

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383. Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

SAR TEST REPORT

Applicant Name:

LG Electronics, MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 Date of Issue: 05. 12, 2016 Test Report No.: HCT-A-1604-F008-2 Test Site: HCT CO., LTD.

FCC ID:

ZNFHRF

Equipment Type:Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFCModel Name:KS1604Testing has been carried
out in accordance with:47CFR §2.1093
ANSI/ IEEE C95.1 – 1992
IEEE 1528-2013Date of Test:04/11/2016 ~ 04/19/2016, 04/28/2016, 05/09/2016

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

Xoung-Seok Yoo Test Engineer / SAR Team Certification Division

Reviewed By

Dong-Seob Kim Technical Manager / SAR Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

DOCUMENT HISTORY

Version	DATE	DESCRIPTION
HCT-A-1604-F008	04. 29, 2016	First Approval Report
HCT-A-1604-F008-1	05. 09, 2016	 Revised. Sec. 2.5 (Add the HSUPA note) Revised SPLSR formulation on the report. Revised 5GHz WLAN Hotspot SAR Measurement table. (Typo) Revised GPRS Head Max SAR (Max SAR value, plot, verification and simulataneous table)
HCT-A-1604-F008-2	05. 12, 2016	Revised sec.1 and sec. 2.1 (revised U-NII-2C frequncy information.)

Table of Contents

1. Attestation of Test Result of Device Under Test		4
2. Device Under Test Description		5
3. INTRODUCTION	1	5
4. DESCRIPTION OF TEST EQUIPMENT	1	6
5. SAR MEASUREMENT PROCEDURE	1	7
6. DESCRIPTION OF TEST POSITION	1	9
7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2	2
8. FCC SAR GENERAL MEASUREMENT PROCEDURES	2	3
9. Output Power Specifications	2	9
10. SYSTEM VERIFICATION	3	4
11. SAR TEST DATA SUMMARY	3	7
12. Simultaneous SAR Analysis	4	6
13. SAR Measurement Variability and Uncertainty	5	2
14. MEASUREMENT UNCERTAINTY	5	3
15. SAR TEST EQUIPMENT	5	4
16. CONCLUSION	5	5
17. REFERENCES	5	6
Attachment 1. – SAR Test Plots	5	8
Attachment 2. – Dipole Verification Plots	8	1
Attachment 3. – Probe Calibration Data	9	8
Attachment 4. – Dipole Calibration Data 1	4	3
Attachment 5. – SAR Tissue Characterization 1	8	9
Attachment 6. – SAR SYSTEM VALIDATION	9	0

1. Attestation of Test Result of Device Under Test

Test Laboratory	
Company Name:	HCT Co., LTD
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of Korea
Telephone	+82 31 645 6300
Fax.	+82 31 645 6400

Attestation of SAR test result										
Trade Name:	LG Electronics, M	lobileComm U.S	S.A., Inc.							
FCC ID:	ZNFHRF	ZNFHRF								
Model:	KS1604	KS1604								
EUT Type:	Cellular/PCS GS	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC								
Application Type:	Certification									
The Highest Reported SAR (W/Kg)										
Band	Tx. Frequency	Equipment	F	eported 1g SAR	(W/kg)					
Dallu	(MHz)	Class	Head	Body-Worn	Hotspot					
GSM/GPRS/EDGE 850	824.2 ~ 848.8	PCE	0.77	1.16	1.16					
GSM/GPRS/EDGE 1900	1 850.2 ~ 1 909.8	PCE	0.52	0.76	0.76					
UMTS 850	826.4 ~ 846.6	PCE	0.43	0.62	0.62					
LTE 17	706.5 ~ 713.5	PCE	0.22	0.30	0.30					
802.11b	2 412 ~ 2 462	DTS	0.72	<0.10	<0.10					
U-NII-1	5 180 - 5 240	NII		N/A	0.29					
U-NII-2A	5 260 - 5 320	NII	0.65	0.34	N/A					
U-NII-2C	5 500 - 5 700	NII	0.84	0.47	N/A					
U-NII-3	5 745 - 5 850	NII	0.72	0.43	0.43					
Bluetooth	2 402 ~ 2 480	DSS/DTS		N/A						
Simultaneous SAR	r per KDB 690783 D0	1v01r03	1.48	1.37	1.59					
Date(s) of Tests:	04/11/2016 ~ 04/1	9/2016, 04/28/2	016, 05/09/20	16						

2. Device Under Test Description

2.1 DUT specification

Device Wireless specification overview							
Band & Mode	Operating Mode	Tx Frequency					
GSM/GPRS 850	Voice / Data	824.2 – 848.8 MHz					
GSM/GPRS 1900	Voice / Data	1 850.2 – 1 909.8 MHz					
UMTS 850	Voice / Data	826.4 – 846.6 MHz					
LTE Band 17	Data	706.5 – 713.5 MHz					
2.4 GHz WLAN	Data	2 412.0 – 2 462.0 MHz					
U-NII-1	Data	5 180 – 5 240 MHz					
U-NII-2A	Data	5 260 – 5 320 MHz					
U-NII-2C	Data	5 500 – 5 700 MHz					
U-NII-3	Data	5 745 – 5 850 MHz					
Bluetooth	Data	2 402.0 – 2 480.0 MHz					
NFC	Data	13.56 MHz					
Device Description							
Device Dimension	Overall (Length x Width) : 147.63 mm x 72 Overall Diagonal : 159.07 mm	.94 mm					
Battery Options	Normal Battery						
Hardware Version:	Rev.B						
Software Version :	JSG07j						
	Mode	Serial Number/IMEI					
	GSM850, UMTS850, LTE Band 17	2FG42					
	GSM1900, 2.4 GHz WLAN	2FG44					
Device Serial Numbers	5 GHz WLAN	2FG3Z					
	Several samples with identical hardware were used to SAR testing. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics are within operational tolerances expected for production units.						

2.2 DUT Wireless mode

Wireless Modulation	Band		Operating Mode	Duty Cycle
GSM	850 1900	Voice(GMSK) GPRS (GMSK) EGPRS (8PSK)	GPRS/ EDGE Multi-Slot Class: Class 12 – 4 Up, 4 Down Mode class B	GSM Voice: 12.5% GPRS 1 Slot: 12.5% 2 Slots : 25% 3 Slots : 37.5% 4 Slots : 50%
WCDMA (UMTS)	Band 5	UMTS Rel.99 (Vo HSDPA (Rel. 5) HSUPA (Rel. 6) HSPA+ (Rel. 7) (bice / DATA) Uplink QPSK Only)	100 %
LTE Band	17	Data (QPSK, 160	QAM)	100 % (FDD)
2.4 GHz WL	.4 GHz WLAN Data 802.11 b, 802.11 g, 802.11 n (HT20)		802.11 b, 802.11 g, 802.11 n (HT20)	100 %
5 GHz WLAN		Data	802.11 a, 802.11 n (HT20/HT40) 802.11 ac (VHT20/40/80)	99.02 %
Bluetooth		Data	4.2 LE	N/A

2.3 LTE information

Item.	Description								
Frequency Range:	Band 17: 706.5 MHz ~ 7	Band 17: 706.5 MHz ~ 713.5 MHz							
Channel Bandwidths	Band 17: 5 MHz, 10 MH	Z							
	Channel Number s& F	Frequencies(MHz):							
	Band 17								
5 MHz			10 MHz						
Ch.	Freq. (MHz)	Ch.	Freq. (MHz)						
23755	706.5	73780	709.0						
23790	710.0	23790	710.0						
23825	713.5	23800	711.0						
Modulations Supported in UL	QPSK, 16QAM								
	DATA only								
LTE voice/data requirements	LTE voice is available vi Considering the users m LTE Head SAR is also e	ay install 3rd party softw	vare to enable VoIP,						
	The EUT incorporates M	IPR as per 3GPP TS 36	0.101 sec. 6.2.3 ~ 6.2.5						
LTE MPR options	The MPR is permanently	y built-in by design as a	mandatory.						
	A-MPR is not implemented in the DUT.								
Power reduction explanation	This device doesn't impl	ements power reductior	1.						
LTE Carrier Aggregation	This EUT does not supp	ort LTE CA.							
LTE Release information	LTE Rel. 10, Category 4								
LTE Carrier Aggregation Additional Information	This device does not support LTE CA features on 3GPP Release 10. The following LTE Release 10 features are not supported. Relay, HetNet, Enhanced MIMO, elCl, WiFi offloading, MDH, eMBMA, Cross-Carrier Scheduling, Enhanced SC-FDMA.								

2.4 TEST METHODOLOGY and Procedures

The tests documented in this report were performed in accordance with IEEE Standard 1528-2013 & IEEE 1528-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 3G SAR Procedures v03r01
- FCC KDB Publication 941225 D06 Hot Spot SAR v02r01
- FCC KDB Publication 941225 D05 SAR for LTE Devices v02r05
- FCC KDB Publication 941225 D05A LTE Rel.10 KDB Inquiry sheet v01r02
- FCC KDB Publication 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB Publication 447498 D01 General SAR Guidance v06
- FCC KDB Publication 648474 D04 Handset SAR v01r03
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02
- October 2013 TCB Workshop Notes (GPRS testing criteria)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)

2.5 Nominal and Maximum Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

Mode / Band		Voice (dBm)					Burst Average 8-PSK (dBm) EDGE			
		1 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot
GSM/GPRS/EDGE 850	Maximum	33.2	33.2	31.0	30.0	29.0	27.1	26.0	25.0	24.0
GSM/GPRS/EDGE 850	Nominal	32.7	32.7	30.5	29.5	28.5	26.6	25.5	24.5	23.5
GSM/GPRS/EDGE 1900	Maximum	30.2	30.2	28.0	26.0	25.0	26.7	25.3	24.2	23.1
	Nominal	29.7	29.7	27.5	25.5	24.5	26.2	24.8	23.7	22.6

Mode / Band		3GPP	3GPP HSDPA(dBm)			3GPP HSUPA(dBm)					
		WCDMA	Sub test1	Sub test2	Sub test3	Sub test4	Sub test1	Sub test2	Sub test3	Sub test4	Sub test5
UMTS Band 5	Maximum	23.7	23.7	23.7	23.2	23.2	23.7	22.7	22.7	22.7	23.7
(850 MHz)	Nominal	23.2	23.2	23.2	22.7	22.7	23.2	22.2	22.2	22.2	23.2

This device supports HSUPA,HSDPA but the manufacture only declares on the tune up procedure that the HSUPA,HSDPA transmitter's power will not exceed the R99 maximum transmit power in devices based on Qualcomm's HSPA chipset solution

Mode / Band	Modulated Average (dBm)	
LTE David 17	Maximum	23.7
LTE Band 17	Nominal	23.2

Mode	/ Band	Modulated Average (dBm)			
		Maximum	16		
	IEE 802.110	Nominal	15		
2.4 GHz WIFI		IEE 802.11b Maximum IEE 802.11g Maximum IEEE 802.11g Maximum IEEE 802.11n Maximum (HT20) Nominal IEE 802.11n Maximum (HT20) Nominal IEE 802.11a Maximum IEE 802.11a Maximum IEEE 802.11a Maximum IEEE 802.11ac Maximum IBDps, GFSK Maximum IMbps, GFSK Maximum IMaximum Imaximum IEE Maximum	14		
	IEEE 802.11g	Nominal	13		
	IEEE 802.11n	Maximum	10		
	(HT20)	Nominal	9		
		Maximum	13		
	IEE 802.11a	Nominal	12		
5 GHz WIFI	IEEE 900 11p	Maximum	10		
(20MHz BW)	IEEE 802.11h	Nominal	9		
	IEEE 802.11ac	Maximum	10		
		Nominal	9		
	IEEE 902 11p	Maximum	10		
5 GHz WIFI		Nominal	9		
(40MHz BW)	IEEE 802 11ac	Maximum	10		
	ILLE 002. Hac	Nominal	9		
5 GHz WIFI	IEEE 802 11ac	Maximum	10		
(80MHz BW)	ILLE 002. Hac	Nominal	9		
		Maximum	10.0		
	TWOPS, GFSK	Nominal	9.0		
		Maximum	8.0		
Bluetooth	Ziviops, GFSR	Nominal	7.0		
		Maximum	8.0		
	Sivilips, GFSR	Nominal	7.0		
		Maximum	1 (Peak)		
	LE	Nominal	0 (Peak)		

2.6 DUT Antenna Locations

Device Edges / Sides for SAR Testing										
Mode	Rear	Front	Left	Right	Bottom	Тор				
GSM/GPRS 850	Yes	Yes	Yes	Yes	Yes	No				
GSM/GPRS 1900	Yes	Yes	Yes	No	Yes	No				
UMTS 850	Yes	Yes	Yes	Yes	Yes	No				
LTE Band 17	Yes	Yes	Yes	Yes	Yes	No				
2.4 GHz WLAN	Yes	Yes	No	Yes	No	Yes				
5 GHz WLAN	Yes	Yes	No	Yes	No	Yes				

Particular EUT edges were not required to be evaluated for Wireless Router SAR if the edges were > 25 mm from the transmitting antenna according to FCC KDB 941225 D06v02r01 on page 2. The distance between the transmit antennas and the edges of the device are included in the filing. The overall dimensions of this device are > 9 X 5 cm. The overall diagonal dimension of the device is < 160 mm and the diagonal display is < 150 mm.

* Note: All test configurations are based on front view position.

2.7 SAR Summation Scenario

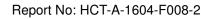
According to FCC KDB 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Simultaneous transmission paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

FCC KDB 447498 D01v06 General RF Exposure Guidance introduces a new formula for calculating the SAR a Peak Location Ratio(SPLSR) between pairs of simultaneously transmitting antennas:

SPLSR = $(SAR_1 + SAR_2)^{1.5}/R_i$


Where:

*SAR*₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

*SAR*₂ is the highest measured of estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

 R_i is the separation distance between the pair of simultaneous transmitting antennas, When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $\sqrt{[(X_1 - X_2)^2 + (Y_1 - Y_2)^2]}$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR> 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

Simultaneous Transmission Scenarios								
Applicable Combination	Head	Body-Worn	Hotspot					
GSM Voice + 2.4 GHz WiFi	Yes	Yes	N/A					
GSM Voice + 5 GHz WiFi	Yes	Yes	N/A					
GSM Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A					
GPRS + 2.4 GHz WiFi	Yes	Yes	Yes					
GPRS + 5 GHz WiFi	Yes	Yes	Yes					
GPRS + 2.4 GHz Bluetooth	N/A	Yes	N/A					
UMTS + 2.4 GHz WiFi	Yes	Yes	Yes					
UMTS + 5 GHz WiFi	Yes	Yes	Yes					
UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A					
LTE+ 2.4 GHz WiFi	Yes	Yes	Yes					
LTE+ 5 GHz WiFi	Yes	Yes	Yes					
LTE+ 2.4 GHz Bluetooth	N/A	Yes	N/A					

1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share antenna path and cannot transmit simultaneously/

- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. UMTS +WLAN scenario also represents the UMTS Voice/DATA + WLAN hotspot scenario.
- 4. Per the manufacturer, GPRS support VOIP service.
- 5. This device does not support VoLTE.
- 6. The highest reported SAR for each exposure condition is used for SAR summation purpose.
- 7. Per the manufacturer, WiFi Direct is not expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WiFi direct beyond that listed in the above table.
- 7. 5 GHz Wireless router is only supported for the U-NII-1 and U-NII-3 by S/W, therefore U-NII 2A and U-NII 2C were not evaluated for wireless router conditions.

