



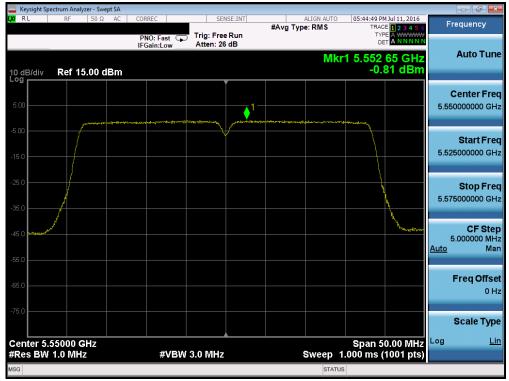
Plot 7-96. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 76 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 76 01 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

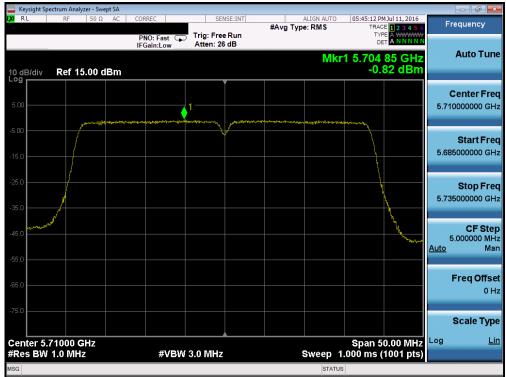

Plot 7-98. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 77 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 77 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				




Plot 7-100. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 79 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 78 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-101. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

Plot 7-102. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 79 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-103. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-104. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 80 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

🔤 Keysight Spe													×
LXU RL	RF	50 Ω	AC	CORREC	ast 🖵		ense:INT	#Avg Typ	ALIGN AUTO	TRAC	M Jul 11, 2016 DE 1 2 3 4 5 6 PE A WWWWW ET A N N N N N	Frequency	y
10 dB/div	Ref 15	.00 dE	3m	IFGain:	Low	Atten:	26 dB		M	(r1 5.67	7 8 GHz 99 dBm	Auto T	une
5.00					1		_					Center 5.690000000	
-5.00		Pro-2017104	n-Mittilander Ar	-3-2-10-10-10-10-10-10-10-10-10-10-10-10-10-	and the second	aper 1997, de Specifie (en Sec	* / **********************************	Anne All Stor Party and a started	Vester	- Introduction		Start I 5.640000000	
-25.0												Stop I 5.740000000	
-45.0	/											CF \$ 10.000000 <u>Auto</u>	Ste MH Ma
-65.0												Freq Of	ffse 0 H
-75.0												Scale 1	Гур
Center 5.6 #Res BW					#VBW	3.0 MH	z		Sweep 1	Span 1 .000 ms (00.0 MHz (1001 pts)	Log	Li
MSG									STATUS	5			

Plot 7-105. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 138)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 91 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 81 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

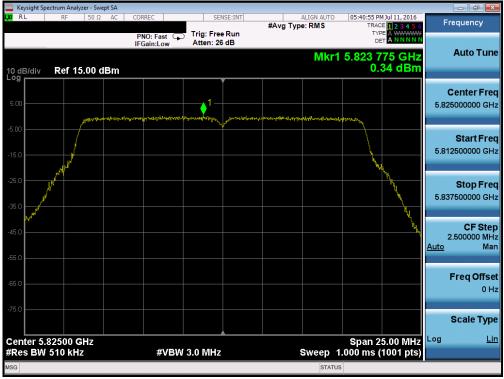
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]	Pass / Fail
	5745	149	а	6	0.20	30.0	-29.80	Pass
	5785	157	а	6	0.21	30.0	-29.79	Pass
	5825	165	а	6	1.74	30.0	-28.26	Pass
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	0.09	30.0	-29.92	Pass
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	-0.22	30.0	-30.22	Pass
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	0.34	30.0	-29.66	Pass
	5755	151	n (40MHz)	13.5/15 (MCS0)	-3.63	30.0	-33.63	Pass
	5795	159	n (40MHz)	13.5/15 (MCS0)	-1.91	30.0	-31.91	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-6.67	30.0	-36.67	Pass

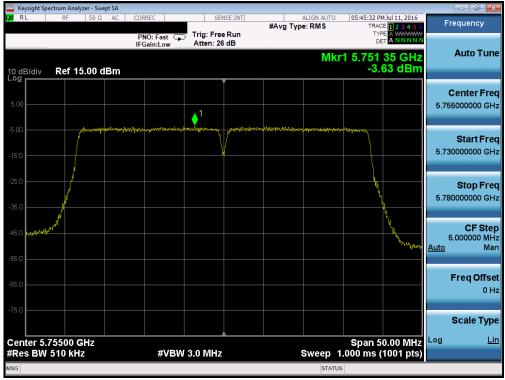
Table 7-18. Band 3 Conducted Power Spectral Density Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 82 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

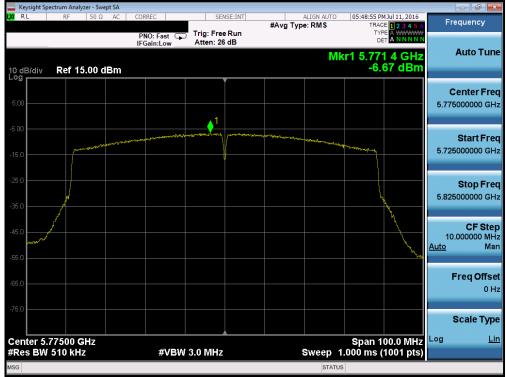
Plot 7-108. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 83 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 65 01 225	
© 2016 PCTEST Engineering Laboratory, Inc.					




Plot 7-110. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 84 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset	ble Handset			
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-112. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 95 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 85 of 225	
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-114. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 96 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 86 of 225	
© 2016 PCTEST Engineering Laboratory. Inc.					

Secondary Antenna Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
	5180	36	а	6	2.64	11.0	-8.36	Pass
	5200	40	а	6	1.95	11.0	-9.05	Pass
	5240	48	а	6	1.79	11.0	-9.21	Pass
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	1.49	11.0	-9.51	Pass
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	1.86	11.0	-9.14	Pass
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	1.29	11.0	-9.71	Pass
	5190	38	n (40MHz)	13.5/15 (MCS0)	-2.12	11.0	-13.12	Pass
	5230	46	n (40MHz)	13.5/15 (MCS0)	-2.89	11.0	-13.89	Pass
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-6.29	11.0	-17.29	Pass
	5260	52	а	6	1.80	11.0	-9.20	Pass
	5280	56	а	6	2.16	11.0	-8.84	Pass
	5320	64	а	6	2.36	11.0	-8.64	Pass
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	1.79	11.0	-9.21	Pass
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	1.98	11.0	-9.02	Pass
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	1.69	11.0	-9.31	Pass
	5270	54	n (40MHz)	13.5/15 (MCS0)	-2.29	11.0	-13.29	Pass
	5310	62	n (40MHz)	13.5/15 (MCS0)	-2.25	11.0	-13.25	Pass
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-6.27	11.0	-17.27	Pass
	5500	100	а	6	2.10	11.0	-8.90	Pass
	5580	116	а	6	2.14	11.0	-8.86	Pass
	5720	144	а	6	2.06	11.0	-8.94	Pass
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	1.74	11.0	-9.26	Pass
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	3.02	11.0	-7.98	Pass
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	1.54	11.0	-9.46	Pass
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	-2.82	11.0	-13.82	Pass
	5550	110	n (40MHz)	13.5/15 (MCS0)	-0.77	11.0	-11.77	Pass
	5710	142	n (40MHz)	13.5/15 (MCS0)	-1.63	11.0	-12.63	Pass
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-7.20	11.0	-18.20	Pass
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-5.89	11.0	-16.89	Pass

