

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247/ ISED RSS-247 WLAN

Applicant Name:

LG Electronics USA, Inc. 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632 United States

Date of Testing:

8/26 - 10/30/2020 **Test Site/Location:** PCTEST Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2009170151-04.ZNF

FCC ID:

IC:

ZNFK200QM

2703C-K200QM

APPLICANT:

LG Electronics USA, Inc.

Application Type: Model/HVIN: Additional Model(s)/HVIN(s): EUT Type: Frequency Range: Modulation Type: FCC Classification: FCC Rule Part(s): ISED Specification: Test Procedure(s): Certification LM-K200QM LMK200QM, K200QM Portable Handset 2412 – 2462MHz CCK/DSSS/OFDM Digital Transmission System (DTS) Part 15 Subpart C (15.247) RSS-247 Issue 2 ANSI C63.10-2013, KDB 558074 D01 v05r02

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFK200QM	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 1 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 1 of 48
© 2020 PCTEST	•	·		V 9.0 02/01/2019

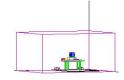


TABLE OF CONTENTS

1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DDUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DES	SCRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANT	ENNA REQUIREMENTS	9
5.0	MEA	ASUREMENT UNCERTAINTY	10
6.0	TES	T EQUIPMENT CALIBRATION DATA	11
7.0	TES	TRESULTS	12
	7.1	Summary	12
	7.2	6dB Bandwidth Measurement	13
	7.3	Output Power Measurement	19
	7.4	Power Spectral Density	21
	7.5	Conducted Emissions at the Band Edge	27
	7.6	Conducted Spurious Emissions	31
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	
		7.7.1 Radiated Spurious Emission Measurements	
		7.7.2 Radiated Restricted Band Edge Measurements	
	7.8	Line-Conducted Test Data	45
8.0	CON	NCLUSION	48

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 0 of 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 2 of 48
© 2020 PCTEST	•	•		V 9.0 02/01/2019

MEASUREMENT REPORT

		Conducted Power			
		Avg Conducted		Peak Conducted	
Mode	Tx Frequency (MHz)	Max. Power	Max. Power	Max. Power	Max. Power
		(mW)	(dBm)	(mW)	(dBm)
802.11b	2412 - 2462	59.979	17.78	97.275	19.88
802.11g	2412 - 2462	28.907	14.61	102.802	20.12
802.11n	2412 - 2462	22.387	13.50	89.536	19.52

EUT Overview

FCC ID: ZNFK200QM	Proved to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 2 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 3 of 48
© 2020 PCTEST			V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFK200QM	PCTEST [®] Proud to be part of [®] element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 4 of 48
© 2020 PCTEST			V 9.0 02/01/2019

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFK200QM**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 00228

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, CDMA 850/1900, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE)

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles				
802.11 Mode/Band		Duty		
		Cycle [%]		
2.4GHz	b	99.8		
	g	99.5		
	n	99.5		

Table 2-2. Measured Duty Cycles

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)

6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n)

FCC ID: ZNFK200QM	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 5 of 48
© 2020 PCTEST	•	·		V 9.0 02/01/2019

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFK200QM	PCTEST		Approved by:
	Proud to be part of element		Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 48
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Fage 0 01 40
© 2020 PCTEST			V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFK200QM	Proved to be part of release	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 7 of 48
© 2020 PCTEST	•			V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 9 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 8 of 48
© 2020 PCTEST	•			V 9.0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: ZNFK200QM	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 9 of 48	
© 2020 PCTEST			V 9.0 02/01/2019	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFK200QM	PCTEST [•] Proud to be part of [®] element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 10	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 10 of 48	
© 2020 PCTEST			V 9.0 02/01/2019	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	7/2/2020	Annual	7/2/2021	WL25-1
-	WL25-2	Conducted Cable Set (25GHz)	7/9/2020	Annual	7/9/2021	WL25-2
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu	ML2496A	Power Meter	11/6/2019	Annual	11/6/2020	1405003
Anritsu	MA2411B	Pulse Power Sensor	10/15/2019	Annual	10/15/2020	1339026
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2019	Biennial	10/10/2021	121034
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	8/7/2018	Triennial	8/7/2021	9203-2178
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	2/14/2019	Biennial	2/14/2021	125518
ETS-Lindgren	3816/2NM	LISN	7/9/2020	Biennial	7/9/2022	114451
ETS-Lindgren	3115	Double Ridged Guide Horn 750MHz - 18GHz	3/12/2020	Biennial	3/12/2022	150693
Keysight Technologies	N9020A	MXA Signal Analyzer	8/14/2020	Annual	8/14/2021	US46470561
Keysight Technologies	N9038A	MXE EMI Receiver	8/11/2020	Annual	8/11/2021	MY51210133
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	8/17/2020	Annual	8/17/2021	MY52350166
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	1/9/2020	Annual	1/9/2021	NMLC-2
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	11/1/2019	Annual	11/1/2020	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	7/15/2020	Annual	7/15/2021	100342
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	11/1/2019	Annual	11/1/2020	100037
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/23/2019	Annual	9/23/2020	100348
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/10/2020	Annual	2/10/2021	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2/21/2020	Annual	2/21/2021	102133
Sunol	DRH-118	Horn Antenna (1-18GHz)	10/3/2019	Biennial	10/3/2021	A050307
Sunol Science	JB5	Bi-Log Antenna (30M - 5GHz)	7/27/2020	Biennial	7/27/2022	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFK200QM	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 10
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 11 of 48
© 2020 PCTEST				V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name: LG Electronics USA, In	∩c.
--------------------------------------	-----

FCC ID: ZNFK200QM

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Fransmitter Power Spectral Density < 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4	
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.1.