2.8 SAR Test Exclusions Applied

(A) WiFi

Since wireless router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WiFi, WiFi Hotspot SAR test and combinations are considered only 2.4 GHz, U-NII-1 and U-NII-3 for SAR with respected to wireless router configurations according to FCC KDB 941225 D06v02r01.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg for 1g SAR and is less than 3.0 W/kg for 10g SAR, SAR is not required for U-NII-1 band Head and body-worn mode according to FCC KDB 248227 D01v02r02.

This device supports IEEE 802.11 ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported

(B) BT & LE

Per FCC KDB 447498 D01v06, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

 $\frac{Max Power of Channel(mW)}{Test Separation Distance (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance [mm]	≤ 3 .0
Bluetooth	2 480	10	10	1.6
Bluetooth LE	2 480	1	10	0.2

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(10/10)^*\sqrt{2.480}] = 1.6 < 3.0$.

Based on the maximum conducted power of Bluetooth LE and antenna to use separation distance, Bluetooth LE SAR was not required $[(1/10)^*\sqrt{2.480}] = 0.2 < 3.0$.

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v06 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHZ)}}{7.5} * \frac{(Max Power of channel mW)}{Min Seperation Distance}$$
.

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance (Body) [mm]	Estimated SAR (Body) [W/kg]
Bluetooth	2 480	10	10	0.210
Bluetooth LE	2 480	1	10	0.021

Note :

1) Held-to ear configurations are not applicable to Bluetooth and Bluetooth LE operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v06.

2) The frequency of Bluetooth and Bluetooth LE using for estimated SAR was selected highest channel of Bluetooth LE for highest estimated SAR.

(C) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r05.

Per FCC KDB 941225 D01v03r01, 12.2 kbps RMC is the primary mode and HSPA (HSUPA/HSDPA with RMC) is the secondary mode.

Per FCC KDB 941225 D01v03r01, The SAR test exclusion is applied to the secondary mode by the following equation.

Adjusted SAR = Highest Reported SAR *
$$\frac{Secondary Max tune - up (mW)}{Primary Max tune tune - up (mW)} \le 1.2 \text{ W/kg}.$$

Based on the highest Reported SAR, the secondary mode is not required.

 $[0.621 * (234/234)] = 0.621 W/kg \le 1.2 W/kg$

And the maximum output power and tune-up tolerance in secondary mode is \leq 0.25 dB higher than the primary mode.

3. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., , New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{d U}{dm} \right) = \frac{d}{dt} \left(\frac{d U}{\rho dv} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

 σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 & DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

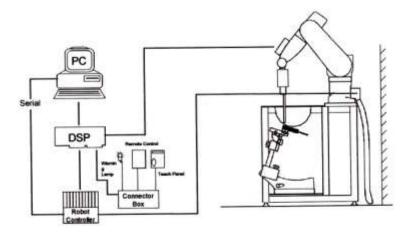


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)

a. The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

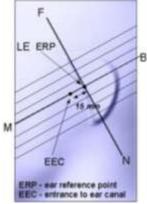
b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.

			\leq 3 GHz	> 3 GHz	
Maximum distance from close (geometric center of probe ser		-	5±1 mm	$1/2 \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from p normal at the measurement lo		o phantom surface	30°±1°	20°±1°	
			≤2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm	
Maximum area scan Spatial re	esolution: A	ax _{Area,} Δy _{Area}	When the x or y dimension of t measurement plane orientation, measurement resolution must b dimension of the test device wi point on the test device.	is smaller than the above, the $e \le$ the corresponding x or y	
Maximum zoom scan Spatial	resolution:	$\Delta x_{zoom}, \Delta y_{zoom}$	≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 GHz: ≤5 mm* 4-6 GHz: ≤4 mm*	
	uniform	grid: $\Delta z_{zoom}(n)$	≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm	
Maximum zoom scan Spatial resolution normal to phantom surface	graded	$\Delta z_{zoom}(1)$: between 1 st two Points closest to phantom surface	≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm	
	grid	∆z _{zoom} (n>1): between subsequent Points	$\leq 1.5 \cdot \Delta z_{zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm	


447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 EAR REFERENCE POINT

Figure 6-2 shows the front, back and side views of the SAM phantom. The center-of-mouth reference point is labeled "M", the left ear reference point (ERP) is marked "LE", and the right ERP is marked "RE." Each ERP is on the B-M (back-mouth) line located 15 mm behind the entrance-to-ear-canal (EEC) point, as shown in Figure 6-1. The Reference Plane is defined as passing through the two ear reference point and point M. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (See Figure 5-1), Line B-M is perpendicular to the N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

6.1 HEAD POSITION

Figure 6-1 Close-up side view of ERP

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The device under test was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Figure 6-3). The acoustic output was than located at the same level as the center of the ear reference point. The device under test was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

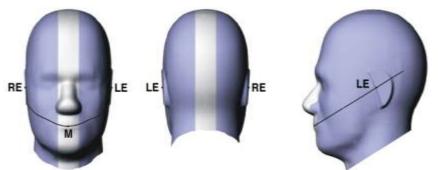
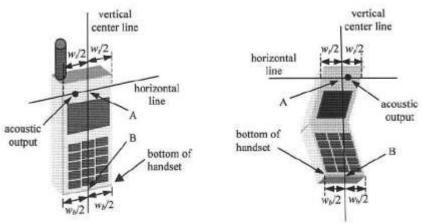
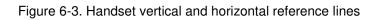




Figure 6-2 Front, back and side views of SAM Twin Phantom

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

6.3 Body-Worn Accessory Configurations

Body-Worn operating configurations are tested with the belt-dips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03 Body-Worn accessory exposure is typically related to voice mode operations when handsets are carried in body-Worn accessories. The body-Worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-Worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-Worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body- Worn accessory, measured without a headset connected to the handset, Sample Body-Worn Diagram is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and

frequency band should be repeated for that body- Worn accessory with a headset

Accessories for Body-Worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-dip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

attached to the handset.

Body-Worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-Worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-Worn transmitters. SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.4 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (LxW \geq 9cmx5 cm) are based on *a* composite test separation distance of 10 mm from the front back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-Worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-Worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot* feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

8. FCC SAR GENERAL MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as Reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

8.2.1 GSM, GPRS AND EDGE

The following procedures may be considered for each frequency band to determine SAR test reduction for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance. GSM voice mode transmits with 1 time slot. GPRS and EDGE may transmit up to 4 time slots in the 8 time-slot frame according to the multi-slot class implemented in a device.

8.2.2 SAR Test Reduction

In FCC KDB 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB 941225 D01v03r01 - 3G SAR Measurement Procedures The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more than 5 % occurred, the tests were repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and speading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR measurements

SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

8.4.4 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel 6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configuration in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.5 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and speading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR measurements

SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

8.4.4 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel 6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2kbps RMC configuration in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.5 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r05 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluation SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR(Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB offsets for SAR testing

According to FCC KDB 941225 D05v02r05

- a. Per sec 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is \leq 0.8 W/Kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Sec 4.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Sec 4.2.1.
- c. Per Sec. 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Sec. 4.2.4 and 4.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sec. 4.2.1 through 4.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/Kg.

8.5 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.5.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR system to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.5.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg for 1g SAR or > 3.0 W/kg for 10g SAR. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg for 1g SAR or > 3.0 W/kg for 1g SAR.

8.5.3 U-NII-C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 -5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels.

8.5.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating nest to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test positions are measured.

8.5.5 2.4 GHz SAR test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS is that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.5.6 OFDM Transmission Mode and SAR Test channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate and lowest order 802.11 a/g/n/ac mode. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11 ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.2., 802.11a, then 802.11n and 802.11a cor 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.5.7 Initial Test configuration Procedure

For OFDM, in both 2.4 GHZ and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

8.5.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position on procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg for 1g SAR and ≤ 3.0 W/kg for 10g SAR, no additional SAR tests for the subsequent test configurations are required.

9. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

9.1 GSM

	GSM Conducted output powers (Burst-Average)										
		Voice	(GPRS(GMSK	() Data – CS1	I	EDGE Data				
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)	
	128	33.06	33.08	30.86	29.68	28.67	26.89	25.69	24.49	23.54	
GSM 850	190	32.89	32.89	30.90	29.55	28.61	26.87	25.75	24.47	23.64	
	251	32.90	32.91	30.95	29.80	28.82	27.02	25.80	24.58	23.63	
	512	30.20	30.16	27.95	25.85	24.94	26.61	25.22	24.18	23.01	
GSM 1900	661	29.93	29.89	27.66	25.58	24.64	26.34	24.76	23.83	22.87	
	810	29.75	29.73	27.50	25.51	24.56	26.09	24.64	23.71	22.70	

GSM Conducted output powers (Frame-Average)

	Vo		GPRS(GMSK) Data – CS1					EDGE	E Data	
Band	Band Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)	EDGE 1 TX Slot (dBm)	EDGE 2 TX Slot (dBm)	EDGE 3 TX Slot (dBm)	EDGE 4 TX Slot (dBm)
	128	24.03	24.05	24.84	25.42	25.66	17.86	19.67	20.23	20.53
GSM 850	190	23.86	23.86	24.88	25.29	25.60	17.84	19.73	20.21	20.63
	251	23.87	23.88	24.93	25.54	25.81	17.99	19.78	20.32	20.62
	512	21.17	21.13	21.93	21.59	21.93	17.58	19.20	19.92	20.00
GSM 1900	661	20.90	20.86	21.64	21.32	21.63	17.31	18.74	19.57	19.86
	810	20.72	20.70	21.48	21.25	21.55	17.06	18.62	19.45	19.69

Note:

Time slot average factor is as follows:

1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power - 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power – 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power – 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power – 3.01 dB

GSM Class : B GSM voice/GPRS VOIP: Head SAR , Body worn SAR GPRS Multi-slots 12 : Hotspot SAR with GPRS Multi-slot Class 12 with CS 1 (GMSK)

Base Station S	Simulator		сит
		RF Connector	LOI

9.2 UMTS

<u>HSPA+</u>

This DUT is only capable of QPSK HSPA+ in uplink. Therefore, the RF conducted power is not measured according to 941225 D01 3G SAR.

WCDMA850

3GPP		3GPP 34.121	N	/CDMA Band 5 [d	Bm]
Release Version	Mode	Subtest	UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458
99	WCDMA	12.2 kbps RMC	23.62	23.60	23.47
99	WCDMA	12.2 kbps AMR	23.59	23.60	23.43
5		Subtest 1	23.50	23.59	23.40
5		Subtest 2	23.48	23.55	23.39
5	HSDPA	Subtest 3	22.86	22.96	22.81
5		Subtest 4	22.87	22.95	22.78
6		Subtest 1	22.44	22.59	22.70
6		Subtest 2	22.01	22.08	21.87
6	HSUPA	Subtest 3	22.31	22.16	22.20
6		Subtest 4	21.71	21.87	21.93
6		Subtest 5	22.45	22.68	22.65

WCDMA Average Conducted output powers

9.3 LTE

- LTE Band 17

Bandwidth	Bandwidth Modulation	RB Size	RB	Max.Average Power (dBm)	MPR Allowed Per 3GPP	MPR
			Offset	23790	[dP]	[dD]
				710 MHz	[dB]	[dB]
		1	0	22.95	0	0
		1	12	23.14	0	0
		1	24	23.03	0	0
	QPSK	12	0	22.10	0-1	1
		12	6	22.08	0-1	1
		12	11	22.12	0-1	1
5 MHz		25	0	22.07	0-1	1
5 10112		1	0	22.09	0-1	1
		1	12	21.89	0-1	1
		1	24	21.95	0-1	1
	16QAM	16QAM 12		20.77	0-2	2
		12	6	20.91	0-2	2
		12	11	20.99	0-2	2
		25	0	21.23	0-2	2

Bandwidth	Modulation RR SIZA		Max. Av Modulation RB Size		MPR Allowed Per 3GPP	MPR
			Offset	23790	[dB]	[dP]
				710 MHz	[dB]	[dB]
		1	0	23.31	0	0
		1	24	23.22	0	0
		1	49	23.05	0	0
	QPSK	25	0	22.14	0-1	1
		25	12	22.19	0-1	1
		25	24	22.05	0-1	1
10 MHz		50	0	22.15	0-1	1
		1	0	21.62	0-1	1
		1	24	21.70	0-1	1
		1	49	21.18	0-1	1
	16QAM	25	0	21.29	0-2	2
	25		12	21.10	0-2	2
		25	24	21.03	0-2	2
		50	0	21.11	0-2	2

Note: LTE Band 17 at 5 MHz &10 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

9.3 WiFi

IEEE 802.11 Average RF Power

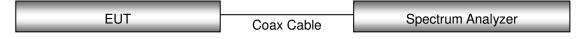
Mode	Freq. [MHz]	Channel	IEEE 802.11 (2.4 GHz) Conducted Power [dBm]
	2 412	1	15.38
802.11b	2 437	6	14.88
	2 462	11	15.59
	2 412	1	13.47
802.11g	2 437	6	13.41
	2 462	11	13.67
000 44	2 412	1	9.53
802.11n (HT20)	2 437	6	9.34
(1120)	2 462	11	9.68

IEEE 802.11a Average RF Power- 20 MHz Bandwidth

Mode	Freq.	Channel	IEEE 802.11 (5 GHz) Conducted Power				
	[MHz]		[dBm]				
	5180	36	12.48				
	5200	40	12.79				
	5220	44	12.45				
	5240	48	12.84				
	5260	52	12.87				
	5280	56	12.79				
	5300	60	12.85				
802.11a	5320	64	12.84				
	5500	100	12.99				
	5580	116	12.92				
	5660	132	12.83				
	5700	140	12.79				
	5745	149	12.73				
	5785	157	12.64				
	5825	165	12.73				

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

• Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.


• For transmission mode with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.

• For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.