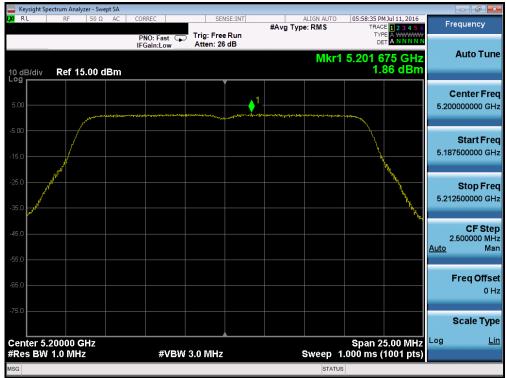
Table 7-19. Conducted Power Spectral Density Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 97 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 87 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-115. Power Spectral Density Plot (802.11a (UNII Band 1) – Ch. 36)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 88 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 66 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

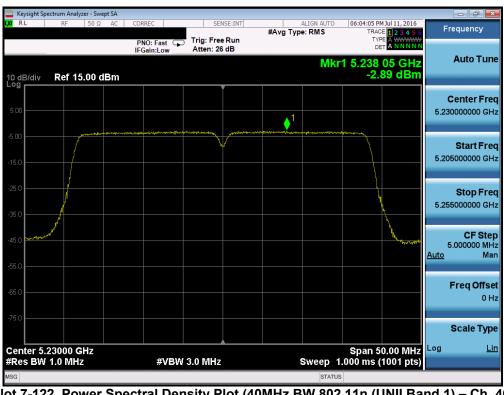
	Spectrum Analyzer - S							
L <mark>XI</mark> RL	RF 50	Ω AC	CORREC	SENSE:INT	ALIGN #Avg Type: RM	IS TRAC	MJul 11, 2016 E 1 2 3 4 5 6	Frequency
			PNO: Fast IFGain:Low	Trig: Free Run Atten: 26 dB		TYF		Auto Tune
10 dB/div Log	Ref 15.00	dBm			N	/kr1 5.245 8 1.	75 GHz 79 dBm	Auto Tunc
				ľ		1		Center Freq
5.00		ato a constant	4940-1479-1	and and and descent for the second section of the	n proper part and the all of the second s	enversered entre		5.240000000 GHz
-5.00	- /							Start Freq
-15.0								5.227500000 GHz
-25.0								Stop Freq
-35.0						}	۱ ک	5.252500000 GHz
-45.0							June - de la contrate	CF Step
								2.500000 MHz <u>Auto</u> Man
-55.0								Freq Offset
-65.0								0 Hz
-75.0								Coole Trme
								Scale Type
	5.24000 GHz V 1.0 MHz		#VBW	3.0 MHz	Swe	Span 2 ep 1.000 ms (5.00 MHz 1001 pts)	Log <u>Lin</u>
MSG						STATUS		



Plot 7-118. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

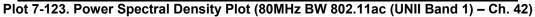
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 89 of 225
2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-119. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)


Plot 7-120. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 90 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 90 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-121. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)




Plot 7-122. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 91 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-124. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 92 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-126. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 93 of 225
2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-127. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

Plot 7-128. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

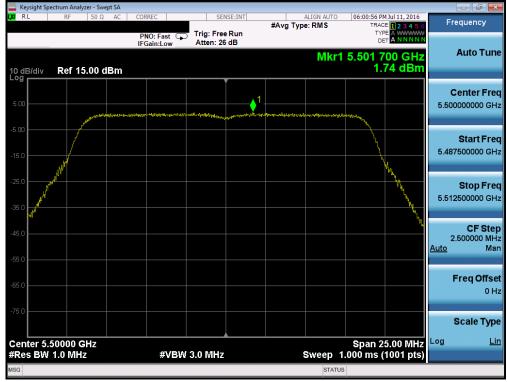
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 04 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 94 of 225
0 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-130. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage OF of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 95 of 225	
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-132. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 06 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 96 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

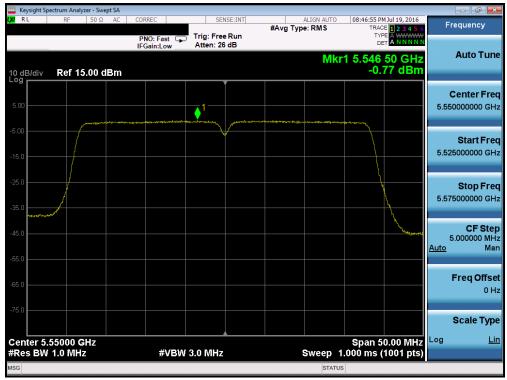

Plot 7-134. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 97 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-136. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

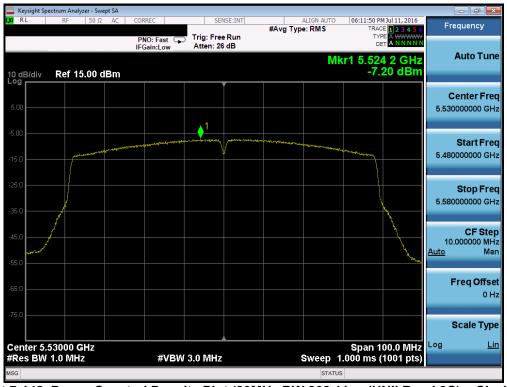
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 98 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 96 01 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-137. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)


Plot 7-138. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset	Page 99 of 225			
© 2016 PCTEST Engineering Laboratory, Inc.						

Plot 7-139. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)


Plot 7-140. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 225			
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset	Page 100 of 225				
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.						

Plot 7-141. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-142. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 225			
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 101 of 225			
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.						

	ectrum Analy	zer - Swept S	5A									
X/RL	RF	50 Ω A		DRREC		Run	#Avg Typ	ALIGN AUTO	TRAC	4 Jul 11, 2016 E 1 2 3 4 5 6 E A WWWWW T A N N N N N	Freque	ncy
10 dB/div Log	Ref 15	5.00 dBi		FGain:Low	Atten: 26			M	(r1 5.70)	2 8 GHz 89 dBm	Aut	o Tune
5.00							<u> </u>				Cento 5.6900000	e r Frec 000 GH:
-5.00	\int	nefetalen keiteren keiter	Yest-9257-999-00-	nef jagen differ sin ef state die sefere		-			formation and participation of		Sta 5.6400000	rt Free 000 GH
-25.0											Sto 5.7400000	p Fre 000 GH
-45.0										A market	C 10.0000 <u>Auto</u>	F Ste 100 MH Ma
-55.0											Freq	Offse 0 H
-75.0												е Тур
Center 5. #Res BW				#VBV	/ 3.0 MHz			Sweep 1	Span 1 .000 ms (00.0 MHz 1001 pts)	Log	Li
MSG								STATUS	5			

Plot 7-143. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 138)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 225			
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 102 of 225			
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.						