FCC ID: ZNFK200QM	Proved to be part of the element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 10
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 12 of 48
© 2020 PCTEST	·	·		V 9.0 02/01/2019

7.2 6dB Bandwidth Measurement §15.247(a.2); RSS-247 [5.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

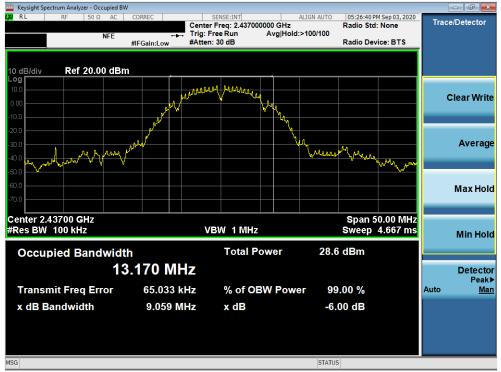
Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

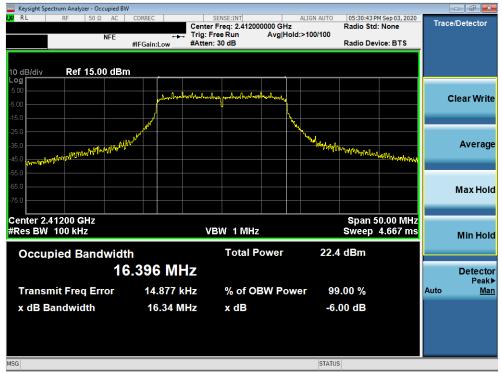
FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 19
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 13 of 48
© 2020 PCTEST			V 9.0 02/01/2019

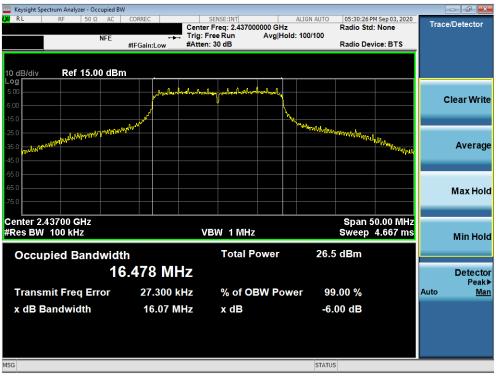
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	9.025	0.500
2437	6	b	1	9.059	0.500
2462	11	b	1	8.580	0.500
2412	1	g	6	16.34	0.500
2437	6	g	6	16.07	0.500
2462	11	g	6	16.10	0.500
2412	1	n	6.5/7.2 (MCS0)	16.95	0.500
2437	6	n	6.5/7.2 (MCS0)	16.57	0.500
2462	11	n	6.5/7.2 (MCS0)	16.83	0.500


Table 7-2. Conducted Bandwidth Measurements

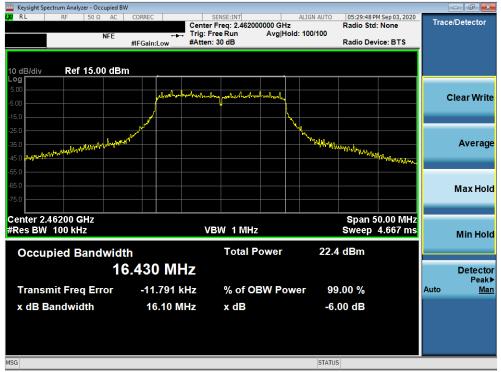
Plot 7-1. 6dB Bandwidth Plot (802.11b - Ch. 1)

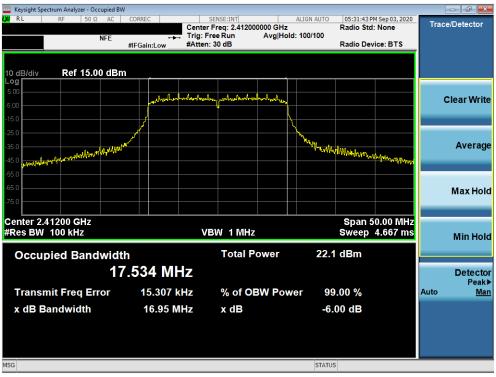
FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 14 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 14 of 48
© 2020 PCTEST		·		V 9.0 02/01/2019


Plot 7-2. 6dB Bandwidth Plot (802.11b - Ch. 6)


Plot 7-3. 6dB Bandwidth Plot (802.11b - Ch. 11)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 15 of 48
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-4. 6dB Bandwidth Plot (802.11g - Ch. 1)


Plot 7-5. 6dB Bandwidth Plot (802.11g - Ch. 6)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element			Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	0/2020 Portable Handset		Page 16 of 48	
© 2020 PCTEST	•	·		V 9.0 02/01/2019	