• For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

• Output power and SAR measurement is not required for 802.11n and 802.11 ac channels when the specified tune-up tolerances for 802.11n and 802.11 ac are lower than 802.11a by more than 1/2dB and the measured SAR is \leq 1.2 W/kg

Test Configuration

10. SYSTEM VERIFICATION

10.1 Tissue Verification

The Head/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

Table for Head Tissue Verification										
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε	
		750H	700	0.875	42.049	0.889	42.200	-1.57%	-0.36%	
04/11/2016	20.0		725	0.900	41.700	0.891	42.071	1.01%	-0.88%	
			750	0.923	41.400	0.893	41.940	3.36%	-1.29%	
		835H	820	0.905	40.572	0.899	41.578	0.67%	-2.42%	
04/11/2016	20.0		835	0.919	40.500	0.900	41.500	2.11%	-2.41%	
			850	0.932	40.304	0.916	41.500	1.75%	-2.88%	
	20.6	835H	820	0.904	41.532	0.899	41.578	0.56%	-0.11%	
05/09/2016			835	0.917	41.300	0.900	41.500	1.89%	-0.48%	
			850	0.936	41.163	0.916	41.500	2.18%	-0.81%	
	21.0	1900H	1850	1.369	40.262	1.400	40.000	-2.21%	0.66%	
04/11/2016			1900	1.410	40.100	1.400	40.000	0.71%	0.25%	
			1910	1.421	40.130	1.400	40.000	1.50%	0.33%	
	21.5	2450H	2400	1.795	38.501	1.756	39.290	2.22%	-2.01%	
04/14/2016			2450	1.840	38.100	1.800	39.200	2.22%	-2.81%	
			2500	1.906	37.815	1.855	39.140	2.75%	-3.39%	
04/10/2016	19.8	5200H- 5800H	5250	4.655	36.749	4.706	35.930	-1.08%	2.28%	
04/12/2016			5300	4.708	36.650	4.758	35.870	-1.05%	2.17%	
04/14/0010	00.1		5500	4.997	36.320	4.963	35.640	0.69%	1.91%	
04/14/2016	20.1		5600	5.139	36.067	5.065	35.530	1.46%	1.51%	
	20.0		5750	5.349	35.843	5.221	35.365	2.45%	1.35%	
04/15/2016			5800	5.412	35.757	5.270	35.300	2.69%	1.29%	
			5850	5.495	35.688	5.303	35.270	3.62%	1.19%	

Table for Body Tissue Verification										
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε	
		750B	700	0.935	55.826	0.959	55.730	-2.50%	0.17%	
04/11/2016	20.0		725	0.964	55.600	0.961	55.629	0.31%	-0.05%	
			750	0.989	55.400	0.963	55.530	2.70%	-0.23%	
		835B	820	0.965	56.928	0.969	55.258	-0.41%	3.02%	
04/14/2016	19.8		835	0.980	56.900	0.970	55.200	1.03%	3.08%	
			850	0.992	56.723	0.988	55.154	0.40%	2.84%	
	21.3	1900B	1850	1.492	55.070	1.520	53.300	-1.84%	3.32%	
04/12/2016			1900	1.550	54.900	1.520	53.300	1.97%	3.00%	
			1910	1.559	54.944	1.520	53.300	2.57%	3.08%	
	21.5	2450B	2400	1.857	51.595	1.902	52.770	-2.37%	-2.23%	
04/14/2016			2450	1.920	51.500	1.950	52.700	-1.54%	-2.28%	
			2500	1.997	51.485	2.021	52.640	-1.19%	-2.19%	
04/28/2016	21.1		5240	5.250	48.700	5.353	48.962	-1.92%	-0.54%	
04/28/2016			5250	5.270	48.700	5.358	48.950	-1.64%	-0.51%	
04/15/2016	20.8	5200B- 5800B	5250	5.470	47.600	5.358	48.950	2.09%	-2.76%	
04/15/2016			5300	5.523	47.572	5.416	48.880	1.98%	-2.68%	
04/18/2016	21.2		5500	5.692	48.030	5.650	48.610	0.74%	-1.19%	
04/10/2010			5600	5.840	47.700	5.766	48.470	1.28%	-1.59%	
	21.0		5750	6.060	48.400	5.944	48.277	1.95%	0.25%	
04/19/2016			5800	6.125	48.230	6.000	48.200	2.08%	0.06%	
			5850	6.219	48.165	6.037	48.165	3.01%	0.00%	

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 750 MHz / 835 MHz / 1 900 MHz / 2 450 MHz / 5 250 MHz / 5 600 MHz / 5 750 MHz by using the system Verification kit. (Graphic Plots Attached)

Freq.	Date	Probe (S/N)	Dipole (S/N)	Liquid	Amb. Temp.	Liquid Temp.	1 W Target SAR _{1g} (SPEAG)	Measured SAR _{1g}	1 W Normalized SAR _{1g}	Deviation	Limit [%]
[MHz]					[°C]	[°C]	[W/kg]	[W/kg]	[W/kg]	[%]	[%]
750	04/11/2016	3968	1014	Head	20.2	20.0	8.15	0.828	8.28	+ 1.60	± 10
750	04/11/2016	3968	1014	Body	20.2	20.0	8.49	0.866	8.66	+ 2.00	± 10
835	04/11/2016	3968		Head	20.2	20.0	9.06	0.899	8.99	- 0.77	± 10
835	05/09/2016	3967	4d165	Head	20.8	20.6	9.06	0.917	9.17	+ 1.21	± 10
835	04/14/2016	3968		Body	20.0	19.8	9.47	0.947	9.47	+ 0.00	± 10
1 900	04/11/2016	3797	5d032	Head	21.4	21.0	41.1	3.98	39.8	- 3.16	± 10
1 900	04/12/2016	3797		Body	21.6	21.3	40.9	3.99	39.9	- 2.44	± 10
2 450	04/14/2016	3797	743	Head	21.8	21.5	53.4	5.21	52.1	- 2.43	± 10
2 450	04/14/2016	3797		Body	21.8	21.5	52.1	5.19	51.9	- 0.38	± 10
5 250	04/12/2016	3863	1107	Head	20.0	19.8	77.8	8.14	81.4	+ 4.63	± 10
5 250	04/15/2016	3797		Body	21.2	20.8	74.0	7.35	73.5	- 0.68	± 10
5 250	04/28/2016	3863		Body	21.4	21.1	74.0	7.41	74.1	+ 0.14	± 10
5 600	04/14/2016	3863		Head	20.3	20.1	80.5	7.85	78.5	- 2.48	± 10
5 600	04/18/2016	3797		Body	21.5	21.2	78.9	7.86	78.6	- 0.38	± 10
5 750	04/15/2016	3863		Head	20.2	20.0	76.8	7.49	74.9	- 2.47	± 10
5 750	04/19/2016	3797		Body	21.2	21.0	74.9	7.44	74.4	- 0.67	± 10

System Verification Results

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.

- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

NOTE;

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

11. SAR TEST DATA SUMMARY

11.1 HEAD SAR Measurement Results

				GSI	M 850	Head SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INO.
836.6	190	GSM	33.2	32.89	-0.129	Left Cheek	1:8.3	0.302	1.074	0.324	-
836.6	190	GSM	33.2	32.89	0.012	Left Tilt	1:8.3	0.195	1.074	0.209	-
836.6	190	GSM	33.2	32.89	0.144	Right Cheek	1:8.3	0.387	1.074	0.416	-
836.6	190	GSM	33.2	32.89	-0.042	Right Tilt	1:8.3	0.221	1.074	0.237	-
836.6	190	GPRS 4Tx	29.0	28.61	0.140	Left Cheek	1:2.075	0.586	1.094	0.641	-
836.6	190	GPRS 4Tx	29.0	28.61	-0.124	Left Tilt	1:2.075	0.380	1.094	0.416	-
836.6	190	GPRS 4Tx	29.0	28.61	-0.132	Right Cheek	1:2.075	0.704	1.094	0.770	1
836.6	190	GPRS 4Tx	29.0	28.61	-0.011	Right Tilt	1:2.075	0.394	1.094	0.431	-
	ANSI/ IEE	E C95.1 - 1992-	- Safety Li	imit				Head			
		Spatial Peak					1	.6 W/kg			
	Uncontrolled	Exposure/ Ger	neral Popu	lation			Average	ed over 1 g	gram		

				GSN	l 1900	Head SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	INO.
1 880.0	661	GSM	30.2	29.93	-0.120	Left Cheek	1:8.3	0.320	1.064	0.340	-
1 880.0	661	GSM	30.2	29.93	-0.139	Left Tilt	1:8.3	0.150	1.064	0.160	-
1 880.0	661	GSM	30.2	29.93	0.013	Right Cheek	1:8.3	0.203	1.064	0.216	-
1 880.0	661	GSM	30.2	29.93	-0.064	Right Tilt	1:8.3	0.203	1.064	0.216	-
1 880.0	661	GPRS 4Tx	25.0	24.64	0.029	Left Cheek	1:2.075	0.475	1.086	0.516	2
1 880.0	661	GPRS 4Tx	25.0	24.64	-0.006	Left Tilt	1:2.075	0.231	1.086	0.251	-
1 880.0	661	GPRS 4Tx	25.0	24.64	0.126	Right Cheek	1:2.075	0.317	1.086	0.344	-
1 880.0	661	GPRS 4Tx	25.0	24.64	-0.064	Right Tilt	1:2.075	0.180	1.086	0.195	-
	ANSI/ IEEI	E C95.1 - 1992·	- Safety Li	imit				Head			
		Spatial Peak					1	.6 W/kg			
	Uncontrolled	Exposure/ Ger	neral Popu	lation			Average	ed over 1 g	gram		

				UMT	S 850	Head SAR					
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.
836.6	4183	RMC	23.7	23.60	0.162	Left Cheek	1:1	0.331	1.023	0.339	-
836.6	4183	RMC	23.7	23.60	0.030	Left Tilt	1:1	0.229	1.023	0.234	-
836.6	4183	RMC	23.7	23.60	0.167	Right Cheek	1:1	0.420	1.023	0.430	3
836.6	4183	RMC	23.7	23.60	-0.197	Right Tilt	1:1	0.223	1.023	0.228	-
	ANSI/ IEEI	E C95.1 - 1992	– Safety L	imit				Head			
		Spatial Peak	ζ.				1	.6 W/kg			
	Uncontrolled	Exposure/ Ger	neral Popu	ulation			Average	ed over 1 g	gram		

	quency Mode width Up Limit Pow Ch. (MHz) (dBm) (dBr 23790 QPSK 10 23.7 23.3 23790 QPSK 10 22.7 22.1 23790 QPSK 10 23.7 23.3 23790 QPSK 10 22.7 22.1 23790 QPSK 10 23.7 23.3 23790 QPSK 10 23.7 23.4 23790 QPSK 10 22.7 22.1 23790 QPSK 10 23.7 23.3 23790 QPSK 10 23.7 23.3					.TE B	and 17 H	lead S	SAR						
Freq	uency	Mode			Meas. Power	Power Drift	Test Position	MPR	RB	RB	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.	mede	(MHz)	(dBm)	(dBm)	(dB)		(dB)	Size	offset	Cycle	(W/kg)	Factor	(W/kg)	No.
710	23790	QPSK	10	23.7	23.31	-0.164	Left Cheek	0	1	0	1:1	0.177	1.094	0.194	-
710	23790	QPSK	10	22.7	22.19	0.121	Left Cheek	1	25	12	1:1	0.149	1.125	0.168	-
710	23790	QPSK	10	23.7	23.31	0.152	Left Tilt	0	1	0	1:1	0.108	1.094	0.118	-
710	23790	QPSK	10	22.7	22.19	0.162	Left Tilt	1	25	12	1:1	0.087	1.125	0.098	-
710	23790	QPSK	10	23.7	23.31	0.192	Right Cheek	0	1	0	1:1	0.203	1.094	0.222	4
710	23790	QPSK	10	22.7	22.19	0.132	Right Cheek	1	25	12	1:1	0.163	1.125	0.183	-
710	23790	QPSK	10	23.7	23.31	0.071	Right Tilt	0	1	0	1:1	0.118	1.094	0.129	-
710	23790	QPSK	10	22.7	22.19	0.153	Right Tilt	1	25	12	1:1	0.094	1.125	0.106	-
		9	Spatial Pe	92– Safety ak ieneral Por							Head /kg (mW d over 1	0,			

							D	TS Head SAF	2						
Freque	ency		Band width		Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Area Scan Peak SAR	Meas. SAR	Scaling Factor	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)			(W/kg)	(W/kg)		(Duty)	(W/kg)	
2 462	11	802.11b	22	1	16.0	15.59	-0.188	Left Cheek	100	1.1	0.659	1.099	1.000	0.724	5
2 462	11	802.11b	22	1	16.0	15.59	-0.002	Left Tilt	100	0.704	0.436	1.099	1.000	0.479	-
2 462	11	802.11b	22	1	16.0	15.59	0.081	Right Cheek	100	0.466	0.333	1.099	1.000	0.366	-
2 462	11	802.11b	22	1	16.0	15.59	0.019	Right Tilt	100	0.362	0.254	1.099	1.000	0.275	-
	AN	ISI/ IEEE	C95.1	- 1992-	- Safety	Limit				He	ead				
			Spati	al Peak	í.					1.6	W/kg				
	Unco	ntrolled E	xposu	re/ Ger	neral Pop	oulation				Averaged of	over 1 gr	am			

								NII Head S	SAR							
Freque	ency	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power		Test Position	Duty Cycle	Distance	Area Scan Peak SAR	Meas. SAR	Scaling Factor	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)			(mm)	(W/kg)	(W/kg)		(Duty)	(W/kg)	
5 260	52	802.11a	20	6Mbps	13.0	12.87	0.13	Left Cheek	99.02	0	1.88	0.627	1.030	1.010	0.652	6
5 260	52	802.11a	20	6Mbps	13.0	12.87	0.16	Left Tilt	99.02	0	1.4	0.473	1.030	1.010	0.492	-
5 260	52	802.11a	20	6Mbps	13.0	12.87	0.14	Right Cheek	99.02	0	0.851	0.290	1.030	1.010	0.302	-
5 260	52	802.11a	20	6Mbps	13.0	12.87	-0.16	Right Tilt	99.02	0	0.582	0.197	1.030	1.010	0.205	-
5 500	100	802.11a	20	6Mbps	13.0	12.99	0.08	Left Cheek	99.02	0	2.17	0.830	1.002	1.010	0.840	7
5 580	116	802.11a	20	6Mbps	13.0	12.92	0.10	Left Cheek	99.02	0	2.09	0.750	1.019	1.010	0.772	-
5 500	100	802.11a	20	6Mbps	13.0	12.99	0.10	Left Tilt	99.02	0	1.68	0.487	1.002	1.010	0.493	-
5 500	100	802.11a	20	6Mbps	13.0	12.99	-0.14	Right Cheek	99.02	0	1.02	0.371	1.002	1.010	0.375	-
5 500	100	802.11a	20	6Mbps	13.0	12.99	0.13	Right Tilt	99.02	0	1.02	0.300	1.002	1.010	0.304	-
5 825	165	802.11a	20	6Mbps	13.0	12.73	0.05	Left Cheek	99.02	0	1.68	0.672	1.064	1.010	0.722	8
5 825	165	802.11a	20	6Mbps	13.0	12.73	-0.10	Left Tilt	99.02	0	1.17	0.481	1.064	1.010	0.517	-
5 825	165	802.11a	20	6Mbps	13.0	12.73	-0.12	Right Cheek	99.02	0	1.12	0.398	1.064	1.010	0.428	-
5 825	165	802.11a	20	6Mbps	13.0	12.73	-0.17	Right Tilt	99.02	0	0.925	0.327	1.064	1.010	0.351	-
		ISI/ IEEE	Spatia	l Peak	,					Aver	Head 1.6 W/k aged ove	×g	n			