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]	Pass / Fail
	5745	149	а	6	-0.64	30.0	-30.64	Pass
	5785	157	а	6	-0.18	30.0	-30.18	Pass
	5825	165	а	6	-0.05	30.0	-30.05	Pass
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	-0.89	30.0	-30.89	Pass
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	-0.29	30.0	-30.29	Pass
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	-0.92	30.0	-30.92	Pass
	5755	151	n (40MHz)	13.5/15 (MCS0)	-4.43	30.0	-34.43	Pass
	5795	159	n (40MHz)	13.5/15 (MCS0)	-3.33	30.0	-33.33	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-7.00	30.0	-37.00	Pass

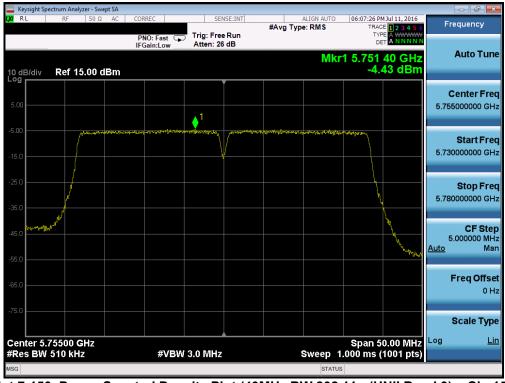
Table 7-20. Band 3 Conducted Power Spectral Density Measurements

Plot 7-144. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

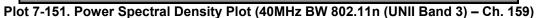
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 103 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 103 01 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-146. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 104 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 104 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-148. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 105 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					



Plot 7-150. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 106 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

Keysight Spectrum Analyzer - Swept SA					- 6 -
RL RF 50 Ω AC		SENSE:INT	ALIGN AU #Avg Type: RMS	TO 06:09:07 PM Jul 11, 2016 TRACE 12345 TYPE A WWWW DET A N N N N	Frequency
0 dB/div Ref 15.00 dBm	IFGain:Low Aut	en. 20 ab	N	lkr1 5.792 85 GHz -3.33 dBm	Auto Tun
5.00		1 1			Center Fre 5.795000000 G⊦
15.0	Sand Tanana and a start of the		and and a second and a second	All and a start and a start a star	Start Fre 5.770000000 GF
35.0					Stop Fre 5.82000000 G⊦
15.0					CF Ste 5.000000 Mł <u>Auto</u> Mł
5.0					Freq Offs 01
center 5.79500 GHz				Spap 50 00 MHz	Scale Typ
Res BW 510 kHz	#VBW 3.0 M	ИНz		Span 50.00 MHz 1.000 ms (1001 pts)	

Plot 7-152. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 107 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Fage 107 01 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Summed MIMO Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]		Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	2.40	1.49	4.98	11.0	-6.02	Pass
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	2.14	1.86	5.01	11.0	-5.99	Pass
d 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	2.27	1.29	4.82	11.0	-6.18	Pass
Band	5190	38	n (40MHz)	13.5/15 (MCS0)	-1.87	-2.12	1.02	11.0	-9.98	Pass
-	5230	46	n (40MHz)	13.5/15 (MCS0)	-1.21	-2.89	1.04	11.0	-9.96	Pass
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-4.78	-6.29	-2.46	11.0	-13.46	Pass
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	2.34	1.79	5.08	11.0	-5.92	Pass
-	5280	56	n (20MHz)	6.5/7.2 (MCS0)	2.08	1.98	5.04	11.0	-5.96	Pass
4 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	2.40	1.69	5.07	11.0	-5.93	Pass
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	-2.08	-2.29	0.83	11.0	-10.17	Pass
-	5310	62	n (40MHz)	13.5/15 (MCS0)	-2.45	-2.25	0.66	11.0	-10.34	Pass
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-5.99	-6.27	-3.12	11.0	-14.12	Pass
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	2.67	1.74	5.24	11.0	-5.76	Pass
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	2.84	3.02	5.94	11.0	-5.06	Pass
0	5720	144	n (20MHz)	6.5/7.2 (MCS0)	2.60	1.54	5.11	11.0	-5.89	Pass
1 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	-2.29	-2.82	0.47	11.0	-10.53	Pass
Band	5550	110	n (40MHz)	13.5/15 (MCS0)	-0.81	-0.77	2.22	11.0	-8.78	Pass
-	5710	142	n (40MHz)	13.5/15 (MCS0)	-0.82	-1.63	1.81	11.0	-9.19	Pass
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-6.66	-7.20	-3.91	11.0	-14.91	Pass
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.99	-5.89	-2.41	11.0	-13.41	Pass

Table 7-21. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

_		Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	-	Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]	Pass / Fail
		5745	149	n (20MHz)	6.5/7.2 (MCS0)	0.09	-0.89	2.64	30.0	-27.36	Pass
		5785	157	n (20MHz)	6.5/7.2 (MCS0)	-0.22	-0.29	2.76	30.0	-27.24	Pass
	d 3	5825	165	n (20MHz)	6.5/7.2 (MCS0)	0.34	-0.92	2.77	30.0	-27.23	Pass
	Band	5755	151	n (40MHz)	13.5/15 (MCS0)	-3.64	-4.43	-1.00	30.0	-31.00	Pass
-		5795	159	n (40MHz)	13.5/15 (MCS0)	-1.91	-3.34	0.44	30.0	-29.56	Pass
		5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-6.67	-7.00	-3.82	30.0	-33.82	Pass

Table 7-22. Band 3 MIMO Conducted Power Spectral Density Measurements

Note:

Per KDB 662911 v02r01 Section E)2), the power spectral density at Primary Antenna and Secondary Antenna were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz the average conducted power spectral density was measured to be 2.40 dBm for Primary Antenna and 1.49 dBm for Secondary Antenna.

Primary Antenna + Secondary Antenna = MIMO

(2.40 dBm + 1.49 dBm) = (1.74 mW + 1.41 mW) = 3.15 mW = 4.98 dBm

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 108 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Frequency Stability 7.6 <u>§15.407(g)</u>

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,180,000,000	Hz
CHANNEL:	36	_
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	5,179,999,962	-38	-0.00000073
100 %		- 30	5,180,000,214	214	0.00000413
100 %		- 20	5,179,999,893	-107	-0.00000207
100 %		- 10	5,180,000,051	51	0.00000098
100 %		0	5,179,999,757	-243	-0.00000469
100 %		+ 10	5,180,000,018	18	0.00000035
100 %		+ 20	5,180,000,132	132	0.00000255
100 %		+ 30	5,179,999,936	-64	-0.00000124
100 %		+ 40	5,180,000,091	91	0.00000176
100 %		+ 50	5,180,000,061	61	0.00000118
BATT. ENDPOINT	3.45	+ 20	5,179,999,744	-256	-0.00000494

Table 7-23. Frequency Stability Measurements for UNII Band 1 (Cn. 36)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 100 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 109 of 225		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,260,000,000	Hz
CHANNEL:	52	
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	5,259,999,648	-352	-0.00000669
100 %		- 30	5,259,999,949	-51	-0.00000097
100 %		- 20	5,260,000,157	157	0.00000298
100 %		- 10	5,259,999,915	-85	-0.00000162
100 %		0	5,259,999,882	-118	-0.00000224
100 %		+ 10	5,259,999,976	-24	-0.00000046
100 %		+ 20	5,260,000,084	84	0.00000160
100 %		+ 30	5,260,000,063	63	0.00000120
100 %		+ 40	5,260,000,039	39	0.00000074
100 %		+ 50	5,260,000,041	41	0.00000078
BATT. ENDPOINT	3.45	+ 20	5,259,999,898	-102	-0.00000194

Table 7-24. Frequency Stability Measurements for UNII Band 2A (Ch. 52)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 110 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,500,000,000	Hz
CHANNEL:	100	
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	5,499,999,732	-268	-0.00000487
100 %		- 30	5,500,000,029	29	0.00000053
100 %		- 20	5,500,000,326	326	0.00000593
100 %		- 10	5,499,999,894	-106	-0.00000193
100 %		0	5,499,999,882	-118	-0.00000215
100 %		+ 10	5,499,999,823	-177	-0.00000322
100 %		+ 20	5,499,999,949	-51	-0.00000093
100 %		+ 30	5,500,000,181	181	0.00000329
100 %		+ 40	5,499,999,937	-63	-0.00000115
100 %		+ 50	5,499,999,963	-37	-0.00000067
BATT. ENDPOINT	3.45	+ 20	5,500,000,061	61	0.00000111

Table 7-25. Frequency Stability Measurements for UNII Band 2C (Ch. 100)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 111 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 111 of 225
© 2016 PCTEST Engineering Laboratory, Inc.			V 4.0	

