom	1:1	0.805	1.178	0.948	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.52	-0.05	0	18837	QPSK	50	0	10 mm	bottom	1:1	0.697	1.169	0.815	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.38	-0.05	0	18837	QPSK	100	0	10 mm	bottom	1:1	0.785	1.208	0.948	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	-0.05	0	18837	QPSK	1	50	10 mm	right	1:1	0.103	1.096	0.113	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	-0.03	0	18837	QPSK	50	0	10 mm	right	1:1	0.101	1.119	0.113	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	0.03	0	18837	QPSK	1	50	10 mm	left	1:1	0.181	1.096	0.198	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	-0.01	0	18837	QPSK	50	0	10 mm	left	1:1	0.177	1.119	0.198	
		1	ANSI / IEEE C95.		FETY LIMIT									Body					
			•	atial Peak										//kg (mV	•				
		Ur	ncontrolled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Table 11-23 LTE Band 66 (AWS) Hotspot SAR

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 66 of 87
202	0 PCTEST				REV 21.4 M

© 20

							E Da	na za		5) Hots	spot	SAR							
								MEASU	REMEN	r result	s								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	0.04	0	18811	QPSK	1	50	10 mm	back	1:1	0.343	1.127	0.387	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	0.05	0	18811	QPSK	50	0	10 mm	back	1:1	0.331	1.091	0.361	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	0.07	0	18811	QPSK	1	50	10 mm	front	1:1	0.220	1.127	0.248	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	0.13	0	18811	QPSK	50	0	10 mm	front	1:1	0.212	1.091	0.231	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	0.12	0	18811	QPSK	1	50	10 mm	bottom	1:1	0.756	1.127	0.852	A34
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.2	22.41	0.00	0	18811	QPSK	1	0	10 mm	bottom	1:1	0.701	1.199	0.840	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.2	22.52	-0.03	0	18811	QPSK	1	50	10 mm	bottom	1:1	0.688	1.169	0.804	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	-0.01	0	18811	QPSK	50	0	10 mm	bottom	1:1	0.717	1.091	0.782	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.48	0.02	0	18811	QPSK	100	0	10 mm	bottom	1:1	0.695	1.180	0.820	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	0.12	0	18811	QPSK	1	50	10 mm	right	1:1	0.071	1.127	0.080	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	0.10	0	18811	QPSK	50	0	10 mm	right	1:1	0.065	1.091	0.071	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	-0.03	0	18811	QPSK	1	50	10 mm	left	1:1	0.146	1.127	0.165	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	0.05	0	18811	QPSK	50	0	10 mm	left	1:1	0.151	1.091	0.165	
		4	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	ral Populatio	n							average	ed over 1	gram				

Table 11-24 25 (PCS) Hotspot SAR I TE Rand

Table 11-25 LTE Band 41 Hotspot SAR

	MEA										SUREMENT RESULTS										
Power Class		EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm)	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #	
	MHz	C	h.		[2]	Power [dBm]	r ower [abin]	Dint [db]		Number							(W/kg)	1 4000	(W/kg)		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	-0.08	0	18803	QPSK	1	50	10 mm	back	1:1.58	0.340	1.064	0.362		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	0.13	1	18803	QPSK	50	25	10 mm	back	1:1.58	0.273	1.000	0.273		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	0.14	0	18803	QPSK	1	50	10 mm	front	1:1.58	0.357	1.064	0.380		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	0.05	1	18803	QPSK	50	25	10 mm	front	1:1.58	0.299	1.000	0.299		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	-0.12	0	18803	QPSK	1	50	10 mm	bottom	1:1.58	0.516	1.064	0.549		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	-0.13	1	18803	QPSK	50	25	10 mm	bottom	1:1.58	0.405	1.000	0.405		
Power Class 2	2593.00	40620	Mid	LTE Band 41	20	27.2	26.43	-0.05	0	18803	QPSK	1	50	10 mm	bottom	1:2.31	0.528	1.194	0.630	A36	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	-0.13	0	18803	QPSK	1	50	10 mm	right	1:1.58	0.156	1.064	0.166		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	24.2	24.20	-0.15	1	18803	QPSK	50	25	10 mm	right	1:1.58	0.128	1.000	0.128		
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	25.2	24.93	0.16	0	18803	QPSK	1	50	10 mm	left	1:1.58	0.249	1.064	0.265		
Power Class 3	Power Class 3 2593.00 40620 Mid LTE Band 41 20 24.2 24.20 0.									18803	QPSK	50	25	10 mm	left	1:1.58	0.197	1.000	0.197		
		ANSI /		95.1 1992 - SAF	ETY LIMIT				Body												
				Spatial Peak											V/kg (mW						
	Uncontrolled Exposure/General Population								averaged over 1 gram												

Table 11-26 WLAN Hotspot SAR

							WLAP		spo	: 5 A	ĸ							
							MEAS	UREME	NT RES	ULTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAF (1g)	R Plo
MHz	Ch.			[WHZ]	[dBm]	[dBm]	[ab]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)]
2437	6	802.11b	DSSS	22	21.5	21.42	0.02	10 mm	18746	1	back	99.9	0.659	0.443	1.019	1.001	0.452	A3
2437	6	802.11b	DSSS	22	21.5	21.42	0.06	10 mm	18746	1	front	99.9	0.279	-	1.019	1.001	-	
2437	6	802.11b	DSSS	22	21.5	21.42	0.17	10 mm	18746	1	top	99.9	0.271	-	1.019	1.001	-	
2437	6	802.11b	DSSS	22	21.5	21.42	0.03	10 mm	18746	1	right	99.9	0.408	0.260	1.019	1.001	0.265	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												В	ody				
		Unc	ontrolled	Spatial Pe Exposure/G		n								g (mW/g) over 1 gram				
FC	FCC ID: ZNFK200TM							SAR E	EVALU	ΑΤΙΟΝ	REP	ORT			G		oved by: ty Manag	
Do	ocument S/N: Test Dates:							DUT Type:								67 of 87		
1M	2009	170151-01-	-R1.ZNF	=	09/01/20 - 1	0/05/20	Porta	ble Har	ndset							Page	01 01 01	
20 PC	CTEST															REV	21.4 M	

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

11.4 Standalone Phablet SAR Data

	MEASUREMENT RESULTS															
FREQUE	INCY			Maximum	Conducted	Power		Device	Duty	[SAR (10g)	Scaling	Reported SAR			
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Power [dBm]	Drift [dB]	Spacing	Serial Number	Cycle	Side	(W/kg)	Factor	(10g) (W/kg)	Plot #		
1712.40	1312	UMTS 1750	RMC	24.2	24.06	-0.06	2 mm	18837	1:1	back	2.140	1.033	2.211			
1732.40	1412	UMTS 1750	RMC	24.2	24.19	0.02	2 mm	18837	1:1	back	2.040	1.002	2.044			
1752.60	1513	UMTS 1750	RMC	24.2	24.08	-0.15	2 mm	18837	1:1	back	1.940	1.028	1.994			
1732.40	1412	UMTS 1750	RMC	24.2	24.19	-0.12	0 mm	18837	1:1	front	1.430	1.002	1.433			
1712.40	1312	UMTS 1750	RMC	24.2	24.06	-0.05	2 mm	18837	1:1	bottom	2.100	1.033	2.169			
1732.40	1412	UMTS 1750	RMC	24.2	24.19	-0.03	2 mm	18837	1:1	bottom	2.030	1.002	2.034			
1752.60	1513	UMTS 1750	RMC	24.2	24.08	0.03	2 mm	18837	1:1	bottom	1.950	1.028	2.005			
1732.40	1412	UMTS 1750	RMC	24.2	24.19	0.13	0 mm	18837	1:1	right	0.142	1.002	0.142			
1732.40	1412	UMTS 1750	RMC	24.2	24.19	-0.08	0 mm	18837	1:1	left	0.836	1.002	0.838			
1712.40	1312	UMTS 1750	RMC	22.2	22.04	0.19	0 mm	18837	1:1	back	2.150	1.038	2.232			
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.12	0 mm	18837	1:1	back	2.130	1.042	2.219			
1752.60	1513	UMTS 1750	RMC	22.2	21.94	0.12	0 mm	18837	1:1	back	2.020	1.062	2.145			
1712.40	1312	UMTS 1750	RMC	22.2	22.04	0.05	0 mm	18837	1:1	bottom	2.540	1.038	2.637	A38		
1732.40	1412	UMTS 1750	RMC	22.2	22.02	0.00	0 mm	18837	1:1	bottom	2.520	1.042	2.626			
1752.60	1513	UMTS 1750	RMC	22.2	21.94	0.02	0 mm	18837	1:1	bottom	2.430	1.062	2.581			
1852.40	9262	UMTS 1900	RMC	24.7	24.38	-0.13	2 mm	18829	1:1	back	2.560	1.076	2.755			
1880.00	9400	UMTS 1900	RMC	24.7	24.64	-0.06	2 mm	18829	1:1	back	2.680	1.014	2.718			
1907.60	9538	UMTS 1900	RMC	24.7	24.44	0.02	2 mm	18829	1:1	back	2.780	1.062	2.952			
1880.00	9400	UMTS 1900	RMC	24.7	24.64	-0.01	0 mm	18829	1:1	front	1.640	1.014	1.663			
1852.40	9262	UMTS 1900	RMC	24.7	24.38	-0.12	2 mm	18829	1:1	bottom	2.680	1.076	2.884			
1880.00	9400	UMTS 1900	RMC	24.7	24.64	-0.06	2 mm	18829	1:1	bottom	2.800	1.014	2.839			
1907.60	9538	UMTS 1900	RMC	24.7	24.44	-0.12	2 mm	18829	1:1	bottom	2.810	1.062	2.984	A39		
1880.00	9400	UMTS 1900	RMC	24.7	24.64	0.15	0 mm	18829	1:1	right	0.069	1.014	0.070			
1880.00	9400	UMTS 1900	RMC	24.7	24.64	0.06	0 mm	18829	1:1	left	1.040	1.014	1.055			
1852.40	9262	UMTS 1900	RMC	23.2	22.75	-0.08	0 mm	08592	1:1	back	1.850	1.109	2.052			
1880.00	9400	UMTS 1900	RMC	23.2	22.84	-0.04	0 mm	08592	1:1	back	1.930	1.086	2.096			
1907.60	9538	UMTS 1900	RMC	23.2	22.91	-0.06	0 mm	08592	1:1	back	1.910	1.069	2.042			
1852.40	9262	UMTS 1900	RMC	23.2	22.75	-0.08	0 mm	08592	1:1	bottom	2.360	1.109	2.617			
1880.00	9400	UMTS 1900	RMC	23.2	22.84	-0.10	0 mm	08592	1:1	bottom	2.330	1.086	2.530			
1907.60	9538	UMTS 1900	RMC	23.2	22.91	-0.08	0 mm	08592	1:1	bottom	2.230	1.069	2.384			
1907.60	9538	UMTS 1900	RMC	24.7	24.44	0.13	2 mm	18829	1:1	bottom	2.620	1.062	2.782			
		ANSI / IEEE	C95.1 1992 - S Spatial Peak	AFETY LIMIT						4.0	Phablet W/kg (mW/c	1)				
Uncontrolled Exposure/General Population								4.0 W/kg (mW/g) averaged over 10 grams								

Table 11-27 **UMTS Phablet SAR Data**

Note: Blue entry represent variability measurements.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 68 of 87
202	DOTEST				DEV/ 21 / M

© 2020 PCTEST

	LTE Band 66 Phablet SAR																		
								MEASUR	REMENT	RESULTS	;								
F	REQUENCY	,	Mode	Bandwidth	Maximum	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot #
MHz	c	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number	moundation	112 0120	100 011001	opuong	oluc	buty eyeic	(W/kg)	Factor	(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.19	-0.09	0	18837	QPSK	1	50	2 mm	back	1:1	2.480	1.002	2.485	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.21	0	18837	QPSK	1	50	2 mm	back	1:1	2.430	1.000	2.430	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	23.95	0.04	0	18837	QPSK	1	99	2 mm	back	1:1	2.110	1.059	2.234	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.81	0.08	1	18837	QPSK	50	25	2 mm	back	1:1	2.080	1.094	2.276	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.07	1	18837	QPSK	50	0	2 mm	back	1:1	2.080	1.062	2.209	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	22.82	0.04	1	18837	QPSK	50	25	2 mm	back	1:1	1.810	1.091	1.975	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.83	0.05	1	18837	QPSK	100	0	2 mm	back	1:1	2.000	1.089	2.178	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	-0.15	0	18837	QPSK	1	50	0 mm	front	1:1	1.470	1.000	1.470	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	-0.15	1	18837	QPSK	50	0	0 mm	front	1:1	1.230	1.062	1.306	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.19	0.00	0	18837	QPSK	1	50	2 mm	bottom	1:1	2.770	1.002	2.776	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.10	0	18837	QPSK	1	50	2 mm	bottom	1:1	3.030	1.000	3.030	A40
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	23.95	-0.02	0	18837	QPSK	1	99	2 mm	bottom	1:1	2.410	1.059	2.552	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.81	-0.07	1	18837	QPSK	50	25	2 mm	bottom	1:1	2.230	1.094	2.440	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.00	1	18837	QPSK	50	0	2 mm	bottom	1:1	2.380	1.062	2.528	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	22.82	-0.02	1	18837	QPSK	50	25	2 mm	bottom	1:1	2.070	1.091	2.258	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.83	-0.10	1	18837	QPSK	100	0	2 mm	bottom	1:1	2.300	1.089	2.505	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	-0.17	0	18837	QPSK	1	50	0 mm	right	1:1	0.171	1.000	0.171	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	0.04	1	18837	QPSK	50	0	0 mm	right	1:1	0.133	1.062	0.141	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.11	0	18837	QPSK	1	50	0 mm	left	1:1	0.881	1.000	0.881	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.94	-0.01	1	18837	QPSK	50	0	0 mm	left	1:1	0.744	1.062	0.790	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	-0.11	0	18829	QPSK	1	50	0 mm	back	1:1	1.860	1.096	2.039	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.79	0.09	0	18829	QPSK	1	0	0 mm	back	1:1	1.900	1.099	2.088	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.67	-0.13	0	18829	QPSK	1	50	0 mm	back	1:1	1.720	1.130	1.944	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	0.13	0	18829	QPSK	50	0	0 mm	back	1:1	2.010	1.119	2.249	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.49	0.06	0	18829	QPSK	50	0	0 mm	back	1:1	2.030	1.178	2.391	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.52	0.11	0	18829	QPSK	50	0	0 mm	back	1:1	1.800	1.169	2.104	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.38	0.05	0	18829	QPSK	100	0	0 mm	back	1:1	1.960	1.208	2.368	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.80	-0.02	0	18829	QPSK	1	50	0 mm	bottom	1:1	2.200	1.096	2.411	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.79	0.00	0	18829	QPSK	1	0	0 mm	bottom	1:1	2.400	1.099	2.638	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.67	-0.16	0	18829	QPSK	1	50	0 mm	bottom	1:1	2.060	1.130	2.328	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.2	21.71	0.09	0	18829	QPSK	50	0	0 mm	bottom	1:1	2.310	1.119	2.585	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.49	-0.09	0	18829	QPSK	50	0	0 mm	bottom	1:1	2.460	1.178	2.898	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.2	21.52	-0.07	0	18829	QPSK	50	0	0 mm	bottom	1:1	2.140	1.169	2.502	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.2	21.38	-0.06	0	18829	QPSK	100	0	0 mm	bottom	1:1	2.380	1.208	2.875	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.20	0.04	0	18837	QPSK	1	50	2 mm	bottom	1:1	2.750	1.000	2.750	
		A	NSI / IEEE C95.1		ETY LIMIT									hablet					
	Spatial Peak Uncontrolled Exposure/General Population												4.0 W averaged	/kg (mV					
Uncontrolled Exposure/General Population													averaget		gramo				

Table 11-28 d 66 Phablet SAR

Note: Blue entry represent variability measurements.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 60 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 69 of 87
3 202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

	LTE Band 25 Phablet SAR																		
								MEASUR	REMENT	RESULTS	;								
F	REQUENCY	r	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number	modulution	112 0120	110 011001	opuoling	0.00	Duly 090.0	(W/kg)	Factor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	0.03	0	18829	QPSK	1	50	2 mm	back	1:1	2.530	1.000	2.530	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.63	-0.02	0	18829	QPSK	1	50	2 mm	back	1:1	2.470	1.016	2.510	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.67	0.10	0	18829	QPSK	1	50	2 mm	back	1:1	2.620	1.007	2.638	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.01	1	18829	QPSK	50	0	2 mm	back	1:1	2.070	1.042	2.157	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.44	0.11	1	18829	QPSK	50	25	2 mm	back	1:1	2.020	1.062	2.145	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.28	0.16	1	18829	QPSK	50	25	2 mm	back	1:1	2.090	1.102	2.303	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.38	0.10	1	18829	QPSK	100	0	2 mm	back	1:1	2.040	1.076	2.195	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	-0.13	0	18829	QPSK	1	50	0 mm	front	1:1	1.630	1.000	1.630	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	-0.13	1	18829	QPSK	50	0	0 mm	front	1:1	1.290	1.042	1.344	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	-0.12	0	18829	QPSK	1	50	2 mm	bottom	1:1	2.460	1.000	2.460	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.63	0.09	0	18829	QPSK	1	50	2 mm	bottom	1:1	2.450	1.016	2.489	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.67	-0.08	0	18829	QPSK	1	50	2 mm	bottom	1:1	2.740	1.007	2.759	A41
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	-0.04	1	18829	QPSK	50	0	2 mm	bottom	1:1	2.080	1.042	2.167	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.44	-0.09	1	18829	QPSK	50	25	2 mm	bottom	1:1	1.990	1.062	2.113	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.28	-0.12	1	18829	QPSK	50	25	2 mm	bottom	1:1	2.100	1.102	2.314	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.38	-0.02	1	18829	QPSK	100	0	2 mm	bottom	1:1	2.050	1.076	2.206	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	0.06	0	18829	QPSK	1	50	0 mm	right	1:1	0.080	1.000	0.080	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	0.06	1	18829	QPSK	50	0	0 mm	right	1:1	0.066	1.042	0.069	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.70	-0.21	0	18829	QPSK	1	50	0 mm	left	1:1	0.956	1.000	0.956	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.52	-0.03	1	18829	QPSK	50	0	0 mm	left	1:1	0.765	1.042	0.797	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	-0.14	0	18829	QPSK	1	50	0 mm	back	1:1	1.980	1.127	2.231	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.2	22.41	-0.01	0	18829	QPSK	1	0	0 mm	back	1:1	1.940	1.199	2.326	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.2	22.52	-0.13	0	18829	QPSK	1	50	0 mm	back	1:1	1.880	1.169	2.198	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	-0.12	0	18829	QPSK	50	0	0 mm	back	1:1	2.110	1.091	2.302	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.2	22.80	-0.12	0	18829	QPSK	50	0	0 mm	back	1:1	1.960	1.096	2.148	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.2	22.71	-0.04	0	18829	QPSK	50	0	0 mm	back	1:1	2.050	1.119	2.294	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.48	-0.12	0	18829	QPSK	100	0	0 mm	back	1:1	2.060	1.180	2.431	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.68	-0.21	0	18829	QPSK	1	50	0 mm	bottom	1:1	2.450	1.127	2.761	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.2	22.41	-0.12	0	18829	QPSK	1	0	0 mm	bottom	1:1	2.360	1.199	2.830	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.2	22.52	-0.05	0	18829	QPSK	1	50	0 mm	bottom	1:1	2.420	1.169	2.829	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.82	-0.04	0	18829	QPSK	50	0	0 mm	bottom	1:1	2.560	1.091	2.793	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.2	22.80	-0.10	0	18829	QPSK	50	0	0 mm	bottom	1:1	2.480	1.096	2.718	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.2	22.71	-0.12	0	18829	QPSK	50	0	0 mm	bottom	1:1	2.460	1.119	2.753	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.2	22.48	-0.13	0	18829	QPSK	100	0	0 mm	bottom	1:1	2.580	1.180	3.044	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													hablet					
	Spatial Peak													//kg (m)					
Uncontrolled Exposure/General Population								I					averaged	i over 10	grams				

Table 11-29 nd 25 Phablet SAP

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da an 70 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 70 of 87
© 202	0 PCTEST				REV 21.4 M

- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).
- This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 12. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da za 74 at 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	- 10/05/20 Portable Handset		Page 71 of 87
202	20 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with power class 2 at the available duty factor was additionally performed for the power class 3 configuration with the highest SAR configuration for each exposure conditions. Please see Section 14 for linearity results.

WLAN Notes:

- For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test
 position with the highest extrapolated peak SAR will be used as the initial test position. When reported
 SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test
 positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until
 the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.3 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 72 of 87
1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Fage 72 01 07
20 PCTEST				REV 21 4 M

© 2020 PCTEST

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$$

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 10g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{18.75} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$$

Estimated SAR								
Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Head)	Separation Distance (Body)	Estimated SAR (Body)	Separation Distance (Phablet)	Estimated SAR (Phablet)
	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2480	7.00	5	0.210	10	0.105	5	0.084

Table 12-1

Note:Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 72 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 73 of 87
1202	DODOTEST				PEV 21 / M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

12.3 Head SAR Simultaneous Transmission Analysis

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.327	0.351	0.678
	GSM/GPRS 1900	0.154	0.351	0.505
	UMTS 850	0.320	0.351	0.671
	UMTS 1750	0.175	0.351	0.526
	UMTS 1900	0.262	0.351	0.613
Head SAR	LTE Band 71	0.308	0.351	0.659
Heau SAN	LTE Band 12	0.182	0.351	0.533
	LTE Band 13	0.381	0.351	0.732
	LTE Band 26 (Cell)	0.356	0.351	0.707
	LTE Band 66 (AWS)	0.201	0.351	0.552
	LTE Band 25 (PCS)	0.237	0.351	0.588
	LTE Band 41	0.252	0.351	0.603

 Table 12-2

 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Table 12-3 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.327	0.210	0.537
	GSM/GPRS 1900	0.154	0.210	0.364
	UMTS 850	0.320	0.210	0.530
	UMTS 1750	0.175	0.210	0.385
	UMTS 1900	0.262	0.210	0.472
Head SAR	LTE Band 71	0.308	0.210	0.518
Heau SAN	LTE Band 12	0.182	0.210	0.392
	LTE Band 13	0.381	0.210	0.591
	LTE Band 26 (Cell)	0.356	0.210	0.566
	LTE Band 66 (AWS)	0.201	0.210	0.411
	LTE Band 25 (PCS)	0.237	0.210	0.447
	LTE Band 41	0.252	0.210	0.462

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 74 of 87
© 202	0 PCTEST				REV 21.4 M

09/11/2019

Body-Worn Simultaneous Transmission Analysis 12.4

<u>ultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 c</u>						
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
		1	2	1+2		
	GSM/GPRS 850	0.430	0.452	0.882		
	GSM/GPRS 1900	0.350	0.452	0.802		
	UMTS 850	0.348	0.452	0.800		
	UMTS 1750	1.023	0.452	1.475		
	UMTS 1900	0.854	0.452	1.306		
Body-Worn	LTE Band 71	0.354	0.452	0.806		
Bouy-wom	LTE Band 12	0.439	0.452	0.891		
	LTE Band 13	0.594	0.452	1.046		
	LTE Band 26 (Cell)	0.410	0.452	0.862		
	LTE Band 66 (AWS)	1.082	0.452	1.534		
	LTE Band 25 (PCS)	0.566	0.452	1.018		
	LTE Band 41	0.420	0.452	0.872		

 Table 12-4

 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Table 12-5

Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.430	0.105	0.535
	GSM/GPRS 1900	0.350	0.105	0.455
	UMTS 850	0.348	0.105	0.453
	UMTS 1750	1.023	0.105	1.128
	UMTS 1900	0.854	0.105	0.959
Body-Worn	LTE Band 71	0.354	0.105	0.459
Douy-worn	LTE Band 12	0.439	0.105	0.544
	LTE Band 13	0.594	0.105	0.699
	LTE Band 26 (Cell)	0.410	0.105	0.515
	LTE Band 66 (AWS)	1.082	0.105	1.187
	LTE Band 25 (PCS)	0.566	0.105	0.671
	LTE Band 41	0.420	0.105	0.525

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 75 of 97	
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 75 of 87	
202	2020 PCTEST					

© 2020 PCTEST

Hotspot SAR Simultaneous Transmission Analysis 12.5

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

Exposure Condition			Mode	2G/3G/40 SAR (W/k		R ΣSAR (V	V/kg)	
				1	2	1+2		
			GPRS 850	0.430	0.452	0.882	2	
			GPRS 1900	0.665	0.452	1.117	7	
			UMTS 850	0.452	0.452	0.904	4	
			UMTS 1750	0.905	0.452	1.357	7	
			UMTS 1900	1.155	0.452	See Table	Below	
Hots	spot		LTE Band 71	0.467	0.452	0.919	9	
SA	AR		LTE Band 12	0.512	0.452	0.964	0.964	
		LTE Band 13		0.624	0.452	1.076	1.076	
		LTE Band 26 (Cell)		0.422	0.452	0.874	1	
		LTE Band 66 (AWS)		0.948	0.452	1.400)	
		LTE	Band 25 (PCS)	0.852	0.452	1.304	1	
			LTE Band 41	0.630	0.452	1.082	2	
	Sim	ult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
				1	2	1+2		
			Back	0.468	0.452	0.920		
			Front	0.269	0.452*	0.721		
	Hot	spot	Тор	-	0.452*	0.452		
	SA	٩R	Bottom	1.155	-	1.155		
			Right	0.063	0.265	0.328		
			Left	0.189	-	0.189		

Table 12-6
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 76 of 87
© 202	0 PCTEST		•		REV 21.4 M

09/11/2019

Sinditaleous Transmission Scenario with EndetSoth (notspot at 1.0 cm)						
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)		
		1	2	1+2		
	GPRS 850	0.430	0.105	0.535		
	GPRS 1900	0.665	0.105	0.770		
	UMTS 850	0.452	0.105	0.557		
	UMTS 1750	0.905	0.105	1.010		
	UMTS 1900	1.155	0.105	1.260		
Hotspot	LTE Band 71	0.467	0.105	0.572		
SAR	LTE Band 12	0.512	0.105	0.617		
	LTE Band 13	0.624	0.105	0.729		
	LTE Band 26 (Cell)	0.422	0.105	0.527		
	LTE Band 66 (AWS)	0.948	0.105	1.053		
	LTE Band 25 (PCS)	0.852	0.105	0.957		
	LTE Band 41	0.630	0.105	0.735		

 Table 12-7

 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da na 77 af 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 77 of 87
© 202	20 PCTEST				REV 21.4 M 09/11/2019

12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

Simultaneous Transmission Scenario with Bluetooth (Phablet)								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)				
		1	2	1+2				
	UMTS 1750	2.637	0.084	2.721				
Phablet SAR	UMTS 1900	2.984	0.084	3.068				
	LTE Band 66 (AWS)	3.030	0.084	3.114				
	LTE Band 25 (PCS)	3.044	0.084	3.128				

Table 12-8 Simultaneous Transmission Scenario with Bluetooth (Phablet)

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 70 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 78 of 87
© 202	0 PCTEST				REV 21.4 M

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	Body SAR Measurement variability Results												
	BODY VARIABILITY RESULTS												
Band	FREQUENCY		Mode Service	Service Side Space	Spacing		1st Repeated SAR (1g)	Ratio	2nd Repeated Ratio SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio	
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1720.00	132072	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	back	10 mm	1.080	1.070	1.01	N/A	N/A	N/A	N/A
1900	1907.60	9538	UMTS 1900	RMC	bottom	10 mm	1.080	0.987	1.09	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Bo	dy			
	Spatial Peak					1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population							av	eraged c	ver 1 gram			

Table 13-1Body SAR Measurement Variability Results

Table 13-2 Phablet SAR Measurement Variability Results

	PHABLET VARIABILITY RESULTS												
Band	FREQUE	ENCY	Mode	Service	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)]	(W/kg)		(W/kg)	
1750	1745.00	132322	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	bottom	2 mm	3.030	2.750	1.10	N/A	N/A	N/A	N/A
1900	1907.60	9538	UMTS 1900	RMC	bottom	2 mm	2.810	2.620	1.07	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Pha	blet			
	Spatial Peak						4.0 W/kg (mW/g)						
	Uncontrolled Exposure/General Population						averaged over 10 grams						

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da as 70 at 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 79 of 87
202	0 PCTEST		•		REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

14 ADDITIONAL TESTING PER FCC GUIDANCE

14.1 LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

LTE Band 41 Head Linearity Data								
	LTE Band 41 PC3	LTE Band 41 PC2						
Maximum Allowed Output Power (dBm)	25.2	27.2						
Measured Output Power (dBm)	24.93	26.43						
Measured SAR (W/kg)	0.199	0.211						
Measured Power (mW)	311.17	439.54						
Duty Cycle	63.3%	43.3%						
Frame Averaged Output Power (mW)	196.97	190.32						
% deviation from expected linearity		9.74%						

Table 14-1 LTE Band 41 Head Linearity Data

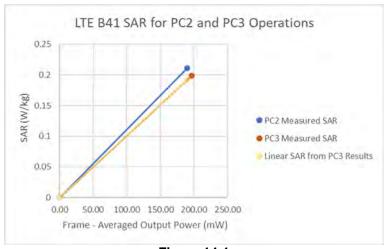


Figure 14-1 LTE Band 41 Head Linearity

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 80 of 87
a 202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

LTE Band 41 PC3	LTE Band 41 PC2							
25.20	27.20							
24.93	26.43							
0.34	0.352							
311.17	439.54							
63.3%	43.3%							
196.97	190.32							
	7.15%							
	LTE Band 41 PC3 25.20 24.93 0.34 311.17 63.3%							

 Table 14-2

 LTE Band 41 Body-Worn Linearity Data

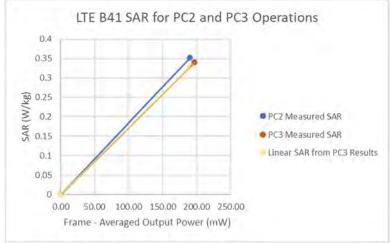


Figure 14-2 LTE Band 41 Body-Worn Linearity

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 81 of 87
© 202	0 PCTEST				REV 21.4 M

LTE Band 41 PC3	LTE Band 41 PC2							
25.20	27.20							
24.93	26.43							
0.516	0.528							
311.17	439.54							
63.3%	43.3%							
196.97	190.32							
	5.90%							
	LTE Band 41 PC3 25.20 24.93 0.516 311.17 63.3%							

Table 14-3 LTE Band 41 Hotspot Linearity Data

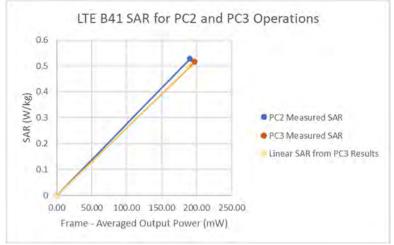


Figure 14-3 LTE Band 41 Hotspot Linearity

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 82 of 87
© 202	0 PCTEST				REV 21.4 M