11.2	2 RO	ay-woi	n SAR	Meas	surer	nent	Kesu	ts					
				GS	SM/UN	MTS B	ody-W	orn S/	AR				
Freque	ency	М	ode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.			(dB)	(dB)	(dB)	FUSILION	Cycle	(mm)	(W/kg)	Factor	(W/kg)	INO.
836.6	190	GSM 850	GSM	33.2	32.89	-0.068	Rear	1:8.3	10	0.562	1.074	0.604	9
824.2	128	GSM 850	GPRS 4Tx	29.0	28.67	0.019	Rear	1:2.075	10	0.933	1.079	1.007	-
836.6	190	GSM 850 GPRS 4Tx 29.0 28.61 -					Rear	1:2.075	10	1.06	1.094	1.160	10
848.8	251	GSM 850	GPRS 4Tx	29.0	28.82	-0.039	Rear	1:2.075	10	0.910	1.042	0.948	-
1880.0	661	GSM 1900	GSM	30.2	29.93	0.065	Rear	1:8.3	10	0.487	1.064	0.518	11
1 880.0	661	GSM 1900	GPRS 4Tx	25.0	24.64	-0.172	Rear	1:2.075	10	0.700	1.086	0.760	12
836.6	4183	UMTS 850	RMC	23.7	23.60	0.010	Rear	1:1	10	0.607	1.023	0.621	13
	A	NSI/ IEEE C	95.1 - 1992– 8	Safety Lir	nit					Head			
		S	Spatial Peak							1.6 W/kg			
	Unce	ontrolled Exp	oosure/ Gener	al Popula	ation				Aver	aged over 1	gram		

11.2 Rody-worn SAR Measurement Results

						TE Bo	ody-Wo	orn S	SAR							
Frequ	ency	Mode	Band width	Tune- Up Limit		Power Drift	Test	MPR	RB		Duty	Distance	Meas. SAR	Scaling	0,	Plot
MHz	Ch.	incuc	(MHz)	(dB)	(dB)	(dB)	Position	(dB)	Size	offset	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
710.0	23790	LTE 17	10	23.7	23.31	0.087	Rear	0	1	0	1:1	10	0.278	1.094	0.304	14
710.0	23790	QPSK	10	-0.001	Rear	1	25	12	1:1	10	0.239	1.125	0.269	-		
	ANSI	/ IEEE C95	.1 - 1992-	- Safety Li	mit							Head				
		Spa	atial Peak								1.	6 W/kg				
	Uncont	rolled Expos	sure/ Gen	eral Popu	lation					A۱	verage	d over 1 g	ram			

						DT	rs Bo	dy-W	orn S	SAR						
Freque	ncv		Band	Data	Tune-		Power	Test	Duty	Distance			Scaling	-	Scaled	Plot
	- 1	Mode	width	Rate	Up Limit	Power	Drift	Position			Peak SAR	SAR	Factor	Factor	SAR	No.
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	FOSILION	Cycle	(mm)	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	NO.
2 462	11	802.11b	22	1	16.0	15.59	0.192	Rear	100	10	0.082	0.059	1.099	1.000	0.065	15
	Α	NSI/ IEEE	C95.1	- 1992–	Safety Lim	nit					В	lody				
			Spatia	ıl Peak							1.6	W/kg				
	Unc	ontrolled I	Exposur	e/ Gene	ral Popula	tion					Averaged	over 1	gram			

						N	III Bo	dy-W	orn S	SAR						
Frequ	ency	Mode	Band width	Data Rate	Tune- Up Limit		Power Drift	Test	Duty	Distance	Area Scan Peak SAR	Meas. SAR	Scaling	Scaling Factor	Scaled SAR	Plot
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	Position	Cycle	(mm)		(W/kg)	Factor	(Duty)	(W/kg)	No.
5 260	52	802.11a	20	6Mbps	13.0	12.87	-0.180	Rear	99.02	10	0.9	0.323	1.030	1.010	0.336	16
5 500	100	802.11a	20	6Mbps	13.0	12.99	0.000	Rear	99.02	10	0.94	0.462	1.002	1.010	0.468	17
5 825	165	802.11a	20	6Mbps	13.0	12.73	0.000	Rear	99.02	10	0.783	0.397	1.064	1.010	0.427	18
	AN	ISI/ IEEE (C95.1 - ⁻	1992– Sa	afety Lim	nit						Body				
			Spatial	Peak							1	.6 W/kg				
	Unco	ntrolled Ex	(posure	/ Genera	al Popula	tion					Average	ed over	1 gram			

	11010		mouo									
				GS	SM 850	Hotspot	SAR					
Frequ	iency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
824.2	128	GPRS 4Tx	29.0	28.67	0.019	Rear	1:2.075	10	0.933	1.079	1.007	-
836.6	190	GPRS 4Tx	29.0	28.61	-0.129	Rear	1:2.075	10	1.06	1.094	1.160	10
848.8	251	GPRS 4Tx	29.0	28.82	-0.039	Rear	1:2.075	10	0.910	1.042	0.948	-
836.6	190	GPRS 4Tx	29.0	28.61	-0.008	Front	1:2.075	10	0.683	1.094	0.747	-
836.6	190	GPRS 4Tx	29.0	28.61	-0.153	Left	1:2.075	10	0.376	1.094	0.411	-
836.6	190	GPRS 4Tx	29.0	28.61	-0.011	Right	1:2.075	10	0.671	1.094	0.734	-
836.6	190	GPRS 4Tx	29.0	28.61	0.030	Bottom	1:2.075	10	0.576	1.094	0.630	-
		EEE C95.1 - 19 Spatial P led Exposure/	eak	•				1.6	Body W/kg over 1 gra	m		

11.3 Hotspot SAR Measurement Results

				GS	SM 190	0 Hotspo	ot SAR					
Frequ	lency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test	Duty	Distance	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
1 880.0	661	GPRS 4Tx	25.0	24.64	-0.172	Rear	1:2.075	10	0.700	1.086	0.760	12
1 880.0	661	GPRS 4Tx	25.0	24.64	-0.127	Front	1:2.075	10	0.589	1.086	0.640	-
1 880.0	661	GPRS 4Tx	25.0	24.64	-0.012	Left	1:2.075	10	0.507	1.086	0.551	-
1 880.0	661	GPRS 4Tx	25.0	24.64	0.081	Bottom	1:2.075	10	0.497	1.086	0.540	-
	ANSI/ I	EEE C95.1 - 1	992– Safe	ty Limit				I	Body			
		Spatial F							6 W/kg			
	Uncontro	lled Exposure/	General P	opulation				Averaged	d over 1 gra	ım		

				UM	TS 850) Hotspo	ot SAR					
Frequ	Frequency Mode		Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Distance	Meas. SAR	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	NO.
836.6	4183	RMC	23.7	23.60	0.010	Rear	1:1	10	0.607	1.023	0.621	13
836.6	4183	RMC	23.7	23.60	0.007	Front	1:1	10	0.406	1.023	0.415	-
836.6	4183	RMC	23.7	23.60	0.112	Left	1:1	10	0.211	1.023	0.216	-
836.6	4183	RMC	23.7	23.60	-0.042	Right	1:1	10	0.441	1.023	0.451	-
836.6	4183	RMC	23.7	23.60	0.065	Bottom	1:1	10	0.347	1.023	0.355	-
		EEE C95.1 - 19 Spatial P led Exposure/	eak	•				1.6	Body S W/kg I over 1 gra	m		

Free	quency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test	MPR	RB	RB	Duty	Distance	Meas. SAR	AR Scaling	Scaled SAR	Plo
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position	(dB)	Size	offset	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No
710	23790	QPSK	10	23.7	23.31	0.087	Rear	0	1	0	1:1	10	0.278	1.094	0.304	14
710	23790	QPSK	10	22.7	22.19	-0.001	Rear	1	25	12	1:1	10	0.239	1.125	0.269	-
710	23790	QPSK	10	23.7	23.31	0.179	Front	0	1	0	1:1	10	0.229	1.094	0.251	-
710	23790	QPSK	10	22.7	22.19	0.013	Front	1	25	12	1:1	10	0.190	1.125	0.214	-
710	23790	QPSK	10	23.7	23.31	-0.157	Left	0	1	0	1:1	10	0.116	1.094	0.127	-
710	23790	QPSK	10	22.7	22.19	0.172	Left	1	25	12	1:1	10	0.097	1.125	0.109	-
710	23790	QPSK	10	23.7	23.31	-0.015	Right	0	1	0	1:1	10	0.204	1.094	0.223	-
710	23790	QPSK	10	22.7	22.19	-0.149	Right	1	25	12	1:1	10	0.168	1.125	0.189	-
710	23790	QPSK	10	23.7	23.31	0.018	Bottom	0	1	0	1:1	10	0.119	1.094	0.130	-
710	23790	QPSK	10	22.7	22.19	0.048	Bottom	1	25	12	1:1	10	0.101	1.125	0.114	-
	ANSI/ IE	EE C95.1	- 1992-	- Safety	Limit		Body									
		Spat	ial Peak								1.6 W/k	kg (mW/g)				
	Uncontroll	ed Exposi	ure/ Gen	eral Por	oulation					Av	raged	over 1 gra	ım			

						D	DTS H	lotspo	t SAI	R						
Frequ	ency	Mode	Band width	Data Rate	Tune- Up Limit		Power Drift	Test	· · · ·	Distance	Area Scan Peak SAR	Meas. SAR	Scaling	Scaling Factor	Scaled SAR	Plot
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	Position	Cycle	(mm)	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	No.
2 462	11	802.11b	22	1	16.0	15.59	0.192	Rear	100	10	0.082	0.059	1.099	1.000	0.065	15
2 462	11	802.11b	22	1	16.0	15.59	0.197	Front	100	10	0.082	0.059	1.099	1.000	0.065	19
2 462	11	802.11b	22	1	16.0	15.59		Right	100	10	0.079		1.099	1.000		-
2 462	11	802.11b	22	1	16.0	15.59		Тор	100	10	0.081		1.099	1.000		-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Body Spatial Peak 1.6 W/kg															
	Uncontrolled Exposure/ General Population Averaged over 1 gram															

					Ę	5GHz	WLA	N Hot	spot	SAR						
Frequ	iency	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test		Distance	Area Scan Peak SAR	Meas. SAR	Scaling	Scaling Factor	Scaled SAR	Plot
MHz	Ch.		(MHz)	(Mbps)	(dBm)	(dBm)	(dB)	Position	Cycle	(mm)	(W/kg)	(W/kg)	Factor	(Duty)	(W/kg)	No.
5 240	48	802.11a	20	6Mbps	13.0	12.84	0.000	Rear	99.27	10	0.473	0.273	1.038	1.007	0.285	20
5 240	48	802.11a	20	6Mbps	13.0	12.84		Front	99.27	10	0.231					
5 240	48	802.11a	20	6Mbps	13.0	12.84		Right	99.27	10	0.372					
5 240	48	802.11a	20	6Mbps	13.0	12.84		Тор	99.27	10	0.158					
5 825	165	802.11a	20	6Mbps	13.0	12.73	0.000	Rear	99.27	10	0.783	0.397	1.064	1.010	0.427	18
5 825	165	802.11a	20	6Mbps	13.0	12.73		Front	99.27	10	0.315		1.064	1.007		-
5 825	165	802.11a	20	6Mbps	13.0	12.73	-0.178	Right	99.27	10	0.709	0.355	1.064	1.007	0.380	-
5 825	165	802.11a	20	6Mbps	13.0	12.73		Тор	99.27	10	0.294					-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population										Bod 1.6 W Averaged ov	/kg	ım			

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB 648474 D04v01r03, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
- 8. During SAR testing for the Hotspot conditions per KDB 941225 D06v02r01, the actual portable hotspot operation (with actual simultaneous transmission of a transmitter with WiFi) was not activated.

GSM/GPRS Test Notes:

- 1. This EUT'S GSM and GPRS device class is B.
- 2. This device supports GPRS VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for head and body-worn compliance.
- 3. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 4. Justification for reduced test configurations per KDB 941225 D01v03r01: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power including tolerance was evaluated for SAR.
- 5. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.
- 6. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.

UMTS Notes:

- 1. The 12.2 kbps RMC mode is the primary mode per KDB 941225 D01v03r01.
- 2. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and Adjusted SAR value was less than 1.2 W/kg.
- 3. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the channel highest output power channel was used.
- 4. UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Consideration for LTE Devices in FCC KDB 941225 D05v02r05.
- According to FCC KDB 941225 D05v02r05. When the reported SAR is ≤ 0.8 W/kg, testing of the 100%RB allocation and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the 1RB, 50%RB and 100%RB allocation with highest output power for that channel. Only one channel, and as reported SAR values for 1RB allocation and 50%RB allocation were less than 1.45W/Kg only the highest power RB offset for each allocation was required.
- 3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to target MPR is indicated alongside the SAR results.
- 4. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator.
- 5. Pre-installed VOIP applications are considered.
- 6. SAR test reduction is applied using the following criteria:

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is >0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are >0.8 W/kg, Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation <1.45 W/kg. Testing for 16-QAM modulation is not required because the reported SAR for QPSK is <1.45 W/kg and its output power is not more than 0.5 dB higher than that a QPSK. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is <1.45 W/kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. For initial test position, the highest extrapolated peak SAR will be used. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR results is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test position are measured.
- Per KDB 248227 D01v02r02 justification for test configurations of 2.4 GHz WiFi Single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11 g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
- 3. Per KDB 248227 D01v02r02 justification for test configurations of 5 GHz WiFi Single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission mode were not investigated since the highest reported SAR for initial test configuration adjusted by the ration of maximum output powers is less than 1.2 W/kg for 1g SAR and less than 3.0 W/kg for 10 g SAR.
- 4. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rated, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated WLAN test reports.