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,745,000,000	Hz
CHANNEL:	149	
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	5,745,000,213	213	0.00000371
100 %		- 30	5,744,999,898	-102	-0.00000178
100 %		- 20	5,744,999,951	-49	-0.00000085
100 %		- 10	5,744,999,887	-113	-0.00000197
100 %		0	5,745,000,015	15	0.00000026
100 %		+ 10	5,745,000,283	283	0.00000493
100 %		+ 20	5,745,000,046	46	0.00000080
100 %		+ 30	5,744,999,890	-110	-0.00000191
100 %		+ 40	5,744,999,737	-263	-0.00000458
100 %		+ 50	5,745,000,040	40	0.00000070
BATT. ENDPOINT	3.45	+ 20	5,744,999,964 surements for UN	-36	-0.00000063

Table 7-26. Frequency Stability Measurements for UNII Band 3 (Ch. 149)

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 112 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 112 01 225
◎ 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

7.7 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b.1)(b.6) §15.205 §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-27 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-27. Radiated Limits

Test Procedures Used

KDB 789033 D02 v01r02 - Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 112 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 113 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

- All radiated spurious emissions levels were measured in a radiated test setup per the guidance of KDB 789033 D02 v01r02 Section G.
- All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 are below the limit shown in Table 7-27.
- 3. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-11. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 114 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 114 of 225
© 2016 PCTEST Engineering Laboratory. Inc.				

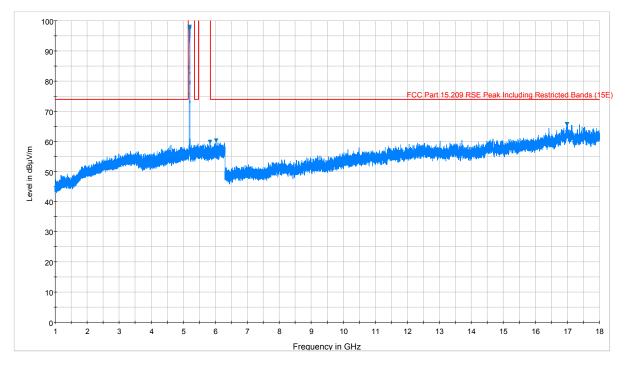
- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested with its standard battery.
- 6. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 9. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.
- 10. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

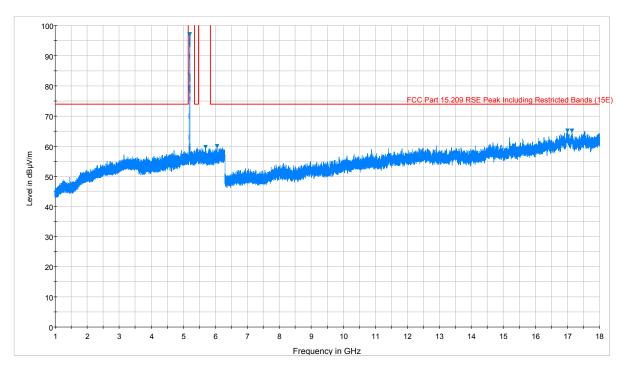
Determining Spurious Emissions Levels

- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

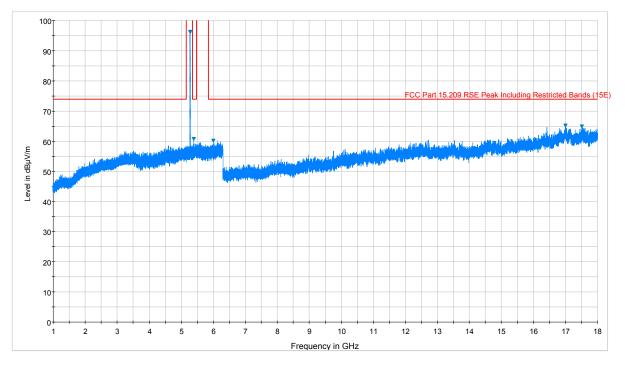
Radiated Band Edge Measurement Offset

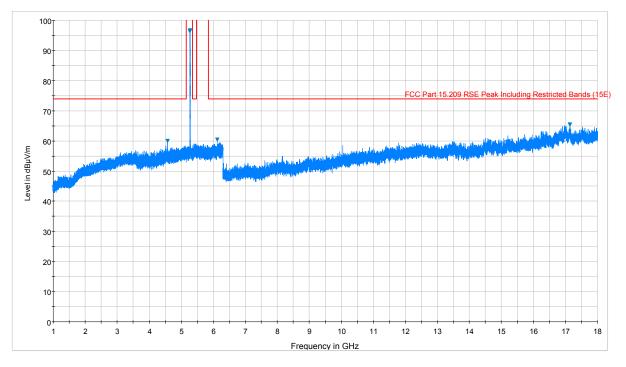

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain

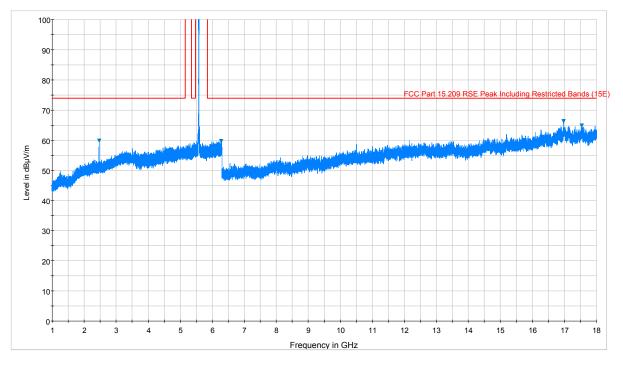

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 115 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 115 of 225
2016 PCTEST Engineering Laboratory, Inc.				V 4.0

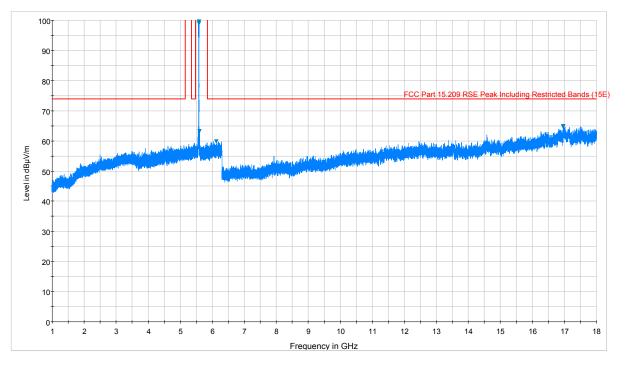
7.7.1 Primary Antenna Radiated Spurious Emission Measurements


Plot 7-153. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)

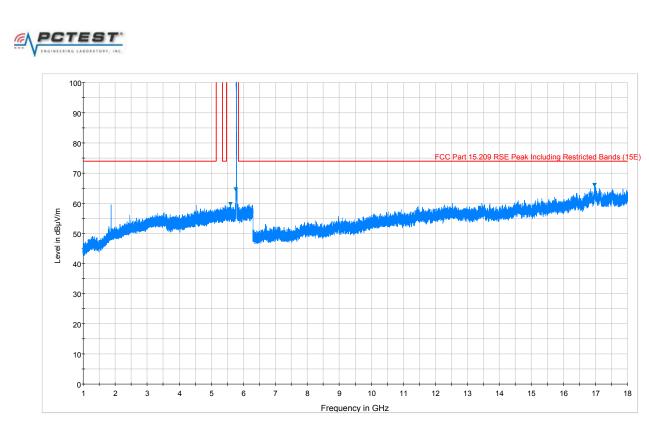

Plot 7-154. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 116 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 116 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			