15 EQUIPMENT LIST

Agient 5933E 3.5mm Standard Calibration NL Agient 87345 Network Analyter Agient 87355 Servarder Network Analyter Agient 187355 Servarder Network Analyter Agient 164438C ESG Vector Signal Generator Agient 16438C Servarder Network Analyter Agient 165315C Workes Communications Test Set Agient 165315C Workes Communications Test Set Agient N4010A Wireless Connectivity Test Set Agient N5182A McK Vector Signal Generator Agient N5182A McK Vector Signal Generator Amplifer Research 155166 Amplifer Anrisu Mc24106A USB Power Sensor	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent 8733E5 Network Analyzer Agilent E4438C S-Parameter Network Analyzer Agilent E4438C ESS Vector Sgnal Generator Agilent National Mathematications Test Set Agilent National Mathematications Test Set Agilent National Mathematications Test Set Agilent NS182A Moti Vector Sgnal Generator Agilent NS182A Moti Vector Sgnal Generator Agilent MS182A Moti Vector Sgnal Generator Agilent MS182A Moti Vector Sgnal Generator Agilent MS182A USB Power Sensor Anritsu MA24106A USB Power Sensor Anritsu MA24106A USB Power Sensor Anritsu MR24106A USB Power Sensor Anritsu MR24106A USB Power Sensor Anritsu MR24106A Power Meter <tr< td=""><td>6/6/2020</td><td>Annual</td><td>6/6/2021</td><td>MY53402352</td></tr<>	6/6/2020	Annual	6/6/2021	MY53402352
Aglent 87515 S-Parameter Network Analyzer Aglent E4438C ESG Vector Signal Generator Aglent ESSISC 8960 Series 10 Wireless Communications Test Set Aglent ESSISC Wireless Communications Test Set Aglent N010A Wireless Communications Test Set Aglent N010A Wireless Connectivity Test Set Aglent N010A USB Power Sensor Arritsu MA24106A USB Power Sensor Arritsu MA24106A USB Power Sensor Arritsu MA24106A USB Power Sensor Arritsu MA2410B Puber Power Sensor Arritsu MT821C Rado Communication Analyzer Aritsu <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>3051A00187</td>	N/A	N/A	N/A	3051A00187
AglentE4438CESG Vector Signal GeneratorAglentES515CB960 Series 10 Wireless Communications Test SetAglentES515CWireless Communications Test SetAglentNADIDAWireless Communications Test SetAglentNADIDAWireless Connectivity Test SetAglentNADIDAWireless Connectivity Test SetAglentNS152AMKG Vector Signal GeneratorAglentNS152AMKG Vector Signal GeneratorAglentNS152AMKG Vector Signal GeneratorAglentNS152AMKG Vector Signal GeneratorAnrisuMA24106AUSB Power SensorAnrisuMA24106AUSB Power SensorAnrisuMA24106AUSB Power SensorAnrisuMA24106AUSB Power SensorAnrisuMA2411BPuble Power SensorAnrisuMA2411BPuble Power SensorAnrisuML2455APower MeterAnrisuMT821CRadio Communication AnalyzerAnrisuMT821CRadio Communication AnalyzerAnrisuMT821C	3/5/2020	Annual	3/5/2021	MY40001472
AglentE4438CESG Vector Signal GeneratorAglentESSSESG Vector Signal GeneratorAglentESSSECWireless Communications Test SetAglentESSSECWireless Communications Test SetAglentN4010AWireless Connectivity Test SetAglentN4010AWireless Connectivity Test SetAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAmistiffer Research155166AmpliferAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA2410AUSB Power SensorAnritsuMA2410BPulse Power SensorAnritsuMA2410BPulse Power SensorAnritsuM4245APower MeterAnritsuM1285CRado Communication AnalyzerAnritsuM18821CRado Communication AnalyzerAnritsuM18821CRado Communication AnalyzerAnritsuM18821CRado Communication AnalyzerAnritsuM18821CRado Communication AnalyzerAnritsuM18821CRado Communication AnalyzerAnritsuM1821CRado Communication AnalyzerAnritsuM1821CRado Communication AnalyzerControl Company4040Therm./ Clock/ Humidity MontorControl Company4040 <td< td=""><td>12/31/2019</td><td>Annual</td><td>12/31/2020</td><td>US39170122</td></td<>	12/31/2019	Annual	12/31/2020	US39170122
Aglent ES515C B960 Series 10 Wireless Communications Test Set Aglent ES515C Wireless Communications Test Set Aglent N4010A Wireless Communications Test Set Aglent N4010A Wireless Connectivity Test Set Aglent N5182A MKG Vector Sgnal Generator Amplifer Research 15516G Amplifer Anritsu MA24106A USB Power Sensor Anritsu MA24106A USB Power Sensor Anritsu MA24106A USB Power Sensor Anritsu MA24106A Power Meter Anritsu MA28210C Radio Communication Analyzer	12/13/2019	Annual	12/13/2020	MY42082659
Aglent ESSISC Wireless Communications Test Set Aglent N4010A Wireless Connectivity Test Set Aglent N4010A Wireless Connectivity Test Set Aglent N5182A MKG Vector Sgnal Generator Arnisu MA24106A USB Power Sensor Anrisu MA24106A USB Power Sensor Anrisu MA24106A USB Power Sensor Anrisu MA24106A DSB Power Sensor Anrisu MA24106A DSB Power Sensor Anrisu ML2495A Power Meter Anrisu ML2495A Power Meter Anrisu MT8821C Rado Communication Analyzer Anrisu MT8821C Rado Communication Analyzer Anrisu MT8821C Rado Communication Analyzer Anrisu MT8821C Rado Communication Analy	3/8/2019	Biennial	3/8/2021	MY42082385
AglentES515C.Wireless Connectivity Test SetAglentN4010AWireless Connectivity Test SetAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAmpliffer Research155166AmplifferAnrisuMA24106AUSB Power SensorAnrisuMA24106AUSB Power SensorAnrisuMA24106AUSB Power SensorAnrisuMA24106AUSB Power SensorAnrisuMA24118Pulse Power SensorAnrisuMA24118Pulse Power SensorAnrisuML2495APower MeterAnrisuML2495APower MeterAnrisuMT8821CRado Communication AnalyzerAnrisuMT8821CRado Communication AnalyzerAnrisuMT8821CRado Communication AnalyzerAnrisuMT8821CRado Communication AnalyzerControl Company4040Therm./ Clock/ Hunidity MonitorControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerKeyight Technologies85033EStandard Mechanical Calibration Kit (DC to 304Hz, 3.5mn)Keyight TechnologiesNK02ADC Power SupplyKeyight TechnologiesNK02ADC Power SupplyKeyight TechnologiesNK02ADC Power SupplyKeyight Technologies </td <td>2/10/2020</td> <td>Annual</td> <td>2/10/2021</td> <td>GB42230325</td>	2/10/2020	Annual	2/10/2021	GB42230325
AglentN4010AWireless Connectivity Test SetAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAmplifer Research1551G6AmpliferAmplifer Research1551G6AmpliferArritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106APower MeterAnritsuMA2410BPower MeterAnritsuM12405APower MeterAnritsuM12821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerControl Company4400Therm./ Clock/ Hunidity MonitorControl Company4432Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerMin-CircuitsBW-N2005Power AttenuatorMin-Circuits <td>2/26/2020</td> <td>Annual</td> <td>2/26/2021</td> <td>GB44400860</td>	2/26/2020	Annual	2/26/2021	GB44400860
AglentN4010AWireless Connectivity Test SetAglentN5182AMKG Vector Signal GeneratorAglentN5182AMKG Vector Signal GeneratorAmplifer Research1551G6AmpliferAmplifer Research1551G6AmpliferArritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106APower MeterAnritsuMA2410BPower MeterAnritsuM12405APower MeterAnritsuM12821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerAnritsuMT8821CRado Communication AnalyzerControl Company4400Therm./ Clock/ Hunidity MonitorControl Company4432Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerMin-CircuitsBW-N2005Power AttenuatorMin-Circuits <td>1/14/2020</td> <td>Triennial</td> <td>1/14/2023</td> <td>GB43304447</td>	1/14/2020	Triennial	1/14/2023	GB43304447
Aglent NYIS Vector Signal Generator Aglent NSIS2A MXG Vector Signal Generator Amplifer Research 155166 Amplifer Arnitsu MA24106A USB Power Sensor Anritsu MA2495A Power Meter Anritsu ML2495A Power Meter Anritsu MT821C Radio Communication Analyzer Control Company 4440 Therm./ Clock/ Humidity Monitor <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>GB46170464</td>	N/A	N/A	N/A	GB46170464
Agilent NSI 82A MXG Vector Signal Generator Amplifer Research 155166 Amplifer Anritsu MA24106A USB Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu MA2495A Power Meter Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm, / Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Keyight Technologies SNP302A MWA Signal Analyzer Mini-Circuits SUP-X400* Low Pass Filter DC to 200 MHz Mini-Circuits	N/A	N/A	N/A	GB44450273
AgilentNSI 82AMKG Vector Signal GeneratorAmplifier Research155166AmplifierAmplifier Research155166AmplifierAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA2411BPulse Power SensorAnritsuMA24126APower MeterAnritsuM12495APower MeterAnritsuMT8820CRadio Communication AnalyzerAnritsuMT8821CRadio Communication AnalyzerAnritsuMT8821CRadio Communication AnalyzerAnritsuMT8821CRadio Communication AnalyzerControl Company4040Therm./ Clock/ Humidity MonitorControl Company4432Long Stem ThermometerControl Company4352Long Stem ThermometerControl Company4352Long Stem ThermometerKeyight TechnologiesMTN6705BDC Power SupplyKeyight TechnologiesStandard Mechanical Calibration KR (DC to 9GHz, 3.5mm)Keyight TechnologiesMO20AMKA Signal AnalyzerMin-CircuitsBW-NE0W5+Gid AttenuatorMin-CircuitsBW-NE0W5+DC to Wes Silter Cto 1000 MHzMin-CircuitsNP-2980+Low Pass Filter Cto 1000 MHzMin-CircuitsNP-2096-Budretional CouplerNarda4017C-64.8 GHz SM 6 dB Directional CouplerNard	2/19/2020	Annual	2/19/2021	MY47420651
Amplifier Research 155166 Amplifier Arritsu MA24106A USB Power Sensor Anritsu MA24118 Pulse Power Sensor Anritsu MA24118 Pulse Power Sensor Anritsu MA24106A Ballo Communication Analyzer Anritsu M12495A Power Meter Anritsu M12820C Radio Communication Analyzer Anritsu M1821C Radio Communication Analyzer Anritsu M1821C Radio Communication Analyzer Anritsu M1821C Radio Communication Analyzer Control Company 4040 Therm. / Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Keysight Technologies S8033E Standard Mechanical Calibration Ki, DC to 96Hz, 3.5mm) Keysight Technologies M2720 Dual Directional Coupler Keysight Technologies M2720 Dual Attennator	5/13/2020	Annual	5/13/2021	MY47420603
Arritsu MA24106A USB Power Sensor Anritsu MA24118 Pulse Power Sensor Anritsu MA24118 Pulse Power Sensor Anritsu MA24118 Pulse Power Sensor Anritsu MI2495A Power Meter Anritsu MI2820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Anritsu MT821C Radio Communication Analyzer Control Company 4040 Therm./ Clack/ Humidity Monitor Control Company 4352 Long Stem Thermometer Keysight Technologies Standard Mechanical Calibration Kit (DC to 9GHt, 3.5mm) Keysight Technologies NF0705B DC Power Suplay Keysight Technologies<	CBT	N/A	CBT	353468
AnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA24106AUSB Power SensorAnritsuMA2411BPulse Power SensorAnritsuMA2411BPulse Power SensorAnritsuMA2495APower MeterAnritsuML2495APower MeterAnritsuMT821CRadio Communication AnalyzerAnritsuMT821CRadio Communication AnalyzerAnritsuMT821CRadio Communication AnalyzerAnritsuMT821CRadio Communication AnalyzerAnritsuMT821CRadio Communication AnalyzerAnritsuMT821CRadio Communication AnalyzerControl Company4040Therm, / Clock/ Humidity MonitorControl Company4040Therm, / Clock/ Humidity MonitorControl Company4352Long Stem ThermometerKeysight TechnologiesAT/N6705BDC Power SupplyKeysight TechnologiesAT/N6705BDC Power SupplyKeysight TechnologiesN9020AMKX Signal AnalyzerMini-CircuitsSW-N20W5Power SapplyMini-CircuitsNLP-1200+Low Pass Filter Dc to 200 MHzMini-CircuitsNLP-1200+Low Pass FilterMini-CircuitsNLP-1200+Low Pass Filter Dc to 1000 MHzMini-CircuitsNLP-1200+Low Pass FilterMini-CircuitsNLP-1200+Low Pass FilterNarda4014C-64-8 GHZ SMA 6 GB Directional CouplerNardaM220-5Bidirectional Coupler	CBT	N/A	CBT	353469
Anritsu MA24106A USB Power Sensor Anritsu MA24106A USB Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu ML2495A Power Meter Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Technologies X1/K0705B DC Power Synply Keysight Technologies NK0705D DC to 16 GH Attenuator Mini-Circuits BW-1200+ Low Pass Filter DC to 200 MHz M	10/10/2019	Annual	10/10/2020	1344545
Anritsu MA24106A USB Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu MA2411B Pulse Power Sensor Anritsu ML2495A Power Meter Anritsu ML2495A Power Meter Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Keysight Tchnologies Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) Keysight Technologies MS020A MMXA Signal Analyzer Mini-Circuits SW-N60V5+ 6dB Attenuator Mini-Circuits SW-N20W5 Power Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz <td>10/10/2019</td> <td>Annual</td> <td>10/10/2020</td> <td>1344559</td>	10/10/2019	Annual	10/10/2020	1344559
Anritsu MA24118 Pulse Power Sensor Anritsu MA24118 Pulse Power Sensor Anritsu ML2495A Power Meter Anritsu ML2495A Power Meter Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm, / Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Technologies AT/N67058 DC Power Supply Keysight Technologies N107058 DC Power Supply Mini-Circuits SUP-2400+ Low Pass Filter DC to 2000 MHz Mini-Circuits NLP-1200+ Low Pass Filter DC to 2000 MHz Mini-Circuits NLP-1200+ Low Pass Filter DC to 2000 MHz Mini-Circuits NLP-250+ Low Pass Filter DC to 2000	12/9/2019	Annual	12/9/2020	1349503
Anritsu MA2411B Pulse Power Sensor Anritsu ML2495A Power Meter Anritsu ML2495A Power Meter Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm./Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Frohogies X1/K0705B DC Power Supply Keysight Technologies NMS/K0705B DC Power Supply Keysight Technologies NWA Signal Analyzer Mini-Circuits SW-N20W5 Dever Attenuator Mini-Circuits BW-N20W5 Mini-Circuits NLP-200+ Low Pass Filter DC to 1000 MHz Mini-Circuits BW-N20W5+ DC to 3674 Eventional Coupl	12/9/2019	Annual	12/9/2020	1344554
Anritsu ML2495A Power Meter Anritsu ML2495A Power Meter Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm, / Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Technologies Standard Mechanical Calibration Kin (Clo 19 6Hz, 3.5mm) Keysight Technologies Standard Mechanical Calibration Kin (Clo 19 6Hz, 3.5mm) Keysight Technologies StP.2400+ Low Pass Filter Dt 10 60 Hz Mini-Circuits BW-N6W5+ GdB Attenuator Mini-Circuits BW-N20W5 Power Attenuator Mini-Circuits NLP.1200+ Low Pass Filter Dt to 270 MHz Narda 4014C-6 4-8 GHz	12/4/2019	Annual	12/4/2020	1126066
Anritsu ML2495A Power Meter Anritsu MT820C Radio Communication Analyzer Anritsu MT821C Radio Communication Analyzer Control Company 4040 Therm./Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Technologies X1076705 DC Power Supply Keysight Technologies N9020A MXAS Signal Analyzer Min-Circuits SUP-2400+ Low Pass Filter Mini-Circuits SUP-2400+ Low Pass Filter DC to 1000 MHz Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NUP-230+ Low Pass Filter DC to 200 MHz Mini-Circuits NUP-320+ Low Pass Filter DC to 200 MHz Narda 4014C-6 4 -8	1/21/2020	Annual	1/21/2021	1207470
Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4940 Therm./ Clock/ Humidity Monitor Control Company 4932 Long Stem Thermometer Keysight Tchnobgies 85033E Standard Mechanical Calibration Kit (DC to 96Hz, 3.5mn) Keysight Tchnobgies NR0750B Dotal Directional Coupler Mini-Cricuits SW-N6W5+ 6d8 Attenuator Mini-Cricuits SW-N20W5 Power Attenuator Mini-Cricuits NLP-1200+ Low Pass Filter Dt to 2700 MHz Marid 4014-6- 4.8 Gitz SMA 6 dB Directional Coupler Narda 4072-3 Attenuator (3dB) Pasternack NC:100 Torque Wrench Pasternack NC	11/15/2019	Annual	11/15/2020	1039008
Anritsu MT8820C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Keysight T27D Dual Directional Coupler Keysight Technologies 85033E Standard Mechanical Calibration Kit (DC to 96Hz, 3.5mn) Keysight Technologies NRA502B Dever Supply Keysight Technologies NRA502B Dever Attenuator Mini-Circuits BW-N6W5+ 6d8 Attenuator Mini-Circuits BW-N20W5+ De to 3 Gitt Percision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 2000 MHz Narda 4014-6- 4.8 Gitt SMA 6 dB Directional Coupler Narda M22-3 Attenuator (3d8) Pastemack	12/17/2019	Annual	12/17/2020	941001
Anritsu MTB821C Radio Communication Analyzer Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Technologies NTA67058 DC Power Supply Keysight Technologies NTA67058 DC Power Supply MCL BW-N6W5+ 6dB Attenuator Mini-Circuits SLP-2400+ Low Pass Filter DC to 200 MHz Mini-Circuits NLP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NLP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NLP-200+ Low Pass Filter DC to 200 MHz Narda 4014C-6 4 - 8 GHz SMA 6d Directional Coupler Narda BW-53W2	9/17/2020	Annual	9/17/2021	6201300731
Anritsu MT8821C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm. / Clock/ Humidity Monitor Control Company 4040 Therm. / Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Tchnobgies 85033E Standard Mechanical Calibration Kit (DC to 96Hz, 3.5mm) Keysight Tchnobgies NMO505B DC Power Supply Keysight Tchnobgies NMO505B DC Power Supply Mini-Circuits SW-N40W5 Power Attenuator Mini-Circuits BW-N20W5 DC to 18 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NLP-2800+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP.2950+ Low Pass Filter DC to 2700 MHz Narda 4014C-6 4 8 GHz SMA 6 dB Directional Coupler Narda BV-3022 Attenuator (3dB) Narda BV-2208-6 Bidirectional Coupler	10/2/2019	Annual	10/2/2020	6201664756
Anritsu MT8821C Radio Communication Analyzer Anritsu MT8821C Radio Communication Analyzer Control Company 4040 Therm. / Clock/ Humidity Monitor Control Company 4040 Therm. / Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Technologies Standard Mechanical Calibration Kill (Dt to 96Hz, 3.5mm) Keysight Technologies MO202A MXAS Signal Analyzer MCL BW-N6W5+ 6dB Attenuator Mini-Circuits SUP-2400+ Low Pass Filter Mini-Circuits NUP-200+ Low Pass Filter Dc 100 MHz Mini-Circuits NUP-200+ Low Pass Filter Dc 100 MHz Narda 4014C-6 4-8 GHz SMA 6 dB Directional Coupler Narda BW-N3202 Attenuator (3dB) Narda BW-33W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PE220+10 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Test	11/22/2019	Annual	11/22/2020	6262044715
Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Tchnobgies 85033E Standard Mechanical Calibration Kit (DC to Softz, 3.5mn) Keysight Tchnobgies AT/N6705B DC Power Supply Keysight Tchnobgies NMA Signal Analyzer MCL BW-N6W5+ 6dB Attenuator Mini-Circuits BW-N20W5 Power Supply Mini-Circuits BW-N20W5 DC to 18 CH+Precision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP-2800+ Low Pass Filter DC to 1000 MHz Narda 4014C-6 4.8 GHz SMA 6 dB Directional Coupler Narda 4014C-6 A tenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PE208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Rado Communication Tester Rohde & Schwarz CMW500 <td>2/22/2020</td> <td>Annual</td> <td>2/22/2021</td> <td>6261895213</td>	2/22/2020	Annual	2/22/2021	6261895213
Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Tchnobgies 85033E Standard Mechanical Calibration Kit (DC to Softz, 3.5mn) Keysight Tchnobgies AT/N6705B DC Power Supply Keysight Tchnobgies NMA Signal Analyzer MCL BW-N6W5+ 6dB Attenuator Mini-Circuits BW-N20W5 Power Supply Mini-Circuits BW-N20W5 DC to 18 CH+Precision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP-2800+ Low Pass Filter DC to 1000 MHz Narda 4014C-6 4.8 GHz SMA 6 dB Directional Coupler Narda 4014C-6 A tenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PE208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Rado Communication Tester Rohde & Schwarz CMW500 <td>3/10/2020</td> <td>Annual</td> <td>3/10/2021</td> <td>6200901190</td>	3/10/2020	Annual	3/10/2021	6200901190
Control Company 4040 Therm./ Clock/ Humidity Monitor Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight 7720 Dual Directional Coupler Keysight Technologies AT/N67058 DC Power Supply Keysight Technologies N9020A MKA Signal Analyzer MCL BW-N6WS+ 6dB Attenuator Mini-Circuits SUP-2400+ Low Pass Filter Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 2700 MHz Mini-Circuits NLP-1200+ Low Pass Filter DC to 2700 MHz Mini-Circuits NLP-1200+ Low Pass Filter DC to 2700 MHz Narda 4014C-6 4-8 GHz SMA 6d Directional Coupler Narda BW-S3W2 Attenuator (3dB) Narda BW-S3W2 Attenuator (3dB) Narda BW-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC200 Radio Communication Tester <td>10/9/2018</td> <td>Biennial</td> <td>10/9/2020</td> <td>181647811</td>	10/9/2018	Biennial	10/9/2020	181647811
Control Company 4352 Long Stem Thermometer Control Company 4352 Long Stem Thermometer Keysight Tchnologies 85033E Standard Mechanical Calibration Kit (DC to 96Hr, 3.5mm) Keysight Tchnologies NKA Signal Analyzer MCL MinCircuits SIP-2460+ Low Pass Filter MinCircuits SIP-2400+ Low Pass Filter Mini-Circuits BW-N20W5 Power Attenuator Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fiked 20 dB Attenuator Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fiked 20 dB Attenuator Mini-Circuits NLP-2200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP-2200+ Low Pass Filter DC to 1200 MHz Narda 4014C-6 4 & 8 GHz SMA 6 dB Directional Coupler Narda 804-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester	10/9/2018	Biennial	10/9/2020	181647802
Keysight 7720 Dual Directional Coupler Keysight Technologies Standard Mechanical Calibration Kit (DC to 95Hz, 3.5mm) Keysight Technologies N9020A MXX Signal Analyzer MCL BW-N6WS+ 6dB Attenuator Mini-Circuits SUP-2400+ Low Pass Filter Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Narda 4014C-6 4-8 GHz SMA 6d B Directional Coupler Narda 4014C-6 4-8 GHz SMA 6d B Directional Coupler Narda BW-53W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC100 Torque Wrench Pasternack PE2209-10 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZMLE6	6/26/2019	Biennial	6/26/2021	192282744
Keysight 7720 Dual Directional Coupler Keysight Technologies Standard Mechanical Calibration Kit (DC to 95Hz, 3.5mm) Keysight Technologies N9020A MXX Signal Analyzer MCL BW-N6WS+ 6dB Attenuator Mini-Circuits SUP-2400+ Low Pass Filter Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NUP-1200+ Low Pass Filter DC to 200 MHz Narda 4014C-6 4-8 GHz SMA 6d B Directional Coupler Narda 4014C-6 4-8 GHz SMA 6d B Directional Coupler Narda BW-53W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC100 Torque Wrench Pasternack PE2209-10 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZMLE6	6/26/2019	Biennial	6/26/2021	192282739
Keysight Technologies 85033E Standard Mechanical Calibration Kit (DC to Seltz, 3.5mm) Keysight Technologies N4706705B DC Power Supply Keysight Technologies N9020A MMA Signal Analyzer MCL BW-N6W5+ 6dB Attenuator Mini-Circuits SIP-2400+ Low Pass Filter Mini-Circuits BW-N20W5+ DC to 15 GH-Precision Fixed 20 dB Attenuator Mini-Circuits NIP-1200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NIP-2300+ Low Pass Filter DC to 1000 MHz Narda 4014C-6 4.8 GH 25M 6 dB Directional Coupler Narda 4014C-6 4.8 GH 25M 6 dB Directional Coupler Narda BW-SW2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidirectional Coupler Rohde & Schwarz CMM500 Rado Communication Tester Rohde & Schwarz CMM500 Rado Communication Tester Rohde & Schwarz CMM500 Rado Communication Tester Rohde & Schwarz	CBT	N/A	CBT	MY52180215
Keysight Technologies AT/N67058 DC Power Supply Keysight Technologies N9020A MXX Signal Analyzer MCL BV-N6W5+ 6dB Attenuator Mini-Circuits SLP-2400+ Low Pass Filter Mini-Circuits BW-N20W5+ DC to 16 GHz Precision Fixed 20 dB Attenuator Mini-Circuits BW-N20W5+ DC to 16 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 2700 MHz Maria MIT-2-3 Attenuator (3dB) Narda 4014C-6 4-8 GHz SMA 6B Directional Coupler Narda BW-53W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidirectional Coupler Pasternack PE2208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D15502 1750 MHz SAR Dipole SPEAG D15502 1750 MHz SAR Dipole<	9/1/2020	Annual	9/1/2021	MY53401181
Keysight Technologies N9020A WMA Signal Analyzer MCL BW-N6WS+ 66B Attenuator Mini-Circuits SLP-2400+ Low Pass Filter Mini-Circuits BW-N20WS Dever Attenuator Mini-Circuits BW-N20WS+ DC to 18 GH-Precision Fiked 20 dB Attenuator Mini-Circuits BW-N20WS+ DC to 18 GH-Precision Fiked 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP-2350+ Low Pass Filter DC to 12001 MHz Narda 4014C-6 4 - 8 GH+SMA 6 dB Directional Coupler Narda 4014C-6 4 - 8 GH+SMA 6 dB Directional Coupler Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2206-6 Bidifrectional Coupler Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz ZMLE6 Vector Network Analyzer SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1350V2	N/A	N/A	N/A	MY53001315
MCL BW-N6W5+ 6dB Attenuator Mini-Circuits SIP-2400+ Low Pass Filter Mini-Circuits BW-N20W5 Power Attenuator Mini-Circuits BW-N20W5+ DC to 18 GH2 Precision Fixed 20 dB Attenuator Mini-Circuits NLP-200+ Low Pass Filter DC to 00 MHz Mini-Circuits NLP-2950+ Low Pass Filter DC to 00 MHz Marda 4014C-6 4 - 8 GH2 SMA 6 dB Directional Coupler Narda 4014C-6 4 - 8 GH2 SMA 6 dB Directional Coupler Narda BW-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-200 Bidirectional Coupler Pasternack PE2209-10 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D1750/2 1750 MHz SAR Dipole SPEAG D1750/2 1750 MHz SAR Dipole SPEAG D1250/2 2600 MHz SAR Dipole	8/14/2020	Annual	8/14/2021	US46470561
MinClrcuits SLP-2400+ Low Pass Filter Min-Circuits BW-N20W5+ DC to 18 GHz Precision Fiked 20 dB Attenuator Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fiked 20 dB Attenuator Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fiked 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 200 MHz Mini-Circuits NLP-2950+ Low Pass Filter DC to 200 MHz Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler Narda 8W-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D35V2 835 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D150V2 1900 MHz SAR Dipole SPEAG D150V2 <t< td=""><td>CBT</td><td>N/A</td><td>CBT</td><td>1139</td></t<>	CBT	N/A	CBT	1139
Mini-Circuits BW-N20WS Power Attenuator Mini-Circuits BW-N20WS+ DC to 18 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter Dc to 200 MHz Mini-Circuits NLP-250+ Low Pass Filter Dc to 200 MHz Narda 4014C-6 4.8 GHz SMA 6 dB Directional Coupler Narda 4014C-6 4.8 GHz SMA 6 dB Directional Coupler Narda BW-SW2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PC206-6 Bidfrectional Coupler Pasternack PC208-6 Bidfrectional Coupler Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz	CBT	N/A	CBT	R8979500903
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz Narda 4014C-6 4 - 8 GHz SMA 6 B Directional Coupler Narda 4072-3 Attenuator (3dB) Narda BW-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidirectional Coupler Pasternack PE2208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZMLE6 Vector Network Analyzer SPEAG D135V2 835 MHz SAR Dipole SPEAG D135V2 835 MHz SAR Dipole SPEAG D1250V2 1750 MHz Dipole SPEAG D1260V2 2450 MHz SAR Dipole SPEAG D1260V2 2450 MHz SAR Dipole SPEAG D1260V2 1750 MHz SAR Dipole SPEAG	CBT	N/A	CBT	1226
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz Narda 4014C-6 4.8 GHz SMA 6 dB Directional Coupler Narda 4072-3 Attenuator (3dB) Narda 8072-3 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidfrectional Coupler Pasternack PE2208-6 Bidfrectional Coupler Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz CMWS00 Radio C	CBT	N/A	CBT	N/A
Mini-Circuits NLP.2950+ Low Pass Filter DC to 2700 MHz Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler Narda 4072-3 Attenuator (3dB) Narda BW-S3W2 Attenuator (3dB) Pastemack NC-100 Torque Wrench Pastemack NC-100 Torque Wrench Pastemack PE2208-6 Bidirectional Coupler Pastemack PE2208-0 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D750V3 750 MHz SAR Dipole SPEAG D150V2 1750 MHz S	CBT	N/A	CBT	N/A
Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler Narda 4772-3 Attenuator (3dB) Narda BW-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2209-10 Bidirectional Coupler Pasternack PE2209-10 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D835V2 835 MHz SAR Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole <	CBT	N/A	CBT	N/A
Narda 472-3 Attenuator (3dB) Narda BW-SW2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidirectional Coupler Pasternack PE2208-6 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz DMM500 Radio Communication Tester Rohde & Schwarz DMM500 Radio Communication Tester SPEAG D750V3 750 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D1260V2	CBT	N/A	CBT	N/A
Narda BW-S3W2 Attenuator (3dB) Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidfrectional Coupler Pasternack PE2208-6 Bidfrectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D750/3 750 MHz Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D135V2 1750 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D1250V2 2450 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG <td>CBT</td> <td>N/A</td> <td>CBT</td> <td>9406</td>	CBT	N/A	CBT	9406
Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidfrectional Coupler Pasternack PE2208-10 Bidfrectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMU500 Radio Communication Tester SPEAG D750/3 750 MHz SAR Dipole SPEAG D150/2 1750 MHz SAR Dipole SPEAG D150/2 <td>CBT</td> <td>N/A</td> <td>CBT</td> <td>120</td>	CBT	N/A	CBT	120
Pasternack NC-100 Torque Wrench Pasternack PE2208-6 Bidfrectional Coupler Pasternack PE2208-10 Bidfrectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMU500 Radio Communication Tester SPEAG D750/3 750 MHz SAR Dipole SPEAG D150/2 1750 MHz SAR Dipole SPEAG D150/2 <td>8/4/2020</td> <td>Biennial</td> <td>8/4/2022</td> <td>N/A</td>	8/4/2020	Biennial	8/4/2022	N/A
Pastemack PE2208-6 Biddrectional Coupler Pastemack PE2209-10 Biddrectional Coupler Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz ZMUS00 Radio Communication Tester Rohde & Schwarz ZMUE6 Vector Network Analyzer SPEAG D050V3 750 MHr Dipole SPEAG D835V2 835 MHr SAR Dipole SPEAG D150V2 1750 MHr SAR Dipole SPEAG D150V2 1900 MHr SAR Dipole SPEAG D150V2 2450 MHr SAR Dipole SPEAG D150V2 1750 MHr SAR Dipole SPEAG D150V2 1750 MHr SAR Dipole SPEAG D1750V2 1750 MHr SAR Dipole	8/4/2020	Biennial	8/4/2022	1445
Pastemack PE2209-10 Bidirectional Coupler Rohde & Schwarz CMW500 Radio Communication Tester SPEAG D750V3 750 MHz Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1250V2 2450 MHz SAR Dipole SPEAG D1260V2 2450 MHz SAR Dipole SPEAG D1250V2 1750 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1765V2 1765 MHz SAR Dipole SPEAG D1765V2 1765 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe	CBT	N/A	CBT	N/A
Bodie & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz CMW500 Radio Communication Tester Rohde & Schwarz ZMU500 Radio Communication Tester Rohde & Schwarz ZMUE6 Vector Network Analyzer SPEAG D750/3 750 MHz Dipole SPEAG D835/2 835 MHz SAR Dipole SPEAG D150/2 1750 MHz SAR Dipole SPEAG D150/2 1750 MHz SAR Dipole SPEAG D150/2 2600 MHz SAR Dipole SPEAG D150/2 2600 MHz SAR Dipole SPEAG D150/2 1750 MHz SAR Dipole	CBT	N/A	CBT	N/A
Bodke & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz CMWS00 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D750V3 750 MHz Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1760 MHz SAR Dipole SPEAG D1750V2 1760 MHz SAR Dipole SPEAG D1750V2 1900 MHz SAR Dipole SPEAG D1750V2 1900 MHz SAR Dipole SPEAG D1760V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 <td>10/4/2019</td> <td>Annual</td> <td>10/4/2020</td> <td>166462</td>	10/4/2019	Annual	10/4/2020	166462
Bolde & Schwarz CKMV500 Radio Communication Tester Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D750V3 750 MHz Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D1750V2 1750 MHz Dipole SPEAG D1750V2 1750 MHz Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2450V2 2600 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe <td>10/15/2019</td> <td>Annual</td> <td>10/15/2020</td> <td>109366</td>	10/15/2019	Annual	10/15/2020	109366
Rohde & Schwarz ZNLE6 Vector Network Analyzer SPEAG D750V3 750 MHz Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2600V2 2600 MHz SAR Dipole SPEAG D2600V2 2600 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1900 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe <t< td=""><td>3/27/2020</td><td>Annual</td><td>3/27/2021</td><td>128633</td></t<>	3/27/2020	Annual	3/27/2021	128633
SPEAG D750V3 750 MHz Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D835V2 835 MHz SAR Dipole SPEAG D150V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1450V2 2450 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D1500V2 1750 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1765V2 1765 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG EX3DV4	10/11/2019	Annual	10/11/2020	101307
SPEAG D835V2 835 MH2 SAR Dipole SPEAG D1750V2 1350 MH2 SAR Dipole SPEAG D1750V2 1750 MH2 SAR Dipole SPEAG D1900V2 1300 MH2 SAR Dipole SPEAG D2500V2 2450 MH2 SAR Dipole SPEAG D2500V2 2600 MH2 SAR Dipole SPEAG D1750V2 1750 MH2 SAR Dipole SPEAG D1900V2 1900 MH2 SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG <td< td=""><td>3/11/2020</td><td>Annual</td><td>3/11/2021</td><td>101507</td></td<>	3/11/2020	Annual	3/11/2021	101507
SPEAG D835V2 835 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2600V2 2600 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1755 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1765V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Prob	3/13/2019	Biennial	3/13/2021	4d047
SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2500V2 2600 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1765 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG DAE4 Day Data Acquisitio	1/13/2020	Annual	1/13/2021	4d132
SPEAG D1900V2 1900 MHz SAR Dipole SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2600V2 2600 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquistion Electronics	10/22/2018	Biennial	10/22/2020	1150
SPEAG D2450V2 2450 MHz SAR Dipole SPEAG D2600V2 2600 MHz SAR Dipole SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1750V2 1755 MHz SAR Dipole SPEAG D1705V2 1756 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG DAE4 Day Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data	2/21/2019	Biennial	2/21/2021	5d148
SPEAG D2600V2 2600 MH: SAR Dipole SPEAG D1750V2 1750 MH: SAR Dipole SPEAG D1755V2 1765 MH: SAR Dipole SPEAG D1900V2 1900 MH: SAR Dipole SPEAG D1900V2 1900 MH: SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisiti	8/16/2018	Triennial	8/16/2021	981
SPEAG D1750V2 1750 MHz SAR Dipole SPEAG D1765V2 1765 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	6/14/2019	Biennial	6/14/2021	1064
SPEAG D1765V2 1765 MHz SAR Dipole SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG DAEA Day Data Acquisition Electronics SPEAG DAEA Dasy Data Acquisition Electronics SPEAG DAEA Dasy Data Acquisition Electronics SPEAG DAEA Dasy Data Acquisition Electronics	5/12/2020	Annual	5/12/2021	1148
SPEAG D1900V2 1900 MHz SAR Dipole SPEAG EX3DV4 SAR Probe SPEAG Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics	5/23/2018	Triennial	5/23/2021	1008
SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	10/23/2018	Biennial	10/23/2020	5d080
SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	6/23/2020	Annual	6/23/2021	7406
SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	1/21/2020	Annual	1/21/2021	3589
SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	7/31/2020	Annual	7/31/2021	7308
SPEAG EX3DV4 SAR Probe SPEAG DADV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	9/19/2019	Annual	9/19/2020	7551
SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	12/11/2019	Annual	12/11/2020	7570
SPEAG EX3DV4 SAR Probe SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	4/21/2020	Annual	4/21/2021	7357
SPEAG EX3DV4 SAR Probe SPEAG DAE4 Dasy Data Acquisition Electronics	12/11/2019	Annual	12/11/2020	7571
SPEAG DAE4 Dasy Data Acquisition Electronics	6/23/2020	Annual	6/23/2021	7409
SPEAG DAE4 Dasy bata Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics	5/14/2020	Annual	5/14/2021	1583
SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAE4 Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558
SPEAG DAE4 Dasy Data Acquisition Electronics	8/11/2020	Annual	8/11/2021	1558
	9/17/2019	Annual	9/17/2020	1450
DAE4 Dasy Data Acquisition Electronics	3/12/2020	Annual	3/12/2020	1333
		Annual		1368
	4/15/2020 12/5/2019	Annual	4/15/2021 12/5/2020	1407
	6/18/2020	Annual	6/18/2021	1533
SPEAG DAE4 Dasy Data Acquisition Electronics SPEAG DAK-3.5 Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1334

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each equipment item was used solely within its respective calibration period.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT		Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 92 of 97
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 83 of 87
202	O DOTEST				DEV/ 21 / M

© 2020 PCTEST

MEASUREMENT UNCERTAINTIES 16

a	с	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
, ,	(1 /0/	Dist.	DIV.	1.8.11	10 5113	(± %)	(±%)	•1
Measurement System				1				
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	8
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	8
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	x
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	8
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	8
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	x
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	8
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	x
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	8
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)		RSS		1		11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 04 of 07
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 84 of 87
n	DOTEST				DEV/ 24.4 M

17 CONCLUSION

17.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 85 of 87
02	0 PCTEST				REV 21 4 M

© 2

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

18 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP. National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for [6] RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 86 of 87
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

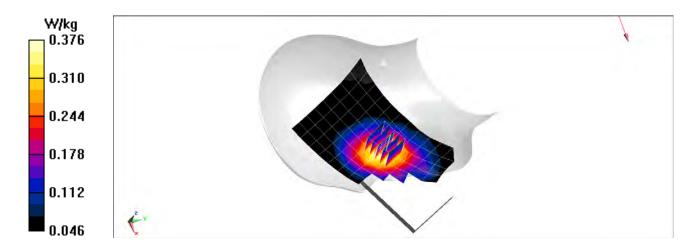
09/11/2019

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: ZNFK200TM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M2009170151-01-R1.ZNF	09/01/20 - 10/05/20	Portable Handset		Page 87 of 87	
© 202	20 PCTEST				REV 21.4 M	

APPENDIX A: SAR TEST DATA

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.946$ S/m; $\varepsilon_r = 42.968$; $\rho = 1000$ kg/m³ Phantom section: Right Section

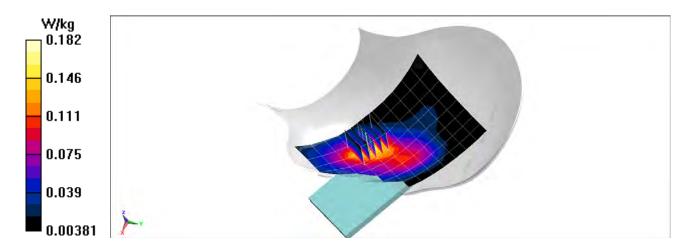
Test Date: 10/02/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7406; ConvF(9.61, 9.61, 9.61) @ 836.6 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 4 Tx slots

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 18.98 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.407 W/kg SAR(1 g) = 0.322 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 77.4%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.393$ S/m; $\varepsilon_r = 40.916$; $\rho = 1000$ kg/m³ Phantom section: Left Section

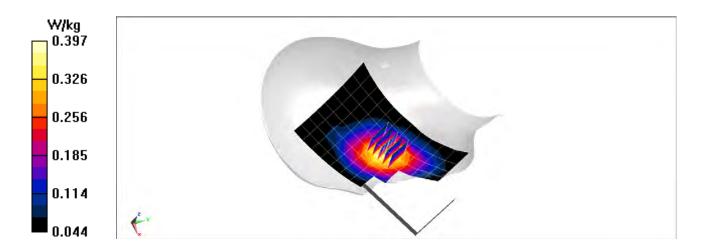
Test Date: 09/16/2020; Ambient Temp: 21.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1880 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 4 Tx slots

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 10.01 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.210 W/kg SAR(1 g) = 0.138 W/kg Smallest distance from peaks to all points 3 dB below = 13.9 mm Ratio of SAR at M2 to SAR at M1 = 66.6%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.935$ S/m; $\varepsilon_r = 42.484$; $\rho = 1000$ kg/m³ Phantom section: Right Section

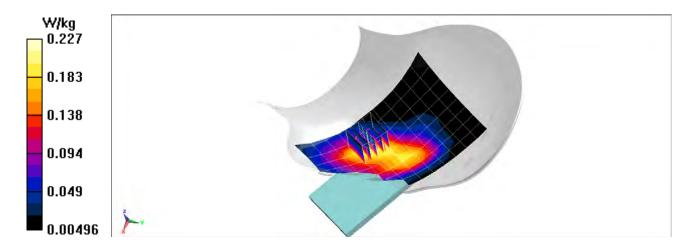
Test Date: 09/16/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 836.6 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.50 V/m; Power Drift = 0.20 dB Peak SAR (extrapolated) = 0.436 W/kg SAR(1 g) = 0.320 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 74.3%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1} \\ \mbox{Medium: 1750 Head Medium parameters used (interpolated):} \\ \mbox{f = 1732.4 MHz; } \sigma = 1.385 \mbox{ S/m; } \epsilon_r = 39.506; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

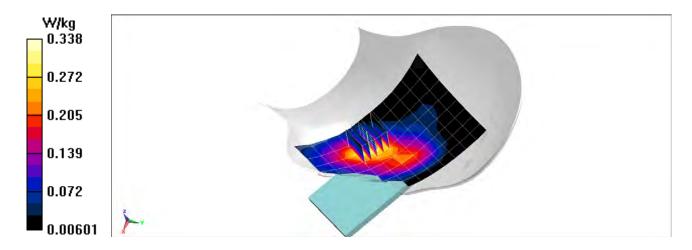
Test Date: 09/19/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1732.4 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.55 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.262 W/kg SAR(1 g) = 0.175 W/kg Smallest distance from peaks to all points 3 dB below = 14.1 mm Ratio of SAR at M2 to SAR at M1 = 67.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.393 \mbox{ S/m; } \epsilon_r = 40.916; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/16/2020; Ambient Temp: 21.9°C; Tissue Temp: 22.7°C

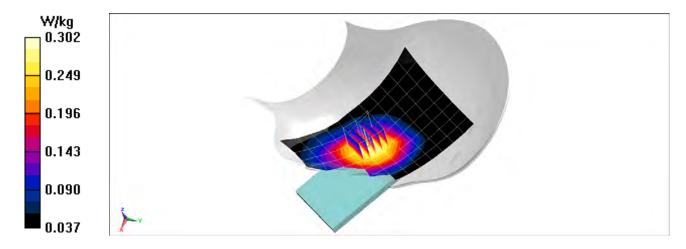
Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1880 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.10 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.388 W/kg SAR(1 g) = 0.258 W/kg Smallest distance from peaks to all points 3 dB below = 15 mm Ratio of SAR at M2 to SAR at M1 = 67.7%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 680.5 MHz; $\sigma = 0.889$ S/m; $\epsilon_r = 44.107$; $\rho = 1000$ kg/m³ Phantom section: Left Section


Test Date: 09/21/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

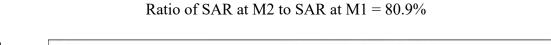
Probe: EX3DV4 - SN7406; ConvF(10.04, 10.04, 10.04) @ 680.5 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

