PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 15.407 UNII 802.11a/n/ac

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 7/6 - 7/19/2016 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1607051195-R2.ZNF

FCC ID:	ZNFH918
APPLICANT:	LG Electronics MobileComm U.S.A
Application Type:	Certification
Model(s):	LGH918, LG-H918, H918, LGH910PR, H910PR, LG-H910PR
EUT Type:	Portable Handset
FCC Classification:	Unlicensed National Information Infrastructure (UNII)
FCC Rule Part(s):	Part 15.407
Test Procedure(s):	KDB 789033 D02 v01r02, KDB 662911 D01 v02r01

	Channel		Prin	nary	Secor	ndary	MIMO	/ CDD
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
1		5180 - 5240	28.510	14.55			51.349	17.11
2A	20	5260 - 5320	30.761	14.88			53.355	17.27
2C	20	5500 - 5720	27.669	14.42			50.189	17.01
3		5745 - 5825	28.576	14.56				17.14
1		5190 - 5230	23.388	13.69			40.528	16.08
2A	40	5270 - 5310	21.827	13.39			40.448	16.07
2C	40	5510 - 5710	25.003	13.98	N/A fo	r SISO	43.495	16.38
3		5755 - 5795	24.210	13.84			42.917	16.33
1		5210	13.243	11.22			22.597	13.54
2A		5290	12.764	11.06			22.425	13.51
2C	80	5530	10.351	10.15			20.137	13.04
2C		5690	18.707	12.72			32.996	15.18
3		5775	18.365	12.64			34.033	15.32

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02 v01r02. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 0Y1607051195-R2.ZNF) supersedes and replaces the previously issued test report (S/N: 0Y1607051195-R1.ZNF) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

ly Ortanez

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 1 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

TABLE OF CONTENTS

FCC P	ART 15.4	07 MEAS	UREMENT REPORT	3
1.0	INTRO	DUCTION	۷	4
	1.1	Scope		4
	1.2	PCTES	ST Test Location	4
2.0	PROD	UCT INFC	DRMATION	5
	2.1	Equipn	nent Description	5
	2.2	Device	e Capabilities	5
	2.3	Test C	onfiguration	6
	2.4	EMI Su	uppression Device(s)/Modifications	6
3.0	DESC	RIPTION (OF TESTS	7
	3.1	Evalua	ation Procedure	7
	3.2	AC Lin	e Conducted Emissions	7
	3.3	Radiat	ed Emissions	8
	3.4	Enviro	nmental Conditions	8
4.0	ANTEN	NNA REQI	UIREMENTS	9
5.0	MEAS	JREMEN	T UNCERTAINTY	10
6.0	TEST I	EQUIPME	NT CALIBRATION DATA	11
7.0	TEST I	RESULTS	3	12
	7.1	Summ	ary	12
	7.2	26dB E	Bandwidth Measurement – 802.11a/n/ac	13
	7.3	6dB Ba	andwidth Measurement – 802.11a/n/ac	46
	7.4	UNII O	Dutput Power Measurement – 802.11a/n/ac	
	7.5	Maxim	um Power Spectral Density – 802.11a/n/ac	65
	7.6	Freque	ency Stability	
	7.7	Radiat	ed Spurious Emission Measurements – Above 1GHz	113
		7.7.1	Primary Antenna Radiated Spurious Emission Measurements	116
		7.7.2	Secondary Antenna Radiated Spurious Emission Measurements	
		7.7.3	Primary Antenna Radiated Band Edge Measurements (20MHz BW)	140
		7.7.4	Primary Antenna Radiated Band Edge Measurements (40MHz BW)	147
		7.7.5	Primary Antenna Radiated Band Edge Measurements (80MHz BW)	
		7.7.6	Secondary Antenna Radiated Band Edge Measurements (20MHz BW)	
		7.7.7	Secondary Antenna Radiated Band Edge Measurements (40MHz BW)	
		7.7.8	Secondary Antenna Radiated Band Edge Measurements (80MHz BW)	
		7.7.9	MIMO Radiated Band Edge Measurements (20MHz BW)	
		7.7.10	MIMO Radiated Band Edge Measurements (40MHz BW)	
		7.7.11	MIMO Radiated Band Edge Measurements (80MHz BW)	
	7.8	Radiat	ed Spurious Emissions Measurements – Below 1GHz	
	7.9	Line-C	onducted Test Data	
8.0	CONC	LUSION		218
Appen	dix A. 802	2.11a Dual	I Tx	219
	A.3	Power	Spectral Density	221
	A.4	Dual T	x Radiated Restricted Band Edge Measurements	

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 2 01 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

MEASUREMENT REPORT FCC Part 15.407

APPLICANT:	LG Electronics MobileComm U.S.A			
APPLICANT ADDRESS:	1000 Sylvan Avenue			
	Englewood Cliffs, NJ	07632, United St	ates	
TEST SITE:	PCTEST ENGINEER	ING LABORATO	RY, INC.	
TEST SITE ADDRESS:	7185 Oakland Mills R	oad, Columbia, M	/ID 21046 USA	
FCC RULE PART(S):	Part 15.407			
BASE MODEL:	LGH918			
FCC ID:	ZNFH918			
FCC CLASSIFICATION:	Unlicensed National I	nformation Infras	tructure (UNII)	
Test Device Serial No.:	2820, 2622	Production	Pre-Production	Engineering
DATE(S) OF TEST:	7/6 - 7/19/2016			
TEST REPORT S/N:	0Y1607051195-R2.ZM	NF		

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.

- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 3 of 225
© 2016 DOTECT Engineering I	abaratan ina			VAC

© 2016 PCTEST Engineering Laboratory, Inc.

T

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (*See Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

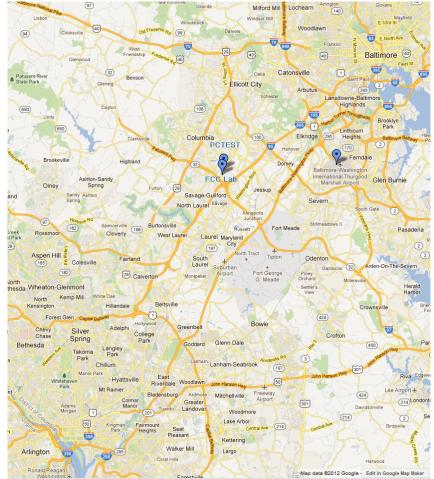


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 4 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 4 of 225	
© 2016 PCTEST Engineering Laboratory, Inc. V 4.0					

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG Portable Handset FCC ID: ZNFH918. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, MIMO, Bluetooth (1x, EDR, LE), NFC

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:	:
42	5210	56	5280	116	5580	157	5785
:	:	:	:	:	:	:	:
48	5240	64	5320	144	5720	165	5825

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

Band 1 Frequency (MHz)

5190

1

5230

Ch.