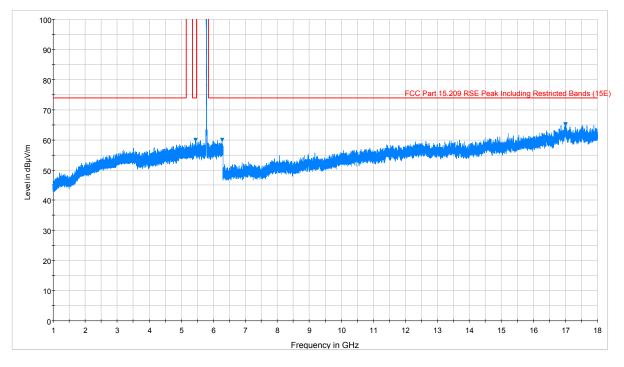

Plot 7-155. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)


Plot 7-156. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 117 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



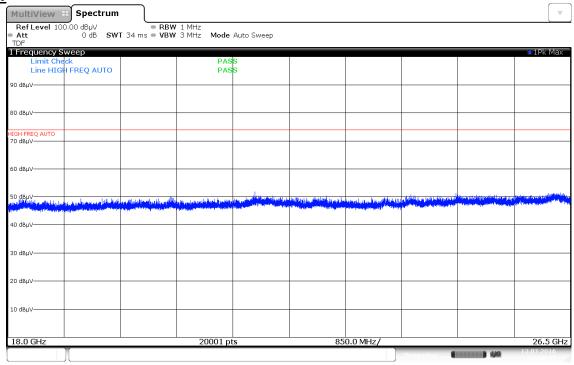
Plot 7-157. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. H)

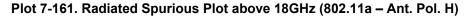


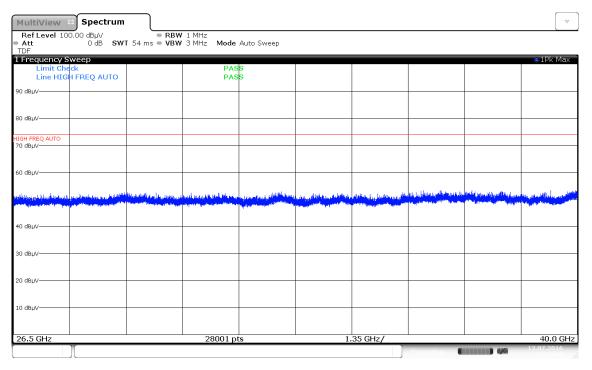
Plot 7-158. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. V)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 119 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 118 of 225	
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.				

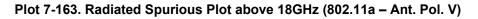
Plot 7-159. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

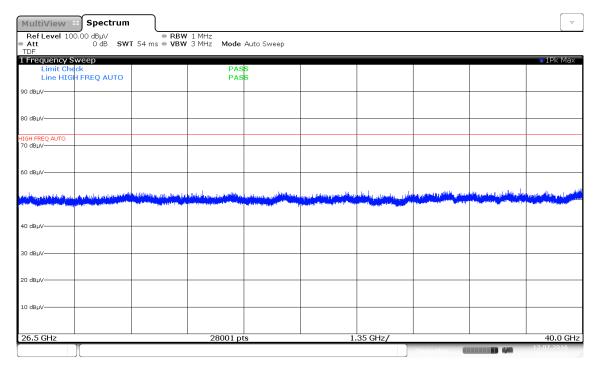


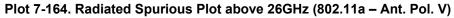

Plot 7-160. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)


FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 110 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 119 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			

Primary Antenna Radiated Spurious Emissions Measurements (Above 18GHz)




Plot 7-162. Radiated Spurious Plot above 26GHz (802.11a - Ant. Pol. H)


FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 120 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 120 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			

MultiView 🕀 Spectrum	n					∇
Ref Level 100.00 dBµV Att 0 dB SW TDF SW SW	● RBW 1 MHz WT 34 ms ● VBW 3 MHz Mode	Auto Sweep				
Frequency Sweep						
Limit Check	PAS					
Line HIGH FREQ AUTO	PAS	S I				
90 dBµV						
ю dBµV						
IGH FREQ AUTO						
o appv						
0 dBµV						
0 dBµV	وأفارتها المحالية وترجين وإرامه والألفان فترورك والمتعاط وروران	A In the second state of the second s	and a state of a second state of the state	I SPACE AND A DESCRIPTION OF A DESCRIPTI		dulla and a dulla to
	and a state of the	and the second	Anglithe Landshane she age of the last	and a second	in the pill the state of the birth of the pill pill	and the particular of
0 dBµV						
0 GBHA						
0 dBµV						
:0 dBµV						
.0 dBµV						
18.0 GHz	20001 pt:	s	850.0 MHz/		I	26.5 GHz
1 C				Measuring		12.07.2016

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 121 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 121 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Primary Antenna Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-69.00	19.63	0.00	57.63	68.20	-10.57
*	15540.00	Average	н	-	-	-80.86	24.71	0.00	50.85	53.98	-3.13
*	15540.00	Peak	н	-	-	-69.30	24.71	0.00	62.41	73.98	-11.57
*	20720.00	Average	Н	-	-	-113.00	44.39	-9.54	28.84	53.98	-25.14
*	20720.00	Peak	н	-	-	-101.97	44.39	-9.54	39.87	73.98	-34.11
	25900.00	Peak	н	-	-	-100.75	45.11	-9.54	41.82	68.20	-26.38

Table 7-28. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	-	-	-68.30	19.26	0.00	57.96	68.20	-10.24
*	15600.00	Average	н	-	-	-80.09	23.45	0.00	50.36	53.98	-3.62
*	15600.00	Peak	н	-	-	-68.24	23.45	0.00	62.21	73.98	-11.77
*	20800.00	Average	н	-	-	-112.72	44.39	-9.54	29.13	53.98	-24.85
*	20800.00	Peak	Н	-	-	-102.91	44.39	-9.54	38.94	73.98	-35.04
	26000.00	Peak	Н	-	-	-100.79	45.12	-9.54	41.78	68.20	-26.42
				Tel	blo 7 20 D	adiatad N		ante .			

 Table 7-29. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 005
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 122 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	-	-	-68.33	19.46	0.00	58.13	68.20	-10.07
*	15720.00	Average	Н	-	-	-80.45	23.76	0.00	50.31	53.98	-3.67
*	15720.00	Peak	Н	-	-	-68.90	23.76	0.00	61.86	73.98	-12.12
*	20960.00	Average	Н	-	-	-112.46	44.31	-9.54	29.31	53.98	-24.67
*	20960.00	Peak	Н	-	-	-101.63	44.31	-9.54	40.14	73.98	-33.84
	26200.00	Peak	Н	-	-	-99.95	45.01	-9.54	42.52	68.20	-25.68

Table 7-30. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	-	-	-67.55	20.22	0.00	59.67	68.20	-8.53
*	15780.00	Average	н	-	-	-80.31	23.73	0.00	50.42	53.98	-3.56
*	15780.00	Peak	н	-	-	-67.87	23.73	0.00	62.86	73.98	-11.12
*	21040.00	Average	н	-	-	-112.58	44.29	-9.54	29.17	53.98	-24.81
*	21040.00	Peak	н	-	-	-101.15	44.29	-9.54	40.60	73.98	-33.38
	26300.00	Peak	Н	-	-	-99.62	45.00	-9.54	42.83	68.20	-25.37

Table 7-31. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 122 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 123 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	н	-	-	-68.90	19.72	0.00	57.82	68.20	-10.38
*	15840.00	Average	Н	-	-	-80.65	23.67	0.00	50.02	53.98	-3.96
*	15840.00	Peak	Н	-	-	-68.92	23.67	0.00	61.75	73.98	-12.23
*	21120.00	Average	Н	-	-	-112.67	44.28	-9.54	29.06	53.98	-24.92
*	21120.00	Peak	Н	-	-	-101.21	44.28	-9.54	40.52	73.98	-33.46
	26400.00	Peak	Н	-	-	-100.88	45.02	-9.54	41.60	68.20	-26.60