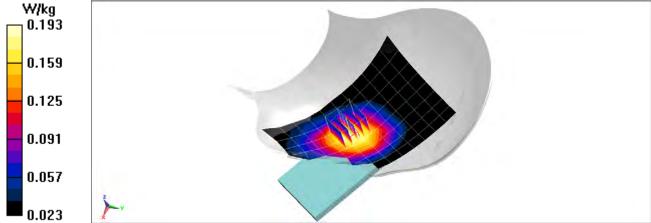
Mode: LTE Band 71, Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 17.67 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.322 W/kg SAR(1 g) = 0.257 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 80.2%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Head Medium parameters used (interpolated):} \\ \mbox{f = 707.5 MHz; } \sigma = 0.899 \mbox{ S/m; } \epsilon_r = 44.018; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

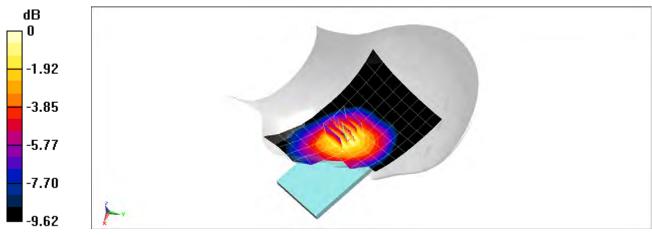

Test Date: 09/21/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7406; ConvF(10.04, 10.04, 10.04) @ 707.5 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 14.17 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.206 W/kg SAR(1 g) = 0.166 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 43.789$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 09/21/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

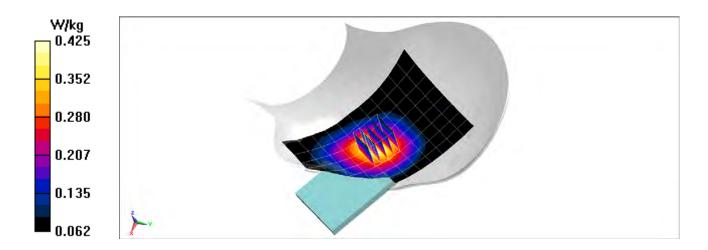
Probe: EX3DV4 - SN7406; ConvF(10.04, 10.04, 10.04) @ 782 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.29 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.449 W/kg SAR(1 g) = 0.360 W/kg Smallest distance from peaks to all points 3 dB below = 25.2 mm Ratio of SAR at M2 to SAR at M1 = 80.3%

0 dB = 0.420 W/kg = -3.77 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.933$ S/m; $\epsilon_r = 42.499$; $\rho = 1000$ kg/m³ Phantom section: Left Section

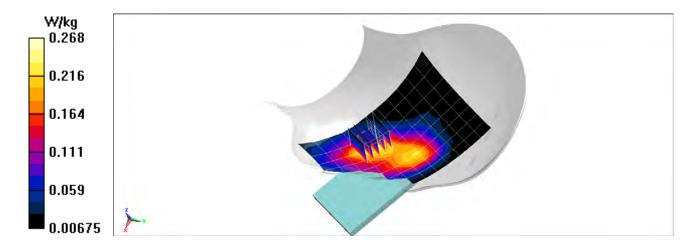
Test Date: 09/16/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 831.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 26 (Cell.), Left Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 36 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 24.50 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.463 W/kg SAR(1 g) = 0.344 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 77.1%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18837


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1745 MHz; $\sigma = 1.398$ S/m; $\epsilon_r = 39.444$; $\rho = 1000$ kg/m³ Phantom section: Left Section

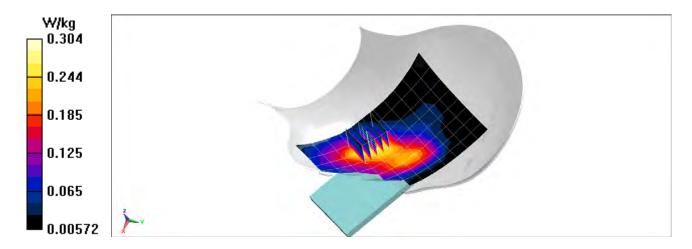
Test Date: 09/19/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1745 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 12.63 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.308 W/kg SAR(1 g) = 0.201 W/kg Smallest distance from peaks to all points 3 dB below = 14.7 mm Ratio of SAR at M2 to SAR at M1 = 66.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ f = 1860 \mbox{ MHz; } \sigma = 1.372 \mbox{ S/m; } \epsilon_r = 41.005; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 09/16/2020; Ambient Temp: 21.9°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1860 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 13.98 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.360 W/kg SAR(1 g) = 0.237 W/kg Smallest distance from peaks to all points 3 dB below = 15.1 mm Ratio of SAR at M2 to SAR at M1 = 67.6%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803

Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2593 MHz; Duty Cycle: 1:2.31 Medium: 2450 Head Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.942$ S/m; $\epsilon_r = 38.125$; $\rho = 1000$ kg/m³ Phantom section: Left Section

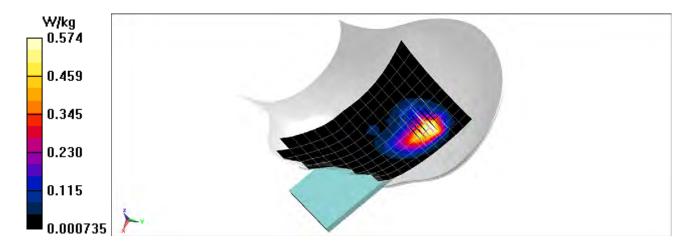
Test Date: 10/02/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.9°C

Probe: EX3DV4 - SN3589; ConvF(6.6, 6.6, 6.6) @ 2593 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41 PC2, Left Head, Tilt, Mid.ch, QPSK, 20 MHz Bandwidth, 1 RB, 50 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.51 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.385 W/kg SAR(1 g) = 0.211 W/kg Smallest distance from peaks to all points 3 dB below = 12.2 mm Ratio of SAR at M2 to SAR at M1 = 55.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18746


Communication System: UID 0, 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.825$ S/m; $\epsilon_r = 39.875$; $\rho = 1000$ kg/m³ Phantom section: Left Section

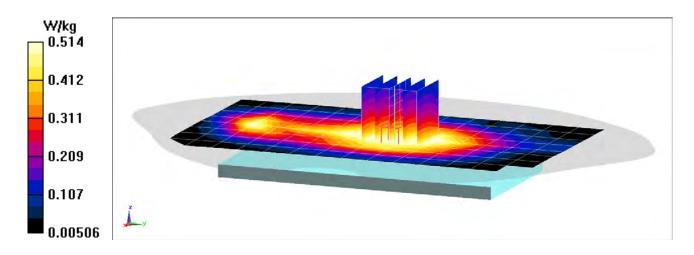
Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

Probe: EX3DV4 - SN7308; ConvF(7.33, 7.33, 7.33) @ 2437 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 6, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 7.696 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.768 W/kg SAR(1 g) = 0.351 W/kg Smallest distance from peaks to all points 3 dB below = 10.5 mm Ratio of SAR at M2 to SAR at M1 = 44.3%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.957 \mbox{ S/m; } \epsilon_r = 53.026; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

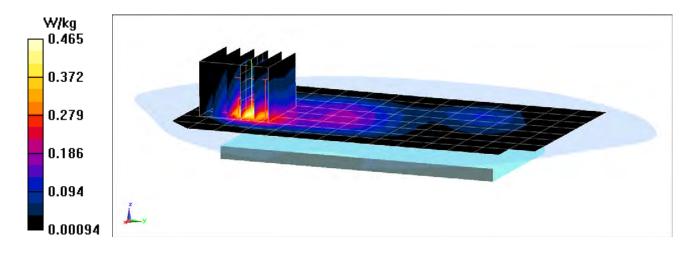
Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.89 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.566 W/kg SAR(1 g) = 0.423 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 74.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r = 51.86$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

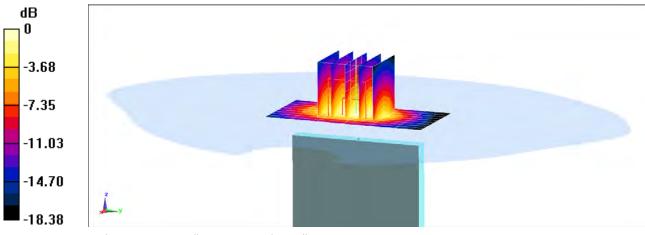
Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1880 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 14.68 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.564 W/kg SAR(1 g) = 0.314 W/kg Smallest distance from peaks to all points 3 dB below = 11.3 mm Ratio of SAR at M2 to SAR at M1 = 56.5%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1850.2 MHz; Duty Cycle: 1:2.076 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1850.2 \mbox{ MHz; } \sigma = 1.509 \mbox{ S/m; } \epsilon_r = 51.967; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.1°C

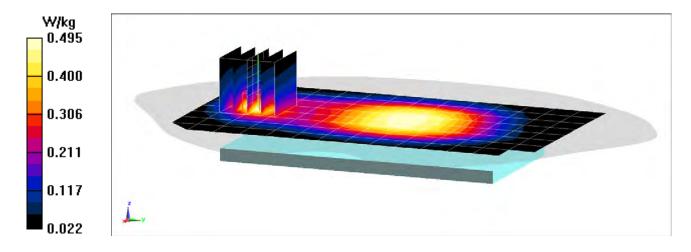
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1850.2 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Bottom Edge, Low.ch, 4 Tx Slots

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.18 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.608 W/kg Smallest distance from peaks to all points 3 dB below = 11.2 mm Ratio of SAR at M2 to SAR at M1 = 58.1%

0 dB = 0.897 W/kg = -0.47 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.957 \mbox{ S/m; } \epsilon_r = 55.308; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

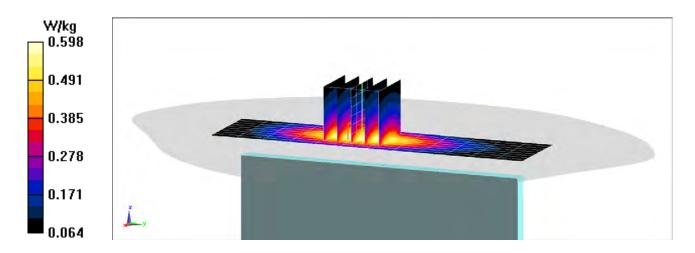
Test Date: 09/01/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 19.73 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.608 W/kg SAR(1 g) = 0.348 W/kg Smallest distance from peaks to all points 3 dB below = 11.6 mm Ratio of SAR at M2 to SAR at M1 = 59%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.957 \mbox{ S/m; } \epsilon_r = 55.308; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

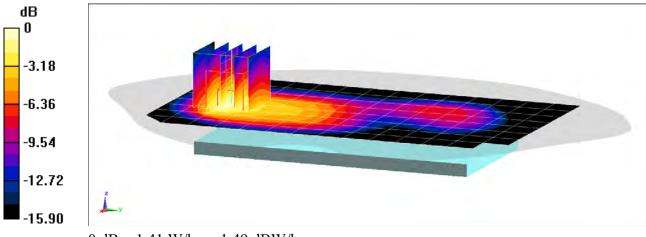
Test Date: 09/01/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Body SAR, Right Edge, Mid.ch

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.33 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.681 W/kg SAR(1 g) = 0.452 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 66.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18837


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1712.4 \mbox{ MHz; } \sigma = 1.49 \mbox{ S/m; } \epsilon_r = 52.49; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1712.4 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

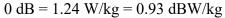
Mode: UMTS 1750, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 26.80 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.62 W/kg SAR(1 g) = 0.990 W/kg Smallest distance from peaks to all points 3 dB below = 11.6 mm Ratio of SAR at M2 to SAR at M1 = 62.2%

0 dB = 1.41 W/kg = 1.49 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 52.247$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

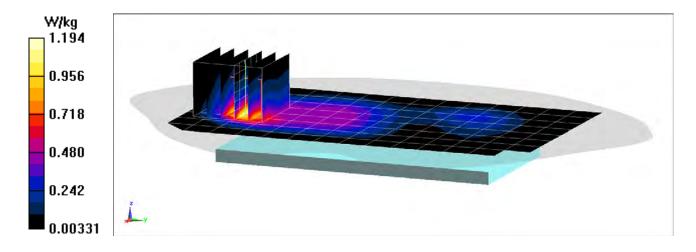

Test Date: 09/17/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1712.4 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.68 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.872 W/kg Smallest distance from peaks to all points 3 dB below = 11.2 mm Ratio of SAR at M2 to SAR at M1 = 62.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1907.6 \mbox{ MHz; } \sigma = 1.585 \mbox{ S/m; } \epsilon_r = 51.129; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

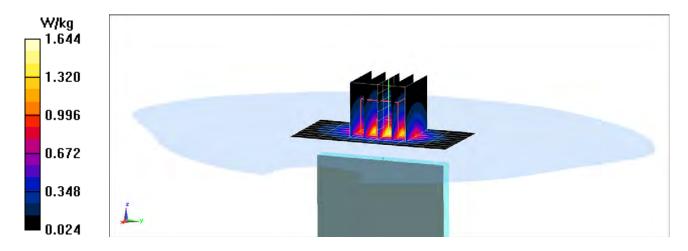
Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1907.6 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Back side, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.46 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.804 W/kg Smallest distance from peaks to all points 3 dB below = 12.8 mm Ratio of SAR at M2 to SAR at M1 = 54.9%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1907.6 \mbox{ MHz; } \sigma = 1.581 \mbox{ S/m; } \epsilon_r = 52.475; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

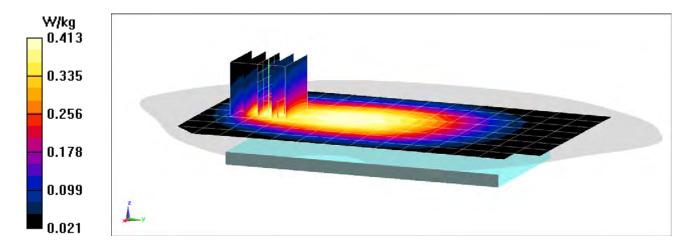
Test Date: 09/20/2020; Ambient Temp: 21.3°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1907.6 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.35 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.08 W/kg Smallest distance from peaks to all points 3 dB below = 11.2 mm Ratio of SAR at M2 to SAR at M1 = 56.5%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 680.5 MHz; $\sigma = 0.926$ S/m; $\varepsilon_r = 55.486$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

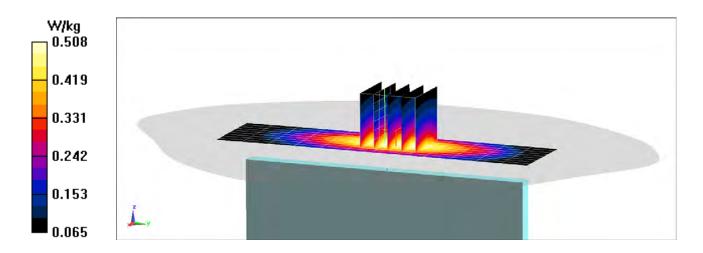
Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 680.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 71, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 18.37 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.500 W/kg SAR(1 g) = 0.296 W/kg Smallest distance from peaks to all points 3 dB below = 13.8 mm Ratio of SAR at M2 to SAR at M1 = 59.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 680.5 MHz; $\sigma = 0.926$ S/m; $\varepsilon_r = 55.486$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

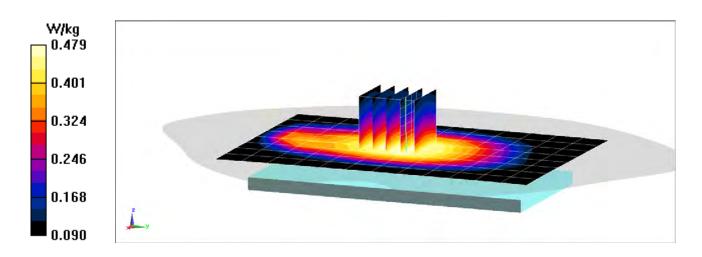
Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 680.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 71, Body SAR, Right Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.09 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.581 W/kg SAR(1 g) = 0.390 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 67.7%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.936$ S/m; $\varepsilon_r = 55.435$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

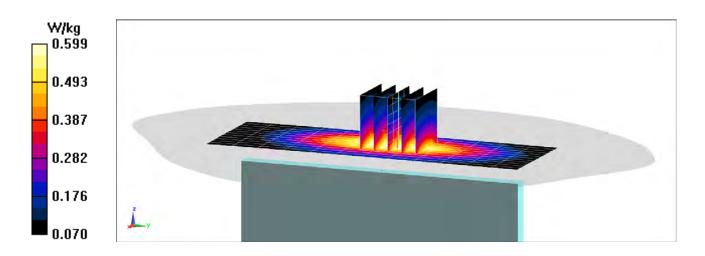
Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 707.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 20.93 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.528 W/kg SAR(1 g) = 0.401 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 75%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.936$ S/m; $\varepsilon_r = 55.435$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

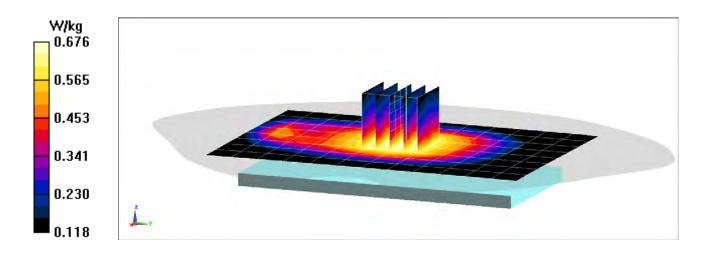
Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 707.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Body SAR, Right Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (13x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.92 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.685 W/kg SAR(1 g) = 0.467 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 69.1%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ \mbox{f} = 782 \mbox{ MHz; } \sigma = 0.966 \mbox{ S/m; } \epsilon_r = 55.242; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

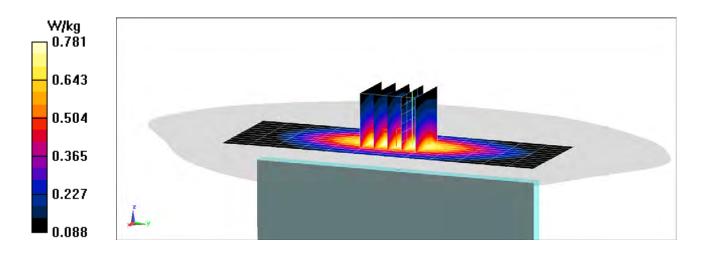
Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 782 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 23.86 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.743 W/kg SAR(1 g) = 0.562 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 75.9%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ \mbox{f} = 782 \mbox{ MHz; } \sigma = 0.966 \mbox{ S/m; } \epsilon_r = 55.242; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

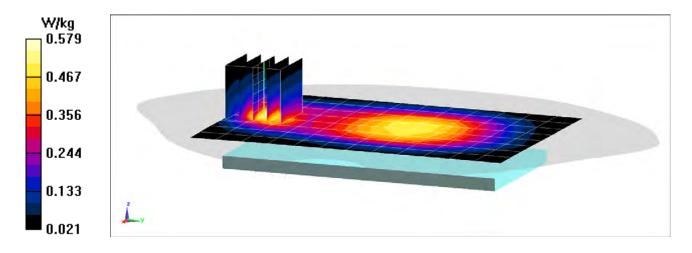
Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 782 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Body SAR, Right Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (13x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.896 W/kg SAR(1 g) = 0.590 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 63.6%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.954$ S/m; $\epsilon_r = 55.317$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

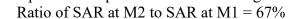
Test Date: 09/01/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

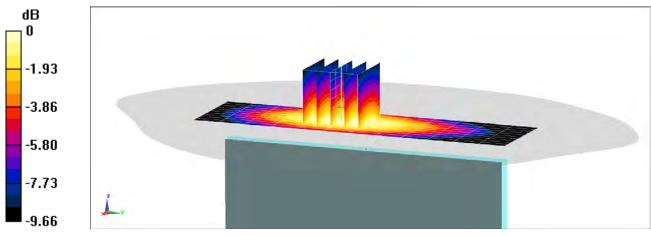
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 831.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 36 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 21.20 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.702 W/kg SAR(1 g) = 0.396 W/kg Smallest distance from peaks to all points 3 dB below = 13.7 mm Ratio of SAR at M2 to SAR at M1 = 57.3%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.954$ S/m; $\varepsilon_r = 55.317$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 09/01/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

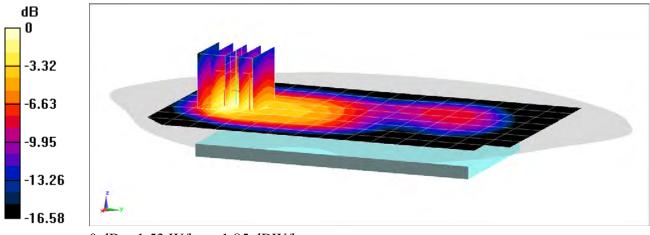
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 831.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

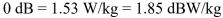
Mode: LTE Band 26 (Cell.), Body SAR, Right Edge, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 36 RB Offset

Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.06 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.612 W/kg SAR(1 g) = 0.408 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid

0 dB = 0.537 W/kg = -2.70 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18837


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 \\ Medium: 1750 Body Medium parameters used: \\ f = 1720 MHz; \mbox{σ} = 1.5 \mbox{ S/m}; \mbox{ϵ}_r = 52.466; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

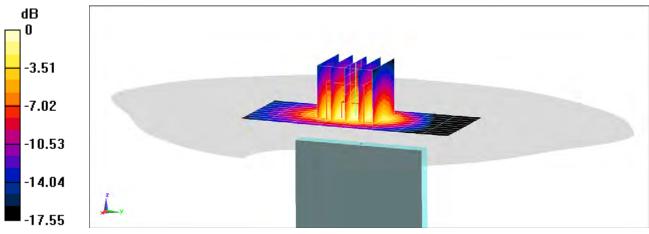

Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1720 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.75 W/kg SAR(1 g) = 1.08 W/kg Smallest distance from peaks to all points 3 dB below = 11.2 mm Ratio of SAR at M2 to SAR at M1 = 62.6%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18837


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1745 MHz; $\sigma = 1.509$ S/m; $\epsilon_r = 52.138$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/17/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

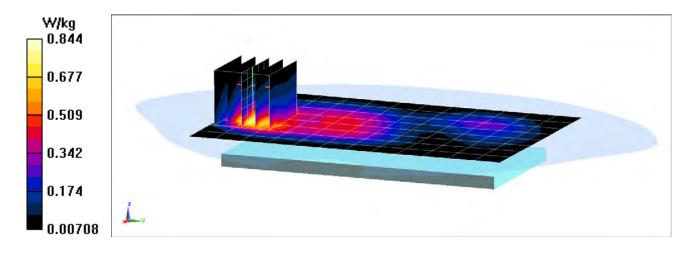
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.17 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.817 W/kg Smallest distance from peaks to all points 3 dB below = 11.2 mm Ratio of SAR at M2 to SAR at M1 = 60.5%

0 dB = 1.19 W/kg = 0.76 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1860 \mbox{ MHz; } \sigma = 1.519 \mbox{ S/m; } \epsilon_r = 51.933; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

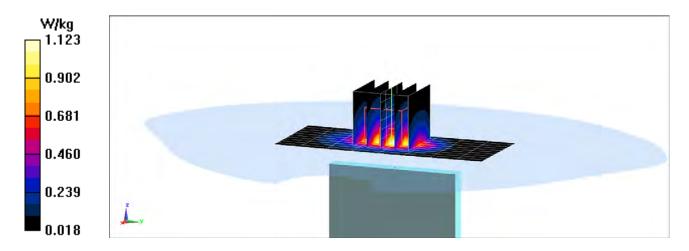
Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 20.29 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.566 W/kg Smallest distance from peaks to all points 3 dB below = 13.2 mm Ratio of SAR at M2 to SAR at M1 = 55.4%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18811


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1860 \mbox{ MHz; } \sigma = 1.519 \mbox{ S/m; } \epsilon_r = 51.933; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

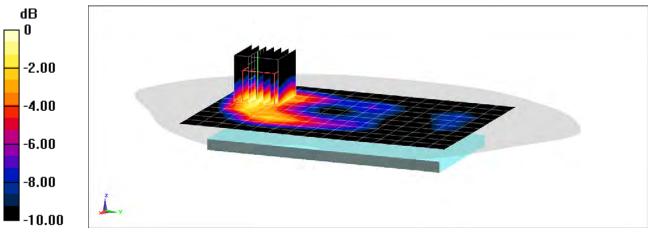
Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Body SAR, Bottom Edge, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.27 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.756 W/kg Smallest distance from peaks to all points 3 dB below = 12.2 mm Ratio of SAR at M2 to SAR at M1 = 57.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2593 MHz; Duty Cycle: 1:2.31 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2593 \mbox{MHz; } \sigma = 2.216 \mbox{ S/m; } \epsilon_r = 51.491; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/28/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.4°C

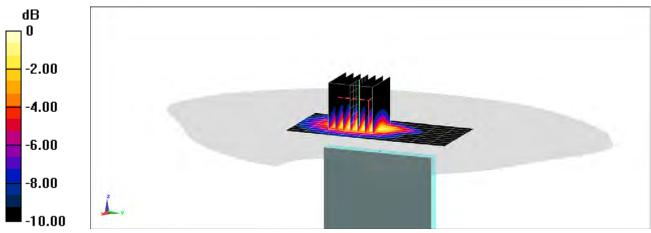
Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2593 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41 PC2, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.00 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.698 W/kg SAR(1 g) = 0.352 W/kg Smallest distance from peaks to all points 3 dB below = 13 mm Ratio of SAR at M2 to SAR at M1 = 50.1%

0 dB = 0.547 W/kg = -2.62 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18803


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2593 MHz; Duty Cycle: 1:2.31 \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ f = 2593 \mbox{MHz; } \sigma = 2.216 \mbox{ S/m; } \epsilon_r = 51.491; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/28/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.4°C

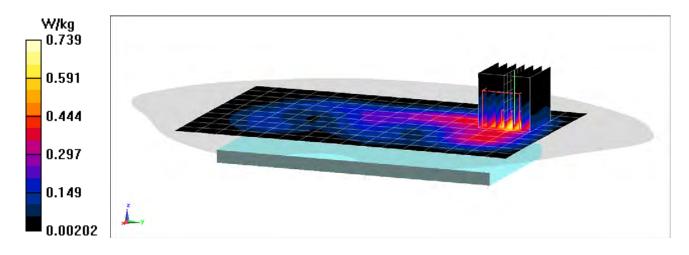
Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2593 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41 PC2, Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.27 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.528 W/kg Smallest distance from peaks to all points 3 dB below = 11 mm Ratio of SAR at M2 to SAR at M1 = 49.8%

0 dB = 0.857 W/kg = -0.67 dBW/kg

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18746


 $\begin{array}{l} \mbox{Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2437 \mbox{ MHz; } \sigma = 2.016 \mbox{ S/m; } \epsilon_r = 51.114; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 09/14/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.6°C

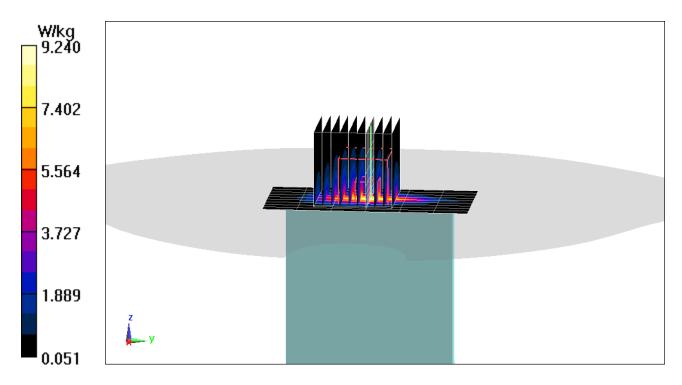
Probe: EX3DV4 - SN7308; ConvF(7.41, 7.41, 7.41) @ 2437 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.83 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.943 W/kg SAR(1 g) = 0.443 W/kg Smallest distance from peaks to all points 3 dB below = 11 mm Ratio of SAR at M2 to SAR at M1 = 47.6%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18837

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 52.49$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm


Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

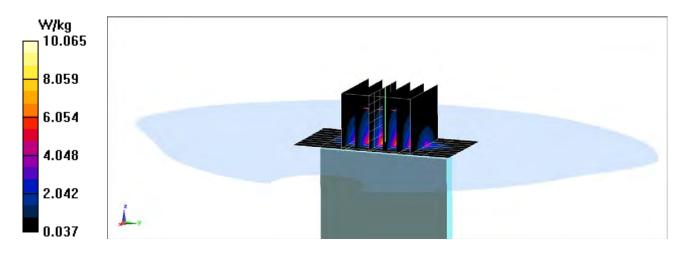
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1712.4 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Phablet SAR, Bottom Edge, Low.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 62.75 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 12.6 W/kg SAR(10 g) = 2.54 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 78.8%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1907.6 \mbox{ MHz; } \sigma = 1.555 \mbox{ S/m; } \epsilon_r = 53.078; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.2 cm} \end{array}$

Test Date: 09/23/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1907.6 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

UMTS 1900, Phablet SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 64.43 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 12.4 W/kg SAR(10 g) = 2.81 W/kg Smallest distance from peaks to all points 3 dB below > 8 mm Ratio of SAR at M2 to SAR at M1 = 47.3%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18837

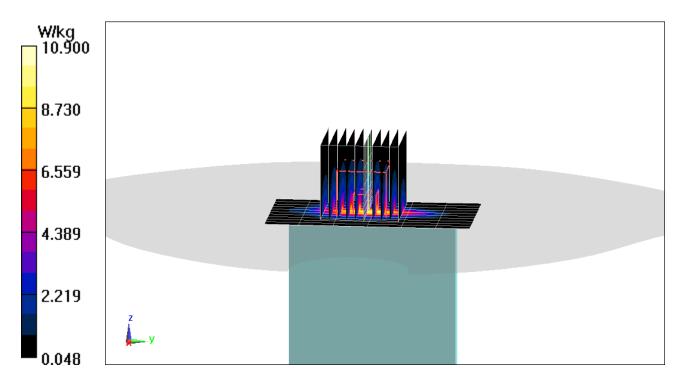
 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 \\ Medium: 1750 Body; Medium parameters used: \\ f = 1745 MHz; \mbox{σ} = 1.509 \mbox{ S/m}; \mbox{ϵ}_r = 52.491; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 0.2 cm} \end{array}$

Test Date: 10/05/2020; Ambient Temp: 20.9°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Phablet SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x7x1): Measurement grid: dx=5mm, dy=15mm


Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

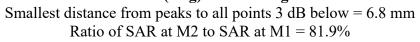
Reference Value = 68.57 V/m; Power Drift = 0.10 dB

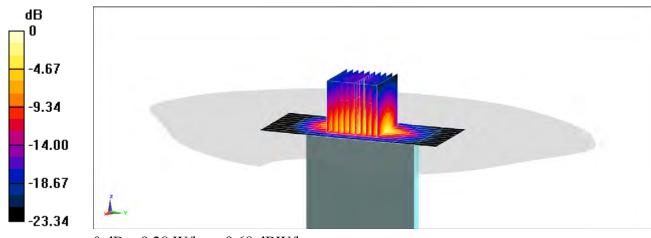
Peak SAR (extrapolated) = 14.6 W/kg

SAR(10 g) = 3.03 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 78%

DUT: ZNFK200TM; Type: Portable Handset; Serial: 18829


Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1905 MHz; $\sigma = 1.57$ S/m; $\varepsilon_r = 51.469$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.2 cm


Test Date: 09/28/2020; Ambient Temp: 21.3°C; Tissue Temp: 22.5°C

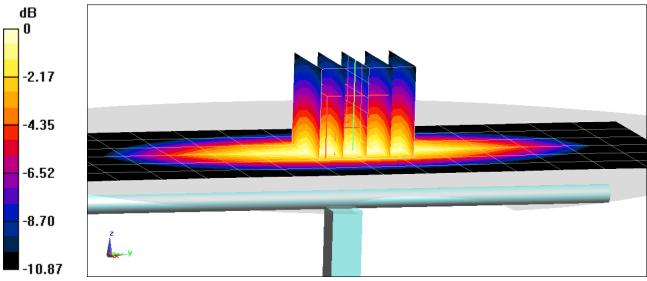
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1905 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Phablet SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 62.82 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 12.4 W/kg SAR(10 g) = 2.74 W/kg

0 dB = 9.28 W/kg = 9.68 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used: f = 750 MHz; $\sigma = 0.914$ S/m; $\epsilon_r = 43.882$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 09/21/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

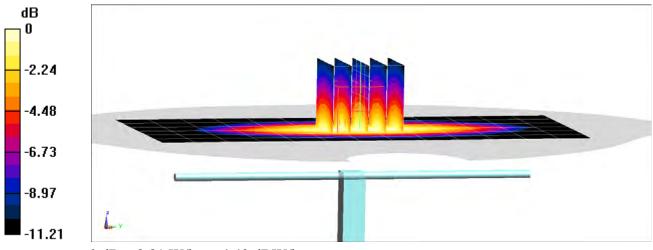
Probe: EX3DV4 - SN7406; ConvF(10.04, 10.04, 10.04) @ 750 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.67 W/kg SAR(1 g) = 1.7 W/kg Deviation(1 g) = -1.51%

0 dB = 2.32 W/kg = 3.65 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.934$ S/m; $\varepsilon_r = 42.489$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 09/16/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.2°C

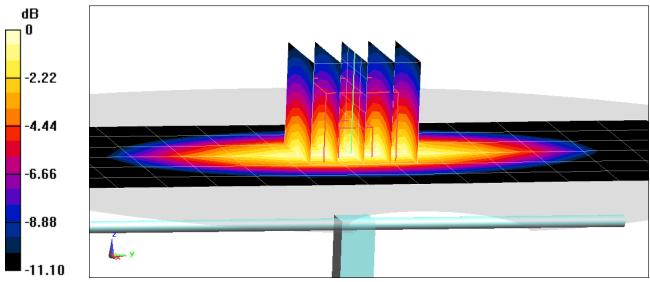
Probe: EX3DV4 - SN3589; ConvF(8.58, 8.58, 8.58) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.28 W/kg SAR(1 g) = 2.03 W/kg Deviation(1 g) = 7.75%

 $0 \ dB = 2.81 \ W/kg = 4.49 \ dBW/kg$

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.945$ S/m; $\epsilon_r = 42.974$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10/02/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.8°C

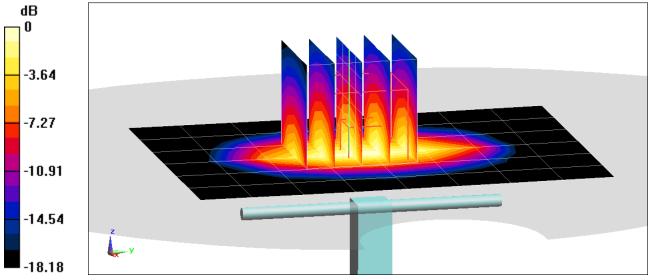
Probe: EX3DV4 - SN7406; ConvF(9.61, 9.61, 9.61) @ 835 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 1.96 W/kg Deviation(1 g) = 1.55%

0 dB = 2.67 W/kg = 4.27 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.403$ S/m; $\epsilon_r = 39.42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/19/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.5°C

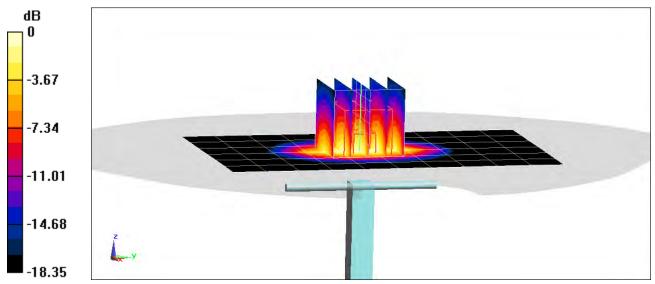
Probe: EX3DV4 - SN7406; ConvF(8.32, 8.32, 8.32) @ 1750 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.50 W/kg SAR(1 g) = 3.86 W/kg Deviation(1 g) = 5.75%

0 dB = 6.06 W/kg = 7.82 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1900 MHz; $\sigma = 1.414$ S/m; $\epsilon_r = 40.833$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 21.9°C; Tissue Temp: 22.7°C

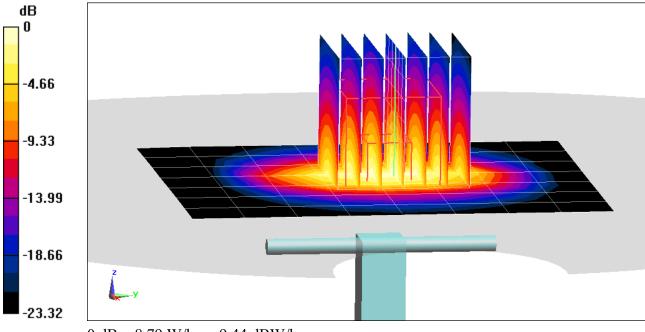
Probe: EX3DV4 - SN7406; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1583; Calibrated: 5/14/2020 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.95 W/kg SAR(1 g) = 4.2 W/kg Deviation(1 g) = 7.42%

0 dB = 6.66 W/kg = 8.23 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 39.823$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/16/2020; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

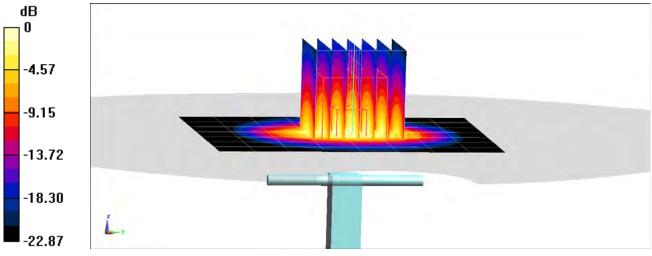
Probe: EX3DV4 - SN7308; ConvF(7.33, 7.33, 7.33) @ 2450 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.15 W/kg Deviation(1 g) = -1.53%

0 dB = 8.79 W/kg = 9.44 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 38.329$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10/02/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.9°C