38

:

46

Band 2A

Frequency (MHz)
5270
:
5310

	Band 2C
Ch.	Frequency (MHz)
102	5510
:	:
110	5550
:	:
142	5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A		Band 2C				Band 3
Ch.	Frequency (MHz)		Ch.	Frequency (MHz)		Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
42	5210		58	5200		106	5530	155	5775
42	42 5210	58		5290		138	5690	155	5775

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 5 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 5 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0 05/16/2016

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v01r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

	Maximum Achievable Duty Cycles								
802 11 M	ada /Dand		Duty Cycle [%]						
802.11 1	802.11 Mode/Band		Secondary	мімо					
	а	99.4	99.4	N/A					
	n (HT20)	99.3	99.3	99.3					
5GHz	ac (HT20)	99.3	99.3	99.3					
5012	n (HT40)	99.3	99.3	99.2					
	ac (HT40)	99.3	99.3	99.2					
	ac (HT80)	98.4	98.4	98.5					

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SDM		CDD	
	Ingulations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11a	✓	×	×	×	√	✓
5GHz	11n (20MHz)	✓	×	✓	✓	√	✓
JGHZ	11n (40MHz)	✓	×	✓	✓	√	✓
	11ac (80MHz)	✓	×	✓	√	√	✓

3. Table 2-4. Frequency / Channel Operations

✓= Support ; × = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity – 2Tx Function

 Data Rate(s) Tested:
 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

 6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz)

 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n - 40MHz BW)

 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

 13/14.4, 26.28.9, 39/43.3, 52/57.8, 78/86.7, 104/115.6, 117/130, 130/144.4MBps (MIMO n/ac - 20MHz)

 156/173Mbps (MIMO ac - 20MHz)

 27/30, 54/60, 81/90, 108/120, 162/180, 216/240, 243,270, 270/300Mbps (MIMO n/ac - 40MHz) 324/360, 360/400Mbps (MIMO ac - 40MHz)

 58.5/65, 117/130, 175.5/195, 234/260, 351/390, 468/520, 526.5/585, 585/650, 702/780, 780/866.7Mbps (MIMO ac - 80MHz)

2.3 Test Configuration

The LG Portable Handset FCC ID: ZNFH918 was tested per the guidance of KDB 789033 D02 v01r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 6 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 6 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v01r02 were used in the measurement of **LG Portable Handset FCC ID: ZNFH918.**

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dege 7 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 7 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. A 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15° C to 35° C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 8 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the Portable Handset are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The LG Portable Handset FCC ID: ZNFH918 unit complies with the requirement of §15.203.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 9 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Fage 10 01 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	7/11/2016	Annual	7/11/2017	RE1
-	WL25-1	Conducted Cable Set (25GHz)	4/11/2016	Annual	4/11/2017	WL25-1
Agilent	8447D	Broadband Amplifier	6/12/2015	Annual	9/12/2016	1937A03348
Agilent	N9038A	MXE EMI Receiver	4/21/2016	Annual	4/21/2017	MY51210133
Agilent	N9030A	PXA Signal Analyzer (44GHz)	3/1/2016	Annual	3/1/2017	MY52350166
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Anritsu	MA2411B	Pulse Power Sensor	10/14/2015	Biennial	10/14/2017	846215
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	7/30/2015	Biennial	7/30/2017	121034
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
Espec	ESX-2CA	Environmental Chamber	3/4/2016	Annual	3/4/2017	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/26/2016	Biennial	4/26/2018	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014	Biennial	9/17/2016	135427
ETS Lindgren	3160-10	26.5-40 GHz Standard Gain Horn	6/17/2014	Biennial	9/17/2016	130993
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	11/11/2014	Biennial	11/11/2016	114451
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	4/26/2016	Annual	4/26/2017	251425001
K & L	11SH10-6000/T18000	High Pass Filter	7/11/2016	Annual	7/11/2017	11SH10-6000/T18000-1
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	11/18/2015	Annual	11/18/2016	NMLC-1
PCTEST	-	EMC Switch System	7/11/2016	Annual	7/11/2017	NM1
PCTEST	-	EMC Switch System	7/6/2016	Annual	7/6/2017	NM2
Rhode & Schwarz	TS-PR18	Pre-Amplifier	7/6/2016	Annual	7/6/2017	101622
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	7/11/2016	Annual	7/11/2017	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/16/2016	Annual	5/16/2017	100342
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100037
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/15/2016	Annual	7/15/2017	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/2/2015	Annual	8/2/2016	103200
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 11 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 11 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	<u>ZNFH918</u>
Method/System:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MC	DDE (TX)				
N/A	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1)	Maximum Conducted Output Power	<pre>< 250mW (23.98dBm) (5150-5250MHz) < 11 + 10log10(B) dBm (5250- 5350MHz) < 11 + 10log10(B) dBm (5470- 5725MHz) < 1W (30dBm) (5725-5850MHz)</pre>	CONDUCTED	PASS	Section 7.4
15.407 (a.1), (5)	Maximum Power Spectral Density	 < 11 dBm/MHz (5150-5250MHz, 5250- 5350MHz, 5470-5725MHz) < 30 dBm/500kHz (5725-5850MHz) 		PASS	Section 7.5
15.407(g)	Frequency Stability	N/A		PASS	Section 7.6
15.407(h)	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2),(3)	Undesirable Emissions	 <-27 dBm/MHz EIRP (outside 5150-5350MHz, 5470- 5725MHz, 5715-5860MHz) <-17 dBm/MHz EIRP (within 5715- 5725MHz and 5850-5860MHz) 	RADIATED	PASS	Section 7.7
15.205, 15.407(b.1), (5), (6)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		PASS	Section 7.7, 7.8
15.407	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.2.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.2.
- 6) Additional testing was performed on the secondary antenna.
- 7) SISO operations is not supported for secondary antenna in 802.11a/n/ac.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 12 of 225	
© 2016 PCTEST Engineering Laboratory Inc					

© 2016 PCTEST Engineering Laboratory, Inc.

7.2 26dB Bandwidth Measurement – 802.11a/n/ac

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

KDB 789033 D02 v01r02 - Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

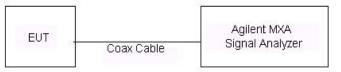


Figure 7-1. Test Instrument & Measurement Setup

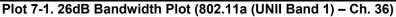
Test Notes

None.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 13 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			

Primary Antenna 26 dB Bandwidth Measurements

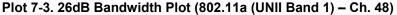
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	21.36
	5200	40	а	6	21.31
	5240	48	а	6	18.34
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.69
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	21.66
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	18.70
	5190	38	n (40MHz)	13.5/15 (MCS0)	41.26
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.04
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	83.33
	5260	52	а	6	18.53
	5280	56	а	6	21.41
	5320	64	а	6	21.46
ZA	5260	52	n (20MHz)	6.5/7.2 (MCS0)	18.79
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	21.61
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.52
	5270	54	n (40MHz)	13.5/15 (MCS0)	39.69
	5310	62	n (40MHz)	13.5/15 (MCS0)	41.42
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	84.23
	5500	100	а	6	21.40
	5580	116	а	6	18.54
	5720	144	а	6	21.48
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	21.53
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	18.78
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.83
Ва	5510	102	n (40MHz)	13.5/15 (MCS0)	41.62
	5550	110	n (40MHz)	13.5/15 (MCS0)	40.02
	5710	142	n (40MHz)	13.5/15 (MCS0)	39.83
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	83.61
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.68


Table 7-2. Conducted Bandwidth Measurements


FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 14 01 225	
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.				