12. Simultaneous SAR Analysis

12.1 Simultaneous Transmission Summation for Head

	Simultaneous Transmission Summation Scenario with 2.4 GHz WLAN											
Exposure	David	0	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR	SPLSR						
condition	Band	Configuration	(W/kg)	(W/kg)	(W/kg)	(Yes/No)						
		Left Cheek	0.324	0.724	1.048	No						
	0.014.050	Left Tilt	0.209	0.479	0.688	No						
	GSM 850	Right Cheek	0.416	0.366	0.782	No						
		Right Tilt	0.237	0.275	0.512	No						
		Left Cheek	0.641	0.724	1.365	No						
	GPRS 850	Left Tilt	0.416	0.479	0.895	No						
	GPR5 850	Right Cheek	0.770	0.366	1.136	No						
		Right Tilt	0.431	0.275	0.706	No						
		Left Cheek	0.340	0.724	1.064	No						
	GSM 1900	Left Tilt	0.160	0.479	0.639	No						
	GSM 1900	Right Cheek	0.216	0.366	0.582	No						
Head SAR		Right Tilt	0.216	0.275	0.491	No						
neau SAR		Left Cheek	0.516	0.724	1.240	No						
		Left Tilt	0.251	0.479	0.730	No						
	GPRS 1900	Right Cheek	0.344	0.366	0.710	No						
		Right Tilt	0.195	0.275	0.470	No						
		Left Cheek	0.339	0.724	1.063	No						
		Left Tilt	0.234	0.479	0.713	No						
	UMTS 850	Right Cheek	0.430	0.366	0.796	No						
		Right Tilt	0.228	0.275	0.503	No						
		Left Cheek	0.194	0.724	0.918	No						
	LTE band 17	Left Tilt	0.118	0.479	0.597	No						
	LIE Dand 17	Right Cheek	0.222	0.366	0.588	No						
		Right Tilt	0.129	0.275	0.404	No						

	Simu	Itaneous Transr	mission Summat	tion Scenario with 5 G	Hz WLAN	
Exposure	Dand	Configuration	WWAN SAR	5 GHz WLAN SAR	∑ 1-g SAR	SPLSR
condition	Band	Configuration	(W/kg)	(W/kg)	(W/kg)	(Yes/No)
		Left Cheek	0.324	0.840	1.164	No
	0004.050	Left Tilt	0.209	0.517	0.726	No
	GSM 850	Right Cheek	0.416	0.428	0.844	No
		Right Tilt	0.237	0.351	0.588	No
		Left Cheek	0.641	0.840	1.481	No
	GPRS 850	Left Tilt	0.416	0.517	0.933	No
	GPR5 850	Right Cheek	0.770	0.428	1.198	No
		Right Tilt	0.431	0.351	0.782	No
		Left Cheek	0.340	0.840	1.180	No
	GSM 1900	Left Tilt	0.160	0.517	0.677	No
	G3W 1900	Right Cheek	0.216	0.428	0.644	No
Head SAR		Right Tilt	0.216	0.351	0.567	No
neau SAR		Left Cheek	0.516	0.840	1.356	No
	GPRS 1900	Left Tilt	0.251	0.517	0.768	No
	GFN3 1900	Right Cheek	0.344	0.428	0.772	No
		Right Tilt	0.195	0.351	0.546	No
		Left Cheek	0.339	0.840	1.179	No
	UMTS 850	Left Tilt	0.234	0.517	0.751	No
	010113 030	Right Cheek	0.430	0.428	0.858	No
		Right Tilt	0.228	0.351	0.579	No
		Left Cheek	0.194	0.840	1.034	No
	LTE band 17	Left Tilt	0.118	0.517	0.635	No
	LIE Dallu 17	Right Cheek	0.222	0.428	0.650	No
		Right Tilt	0.129	0.351	0.480	No

12.2 Simultaneous Transmission Summation for Body-Worn

	Simult	aneous Transm	ission Summatio	n Scenario with 2.4 G	Hz WLAN	
Exposure	Distance	Dond	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR	SPLSR
condition	(mm)	Band	(W/kg)	(W/kg)	(W/kg)	(Yes/No)
		GSM 850	0.604	0.065	0.669	No
		GPRS 850	1.160	0.065	1.225	No
Deduure	10	GSM 1900	0.518	0.065	0.583	No
Body-worn	10	GPRS 1900	0.760	0.065	0.825	No
		UMTS 850	0.621	0.065	0.686	No
		LTE band 17	0.304	0.065	0.369	No

	Simultaneous Transmission Summation Scenario with 5 GHz WLAN											
Exposure	Distance	Band	WWAN SAR	5 GHz WLAN SAR	∑ 1-g SAR	SPLSR						
condition	(mm)	Dano	(W/kg)	(W/kg)	(W/kg)	(Yes/No)						
		GSM 850	0.604	0.468	1.072	No						
		GPRS 850	1.160	0.468	1.628	Yes						
Destaura	10	GSM 1900	0.518	0.468	0.986	No						
Body-worn	10	GPRS 1900	0.760	0.468	1.228	No						
		UMTS 850	0.621	0.468	1.089	No						
		LTE band 17	0.304	0.468	0.772	No						

	Simultaneous Transmission Summation Scenario with Bluetooth											
Exposure	Distance	Band	WWAN SAR	Bluetooth SAR	∑ 1-g SAR	SPLSR						
condition	(mm)	Dano	(W/kg)	(W/kg)	(W/kg)	(Yes/No)						
		GSM 850	0.604	0.210	0.814	No						
		GPRS 850	1.160	0.210	1.370	No						
Deduuren	10	GSM 1900	0.518	0.210	0.728	No						
Body-worn	10	GPRS 1900	0.760	0.210	0.970	No						
		UMTS 850	0.621	0.210	0.831	No						
		LTE band 17	0.304	0.210	0.514	No						

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v06. Estimated SAR results were used for SAR summation for body-worn back side at 10 mm to determine simultaneous transmission SAR test exclusion.

12.3 Simultaneous Transmission Summation for Hotspot

	Simult	aneous Transmis	sion Summation S	Scenario with 2.4 GHz	WLAN	
Exposure	Distance	Dand	WWAN SAR	2.4 GHz WLAN SAR	∑ 1-g SAR	SPLSR
condition	(mm)	Band	(W/kg)	(W/kg)	(W/kg)	(Yes/No)
		GSM 850	1.160	0.065	1.225	No
Listen et	10	GSM 1900	0.760	0.065	0.825	No
Hotspot	10	UMTS 850	0.621	0.065	0.686	No
		LTE band 17	0.304	0.065	0.369	No

	Simultaneous Transmission Summation Scenario with 5 GHz WLAN											
Exposure	Distance	Band	WWAN SAR	5 GHz WLAN SAR	∑ 1-g SAR	SPLSR						
condition	(mm)	Dallu	(W/kg)	(W/kg)	(W/kg)	(Yes/No)						
		GSM 850	1.160	0.427	1.587	No						
Lister et	10	GSM 1900	0.760	0.427	1.187	No						
Hotspot	10	UMTS 850	0.621	0.427	1.048	No						
		LTE band 17	0.304	0.427	0.731	No						

12.4 SAR to Peak Location Separation Ratio (SPLSR)

FCC KDB 447498 D01v06 General RF Exposure Guidance introduces a new formula for calculating the SAR a Peak Location Separation Ratio(SPLSR) between pairs of simultaneously transmitting antennas: $SPLSR = (SAR_1 + SAR_2)^{1.5}/R_i$

Where:

*SAR*₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

*SAR*₂ is the highest measured of estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

 R_i is the separation distance between the pair of simultaneous transmitting antennas, When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $\sqrt{[(X_1 - X_2)^2 + (Y_1 - Y_2)^2]}$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR> 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: $(SAR_1 + SAR_2)^{1.5}/R_i \leq 0.04$

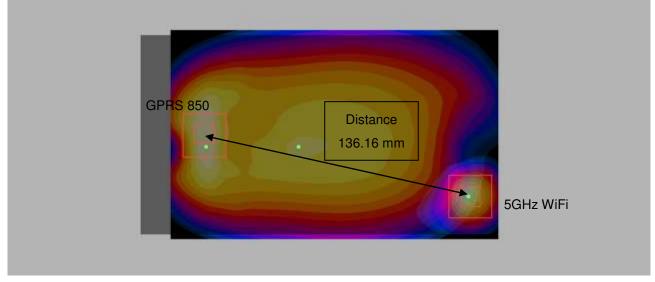
Per Sec. 12, below simultaneous transmission summations need to be calculated SPLSR.

12.4.1 GPRS 850& WiFi

Mode	Peak SAR	X	Y	Distance
Mode	[mW/g]	Μ	Μ	mm
GPRS 850	1.460	0.0671	0.00202	100 1044
5GHz WIFI	0.923	-0.065	-0.031	136.1644

SAR to Peak Location Separation Ratio (SPLSR)

Simultaneous Transmission Scenario		Standalone SAR Value	∑ 1-g SAR	Calculated Distance	SPLSR	Volume Scan
Position	Combination	(W/kg)	(W/kg)	(mm)	(≤0.04)	(Yes/No)
Rear	GPRS 850	1.16	1 600	136.1644	0.015255	No
Rear	5GHz WIFI	0.468	1.628	130.1044	0.015255	INO


SPLSR Conclusion

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is \leq 0.04 for all circumstances that require SPLSR calculation.

12.4.2 SAR to Peak Location Ratio (SPLSR) illustrations

GPRS 850 & 5GHz WiFi

Note: GSM 850 Body SAR measured two zoom scan. The next highest reported SAR value is 0.913 W/kg and simultaneous SAR value is 1.381 W/kg. From this 2nd highest reported SAR value of GMS 850 Body SAR, it doesn't need to be calculated SPLSR.

12.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013.

13. SAR Measurement Variability and Uncertainty

In accordance with KDB procedure 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz, SAR additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement variability was assessed using the following procedures for each frequency band:

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR ; steps 2) through 4) do not apply.

2) When the original highest measured 1g SAR is \geq 0.80 W/kg or 10g SAR \geq 2.0W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \ge 1.45 W/kg for 1g SAR or \ge 3.625 W/kg for 10g SAR (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg for 1g SAR or \geq 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequ	ency	Modulation	Battery Configuration		Original Repeated SAR SAR		Largest to Smallest	Plot
MHz	Channel				(W/kg)	(W/kg)	SAR Ratio	No.
836.6	190	GSM 850	Standard	Rear	1.06	1.01	1.05	21
5 500	100	802.11a	Standard	Left Cheek	0.83	0.81	1.02	22

14. MEASUREMENT UNCERTAINTY

Unce	rtainty (7	00 MHz	· ~ 50	оо мн	z)	
	Tol	Prob.			Standard Uncertainty	
Error Description	(± %)	dist.	Div.	Ci	(± %)	V eff
1. Measurement System						
Probe Calibration	6.55	N	1	1	6.55	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related					· · · · · ·	
Device Positioning	2.25	N	1.00	1	2.25	9
Device Holder	3.60	N	1.00	1	3.60	∞
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup				•	·,	
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	3.00	N	1	0.64	1.73	∞
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	2.30	N	1	0.6	1.14	∞
Combind Standard Uncertainty		•			10.99	
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					21.98	

15. SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/5K08A1/A/01	N/A	N/A	N/A
Staubli	Robot RX90B L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot TX90 XLspeag	F11/5K3RA1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F01/5K08A1/C/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F01/5K09A1/C/01	N/A	N/A	N/A
Staubli	CS8Cspeag-TX90	11/5K3RA1/C/01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D22134001 1	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D21142603	N/A	N/A	N/A
SPEAG	DAE4	1417	01/27/2016	Annual	01/27/2017
SPEAG	DAE4	1225	03/17/2016	Annual	03/17/2017
SPEAG	DAE4	648	04/28/2015	Annual	04/28/2016
SPEAG	DAE3	466	02/17/2016	Annual	02/17/2017
SPEAG	DAE3	446	01/25/2016	Annual	01/25/2017
SPEAG	E-Field Probe EX3DV4	3968	06/18/2015	Annual	06/18/2016
SPEAG	E-Field Probe EX3DV4	3967	12/16/2015	Annual	12/16/2016
SPEAG	E-Field Probe EX3DV4	3863	08/27/2015	Annual	08/27/2016
SPEAG	E-Field Probe EX3DV4	3797	11/24/2015	Annual	11/24/2016
SPEAG	Dipole D750V3	1014	07/23/2015	Annual	07/23/2016
SPEAG	Dipole D835V2	4d165	11/24/2015	Annual	11/24/2016
SPEAG	Dipole D1900V2	5d032	05/20/2015	Annual	05/20/2016
SPEAG	Dipole D2450V2	743	05/19/2015	Annual	05/19/2016
SPEAG	Dipole D5GHzV2	1107	01/29/2016	Annual	01/29/2017
Agilent	Power Meter N1991A	MY45101406	10/03/2015	Annual	10/03/2016
Agilent	Power Sensor N1921A	MY55220026	08/19/2015	Annual	08/19/2016
SPEAG	DAKS 3.5	1038	05/26/2015	Annual	05/26/2016
HP	Directional Bridge	86205A	05/20/2015	Annual	05/20/2016
Agilent	Base Station E5515C	GB44400269	02/05/2016	Annual	02/05/2017
HP	Signal Generator N5182A	MY4770230	05/13/2015	Annual	05/13/2016
Hewlett Packard	11636B/Power Divider	58698	02/27/2016	Annual	02/27/2017
TESTO	175-H1/Thermometer	40332651310	02/12/2016	Annual	02/12/2017
TESTO	175-H1/Thermometer	40331939309	02/12/2016	Annual	02/12/2017
EMPOWER	RF Power amplifier	1041D/C0506	06/18/2015	Annual	06/18/2016
Agilent	Attenuator(3dB)	52744	10/20/2015	Annual	10/20/2016
Agilent	Attenuator(20dB)	52664	10/20/2015	Annual	10/20/2016
HP	Notebook(DAKS)	-	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	10/20/2015	Annual	10/20/2016
R&S	Wideband Radio Communication Tester CMW500	115733	09/18/2015	Annual	09/18/2016

NOTE:

1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/ IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

17. REFERENCES

[1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.

[2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[3] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992

[4] ANSI/IEEE C 95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006.

[5] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zorich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation and procedures – Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.

[21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.

[22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Band) Issue 5, March 2015.

[23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz – 300 GHz, 2009

[24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.

[25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01.

[26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.

[27] SAR Evaluation for Laptop, Notebook, Netbook and Tablet computers KDB 616217 D04.

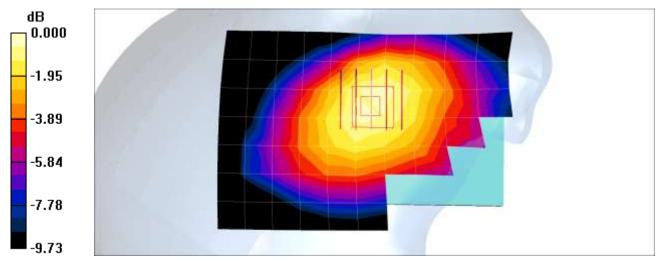
[28] SAR Measurement and Reporting Requirements for 100 MHz – 6 GHz, KDB 865664 D01, D02.

[29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01, D02.