Plot 7-6. 6dB Bandwidth Plot (802.11g - Ch. 11)

Plot 7-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: ZNFK200QM	PCTEST [•] Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 10	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 17 of 48	
© 2020 PCTEST				V 9.0 02/01/2019	

Keysight Spectrum Analyzer - Occupied BV						
LX/ RL RF 50Ω AC	CORREC	SENSE:INT er Freg: 2.4370000	ALIGN AUT	0 05:31:59 PM Radio Std:	Sep 03, 2020 None	Trace/Detector
NFE	Trig:		Avg Hold: 100/100	Radio Devi		
	#IFGain:Low #Atte	en: 30 dB		Radio Devi	ce: BTS	
10 dB/div Ref 15.00 dBn						
5.00	non maken have been have be	when partial hardbard	-malue			Clear Write
-5.00		<u> </u>	<u></u>			Clear write
-15.0	. allow		No. 1 to			
-25.0	PM 4		~~ ին լեսրո	the warman war		<u>.</u>
Sound Why Weight And					"Maynow who	Average
-45.0						
-55.0						
-65.0						Max Hold
-75.0						
Center 2.43700 GHz).00 MHz	
#Res BW 100 kHz		VBW 1 MHz		Sweep 4	1.667 ms	Min Hold
Occupied Bandwidt	b	Total Po	wer 25	i.9 dBm		
		rotarro,	20			
11	7.572 MHz					Detector Peak►
Transmit Freq Error	27.482 kHz	% of OB	V Power	99.00 %	/	Auto <u>Man</u>
x dB Bandwidth	16.57 MHz	x dB		6.00 dB		
MSG			STA	TUS		

Plot 7-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6)

Plot 7-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	0 Portable Handset		Page 18 of 48	
© 2020 PCTEST				V 9.0 02/01/2019	

7.3 Output Power Measurement §15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v05r02 – Section 8.3.1.3 PKPM1 Peak-reading Power Meter Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v05r02 – Section 8.3.2.3 Measurement using a Power Meter (PM)

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element			Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 19
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 19 of 48
© 2020 PCTEST				V 9.0 02/01/2019

	Freq [MHz]	Channel Detector	IEEE	IEEE Transmission Mode		Conducted Power Limit	nit Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
				802.11b	802.11g	802.11n	[dBm]	Margin [dB]	[]	[]	[ubiii]	
N	2412	1	AVG	17.78	13.72	12.75	30.00	-12.22	1.80	19.58	36.02	-16.44
_			PEAK	19.88	19.60	18.82	30.00	-10.12	1.80	21.68	36.02	-14.34
Ū.	2437	6	AVG	17.63	14.53	13.39	30.00	-12.37	1.80	19.43	36.02	-16.59
2.4			PEAK	19.55	20.12	19.50	30.00	-9.88	1.80	21.92	36.02	-14.10
	2457	10	AVG		14.53	13.44	30.00	-15.47	1.80	16.33	36.02	-19.69
			PEAK		19.88	19.25	30.00	-10.12	1.80	21.68	36.02	-14.34
	2462	11	AVG	17.63	10.57	9.53	30.00	-12.37	1.80	19.43	36.02	-16.59
			PEAK	19.55	17.22	16.60	30.00	-10.45	1.80	21.35	36.02	-14.67

Table 7-3. Conducted Output Power Measurements

FCC ID: ZNFK200QM	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 48	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		
© 2020 PCTEST			V 9.0 02/01/2019	

7.4 Power Spectral Density

§15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

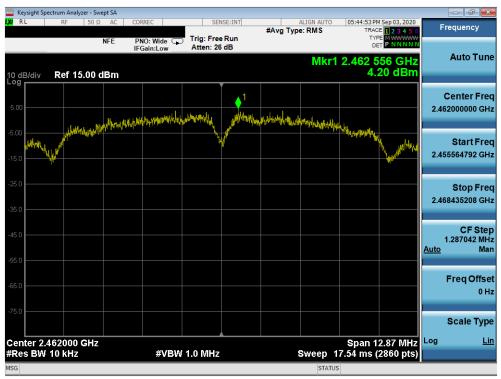
Test Notes

None

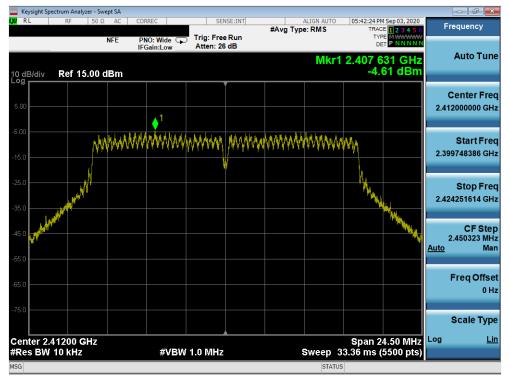
FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 21 of 48
© 2020 PCTEST				V 9.0 02/01/2019