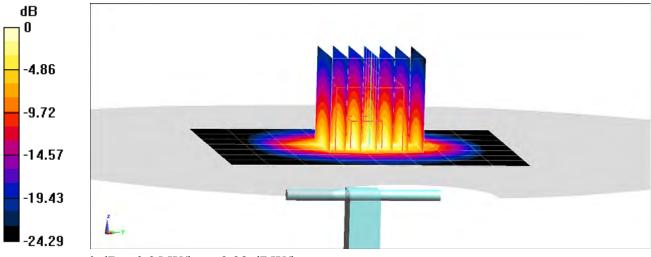
Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.3 W/kg SAR(1 g) = 5.35 W/kg Deviation(1 g) = 2.29%

0 dB = 9.08 W/kg = 9.58 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2600 MHz; $\sigma = 1.947$ S/m; $\epsilon_r = 38.115$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10/02/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.9°C

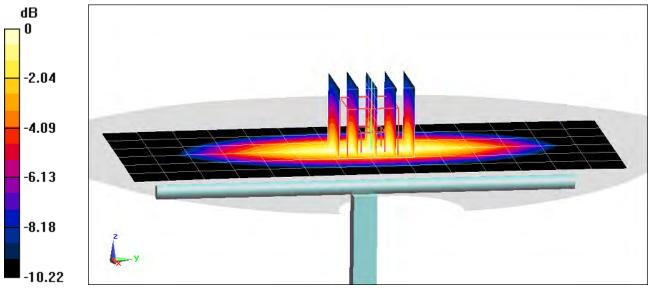
Probe: EX3DV4 - SN3589; ConvF(6.6, 6.6, 6.6) @ 2600 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 12.6 W/kg SAR(1 g) = 5.74 W/kg Deviation(1 g) = -1.20%

0 dB = 9.95 W/kg = 9.98 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used:} \\ \mbox{f} = 750 \mbox{ MHz; } \sigma = 0.953 \mbox{ S/m; } \epsilon_r = 55.331; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 09/03/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

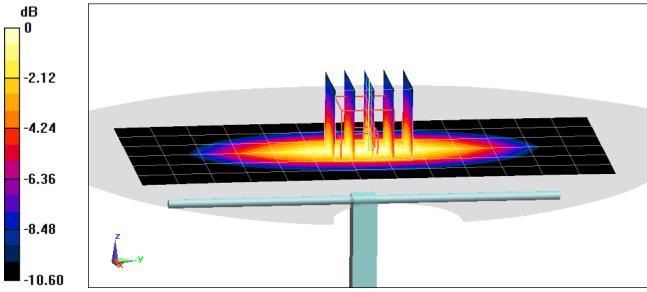
Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.71 W/kg SAR(1 g) = 1.76 W/kg Deviation(1 g) = 3.17%

0 dB = 2.37 W/kg = 3.75 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.956 \mbox{ S/m; } \epsilon_r = 55.31; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 09/01/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

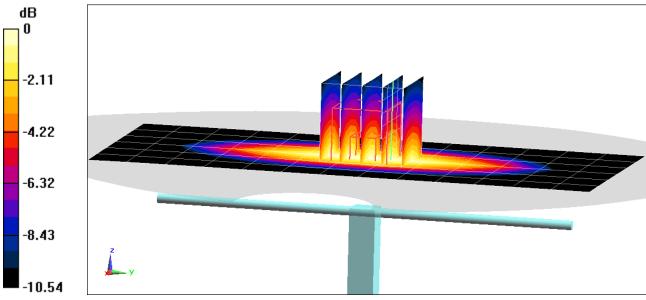
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.14 W/kg SAR(1 g) = 2.01 W/kg Deviation(1 g) = 0.90%

0 dB = 2.73 W/kg = 4.36 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.955$ S/m; $\epsilon_r = 53.042$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

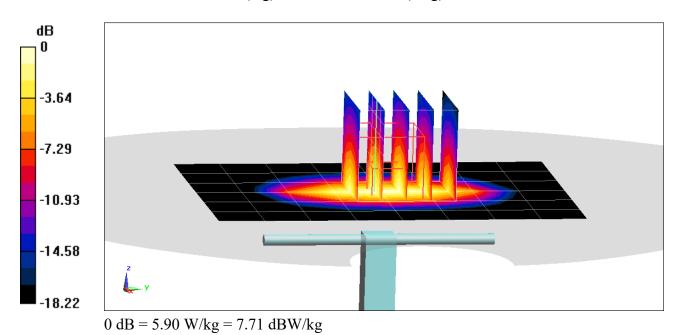
Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.97 W/kg SAR(1 g) = 1.87 W/kg Deviation(1 g) = -6.12%

0 dB = 2.55 W/kg = 4.07 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.534$ S/m; $\epsilon_r = 52.367$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

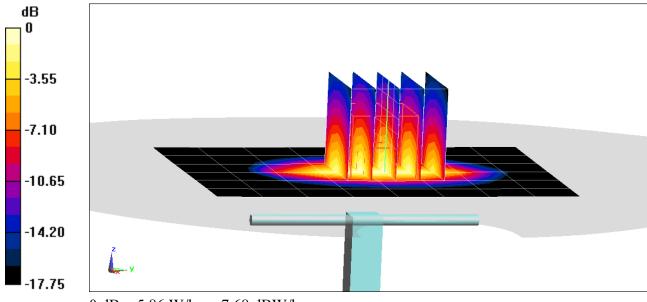
Test Date: 09/15/2020; Ambient Temp: 20.7°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.03 W/kg SAR(1 g) = 3.88 W/kg; SAR(10 g) = 2.04 W/kg Deviation(1 g) = 6.01%; Deviation(10 g) = 5.15%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.515$ S/m; $\epsilon_r = 52.119$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/17/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

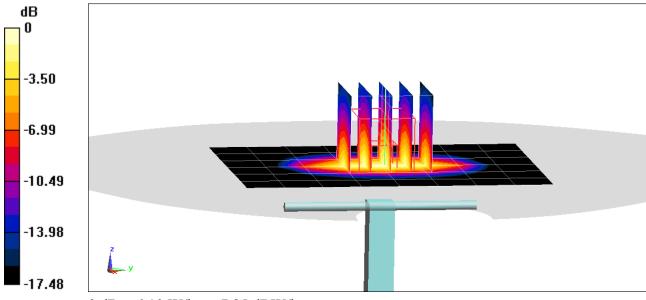
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.97 W/kg SAR(1 g) = 3.86 W/kg Deviation(1 g) = 6.34%

0 dB = 5.86 W/kg = 7.68 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.531$ S/m; $\varepsilon_r = 51.607$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/21/2020; Ambient Temp: 20.9°C; Tissue Temp: 20.9°C

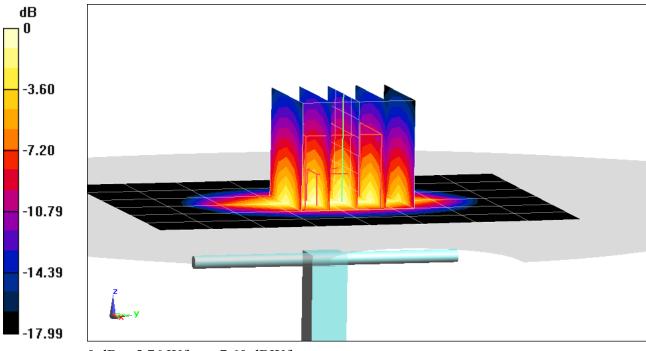
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.18 W/kg SAR(1 g) = 3.96 W/kg Deviation(1 g) = 5.88%

0 dB = 6.10 W/kg = 7.85 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 52.472$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10/05/2020; Ambient Temp: 20.9°C; Tissue Temp: 21.2°C

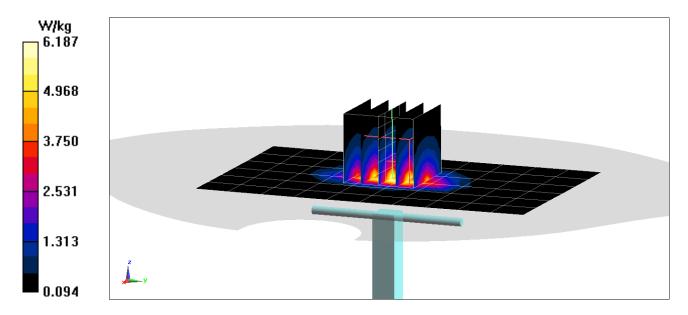
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.90 W/kgSAR(10 g) = 1.97 W/kgDeviation(10 g) = -1.01%

0 dB = 5.76 W/kg = 7.60 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.574$ S/m; $\epsilon_r = 51.17$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

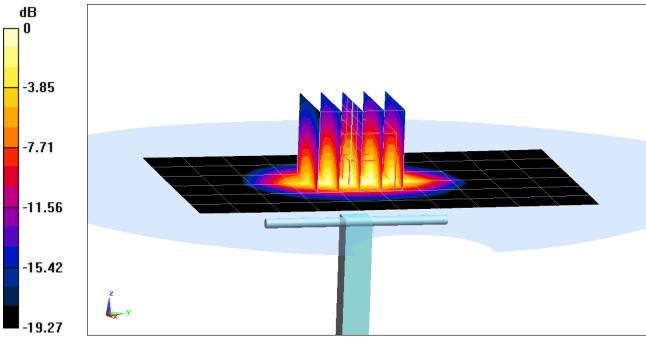
Test Date: 09/14/2020; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.29 W/kg SAR(1 g) = 4.00 W/kg Deviation(1 g) = 2.04%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.562$ S/m; $\epsilon_r = 51.79$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.1°C

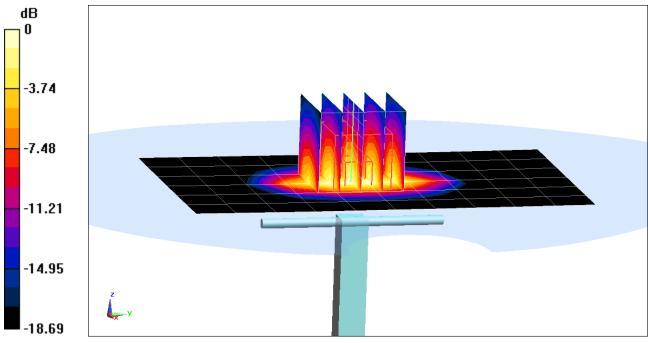
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.80 W/kg SAR(1 g) = 4.17 W/kg Deviation(1 g) = 6.38%

0 dB = 6.43 W/kg = 8.08 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.572$ S/m; $\epsilon_r = 52.503$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/20/2020; Ambient Temp: 21.3°C; Tissue Temp: 22.3°C

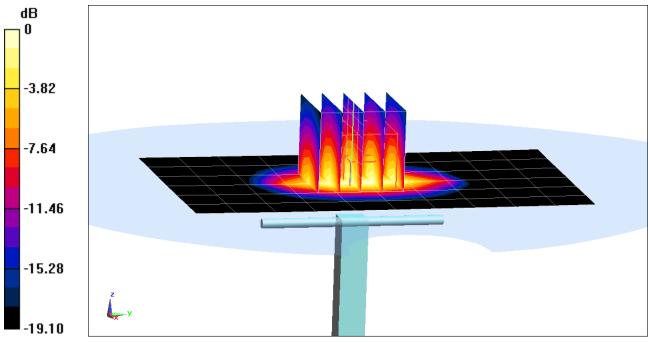
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.75 W/kg SAR(1 g) = 4.17 W/kg Deviation(1 g) = 6.38%

0 dB = 6.48 W/kg = 8.12 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.547$ S/m; $\epsilon_r = 53.096$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/23/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

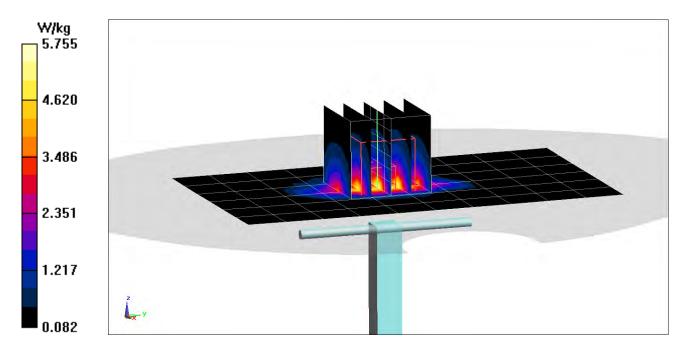
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.57 W/kg SAR(10 g) = 2.06 W/kg Deviation(10 g) = 0.00%

0 dB = 6.17 W/kg = 7.90 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.564$ S/m; $\epsilon_r = 51.486$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

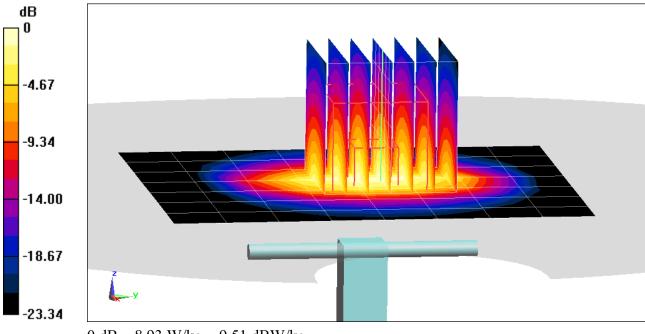
Test Date: 09/28/2020; Ambient Temp: 21.3°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.78 W/kgSAR(10 g) = 1.91 W/kgDeviation(10 g) = -7.28%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.034$ S/m; $\epsilon_r = 51.063$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

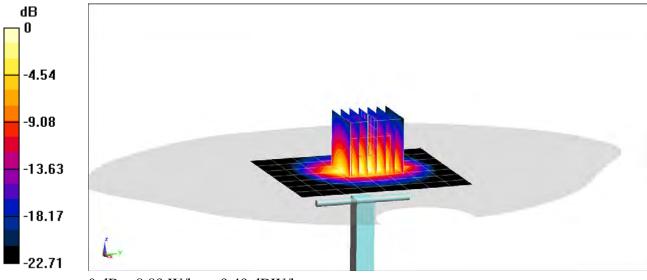
Test Date: 09/14/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7308; ConvF(7.41, 7.41, 7.41) @ 2450 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.4 W/kg SAR(1 g) = 5.17 W/kgDeviation(1 g) = 1.57%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.044$ S/m; $\epsilon_r = 51.895$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/28/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.4°C

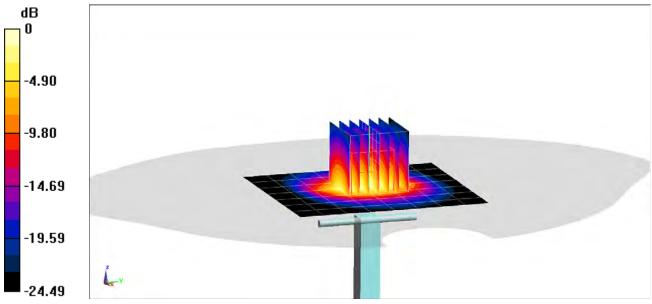
Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2450 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.28 W/kg Deviation(1 g) = 3.73%

0 dB = 8.89 W/kg = 9.49 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.224$ S/m; $\epsilon_r = 51.471$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/28/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2600 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2020 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 12.3 W/kg SAR(1 g) = 5.49 W/kg Deviation(1 g) = -1.26%

0 dB = 9.53 W/kg = 9.79 dBW/kg

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity c can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C16	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

For the wording of the listed risk phrases refer to section 16. Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID ZNFK200TM	PCTEST	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	09/01/20 - 10/05/20	Portable Handset			Page 1 of 3
© 202	0 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

	ame							BL600-6000V6)
Produc					6 BC	(Batch: 20	0803-1)	
Manufa	acturer	(<u></u>)	SPEA	G				
Measu	remer	nt Met	hod					
TSL di	electric	para	noters	nea:	sured	using calib	rated DAK	probe.
Target	Parar	neters						
				fined i	n the M	CDB 86566	i4 complian	nce standard.
	-	_	_	_	_	_		
Test C	onditi	on						
Ambie	nt Con	dition	22°C	; 30%	humic	dity		
TSL TO	empera	ature	22°C					
Test D	ate		6-Aug	j-20				
Operat	or		CL					
Additi	onal Ir	form	ation					
TSL D	ensity							
TSL H	eat-ca	pacity						
	_							
Result	Measu	red	-	Targe		Diff.to Targ	1201 1061	16.0 -
			-			Dilling Ten 2		10.0
(MHz)	e	.e"	sigma	eps	sigma	Δ-eps	∆-sigma	10.0
600	e' 56.3	e" 26.8	o.89	eps 56.1	sigma 0.95	Δ-eps 0.3		10.0
-	A Description						∆-sigma	*
600	56.3	26.8	0.69	56.1	0.95	0.3	∆-sigma -6.3	*
600 750	56.3 55.8	26.8 22.6	0.89 0.94	56.1 55.5	0.95 0.96	0.3 0.5	<u>A</u> •sigma -6.3 -2.1	\$ 5.0 0.0 -5.0
600 750 600	56.3 55.8 55.7	26.8 22.6 21.6	0.89 0.94 0.96	56.1 55.5 55.3	0.95 0.96 0.97	0.3 0.5 0.7	<u>Δ-sigma</u> -6.3 -2.1 -1.0	2 5.0 2 5.0 -
600 750 600 825	56.3 55.8 55.7 55.7	26.8 22.6 21.6 21.1	0.89 0.94 0.95 0.97	56.1 55.5 55.3 55.2	0.95 0.96 0.97 0.98	0.3 0.5 0.7 0.8	<u>A-sigma</u> -6.3 -2.1 -1.0 -1.0	5.0 600 600 15.0 15.0 15.0
600 750 600 825 835	56.3 55.8 55.7 55.7 55.7	26.8 22.6 21.6 21.1 20.9	0.89 0.94 0.96 0.97 0.98	56.1 55.5 55.3 55.2 55.1	0.95 0.96 0.97 0.98 0.99	0.3 0.5 0.7 0.8 1.0	<u>A</u> -sigma -6.3 -2.1 -1.0 -1.0 -0.5	2 5.0 2 5.0 -
600 750 800 825 835 850	56.3 55.8 55.7 55.7 55.7 55.7 55.6	26.8 22.6 21.6 21.1 20.9 20.7	0.89 0.94 0.96 0.97 0.98 0.98	56.1 55.5 55.3 55.2 55.1 55.2	0.95 0.96 0.97 0.98 0.99 0.99	0.3 0.5 0.7 0.8 1.0 0.8	A-sigma -6.3 -2.1 -1.0 -1.0 -0.5 -1.0	5.0 600 600 15.0 15.0
600 750 800 825 835 835 850 900	56.3 55.8 55.7 55.7 55.7 55.6 55.5	26.8 22.6 21.6 21.1 20.9 20.7 19.9	0.89 0.94 0.96 0.97 0.98 0.98 1.00	56.1 55.5 55.3 55.2 55.1 55.2 55.2 55.2	0.95 0.96 0.97 0.98 0.99 0.99 1.05	0.3 0.5 0.7 0.8 1.0 0.8 0.9	Δ-sigma -5.3 -2.1 -1.0 -1.0 -0.5 -1.0 -4.8	5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
600 750 800 825 835 835 850 900 1400	56.3 55.8 55.7 55.7 55.7 55.7 55.6 55.5 55.5 54.7	26.8 22.6 21.6 21.1 20.9 20.7 19.9 15.9	0.89 0.94 0.96 0.97 0.98 0.98 1.00 1.24	56.1 55.5 55.3 55.2 55.1 55.2 55.2 55.0 54.1	0.95 0.96 0.97 0.98 0.99 0.99 1.05 1.28	0.3 0.5 0.7 0.8 1.0 0.8 0.9 1.1	∆-sigma -6.3 -2.1 -1.0 -0.5 -1.0 -4.8 -3.1	5.0 6.0 5.0 5.0 15.0
750 800 825 835 850 900 1400 1450	56.3 55.8 55.7 55.7 55.7 55.7 55.6 55.5 54.7 54.6	26.8 22.6 21.6 21.1 20.9 20.7 19.9 15.9 15.8	0.89 0.94 0.96 0.97 0.98 0.98 1.00 1.24 1.27	56.1 55.5 55.3 55.2 55.1 55.2 55.0 54.1 54.0	0.95 0.96 0.97 0.98 0.99 0.99 1.05 1.28 1.30	0.3 0.5 0.7 0.8 1.0 0.8 0.9 1.1 1.1	∆-sigma -6.3 -2.1 -1.0 -0.5 -1.0 -4.8 -3.1 -2.3	2 5.0 2 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 4 5.0 5 500 1

835	55.7	20.9	0.98	55.1	0.99	1.0	-0.5	8-10.0	1000						
850	55.6	20.7	0.98	55.2	0.99	0.8	-1.0	-15.0	500	1500	2600	3500	4500	550	0
900	55.5	19.9	1.00	55.0	1.05	0.9	-4.8		500	1500	Freque	ency MHZ	4000		×
1400	54.7	15.9	1.24	54.1	1,28	1.1	-3.1	15.0	1			_			-
1450	54.6	15.8	1.27	54.0	1,30	3.5	-2.3	10.0	_		_				_
1600	54,4	15.3	1.36	53.8	1.39	1.1	-2.2	2 5.0			N			-	-
1625	54.4	15.3	1.38	53.8	1.41	1.2	-2.1	twito 0.0	1		1			/	
1640	54.4	15.2	1.39	53.7	1.42	1,3	-2.1	Vinitautorio	Λ.	~	1		/		
1650	54.3	15.2	1.39	53.7	1.43	1.1	-2.8		1-			-			
1700	54.2	15.1	1.43	53.6	1.46	1.2	-2.1	20-10.0	1	_		-			
1750	54.2	15.0	1.46	53.4	1.49	1.4	-2.0	-15.0	500	1500	2500	3500	4500	550	0
1800	54.1	14.9	1.50	53.3	1.52	1.5	-1,3		398	1000	Freque	3500 ncy MHz			
1810	54.1	14.9	1,51	53.3	1.52	1.5	-0.7	3500	51.4	16.0	3.11	51.3	3.31	0.2	-6.0
1825	54.1	14,9	1.52	53.3	1.52	1.5	0.0	3700	51.1	16.2	3.34	51,1	3.55	0.1	-5.9
1850	54.0	14.9	1.53	53.3	1.52	1.3	0.7	5200	48.3	18.7	5.42	49.0	5.30	-1,5	23
1900	54.0	14.B	1.57	53.3	1.52	1.3	3.3	5250	48.2	18.8	5,50	49.0	5,36	1.6	2.5
1950	53.9	14,8	1.60	53.3	1.52	1,1	5.3	5300	48.1	18.9	5.57	48.9	5.42	-1.7	2.8
2000	53.8	14.8	1.64	53.3	1.52	0.9	7.9	5500	47.7	19.2	5.86	48.6	5.65	-2.0	3.8
2050	53.8	14.7	1.68	53.2	1.57	1.1	7.0	5600	47,5	19.3	6.01	48.5	5.77	-2.1	4,2
2100	53.7	14.7	1.72	53.2	1.62	1.0	6.2	5700	47.3	19.4	6.16	48.3	5.88	-2.3	4.8
2150	53.7	14.7	1.76	53.1	1.66	1.1	6.0	5800	47.0	19.6	6.32	48.2	6.00	-2.4	5.3
2200	53.6	14.7	1 80	53.0	1.71	1.1	5.3	6000	46.6	19.8	6.62	47,9	6.23	-2.7	6.3
2250	53.5	14.8	1.85	53.0	1.76	1.0	5.4	6500							
2300	53.5	14.8	1,89	52.9	1.81	- 64	4,4	7000							
2350	53.4	14.8	1.94	52.8	1.85	1.1	4.9	7500							
2400	53.3	14.8	1.98	52.8	1.90	1.0	4.2	8000							
2450	53.3	14.9	2.03	52.7	1.95	1.1	4.3	8500							
2500	53.2	14.9	2.07	52.6	2.02	1.1	2.5	9000							
2550	53.1	15.0	2.12	52.6	2.09	1.0	1,4	9500							
2600	53.0	15.0	2.17	52.5	2.16	0.9	0.5	10000							

Figure C-2 600 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	09/01/20 - 10/05/20	Portable Handset			Page 2 of 3
© 202	0 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG	S	p	е	а	g	1
Zeughausstrasse 43, 8004 Zurich, Switzerland		1.1				

Zeughausstrasse 43, 8004 Zunch, Switzenano Phone +41 44 245 9700, Fax +41 44 245 9779 Info@speag.com. http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)	
Product No.	SL AAH U16 BC (Batch: 200805-4)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition 1

Ambient Condition	1 22°C ; 30% humidity	
TSL Temperature	22°C	
Test Date	6-Aug-20	
Operator	CL	
Additional Inform	nation	
TSL Density		

TSL Heat-capacity

Results

- 1	Measu	red		Targe	at	Diff.to Tan	get (%)	15.0	_	_					_
[MHz]	*	0"	sigma	eps	sigma	∆-ерв	∆-sigma	10.0						-	
600	44.7	25.7	0.86	42.7	0.88	4.6	-2.5	8 5.0	1						
750	44.1	21.7	0.90	41.9	0.89	5.1	0.7			-	-	-			
B00	44.0	20.7	0.92	41.7	0.90	5.6	2.5	Permittively				-	-	-	
825	43.9	20,3	0.93	41.6	0.91	5.6	2.6	E -5.0	T					-	-
835	43,9	20.1	0.94	41,5	0.91	5.7	3.1	210.0	-	-					-
850	43.8	19,9	0.94	41.5	0.92	5.5	2.6	-10.0		0.0100		0 FE00 0		0000 00	
900	43.7	19.1	0.96	41.5	0.97	5.3	-1.0		00 150	0 2500	Frequent		500 7500	8500 90	iou i
1400	42.7	15.1	1.18	40.6	1.18	5.2	0.0	15.0							
1450	42.6	14.9	1.20	40.5	1.20	5.2	0.0	10.0			-	_		-	-
1600	42,4	14.4	1.28	40.3	1,28	5.2	-0.3	See.		٨					
1625	42.4	14.4	1.30	40.3	1.30	5,3	0.1	AL OD	1	1		-	-	-	_
1640	42.4	14.3	1.31	40.3	1.31	5.3	D.3	nductivity 0.0	p	1	1				1
1650	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	010.0					_		
1700	42.2	14,2	1.34	40,2	1,34	5.1	-0.2	A15.0	-		-				
1750	42.2	14.1	1.37	40.1	1,37	5.3	-0.1		00 150	2500 3	3500 450	0 5500 6	500 7500	8500 95	00
1800	42.1	14.0	1.40	40.0	1.40	5.3	0.0	_	_	_	Frequer	icy MHz		_	
1810	42.1	14.0	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	2.77	37.9	2.91	3.7	-5,
1825	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.3	2.95	37.7	3.12	3.5	-5.
1850	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	15.9	4.61	36.0	4.66	1.3	-1.
1900	41.9	13.8	1.46	40.0	1.40	4.7	4.3	5250	36.4	16.0	4.67	35.9	4.71	1.2	-0.
1950	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36,3	16.0	4.72	35.9	4.76	1.1	-0.
2000	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	4.96	35.6	4.96	0,7	-0.
2050	41,7	13.7	1.56	39.9	1:44	4.5	B,0	5600	35,7	16.3	5,07	35.5	5.07	0,5	0.
2100	41.7	13.7	1,60	39.6	1.49	4.7	7.5	5700	35.5	16.4	5.19	35.4	5.17	0.3	0.4
2150	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.4	16.5	5.31	35.3	5.27	0,1	0,1
2200	41.5	13.6	1.67	39.6	1.58	4.7	5,8	6000	35.0	16.6	5.54	35.1	5.48	-0.2	1.1
2250	41.5	13,6	1,70	39,6	1.62	4.9	4.8	6500	34.1	17,1	E.17	34.5	6.07	-1.1	1.
2300	41.4	13.6	1.74	39.5	1.67	4,9	4.4	7000	33.2	17.4	6.78	33.9	6.65	-2.0	2.
2350	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	7.40	33.3	7.24	-2.9	2
2400	41.2	13.6	1.82	39.3	1.76	4.9	3.7	8000	31.5	18.0	8.01	32.7	7.84	-3.8	2
2450	41.2	13.6	1.85	39.2	1.80	5.1	2.8	8500	30.6	18.2	8.63	32.1	8.45	-4.7	2
2500	41.1	13.6	1.89	39.1	1.85	5.0	1.9	9000	29.8	18.4	9.24	31.5	9.08	-5.6	1.
	41.0	13.7	1.94	39.1	1.91	4.9	1.6	9500	29.0	18.6	9.84	31.0	9.71	-6.5	1.
2550	41.0														

Figure C-3 600 – 5800 MHz Head Tissue Equivalent Matter

	FCC ID ZNFK200TM	PCTEST	SAR EVALUATION REPORT		Approved by:
		Proval to be part of 1	•••••••••••••••••••••••••••••••••••••••	🕒 LG	Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	09/01/20 - 10/05/20	Portable Handset			Page 3 of 3
© 202	0 PCTEST				REV 21.4 M 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	SAR System validation Summary – 1g													
SAR						COND.	PERM.	C	W VALIDATION	l	ſ	MOD. VALIDATION	1	
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
L	750	8/14/2020	7406	750	Head	0.868	43.769	PASS	PASS	PASS	N/A	N/A	N/A	
E	835	2/20/2020	3589	835	Head	0.922	43.402	PASS	PASS	PASS	GMSK	PASS	N/A	
L	835	7/6/2020	7406	835	Head	0.903	42.760	PASS	PASS	PASS	GMSK	PASS	N/A	
L	1750	7/11/2020	7406	1750	Head	1.321	41.025	PASS	PASS	PASS	N/A	N/A	N/A	
L	1900	7/7/2020	7406	1900	Head	1.403	40.885	PASS	PASS	PASS	GMSK	PASS	N/A	
Р	2450	9/9/2020	7308	2450	Head	1.865	40.970	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
E	2450	2/5/2020	3589	2450	Head	1.823	38.835	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
E	2600	2/5/2020	3589	2600	Head	1.933	38.635	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
Р	750	9/26/2019	7551	750	Body	0.959	54.287	PASS	PASS	PASS	N/A	N/A	N/A	
Р	835	9/26/2019	7551	835	Body	0.991	54.104	PASS	PASS	PASS	GMSK	PASS	N/A	
Р	835	9/8/2020	7308	835	Body	0.977	54.530	PASS	PASS	PASS	GMSK	PASS	N/A	
I	1750	6/17/2020	7570	1750	Body	1.518	52.030	PASS	PASS	PASS	N/A	N/A	N/A	
н	1900	6/1/2020	7357	1900	Body	1.555	51.210	PASS	PASS	PASS	GMSK	PASS	N/A	
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A	
Р	2450	9/9/2020	7308	2450	Body	2.028	52.650	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
к	2450	7/7/2020	7409	2450	Body	2.018	51.180	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
к	2600	7/8/2020	7409	2600	Body	2.194	50.730	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	

Table D-1 SAR System Validation Summary – 1g

 Table D-2

 SAR System Validation Summary – 10g

SAR					PROBE CAL. POINT		PERM.	C	W VALIDATION		Ν	MOD. VALIDATION	1
SYSTEM	FREQ. [MHz]	DATE	PROBE SN	PROBE C.			(σ) (εr)		PROBE	PROBE	MOD.	MOD. DUTY FACTOR	
#									LINEARITY	ISOTROPY	TYPE	DUTTFACTOR	PAR
I	1750	6/17/2020	7570	1750	Body	1.518	52.03	PASS	PASS	PASS	N/A	N/A	N/A
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A
н	1900	6/1/2020	7357	1900	Body	1.555	51.21	PASS	PASS	PASS	GMSK	PASS	N/A

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX: D
	09/01/20 - 10/05/20	Portable Handset			Page 1 of 1
© 202	0 PCTEST				REV 21.4 M 09/11/2019

APPENDIX F POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

F.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

F.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table F-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID:ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
09/01/20 - 10/05/20	Portable Handset			Page 1 of 3
© 2020 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

F.3 Main Antenna Verification Summary

Mechanism(s)			Conducted Power (dBm)		
1st	2nd	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)	Mechanism #2 (Reduced)
Grip		UMTS 1750	24.10	22.16	
Hotspot On		UMTS 1750	24.05	22.15	
Grip	Hotspot On	UMTS 1750	24.08	22.15	22.09
Hotspot On	Grip	UMTS 1750	24.04	22.11	22.08
Grip		UMTS 1900	24.54	23.20	
Hotspot On		UMTS 1900	24.54	22.99	
Grip	Hotspot On	UMTS 1900	24.50	23.00	22.98
Hotspot On	Grip	UMTS 1900	24.51	23.05	23.00
Grip		LTE FDD Band 4	23.38	21.84	
Hotspot On		LTE FDD Band 4	23.47	21.85	
Grip	Hotspot On	LTE FDD Band 4	23.46	21.97	21.96
Hotspot On	Grip	LTE FDD Band 4	23.39	21.95	22.00
Grip		LTE FDD Band 66	24.05	21.76	
Hotspot On		LTE FDD Band 66	24.03	21.68	
Grip	Hotspot On	LTE FDD Band 66	24.03	21.90	21.89
Hotspot On	Grip	LTE FDD Band 66	24.04	21.90	21.70
Grip		LTE FDD Band 2	24.36	23.20	
Hotspot On		LTE FDD Band 2	24.32	23.19	
Grip	Hotspot On	LTE FDD Band 2	24.33	23.19	23.18
Hotspot On	Grip	LTE FDD Band 2	24.35	23.17	23.18
Grip		LTE FDD Band 25	24.24	22.79	
Hotspot On		LTE FDD Band 25	24.19	22.80	
Grip	Hotspot On	LTE FDD Band 25	24.21	22.80	22.79
Hotspot On	Grip	LTE FDD Band 25	24.28	22.78	22.79

Table F-1Power Measurement Verification for Main Antenna

 Table F-2

 Distance Measurement Verification for Main Antenna

Mashaniana(a)	Test Condition	Dand	Distance Measu	urements (mm)	Minimum Distance per
Mechanism(s)	Test condition	Band	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	5	7	3
Grip	Phablet - Bottom Edge	Mid	4	5	3

*Note: Low band refers to: Mid band refers to: UMTS B2/4, LTE B2/4/25/66

FCC ID:ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
09/01/20 - 10/05/20	Portable Handset			Page 2 of 3
© 2020 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

F.4 WIFI Verification Summary

Power Measurement Verification WIFI					
Mechanism(s)		Conducted F	Power (dBm)		
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)		
Held-to-Ear	802.11b	21.10	17.99		
Held-to-Ear	802.11g	18.85	17.82		
Held-to-Ear	802.11n (2.4GHz)	18.60	17.95		

 Table F-3

 Power Measurement Verification WIFI

FCC ID:ZNFK200TM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
09/01/20 - 10/05/20	Portable Handset			Page 3 of 3
© 2020 PCTEST Engineering Laboratory, Inc.				REV 20.05 M 11/15/2017

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1054_Mar20

CALIBRATION CI	ERTIFICATE						
Object	D750V3 SN:1054 Webber Street S						
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz						
Calibration date:	March 11, 2020	Managalaa yo dhalaa ahada ahaa ahaa ah	BN BN its of measurements (SI). 04-30-20				
		onal standards, which realize the physical uni robability are given on the following pages an					
All calibrations have been conducte	d in the closed laborato	ry facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.				
Calibration Equipment used (M&TE	critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20				
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20				
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20				
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20				
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20				
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20				
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20				
Secondary Standards	1D #	Check Date (in house)	Scheduled Check				
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20				
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20				
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20				
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20				
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20				
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	signature JCJ				
Approved by:	Katja Pok ov ic	Technical Manager	Jelle				
			Issued: March 19, 2020				
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	•				

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.63 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.69 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.63 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω - 1.9 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω - 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.035 ns
	1.035 HS

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

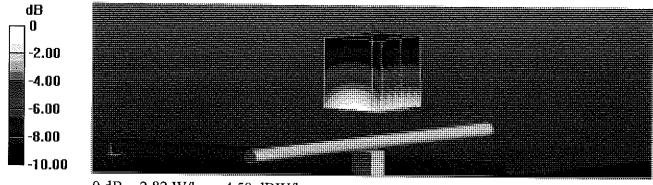
Manufactured by	SPEAG
	J SFEAG J

DASY5 Validation Report for Head TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.1 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

Impedance Measurement Plot for Head TSL

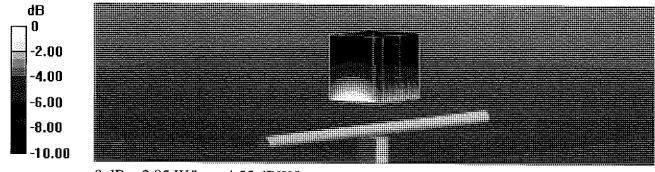
Ch 1 Avg	- 20		.000000 MHz 114,70 pF .000000 MHz	53.604 Ω -1.8500 Ω 39.096 mU -26.149 °
Ch1: Start 550,000 10.00 HB Sta 5.00		 > 1; 750	.00000 MHz	stop 350.000 мНа -28.157 dB
-5.00				
15.00	····			
20,00 , 				

DASY5 Validation Report for Body TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.96 S/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 16.1 mm Ratio of SAR at M2 to SAR at M1 = 66.7%Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File Vie</u>	w <u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>Trace</u> <u>5</u> ca	ale M <u>a</u> rker	System	<u>W</u> indow	Help		
	Ch 1 Avg =	20					A).000000 MHz 45.536 pF).000000 MHz	-4.6 46.68	831 Ω i602 Ω 31 mU 3.404 °
Ch1:	: Start 550.000 h		01wp						Stop 950	.000 MHz
¥ :										
10.00 5.00 0.00						>	1: 750).00000 MHz	-26.5	321 dB
5.00 0.00 -5.00						>	1: 750		-28.5	321 dB
5.00 0.00						>	1: 750	. 00000 MHz	-26.5	i21 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00	dbssta					>	1: 750		-28.5	i21 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00	20 						1: 750	00000 MHz	-28.6	i21 dB
5.00 0.00 5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -40.00	dB S11	1Hz								321 dB