Attachment 1. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.6 ී
Ambient Temperature:	20.8 °C
Test Date:	05/09/2016
Plot No.:	1

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:2.075 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.918 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: EX3DV4 SN3967; ConvF(9.87, 9.87, 9.87); Calibrated: 2015-12-16
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2016-01-25
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

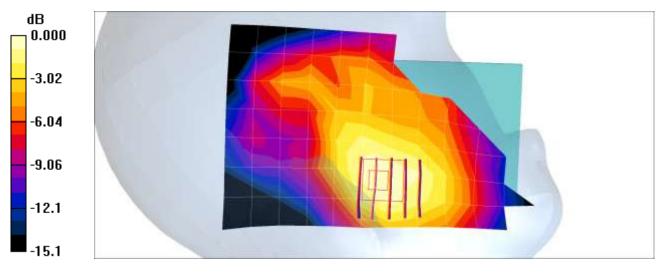
GSM850 Right Touch 4Tx 190ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.738 mW/g

GSM850 Right Touch 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = -0.132 dB Peak SAR (extrapolated) = 0.861 W/kg SAR(1 g) = 0.704 mW/g; SAR(10 g) = 0.547 mW/g Maximum value of SAR (measured) = 0.795 mW/g

 $0 \, dB = 0.795 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.4 °C
Test Date:	04/11/2016
Plot No.:	2


Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(7.61, 7.61, 7.61); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2015-04-28
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

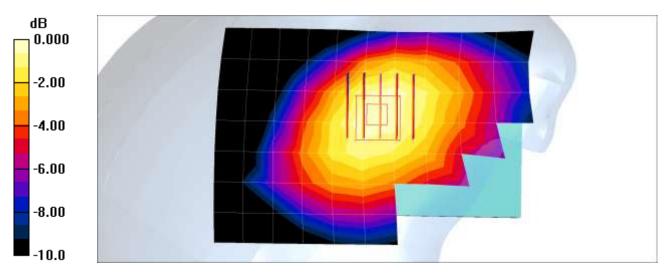
GSM1900 Left touch 4Tx 661/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.571 mW/g

GSM1900 Left touch 4Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.35 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 0.762 W/kg SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.300 mW/g Maximum value of SAR (measured) = 0.600 mW/g

 $0 \, dB = 0.600 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.0 °C
Ambient Temperature:	20.2 °C
Test Date:	04/11/2016
Plot No.:	3

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.92 mho/m; ϵ_r = 40.5; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.6, 9.6, 9.6); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA850 Right touch 4183ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.458 mW/g

WCDMA850 Right touch 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

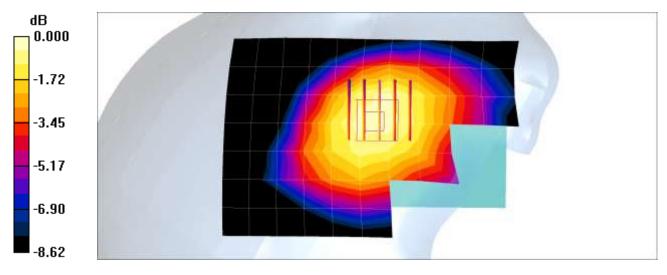
Reference Value = 5.25 V/m; Power Drift = 0.167 dB Peak SAR (extrapolated) = 0.509 W/kg SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.324 mW/g Maximum value of SAR (measured) = 0.472 mW/g

 $0 \, dB = 0.472 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.0 °C
Ambient Temperature:	20.2 °C
Test Date:	04/11/2016
Plot No.:	4

Communication System: LTE 17; Frequency: 710 MHz;Duty Cycle: 1:1 Medium parameters used: f = 710 MHz; σ = 0.886 mho/m; ϵ_r = 41.8; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:


- Probe: EX3DV4 SN3968; ConvF(9.92, 9.92, 9.92); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 17 Head Right Touch QPSK 10MHz 1RB 0offset 23790ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.213 mW/g

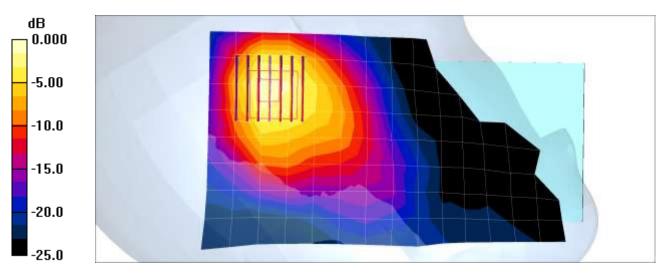
LTE Band 17 Head Right Touch QPSK 10MHz 1RB 0offset 23790ch/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.23 V/m; Power Drift = 0.192 dB Peak SAR (extrapolated) = 0.242 W/kg SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.163 mW/g Maximum value of SAR (measured) = 0.224 mW/g

 $0 \, dB = 0.224 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.5 °C
Ambient Temperature:	21.8 °C
Test Date:	04/14/2016
Plot No.:	5

Communication System: 2450MHz FCC; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.86 mho/m; ϵ_r = 38; ρ = 1000 kg/m³ Phantom section: Left Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.9, 6.9, 6.9); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Left touch 1Mbps 11ch/Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.949 mW/g

802.11b Left touch 1Mbps 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

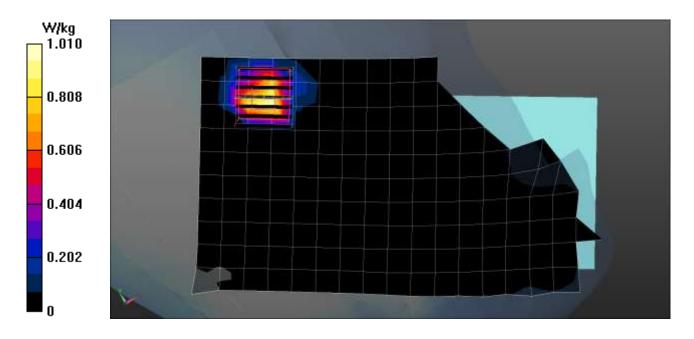
Reference Value = 13.1 V/m; Power Drift = -0.188 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.659 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 0.953 mW/g

 $0 \, dB = 0.953 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	19.8 ℃
Ambient Temperature:	20.0 °C
Test Date:	04/12/2016
Plot No.:	6

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5260 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5260 MHz; σ = 4.666 S/m; ϵ_r = 36.73; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: EX3DV4 SN3863; ConvF(4.94, 4.94, 4.94); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

802.11a Head Left Touch 6Mbps 52ch/Area Scan (11x18x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.01 W/kg

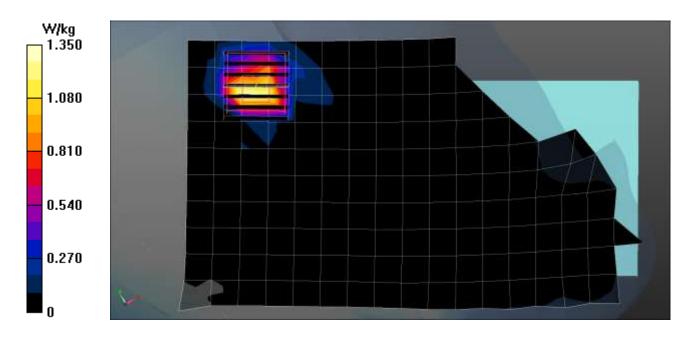
802.11a Head Left Touch 6Mbps 52ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 2.078 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 2.95 W/kg SAR(1 g) = 0.627 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 1.77 W/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.1 ℃
Ambient Temperature:	20.3 ℃
Test Date:	04/14/2016
Plot No.:	7

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 4.997 S/m; ϵ_r = 36.32; ρ = 1000 kg/m³ Phantom section: Left Section


DASY5 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.44, 4.44, 4.44); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

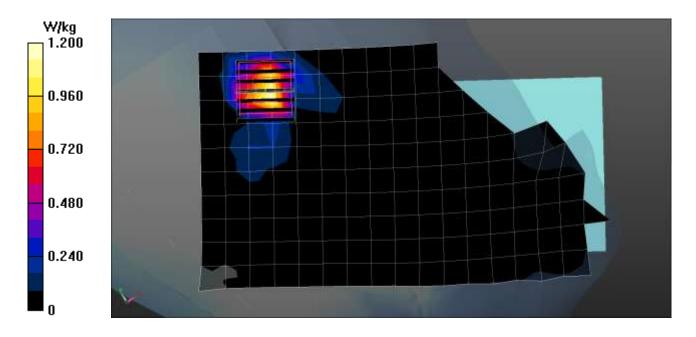
KS1604/802.11a Head Left Touch 6Mbps 100ch/Area Scan (11x18x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.35 W/kg

KS1604/802.11a Head Left Touch 6Mbps 100ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 3.254 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 3.76 W/kg SAR(1 g) = 0.830 W/kg; SAR(10 g) = 0.200 W/kg Maximum value of SAR (measured) = 2.27 W/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.0 °C
Ambient Temperature:	20.2 °C
Test Date:	04/15/2016
Plot No.:	8

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5825 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5825 MHz; σ = 5.454 S/m; ϵ_r = 35.722; ρ = 1000 kg/m³ Phantom section: Left Section


DASY5 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.65, 4.65, 4.65); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

KS1604/802.11a Head Left Touch 6Mbps 165ch/Area Scan (11x18x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.20 W/kg

KS1604/802.11a Head Left Touch 6Mbps 165ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm; Graded Ratio:1.4 Reference Value = 4.621 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.37 W/kg SAR(1 g) = 0.672 W/kg; SAR(10 g) = 0.164 W/kg Maximum value of SAR (measured) = 1.97 W/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	19.8 °C
Ambient Temperature:	20.0 °C
Test Date:	04/14/2016
Plot No.:	9

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.982 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.55, 9.55, 9.55); Calibrated: 2015-06-18 •
- Sensor-Surface: 2mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27 •
- Phantom: Triple Flat Phantom •
- Measurement SW: DASY4, V4.7 Build 80 •
- Postprocessing SW: SEMCAD, V1.8 Build 186

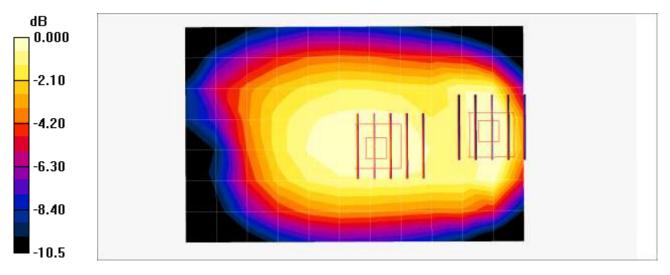
GSM850 Body Worn Rear 190ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.710 mW/g

GSM850 Body Worn Rear 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.8 V/m; Power Drift = -0.068 dB Peak SAR (extrapolated) = 0.975 W/kg

SAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.325 mW/g

Maximum value of SAR (measured) = 0.770 mW/g


GSM850 Body Worn Rear 190ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.8 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.436 mW/g; SAR(10 g) = 0.331 mW/g

Maximum value of SAR (measured) = 0.499 mW/g

 $0 \, dB = 0.499 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	19.8 °C
Ambient Temperature:	20.0 °C
Test Date:	04/14/2016
Plot No.:	10

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:2.075 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.982 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.55, 9.55, 9.55); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850 Body Rear 4Tx 190ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.34 mW/g

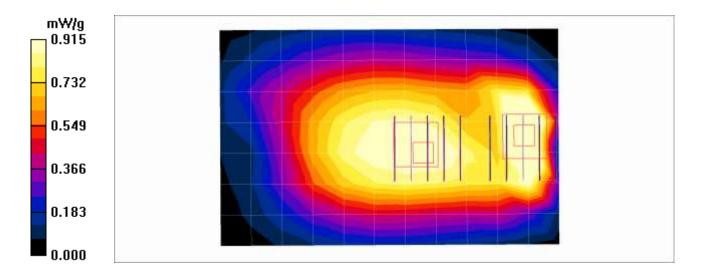
GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.3 V/m; Power Drift = -0.129 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.610 mW/g

Maximum value of SAR (measured) = 1.46 mW/g


GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.3 V/m; Power Drift = -0.129 dB

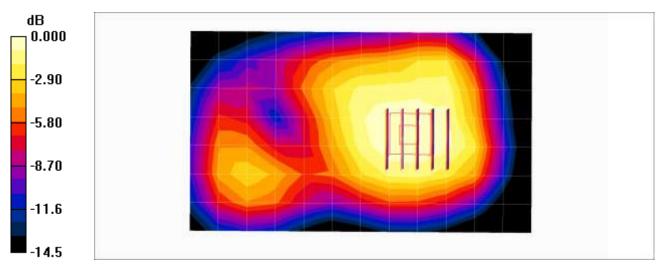
Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.607 mW/g

Maximum value of SAR (measured) = 0.915 mW/g

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.3 °C
Ambient Temperature:	21.6 °C
Test Date:	04/12/2016
Plot No.:	11

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.53 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(7.32, 7.32, 7.32); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Body rear 661 body worn/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.626 mW/g

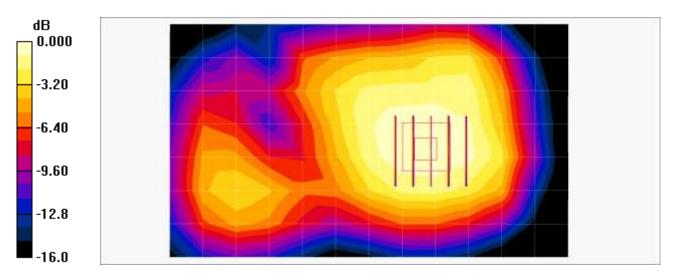
GSM1900 Body rear 661 body worn/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = 0.065 dB Peak SAR (extrapolated) = 0.751 W/kg SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 0.618 mW/g

 $0 \, dB = 0.618 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.3 °C
Ambient Temperature:	21.6 ℃
Test Date:	04/12/2016
Plot No.:	12

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:2.075 Medium parameters used: f = 1880 MHz; σ = 1.53 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(7.32, 7.32, 7.32); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900 Body rear 4Tx 661/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.881 mW/g

GSM1900 Body rear 4Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.9 V/m; Power Drift = -0.172 dB Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.700 mW/g; SAR(10 g) = 0.450 mW/gMaximum value of SAR (measured) = 0.902 mW/g

 $0 \, dB = 0.902 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	19.8 °C
Ambient Temperature:	20.0 °C
Test Date:	04/14/2016
Plot No.:	13

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.982 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.55, 9.55, 9.55); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

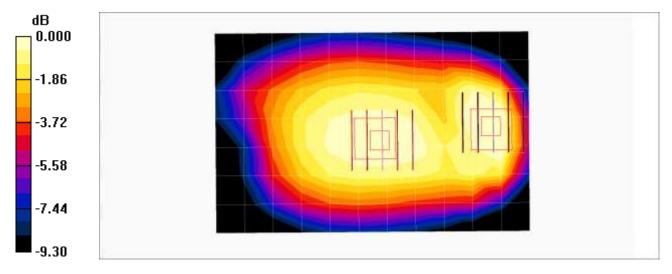
WCDMA850 Body Rear 4183ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.658 mW/g

WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.7 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.607 mW/g; SAR(10 g) = 0.352 mW/g


Maximum value of SAR (measured) = 0.821 mW/g

WCDMA850 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 0.637 W/kg

SAR(1 g) = 0.509 mW/g; SAR(10 g) = 0.388 mW/g

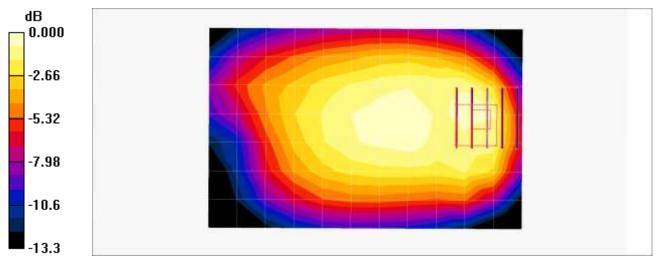
Maximum value of SAR (measured) = 0.584 mW/g

 $0 \, dB = 0.584 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.0 °C
Ambient Temperature:	20.2 °C
Test Date:	04/11/2016
Plot No.:	14

Communication System: LTE 17; Frequency: 710 MHz;Duty Cycle: 1:1 Medium parameters used: f = 710 MHz; σ = 0.947 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:


- Probe: EX3DV4 SN3968; ConvF(9.49, 9.49, 9.49); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

LTE Band 17 Body Rear QPSK 10MHz 1RB 0offset 23790ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.354 mW/g