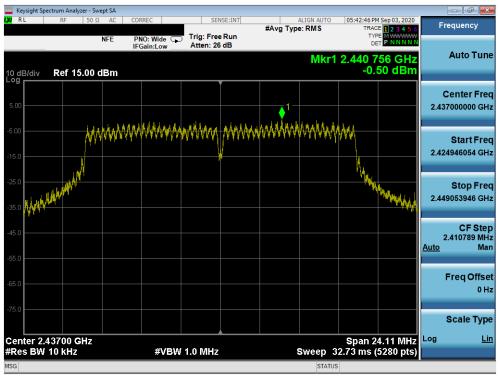
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	4.27	8.00	-3.73	Pass
2437	6	b	1	4.21	8.00	-3.79	Pass
2462	11	b	1	4.20	8.00	-3.80	Pass
2412	1	g	6	-4.61	8.00	-12.61	Pass
2437	6	g	6	-0.50	8.00	-8.50	Pass
2462	11	g	6	-4.50	8.00	-12.50	Pass
2412	1	n	6.5/7.2 (MCS0)	-5.31	8.00	-13.31	Pass
2437	6	n	6.5/7.2 (MCS0)	-0.39	8.00	-8.39	Pass
2462	11	n	6.5/7.2 (MCS0)	-3.34	8.00	-11.34	Pass

Table 7-4. Conducted Power Density Measurements

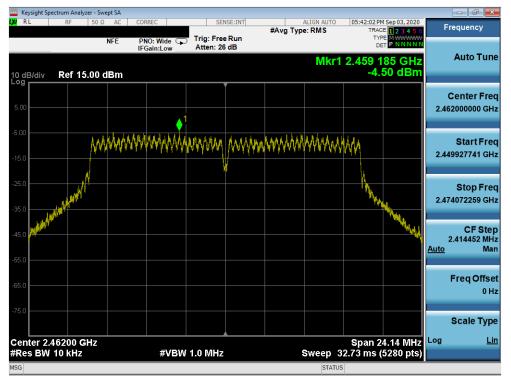

Plot 7-10. Power Spectral Density Plot (802.11b - Ch. 1)

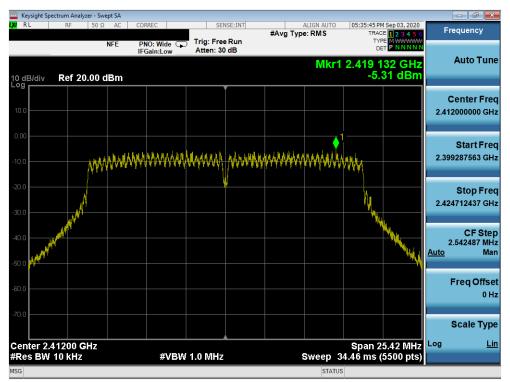
FCC ID: ZNFK200QM	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 22 of 48
© 2020 PCTEST	· ·			V 9.0 02/01/2019


Plot 7-11. Power Spectral Density Plot (802.11b - Ch. 6)

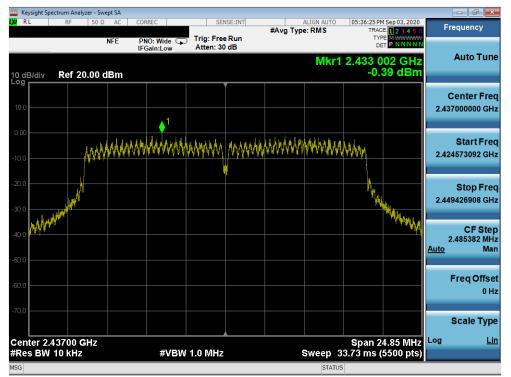

Plot 7-12. Power Spectral Density Plot (802.11b - Ch. 11)

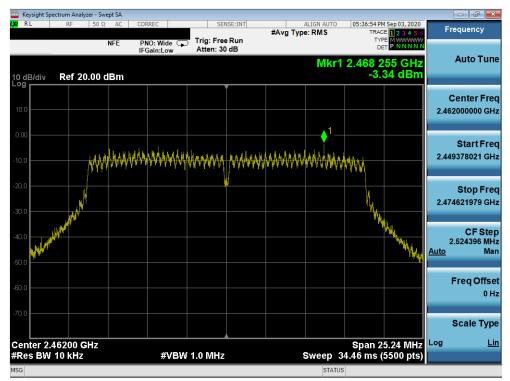
FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element			Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	10/30/2020 Portable Handset		Page 23 of 48
© 2020 PCTEST	•	·		V 9.0 02/01/2019


Plot 7-13. Power Spectral Density Plot (802.11g - Ch. 1)


Plot 7-14. Power Spectral Density Plot (802.11g - Ch. 6)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 24 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	0/30/2020 Portable Handset		Page 24 of 48
© 2020 PCTEST	-	•		V 9.0 02/01/2019


Plot 7-15. Power Spectral Density Plot (802.11g - Ch. 11)


Plot 7-16. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 25 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 25 of 48
© 2020 PCTEST		•		V 9.0 02/01/2019

Plot 7-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

Plot 7-18. Power Spectral Density Plot (802.11n (2.4GHz) – Ch. 11)

FCC ID: ZNFK200QM	Proved to be part of reservent	MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 26 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 26 of 48
© 2020 PCTEST				V 9.0 02/01/2019