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For users with a CADODMO D/
	or an incud i nantom	For usage with cSAR3D V2 -R/L
		_

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	700-1
SAR for nominal Head TSL parameters	normalized to 1W	7.66 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR for nominal Head TSL parameters	normalized to 1W	8.42 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR for nominal Head TSL parameters	normalized to 1W	······	

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	······································
SAR for nominal Head TSL parameters	normalized to 1W	7.89 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear ≅ D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	6.82 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	······

 $^{^{1}\,}$ Additional assessments outside the current scope of SCS 0108 $\,$

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client PC Test		e e e e e e e e e e e e e e e e e e e	Certificate No: D835V2-4d047_Mar19
CALIBRATIONIC	Enteloat		
Object	D835V2 - SN 4d	047	
Calibration procedure(s)	QA CAL-05-v11 Calibration Proce	edure for SAR Validatio	n Sources between 0:7-3 GHz
Calibration date:	March 13, 2019		BN 04-12-2019
This calibration certificate docume	nts the traceability to nat	ional standards, which realize th	The physical units of measurements (SI). $04-12-20.19$ BNV Extends by BNV Extends BNV
		· · ·	wing pages and are part of the certificate. $'$ ture (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&Ti		ту тасниу, елиногипент тепрега	une (22 ± 5) O and Humany < 70%.
Primary Standards	1D#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_D	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_0	Oct-19
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check F	
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check C	,
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check O	
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check C	
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check C	•
	Name	Function	Signature
Calibrated by:	Manu:Seitz	Laboratory Tech	
Approved by:	Katja Poković	Technical Manac	
			issued: March 13, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

· · · · · · · · · · · · · · · · · · ·		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	····
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)
		· · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

y (one direction)	1.387 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

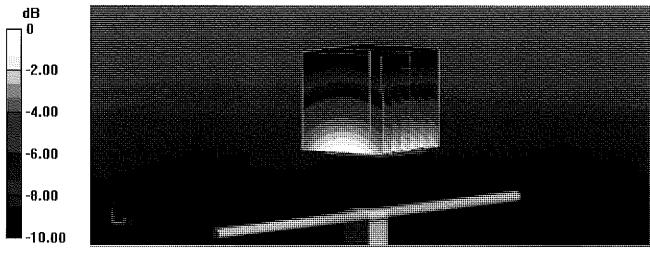
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 13.03.2019

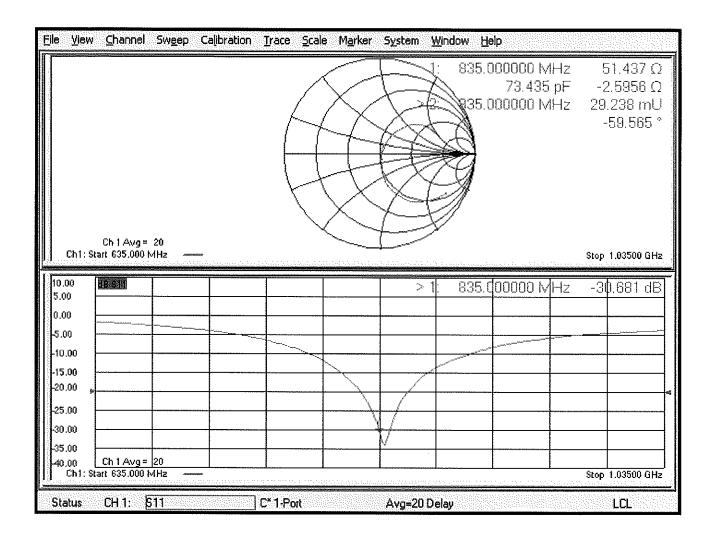
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.91 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

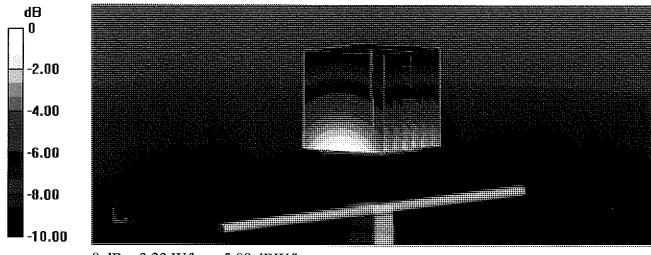
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

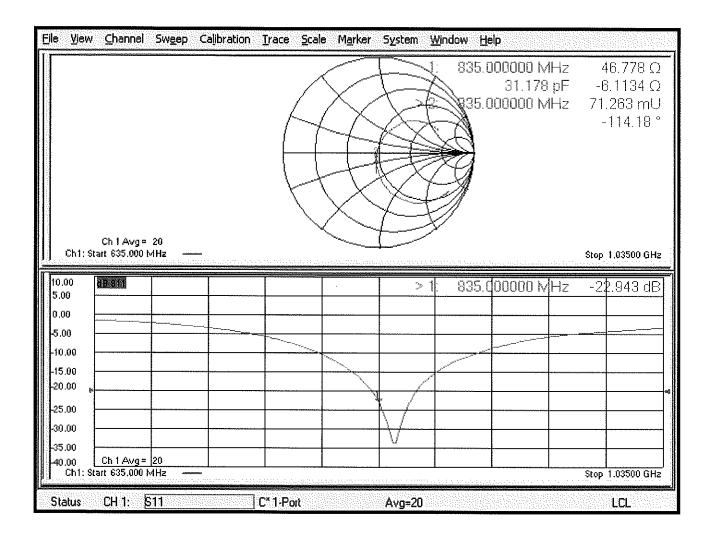
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Body TSL

Certification of Calibration

Object

D835V2 - SN: 4d047

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/13/2020

Description:

SAR Validation Dipole at 835 MHz

Calibration Equipment used:

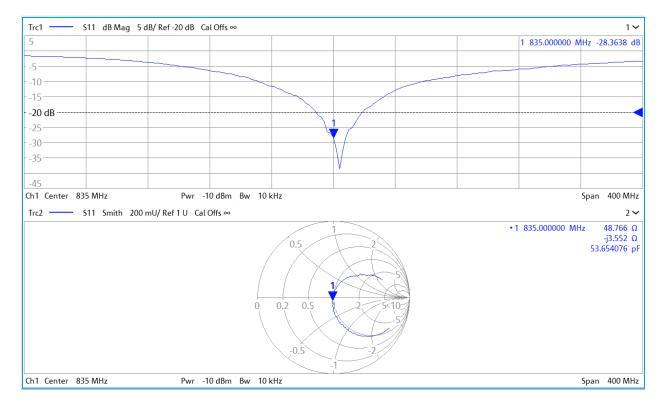
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	7488
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1530

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

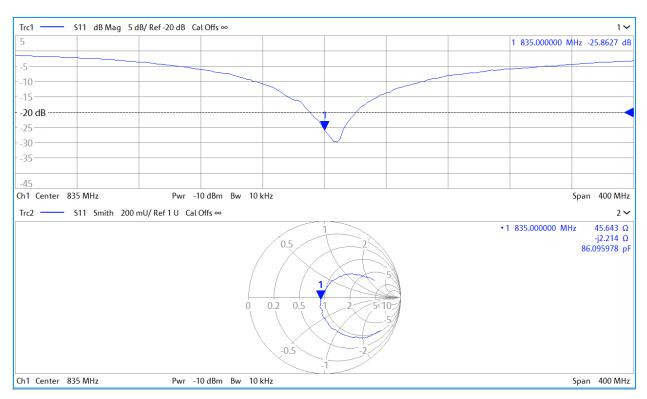
Object:	Date Issued:	Page 1 of 4
D835V2 – SN: 4d047	03/13/2020	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3/13/2019	3/13/2020	1.387	1.884	1.87	-0.74%	1.226	1.22	-0.49%	51.4	48.8	2.6	-2.6	-3.6	1.0	-30.7	-28.4	7.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) 10/0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3/13/2019	3/13/2020	1.387	1.894	1.91	0.84%	1.254	1.26	0.48%	46.8	45.6	1.2	-6.1	-2.2	3.9	-22.9	-25.9	-12.90%	PASS

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d047	03/13/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d047	03/13/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dege 4 of 4
D835V2 – SN: 4d047	03/13/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.:	SCS	0108

Certificate No: D835V2-4d132_Jan20 Client PC Test CALIBRATION CERTIFICATE D835V2 - SN:4d132 Object Calibration procedure(s) QA CALUE III in i cration BNY 2-05-2020 January 13, 2020 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Reference Probe EX3DV4 SN: 7349 31-Dec-19 (No. EX3-7349 Dec19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 ID # Secondary Standards Check Date (in house) Scheduled Check SN: GB39512475 Power meter E4419B 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20 Name Function Signature Leif Klysner Calibrated by: Laboratory Technician Katla Pokovic Approved by: Technical Manager Issued: January 21, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	• • • •
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.65 W/kg ± 17.0 % (k=2)
	- I	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.30 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.96 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.64 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω - 3.1 jΩ
Return Loss	- 30.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.5 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.385 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

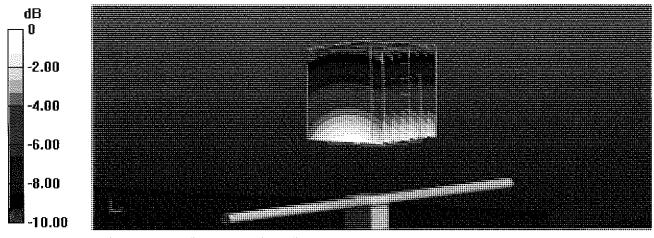
Manufactured by	SPEAG	
,		2
		Manufactured by SPEAG

DASY5 Validation Report for Head TSL

Date: 13.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 42.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.94 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 3.20 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Impedance Measurement Plot for Head TSL

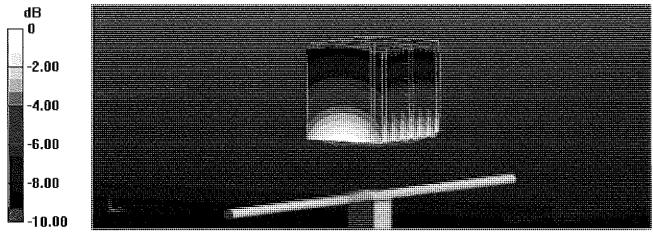
<u>File View C</u> hai	nnel Sw <u>e</u> ep Calibr	ation <u>Trace S</u> cale M <u>a</u> rk	er System <u>Wi</u> ndov	v <u>H</u> elp	
				35.000000 MHz 60.623 pF 35.000000 MHz	50.361 Ω -3.1441 Ω 31.518 mU -81.684 °
Ch 17 Ch1: Start 635	Avg ≠ 20 5.000 MHz		}		Stop 1.03500 GHz
10.00 5.00 0.00 -5.00 -10.00 -15.00 -25.00 -25.00 -30.00 -35.00 -40.00 -40.00 -11: Start 635				035.00000 MHz	-30.029 dB
Status CH 1	<u>§11</u>	C* 1-Port	Avg=20 Delay		LCL

DASY5 Validation Report for Body TSL

Date: 13.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.64 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.68 W/kg Smallest distance from peaks to all points 3 dB below = 16.2 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 3.33 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Impedance Measurement Plot for Body TSL

<u>F</u> ile <u>V</u> iev	v <u>C</u> hannel	Sw <u>e</u> ep Calibrat	ion <u>T</u> race <u>S</u> cal	e M <u>a</u> rker S <u>v</u> s	item <u>W</u> indow) <u>H</u> elp	
						35.000000 MHz 34.503 pF 35.000000 MHz	-5.5242 Ω
Ch1:	Ch 1 Avg = Start 635.000 lv			~~		-	Stop 1.03500 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1:		20 1H2 connects			> 1 8	35.00000 MHz	-24.813 dB
Status	CH 1: 6	11	C* 1-Port	A۷	g=20 Delay		LCL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
	SAW HEAU FHAILON	TO USage with COARODVZ-R/L

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.34 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.80 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.32 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear \cong D90)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	8.01 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	5.40 W/kg ± 16.9 % (k=2)

 $^{^{1}}$ Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test

Certificate No: D1750V2-1150_Oct18

Accreditation No.: SCS 0108

CALIBRAT	ON CERTIFICATE	

Object	D1750V2 SN.11	50	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits above.	700 MHz
Calibration date:	October 22, 2018		10/30/2018 10/30/2018 BNV 10-20-2019
	•	onal standards, which realize the physical units of robability are given on the following pages and are	measurements (51).
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C and	3 humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.WELET
Approved by:	Katja Pokovic	Technical Manager	CC 15
This calibration certificate shall not	be reproduced except in	n full without written approval of the laboratory.	Issued: October 22, 2018

Certificate No: D1750V2-1150_Oct18

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole ٠ positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

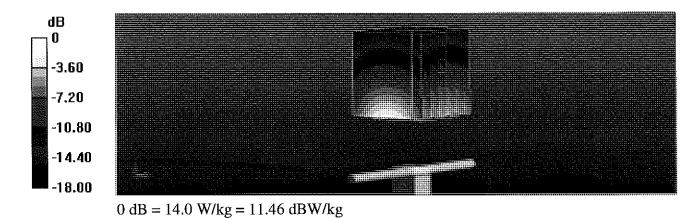
Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

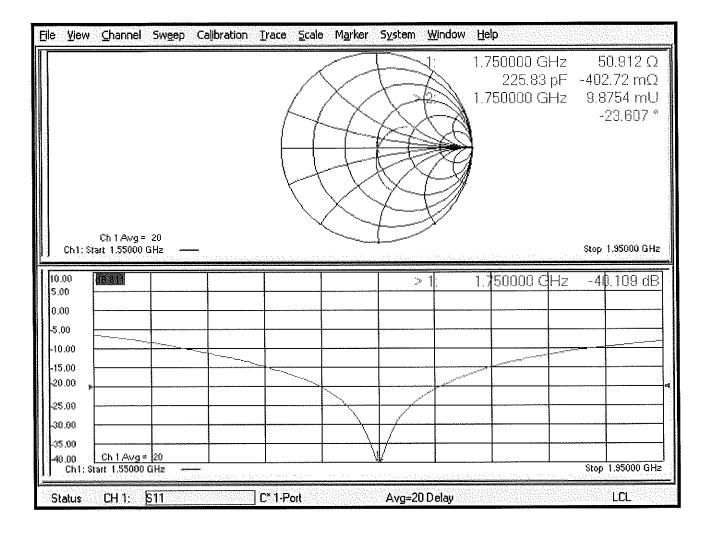
Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg

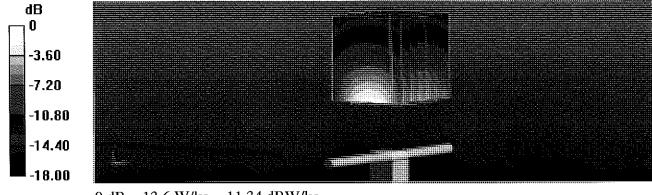
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

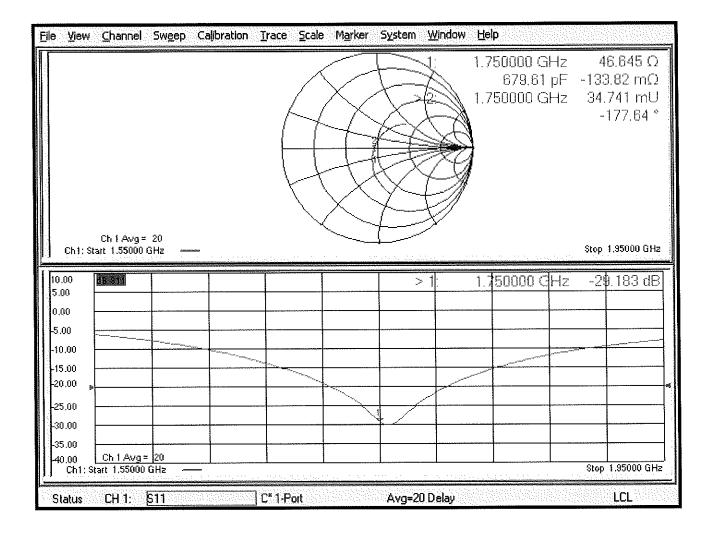
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN:1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	8/16/2019	Annual	8/16/2020	7308
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2019	Annual	8/14/2020	1450

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

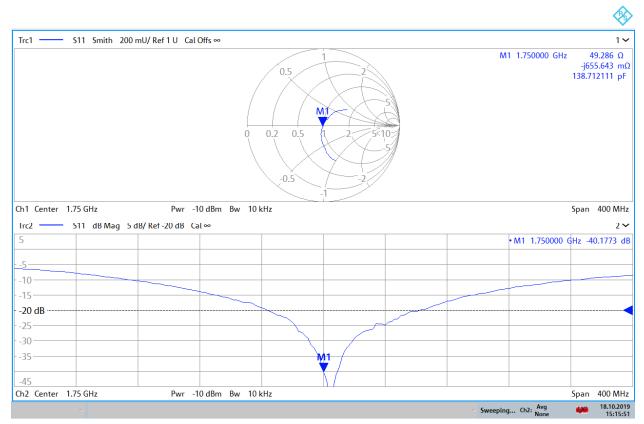
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date Issued:	Dogo 1 of 4
D1750V2 – SN:1150	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

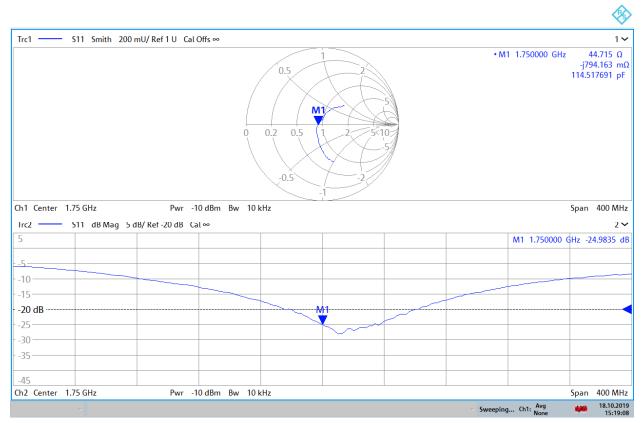
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.65	3.8	4.11%	1.92	2	4.17%	50.9	49.3	1.6	0.4	-0.7	1.1	-40.1	-40.2	-0.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.66	3.82	4.37%	1.94	2.02	4.12%	46.6	44.7	1.9	-0.1	-0.8	0.7	-29.2	-25	14.40%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 - SN:1150	10/18/2019	Faye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:15:52 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1750V2 – SN:1150	10/18/2019	raye 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:19:09 18.10.2019

Object:	Date Issued:	Daga 4 of 4
D1750V2 – SN:1150	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb19

Accreditation No.: SCS 0108

CALIBRATIONEC	ERIFICAT		
Object	D1900V2 - SN:5	d148	
Calibration procedure(s)	QA CAL-05 v11 Calibration Proc	edure for SAR Validation Source	
Calibration date:	February 21, 20	9	inits of measurements (SI). $02-26^{-23}$
This calibration certificate docume	ots the traceability to pat	ional standarda which makes the short start	m2-26/2
The measurements and the uncert	tainties with confidence r	ional standards, which realize the physical u probability are given on the following pages a	Inits of measurements (SI).
		ry facility: environment temperature (22 ± 3)	
Calibration Equipment used (M&T		,	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr~19
Type-N mlsmatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349 Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check; Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Simeture
Calibrated by:	Manu Seltz	สพิทธิสิทธิสติสติสติสติสติสติสติสติสติสติสติสติสติ	Signature
		Laboratory Technician	ALL
Approved by:	Kalja Pokovic	Technical Manager	
			to to the
			Issued: February 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
IOL	U
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.170 ns
	1370115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

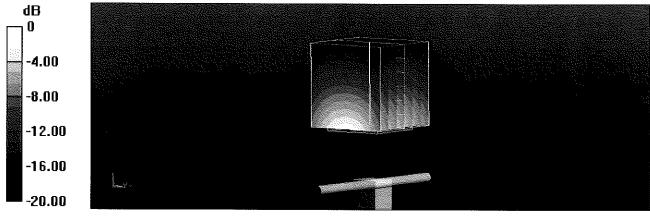
Manufactured by	SPEAG
	JEAG

DASY5 Validation Report for Head TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg **SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg** Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

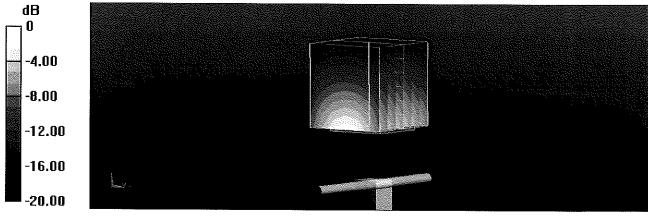
<u>File Viev</u>	v <u>C</u> hannel Sw <u>e</u> e	ep Calibration <u>T</u> r	ace <u>S</u> cale M <u>a</u> r	'ker S <u>y</u> stem <u>Wi</u> ni	dow Help	
Ch1::	Ch 1 Awg = 20 Start 1.70000 GHz				1.900000 GHz 573.82 pH 1.900000 GHz	51.822 Ω 6.8503 Ω 69.458 mU 71.260 °
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: 5	Ch 1 Avg = 20 3tart 1.70000 GHz				1.900000 GHz	-23.166 dB
Status	CH 1: <u>811</u>	C*-	1-Port	Avg=20 Delay		Stop 2.10000 GHz

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	Channel	Sweep	Calibration	<u>Trace</u> <u>S</u> c.	ale M <u>a</u> rker	System	Window	Help			
		Ch1Avg=				XXX			1.900000 G 652.32 1.900000 G	pН	48.446 Ω 7.7874 Ω 80.412 mU 96.762 °	
		rt 1.70000 (-4			S	top 2,10000 GHz	
10.0	no 16	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	7			Contraction of the second s		The second se	The second s			
5.0 0.0 -5.0 -10. -15. -20. -25. -30. -35. -40. (Ch 1 Awg = rt 1.70000 c	20 3Hz								-21.894 dB	

Certification of Calibration

Object

D1900V2 - SN: 5d148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

2/21/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

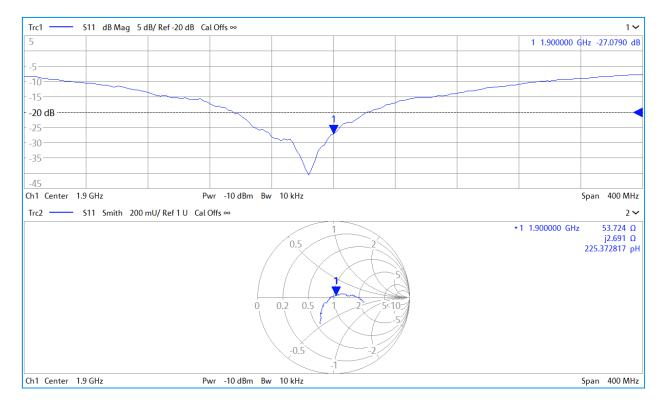
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d148	02/21/2020	Fage 1014

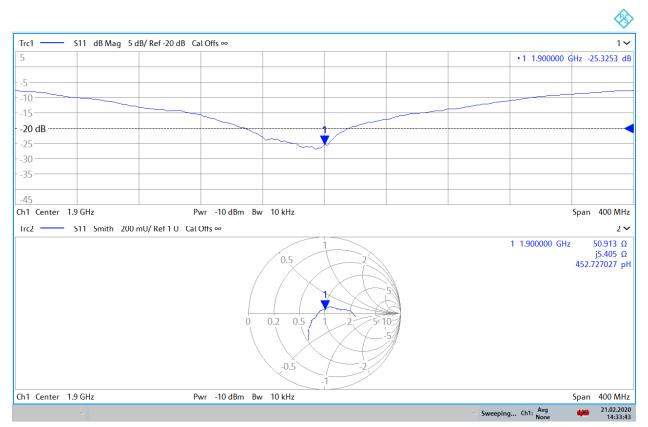
DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.15	6.14%	2.04	2.13	4.41%	51.8	53.7	1.9	6.8	2.7	4.1	-23.2	-27.1	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 1000-0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.06	3.84%	2.05	2.08	1.46%	48.4	50.9	2.5	7.8	5.4	2.4	-21.9	-25.3	-15.60%	PASS


Object:	Date Issued:	Page 2 of 4
D1900V2 – SN: 5d148	02/21/2020	Faye 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D1900V2 – SN: 5d148	02/21/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:33:44 21.02.2020

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d148	02/21/2020	Fage 4 01 4

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

..

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-981_Aug18

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:9	81	
		· · ·	
Calibration procedure(s)	QA CAL-05.v10		
	Calibration proce	edure for dipole validation kits ab	ove 700 MHz
		· · · ·	RNIV
	•		DIA
		- · · · · · · ·	09-26/201
Calibration date:	August 16, 2018	· · · · ·	
			BN V 09-26/201 BNV 08/10/20
		•	01.0/25
This calibration certificate docume	nts the traceability to nat	ional standards, which realize the physical ur	08/10/20
The measurements and the uncert	ainties with confidence n	probability are given on the following pages a	hits of measurements (SI).
	anabo mar comaence p	nobability are given on the following pages ar	nd are part of the certificate. BN 08-20-20
All calibrations have been conduct	and for the second s		
An canonations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	°C and humidity < 70%.
	_		
Calibration Equipment used (M&TE	E critical for calibration)		
	1		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Chook Data (in house)	
Power meter EPM-442A	SN: GB37480704	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
	1000110004//	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	
Calibrated by:	Leif Klysner		Signature
,	Los reyones	Laboratory Technician	Sod tilla
	• · ·		and when
Approved by:	Kota Dekevia	··-	
Approved by	Katja Pokovic	Technical Manager	MA
	· ·	· · ·	Act in
			Issued: August 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL ConvF N/A	tissue simulating liquid sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.3 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2014

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom		
Filantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
		TO USAGE WILL COARSDVZ-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	34.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.5 W/kg ± 16.9 % (k=2)

DASY5 Validation Report for Head TSL

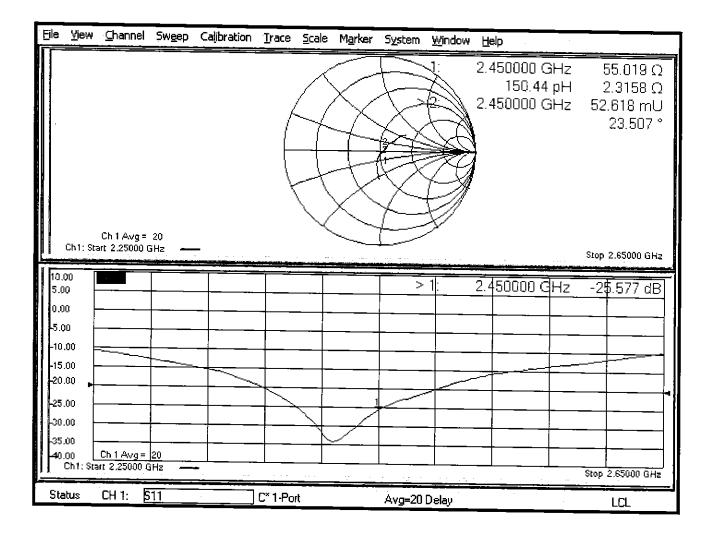
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.1 W/kg

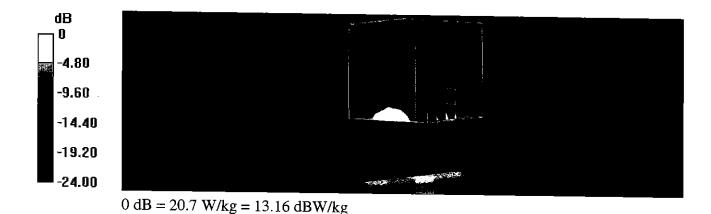
0 dB = 22.1 W/kg = 13.44 dBW/kg

DASY5 Validation Report for Body TSL

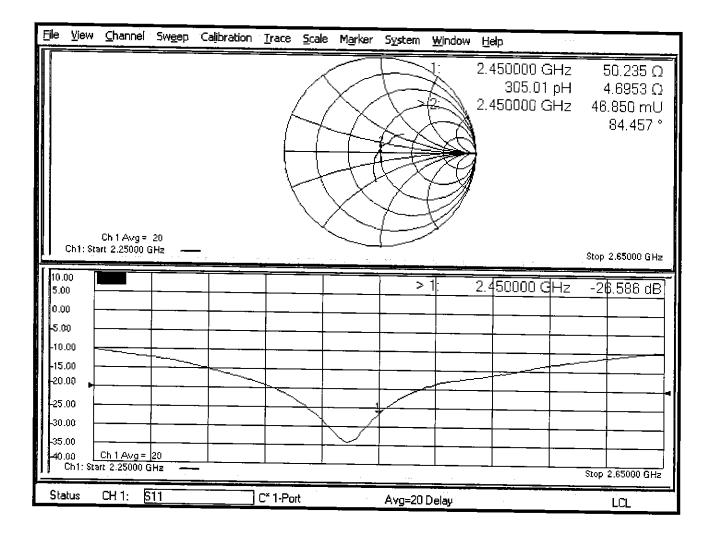
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.0 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.7 W/kg

Impedance Measurement Plot for Body TSL

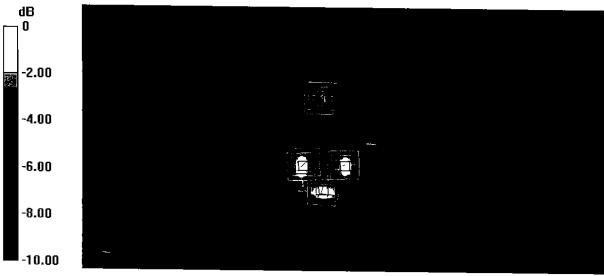
Date: 16.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 22.0 W/kg

SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 21.7 W/kg

SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.5 W/kg

SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.03 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg Maximum value of SAR (measured) = 13.5 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 981

08/09/2019

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

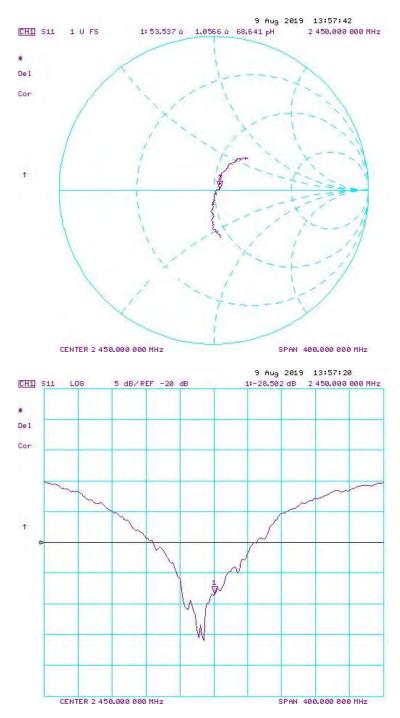
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

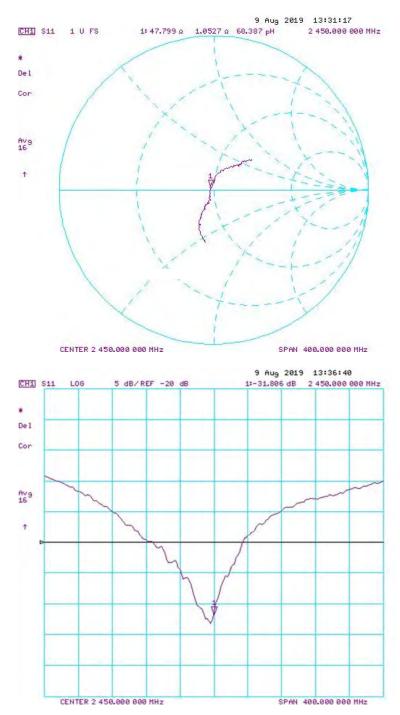
Object:	Date Issued:	Page 1 of 4	
D2450V2 – SN: 981	08/09/2019	Page 1 of 4	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 20.0 dBm	ubiii	(%)	dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
8/16/2018	8/9/2019	1.162	5.23	5.53	5.74%	2.44	2.56	4.92%	55	53.5	1.5	2.3	1.1	1.2	-25.6	-28.5	-11.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/16/2018	8/9/2019	1.162	5.09	4.98	-2.16%	2.42	2.28	-5.79%	50.2	47.8	2.4	4.7	1.1	3.6	-26.6	-31.8	-19.60%	PASS

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 981	08/09/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D2450V2 – SN: 981	08/09/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dage 4 of 4
D2450V2 – SN: 981	08/09/2019	Page 4 of 4

Certification of Calibration

Object

D2450V2 - SN: 981

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

8/16/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 2450 MHz

Calibration Equipment used:

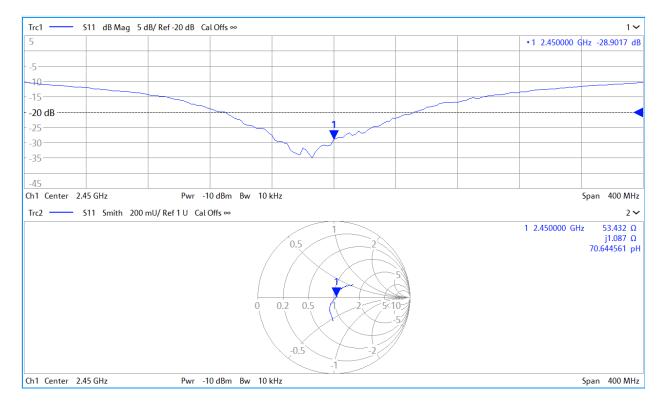
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766816
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Agilent	85033E	3.5mm Standard Calibration Kit	6/6/2020	Annual	6/6/2021	MY53402352
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/27/2019	Annual	8/27/2020	1339027
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk Inc	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4	SAR Probe	6/23/2020	Annual	6/23/2021	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2020	Annual	6/18/2021	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/23/2020	Annual	1/13/2021	1558

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

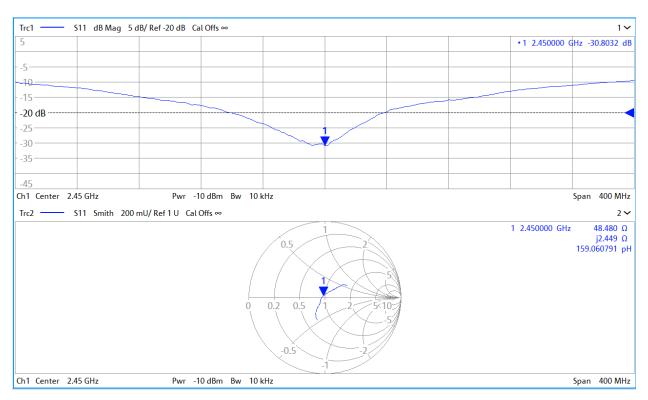
Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 981	08/16/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 20.0 dBm	dbill	(%)	dBm	(10a) W/ka @		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
8/16/2018	8/16/2020	1.162	5.23	5.31	1.53%	2.44	2.4	-1.64%	55	53.4	1.6	2.3	1.1	1.2	-25.6	-28.9	-12.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/16/2018	8/16/2020	1.162	5.09	5.3	4.13%	2.42	2.43	0.41%	50.2	48.5	1.7	4.7	2.4	2.3	-26.6	-30.8	-15.80%	PASS

Object:	Date Issued:	Daga 2 of 4
D2450V2 – SN: 981	08/16/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 981	08/16/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D2450V2 – SN: 981	08/16/2020	Page 4 of 4

Calibration Laboratory of

PC Test

Client

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2600V2-1064_Jun19

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:10	164	
00,000	D2000 V2 - 011. 11		ne na na kaka kaka kana kana kana kana k
			ANV
Calibration procedure(s)	QA CAL-05.v11		BNV BNV 181/2019
candiation procedure(s)			
	Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
			RN
			··· 06-70-30
Calibration date:	June 14, 2019		
	·····		
This calibration partificate documer	to the tracebility to not	and standards, which realize the physical up	ite of monourements (CI)
		onal standards, which realize the physical ur	
The measurements and the uncertain	ames wan connuence p	robability are given on the following pages ar	id are part of the certificate.
l			
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
		00 Apr 10 (No. DAL+001_Apr 0)	Αμ-20
Secondary Standards	D#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06			In house check: Oct-20
0	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	•	–	
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
			Miller
Approved by:	Katja Pokovic	Technical Manager	Clint
			/tent
			Issued: June 20, 2019
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	,
			•

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

,

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 6.9 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 4.4 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

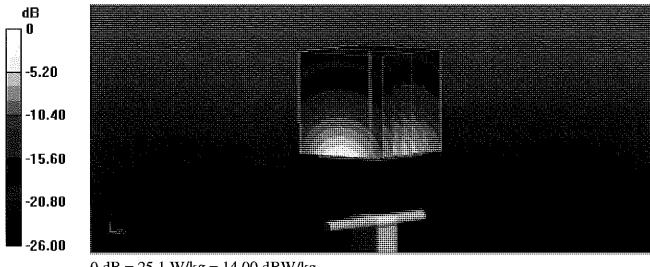
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.03 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 120.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.2 W/kg **SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kg** Maximum value of SAR (measured) = 25.1 W/kg

Impedance Measurement Plot for Head TSL

File View	<u>C</u> hannel Sw <u>e</u> ep	o Ca <u>l</u> ibration <u>T</u>	race <u>S</u> cale I	M <u>a</u> rker S <u>y</u> stem	<u>W</u> indow <u>H</u> elp		
			X		A)0000 GHz 8.8630 pF)0000 GHz	49.847 Ω -6.9066 Ω 69.025 mU -87.316 °
Chi:S	Ch 1 Avg = 20 Start 2.40000 GHz						Stop 2.80000 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -35.00 -40.00 -Ch1: S	Ch 1 Avg = 20 Start 2,40000 GHz =						-23.220 dB
Status	CH 1: 511	C	1-Port	Avg=20 [)elay		LCL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 50.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.6 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>T</u> race <u>S</u> cal	e M <u>a</u> rker	S <u>v</u> stem <u>W</u> ir	ndow <u>H</u>	elp		
		Ch 1 Avg =	20						600000 GHz 14.009 pF 600000 GHz	-4.3 56.9	645 Ω 1696 Ω 44 mU 24.93 °
	Ch1: St	art 2.40000								Stop 2.8	80000 GHz
10. 5.0		ALE AND					> 1;	2.	\$00000 dHz	-74 (391 dB
-30 -35 -40	00 00. 00. 00. 00. 00.	<u>Ch 1 Avg =</u> art 2.40000	20 3Hz —								