05/16/2016





Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) – Ch. 40)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 15 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 15 of 225
2016 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016



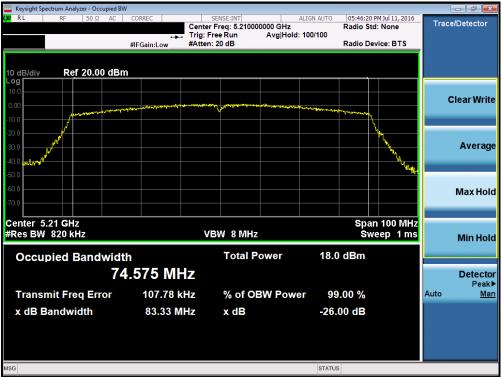
Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 16 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 48)

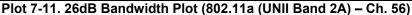
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 17 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			


Plot 7-7. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 19 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 18 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-9. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)



Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Deg. 10 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 19 of 225	
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 20 01 225
0 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

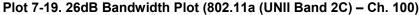
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 21 01 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 54)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 22 01 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

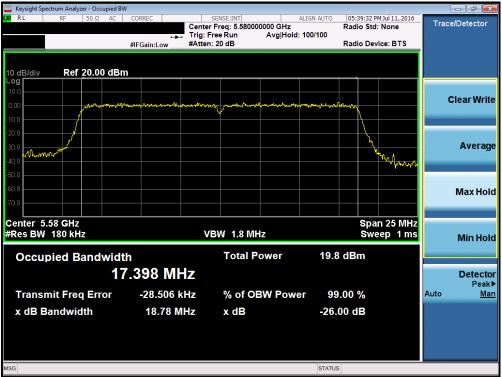


Plot 7-18. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) – Ch. 58)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dego 22 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 23 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

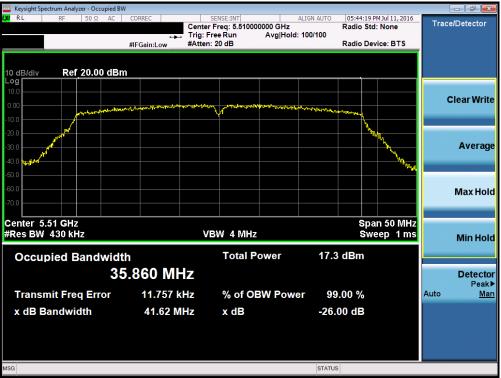

Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 24 of 225	
© 2016 PCTEST Engineering L	aboratory, Inc.	•		V 4.0	


Plot 7-21. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 144)

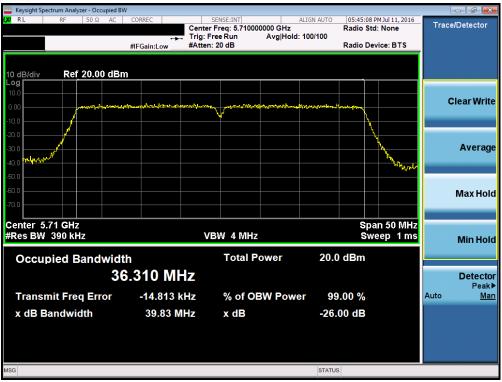
Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 25 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						


Plot 7-23. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 26 of 225	
© 2016 PCTEST Engineering L	aboratory, Inc.	•		V 4.0	


Plot 7-25. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 110)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 27 of 225	
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0	

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-28. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 106)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 28 of 225	
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0	

🔤 Keysight S	pectrum Ar	alyzer - O	ccupied	BW												
LXI RL	RF	50 9	Ω AC	CO	RREC			SENSE:INT Freq: 5.69	000000		ALIGN AUTO		B PM Jul 11, 201 td: None	6	Trace	e/Detector
						- 	Trig: Fi	ree Run			: 100/100					
				#IF	Gain:L	DW	#Atten:	20 dB				Radio D	evice: BTS	_		
10 dB/div	R	ef 20.	00 dE	Sm												
Log 10.0																
															c	lear Write
0.00		an Calmana	Angelet State	141-0-0 -0-	∼∿ [™]		*****	Warner	or the other the	in the second		ALCONTRACT OF ALCONTRACT				
-10.0	- 7												N			
-20.0	1												1			
-30.0	- ⁷												<u> </u>			Average
-40.0 Augusta													- Northurn	40		
-50.0																
-60.0																Max Hold
-70.0																maxinora
Center :							10	3147 O B4					an 100 MH			
#Res BW	V 82U	КПZ					V	3W 8M	ΠΖ			51	veep 1 m	S		Min Hold
Occu	pied	Ban	dwic	lth				Tota	l Pow	er	19.	5 dBm			_	
	pica	Built			47											
			1	J./	17	MH	1Z									Detector Peak▶
Trans	mit Fr	eq E	ror		4.4	183 k	Hz	% of	OBW	Powe	er 9	9.00 %		A	uto	Man
x dB l	Bandv	vidth			81.	68 M	Hz	x dB			-26	.00 dB				
MSG											STAT	IS				
											U.A.I				_	

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 225			
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 29 01 225			
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.						

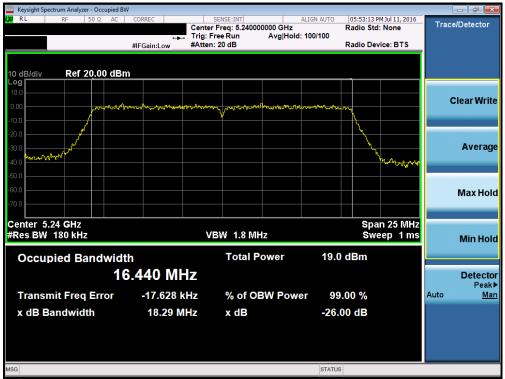
Secondary Antenna 26dB Bandwidth Measurements

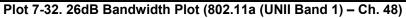
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]	
	5180	36	а	6	23.33	
	5200	40	а	6	21.35	
	5240	48	а	6	18.29	
+	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.91	
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	21.47	
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	18.78	
	5190	38	n (40MHz)	13.5/15 (MCS0)	41.49	
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.01	
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	83.11	
	5260	52	а	6	18.44	
	5280	56	а	6	21.48	
	5320	64	а	6	21.25	
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	18.77	
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	21.66	
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.54	
	5270	54	n (40MHz) 13.5/15 (MCS0)		39.58	
	5310	62	n (40MHz) 13.5/15 (MCS0) 41		41.92	
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	83.67	
	5500	100	а	a 6		
	5580	116	а	6	18.51	
	5720	144	a 6		21.41	
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	21.74	
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	18.82	
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.67	
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	42.15	
	5550	110	n (40MHz)	13.5/15 (MCS0)	40.09	
	5710	142	n (40MHz)	13.5/15 (MCS0)	39.92	
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)) 83.77	
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.72	