Table 7-32. R	adiated Mea	surements
---------------	-------------	-----------

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	-	-	-79.94	20.21	0.00	47.27	53.98	-6.70
*	10640.00	Peak	Н	-	-	-68.20	20.21	0.00	59.01	73.98	-14.96
*	15960.00	Average	н	-	-	-80.39	23.85	0.00	50.46	53.98	-3.52
*	15960.00	Peak	н	-	-	-68.78	23.85	0.00	62.07	73.98	-11.91
*	21280.00	Average	н	-	-	-112.49	44.26	-9.54	29.23	53.98	-24.74
*	21280.00	Peak	Н	-	-	-102.03	44.26	-9.54	39.69	73.98	-34.28
	26600.00	Peak	Н	-	-	-103.53	47.61	-9.54	41.53	68.20	-26.67

Table 7-33. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 124 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 124 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	-	-	-79.30	20.47	0.00	48.17	53.98	-5.81
*	11000.00	Peak	Н	-	-	-67.38	20.47	0.00	60.09	73.98	-13.89
	16500.00	Peak	Н	-	-	-69.09	26.21	0.00	64.12	68.20	-4.08
	22000.00	Peak	Н	-	-	-101.67	44.50	-9.54	40.29	68.20	-27.91
	27500.00	Peak	Н	-	-	-102.79	47.97	-9.54	42.64	68.20	-25.56

Table 7-34. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5580MHz 116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	н	-	-	-78.04	20.72	0.00	49.68	53.98	-4.30
*	11160.00	Peak	Н	-	-	-64.88	20.72	0.00	62.84	73.98	-11.14
	16740.00	Peak	Н	-	-	-67.83	24.89	0.00	64.06	68.20	-4.14
*	22320.00	Average	н	-	-	-112.20	44.56	-9.54	29.82	53.98	-24.16
*	22320.00	Peak	н	-	-	-102.08	44.56	-9.54	39.94	73.98	-34.04
	27900.00	Peak	н	-	-	-104.01	48.08	-9.54	41.53	68.20	-26.67

Table 7-35. Radiated Measurements

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 125 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 125 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

	Wo	orst Case I	Mode		802.11	а						
	Wo	orst Case	Trans	fer Rate:	6 Mbps							
	Dis	tance of N	/leasu	rements:	1&3N	1 & 3 Meters						
	Op	erating Fr	equer	ncy:	5720M	Hz						
	Cha	annel:			144							
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	
*	11440.00	Average	н	-	-	-79.73	21.20	0.00	48.47	53.98	-5.51	
*	11440.00	Peak	Н	-	-	-67.94	21.20	0.00	60.26	73.98	-13.72	
	17160.00	Peak	Н	-	-	-69.46	26.85	0.00	64.39	68.20	-3.81	
*	22880.00	Average	н	-	-	-112.72	44.61	-9.54	29.35	53.98	-24.63	
*	22880.00	Peak	н	-	-	-102.36	44.61	-9.54	39.71	73.98	-34.27	
	28600.00	Peak	Н	-	-	-104.21	48.29	-9.54	41.54	68.20	-26.66	

Table 7-36. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	н	-	-	-79.99	21.95	0.00	48.96	53.98	-5.02
*	11490.00	Peak	Н	-	-	-67.71	21.95	0.00	61.24	73.98	-12.74
	17235.00	Peak	н	-	-	-68.86	26.93	0.00	65.07	68.20	-3.13
*	22980.00	Average	н	-	-	-113.16	44.68	-9.54	28.98	53.98	-25.00
*	22980.00	Peak	н	-	-	-102.23	44.68	-9.54	39.91	73.98	-34.07
	28725.00	Peak	н	-	-	-102.45	48.26	-9.54	43.27	68.20	-24.93

Table 7-37. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 106 of 005
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 126 of 225
© 2016 PCTEST Engineering L	aboratory, Inc.			V 4.0

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	н	-	-	-79.63	22.18	0.00	49.55	53.98	-4.43
*	11570.00	Peak	Н	-	-	-68.13	22.18	0.00	61.05	73.98	-12.93
	17355.00	Peak	Н	-	-	-68.64	26.68	0.00	65.04	68.20	-3.16
	23140.00	Peak	Н	-	-	-102.04	44.75	-9.54	40.17	68.20	-28.03
	28925.00	Peak	н	-	-	-103.54	48.29	-9.54	42.21	68.20	-25.99

Table 7-38. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

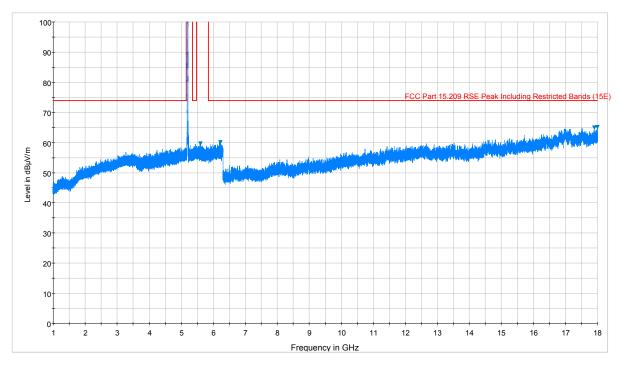
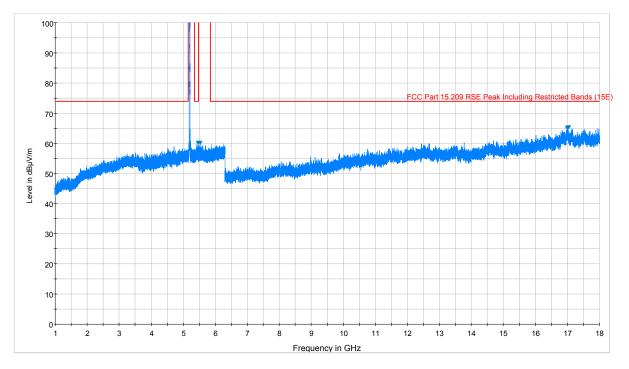
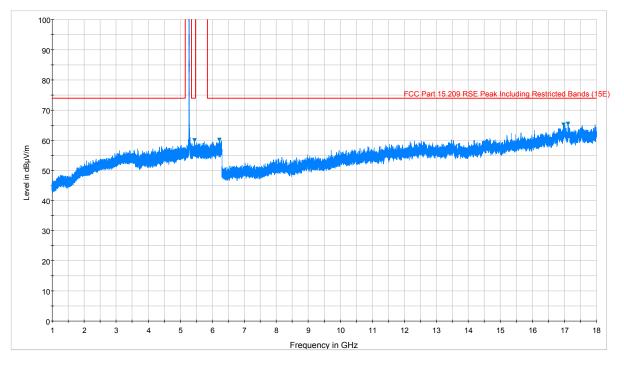
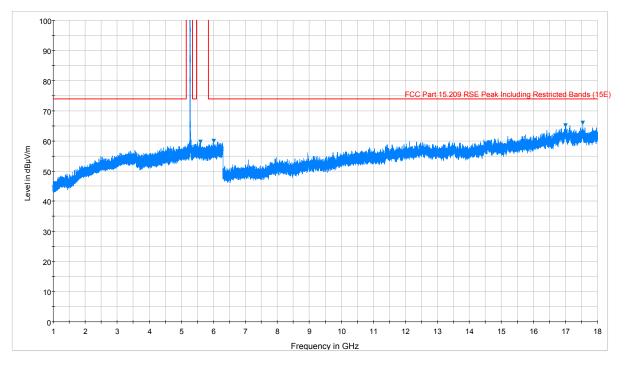