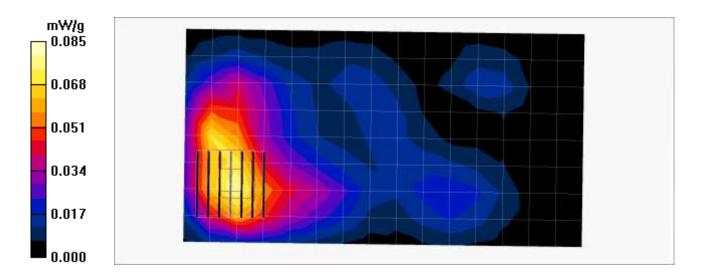
LTE Band 17 Body Rear QPSK 10MHz 1RB 0offset 23790ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 0.468 W/kg SAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.173 mW/g Maximum value of SAR (measured) = 0.365 mW/g

 $0 \, dB = 0.365 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.5 °C
Ambient Temperature:	21.8 °C
Test Date:	04/14/2016
Plot No.:	15

Communication System: 2450MHz FCC; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.94 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.91, 6.91, 6.91); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

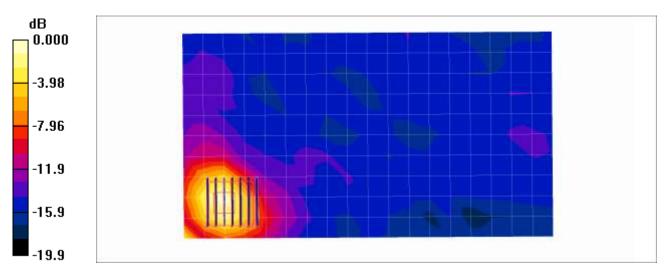
802.11b Body rear 1Mbps 11ch/Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.080 mW/g

802.11b Body rear 1Mbps 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.38 V/m; Power Drift = 0.192 dB Peak SAR (extrapolated) = 0.115 W/kg SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.031 mW/g Maximum value of SAR (measured) = 0.085 mW/g

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.8 °C
Ambient Temperature:	21.2 °C
Test Date:	04/15/2016
Plot No.:	16

Communication System: WIFI 5GHz; Frequency: 5260 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5260 MHz; σ = 5.48 mho/m; ϵ_r = 47.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(4.07, 4.07, 4.07); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a Body rear 6Mbps 52ch/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.625 mW/g

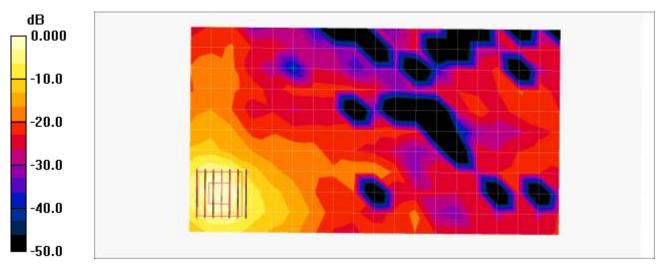
802.11a Body rear 6Mbps 52ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm; Graded Ratio:1.4 Reference Value = 2.65 V/m; Power Drift = -0.180 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.105 mW/g Maximum value of SAR (measured) = 0.657 mW/g

 $0 \, dB = 0.657 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.2 °C
Ambient Temperature:	21.5 °C
Test Date:	04/18/2016
Plot No.:	17

Communication System: WIFI 5GHz; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.69 mho/m; ϵ_r = 48; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(3.8, 3.8, 3.8); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a Body rear 6Mbps 100ch/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.814 mW/g

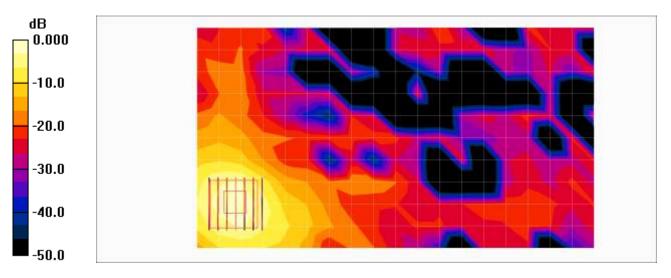
802.11a Body rear 6Mbps 100ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm; Graded Ratio:1.4 Reference Value = 0.000 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 0.462 mW/g; SAR(10 g) = 0.151 mW/g Maximum value of SAR (measured) = 0.923 mW/g

 $0 \, dB = 0.923 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.0 °C
Ambient Temperature:	21.2 °C
Test Date:	04/19/2016
Plot No.:	18

Communication System: WIFI 5GHz; Frequency: 5825 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5825 MHz; σ = 6.17 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(3.84, 3.84, 3.84); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a Body rear 6Mbps 165ch/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.738 mW/g

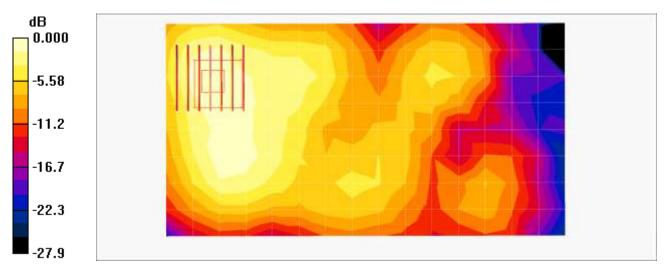
802.11a Body rear 6Mbps 165ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm; Graded Ratio:1.4 Reference Value = 0.000 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 0.397 mW/g; SAR(10 g) = 0.131 mW/g Maximum value of SAR (measured) = 0.802 mW/g

 $0 \, dB = 0.802 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.5 ℃
Ambient Temperature:	21.8 °C
Test Date:	04/14/2016
Plot No.:	19

Communication System: 2450MHz FCC; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.94 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.91, 6.91, 6.91); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b Body front 1Mbps 11ch/Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.081 mW/g

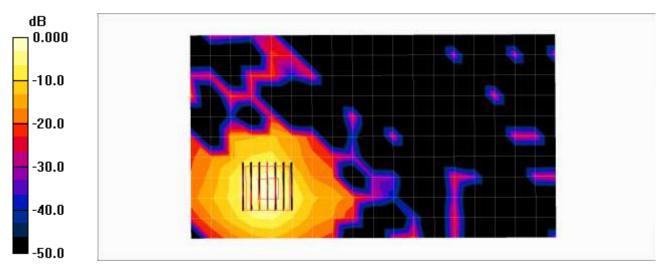
802.11b Body front 1Mbps 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.36 V/m; Power Drift = 0.197 dB Peak SAR (extrapolated) = 0.111 W/kg SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.031 mW/g Maximum value of SAR (measured) = 0.084 mW/g

 $0 \, dB = 0.084 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.4 °C
Test Date:	04/28/2016
Plot No.:	20

Communication System: WIFI 5GHz; Frequency: 5240 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5240 MHz; σ = 5.25 mho/m; ϵ_r = 48.7; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.44, 4.44, 4.44); Calibrated: 2015-08-27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a Body rear 6Mbps 48ch/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.473 mW/g

802.11a Body rear 6Mbps 48ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 0.000 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.273 mW/g; SAR(10 g) = 0.079 mW/g Maximum value of SAR (measured) = 0.575 mW/g

 $0 \, dB = 0.575 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	19.8 °C
Ambient Temperature:	20.0 °C
Test Date:	04/14/2016
Plot No.:	21

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:2.075 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.982 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.55, 9.55, 9.55); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

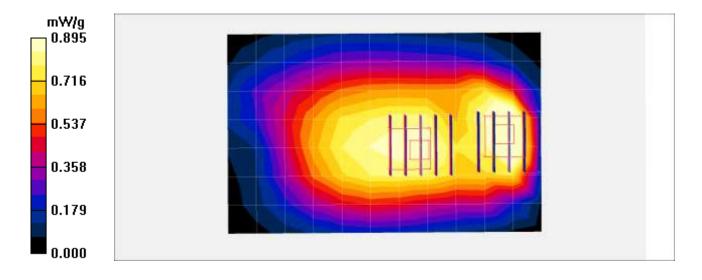
GSM850 Body Rear 4Tx 190ch/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.13 mW/g

GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.0 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.582 mW/g


Maximum value of SAR (measured) = 1.31 mW/g

GSM850 Body Rear 4Tx 190ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.0 V/m; Power Drift = -0.107 dB Peak SAR (extrapolated) = 0.996 W/kg

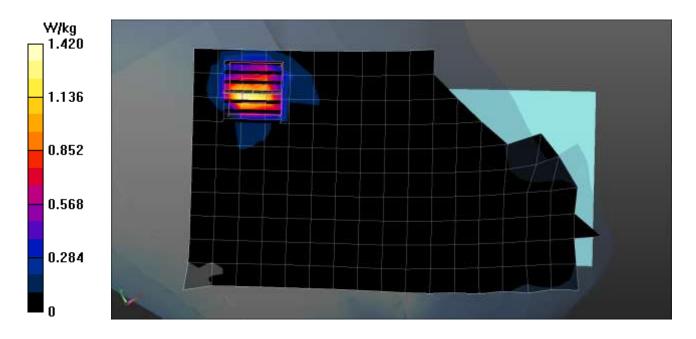
SAR(1 g) = 0.785 mW/g; SAR(10 g) = 0.597 mW/g

Maximum value of SAR (measured) = 0.895 mW/g

Test Laboratory:	HCT CO., LTD
EUT Type:	Cellular/PCS GSM/WCDMA/LTE Phone with WLAN, Bluetooth and NFC
Liquid Temperature:	20.1 °C
Ambient Temperature:	20.3 °C
Test Date:	04/14/2016
Plot No.:	22

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 4.997 S/m; ϵ_r = 36.32; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: EX3DV4 SN3863; ConvF(4.44, 4.44, 4.44); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

KS1604/802.11a Head Left Touch 6Mbps 100ch/Area Scan (11x18x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.42 W/kg

Maximum value of SAR (measured) = 1.42 W/kg

KS1604/802.11a Head Left Touch 6Mbps 100ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm; Graded Ratio:1.4 Reference Value = 3.878 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 0.814 W/kg; SAR(10 g) = 0.195 W/kg Maximum value of SAR (measured) = 2.24 W/kg

Attachment 2. – Dipole Verification Plots

Verification Data (750 MHz Head)

Test Laboratory: HCT CO., LTD

 Input Power
 100 mW (20 dBm)

 Liquid Temp:
 20.0 ℃

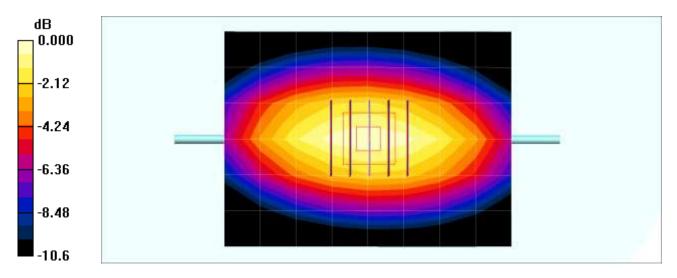
 Test Date:
 04/11/2016

DUT: Dipole 750 MHz; Type: D750V3

Communication System: CW; Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.923 mho/m; ϵ_r = 41.4; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.92, 9.92, 9.92); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186


750MHz Head Verification/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.897 mW/g

750MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.7 V/m; Power Drift = -0.184 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.828 mW/g; SAR(10 g) = 0.546 mW/g

Maximum value of SAR (measured) = 0.894 mW/g

 $0 \, dB = 0.894 \, mW/g$

Verification Data (750 MHz Body)

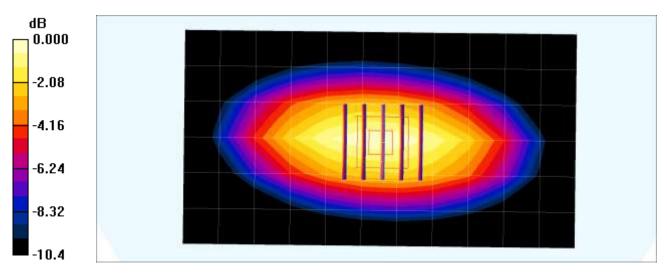
Test Laboratory: HCT CO., LTD

 Input Power
 100 mW (20 dBm)

 Liquid Temp:
 20.0 ℃

 Test Date:
 04/11/2016

DUT: Dipole 750 MHz; Type: D750V3


Communication System: CW; Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.989 mho/m; ϵ_r = 55.4; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.49, 9.49, 9.49); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

750MHz Body Verification/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.915 mW/g

750MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.9 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.866 mW/g; SAR(10 g) = 0.570 mW/g Maximum value of SAR (measured) = 0.938 mW/g

 $0 \, dB = 0.938 \, mW/g$

Verification Data (835 MHz Head)

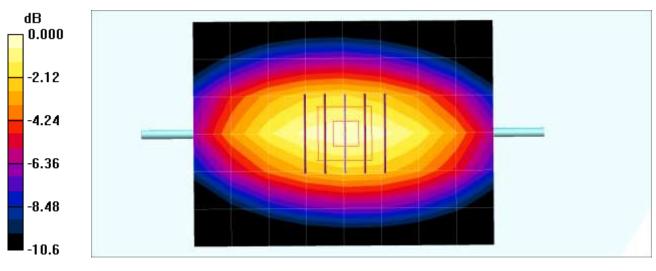
Test Laboratory: HCT CO., LTD

 Input Power
 100 mW (20 dBm)

 Liquid Temp:
 20.0 ℃

 Test Date:
 04/11/2016

DUT: Dipole 835 MHz; Type: D835V2


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.919 mho/m; ϵ_r = 40.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.6, 9.6, 9.6); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz Head Verification/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.961 mW/g

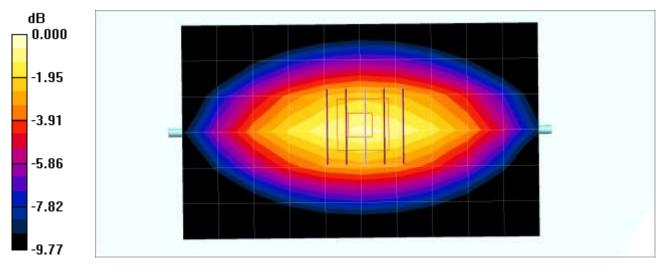
835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.8 V/m; Power Drift = -0.045 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.899 mW/g; SAR(10 g) = 0.593 mW/g Maximum value of SAR (measured) = 0.972 mW/g

 $0 \, dB = 0.972 \, mW/g$

Verification Data (835 MHz Head)

Test Laboratory:HCT CO., LTDInput Power100 mW (20 dBm)Liquid Temp:20.6 °CTest Date:05/09/2016

DUT: Dipole 835 MHz; Type: D835V2


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.917 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3967; ConvF(9.87, 9.87, 9.87); Calibrated: 2015-12-16
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2016-01-25
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz Head Verification/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.03 mW/g

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 34.7 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.619 mW/g Maximum value of SAR (measured) = 1.13 mW/g