Certification of Calibration

Object

D2600V2 - SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 14, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

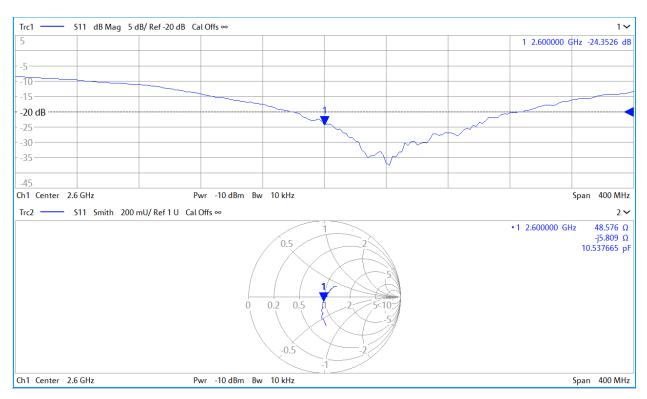
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Test Engineer	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Managing Director	ROK

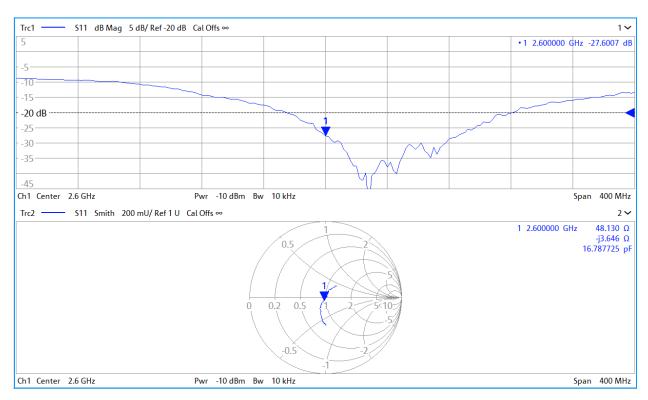
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1064	6/14/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.151	5.81	5.68	-2.24%	2.6	2.56	-1.54%	49.8	48.6	1.2	-6.9	-5.8	1.1	-23.2	-24.4	-5.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.151	5.56	5.43	-2.34%	2.5	2.39	-4.40%	46.6	48.1	1.5	-4.4	-3.6	0.8	-24.9	-27.6	-10.80%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1064	6/14/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1064	6/14/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Daga 4 of 4
D2600V2 – SN: 1064	6/14/2020	Page 4 of 4

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étaionnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No	D1750	V2-1148	May20	ie de la
Certificate Nu		72-1140	IVIAVZU	a sector s

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:11	48	and the second second second at
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	
			BN 6-2-2020
Calibration date:	May 12, 2020		internet in the second s
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778		
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21 Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
			200 20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	J. Kohn
Approved by:	Katja Pokovic	Technical Manager	Alle
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: May 13, 2020

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

rvice (SAS) e of the signatories to the EA

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	· · · · · · · · · · · · · · · · · · ·

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	35.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.69 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	8.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω - 1.9 jΩ
Return Loss	- 33.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 1.7 jΩ
Return Loss	- 25.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

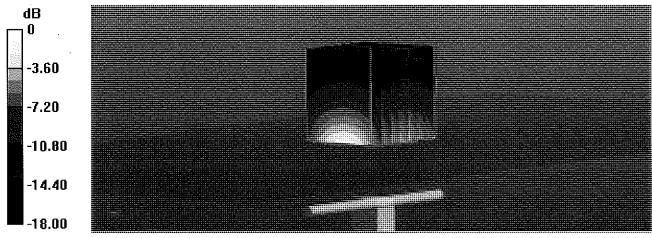
Manufactured by		SPEAG

DASY5 Validation Report for Head TSL

Date: 12.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.35 S/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.76, 8.76, 8.76) @ 1750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.4 W/kg **SAR(1 g) = 8.88 W/kg; SAR(10 g) = 4.69 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Impedance Measurement Plot for Head TSL

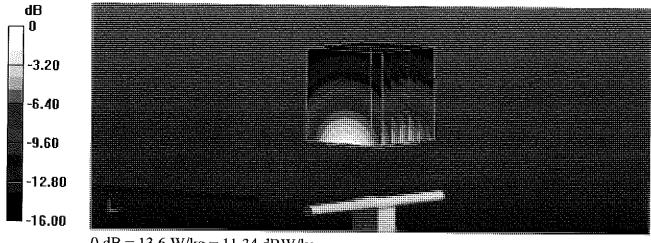
File	View	Channel	Sw <u>e</u> ep	Calibration	<u>Trace S</u> ca	le M <u>a</u> rker	System	Window	Help		
								A	.750000 GH 47.189 I.750000 GH	pF - Hz 20	49.234 Ω 1.9273 Ω 3.896 mU -110.57 °
	Ch1:Sta	Ch 1 Avg = art 1.55000 (GHz						<u>Banda Maria</u> tan Indonesia. Ang s	Stop	⊳ 1.95000 GHz
10.	aa 1	HICKNER AND A STREET							and the second se		
-10 5.0 -5.0 -10 -15 -20 -25 -30	00 - 00 - .00 ~ .00 - .00 .00 -						>		.750000 GH	Hz -3	33.599 dB
5.0 0.0 -5.(-10 -15 -20 -25 -30 -35 -30 -35 -40	00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	<u>Ch 1 Avg =</u> art 1,55006 (20 20 21		C [*] 1:Port				.750000 Gr		33.539 dB

DASY5 Validation Report for Body TSL

Date: 12.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.61, 8.61, 8.61) @ 1750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.95 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 16.1 W/kg **SAR(1 g) = 8.98 W/kg; SAR(10 g) = 4.8 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 57.1% Maximum value of SAR (measured) = 13.6 W/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iev	v <u>C</u> hannel Sw <u>e</u> er	o Calibration	<u>T</u> race <u>S</u> cal	e M <u>a</u> rker	S <u>v</u> stem	<u>W</u> indow (Help			
	Ch 1 Avg = 20		A	XXX		A.	.750000 c 54.542 .750000 c	2 pF	45.048 -1.6674 54.971 m -160.39	Ω U
Cht:	Start 1.55000 GHz -						<u></u>		Stop 1.95000 G	Hz
10.00 5.00 6.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00					3		.750000 C	Hz	-25.197 d	
-35.00 -40.00 Ch1: :	Ch I Avg = 20 Start 1.55000 GHz -								Stop 1.95000 GI	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

71612018

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates Certificate No: D1765V2-1008 May18 Client PC Test GALIBRATION CERTIFICATE Object D1765V2 - SN.1008 QA CAL-05 v10 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz

May 23, 2018

Calibration date:

BNV 05/2012019 BNV 05/2012020 Extended This catibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Od-18
Secondary Standards	1D#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8461A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	in house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Elaboratory Technician	Æ
			. The second
Approved by:	Katia Pokovic	Technical Manager	- AND

issued: May 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1765V2-1008_May18

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	······
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.71 W/kg
o/a mouodicu		in r tonig

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 6.5 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.3 Ω - 6.0 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom SAM Head Phantom For usage with cSAR3DV	2-R/L
---	-------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.95 W/kg

SAR result with SAM Head (Mouth)

Condition	
250 mW input power	9.47 W/kg
normalized to 1W	38.2 W/kg ± 17.5 % (k=2)
	250 mW input power

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

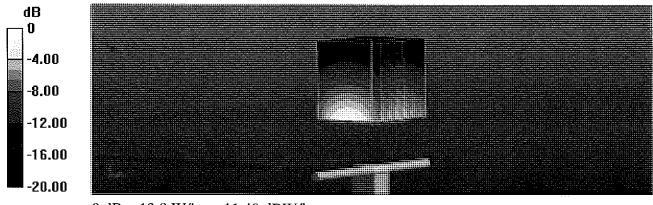
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.01 W/kg

DASY5 Validation Report for Head TSL

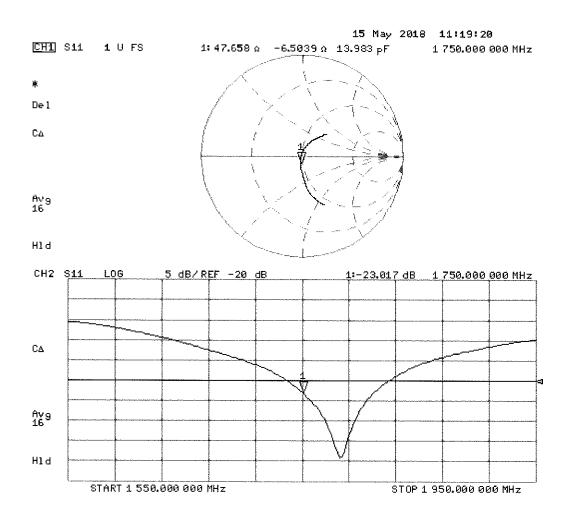
Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ _r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

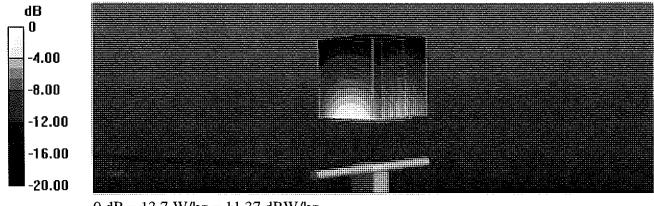
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

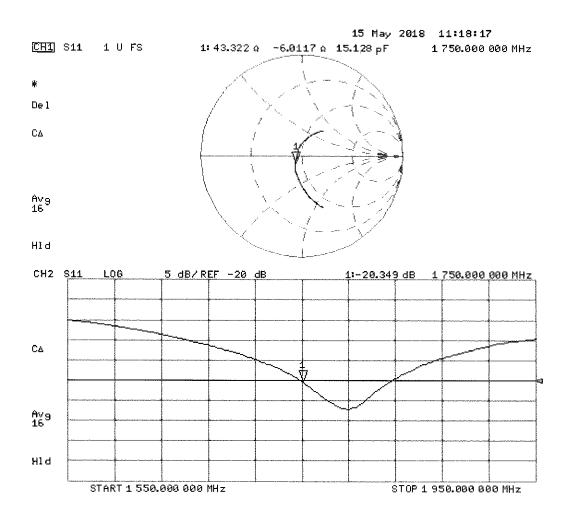
DASY5 Validation Report for Body TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg

DASY5 Validation Report for SAM Head

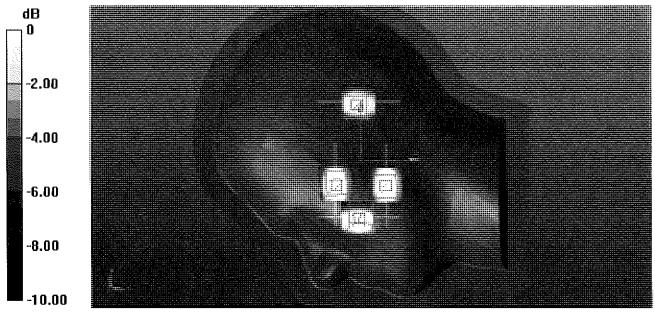
Date: 23.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.9 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.7 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 13.8 W/kg

SAM/Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.12 W/kg; SAR(10 g) = 4.01 W/kg Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1765V2 - SN: 1008

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 5/17/2019

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

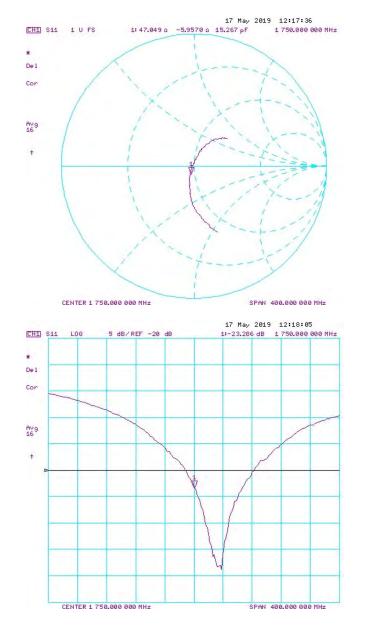
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	11/28/2018	Annual	11/28/2019	MY47420603
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1126066
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	6/6/2018	Biennial	6/6/2020	181334678
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda 4772-3		Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

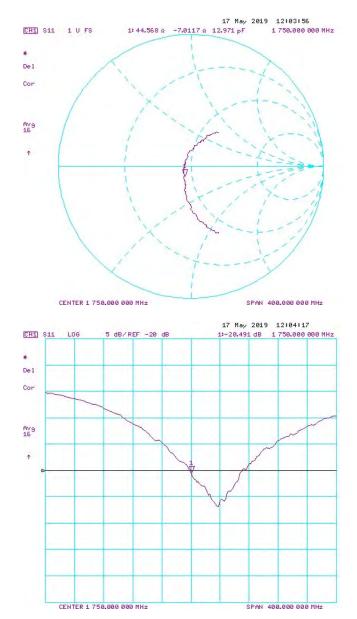
Object:	Date Issued:	Page 1 of 4
D1765V2 – SN: 1008	05/17/2019	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/23/2018	5/17/2019	1.21	3.62	3.63	0.28%	1.9	1.92	1.05%	47.7	47	0.7	-6.5	-6	0.5	-23	-23.3	-1.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(9()	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/23/2018	5/17/2019	1.21	3.74	3.95	5.61%	1.99	2.08	4.52%	43.3	44.6	1.3	-6	-7	1	-20.3	-20.5	-0.90%	PASS

Object:	Date Issued:	Dogo 2 of 4
D1765V2 – SN: 1008	05/17/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dago 2 of 4
D1765V2 – SN: 1008	05/17/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1765V2 – SN: 1008	05/17/2019	Page 4 of 4

Certification of Calibration

Object

D1765V2 - SN: 1008

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 5/23/2020

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

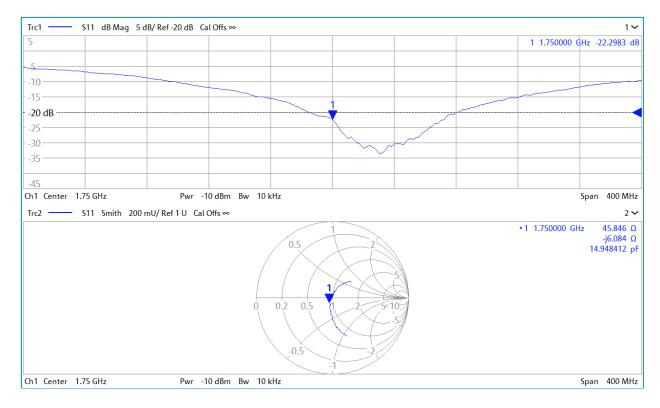
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench (8" lb)	5/23/2018	Biennial	5/23/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	4/21/2020	Annual	4/21/2021	7357
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/12/2020	Annual	3/12/2021	1368

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

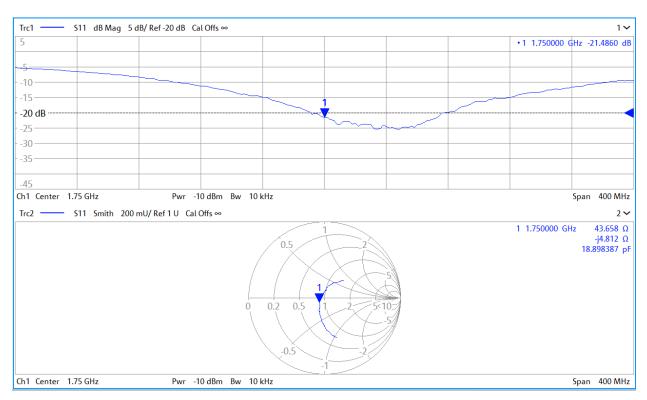
Object:	Date Issued:	Page 1 of 4
D1765V2 – SN: 1008	05/23/2020	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/23/2018	5/23/2020	1.21	3.62	3.65	0.83%	1.90	1.94	2.11%	47.7	45.9	1.9	-6.5	-6.1	0.4	-23	-22.3	3.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/23/2018	5/23/2020	1.21	3.74	4.00	6.95%	1.99	2.12	6.53%	43.3	43.7	0.4	-6.0	-4.8	1.2	-20.3	-21.5	-5.80%	PASS

Object:	Date Issued:	Page 2 of 4
D1765V2 – SN: 1008	05/23/2020	Fage 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D1765V2 – SN: 1008	05/23/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D1765V2 – SN: 1008	05/23/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: S	SCS 01	08
----------------------	--------	-----------

Certificate No: D1900V2-5d080_Oct18

Client PC Test

	D1900V2 - SN:50	1080	
alibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	
			$BN^{1/2}$ 10-30-2018 $BN^{1/2}$ ts of measurements (SI). $10-20-2$
alibration date:	October 23, 2018		10-30-2018
he measurements and the uncerta	aintles with confidence p ed in the closed laborato	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
leference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
eterence Probe EX3DV4		,	
	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601	04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Oct-19 Scheduled Check
AE4 secondary Standards	1		
AE4 econdary Standards /ower meter EPM-442A	1D #	Check Date (in house)	Scheduled Check
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A	ID # SN: GB37480704	Check Date (in house) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # SN: GB37480704 SN: US37292783	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TO	Atomical advantation of Hanviel
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	VJZ.10.2
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ		
Return Loss	- 21.5 dB		

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

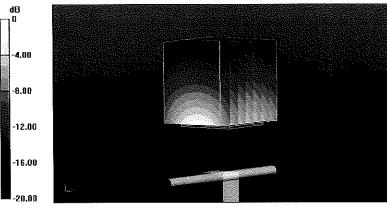
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 23.10.2018

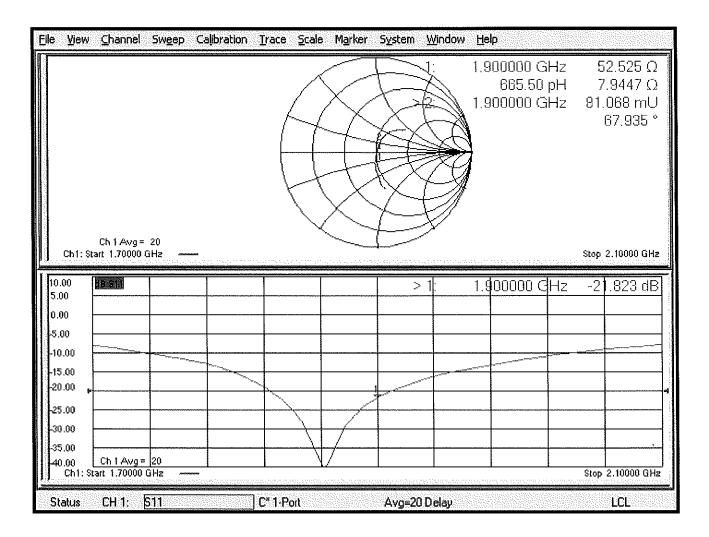
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

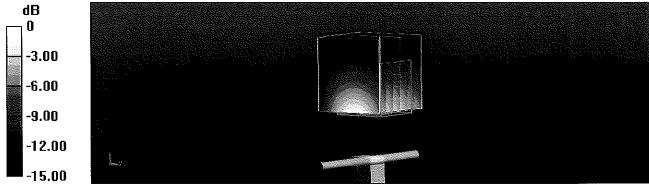
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

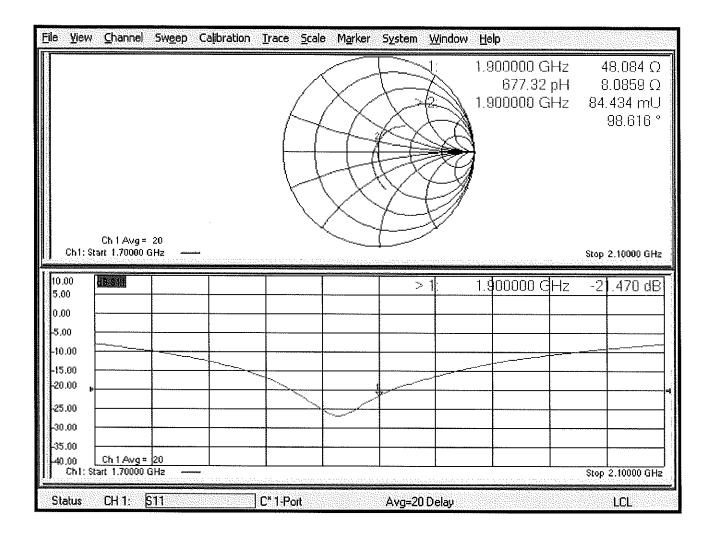
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN:5d080

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

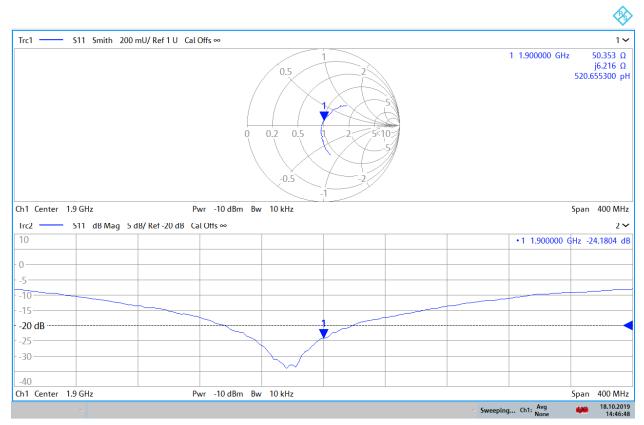
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

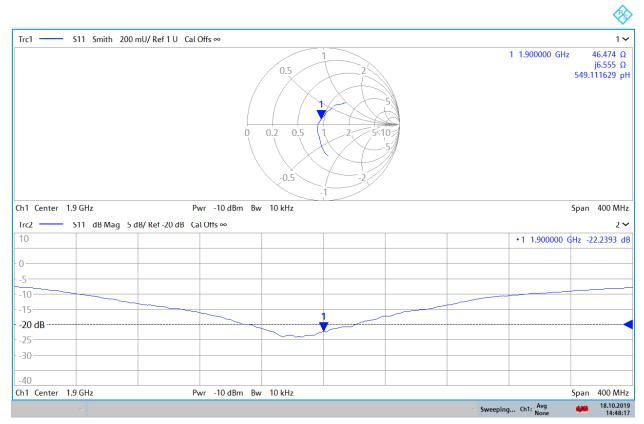
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.98	4.16	4.52%	2.07	2.13	2.90%	52.5	50.4	2.1	7.9	6.2	1.7	-21.8	-24.2	-10.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.92	4.21	7.40%	2.06	2.16	4.85%	48.1	46.5	1.6	8.1	6.6	1.5	-21.5	-22.2	-3.40%	PASS

Object:	Date Issued:	Dogo 2 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL

14:46:49 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1900V2 – SN: 5d080	10/18/2019	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:48:18 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d080	10/18/2019	Fage 4 01 4

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

In the second seco	
Iac-MRA	
The Anderson and the second	

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-7406_Jun20

CALIBRATION CERTIFICATE EX3DV4 - SN:7406 Object QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure(s) Calibration procedure for dosimetric E-field probes 07-01-2020 June 23, 2020 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature	a en la materia.
Calibrated by:	Leif Klysner	Laboratory Technician	Sel Mar	
			-1 mon	
Approved by:	Katja Pokovic	Technical Manager	Alt	
			Issued: June 23, 2020	
This calibration certificat	e shall not be reproduced except in fu	Il without written approval of the lab	pratory.	

Calibration Laboratory of Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
Fularization 6	$i \in \mathcal{A} = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.48	0.43	0.46	± 10.1 %
$DCP (mV)^{B}$	99.4	94.6	98.3	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	136.9	± 3.3 %	±4.7 %
U		Y	0.00	0.00	1.00		152.7		
		Z	0.00	0.00	1.00		152.3		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	92.47	21.47	10.00	60.0	± 3.6 %	± 9.6 %
AAA	1 460 114111. (,,	Y	13.84	84.00	17.05		60.0		
,		Z	20.00	90.56	20.16		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	95.36	21.69	6.99	80.0	± 2.3 %	± 9.6 %
AAA		Y	20.00	90.00	17.99		80.0		
		Z	20.00	93.46	20.30		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	101.64	23.29	3.98	95.0	± 1.1 %	±9.6 %
AAA		Y	20.00	97.11	20.02		95.0		
		Z	20.00	100.49	22.19		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	109.15	25.49	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	125.32	31.37		120.0	1	
		Z	20.00	104.47	22.82		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.63	64.84	14.39	1.00	150.0	± 2.5 %	± 9.6 %
AAA		Y	2.54	78.32	19.84		150.0	4	
		Z	1.71	65.77	14.81		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.12	66.64	15.05	0.00	150.0	± 0.9 %	± 9.6 %
AAA		Y	2.26	70.88	17.66		150.0	4	
			2.25	67.61	15.50		150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	2.75	69.15	18.09	3,01	150.0	± 0.9 %	± 9.6 %
AAA		Y	1.99	66.73	17.59	_	150.0		
		Z	2.46	67.47	17.28		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.46	66.55	15.45	0.00	150.0	± 0.8 %	± 9.6 %
AAA		Y	3.47	68.06	16.58	4	150.0	4	
		Z	3.42	66.39	15.39		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.87	65.40	15.36	0.00	150.0	± 1.8 %	± 9.6 %
AAA		Y	4.61	66.49	16.17	4	150.0	4	1
		Z	4.80	65.22	15.29		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Y	47.2	349.81	35.02	10.29	0.21	5.04	1.47	0.17	1.01
	22.3	166.33	35.67	7.09	0.00	5.02	0.40	0.08	1.00
7	46.2	344.43	35.35	7.82	0.14	5.03	0.43	0.27	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	94.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

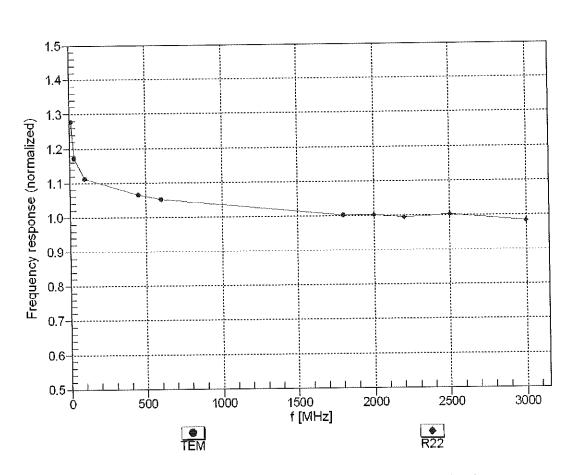
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.04	10.04	10.04	0.43	0.91	± 12.0 %
835	41.5	0.90	9.61	9.61	9.61	0.48	0.87	± 12.0 %
1750	40.1	1.37	8.32	8.32	8.32	0.33	0.86	± 12.0 %
1900	40.0	1.40	7.96	7.96	7.96	0.39	0.86	± 12.0 %
2300	39.5	1.67	7.76	7.76	7.76	0.31	0.95	± 12.0 %
2450	39.2	1.80	7.55	7.55	7.55	0.34	0.95	± 12.0 %
2600	39.0	1.96	7.39	7.39	7.39	0.41	0.90	± 12.0 %
5250	35.9	4.71	5.45	5.45	5.45	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.94	4.94	4.94	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.15	5.15	5.15	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is \pm 9.49 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

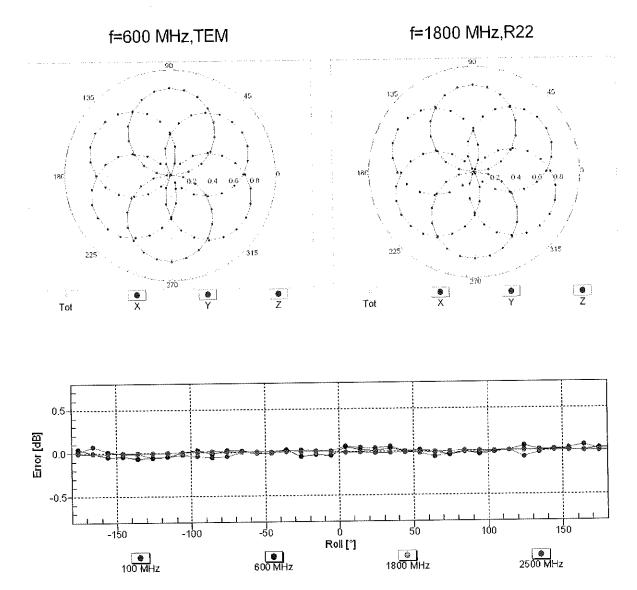
6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

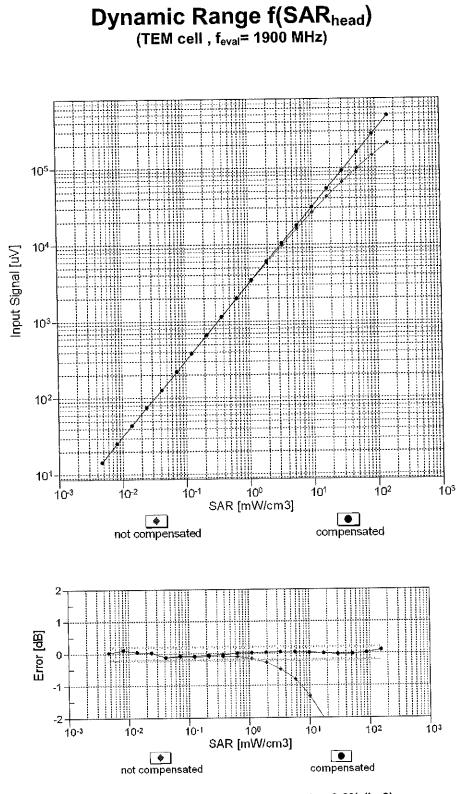

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.66	9.66	9.66	0.37	0.97	± 12.0 %
835	55.2	0.97	9.47	9.47	9.47	0.42	0.80	± 12.0 %
1750	53.4	1.49	7.96	7.96	7.96	0.36	0.86	± 12.0 %
1900	53.3	1.52	7.69	7.69	7.69	0.43	0.86	± 12.0 %
2300	52.9	1.81	7.59	7.59	7.59	0.41	0.95	± 12.0 %
2450	52.7	1.95	7.43	7.43	7.43	0.35	0.95	± 12.0 %
2600	52.5	2.16	7.40	7.40	7.40	0.38	0.95	± 12.0 %
5250	48.9	5.36	5.05	5.05	5.05	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.37	4.37	4.37	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.56	4.56	4.56	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

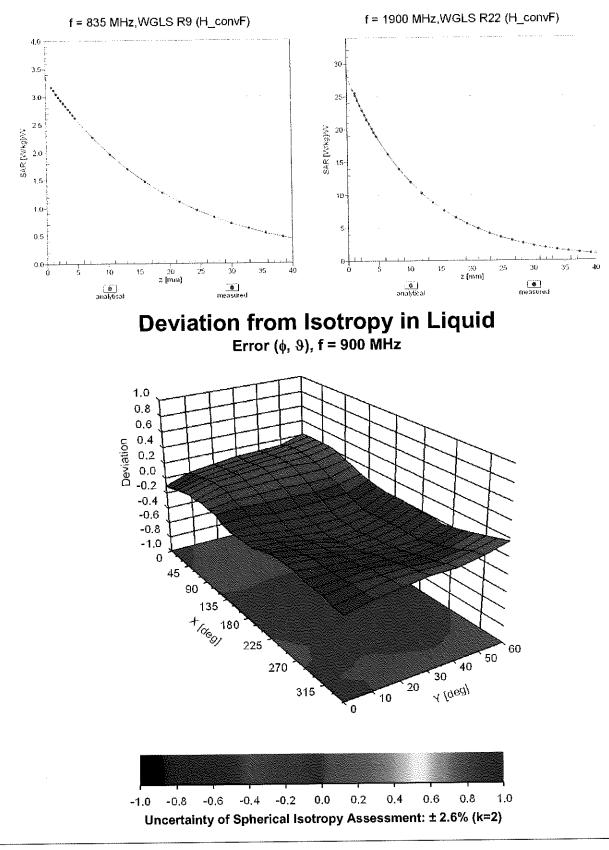
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7406_Jun20

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR	
				(dB)	(k=2) ± 4.7 %
0		CW	CW	0.00	
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 % ± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA WLAN	1.87	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN WLAN	9.46	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	GSM	9.40	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.59	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	6.56	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	12.62	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	9.55	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	4.80	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	3.55	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	7.78	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Bluetooth	5.30	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1) IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6 %
10031	CAA		Bluetooth	1.16	± 9.6 %
10032		IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	7.74	± 9.6 %
10033		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10035		IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	8.01	± 9.6 %
10036 10037	CAA CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10037		IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10038	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10039	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10042		IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10040	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10045	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6 %
10062	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9,00	±9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6%
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	<u> </u>	± 9.6 % ± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000 AMPS		± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	GSM	<u>4.77</u> 6.56	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	WCDMA	3.98	± 9.6 %
10097		UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098		UMTS-FDD (HSUPA, Subtest 2)	GSM	9.55	± 9.6 %
10099		EDGE-FDD (TDMA, 8PSK, TN 0-4)	LTE-FDD	5.67	± 9.6 %
10100		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10101		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.60	± 9.6 %
10102			LTE-TDD	9.29	± 9.6 %
10103			LTE-TDD	9.97	± 9.6 %
10104	CAG		LTE-TDD	10.01	± 9.6 %
10105	CAG CAG		LTE-FDD	5.80	± 9.6 %
	I UAG				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

			LTE-FDD	6.43	± 9.6 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	5.75	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	6.44	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHZ, 04-QAM)	LTE-FDD	6.62	± 9.6 %
10113	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10116	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, 64 Gam)	WLAN	8.07	±9.6 %
10117 10118	CAC CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 01 Mbps, 10 GAM)	WLAN	8.13	±9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6%
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	$\pm 9.6\%$
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	<u> </u>	<u>±9.6 %</u> ±9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD LTE-TDD	9.21	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)		10.25	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD LTE-FDD	5.72	± 9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	6.52	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	5.73	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	6.52	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHZ, 64-04M) LTE-FDD (SC-FDMA, 1 RB, 15 MHZ, QPSK)	LTE-FDD	5.72	± 9.6 %
10181		LTE-FDD (SC-FDMA, 1 RB, 15 MHZ, QPSR) LTE-FDD (SC-FDMA, 1 RB, 15 MHZ, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10182	CAE AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10183 10184		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10184		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10185	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10187		LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10188	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10183	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10195	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
1.0.00	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6 %
10220	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6 %
10220	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	<u>± 9.6 %</u>
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10240	CAP	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9,46	±9.6 %
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10240	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10243	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9,6 %
10200	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %

10000		LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10300	AAD	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (23.16, 5113, 100112, 01 CK) 1000, 001100 IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10303	AAA	IEEE 802.16e WIMAX (31.10, 3118, 100112, 010314, 0007)	WIMAX	11.86	± 9.6 %
10304	AAA	IEEE 802.16e WIMAX (29.18, 5115, 10M12, 64QAM, 1030) IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	±9.6 %
10305	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	14.67	± 9.6 %
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WIMAX	14.49	± 9.6 %
10307	AAA	EEE 802.168 WIMAX (29:18, 10ms, 10WHz, GP3K, P030)	WIMAX	14,46	± 9.6 %
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	± 9.6 %
10309	AAA	TEEE 802.166 WIMAX (29:18, 101115, 1010112, 100AW, AMO 220)	WIMAX	14.57	± 9.6 %
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	LTE-FDD	6.06	± 9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	IDEN	10.51	± 9.6 %
10313	AAA	IDEN 1:3	IDEN	13.48	± 9.6 %
10314	AAA	IDEN 1:6	WLAN	1.71	± 9.6 %
10315	AAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)		10.00	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic		± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	$\pm 9.6\%$
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10404	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %
10400	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6 %
10410	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10414	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
10415	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10410	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8,14	± 9.6 %
1		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 %
10419	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10423	AAB	IEEE 802.1111 (FT Greenfield, 43.3 Mops, 10-QAM)	WLAN	8.40	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.45	± 9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	LTE-FDD	8.28	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)		8.38	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD LTE-FDD		± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)		8.34	
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	$\pm 9.6\%$
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)		8.60	$\pm 9.6\%$
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10450	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7,59	± 9.6 %
10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
				7.82	± 9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	1.02	± 9.6 %

				0.56	±9.6 %
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	8.32	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	7.82	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)		8.32	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	7.82	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)		8.32	± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD		± 9.6 %
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	8.32	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8,57	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	7.74	± 9.6 %
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	8.18	± 9.6 %
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	7.71	± 9.6 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	8.39	± 9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.47	± 9.6 %
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	7.59	± 9.6 %
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	8.38	± 9.6 %
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.60	± 9.6 %
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	7.70	± 9.6 %
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	8.31	± 9.6 %
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	7.74	± 9.6 %
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	8,41	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10495	AAF AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10496		LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8,40	± 9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7,67	± 9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	±9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10502	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6%
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6%
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	$\pm 9.6\%$
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8,08	$\pm 9.6\%$
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	$\pm 9.6\%$
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 % ± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	0.21	£ 9.0 %