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	н	-	-	-79.29	22.51	0.00	50.22	53.98	-3.76
*	11650.00	Peak	Н	-	-	-67.47	22.51	0.00	62.04	73.98	-11.94
	17475.00	Peak	Н	-	-	-69.48	26.60	0.00	64.12	68.20	-4.08
	23300.00	Peak	Н	-	-	-102.71	44.75	-9.54	39.50	68.20	-28.70
	29125.00	Peak	Н	-	-	-102.58	48.28	-9.54	43.16	68.20	-25.04

Table 7-39. Radiated Measurements

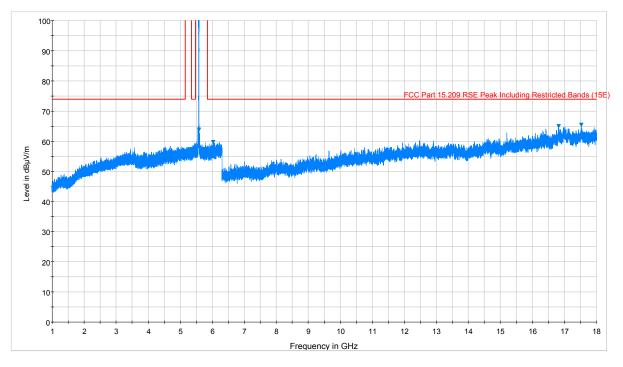

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 127 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 127 01 225	
© 2016 PCTEST Engineering Laboratory, Inc. V					

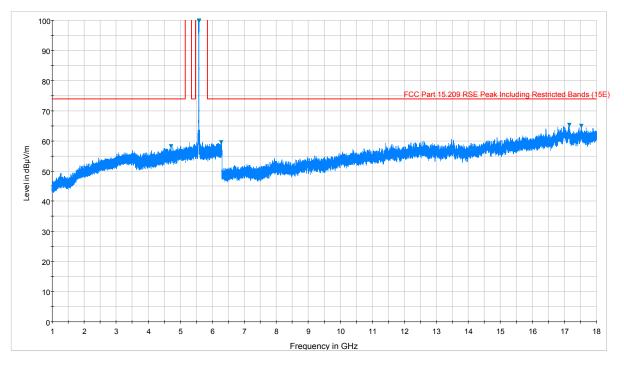
7.7.2 Secondary Antenna Radiated Spurious Emission Measurements


Plot 7-165. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)

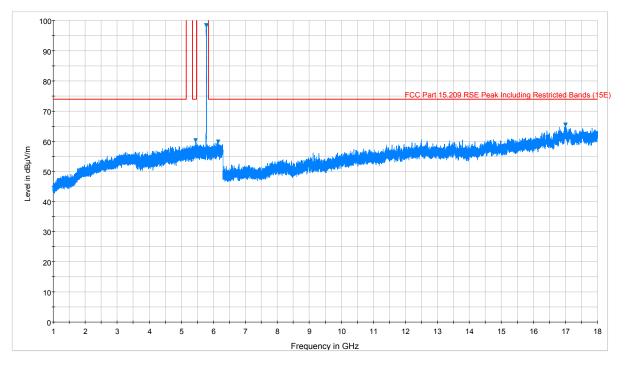

Plot 7-166. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

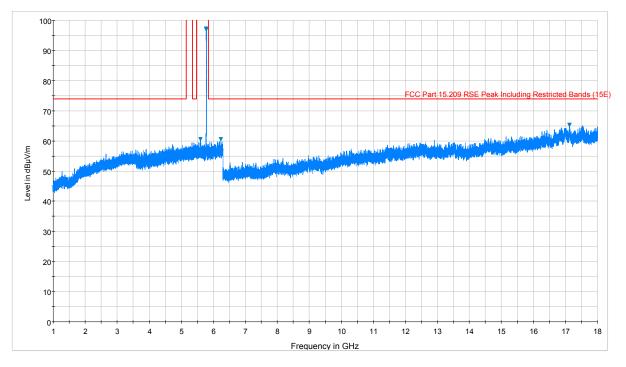
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 128 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-167. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)


Plot 7-168. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)

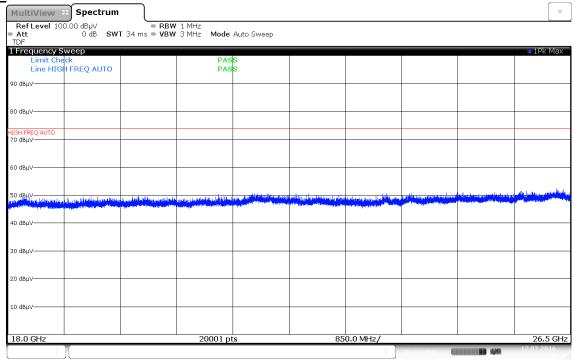
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 120 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 129 of 225	
© 2016 PCTEST Engineering Laboratory, Inc. V 4.0					

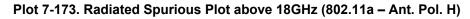

Plot 7-169. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. H)

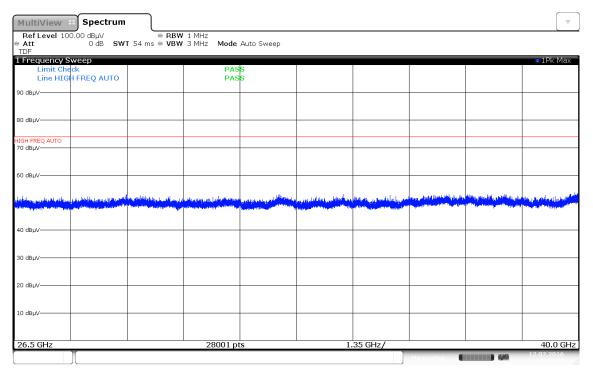

Plot 7-170. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. V)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 130 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

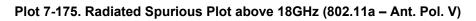
Plot 7-171. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



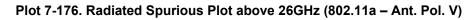

Plot 7-172. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)


FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 121 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 131 of 225	
© 2016 PCTEST Engineering Laboratory, Inc. V 4.0					

Secondary Antenna Radiated Spurious Emissions Measurements (Above 18GHz)



Plot 7-174. Radiated Spurious Plot above 26GHz (802.11a – Ant. Pol. H)


FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 122 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 132 of 225	
© 2016 PCTEST Engineering Laboratory, Inc. V 4.0					

IultiView 🕀 Spectrum							
RefLevel 100.00 dBµ∨ Att 0 dB SWT DF	● RBW 1 MHz 34 ms ● VBW 3 MHz Mode	Auto Sweep					
Frequency Sweep							●1Pk Max
Limit Check	PAS						
Line HIGH FREQ AUTO	PAS	s					
) dBµV							
) dBµV							
GH FREQ AUTO							
() () () () () () () () () () () () () (
dBµV							
) dBµY	ومقاولة والجاجا والمرجع إقرار والطرار والمراجع ومارقا لمرجع والخر	and a start of the		and a second data	all the second statement of the second	lana kangaréhi kacanga	اللالاستان اللال
		The second of the second second second		and the second	and the second se	barrente o en titertitetete ja	a to the second s
) dBµV							
ubµv-							
dBµV							
) dBµV							
) dBµV							
8.0 GHz	20001 pt	\$	85	0.0 MHz/			26.5 GH

MultiView 🕀 Spe	ctrum							
Ref Level 100.00 dBµ Att 0 d	JV ■ RBW dB SWT 54 ms ■ VBW	1 MHz 3 MHz Mode	Auto Sweep					
TDF 1 Frequency Sweep								●1Pk Max
Limit Check		PAS						e in kinda
Line HIGH FREQ	AUTO	PAS	s					
90 dBµV								
80 dBµV								
HIGH FREQ AUTO								
70 dBµV								
60 dBµV								
and the second state of th	الروع والالاعدار أرائد والطواري والأفاتين والمروط والمروط والمروط والمراجع	ومناقلهم والمرجع ومعامسان	and a state of the second state of the	and the state of the second	والمراجعة والمتحد والمتلطئ		destation and a state	and the second
and the program in the strong public in the second s	Provincia a successive and a successive succes		Te and and the training at the	and the second secon		late		and the second
40 dBµV								
30 dBµV								
00 000								
20 dBµV								
10 dBµV								
26.5 GHz		28001 pt	S	1.	.35 GHz/			40.0 GHz
								12.07.2016