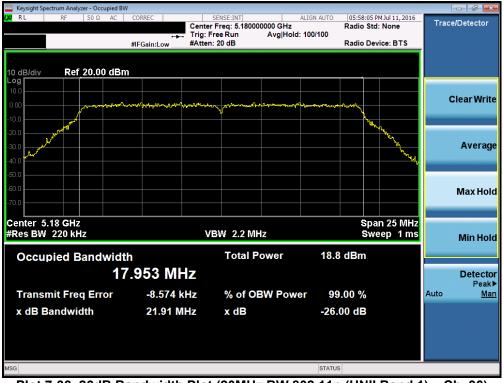
Table 7-3. Conducted Bandwidth Measurements

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 30 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.	•		V 4.0

🔤 Keysight Spectrun		- Occ	upied BV	V													
L <mark>XI</mark> RL F	F	50 Ω	AC	CORF	REC			ENSE:INT Freq: 5.1	80000	000 GHz	ALIGN	AUTO		:52:21 P dio Std	M Jul 11, 2016	Trac	e/Detector
						• • •	Trig: Fr	ee Run	00000	Avg Hold	d: 100/1	100					
				#IFG	ain:Lo	w	#Atten:	20 dB					Ra	dio Dev	rice: BTS		
10 dB/div	Ref 2	0.00) dBn	n									_				
Log 10.0																	
0.00		-08		- allor	المعالمة	14-14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		n the mark	- Handla		A				Clear Write
-10.0		/ "						1¥ 1 1					Υ,				
-20.0	www.m													mun	M.		
mund															Marker at		Average
-30.0															- And		Average
-40.0																	
-50.0																	
-60.0																	Max Hold
-70.0																	
Center 5.18	GH7													Sna	n 25 MHz		
#Res BW 22							VE	W 2.2	MH:	2					ep 1 ms		Min Hold
																	Minhold
Occupie	d Ba	nd	widt	h				Tota	l Po	wer		19.3	dE	3m			
			16	3.8	23	Мŀ	Z										Detector
	_	_															Peak►
Transmit	Freq	Err	or	-	24.8	97 k	Hz	% of	OB	W Pow	/er	99.	.00	%		Auto	<u>Man</u>
x dB Ban	dwidt	h			23.3	3 M	Hz	x dE	3			-26.0	00	dB			
MSG												STATUS					


Plot 7-30. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 36)

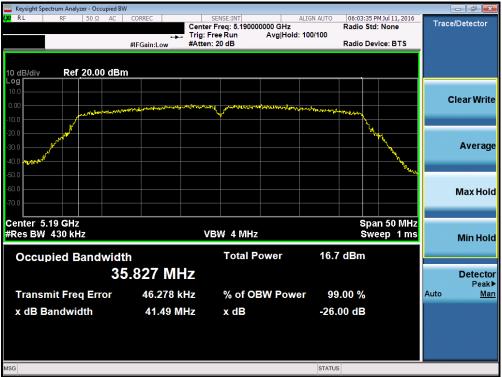



Plot 7-31. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 31 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-33. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 36)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 32 01 225	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-34. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-35. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 48)

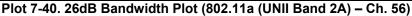
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 33 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-36. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

Plot 7-37. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

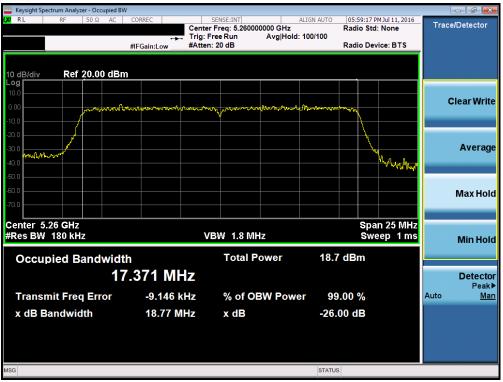
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 34 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

Plot 7-38. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)




Plot 7-39. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dego 25 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 35 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						



Plot 7-41. 26dB Bandwidth Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 26 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 36 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-42. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

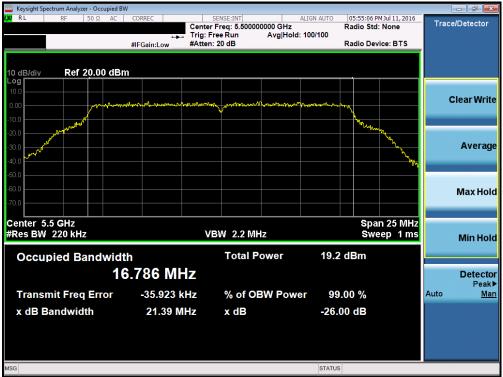
Plot 7-43. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

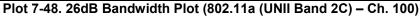
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 37 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

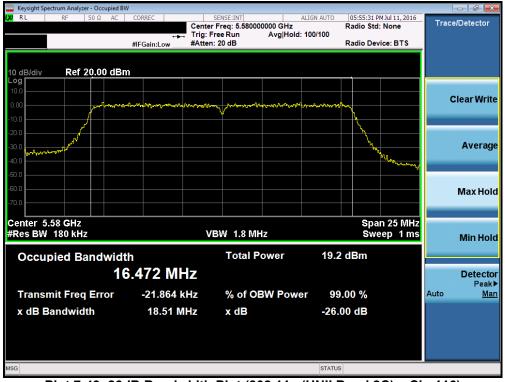
Plot 7-44. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-45. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 54)

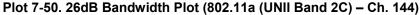
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 38 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0


Plot 7-46. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)




Plot 7-47. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) – Ch. 58)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 39 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0



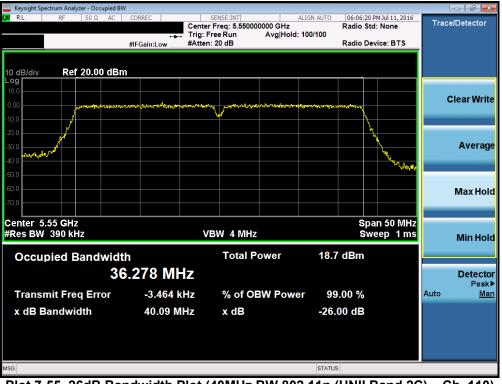
Plot 7-49. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deg. 40 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 40 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-51. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 41 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-52. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)


Plot 7-53. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 42 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-54. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

Plot 7-55. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deg. 42 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 43 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

05/16/2016

Plot 7-56. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-57. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 106)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 44 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 44 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