Constrain CARD CERE 807.11:ex WHF (200HHz, MCSS, 99p. dc) WLAN 8.43 ± 9.6 %. 10531 AAB IEEE 807.11:ex WHF (200HHz, MCSS, 99p. dc) WLAN 8.24 ± 9.6 %. 10532 AAB IEEE 807.11:ex WHF (200HHz, MCSS, 99p. dc) WLAN 8.38 ± 9.6 %. 10534 AAB IEEE 807.11:ex WHF (200HHz, MCSB, 99p. dc) WLAN 8.45 ± 9.6 %. 10535 AAB IEEE 807.11:ex WHF (200HHz, MCSB, 99p. dc) WLAN 8.45 ± 9.6 %. 10536 AAB IEEE 807.11:ex WHF (200Hz, MCSB, 99p. dc) WLAN 8.42 ± 9.6 %. 10537 AAB IEEE 807.11:ex WHF (200Hz, MCSB, 99p. dc) WLAN 8.44 ± 9.6 %. 10540 AAB IEEE 807.11:ex WHF (200Hz, MCSB, 99p. dc) WLAN 8.45 ± 9.6 %. 10541 AAB IEEE 807.11:ex WHF (200Hz, MCSB, 99p. dc) WLAN 8.45 ± 9.6 %. 10542 AAB IEEE 807.11:ex WHF (200Hz, MCSB, 99p. dc) WLAN 8.45 ± 9.6 %. 10544 AAB IEEE 807.11:ex WHF (200Hz, MCSB, 99p. dc)				14/1 4 1	8.36	± 9.6 %
ARG EEEE 802.1 Lise WHF (200Hz), MCSR, 99pc dc) WLAN 8.4.2 4.9.6.5% 10532 AAB IEEE 802.1 Lise WHF (200Hz), MCSR, 99pc dc) WLAN 8.3.8 4.9.6.5% 10534 AAB IEEE 802.1 Lise WHF (200Hz), MCSR, 99pc dc) WLAN 8.4.3 4.9.6.5% 10534 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.4.4 4.9.6.5% 10536 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.4.4 4.9.6.5% 10537 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.4.4 4.9.6.5% 10540 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.4.6 4.9.6.5% 10541 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.6.6 4.9.6.5% 10542 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.6.6 4.9.6.5% 10543 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc) WLAN 8.6.5 4.9.6.5% 10544 AAB IEEE 802.1 Lise WHF (400Hz), MCSR, 99pc dc)	10528		IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN		
10323 AAB FIEE 802.11se WHF (200Htz, MCSR, 99pc dc) WLAN 8.28 1 9.6 % 10333 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.45 1 9.6 % 10334 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.45 1 9.6 % 10336 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.42 1 9.6 % 10337 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.44 1 9.6 % 10347 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.44 1 9.6 % 10341 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.46 1 9.6 % 10342 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.46 1 9.6 % 10343 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.45 1 9.6 % 10344 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN 8.45 1 9.6 % 10344 AAB FIEE 802.11se WHF (200Htz, MCSB, 99pc dc) WLAN						
0.035 Avage Testes 002 (files WFFE (2004Hz, MCS8, 99pe chc) WLAN 8.43 8.9 e.6 % 0.0354 AAB TEEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.44 2.9 e.6 % 0.0366 AAB TEEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.44 2.9 e.6 % 0.0366 AAB TEEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.44 2.9 e.6 % 0.0367 AAB TEEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.44 2.9 e.6 % 0.0366 AAB TEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.45 1.9 e.6 % 0.0361 AAB TEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.45 1.9 e.6 % 0.0361 AAB TEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.45 1.9 e.6 % 0.0361 AAB TEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.45 1.9 e.6 % 0.0364 AAB TEEE 002 (files WFFE (400Hz, MCS8, 99pe chc) WLAN 8.45 1.9 e.6 % 0.0364 AAB						
1053 ARB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.45 ± 9.6 % 10536 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.45 ± 9.6 % 10537 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 % 10537 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 % 10540 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.45 ± 9.6 % 10541 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.46 ± 9.6 % 10542 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.46 ± 9.6 % 10543 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.36 ± 9.6 % 10544 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.36 ± 9.6 % 10546 AAB TEEE 802 1 fize WHF (100Hz, MCS3, 99pc dc) WLAN 8.36 ± 9.6 % 10547 AAB TEEE 802 1 fize WHF (100HZ, MCS3, 99pc dc)		AAB				
10636 AAB TEEE 802.11ex WHF (40MHz, MCS2, 99p. cdc) WLAN 8.46 1.9.6 % 10637 AAB IEEE 802.11ex WHF (40MHz, MCS2, 99p. cdc) WLAN 8.24 1.9.6 % 10638 AAB IEEE 802.11ex WHF (40MHz, MCS3, 99p. cdc) WLAN 8.44 1.9.6 % 10638 AAB IEEE 802.11ex WHF (40MHz, MCS4, 99p. cdc) WLAN 8.44 1.9.6 % 10641 AAB IEEE 802.11ex WHF (40MHz, MCS6, 99p. cdc) WLAN 8.46 1.9.6 % 10641 AAB IEEE 802.11ex WHF (40MHz, MCS6, 99p. cdc) WLAN 8.45 1.9.6 % 10643 AAB IEEE 802.11ex WHF (40MHz, MCS8, 99p. cdc) WLAN 9.45 1.9.6 % 10644 AAB IEEE 802.11ex WHF (40MHz, MCS8, 99p. cdc) WLAN 9.45 1.9.8 % 10646 AAB IEEE 802.11ex WHF (40MHz, MCS8, 99p. cdc) WLAN 8.47 1.9.9 % 10647 AAB IEEE 802.11ex WHF (40MHz, MCS8, 99p. cdc) WLAN 8.48 1.9.0 % 10646 AAB IEEEE 802.11ex WHF (40MHz, MCS8, 99p. cdc) WLAN		AAB		3		
10636 AAB TEEE 802.11ax WIFI (40MHz, MCS3, 99pc dc) WLAN 8.42 19.67 10637 AAB IEEE 802.11ax WIFI (40MHz, MCS3, 99pc dc) WLAN 8.44 19.6 % 10638 AAB IEEE 802.11ax WIFI (40MHz, MCS3, 99pc dc) WLAN 8.49 19.6 % 10641 AAB IEEE 802.11ax WIFI (40MHz, MCS3, 99pc dc) WLAN 8.46 19.9 % 10642 AAB IEEE 802.11ax WIFI (40MHz, MCS3, 99pc dc) WLAN 8.46 19.9 % 10643 AAB IEEE 602.11av WIFI (40MHz, MCS3, 99pc dc) WLAN 8.47 19.6 % 10644 AAB IEEE 602.11av WIFI (40MHz, MCS3, 99pc dc) WLAN 8.45 19.6 % 10645 AAB IEEE 602.11av WIFI (40MHz, MCS3, 99pc dc) WLAN 8.49 19.8 % 10646 AAB IEEE 602.11av WIFI (40MHz, MCS3, 99pc dc) WLAN 8.49 19.8 % 10644 AAB IEEE 602.11av WIFI (40MHz, MCS3, 99pc dc) WLAN 8.49 19.8 % 10655 AAC IEEE 602.11av WIFI (40MHz, MCS3, 99pc dc) WLAN <td< td=""><td>10534</td><td>AAB</td><td></td><td></td><td></td><td></td></td<>	10534	AAB				
10637 AAB TEEE 802.11ex WFI (40MHz, MCS4, 99bc dc) WLAN 8.44 1.9.6 % 10536 AAB IEEE 802.11ex WFI (40MHz, MCS4, 99bc dc) WLAN 8.54 1.9.6 % 10540 AAB IEEE 802.11ex WFI (40MHz, MCS4, 99bc dc) WLAN 8.46 1.9.6 % 10541 AAB IEEE 802.11ex WFI (40MHz, MCS6, 99bc dc) WLAN 8.46 1.9.6 % 10643 AAB IEEE 802.11ex WFI (40MHz, MCS6, 99bc dc) WLAN 8.45 1.9.6 % 10644 AAB IEEE 802.11ex WFI (40MHz, MCS6, 99bc dc) WLAN 8.47 1.9.6 % 10644 AAB IEEE 802.11ex WFI (40MHz, MCS3, 99bc dc) WLAN 8.55 1.9.8 % 10546 AAB IEEE 802.11ex WFI (40MHz, MCS3, 99bc dc) WLAN 8.55 1.9.8 % 10544 AAB IEEE 802.11ex WFI (40MHz, MCS3, 99bc dc) WLAN 8.51 9.8 % 10554 AAB IEEE 802.11ex WFI (40MHz, MCS3, 99bc dc) WLAN 8.53 9.8 % 10555 AAC IEEE 802.11ex WFI (40MHz, MCS3, 99bc dc) WLAN 8.4	10535	AAB				
10636 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.34 ± 9.6 % 10540 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.46 ± 9.6 % 10541 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.46 ± 9.6 % 10542 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.46 ± 9.6 % 10543 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.47 ± 9.8 % 10544 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.45 ± 9.8 % 10545 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.35 ± 9.8 % 10546 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.39 ± 9.8 % 10547 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.49 ± 9.8 % 10556 AAC IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) WLAN 8.45 ± 9.8 % 10557 AAB IEEE 602, 11ea WIFI (40MHz, MCS6, 99pc dc) <td< td=""><td>10536</td><td>AAB</td><td></td><td></td><td></td><td></td></td<>	10536	AAB				
10630 AAS TEEE 802.11ac WIFI (40MHz, MCS8, 89pc dc) WLAN 8.39 ± 9.6 % 10641 AAS TEEE 802.11ac WIFI (40MHz, MCS8, 89pc dc) WLAN 8.65 ± 9.6 % 10642 AAS TEEE 802.11ac WIFI (40MHz, MCS8, 89pc dc) WLAN 8.65 ± 9.6 % 10643 AAS TEEE 802.11ac WIFI (60MHz, MCS8, 89pc dc) WLAN 8.47 ± 9.6 % 10644 AAS TEEE 802.11ac WIFI (60MHz, MCS3, 89pc dc) WLAN 8.45 ± 9.6 % 10646 AAB TEEE 802.11ac WIFI (60MHz, MCS3, 89pc dc) WLAN 8.45 ± 9.6 % 10546 AAB TEEE 802.11ac WIFI (60MHz, MCS3, 89pc dc) WLAN 6.37 ± 9.6 % 10547 AAB TEEE 802.11ac WIFI (60MHz, MCS3, 99pc dc) WLAN 6.36 ± 9.6 % 10552 AAB TEEE 802.11ac WIFI (60MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10553 AAB TEEE 802.11ac WIFI (60MHz, MCS3, 99pc dc) WLAN 8.45 ± 9.6 % 10556 AAC TEEE 802.11ac WIFI (10MHz, MCS3, 99pc dc) WLAN	10537	AAB				
10641 Ads IEEE 802.11ac WIFI (400MHz, MCS9, 99pc dc) WLAN 8.46 ± 9.6 % 10642 Ads IEEE 802.11ac WIFI (400MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 % 10643 Ads IEEE 802.11ac WIFI (400MHz, MCS9, 99pc dc) WLAN 8.47 ± 9.6 % 10644 Ads IEEE 802.11ac WIFI (400MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 % 10644 Ads IEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 % 10644 Ads IEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 % 10544 Ads IEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 % 10554 Ads IEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10555 Ads IEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10554 AAC IEEE 802.11ac WIFI (400MLz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10555 AAC IEEE 802.11ac WIFI (400MLz, MCS3, 99pc dc) <td< td=""><td>10538</td><td>AAB</td><td></td><td>1</td><td></td><td></td></td<>	10538	AAB		1		
Local Abs TEEE 802.11ac WIFI (400MHz, MCS8, 98pc dc) WLAN 8.65 ± 9.6 % 10542 AAB TEEE 802.11ac WIFI (400MHz, MCS9, 98pc dc) WLAN 8.47 ± 9.6 % 10544 AAB TEEE 802.11ac WIFI (400MHz, MCS9, 98pc dc) WLAN 8.47 ± 9.6 % 10544 AAB TEEE 802.11ac WIFI (400MHz, MCS3, 98pc dc) WLAN 8.35 ± 9.6 % 10544 AAB TEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 % 10544 AAB TEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.32 ± 9.6 % 10546 AAB TEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.38 ± 9.6 % 10551 AAB TEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10554 AAC TEEE 802.11ac WIFI (400MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10556 AAC TEEE 802.11ac WIFI (100MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10566 AAC TEEE 802.11ac WIFI (100MHz, MCS3, 99pc dc) <td< td=""><td>10540</td><td>AAB</td><td>IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)</td><td></td><td></td><td></td></td<>	10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)			
10643 Abs TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.65 ± 9.6 % 10644 Abs TEEE 802.11ac WIFI (400Hitz, MCS1, 99pc.dc) WLAN 8.65 ± 9.6 % 10645 Abs TEEE 802.11ac WIFI (400Hitz, MCS1, 99pc.dc) WLAN 8.55 ± 9.6 % 10646 Abs TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.49 ± 9.6 % 10547 Abs TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.32 ± 9.8 % 10554 Abs TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.32 ± 9.8 % 10552 AAB TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.42 ± 9.6 % 10554 AAC TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.45 ± 9.6 % 10555 AAC TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.45 ± 9.6 % 10556 AAC TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc) WLAN 8.45 ± 9.6 % 10557 AAC TEEE 802.11ac WIFI (400Hitz, MCS3, 99pc.dc)	10541	AAB				
Local AAB IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.47 ± 9.6 % 10544 AAB IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.35 ± 9.6 % 10547 AAB IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.49 ± 9.6 % 10547 AAB IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.49 ± 9.6 % 10548 AAB IEEE 802:11ac WIFI (80MHz, MCS6, 98pc dc) WLAN 8.38 ± 9.6 % 10551 AAB IEEE 802:11ac WIFI (80MHz, MCS7, 98pc dc) WLAN 8.42 ± 9.6 % 10552 AAB IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.42 ± 9.6 % 10553 AAB IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.44 ± 9.6 % 10564 AAC IEEE 802:11ac WIFI (80MHz, MCS3, 98pc dc) WLAN 8.47 ± 9.6 % 10556 AAC IEEE 802:11ac WIFI (160MHz, MCS2, 98pc dc) WLAN 8.47 ± 9.6 % 10566 AAC IEEE 802:11ac WIFI (160MHz, MCS3, 98pc dc) WLAN <td>10542</td> <td>AAB</td> <td></td> <td></td> <td></td> <td></td>	10542	AAB				
10345 AAB IEEE 802.11ac WIF (80MHz, MCS1, 99pc dc) WLAN 8.55 ± 9.6 % 10546 AAB IEEE 802.11ac WIF (80MHz, MCS2, 99pc dc) WLAN 8.49 ± 9.6 % 10547 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.49 ± 9.6 % 10550 AAB IEEE 802.11ac WIF (80MHz, MCS7, 99pc dc) WLAN 8.38 ± 9.6 % 10551 AAB IEEE 802.11ac WIF (80MHz, MCS7, 99pc dc) WLAN 8.42 ± 9.6 % 10552 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10554 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 % 10556 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.41 ± 9.6 % 10556 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 % 10556 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.52 ± 9.6 % 10556 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN	10543	AAB				
10:56 AB IEEE 802.11ac WIF (80MHz, MCS2, 99pc dc) WLAN 8.35 ± 9.6 %. 10:54 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.37 ± 9.6 %. 10:550 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.37 ± 9.6 %. 10:550 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 %. 10:551 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 %. 10:552 AAB IEEE 802.11ac WIF (80MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 %. 10:553 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 %. 10:554 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.45 ± 9.6 %. 10:555 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 %. 10:556 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 %. 10:556 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.71 ± 9.6 %. 10:556 AAC	10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)			
10546 AAB IEEE 802.11ac WiFI (80MHz, MCS2, 99pc dc) WLAN 8.35 ± 9.6 %. 10547 AAB IEEE 802.11ac WiFI (80MHz, MCS3, 99pc dc) WLAN 8.37 ± 9.6 %. 10556 AAB IEEE 802.11ac WiFI (80MHz, MCS6, 99pc dc) WLAN 8.38 ± 9.6 %. 10551 AAB IEEE 802.11ac WiFI (80MHz, MCS8, 99pc dc) WLAN 8.42 ± 9.6 %. 10552 AAB IEEE 802.11ac WiFI (80MHz, MCS8, 99pc dc) WLAN 8.45 ± 9.6 %. 10553 AAB IEEE 802.11ac WiFI (80MHz, MCS9, 99pc dc) WLAN 8.44 ± 9.6 %. 10554 AAC IEEE 802.11ac WIFI (160MHz, MCS2, 99pc dc) WLAN 8.44 ± 9.6 %. 10555 AAC IEEE 802.11ac WIFI (160MHz, MCS2, 99pc dc) WLAN 8.52 ± 9.6 %. 10556 AAC IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 %. 10568 AAC IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 %. 10569 AAC IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc)		AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)			
10547 AAB IEEE 802.11ac WIF (00MHz, MCS3, 99pc dc) WLAN 8.49 ± 9.6 %. 10550 AAB IEEE 802.11ac WIF (00MHz, MCS6, 99pc dc) WLAN 8.37 ± 9.6 %. 10550 AAB IEEE 802.11ac WIF (00MHz, MCS6, 99pc dc) WLAN 8.30 ± 9.6 %. 10551 AAB IEEE 802.11ac WIF (00MHz, MCS9, 99pc dc) WLAN 8.42 ± 9.6 %. 10553 AAB IEEE 802.11ac WIF (00MHz, MCS9, 99pc dc) WLAN 8.45 ± 9.6 %. 10554 AAC IEEE 802.11ac WIF (100MHz, MCS9, 99pc dc) WLAN 8.47 ± 9.6 %. 10555 AAC IEEE 802.11ac WIF (100MHz, MCS3, 99pc dc) WLAN 8.42 ± 9.6 %. 10556 AAC IEEE 802.11ac WIF (100MHz, MCS3, 99pc dc) WLAN 8.50 ± 9.6 %. 10567 AAC IEEE 802.11ac WIF (100MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 %. 10568 AAC IEEE 802.11ac WIF (100MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 %. 10561 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN<			IEEE 802,11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	
10548 AAB IEEE 802.11ac WFI (80MHz, MCS4, 99pc dc) WLAN 8.37 ± 9.6 % 10550 AAB IEEE 802.11ac WFI (80MHz, MCS3, 99pc dc) WLAN 8.36 ± 9.6 % 10551 AAB IEEE 802.11ac WFI (80MHz, MCS8, 99pc dc) WLAN 8.42 ± 9.6 % 10552 AAB IEEE 802.11ac WFI (80MHz, MCS8, 99pc dc) WLAN 8.42 ± 9.6 % 10554 AAC IEEE 802.11ac WFI (160MHz, MCS8, 99pc dc) WLAN 8.44 ± 9.6 % 10555 AAC IEEE 802.11ac WFI (160MHz, MCS3, 99pc dc) WLAN 8.46 ± 9.6 % 10556 AAC IEEE 802.11ac WFI (160MHz, MCS3, 99pc dc) WLAN 8.50 ± 9.6 % 10566 AAC IEEE 802.11ac WFI (160MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 % 10566 AAC IEEE 802.11ac WFI (160MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 % 10566 AAC IEEE 802.11ac WFI (160MHz, MCS9, 99pc dc) WLAN 8.61 ± 9.6 % 10566 AAC IEEE 802.11ac WFI (160MHz, MCS9, 99pc dc) WLAN				WLAN	8.49	±9.6 %
10550 AAB IEEE 802.11ac WiF (60MHz, MCS6, 99pc dc) WLAN 8.38 ± 9.6 % 10551 AAB IEEE 802.11ac WiF (80MHz, MCS6, 99pc dc) WLAN 8.40 ± 9.6 % 10552 AAB IEEE 802.11ac WiF (80MHz, MCS8, 99pc dc) WLAN 8.45 ± 9.6 % 10553 AAC IEEE 802.11ac WiF (160MHz, MCS8, 99pc dc) WLAN 8.46 ± 9.6 % 10554 AAC IEEE 802.11ac WiF (160MHz, MCS8, 99pc dc) WLAN 8.47 ± 9.6 % 10556 AAC IEEE 802.11ac WiF (160MHz, MCS8, 99pc dc) WLAN 8.50 ± 9.6 % 10556 AAC IEEE 802.11ac WiF (160MHz, MCS8, 99pc dc) WLAN 8.61 ± 9.6 % 10560 AAC IEEE 802.11ac WiF (160MHz, MCS9, 99pc dc) WLAN 8.73 ± 9.6 % 10561 AAC IEEE 802.11ac WiF (160MHz, MCS9, 99pc dc) WLAN 8.76 ± 9.6 % 10562 AAC IEEE 802.11ac WiF (160MHz, MCS9, 99pc dc) WLAN 8.71 ± 9.6 % 10564 AAC IEEE 802.11a WiF (2.4 Hz (DSSS-OFDM, 24 Mbps, 99pc dc)		2		WLAN	8.37	
10551 AAB IEEE 802.11ac WIF (80MHz, MCS7, 99pc dc) WLAN 8.40 ± 9.6 % 10552 AAB IEEE 802.11ac WIF (80MHz, MCS9, 99pc dc) WLAN 8.44 ± 9.6 % 10554 AAC IEEE 802.11ac WIF (80MHz, MCS9, 99pc dc) WLAN 8.44 ± 9.6 % 10555 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN 8.47 ± 9.6 % 10555 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN 8.50 ± 9.6 % 10555 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN 8.61 ± 9.6 % 10560 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN 8.61 ± 9.6 % 10561 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN 8.61 ± 9.6 % 10562 AAC IEEE 802.11ac WIF (160MHz, MCS9, 99pc dc) WLAN 8.61 ± 9.6 % 10563 AAC IEEE 802.11a WIF (160MHz, MCS9, 99pc dc) WLAN 8.72 ± 9.6 % 10564 AAC IEEE 802.11a WIF (2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)				WLAN	8.38	± 9.6 %
10562 AAB IEEE 802.11a wiFi (80MHz, MCS8, 99pc dc) WLAN 8.42 ± 9.6 %. 10553 AAG IEEE 802.11a wiFi (160MHz, MCS0, 99pc dc) WLAN 8.48 ± 9.6 %. 10555 AAC IEEE 802.11a wiFi (160MHz, MCS0, 99pc dc) WLAN 8.47 ± 9.6 %. 10555 AAC IEEE 802.11a wiFi (160MHz, MCS2, 99pc dc) WLAN 8.52 ± 9.6 %. 10556 AAC IEEE 802.11a wiFi (160MHz, MCS3, 99pc dc) WLAN 8.52 ± 9.6 %. 10560 AAC IEEE 802.11a wiFi (160MHz, MCS6, 99pc dc) WLAN 8.61 ± 9.6 %. 10561 AAC IEEE 802.11a wiFi (160MHz, MCS6, 99pc dc) WLAN 8.66 ± 9.6 %. 10562 AAC IEEE 802.11a wiFi (160MHz, MCS9, 99pc dc) WLAN 8.66 ± 9.6 %. 10564 AAA IEEE 802.11a wiFi (160MHz, MCS9, 99pc dc) WLAN 8.61 ± 9.6 %. 10566 AAA IEEE 802.11g wiFi 2.4 GHz (DSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.42 ± 9.6 %. 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSS-OFDM, 4 Mbps, 99				WLAN	8.50	
No.52 AAB IEEE 802.11ac WIF (80MHz, MCS8, 99pc dc) WLAN 8.45 ± 9.6 % 10554 AAC IEEE 802.11ac WIF (160MHz, MCS8, 99pc dc) WLAN 8.447 ± 9.6 % 10555 AAC IEEE 802.11ac WIF (160MHz, MCS2, 99pc dc) WLAN 8.47 ± 9.6 % 10555 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.50 ± 9.6 % 10556 AAC IEEE 802.11ac WIF (160MHz, MCS4, 99pc dc) WLAN 8.51 ± 9.6 % 10560 AAC IEEE 802.11ac WIF (160MHz, MCS4, 99pc dc) WLAN 8.61 ± 9.6 % 10561 AAC IEEE 802.11ac WIF (160MHz, MCS8, 99pc dc) WLAN 8.66 ± 9.6 % 10563 AAC IEEE 802.11ac WIF (160MHz, MCS8, 99pc dc) WLAN 8.61 ± 9.6 % 10564 AAA IEEE 802.11ac WIF (160MHz, MCS8, 99pc dc) WLAN 8.25 ± 9.6 % 10566 AAA IEEE 802.11g WIF12.4 GHz (DSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10566 AAA IEEE 802.11g WIF12.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) <td></td> <td></td> <td></td> <td>WLAN</td> <td>8.42</td> <td>± 9.6 %</td>				WLAN	8.42	± 9.6 %
10554 AAC IEEE 802.11ac WIFI (180MHz, MCS0, 99pc dc) WLAN 8.48 ± 9.6 %, 10555 AAC IEEE 802.11ac WIFI (160MHz, MCS1, 99pc dc) WLAN 8.50 ± 9.6 %, 10557 AAC IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc) WLAN 8.52 ± 9.6 %, 10557 AAC IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc) WLAN 8.61 ± 9.6 %, 10560 AAC IEEE 802.11ac WIFI (160MHz, MCS6, 99pc dc) WLAN 8.66 ± 9.6 %, 10561 AAC IEEE 802.11ac WIFI (160MHz, MCS8, 99pc dc) WLAN 8.66 ± 9.6 %, 10562 AAC IEEE 802.11ac WIFI (160MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 %, 10564 AAA IEEE 802.11g WIFI 2.4 GHz (DSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 %, 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSS-OFDM, 18 Mbps, 99pc dc) WLAN 8.45 ± 9.6 %, 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.30 ± 9.6 %, 10566 AAA IEEE 802.11g			IEEE 802 11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6 %
IDUSA PACO IEEE 802.11ac WIF (160MHz, MCS1, 99pc dc) WLAN 8.47 ± 9.6 %. 10556 AAC IEEE 802.11ac WIF (160MHz, MCS2, 99pc dc) WLAN 8.50 ± 9.6 %. 10557 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.52 ± 9.6 %. 10558 AAC IEEE 802.11ac WIF (160MHz, MCS3, 99pc dc) WLAN 8.73 ± 9.6 %. 10560 AAC IEEE 802.11ac WIF (160MHz, MCS7, 99pc dc) WLAN 8.76 ± 9.6 %. 10561 AAC IEEE 802.11ac WIF (160MHz, MCS7, 99pc dc) WLAN 8.76 ± 9.6 %. 10562 AAC IEEE 802.11ac WIF (160MHz, MCS8, 99pc dc) WLAN 8.77 ± 9.6 %. 10564 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 %. 10566 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.13 ± 9.6 %. 10566 AAA IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 34 Mbps, 99pc dc) WLAN 8.13 ± 9.6 %. 10566 AAA IEEE 802.11g WIF 2.						
100.50 AAC IELE 802.11ac WIFI (160MHz, MCS2, 39pc dc) WLAN 8.50 ± 9.6 % 10557 AAC IEEE 802.11ac WIFI (160MHz, MCS3, 39pc dc) WLAN 8.61 ± 9.6 % 10558 AAC IEEE 802.11ac WIFI (160MHz, MCS4, 99pc dc) WLAN 8.61 ± 9.6 % 10560 AAC IEEE 802.11ac WIFI (160MHz, MCS8, 99pc dc) WLAN 8.73 ± 9.6 % 10561 AAC IEEE 802.11ac WIFI (160MHz, MCS8, 99pc dc) WLAN 8.69 ± 9.6 % 10562 AAC IEEE 802.11ac WIFI (160MHz, MCS8, 99pc dc) WLAN 8.75 ± 9.6 % 10564 AAA IEEE 802.11ac WIFI (160MHz, MCS9, 99pc dc) WLAN 8.75 ± 9.6 % 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.30 ± 9.6 % 10567 AAA IEEE 802.11g WIFI 2		1				
Instant Instant <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Dos AAC IEEE 802.11ac WiFI (160MHz, MCS4, 99pc dc) WLAN 8.61 ± 9.6 % 10560 AAC IEEE 802.11ac WiFI (160MHz, MCS7, 99pc dc) WLAN 8.73 ± 9.6 % 10561 AAC IEEE 802.11ac WiFI (160MHz, MCS7, 99pc dc) WLAN 8.66 ± 9.6 % 10562 AAC IEEE 802.11ac WiFI (160MHz, MCS8, 99pc dc) WLAN 8.69 ± 9.6 % 10564 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 9 Mpp, 99pc dc) WLAN 8.25 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10567 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10569 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10570 AAA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10550 AAC IEEE 802.11ac WiFI (160MHz, MCS6, 99pc dc) WLAN 8.73 ± 9.6 % 10561 AAC IEEE 802.11ac WiFI (160MHz, MCS8, 99pc dc) WLAN 8.66 ± 9.6 % 10562 AAC IEEE 802.11ac WiFI (160MHz, MCS8, 99pc dc) WLAN 8.69 ± 9.6 % 10563 AAA IEEE 802.11ac WiFI (160MHz, MCS9, 99pc dc) WLAN 8.73 ± 9.6 % 10564 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10568 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.33 ± 9.6 % 10569 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.33 ± 9.6 % 10570 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 8.30 ± 9.6 % 10577 AAA						
10560 AAC IEEE 802.11ac WiFI (160MHz, MCS7, 99pc dc) WLAN 8.56 ± 9.6 % 10562 AAC IEEE 802.11ac WiFI (160MHz, MCS9, 99pc dc) WLAN 8.69 ± 9.6 % 10563 AAC IEEE 802.11ac WiFI (160MHz, MCS9, 99pc dc) WLAN 8.72 ± 9.6 % 10564 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.43 ± 9.6 % 10566 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.33 ± 9.6 % 10567 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.31 ± 9.6 % 10568 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10570 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11g WiFI 2.4 GHz (DSSS, 55 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572						
10301 DML Bit LE Box. 11 act WiF (1600H1z, MCS8, 99pc dc) WLAN 8.69 ± 9.6 % 10562 AAC IEEE 802.11 act WiF (1600H1z, MCS8, 99pc dc) WLAN 8.77 ± 9.6 % 10564 AAA IEEE 802.11 act WiF (1600H1z, MCS8, 99pc dc) WLAN 8.77 ± 9.6 % 10566 AAA IEEE 802.11 gWiF 1.2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11 gWiF 1.2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10567 AAA IEEE 802.11 gWiF 1.2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10568 AAA IEEE 802.11 gWiF 1.2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10570 AAA IEEE 802.11 bWiF 1.2.4 GHz (DSSS. OFDM, 48 Mbps, 90pc dc) WLAN 8.10 ± 9.6 % 10571 AAA IEEE 802.11 bWiF 1.2.4 GHz (DSSS. J Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11 bWIF 1.2.4 GHz (DSSS. OFDM, 48 Mbps, 90pc dc) WLAN 1.98 ± 9.6 %						
10502 AAC IEEE 802.11a WIFI (1600H1z, MCS9, 99pc dc) WLAN 8.77 ± 9.6 % 10664 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) WLAN 8.25 ± 9.6 % 10666 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10567 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10570 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 1.98 ± 9.6 %						
10503 PARA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) WLAN 8.25 ± 9.6 % 105664 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 105666 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10567 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.00 ± 9.6 % 10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10569 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10570 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 7 Mbps, 90pc dc) WLAN 8.30 ± 9.6 % 10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10574 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 0FDM, 6 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.79 ± 9.6 % <						
10004 PAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.45 ± 9.6 % 10566 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10567 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.00 ± 9.6 % 10568 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.37 ± 9.6 % 10569 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10573 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 0FDM, 6 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 %		1				
10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) WLAN 8.13 ± 9.6 % 10566 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.00 ± 9.6 % 10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.37 ± 9.6 % 10569 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10570 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS. OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS. OFDM, 6 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 4 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)<			IEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDM, 9 MiDps, 99pc dc)			
10500 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.00 ± 9.6 % 10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.37 ± 9.6 % 10569 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10570 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 0FDM, 54 Mbps, 99pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 84 Mbps, 90pc dc) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.37 ± 9.6 % 10568 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10570 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10574 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)			IEEE 802,11g WIFI 2,4 GHZ (DSSS-OFDM, 18 Mops, 99pc dc)			
10500 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) WLAN 8.10 ± 9.6 % 10570 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)			IEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDM, 24 Mbps, 99pc dc)			
10500 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) WLAN 8.30 ± 9.6 % 10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10578 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 14 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10578 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10580 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WL			TEEE 802.11g WIFI 2.4 GHz (DSSS-OFDIM, 36 Mbps, 99pc dc)			
10570 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (OFDM, 6 Mbps, 90pc dc) WLAN<			IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 MDps, 99pc dc)			
10571 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS.OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10579 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10581 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10582 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)			IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)			
10572 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10573 AAA IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.1 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10578 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10579 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10581 AAA IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10582 AAA IEEE 802.11g // WIFI 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.6			IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)			
10573 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 01 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10582 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.69 ± 9.6 %			IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)			
10574 7071 1EEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10575 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10576 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 14 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 14 Mbps, 90pc dc)	10573	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)			
10570 7071 1EEE 302.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mpps, 90pc dc) WLAN 8.60 ± 9.6 % 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10578 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10583 AAB IEEE 802.11g WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % <tr< td=""><td>10574</td><td></td><td>IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)</td><td></td><td></td><td></td></tr<>	10574		IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)			
10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10577 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	10575	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)			
10577 AAA IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10578 AAA IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10579 AAA IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10581 AAA IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WIFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10584 AAB IEEE 802.11a/h WIFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10585 AAB IEEE 802.11a/h WIFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WIFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10587 AAB IEEE 802.11a/h WIFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)			
10570 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 14 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN<	10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)			
10579 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10583 AAB IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN<	10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)			
10580 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.69 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN	10579	AAA				
10581 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10590		AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)			
10582 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63 ± 9.6 % 10590 <t< td=""><td></td><td></td><td>IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)</td><td></td><td></td><td>± 9.6 %</td></t<>			IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)			± 9.6 %
10583 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63 ± 9.6 % 10591 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63		AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)			
10584 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.60 ± 9.6 % 10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB <td></td> <td></td> <td>IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)</td> <td></td> <td></td> <td>± 9.6 %</td>			IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)			± 9.6 %
10585 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.64 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 % </td <td></td> <td></td> <td>IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)</td> <td></td> <td>8.60</td> <td>± 9.6 %</td>			IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)		8.60	± 9.6 %
10586 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) WLAN 8.49 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.79 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %			IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)		8.70	± 9.6 %
10587 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %			IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10588 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) WLAN 8.76 ± 9.6 % 10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAB IEEE 802.11a /h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %			IEEE 802,11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10589 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.35 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63 ± 9.6 % 10591 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.79 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %			IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10000 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10590 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.63 ± 9.6 % 10591 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.79 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %			IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8,35	± 9.6 %
10550 74 do IEEE 802.11 att MT Mixed, 20M Hz, MCS0, 90 pc dc) WLAN 8.63 ± 9.6 % 10591 AAB IEEE 802.11 n (HT Mixed, 20M Hz, MCS0, 90 pc dc) WLAN 8.79 ± 9.6 % 10592 AAB IEEE 802.11 n (HT Mixed, 20M Hz, MCS1, 90 pc dc) WLAN 8.79 ± 9.6 % 10593 AAB IEEE 802.11 n (HT Mixed, 20M Hz, MCS2, 90 pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11 n (HT Mixed, 20M Hz, MCS3, 90 pc dc) WLAN 8.74 ± 9.6 %						± 9.6 %
10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.79 ± 9.6 % 10593 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %						± 9.6 %
10592 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.64 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) WLAN 8.74 ± 9.6 %			IEEE 802 11n (HT Mixed, 20MHz, MCS1, 90pc dc)			± 9.6 %
10530 PAB IEEE 002.1 m (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 % 10594 AAB IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 %						± 9.6 %
		_				± 9.6 %
	10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MC33, 30pc dc)	WLAN	8.74	± 9.6 %

June 23, 2020

					1000
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN		± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	±9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	±9.6 %
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	±9.6 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	±9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	±9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	±9.6 %
10608	AAB	IEEE 802.11ac WIFI (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFI (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WIFI (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10613	AAB	IEEE 802.11ac WIFI (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WIFI (40MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	±9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10622	AAB	IEEE 802.11ac WIFI (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10620	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8,71	±9.6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10634	AAB	IEEE 802.11ac WiFI (80MHz, MCS8, 90pc dc)	WLAN	8.80	± 9.6 %
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10635	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6 %
	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8,86	±9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6 %
	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 30pc dc)	WLAN	8.98	±9.6 %
10640 10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 30pc dc)	WLAN	9.06	±9.6 %
		IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 30pc dc)	WLAN	8.89	± 9.6 %
10643	AAC	IEEE 802.11ac WiFI (160MHz, MCS7, 90pc dc)	WLAN	9.05	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
10645	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10646	AAG AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647		CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10648		LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
10653		LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-1M 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10655			Test	10.00	± 9.6 %
	AAA	Pulse Waveform (200Hz, 10%)	Test	6.99	± 9.6 %
10658		Pulse Waveform (200Hz, 20%)			± 9.6 %
10659	AAA		Toet	i kuk	
10659 10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	
10659 10660 10661	AAA AAA	Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10659 10660 10661 10662	AAA AAA AAA AAA	Pulse Waveform (200Hz, 40%)Pulse Waveform (200Hz, 60%)Pulse Waveform (200Hz, 80%)	Test Test	2.22 0.97	± 9.6 % ± 9.6 %
10659 10660 10661	AAA AAA	Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%)	Test	2.22	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\ \pm 9.6 \% \\ \pm 9.6 \% \\ \pm 9.6 \% \end{array}$

		IFFE 000 44 (20MHz MCS1, 00pp dc)	WLAN	8.57	±9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.78	± 9.6 %
10673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.74	± 9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.90	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.77	± 9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc dc)		8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN		
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAA	1EEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6 %
10686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAA	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10688	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	±9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	±9.6 %
		IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 %
10692		IEEE 802.11ax (20MHz, MCS3, 93pc dc)	WLAN	8.25	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.57	±9.6 %
10694			WLAN	8.78	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.91	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.61	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.89	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.82	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.73	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)		8.86	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN		± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6 %
10710	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAA	1EEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8,33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	±9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10715		IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10716		IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
		IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.81	± 9.6 %
10719		IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.87	± 9.6 %
10720			WLAN	8.76	± 9.6 %
10721		IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.55	± 9.6 %
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.70	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.74	± 9.6 %
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc dc)			
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	$\pm 9.6\%$
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %
10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
	AAA	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10731		[EEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
	AAA				
10732		IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	
					± 9.6 % ± 9.6 % ± 9.6 %