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, and 6.5/7.2Mbps for "n" mode.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

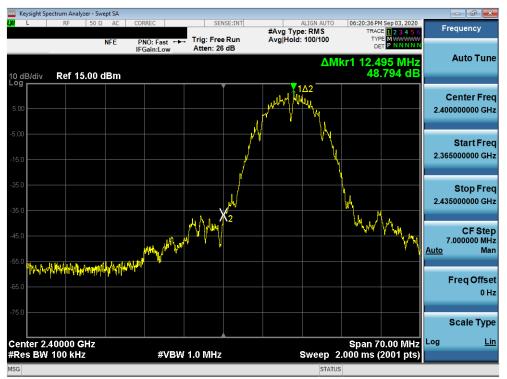
ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-4. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 27 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	6 - 10/30/2020 Portable Handset		Page 27 of 48
© 2020 PCTEST				V 9.0 02/01/2019



Plot 7-20. Band Edge Plot (802.11b – Ch. 11)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 28 of 48
© 2020 PCTEST	-	•		V 9.0 02/01/2019


Plot 7-22. Band Edge Plot (802.11g - Ch. 11)

FCC ID: ZNFK200QM	Proved to be part of the element	MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 20 of 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 29 of 48
© 2020 PCTEST	•			V 9.0 02/01/2019

Keysight Spectrum Analyzer										
X RL RF	50 Ω AC	CORREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	E 1 2 3 4 5 6	F	requency
	NFE	PNO: Fast ++ IFGain:Low	Atten: 26							
10 dB/div Ref 15.0	00 dBm					ΔΜ	kr1 15.7 40.	85 MHz 841 dB		Auto Tune
						▲1∆2				Center Freq
5.00				MANN	halppean.	Norman			2.40	0000000 GHz
-5.00							1			Start Freq
-15.0									2.36	5000000 GHz
-25.0				1			<u>\</u>			Stop Freq
-35.0			,	у ⁴			<u>\</u>		2.43	5000000 GHz
-45.0			they have	\ 2			WW.Aww	hallah 1 I		CF Step
-55.0		MAR MP-MARM	Altan.						Auto	7.000000 MHz Man
hulululululululululululululul	Williamonia	Add a second								Freq Offset
-65.0										0 Hz
-75.0										Scale Type
Center 2.40000 GH							Snop 7		Log	Lin
Res BW 100 kHz	2	#VBW	1.0 MHz			Sweep 2	span // 2.000 ms (:	0.00 MHz 2001 pts)		
ISG						STATU	s			

Plot 7-23. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

Plot 7-24. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFK200QM	Proved to be part of the element	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 30 of 48
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "n" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of ANSI C63.10-2013 and KDB 558074 D01 v05r02.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 31 of 48
© 2020 PCTEST	•	·		V 9.0 02/01/2019

Test Notes


- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)3)b), it was unnecessary to show compliance through the summation of test results of the individual outputs.
- 5. The following plots show a 30dBc limit line instead of the 20dBc limit. However, compliance can be ascertained in the follow plots because the EUT is passing conducted spurious emissions using a stricter limit of 30dBc.

FCC ID: ZNFK200QM	Pour to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 32 of 48
© 2020 PCTEST			V 9.0 02/01/2019

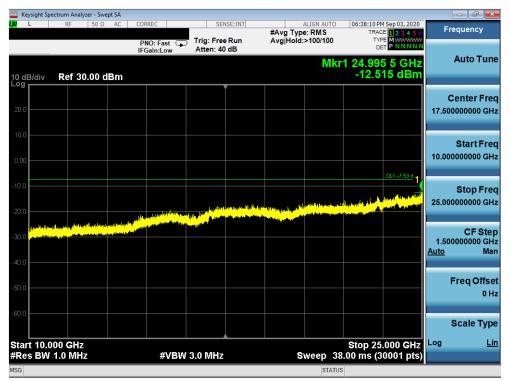
L	RF		AC	COR	REC		5	ENSE:INT		ALIGN AUTO	06:29:55 P	M Sep 03, 2020	_	
	TG .	50 1	AC.	PN	IO: Fast Join:Lov			ee Run	#Avg Typ Avg Hold	e: RMS	TRAC	ET P N N N N N	Fr	equency
) dB/div	Ref 30	.00 di	3m							Μ	kr1 5.10 -27.0	6 4 GHz 58 dBm		Auto Tur
0.0														Center Fre 5000000 Gi
													30	Start Fr 0.000000 M
0.0												DL1 -8.18 dBm	10.00	Stop Fr 0000000 G
		an a tha bhaile an Marth an Statist		a a a a f		lis Seleta de la Colo ^{Sele} ta _{de la} meno			, na po transforma (na balanta) Ten po ten po ten po ten po ten po	il a l ^{ik} tor a tori pi post Y ^{anda} ya a tara a saya	laan laysaan ahaa Sooraa ahaa ahaa ahaa	lati ya ku aya ku ata wata ya ku aya ku ata ya ku ata ya ku ata ya ku aya ku aya ku aya ku aya ku ata ya ku ata	997 <u>Auto</u>	CF St 2.000000 M M
).0														Freq Offs 0
													Log	Scale Ty
art 30 Res BW	VIHZ 1.0 MHz	,			#V	BW	3.0 MH	7		weep_1	5.00 ms.(3	.000 GHz 0001 pts)	209	-