 $0 \, dB = 1.13 \, mW/g$

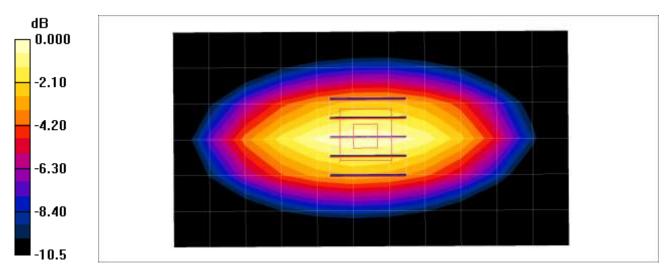
Verification Data (835 MHz Body)

Test Laboratory:HCT CO., LTDInput Power100 mW (20 dBm)

 Liquid Temp:
 19.8 ℃

 Test Date:
 04/14/2016

DUT: Dipole 835 MHz; Type: D835V2


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ_r = 56.9; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3968; ConvF(9.55, 9.55, 9.55); Calibrated: 2015-06-18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz Body Verification/Area Scan (12x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 mW/g

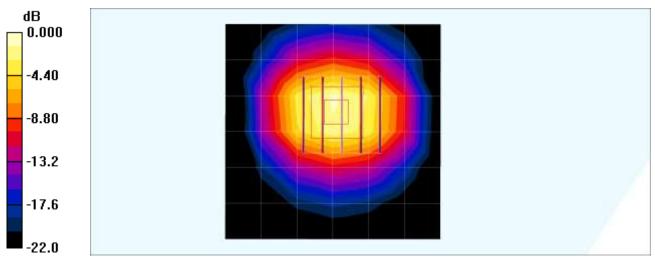
835MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.8 V/m; Power Drift = -0.028 dB Peak SAR (extrapolated) = 1.40 W/kg SAR(1 g) = 0.947 mW/g; SAR(10 g) = 0.623 mW/g

 $0 \, dB = 1.19 \, mW/g$

Verification Data (1 900 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	21.0 ℃
Test Date:	04/11/2016

DUT: Dipole 1900 MHz; Type: D1900V2


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(7.61, 7.61, 7.61); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 1900MHz/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.45 mW/g

Verification 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.2 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 8.26 W/kg SAR(1 g) = 3.98 mW/g; SAR(10 g) = 1.89 mW/g Maximum value of SAR (measured) = 4.43 mW/g

 $0 \, dB = 4.43 \, mW/g$

Verification Data (1 900 MHz Body)

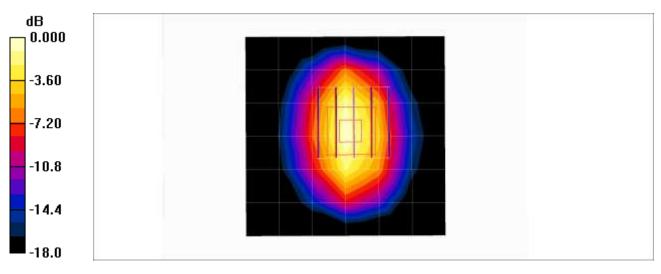
Test Laboratory: HCT CO., LTD

 Input Power
 100 mW (20 dBm)

 Liquid Temp:
 21.3 ℃

 Test Date:
 04/12/2016

DUT: Dipole 1900 MHz; Type: D1900V2


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.55 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(7.32, 7.32, 7.32); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 1900 MHz/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.33 mW/g

Verification 1900 MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.1 V/m; Power Drift = -0.011 dB Peak SAR (extrapolated) = 7.18 W/kg SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 4.39 mW/g

 $0 \, dB = 4.39 \, mW/g$

Verification Data (2 450 MHz Head)

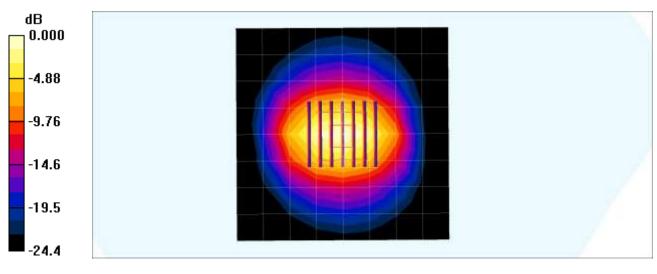
Test Laboratory: HCT CO., LTD

Input Power	100 mW (20 dBm)

 Liquid Temp:
 21.5 ℃

 Test Date:
 04/14/2016

DUT: Dipole 2450 MHz; Type: D2450V2


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.84 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.9, 6.9, 6.9); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: SAM
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 2450MHz/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 8.23 mW/g

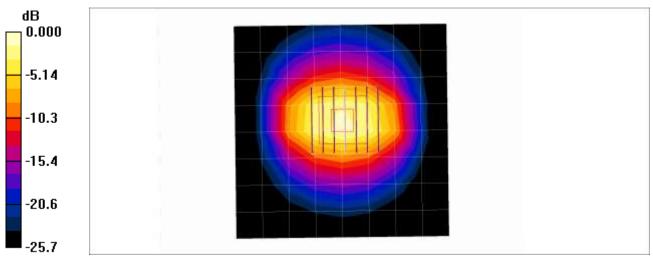
Verification 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.0 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.21 mW/g; SAR(10 g) = 2.32 mW/g Maximum value of SAR (measured) = 8.24 mW/g

 $0 \, dB = 8.24 mW/g$

Verification Data (2 450 MHz Body)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	21.5 ℃
Test Date:	04/14/2016

DUT: Dipole 2450 MHz; Type: D2450V2


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.92 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(6.91, 6.91, 6.91); Calibrated: 2015-11-24
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 2450MHz/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 6.84 mW/g

Verification 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.7 V/m; Power Drift = -0.044 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.19 mW/g; SAR(10 g) = 2.26 mW/g Maximum value of SAR (measured) = 8.31 mW/g

 $0 \, dB = 8.31 \, mW/g$

Verification Data (5.25 GHz Head)

Test Laboratory: HCT CO., LTD

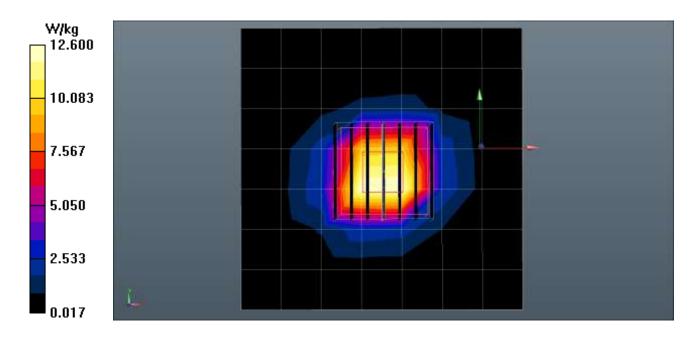
Input Power	100 mW(20 dBm)
Input Power	100 mW (20 dBm)

Liquid Temp: 19.8 °C

Test Date: 04/12/2016

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.655 S/m; ϵ_r = 36.749; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.94, 4.94, 4.94); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

5.25GHz Head Verification/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.6 W/kg

5.25GHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 71.71 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 34.4 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 20.9 W/kg

Verification Data (5.25 GHz Body)

Test Laboratory: HCT CO., LTD

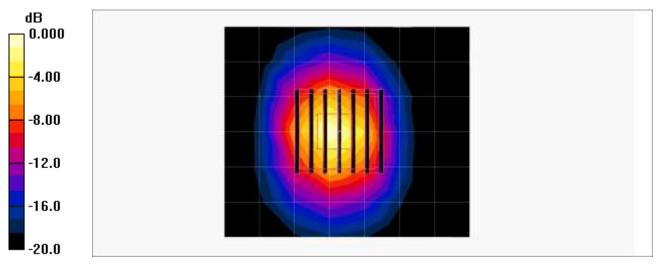
Input Bower	100 m M (20 dPm)
Input Power	100 mW (20 dBm)

Liquid Temp: 20.8 °C

Test Date: 04/15/2016

DUT: Dipole 5GHz; Type: D5000V2

Communication System: CW; Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 5.47 mho/m; ϵ_r = 47.6; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(4.24, 4.24, 4.24); Calibrated: 2015-11-24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 5250MHz/Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 19.1 mW/g

Verification 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 62.0 V/m; Power Drift = -0.081 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.35 mW/g; SAR(10 g) = 2.08 mW/g Maximum value of SAR (measured) = 19.0 mW/g

 $0 \, dB = 19.0 \, mW/g$

Verification Data (5.25 GHz Body)

Test Laboratory: HCT CO., LTD

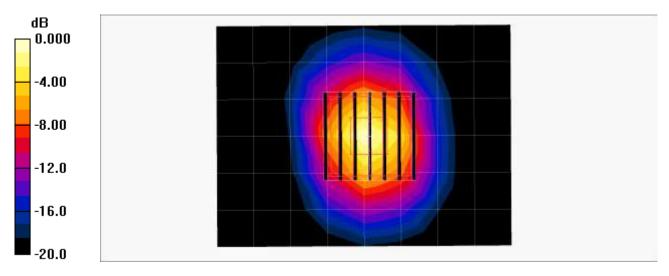
Input Power	100 mW (20 dBm)
Input Fower	

Liquid Temp: 21.1 °C

Test Date: 04/28/2016

DUT: Dipole 5GHz; Type: D5000V2

Communication System: CW; Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 5.27 mho/m; ϵ_r = 48.7; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.44, 4.44, 4.44); Calibrated: 2015-08-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

5250MHz Body Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 19.1 mW/g

5250MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm; Graded Ratio:1.4 Reference Value = 66.7 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 7.41 mW/g; SAR(10 g) = 2.08 mW/g Maximum value of SAR (measured) = 19.9 mW/g

 $0 \, dB = 19.9 \, mW/g$

Verification Data (5.6 GHz Head)

Test Laboratory: HCT CO., LTD

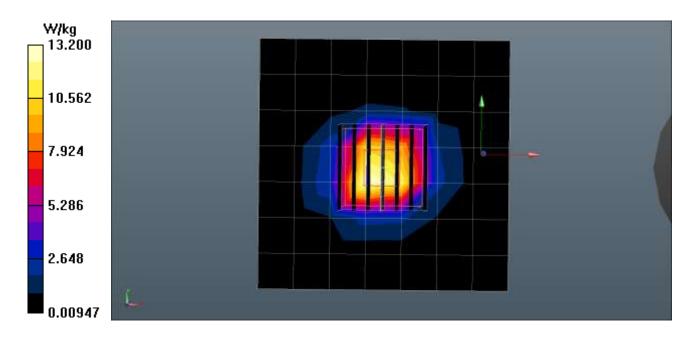
Input Power	100 mW (20 dBm)
input Fower	100 111 (20 0011)

Liquid Temp: 20.1 °C

Test Date: 04/14/2016

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.139 S/m; ϵ_r = 36.067; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.44, 4.44, 4.44); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

5.6GHz Head Verification/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.2 W/kg

5.6GHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm ; Graded Ratio:1.4 Reference Value = 69.69 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.8 W/kg **SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.22 W/kg**

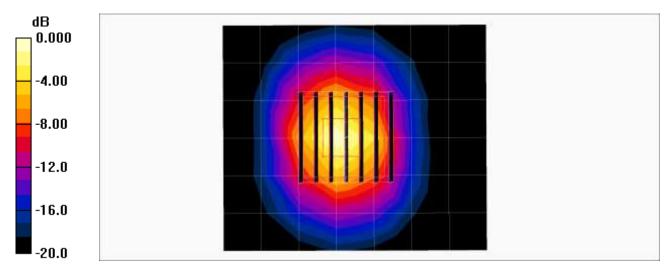
Maximum value of SAR (measured) = 20.4 W/kg

Verification Data (5.6 GHz Body)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW (20 dBm)
Liquid Temp:	21.2 ℃
Test Date:	04/18/2016

DUT: Dipole 5GHz; Type: D5000V2

Communication System: CW; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.84 mho/m; ϵ_r = 47.7; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(3.54, 3.54, 3.54); Calibrated: 2015-11-24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 5600MHz/Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 20.3 mW/g

Verification 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 65.0 V/m; Power Drift = -0.040 dBPeak SAR (extrapolated) = 33.1 W/kgSAR(1 g) = 7.86 mW/g; SAR(10 g) = 2.21 mW/g

 $0 \, dB = 20.3 mW/g$

Verification Data (5.75 GHz Head)

Test Laboratory: HCT CO., LTD

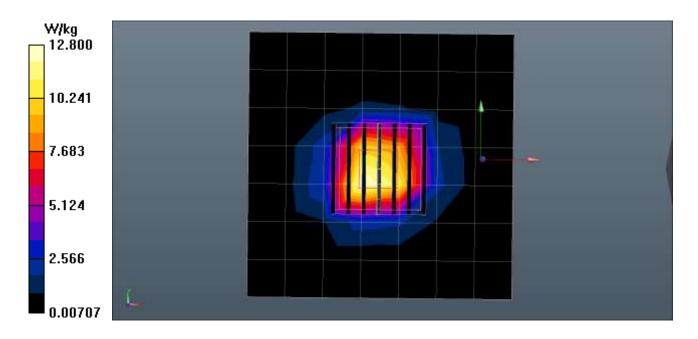
Input Power	100 mW (20 dBm)

Liquid Temp: 20.0 °C

Test Date: 04/15/2016

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.349 S/m; ϵ_r = 35.843; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3863; ConvF(4.65, 4.65, 4.65); Calibrated: 2015-08-27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn466; Calibrated: 2016-02-17
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (7);

5.75GHz Head Verification/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.8 W/kg

5.75GHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 67.53 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.49 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Verification Data (5.75 GHz Body)

Test Laboratory: HCT CO., LTD

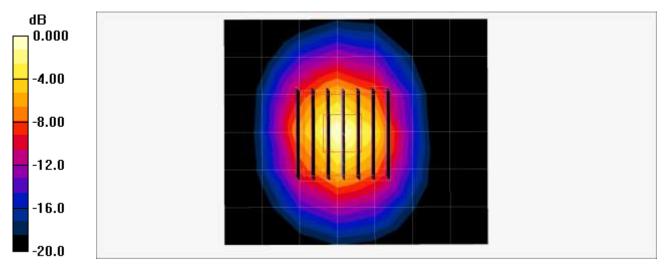
Input Power	100 mW (20 dBm)
Input Power	100 mW (20 dBm)

Liquid Temp: 21.0 °C

Test Date: 04/19/2016

DUT: Dipole 5GHz; Type: D5000V2

Communication System: CW; Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 6.06 mho/m; ϵ_r = 48.4; ρ = 1000 kg/m³ Phantom section: Center Section


DASY4 Configuration:

- Probe: EX3DV4 SN3797; ConvF(3.84, 3.84, 3.84); Calibrated: 2015-11-24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1225; Calibrated: 2016-03-17
- Phantom: Triple Flat Phantom
- Measurement SW: DASY4, V4.7 Build 80
- Postprocessing SW: SEMCAD, V1.8 Build 186

Verification 5750MHz/Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 20.5 mW/g

Verification 5750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio:1.4

Reference Value = 61.4 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 7.44 mW/g; SAR(10 g) = 2.11 mW/g Maximum value of SAR (measured) = 19.7 mW/g

 $0 \, dB = 19.7 \, mW/g$