🔤 Keysight Spectrum Analyzer - Occupied B	W					
L <mark>X/</mark> RL RF 50Ω AC	CORREC	SENSE:INT Center Freg: 5.69000		0 06:12:11 PMJ Radio Std: N		Trace/Detector
		Trig: Free Run	Avg Hold: 100/100			
	#IFGain:Low	#Atten: 20 dB		Radio Device	e: BTS	
10 dB/div Ref 20.00 dB	n					
Log						
						Clear Write
0.00	and a star and a star and a star of the star of the star of the star and the star as a star of the sta	and the second s	and a second	www.weiner.en		
-10.0				\rightarrow		
-20.0						
-30.0					4	Average
-40.0 100 100 100 100 100 100 100 100 100					What we want	
-50.0					A A A A A A A A A A A A A A A A A A A	
-60.0						Max Hold
-70.0						Muxitold
Center 5.69 GHz					00 MHz	
#Res BW 820 kHz		VBW 8 MHz		Swee	p 1 ms	Min Hold
Occupied Bandwid	th	Total P	ower 18	3.8 dBm		
						_
/	5.727 MH	Z				Detector Peak▶
Transmit Freq Error	-16.284 kl	Hz % of OE	3W Power	99.00 %		Auto <u>Man</u>
x dB Bandwidth	81.72 MI	Hz xdB	2	6.00 dB		
	01.72 WI		-2	0.00 UB		
MSG			STA	TUS		

Plot 7-58. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 45 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Fage 45 01 225
© 2016 PCTEST Engineering L	aboratory, Inc.	·		V 4.0

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

KDB 789033 D02 v01r02 - Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

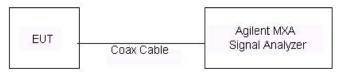


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 46 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 46 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

Primary Antenna 6 dB Bandwidth Measurements

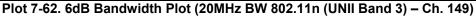
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.40
	5785	157	а	6	16.38
	5825	165	а	6	16.59
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.58
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.63
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.58
	5755	151	n (40MHz)	13.5/15 (MCS0)	36.34
	5795	159	n (40MHz)	13.5/15 (MCS0)	28.92
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	67.56

 Table 7-4. Conducted Bandwidth Measurements

Plot 7-59. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 47 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 47 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 4.0

Plot 7-60. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 157)



Plot 7-61. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deg. 49 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 48 of 225
2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-63. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 157)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 40 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 49 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

Plot 7-64. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

Plot 7-65. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 50 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 50 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

Plot 7-66. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-67. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) – Ch. 155)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E1 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 51 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Secondary Antenna 6dB Bandwidth Measurements

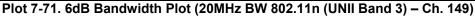
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.38
	5785	157	а	6	16.37
	5825	165	а	6	16.38
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.61
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.61
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.57
	5755	151	n (40MHz)	13.5/15 (MCS0)	36.41
	5795	159	n (40MHz)	13.5/15 (MCS0)	31.36
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	73.82

 Table 7-5. Conducted Bandwidth Measurements

Plot 7-68. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E2 of 22E
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 52 of 225
0 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

Plot 7-69. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 157)



Plot 7-70. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 52 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 53 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-72. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 157)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 54 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 54 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

Plot 7-73. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

Plot 7-74. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 151)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EE of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 55 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

Plot 7-75. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-76. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege EC of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 56 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407 (a.1)

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(18.53) = 23.68dBm$.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10log_{10}(26dB BW) = 11 dBm + <math>10log_{10}(18.54) = 23.68dBm$.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

KDB 789033 D02 v01r02 – Section E)3)b) Method PM-G KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

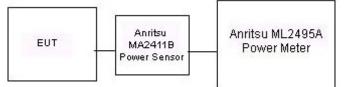


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFH918	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E7 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 57 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

Primary Antenna Conducted Output Power Measurements

			5GHz (20MHz) Conducted Power [dBm				
Freq [MHz]	Channel	Detector	IEEE 1	Fransmission	Mode		
			802.11a	802.11n	802.11ac		
5180	36	AVG	14.38	14.31	14.46		
5200	40	AVG	14.38	14.55	14.53		
5220	44	AVG	14.32	14.41	14.38		
5240	48	AVG	14.51	14.36	14.45		
5260	52	AVG	14.88	14.71	14.70		
5280	56	AVG	14.70	14.60	14.65		
5300	60	AVG	14.73	14.53	14.61		
5320	64	AVG	14.68	14.62	14.63		
5500	100	AVG	14.42	14.33	14.38		
5580	116	AVG	14.39	14.32	14.23		
5660	132	AVG	14.40	14.16	14.32		
5720	144	AVG	14.21	14.10	14.30		
5745	149	AVG	14.56	14.30	14.36		
5785	157	AVG	14.48	14.34	14.45		
5825	165	AVG	14.53	14.42	14.41		

Table 7-6. 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector		z) Conducted [.] [dBm]	
	Channel	Delector	IEEE Transm	ission Mode	
			802.11n	802.11ac	
5190	38	AVG	11.80	11.74	
5230	46	AVG	13.69	13.60	
5270	54	AVG	13.39	13.34	
5310	62	AVG	11.65	11.62	
5510	102	AVG	11.49	11.49	
5550	110	AVG	13.93	13.98	
5670	134	AVG	13.95	13.92	
5710	142	AVG	13.92	13.90	
5755	151	AVG	13.71	13.70	
5795	159	AVG	13.78	13.84	

Table 7-7. 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 59 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 58 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

5GHz (80MHz) Conducted Power [dBm]						
Freq [MHz]	Channel	nel Detector				
			802.11ac			
5210	42	AVG	11.22			
5290	58	AVG	11.06			
5530	106	AVG	10.15			
5690	138	AVG	12.72			
5775	155	AVG	12.64			

Table 7-8. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 59 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 59 01 225
© 2016 PCTEST Engineering L	aboratory, Inc.	·		V 4.0

Secondary Antenna Conducted Output Power Measurements

			5GHz (20MHz) Conducted Power [dBm]				
Freq [MHz]	Channel	Detector	IEEE Transmission Mode				
			802.11a	802.11n	802.11ac		
5180	36	AVG	13.50	13.39	13.40		
5200	40	AVG	13.79	13.37	13.30		
5220	44	AVG	13.51	13.41	13.32		
5240	48	AVG	13.49	13.50	13.36		
5260	52	AVG	13.54	13.41	13.41		
5280	56	AVG	13.47	13.49	13.30		
5300	60	AVG	13.47	13.34	13.35		
5320	64	AVG	13.45	13.43	13.40		
5500	100	AVG	13.15	13.08	13.09		
5580	116	AVG	13.50	13.25	13.33		
5660	132	AVG	13.55	13.40	13.47		
5720	144	AVG	13.56	13.52	13.45		
5745	149	AVG	13.65	13.55	13.51		
5785	157	AVG	13.38	13.56	13.57		
5825	165	AVG	13.32	13.38	13.44		

Table 7-9. 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	z) Conducted ˈ[dBm]				
	Channel	Detector	IEEE Transm	ission Mode			
			802.11n 802 AVG 10.28 1				
5190	38	AVG	10.28	10.21			
5230	46	AVG	12.34	12.40			
5270	54	AVG	12.70	12.73			
5310	62	AVG	10.71	10.61			
5510	102	AVG	10.21	10.18			
5550	110	AVG	12.41	12.30			
5670	134	AVG	12.71	12.67			
5710	142	AVG	12.69	12.68			
5755	151	AVG	12.54	12.60			
5795	159	AVG	12.72	12.72			