Plot 7-26. Conducted Spurious Plot (802.11b - Ch. 1)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 33 of 48
© 2020 PCTEST	-	•		V 9.0 02/01/2019

	ectrum Analyz		SA									
XI L	RF	50 Ω	AC C	ORREC	SE	NSE:INT	#Ava Tvp	ALIGN AUTO e: RMS		M Sep 03, 2020 CE 1 2 3 4 5 6	Fr	equency
				PNO:Fast ← FGain:Low	Trig: Free Atten: 40		Avg Hold		TY			
10 dB/div	Ref 30	.00 dB	m					Ν	lkr1 7.67 -25.4	1 0 GHz 30 dBm		Auto Tune
20.0												Center Freq 5000000 GHz
0.00											30	Start Freq 0.000000 MHz
-10.0										DL1 -6.91 dBm	10.00	Stop Freq 0000000 GHz
-20.0					rd haadda yn Murd		Ship chaile le pai initiati Shaqada chaqada qa Af		l		997 <u>Auto</u>	CF Step 7.000000 MHz Man
-40.0												Freq Offset
-60.0												Scale Type
Start 30 M #Res BW				#VB	W 3.0 MHz	•	s	weep 1	Stop 10	.000 GHz 30001 pts)	Log	<u>Lin</u>
MSG								STAT	US			

Plot 7-27. Conducted Spurious Plot (802.11b - Ch. 6)


Plot 7-28. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: ZNFK200QM	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 34 of 48	
© 2020 PCTEST		·		V 9.0 02/01/2019	

Keysight Spec			t SA										_	- 6
L	RF	50 Ω	AC	CORRE	C		SE	NSE:INT	#Avg Ty	ALIGN AUT pe: RMS		38 PM Sep 03, 2020 TRACE 1 2 3 4 5 6	F	requency
					:Fast (in:Low _		rig: Fre tten: 40			d:>100/100)			Auto Tur
dB/div	Ref 30	.00 dE	3m								4 Mkr1 3. -24	590 0 GHz 4.072 dBm		Auto Tu
								Ĭ						Center Fre
0													5.01	5000000 GI
0														Start Fr
o													3	0.000000 M
0												DL1 -7.53 dBm		04
													10.00	Stop Fr 0000000 G
				والأرب ب	•••••				per la planti provid	the state of the s	dte .			
0 nine filler d					al diadar				all and a line of the line of					CF St 7.000000 M
													<u>Auto</u>	M
0														Freq Offs
														0
														Scale Ty
art 30 M	Hz										Ston	10.000 GHz	Log	L
es BW ′					#VB	W 3.0) MHz			Sweep	18.00 m	s (30001 pts)		

Plot 7-29. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 7-30. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 25 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 35 of 48	
© 2020 PCTEST	<u>.</u>	·		V 9.0 02/01/2019	

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-5 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]		
Above 960.0 MHz	500	3		

Table 7-5. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3 KDB 558074 D01 v05r02 – Sections 8.6, 8.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 36 of 48
© 2020 PCTEST				V 9 0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

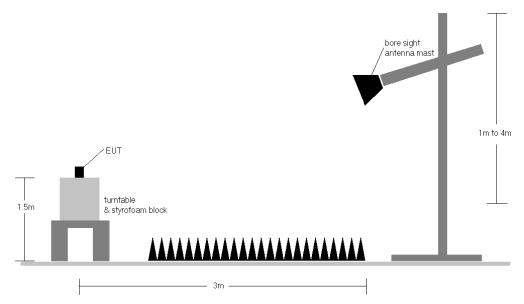


Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- 1. The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in Section 15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-5.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.

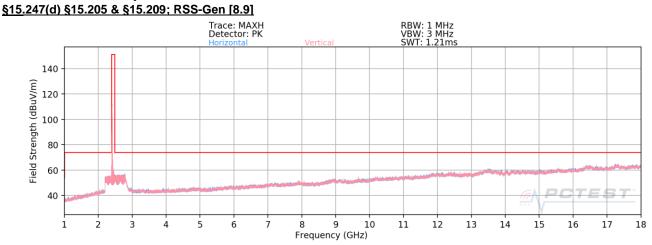
FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 37 of 48
© 2020 PCTEST		·		V 9.0 02/01/2019

8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

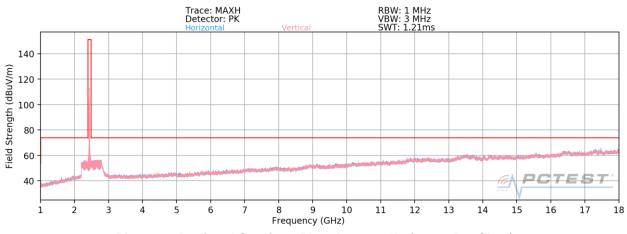
Determining Spurious Emissions Levels

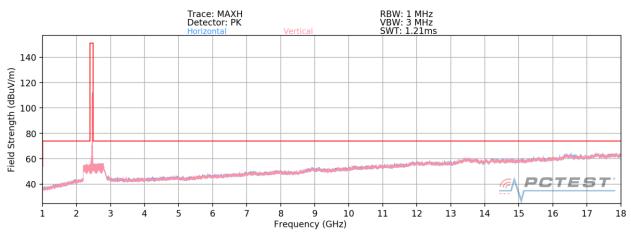
- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB_{\mu}V/m]$ Limit $[dB_{\mu}V/m]$