10700		1555 000 44er (20MHz MC85, 00pp dc)	WLAN	8.27	± 9.6 %
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.36	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc dc) IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.48	± 9.6 %
10740 10741	AAA AAA	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10741	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10742	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	±9.6 %
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	±9.6 %
10746	AAA	1EEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10740	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	±9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
10757	AAA	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
10759	AAA	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	± 9.6 %
10760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAA	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 % ± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.01 8.01	$\pm 9.6\%$
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10773	AAC		5G NR FR1 TDD	8.02	± 9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10775	AAB	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.30	± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 10 KHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAB AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10779 10780	AAB	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 MHz)	5G NR FR1 TDD	8.38	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %

June 23, 2020

			5G NR FR1 TDD	7.89	±9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10803	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10806	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10809	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10812	AAC	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)			± 9.6 %
10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	
10822	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9,6 %
10824	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6 %
10828	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6 %
10830	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6 %
10831	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10833	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6 %
	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6 %
10835		5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6 %
10836	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6 %
10837	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6 %
10839	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6 %
10840	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.71	± 9.6 %
10841	AAC	5G NR (CP-OFDM, FKB, 100 Mil2, GF0K, 60 KH2)	5G NR FR1 TDD	8.49	±9.6%
10843	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	8.34	± 9.6 %
10844	AAC		5G NR FR1 TDD	8,41	± 9.6 %
10846	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6 %
10854	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6 %
10855	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6 %
10856	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10857	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10858	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10860	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)			± 9.6 %
10861	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	$\pm 9.6\%$
10863	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	
10864	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6%
10866	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10868	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6%
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %
10878	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6 %
10879	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	8.38	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	6.57	± 9.6 %
10883		5G NR (DFT-s-OFDM, 14 KB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	6.53	± 9.6 %
10884		5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 100AM, 120 KHz)	5G NR FR2 TDD	6.61	± 9.6 %
10885	AAD			1 0.01	/

June 23, 2020

ADD EG NR (CP-OFTM, 198, ED MHZ, OPSK, 120 HHZ) G NN FF2 TDD A.76 ± 9.8 % 0588 ADD EG NR (CP-OFTM, 198, ED S) Sol MIZ, OPSK, 201 HHZ) EG NN FF2 TDD 8.32 ± 9.8 % 0589 ADD EG NR (CP-OFTM, 198, ED S) Sol NIZ, CPO-CPM, 109, ED S) Sol NIZ, CPO-CPM, 108, ED S) Sol NIZ, CPO-CP					0.05	1069/
10688 ADD FGS HR (CP-CPEM, 1480) CPSK, 120 H412) FG NR FR2 TDD 8.32 ±9.8 % 10689 ADD FG NR (CP-CPEM, 1480) EG NR FR2 TDD 8.32 ±9.8 % 10680 ADD FG NR (CP-CPEM, 1480) EG NR FR2 TDD 8.43 ±9.8 % 10681 ADD FG NR (CP-CPEM, 1480) EG NR FR2 TDD 8.41 ±9.8 % 10887 AAD FG NR (CP-CPEM, 1480) EMH2, CPSK, 30 H42) FG NR FR1 TDD 6.67 ±9.8 % 10889 AAA FG NR (CP-CPEM, 1480) EMH2, CPSK, 30 H42) FG NR FR1 TDD 6.67 ±9.8 % 10899 AAA FG NR (CPT-4-CPEM, 1481) EMH2, CPSK, 30 H42) FG NR FR1 TDD 6.68 ±9.8 % 10901 AAA FG NR (CPT-4-CPEM, 1481) EMH2, CPSK, 30 H42) FG NR FR1 TDD 5.68 ±9.8 % 10902 AAA FG NR (CPT-4-CPEM, 1481) EMH2, CPSK, 30 H42) FG NR FR1 TDD 5.68 ±9.8 % 10904 AAA FG NR (CPT-4-CPEM, 1481) EMH2, CPSK, 30 H42) FG NR FR1 TDD 5.68 ±9.8 % </td <td>10886</td> <td></td> <td>5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)</td> <td>5G NR FR2 TDD</td> <td>6.65</td> <td>$\pm 9.6\%$</td>	10886		5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	$\pm 9.6\%$
TADE FAD EG NR (CP-OFTML 1988, PB, SD MHz, 196AM, 120 Htz) FG NR FR2 TDD 8.40 ± 8.8 % 0880 AAD FG NR (CP-OFTML 1988, PB, SD MHz, 60AAM, 120 Htz) FG NR FR2 TDD 8.41 ± 8.8 % 0882 AAD FG NR (CP-OFTML 1988, PB, SD MHz, 60AAM, 120 Htz) FG NR FR2 TDD 8.41 ± 8.8 % 0882 AAA FG NR (CP-OFTML 1988, PB, SD MHz, 60AAM, 120 Htz) FG NR FR2 TDD 8.41 ± 8.8 % 0889 AAA FG NR (CPT-oFOTML 188, D MLz, 0PSK, 30 Htz) FG NR FR1 TDD 5.67 ± 9.6 % 0898 AAA FG NR (CPT-oFOTML 188, 15 MHz, 0PSK, 30 Htz) FG NR FR1 TDD 5.68 ± 9.6 % 0898 AAA FG NR (PT-oFOTML 188, 25 MHz, 0PSK, 30 Htz) FG NR FR1 TDD 5.68 ± 9.6 % 0890 AAA FG RR (DFT-oFOTML 188, 20 Htz, 0PSK, 30 Htz) FG NR FR1 TDD 5.68 ± 9.6 % 0890 AAA FG RR (DFT-oFOTML 188, 20 Htz, 0PSK, 30 Htz) FG NR FR1 TDD 5.68 ± 9.6 % 0890 AAA FG RR (DFT-oFOTML 188, 50 MHz, 0PSK, 30 Htz) FG NR FR1 TDD 5.68 ± 9.6 % 50 NR FR1 TDD	10887	AAD				
10880 AAD CS NIR (CP-OFOM, 109), FB, S0 MHz, EGOAM, 120 HHz) GS NR FR2 TDD 8.13 2.8.5 10881 AAD SG NR (CP-OFOM, 109), FB, S0 MHz, GHOAM, 120 HHz) GS NR FR2 TDD 8.13 2.8.5 10887 AAA SG NR (CP-OFOM, 109), FB, S0 MHz, GHOAM, 120 HHz) GS NR FR1 TDD 5.66 7.8.5 10889 AAA SG NR (CPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) GS NR FR1 TDD 5.67 2.9.5 10889 AAA SG NR (CPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) GS NR FR1 TDD 5.67 2.9.5 10889 AAA SG NR (CPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) SG NR FR1 TDD 5.68 2.9.6 10802 AAA SG NR (CPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) SG NR FR1 TDD 5.68 2.9.6 10802 AAA SG NR (DPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) SG NR FR1 TDD 5.68 2.9.6 10802 AAA SG NR (DPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) SG NR FR1 TDD 5.68 2.9.6 10802 AAA SG NR (DPT-OFOM, 1RE, S0 MHz, GPSK, S0 HHz) SG NR FR1 TDD 5.68 2.9.6 1080	10888	AAD				
10837 AAD 65 MR (CD-OFDM, 109K B) 50 MHz, 60AM, 120 Hz) 66 NN FR2 TDD 8.41 ±9.5 % 10832 AAD 56 NR (CDFT-0FDM, 109K B) 50 MHz, 60AM, 120 Hz) 56 NN FR1 TDD 5.64 ±9.6 % 10836 AAA 56 NR (DFT-0FDM, 108K, 60 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.67 ±9.6 % 10836 AAA 56 NR (DFT-0FDM, 188, 50 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.67 ±9.6 % 10846 AAA 56 NR (DFT-0FDM, 188, 50 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.68 ±9.6 % 10960 AAA 56 NR (DFT-0FDM, 178, 20 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.68 ±9.6 % 10961 AAA 56 NR (DFT-0FDM, 178, 20 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.68 ±9.6 % 10963 AVA 56 NR (DFT-0FDM, 178, 80 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.68 ±9.6 % 10964 AVA 56 NR (DFT-0FDM, 178, 80 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.68 ±9.6 % 10965 AVA 56 NR (DFT-0FDM, 178, 80 MHz, 0FSK, 30 Hz) 56 NN FR1 TDD 5.68 ±9.6 % 10966	10889	AAD				
Desc Aux Corn RIV CDF OFDML 100% RB, SIMH2, GFOAM 120 Hz1 SO NR FR2 TOD 8.41 ± 9.6 % 19887 AAA GO NR (DFT=-OFDML 186, DMH2, OPSK 30 Hz1) SO NR FR1 TDD 5.67 ± 9.6 % 19888 AAA GO NR (DFT=-OFDML 186, DMH2, OPSK 30 Hz1) SO NR FR1 TDD 5.67 ± 9.6 % 10889 AAA GO NR (DFT=-OFDML 186, DMH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10800 AAA GO NR (DFT=-OFDML 186, 20 HH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10802 AAA GO NR (DFT=-OFDML 186, 20 HH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10802 AAA GO NR (DFT=-OFDML 186, 20 HH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10804 AAA GO NR (DFT=-OFDML 186, 50 MH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10806 AAA GO NR (DFT=-OFDML 30 KR 80 MH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10806 AAA GO NR (DFT=-OFDML 30 KR 80 MH2, OPSK 30 Hz1) SO NR FR1 TDD 5.68 ± 9.6 % 10806 <	10890	AAD				
	10891	AAD				
10088 AAA SG NR (DFT-ACTEM) 188 0.000 5.67 ± 9.6 % 10089 AAA SG NR (DFT-ACTEM) 188, 16 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.67 ± 9.6 % 10090 AAA SG NR (DFT-ACTEM), 188, 16 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.68 ± 9.6 % 10901 AAA SG NR (DFT-ACTEM), 188, 25 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.68 ± 9.6 % 10902 AAA SG NR (DFT-ACTEM), 188, 30 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.68 ± 9.6 % 10904 AAA SG NR (DFT-ACTEM), 188, 50 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.68 ± 9.6 % 10904 AAA SG NR (DFT-ACTEM), 188, 50 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.68 ± 9.6 % 10906 AAA SG NR (DFT-ACTEM), 50 KR 9, 10 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.76 ± 9.6 % 10907 AAA SG NR (DFT-ACTEM), 50 KR 9, 10 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.76 ± 9.6 % 10908 AAA SG NR (DFT-ACTEM), 50 KR 9, 10 MHz, QPSK, 30 KH2) 50 NR FR1 TDD 5.78 ± 9.6 %	10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)			
TOBBE AAA GO NR (DFT=o-DFDM, 11 RB, 10 MHz, QPSK, 30 HHz) SO NR (PFR TDD 5.67 ± 9.6 % 10899 AAA GG NR (DFT=o-OFDM, 11 RB, 20 MHz, QPSK, 30 HHz) GG NR (PFR TDD 5.68 ± 9.6 % 10901 AAA GG NR (PT=o-OFDM, 11 RB, 20 MHz, QPSK, 30 HHz) GG NR (PFR TDD 5.68 ± 9.6 % 10902 AAA GG NR (PT=o-OFDM, 11 RB, 20 MHz, QPSK, 30 HHz) SG NR (PFR TDD 5.68 ± 9.6 % 10903 AAA GG NR (DFT=o-OFDM, 11 RB, 20 MHz, QPSK, 30 HHz) SG NR (PFR TDD 5.68 ± 9.6 % 10905 AAA GG NR (DFT=o-OFDM, 11 RB, 20 MHz, QPSK, 30 HHz) SG NR (PFR TDD 5.68 ± 9.6 % 10906 AAA GG NR (DFT=o-OFDM, 30 % RB, 10 MHz, QPSK, 30 HHz) SG NR (PFH TDD 5.83 ± 9.6 % 10908 AAA GG NR (PT=o-OFDM, 30 % RB, 10 MHz, QPSK, 30 HHz) SG NR (PFH TDD 5.83 ± 9.6 % 10910 AAA GG NR RFH TDD 5.83 ± 9.6 % ± 9.6 % 10910 AAA GG NR RFH TDD 5.93 ± 9.6 % ± 9.6 % 10911 <td>10897</td> <td>AAA</td> <td>5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)</td> <td>5G NR FR1 TDD</td> <td></td> <td></td>	10897	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		
10899 AAA GS NR ($DFT=OFDM, 1RB, 15 MHz, QPSK, 30 HHz) GO NR FR1 TDD 5.67 \pm 9.6 % 10900 AAA 6G NR (DFT=OFDM, 1RB, 22 MHz, QPSK, 30 HHz) GO NR FR1 TDD 5.68 \pm 9.6 % 10901 AAA 6G NR (DFT=OFDM, 1RB, 20 MHz, QPSK, 30 HHz) GO NR FR1 TDD 5.68 \pm 9.6 % 10902 AAA 6G NR (DFT=OFDM, 1RB, 40 MHz, QPSK, 30 HHz) GS NR FR1 TDD 5.68 \pm 9.6 % 10904 AAA 6G NR (DFT=OFDM, 1RB, 40 MHz, QPSK, 30 HHz) GS NR FR1 TDD 5.68 \pm 9.6 % 10906 AAA 6G NR (DFT=OFDM, 1RB, 60 MHz, QPSK, 30 HHz) GS NR FR1 TDD 5.68 \pm 9.6 % 10906 AAA 6G NR (DFT=OFDM, 1SB, 60 MHz, QPSK, 30 Hz) GS OR FR1 TDD 5.68 \pm 9.6 % 10906 AAA 6G NR (DFT=OFDM, 305 KB, 20 MHz, QPSK, 30 Hz) GS OR FR1 TDD 5.84 \pm 9.6 % 10907 AAA 6G NR (DFT=OFDM, 305 KB, 20 MHz, QPSK, 30 Hz) GS OR FR1 TDD 5.84 \pm 9.6 % 10908 AAA 6G NR (DFT=OFDM, 305 KB, 20 MHz, QPSK, 30 Hz) GS OR FR1 TDD 5.84 \pm 9.6 %<$	10898	AAA		5G NR FR1 TDD	5.67	
10800 AAA 5G NR FR1 TDD 5.68 \pm 9.6 % 10901 AAA 5G NR (DFT-s-OFDM, T.B., 25 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.68 \pm 9.6 % 10902 AAA 5G NR (DFT-s-OFDM, T.B., 20 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.68 \pm 9.6 % 10903 AAA 5G NR (DFT-s-OFDM, T.B., 40 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.68 \pm 9.6 % 10905 AAA 5G NR (DFT-s-OFDM, T.B., 60 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.68 \pm 9.6 % 10906 AAA 5G NR (DFT-s-OFDM, 18 B, 60 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.68 \pm 9.6 % 10907 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.98 \pm 9.6 % 10908 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.84 \pm 9.6 % 10901 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.84 \pm 9.6 % 10911 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, OPSK, 30 Hz) 5G NR FR1 TDD 5.84 \pm 9.6 % 10911	10899		5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
19901 AAA 5G NR (PT-s-OFDM, T.B., 25 MHz, OPSK, 30 Hz) 5G NR FRI TOD 5.68 ± 9.6 % 19902 AAA 5G NR (DFT-s-OFDM, T.B., 30 Htz, OPSK, 30 Hz) 5G NR FRI TOD 5.68 ± 9.6 % 19903 AAA 5G NR (DFT-s-OFDM, T.B. 50 Htz, OPSK, 30 Hz) 5G NR FRI TOD 5.68 ± 9.6 % 19905 AAA 5G NR (DFT-s-OFDM, T.B. 50 Mtz, OPSK, 30 Hz) 5G NR FRI TOD 5.68 ± 9.6 % 19906 AAA 5G NR (DFT-s-OFDM, 178, 90 Mtz, OPSK, 30 Hz) 5G NR FRI TOD 5.78 ± 9.6 % 19907 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 Mtz, OPSK, 30 Hz) 5G NR FRI TDD 5.78 ± 9.6 % 19906 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 Mtz, OPSK, 30 Hz) 5G NR FRI TDD 5.83 ± 9.6 % 19911 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 Mtz, OPSK, 30 Hz) 5G NR FRI TDD 5.84 ± 9.6 % 19911 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 Mtz, OPSK, 30 Hz) 5G NR FRI TDD 5.84 ± 9.6 % 19911 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 Mtz, OPSK, 30 Hz) 5G NR FRI TDD 5.84 ± 9.6 %			5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,68	± 9.6 %
Tobb TAA EG NR DET=-OFDM, T.B., 30 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.68 \pm 9.6 % T0903 AAA SG NR (DFT-s-OFDM, T.B. 40 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.68 \pm 9.6 % T0906 AAA SG NR (DFT-s-OFDM, T.B. 80 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.68 \pm 9.6 % T0906 AAA SG NR (DFT-s-OFDM, T.B., 80 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.78 \pm 9.6 % T0907 AAA SG NR (DFT-s-OFDM, SG KR, 10 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.78 \pm 9.6 % T0908 AAA SG NR (DFT-s-OFDM, SG KR, 10 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.98 \pm 8.6 % T0910 AAA SG NR (DTT-s-OFDM, SG KR, 82 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.98 \pm 8.6 % T0911 AAA SG NR (DTT-s-OFDM, SG KR, 82 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.84 \pm 8.6 % T0912 AAA SG NR (DTT-s-OFDM, SG KR, 80 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.84 \pm 8.6 % T0913 AAA SG NR (DT-s-OFDM, SG KR, 80 MHz, OPSK, 30 HHz) SG NR FR1 TDD 5.84				5G NR FR1 TDD	5.68	± 9.6 %
10903 AAA 56 NR (PET-s-OFDM, T RE, 40 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.68 ± 9.6 % 10904 AAA 56 NR (DFT-s-OFDM, T RE, 50 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.68 ± 9.6 % 10906 AAA 56 NR (DFT-s-OFDM, 18 B, 80 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.68 ± 9.6 % 10807 AAA 56 NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.78 ± 9.6 % 10808 AAA 56 NR (DFT-s-OFDM, 50% RB, 16 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.93 ± 9.6 % 10909 AAA 56 NR (DFT-s-OFDM, 50% RB, 16 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.93 ± 9.6 % 10911 AAA 56 NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.83 ± 9.6 % 10912 AAA 56 NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.84 ± 9.6 % 10914 AAA 56 NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.84 ± 9.6 % 10917 AAA 56 NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) 56 NR FR1 TDD 5.83 ± 9				5G NR FR1 TDD	5.68	±9.6 %
				5G NR FR1 TDD	5.68	±9.6 %
10006 AAA 5G NR (PT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10006 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.78 ± 9.6 % 10007 AAA 5G NR (PT TDD 5.78 ± 9.6 % 10008 AAA 5G NR (PT TDD 5.96 ± 9.6 % 10009 AAA 5G NR (PT TDD 5.96 ± 9.6 % 10010 AAA 5G NR (PT T-s-OFDM, 50% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.98 ± 9.6 % 10011 AAA 5G NR (PT -s-OFDM, 50% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10012 AAA 5G NR (PT -s-OFDM, 50% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10013 AAA 5G NR (PT -s-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10016 AAA 5G NR (PT -s-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10016 AAA 5G NR (PT -s-OFDM, 100% RB, 5M Hz, QPSK, 30 KHz) 5G NR FR1 TDD					5.68	± 9.6 %
10966 AAA 5G NR (DFT=OFDM, 16B, 50 MHz, OPSK, 30 kHz) 6G NR FR1 TDD 5.68 ± 9.6 % 10907 AAA 5G NR (DFT=oFDM, 50% RB, 5 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.78 ± 9.6 % 10908 AAA 5G NR (DFT=oFDM, 50% RB, 10 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.93 ± 9.6 % 10909 AAA 5G NR (DFT=oFDM, 50% RB, 10 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.83 ± 9.6 % 10910 AAA 5G NR (DFT=oFDM, 50% RB, 20 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10911 AAA 5G NR (DFT=oFDM, 50% RB, 20 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10912 AAA 5G NR (DFT=oFDM, 50% RB, 50 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10913 AAA 5G NR (DFT=oFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10914 AAA 5G NR (DFT=oFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10917 AAA 5G NR (DFT=oFDM, 100% RB, 5 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % <td></td> <td></td> <td></td> <td>5G NR FR1 TDD</td> <td>5.68</td> <td>±9.6 %</td>				5G NR FR1 TDD	5.68	±9.6 %
10607 AAA 5G NR (DFT=-5CPDM, 50% EB, 5 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.78 ± 9.6 % 10908 AAA 5G NR (DFT=-5CPDM, 50% RB, 10 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.98 ± 9.6 % 10909 AAA 5G NR (DFT=-5CPDM, 50% RB, 20 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.98 ± 9.6 % 10911 AAA 5G NR (DFT=-5CPDM, 50% RB, 20 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.83 ± 9.6 % 10912 AAA 5G NR (DFT=-5CPDM, 50% RB, 20 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10913 AAA 5G NR (DFT=-5CPDM, 50% RB, 30 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10916 AAA 5G NR (DFT=-5CPDM, 50% RB, 50 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.83 ± 9.6 % 10917 AAA 5G NR (DFT=-5CPDM, 50% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10918 AAA 5G NR (DFT=-5CPDM, 50% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10921 AAA 5G NR (DFT=-5CPDM, 100% RB, 5M Hz, OPSK, 30 kHz) 5G NR FR1 TDD 5.84						±9.6 %
10308 AAA SG NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.93 ± 9.6 % 10909 AAA SG NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.98 ± 9.6 % 10910 AAA SG NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.93 ± 9.6 % 10911 AAA SG NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 % 10912 AAA SG NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 % 10914 AAA SG NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 % 10916 AAA SG NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 % 10917 AAA SG NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 % 10917 AAA SG NR (DFT-s-OFDM, 100% RB, 0 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 % 10921 AAA SG NR (DFT-s-OFDM, 100% RB, 6.5 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.88						
10808 AAA 5G NR (DFT-s-OFDM, 50%, RB, 15 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.96 ± 9.6 % 10910 AAA 5G NR (DFT-s-OFDM, 50%, RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.83 ± 9.6 % 10911 AAA 5G NR (DFT-s-OFDM, 50%, RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10912 AAA 5G NR (DFT-s-OFDM, 50%, RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10914 AAA 5G NR (DFT-s-OFDM, 50%, RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10916 AAA 5G NR (DFT-s-OFDM, 50%, RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10917 AAA 5G NR (DFT-s-OFDM, 50%, RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10918 AAA 5G NR (DFT-s-OFDM, 100%, RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10920 AAA 5G NR (DFT-s-OFDM, 100%, RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10921 AAA 5G NR (DFT-s-OFDM, 100%, RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84<						
10810 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.83 ± 9.6 % 10911 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10912 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10914 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10916 AAA 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10917 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10917 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 <						
10811 AAA GG NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 HHz) GG NR FR1 TDD 5.93 ± 9.6 9 10912 AAA GG NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10913 AAA GG NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10914 AAA GG NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.83 ± 9.6 9 10916 AAA GG NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.83 ± 9.6 9 10917 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.86 ± 9.6 9 10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 HHz) 5G NR FR1 TDD 5.84						
Dot NL Dot NL OPSK, 30 KH2 Gens FR1 TDD 5.84 ± 9.6.7 10913 AAA 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.84 ± 9.6.7 10914 AAA 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.85 ± 9.6.9 10915 AAA 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.83 ± 9.6.9 10916 AAA 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.84 ± 9.6.9 10917 AAA 5G NR (DFT-s-OFDM, 100% RB, 5M Hz, QPSK, 30 KH2) 5G NR FR1 TDD 5.86 ± 9.6.9 10919 AAA 5G NR (DFT-s-OFDM, 100% RB, 5M Hz, QPSK, 30 KH2) 5G NR FR1 TDD 5.86 ± 9.6.9 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.84 ± 9.6.9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.84 ± 9.6.9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KH2) 5G NR FR1 TDD 5.84 ± 9.6.9						
10913 AAA 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10914 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.85 ± 9.6 ? 10915 AAA 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.87 ± 9.6 ? 10916 AAA 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.87 ± 9.6 ? 10917 AAA 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 ? 10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 ? 10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84						
10014 AAA 56 NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 KHz) 56 NR FR1 TDD 5.85 ± 9.6 ? 10015 AAA 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.83 ± 9.6 ? 10016 AAA 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10017 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 ? 10018 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 ? 10021 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10022 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10022 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10022 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10024 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84						
10915 AAA 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.83 ± 9.6 9 10916 AAA 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.87 ± 9.6 9 10917 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 0MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 9 10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 9 10919 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 9 10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94	· · · · · · · · · · · · · · · · · · ·					
10016 AAA 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.87 ± 9.6 % 10917 AAA 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 % 10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10919 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 % 10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 % 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84						
10917 AAA 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 7 10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.86 ± 9.6 7 10919 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.87 ± 9.6 7 10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 7 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 7 10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 7 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 7 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 7 10928 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 5.91 ± 9.6 7 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.5.1	10915	AAA				······
ID01 DAA SG NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.86 ± 9.6 9 10919 AAA SG NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.86 ± 9.6 9 10920 AAA SG NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.87 ± 9.6 9 10921 AAA SG NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 9 10922 AAA SG NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 9 10922 AAA SG NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 9 10925 AAA SG NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 9 10926 AAA SG NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 HHz) SG NR FR1 TDD 5.84 ± 9.6 9 10928 AAA SG NR (DFT-s-OFDM, 108, BR, 80 MHz, QPSK, 15 Hz) SG NR FR1 TDD 5.52 ± 9.6 9 10928 AAA SG NR (DFT-s-OFDM, 1 RB, 16 MHz, QPSK, 15 Hz) SG NR FR1 FDD 5.52	10916	AAA				
10918 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.86 ± 9.6 9 10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.87 ± 9.6 9 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.52 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	10917	AAA				
Instruct Sort RIC (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 KHz) SG NR FR1 TDD 5.87 ± 9.6 ? 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ? 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.24 ± 9.6 ? 10927 AAA 5G NR (DFT-s-OFDM, 18, 5MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ? 10928 AAA 5G NR (DFT-s-OFDM, 17, 8, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ? 10930 AAA 5G NR (DFT-s-OFDM, 17, 8, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ?	10918	AAA				
10920 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.82 ± 9.6 9 10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	10919	AAA				
10921 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.82 ± 9.6 9 10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10927 AAA 5G NR (DFT-s-OFDM, 18, 5 MHz, QPSK, 30 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 18, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 17, 18, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10931 AAA 5G NR (DFT-s-OFDM, 17, 8, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10933 AAA 5G NR (DFT-s-OFDM, 17, 8, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.	10920	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)			},
10922 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 1RB, 5 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 1RB, 10 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 1RB, 10 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10931 AAA 5G NR (DFT-s-OFDM, 1RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10933 AAA 5G NR (DFT-s-OFDM, 1RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ± 9.6 9<	10921	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.6%
10923 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ±9.6 9 10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ±9.6 9 10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ±9.6 9 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ±9.6 9 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.94 ±9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.52 ±9.6 9 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.52 ±9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 9 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 9 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 9 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15		AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10924 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ± 9.6 9 10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.95 ± 9.6 9 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10934 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5				5G NR FR1 TDD	5.84	± 9.6 %
10925 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.95 ± 9.6 ° 10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84 ± 9.6 ° 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 ° 10928 AAA 5G NR (DFT-s-OFDM, 18B, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ° 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ° 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10935 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 °				5G NR FR1 TDD	5.84	±9.6 %
10926 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.84 ±9.6 ° 10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.94 ±9.6 ° 10928 AAA 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.52 ±9.6 ° 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.52 ±9.6 ° 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.51 ±9.6 ° <td></td> <td></td> <td></td> <td>5G NR FR1 TDD</td> <td>5.95</td> <td>±9.6 %</td>				5G NR FR1 TDD	5.95	±9.6 %
10927 AAA 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94 ± 9.6 9 10928 AAA 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 9 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 9 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 9				5G NR FR1 TDD	5.84	±9.6 %
10928 AAA 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ° 10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ° 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 16 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 ° 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 ° 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 ° 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.80 ± 9.6 °					5.94	± 9.6 %
10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 f 10930 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 f 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.71 ± 9.6 f 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 f 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ± 9.6 f 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 f				5G NR FR1 FDD	5.52	±9.6 %
10929 AAA 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52 ± 9.6 f 10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 f 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 f 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 f 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 f <td></td> <td></td> <td></td> <td></td> <td></td> <td>± 9.6 %</td>						± 9.6 %
10030 AAA 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10932 AAA 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 f 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ± 9.6 f 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ± 9.6 f 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 f 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 f 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 f	· · · · · · · · · · · · · · · · · · ·					± 9.6 %
10931 AAA 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 f 10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 f 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 f 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 f 10936 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 f 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ±9.6 f 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ±9.6 f 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ±9.6 f 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ±9.6 f 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ±9.6 f 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kH						±9.6 %
1002 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 5 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 5 10936 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 5 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 5 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5						± 9.6 %
10933 AAA 50 NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ±9.6 ° 10936 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ±9.6 ° 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ±9.6 ° 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ±9.6 ° 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ±9.6 ° 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ±9.6 ° 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ±9.6 ° 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ±9.6 ° 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ±9.6 ° 10943 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK,						± 9.6 %
10934 AAA 5G NR (DF1's-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51 ± 9.6 10935 AAA 5G NR (DF1-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ± 9.6 10937 AAA 5G NR (DF1-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 10938 AAA 5G NR (DF1-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 10939 AAA 5G NR (DF1-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10939 AAA 5G NR (DF1-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10940 AAA 5G NR (DF1-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10941 AAA 5G NR (DF1-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10942 AAA 5G NR (DF1-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DF1-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10944 AAA 5G NR (DF1-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kH						
10935 AAA 5G NR (DFT-s-OFDM, 10% RB, 5 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.90 ± 9.6 10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.77 ± 9.6 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.77 ± 9.6 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.90 ± 9.6 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.82 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.82 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.83 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.83 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.85 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 FDD 5.81 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 K		1				
10930 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 10937 AAA 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77 ± 9.6 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ± 9.6 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.89 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 1	1					
10936 AAA 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90 ± 9.6 10938 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6		_				
10939 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.89 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 1						
10333 AAA 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.89 ± 9.6 10940 AAA 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6	i					
10910 AAA 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10941 AAA 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6						
10041 JWR 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10942 AAA 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6	10940					± 9.6 %
10342 Ava 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.95 ± 9.6 10943 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 </td <td>10941</td> <td>AAA</td> <td></td> <td></td> <td></td> <td>± 9.6 %</td>	10941	AAA				± 9.6 %
10343 AAA 56 NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 </td <td>10942</td> <td>AAA</td> <td></td> <td></td> <td></td> <td>± 9.6 %</td>	10942	AAA				± 9.6 %
10944 AAA 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81 ± 9.6 10945 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6<	10943	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)			± 9.6 %
10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6			5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)			± 9.6 %
10946 AAA 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83 ± 9.6 10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6	10945	AAA			5.85	± 9.6 %
10947 AAA 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6				5G NR FR1 FDD	5.83	± 9.6 %
10948 AAA 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6				5G NR FR1 FDD	5.87	± 9.6 %
10949 AAA 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6				5G NR FR1 FDD	5.94	± 9.6 %
10343 XXX 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10950 AAA 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94 ± 9.6 10951 AAA 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92 ± 9.6 10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6						± 9.6 %
10000 1000 Control of the control of th						± 9.6 %
10952 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25 ± 9.6						± 9.6 %
						± 9.6 %
	10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD	8.15	± 9.6 %

				8.23	±9.6 %
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD		
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6 %
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6 %
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
		5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6 %
10960	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.36	± 9.6 %
10961	AAA	5G NR DL (CP-OPDW, 1W 5.1, 10 WHZ, 04-0AW, 10 KHZ)	5G NR FR1 TDD	9.40	±9.6%
10962	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)			
10963	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
		SO NR DE (OF OF DW, TWO.1, TO WILL, OF QUAL, OF ALL)	5G NR FR1 TDD	9.42	± 9.6 %
10967	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)			
10968	AAA	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: EX3-3589_Jan20/2

CALIBRATION CERTIFICATE (Replacement of No: EX3-3589_Jan20)

Object	EX3DV4 - SN:3589	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes BNV NH[30]205	20
Calibration date:	January 21, 2020	
	ents the traceability to national standards, which realize the physical units of measurements (SI). artainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Colle
			Seef Mgr
Approved by:	Katja Pokovic	Technical Manager	1/11-
			aces
			Issued: March 31, 2020
This calibration certificate	e shall not be reproduced except in fu	Il without written approval of the labo	

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z; Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.44	0.40	0.39	± 10.1 %
DCP (mV) ^B	101.5	97.7	97.9	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	138.1	± 3.5 %	± 4.7 %
		Y	0.00	0.00	1.00		148.9		
		Z	0.00	0.00	1.00		137.1		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	93.40	23.88	10,00	60.0	± 1.9 %	±9.6 %
AAA		Y	20.00	90.04	21.55		60.0		
		Z	20.00	93.40	23.50	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	93.53	22.66	6.99	80.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	90.11	20.16		80.0		
		Z	20.00	93,36	22.20		80.0		
10354-	Pulse Waveform (200Hz, 40%)	Х	20.00	95.38	22.01	3.98	95.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	88.87	17.82		95.0		
		Z	20.00	94.79	21.35		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	102.43	23.98	2.22	120.0	± 1.1 %	± 9.6 %
AAA		Y	20.00	86.64	15.26		120.0	1	
		Z	20.00	97.99	21.51		120.0	1	
10387-	QPSK Waveform, 1 MHz	X	0.93	64.33	11.56	0.00	150.0	± 3.3 %	± 9.6 %
AAA		Y	0.54	60.00	7.11		150.0	1	
		Z	0.68	61.48	9.17		150.0	1	
10388-	QPSK Waveform, 10 MHz	X	2.38	69.01	16.27	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	2.02	66.96	14.92		150.0	Ì	
		Z	2.15	67.54	15.53		150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	3.79	73.46	20.06	3.01	150.0	± 0.6 %	± 9.6 %
AAA		Y	3.12	69.91	18.24		150.0		
		Z	4.11	75.05	20.59		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.59	67.56	16.03	0.00	150.0	± 2.5 %	± 9.6 %
AAA		Y	3.37	66.67	15.43		150.0]	1
		Z	3.46	66.93	15.67		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.95	65.82	15.63	0.00	150.0	± 4.6 %	± 9.6 %
AAA		Y	4.77	65.46	15.41		150.0]	
		Z	4.80	65.52	15.45	1	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	52.5	386.65	34.73	26.61	1.15	5.10	1.30	0.45	1.01
Y	44.4	339.10	36.93	20.74	1.47	5.06	0.00	0.71	1.01
Z	44.1	325.90	34.85	22.88	1.09	5.07	1.71	0.36	1.01

Sensor Model Parameters

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-32.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

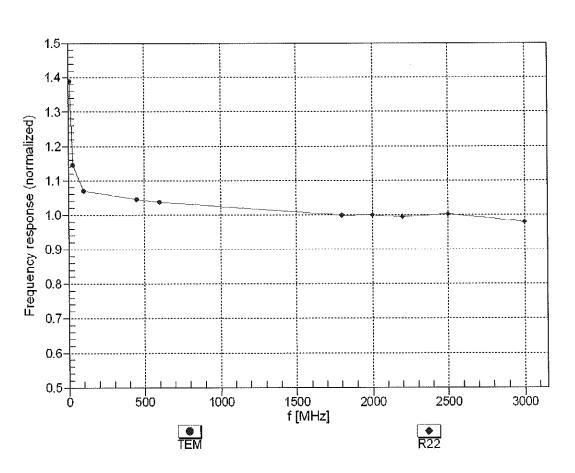
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	8.70	8.70	8.70	0.38	1.00	± 12.0 %
835	41.5	0.90	8.58	8.58	8.58	0.47	0.80	± 12.0 %
1750	40.1	1.37	7.55	7.55	7.55	0.52	0.87	± 12.0 %
1900	40.0	1.40	7.25	7.25	7.25	0.43	0.87	± 12.0 %
2300	39.5	1.67	7.11	7.11	7.11	0.45	0.86	± 12.0 %
2450	39.2	1.80	6.85	6.85	6.85	0.47	0.85	± 12.0 %
2600	39.0	1.96	6.60	6.60	6.60	0.41	0.86	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

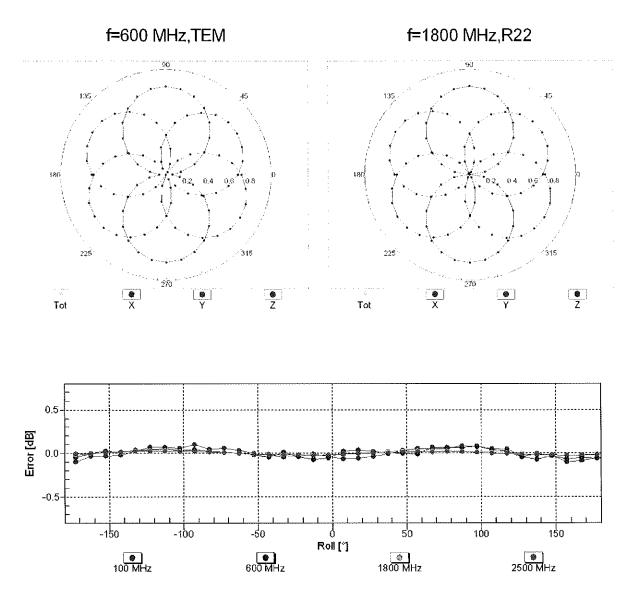
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

The ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	8.49	8.49	8.49	0.49	0.81	± 12.0 %
835	55.2	0.97	8.27	8.27	8.27	0.29	1.03	± 12.0 %
1750	53.4	1.49	6.93	6.93	6.93	0.41	0.87	± 12.0 %
1900	53.3	1.52	6.72	6.72	6.72	0.35	0.87	± 12.0 %
2300	52.9	1.81	6.62	6.62	6.62	0.34	0.86	± 12.0 %
2450	52.7	1.95	6.60	6.60	6.60	0.40	0.86	± 12.0 %
2600	52.5	2.16	6.35	6.35	6.35	0.37	0.90	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)