Table 7-10. 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 60 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 60 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

5GHz (80MHz) Conducted Power [dBm]						
Freq [MHz]	Channel	Detector	IEEE Transmission Mode			
			802.11ac			
5210	42	AVG	9.71			
5290	58	AVG	9.85			
5530	106	AVG	9.91			
5690	138	AVG	11.55			
5775	155	AVG	11.95			

 Table 7-11. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 61 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 61 01 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

MIMO Maximum Conducted Output Power Measurements

		5GHz (20MHz) Conducted Power [dBm]			
Channel	Detector	IEEE Transmission Mode			
		Primary Ant.	Secondary Ant.	MIMO	
36	AVG	14.31	13.39	16.88	
40	AVG	14.55	13.37	17.01	
44	AVG	14.41	13.41	16.95	
48	AVG	14.36	13.50	16.96	
52	AVG	14.71	13.41	17.12	
56	AVG	14.60	13.49	17.09	
60	AVG	14.53	13.34	16.99	
64	AVG	14.62	13.43	17.08	
100	AVG	14.33	13.08	16.76	
116	AVG	14.32	13.25	16.83	
132	AVG	14.16	13.40	16.81	
144	AVG	14.10	13.52	16.83	
149	AVG	14.30	13.55	16.95	
157	AVG	14.34	13.56	16.98	
165	AVG	14.42	13.38	16.94	
	36 40 44 48 52 56 60 64 100 116 132 144 149 157	36 AVG 40 AVG 44 AVG 48 AVG 52 AVG 56 AVG 60 AVG 64 AVG 100 AVG 116 AVG 132 AVG 144 AVG 149 AVG	Channel Detector IEEE 36 AVG 14.31 40 AVG 14.55 40 AVG 14.41 40 AVG 14.41 48 AVG 14.36 52 AVG 14.71 56 AVG 14.60 60 AVG 14.60 60 AVG 14.62 100 AVG 14.33 116 AVG 14.32 132 AVG 14.16 144 AVG 14.10 149 AVG 14.30	Channel Detector IEEE Transmission Mod 36 AVG 14.31 Secondary Ant. 36 AVG 14.31 13.39 40 AVG 14.55 13.37 44 AVG 14.41 13.41 48 AVG 14.36 13.50 52 AVG 14.71 13.41 56 AVG 14.60 13.49 60 AVG 14.62 13.34 64 AVG 14.62 13.43 100 AVG 14.33 13.08 116 AVG 14.32 13.25 132 AVG 14.16 13.40 144 AVG 14.10 13.52 149 AVG 14.30 13.55 157 AVG 14.34 13.56	

Table 7-12. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

			5GHz (20MHz) Conducted Power [dBm]			
Freq [MHz]	Channel	Detector	IEEE Transmission Mode			
			Primary Ant.	Secondary Ant.	MIMO	
5180	36	AVG	14.46	13.40	16.97	
5200	40	AVG	14.53	13.30	16.97	
5220	44	AVG	14.38	13.32	16.89	
5240	48	AVG	14.45	13.36	16.95	
5260	52	AVG	14.70	13.41	17.11	
5280	56	AVG	14.65	13.30	17.04	
5300	60	AVG	14.61	13.35	17.04	
5320	64	AVG	14.63	13.40	17.07	
5500	100	AVG	14.38	13.09	16.79	
5580	116	AVG	14.23	13.33	16.81	
5660	132	AVG	14.32	13.47	16.93	
5720	144	AVG	14.30	13.45	16.91	
5745	149	AVG	14.36	13.51	16.97	
5785	157	AVG	14.45	13.57	17.04	
5825	165	AVG	14.41	13.44	16.96	

Table 7-13. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 225		
0Y1607051195-R2.ZNF 7/6 - 7/19/2016		Portable Handset		Page 62 of 225		
© 2016 PCTEST Engineering Laboratory Inc						

© 2016 PCTEST Engineering Laboratory, Inc.

	Channel	Detector	5GHz (40MHz	er [dBm]	
Freq [MHz]	Channel	Detector	IEEE	Transmission Mod	le
			Primary Ant.	Secondary Ant.	MIMO
5190	38	AVG	11.80	10.28	14.12
5230	46	AVG	13.69	12.34	16.08
5270	54	AVG	13.39	12.70	16.07
5310	62	AVG	11.65	10.71	14.22
5510	102	AVG	11.49	10.21	13.91
5550	110	AVG	13.93	12.41	16.25
5670	134	AVG	13.95	12.71	16.38
5710	142	AVG	13.92	12.69	16.36
5755	151	AVG	13.71	12.54	16.17
5795	159	AVG	13.78	12.72	16.29

Table 7-14. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	5GHz (40MHz) Conducted Power [dBm]			
	Channer	Detector	IEEE .	Transmission Mode	e	
			Primary Ant.	Secondary Ant.	MIMO	
5190	38	AVG	11.74	10.21	14.05	
5230	46	AVG	13.60	12.40	16.05	
5270	54	AVG	13.34	12.73	16.06	
5310	62	AVG	11.62	10.61	14.15	
5510	102	AVG	11.49	10.18	13.89	
5550	110	AVG	13.98	12.30	16.23	
5670	134	AVG	13.92	12.67	16.35	
5710	142	AVG	13.90	12.68	16.34	
5755	151	AVG	13.70	12.60	16.20	
5795	159	AVG	13.84	12.72	16.33	

Table 7-15. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	5GHz (80MHz) Conducted Power [dBm]									
Freq [MHz]	Channel	Detector	IEEE Transmission Mode							
			Primary Ant.	Secondary Ant.	MIMO					
5210	42	AVG	11.22	9.71	13.54					
5290	58	AVG	11.06	9.85	13.51					
5530	106	AVG	10.15	9.91	13.04					
5690	138	AVG	12.72	11.55	15.18					
5775	155	AVG	12.64	11.95	15.32					

Table 7-16. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 62 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 63 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

Per KDB 662911 v02r01 Section E)1), the conducted powers at Primary and Secondary Antennas were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz the average conducted output power was measured to be 14.31 dBm for the Primary Antenna and 13.39 dBm for the Secondary Antenna.

Primary Antenna + Secondary Antenna = MIMO

(14.31 dBm + 13.39 dBm) = (26.98 mW + 21.83 mW) = 48.80 mW = 16.88 dBm

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 64 of 225			
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Fage 04 01 225			
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.						