Radiated Band Edge Measurement Offset

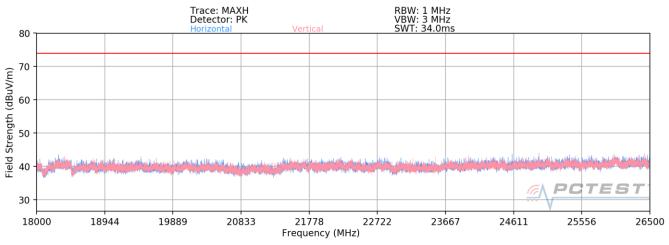
• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain


FCC ID: ZNFK200QM	PCTEST [®] Proud to be part of [®] element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 38 of 48
© 2020 PCTEST			V 9.0 02/01/2019



7.7.1 Radiated Spurious Emission Measurements



Plot 7-33. Radiated Spurious Plot above 1GHz (802.11b - Ch. 11)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕞 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 39 of 48
© 2020 PCTEST		·		V 9.0 02/01/2019

Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-34. Radiated Spurious Plot above 18GHz

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element			Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 at 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 40 of 48
© 2020 PCTEST		·		V 9.0 02/01/2019

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	V	112	336	-76.34	6.39	37.05	53.98	-16.93
4824.00	Peak	V	112	336	-65.51	6.39	47.88	73.98	-26.10
12060.00	Avg	V	-	-	-81.51	17.70	43.19	53.98	-10.79
12060.00	Peak	V	-	-	-69.39	17.70	55.31	73.98	-18.67

Table 7-6. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	V	116	174	-75.43	6.73	38.30	53.98	-15.68
4874.00	Peak	V	116	174	-65.95	6.73	47.78	73.98	-26.20
7311.00	Avg	V	102	359	-76.75	13.46	43.71	53.98	-10.27
7311.00	Peak	V	102	359	-66.40	13.46	54.06	73.98	-19.92
12185.00	Avg	V	-	-	-81.38	17.64	43.26	53.98	-10.72
12185.00	Peak	V	-	-	-68.73	17.64	55.91	73.98	-18.07

Table 7-7. Radiated Measurements

FCC ID: ZNFK200QM	Proved to be part of relement	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 41 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 41 of 48	
© 2020 PCTEST		•		V 9.0 02/01/2019	

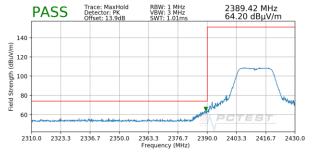
Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	V	344	169	-74.54	6.87	39.33	53.98	-14.65
4924.00	Peak	V	344	169	-65.70	6.87	48.17	73.98	-25.81
7386.00	Avg	V	104	2	-76.96	12.29	42.33	53.98	-11.64
7386.00	Peak	V	104	2	-66.75	12.29	52.54	73.98	-21.43
12310.00	Avg	V	-	-	-81.32	18.51	44.19	53.98	-9.79
12310.00	Peak	V	-	-	-68.56	18.51	56.95	73.98	-17.03

Table 7-8. Radiated Measurements

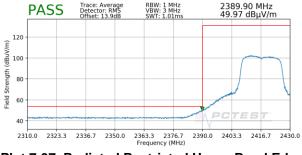
FCC ID: ZNFK200QM	PCTEST [®] Proud to be part of [®] element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 42 of 48	
© 2020 PCTEST			V 9.0 02/01/2019	

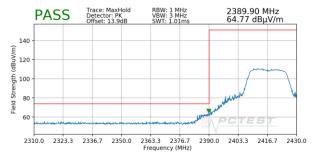
7.7.2 Radiated Restricted Band Edge Measurements


§15.205 §15.209; RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:802.11gWorst Case Transfer Rate:6MbpsDistance of Measurements:3 MetersOperating Frequency:2412MHzChannel:1

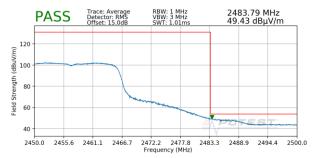

Plot 7-35. Radiated Restricted Lower Band Edge Measurement (Average)


Plot 7-36. Radiated Restricted Lower Band Edge Measurement (Peak)

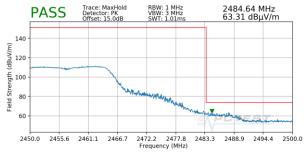
Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

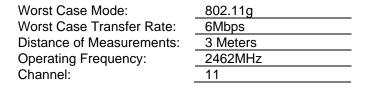
	802.11g
	6Mbps
:	3 Meters
	2417MHz
	2

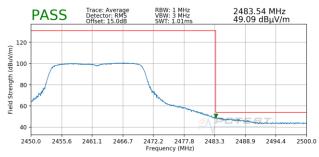
Plot 7-37. Radiated Restricted Upper Band Edge Measurement (Average)