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1)(2.5)

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. Method SA-1, as defined in KDB 789033 D02 v01r02, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

KDB 789033 D02 v01r02 – Section F KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

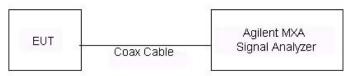


Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 65 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Primary Antenna Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]		Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
	5180	36	а	6	2.44	11.0	-8.56	Pass
	5200	40	а	6	2.64	11.0	-8.36	Pass
	5240	48	а	6	2.76	11.0	-8.24	Pass
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	2.40	11.0	-8.60	Pass
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	2.14	11.0	-8.86	Pass
B	5240	48	n (20MHz)	6.5/7.2 (MCS0)	2.27	11.0	-8.73	Pass
	5190	38	n (40MHz)	13.5/15 (MCS0)	-1.87	11.0	-12.87	Pass
	5230	46	n (40MHz)	13.5/15 (MCS0)	-1.21	11.0	-12.21	Pass
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-4.78	11.0	-15.78	Pass
	5260	52	а	6	2.58	11.0	-8.43	Pass
	5280	56	а	6	2.50	11.0	-8.50	Pass
	5320	64	а	6	2.60	11.0	-8.40	Pass
ZA	5260	52	n (20MHz)	6.5/7.2 (MCS0)	2.34	11.0	-8.66	Pass
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	2.08	11.0	-8.92	Pass
Bai	5320	64	n (20MHz)	6.5/7.2 (MCS0)	2.40	11.0	-8.60	Pass
	5270	54	n (40MHz)	13.5/15 (MCS0)	-2.08	11.0	-13.08	Pass
	5310	62	n (40MHz)	13.5/15 (MCS0)	-2.45	11.0	-13.45	Pass
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-5.99	11.0	-16.99	Pass
	5500	100	а	6	2.89	11.0	-8.11	Pass
	5580	116	а	6	2.80	11.0	-8.20	Pass
	5720	144	а	6	2.61	11.0	-8.39	Pass
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	2.67	11.0	-8.33	Pass
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	2.84	11.0	-8.17	Pass
Band	5720	144	n (20MHz)	6.5/7.2 (MCS0)	2.60	11.0	-8.40	Pass
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	-2.29	11.0	-13.29	Pass
	5550	110	n (40MHz)	13.5/15 (MCS0)	-0.81	11.0	-11.81	Pass
	5710	142	n (40MHz)	13.5/15 (MCS0)	-0.82	11.0	-11.82	Pass
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-6.66	11.0	-17.66	Pass
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.99	11.0	-15.99	Pass

 Table 7-17. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 66 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-77. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)

Plot 7-78. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 67 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 67 01 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

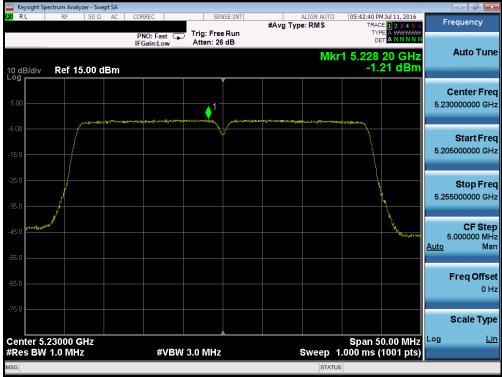
	pectrum Analyze										
X/RL	RF	50 Ω A	AC CC	ORREC		SENSE:INT	#Avg Typ	ALIGN AUTO	TRAC	MJul 11, 2016 DE <mark>1 2 3 4 5</mark> 6	Frequency
				PNO: Fast Gain:Low		Free Run : 26 dB			TYI DI		
								Mkr1	5.242 9	00 GHz	Auto Tune
10 dB/div Log	Ref 15.	00 dBr	m						2.	76 dBm	
							.1				Center Freq
5.00		and the second second	harry and makes		****	me and and any store		Lauferror roller area			5.24000000 GHz
-5.00		/ Mar				- Street			1		
-5.00											Start Freq
-15.0									\vdash		5.227500000 GHz
-25.0	,¢								<u>ر ا</u>		Stop Freq
-35.0											5.252500000 GHz
and water	ward and a start of the start o									2	
-45.0										Jerrow and the second s	CF Step 2.500000 MHz
											<u>Auto</u> Man
-55.0											
-65.0											Freq Offset
											0 Hz
-75.0											Coole Trans
											Scale Type
	.24000 GH	z							Span 2	5.00 MHz	Log <u>Lin</u>
	V 1.0 MHz			#VE	3W 3.0 M	Hz				(1001 pts)	
MSG								STATUS	<u> </u>		

Plot 7-80. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

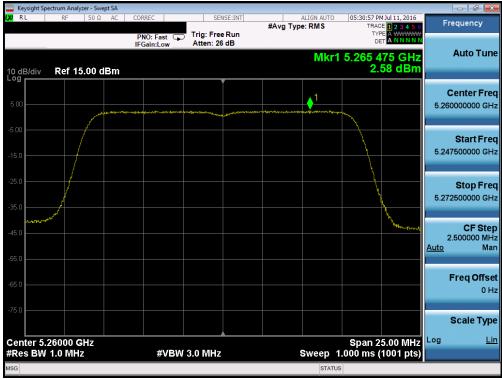
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 69 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 68 of 225
© 2016 PCTEST Engineering L		V 4.0		

	Spectrum Analyze								
X/RL	RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type	LIGN AUTO	TRAC	I Jul 11, 2016	Frequency
			PNO: Fast G	Atten: 26 dB		Micud			Auto Tur
10 dB/div Log	Ref 15.	00 dBm				WIKFT	5.203 4	00 GHz 14 dBm	
				Ĭ	1				Center Fre
5.00		and the second second	gerge-arthle-lot-extilizer-children	what is a new product of the second	an-10mmarkalan (Sinimarkalan)	www.com	and the second second		5.200000000 GH
-5.00									Start Fre
-15.0	کر کلکس						<u> </u>	1	5.187500000 GH
-25.0	and the second s							Net and the second seco	Stop Fre
-35.0	~							he have	5.212500000 GH
-45.0									CF Ste
									2.500000 MH <u>Auto</u> Ma
-55.0									Freq Offs
-65.0									01
-75.0									Scale Typ
Contor	5 20000 CL						Enon 3	5 00 MILI-	
	5.20000 GH N 1.0 MHz	12	#VBV	V 3.0 MHz		weep 1	span 2 .000 ms (5.00 MHz 1001 pts)	
ISG						STATUS			

Plot 7-81. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)


FCC ID: ZNFH918	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager

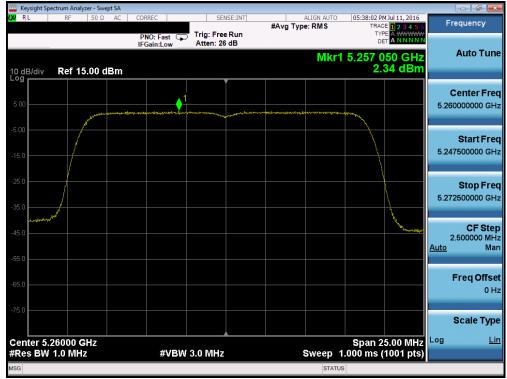
		V INGINITING LABORATORY, INC.	(CERTIFICATION)	Quality Manager		
	Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 225		
	0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset	Fage 09 01 225		
© 2016 PCTEST Engineering Laboratory, Inc.						


Plot 7-84. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 70 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 70 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

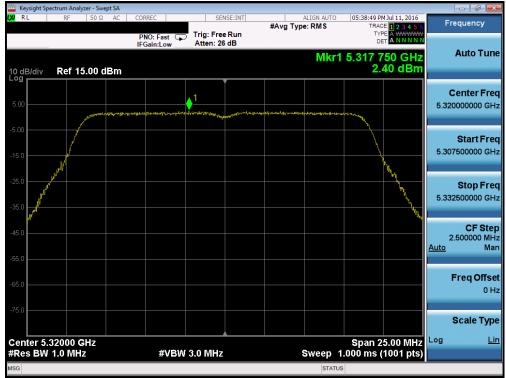
Plot 7-86. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 71 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 71 01 225	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-87. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-88. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 72 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-89. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) – Ch. 52)

Plot 7-90. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 72 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 73 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-91. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

 FCC ID: ZNFH918
 FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)
 Image: Certification

 Test Report S/N:
 Test Dates:
 EUT Type:

 DV4007201405 D0 7M5
 7/0 7/00/0010
 Destrice Unit dest

Portable Handset


Plot 7-93. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

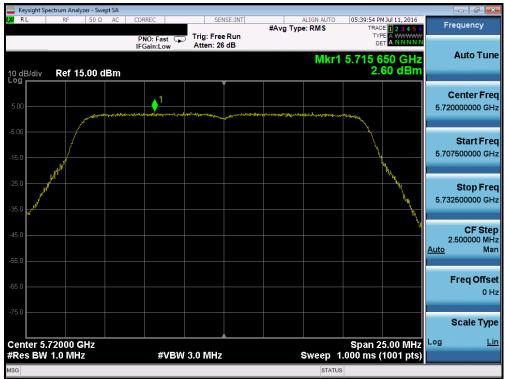

Plot 7-94. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 75 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 75 of 225	
© 2016 PCTEST Engineering L	aboratory, Inc.	•		V 4.0	

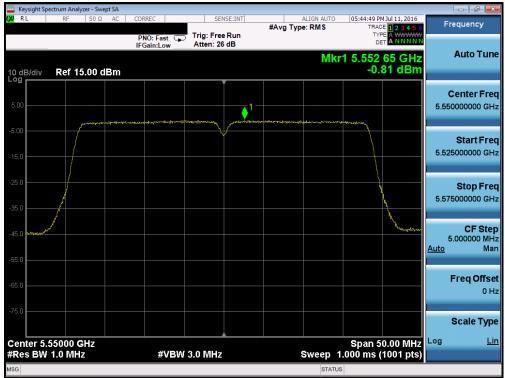
Plot 7-96. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 76 of 225			
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 76 of 225			
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.						




Plot 7-98. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 77 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 77 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-100. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 79 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 78 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-101. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

Plot 7-102. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 79 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-103. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-104. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 80 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

	pectrum Anal											d 💽
RL	RF	50 Ω	AC	CORREC		SENSE:INT		ALIGN AUTO	05:48:33 PM Ju		Frequer	nev
				PNO: Fast IFGain:Low		: Free Run en: 26 dB	#Avg Typ	DE: RMS	TYPE	23456 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		
0 dB/div	Ref 1	5.00 d	Bm					Mk	r1 5.677 a -4.99	8 GHz) dBm	Auto	o Tur
^{og}						Ť					Cente	r Fre
5.00					▲ ¹						5.6900000	00 GH
5.00	ſ	-Brand and a second second	جـمر <u>ام ا</u> مرام رار	- and the general states	and a state of the state of the		and the second	Veren Weller	mannen		Star	tFre
15.0											5.6400000	00 GI
25.0											Sto	p Fr
35.0									l l		5.7400000	00 GI
45.0	1								h h	L.		F Ste
55.0	~~									homeno	10.0000 <u>Auto</u>	00 M M
											Freq	Offs
65.0												0
75.0											Scale	е Ту
enter 5	.69000 (SHz							Span 100	.0 MHz	Log	L
Res BW				#VI	BW 3.0 M	ЛНz		Sweep 1	Span 100 .000 ms (10	01 pts)		
SG								STATUS				

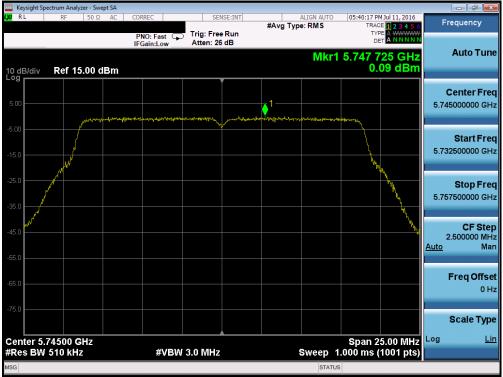
Plot 7-105. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 138)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dege 01 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 81 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]	Pass / Fail
	5745	149	а	6	0.20	30.0	-29.80	Pass
	5785	157	а	6	0.21	30.0	-29.79	Pass
	5825	165	а	6	1.74	30.0	-28.26	Pass
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	0.09	30.0	-29.92	Pass
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	-0.22	30.0	-30.22	Pass
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	0.34	30.0	-29.66	Pass
	5755	151	n (40MHz)	13.5/15 (MCS0)	-3.63	30.0	-33.63	Pass
	5795	159	n (40MHz)	13.5/15 (MCS0)	-1.91	30.0	-31.91	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-6.67	30.0	-36.67	Pass

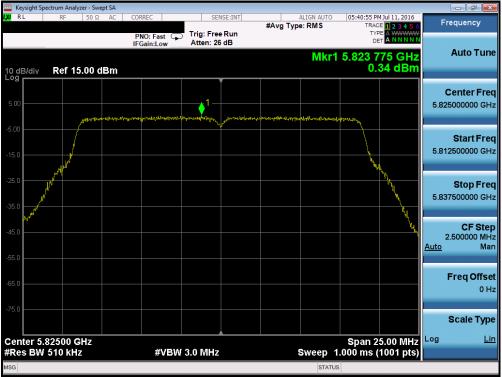
Table 7-18. Band 3 Conducted Power Spectral Density Measurements

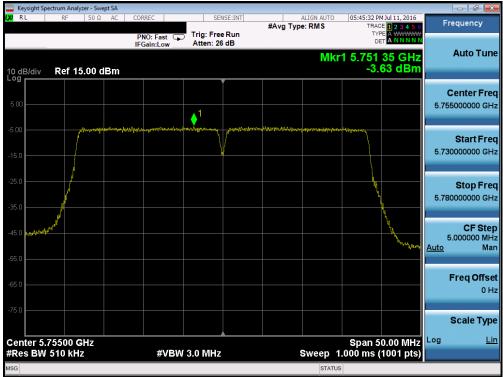
FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 225		
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 82 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					




Plot 7-108. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 225	
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 83 of 225	
© 2016 PCTEST Engineering L	aboratory, Inc.	•		V 4.0	




Plot 7-110. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 94 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 84 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

Plot 7-112. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 95 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 85 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

Plot 7-114. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH918		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 96 of 225
0Y1607051195-R2.ZNF	7/6 - 7/19/2016	Portable Handset		Page 86 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				