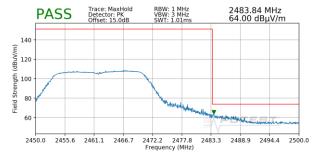


Plot 7-38. Radiated Restricted Upper Band Edge Measurement (Peak)


FCC ID: ZNFK200QM	Proved to be part of the element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 42 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 43 of 48
© 2020 PCTEST		·		V 9.0 02/01/2019


Worst Case Mode:	802.11g
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2457MHz
Channel:	10





Plot 7-40. Radiated Restricted Upper Band Edge Measurement (Peak)

Plot 7-41. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 11 of 19
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 44 of 48
© 2020 PCTEST				V 9.0 02/01/2019

7.8 Line-Conducted Test Data §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted	Limit (dBµV)
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-9. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

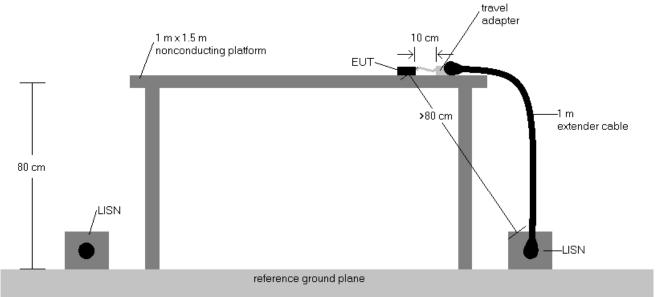
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

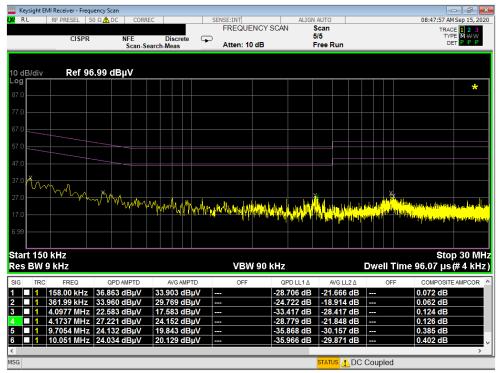

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	🕞 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 45 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 45 of 48
© 2020 PCTEST	•	·		V 9.0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen(8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFK200QM	PCTEST Proud to be part of @ elemen		🕒 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 at 40
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 46 of 48
© 2020 PCTEST				V 9.0 02/01/2019

	MI Receiver - Frequen							
RL	RF PRESEL 50 9	2 🚹 DC 🕴 CORR	EC	SENSE:INT FREQUENC		AUTO		08:51:04 AM Sep 15, 20
	CISPR	NFE Scan-Se	Discrete C earch-Meas	Atten: 10 dB		5/5 Free Run		TRACE 1 2 3 TYPE M WW DET P P P
dB/div	Ref 96.9	9 dBµV						
								*
0								
o								
·								
		~~~~						
	X a	X						
	Amm	I make a sud				d Line de la superior de la	والمراجعة المحالي المراجع والمحاج	
		· · · ~ \//	(M. W. March March M.	in the way in the second	ma an		July M. M. March	and a state of the second
								In the second
rt 150								Stop 30 M
s BW 9	9 kHz			VBW 90	) kHz		Dwell Time	96.07 µs(#4 kH
IRC	FREQ	QPD AMPTD	AVG AMPTD	OFF	QPD LL1 Δ	AVG LL2 Δ	OFF	COMPOSITE AMPCOR
1		4.633 dBµV	30.372 dBµV		-28.573 dB	-22.834 dB		0.062 dB
			33.308 dBµV		-23.291 dB	-15.284 dB		0.062 dB
		5.301 dBµV						
	9.0207 MHz 2	8.312 dBµV	24.146 dBµV		-31.688 dB	-25.854 dB		0.294 dB
1 1 1	9.0207 MHz 2 9.3689 MHz 2	28.312 dBµV 7.907 dBµV	24.146 dBµV 23.881 dBµV		-32.093 dB	-26.119 dB		0.322 dB
	9.0207 MHz 2 9.3689 MHz 2 9.9013 MHz 2	8.312 dBµV 7.907 dBµV 7.857 dBµV	24.146 dBµV 23.881 dBµV 25.059 dBµV		-32.093 dB -32.143 dB	-26.119 dB -24.941 dB		0.322 dB 0.364 dB
	9.0207 MHz 2 9.3689 MHz 2	8.312 dBµV 7.907 dBµV 7.857 dBµV	24.146 dBµV 23.881 dBµV		-32.093 dB	-26.119 dB		0.322 dB







FCC ID: ZNFK200QM	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 47 of 49
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset		Page 47 of 48
© 2020 PCTEST				V 9.0 02/01/2019



# 8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFK200QM** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules.

FCC ID: ZNFK200QM	PCTEST [•] Proud to be part of [©] element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 49	
1M2009170151-04.ZNF	8/26 - 10/30/2020	Portable Handset	Page 48 of 48	
© 2020 PCTEST			V 9.0 02/01/2019	