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 122 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 133 of 225	
© 2016 PCTEST Engineering Laboratory, Inc. V 4.0					

Secondary Antenna Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5180MHz		
Channel:	36		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-68.65	19.63	0.00	57.98	68.20	-10.22
*	15540.00	Average	н	-	-	-81.19	24.71	0.00	50.52	53.98	-3.46
*	15540.00	Peak	н	-	-	-69.52	24.71	0.00	62.19	73.98	-11.79
*	20720.00	Average	н	-	-	-104.66	44.39	-9.54	37.18	53.98	-16.80
*	20720.00	Peak	н	-	-	-101.60	44.39	-9.54	40.24	73.98	-33.74
	25900.00	Peak	н	-	-	-99.98	45.11	-9.54	42.59	68.20	-25.61

Table 7-40. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	-	-	-68.58	19.26	0.00	57.68	68.20	-10.52
*	15600.00	Average	Н	-	-	-80.17	23.45	0.00	50.28	53.98	-3.70
*	15600.00	Peak	Н	-	-	-68.26	23.45	0.00	62.19	73.98	-11.79
*	20800.00	Average	Н	-	-	-112.45	44.39	-9.54	29.40	53.98	-24.58
*	20800.00	Peak	Н	-	-	-102.07	44.39	-9.54	39.78	73.98	-34.20
	26000.00	Peak	Н	-	-	-101.08	45.12	-9.54	41.49	68.20	-26.71
	26000.00	Реак	Н			-101.08			41.49	68.20	

Table 7-41. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 124 of 225		
0Y1607051175-R2 .ZNF 7/6 - 7/22/2016		Portable Handset	Page 134 of 225			
© 2016 PCTEST Engineering Laboratory Inc						

© 2016 PCTEST Engineering Laboratory, Inc.

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5240MHz		
Channel:	48		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	-	-	-68.73	19.46	0.00	57.73	68.20	-10.47
*	15720.00	Average	Н	-	-	-80.54	23.76	0.00	50.22	53.98	-3.76
*	15720.00	Peak	н	-	-	-68.97	23.76	0.00	61.79	73.98	-12.19
*	20960.00	Average	н	-	-	-112.41	44.31	-9.54	29.36	53.98	-24.62
*	20960.00	Peak	Н	-	-	-102.15	44.31	-9.54	39.62	73.98	-34.36
	26200.00	Peak	Н	-	-	-99.81	45.01	-9.54	42.66	68.20	-25.54

Table 7-42. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5260MHz
52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	-	-	-67.16	20.22	0.00	60.06	68.20	-8.14
*	15780.00	Average	Н	-	-	-80.39	23.73	0.00	50.34	53.98	-3.64
*	15780.00	Peak	Н	-	-	-68.25	23.73	0.00	62.48	73.98	-11.50
*	21040.00	Average	Н	-	-	-112.59	44.29	-9.54	29.16	53.98	-24.82
*	21040.00	Peak	Н	-	-	-102.05	44.29	-9.54	39.70	73.98	-34.28
	26300.00	Peak	Н	-	-	-99.83	45.00	-9.54	42.62	68.20	-25.58

Table 7-43. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 125 of 225		
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 135 of 225		
© 2016 PCTEST Engineering Laboratory, Inc.						

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5280MHz		
Channel:	56		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	н	-	-	-67.48	19.72	0.00	59.24	68.20	-8.96
*	15840.00	Average	Н	-	-	-80.47	23.67	0.00	50.20	53.98	-3.78
*	15840.00	Peak	Н	-	-	-68.70	23.67	0.00	61.97	73.98	-12.01
*	21120.00	Average	Н	-	-	-111.30	44.28	-9.54	30.43	53.98	-23.55
*	21120.00	Peak	Н	-	-	-101.57	44.28	-9.54	40.16	73.98	-33.82
	26400.00	Peak	Н	-	-	-100.55	45.02	-9.54	41.93	68.20	-26.27

Table 7-44. I	Radiated	Measurements
---------------	----------	--------------

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	-	-	-80.43	20.21	0.00	46.78	53.98	-7.19
*	10640.00	Peak	Н	-	-	-68.71	20.21	0.00	58.50	73.98	-15.47
*	15960.00	Average	н	-	-	-80.52	23.85	0.00	50.33	53.98	-3.65
*	15960.00	Peak	н	-	-	-68.69	23.85	0.00	62.16	73.98	-11.82
*	21280.00	Average	н	-	-	-112.56	44.26	-9.54	29.16	53.98	-24.81
*	21280.00	Peak	н	-	-	-102.43	44.26	-9.54	39.29	73.98	-34.68
	26600.00	Peak	Н	-	-	-102.97	47.61	-9.54	42.09	68.20	-26.11

Table 7-45. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:		Dego 126 of 225					
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 136 of 225					
© 2016 PCTEST Engineering Laboratory, Inc.									

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6 Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5500MHz			
Channel:	100			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	-	-	-79.66	20.47	0.00	47.81	53.98	-6.17
*	11000.00	Peak	Н	-	-	-67.84	20.47	0.00	59.63	73.98	-14.35
	16500.00	Peak	Н	-	-	-69.77	26.21	0.00	63.44	68.20	-4.76
	22000.00	Peak	н	-	-	-101.16	44.50	-9.54	40.80	68.20	-27.40
	27500.00	Peak	Н	-	-	-103.62	47.97	-9.54	41.81	68.20	-26.39

Table 7-46. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5580MHz 116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	Н	-	-	-79.52	20.72	0.00	48.20	53.98	-5.78
*	11160.00	Peak	Н	-	-	-67.87	20.72	0.00	59.85	73.98	-14.13
	16740.00	Peak	Н	-	-	-67.60	24.89	0.00	64.29	68.20	-3.91
*	22320.00	Average	Н	-	-	-112.15	44.56	-9.54	29.87	53.98	-24.11
*	22320.00	Peak	Н	-	-	-102.01	44.56	-9.54	40.01	73.98	-33.97
	27900.00	Peak	Н	-	-	-104.02	48.08	-9.54	41.52	68.20	-26.68

Table 7-47. Radiated Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager						
Test Report S/N:	Test Dates:	EUT Type:		Dega 127 of 225						
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 137 of 225						
© 2016 PCTEST Engineering Laboratory, Inc.										

05/16/2016

	Wo	orst Case I	Mode		802.11	а							
	Wo	orst Case	Trans	fer Rate:	6 Mbps	;							
	Dis	tance of N	/leasu	rements:	1 & 3 N	1 & 3 Meters							
	Op	erating Fr	equer	ncy:	5720M	5720MHz							
	Ch	annel:		-	144								
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]		
*	11440.00	Average	Н	-	-	-79.68	21.20	0.00	48.52	53.98	-5.46		
*	11440.00	Peak	Н	-	-	-68.18	21.20	0.00	60.02	73.98	-13.96		
	17160.00	Peak	Н	-	-	-69.47	26.85	0.00	64.38	68.20	-3.82		
*	22880.00	Average	н	-	-	-112.71	44.61	-9.54	29.36	53.98	-24.62		
*	22880.00	Peak	н	-	-	-102.76	44.61	-9.54	39.31	73.98	-34.67		
	28600.00	Peak	Н	-	-	-104.61	48.29	-9.54	41.14	68.20	-27.06		

Table 7-48. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5745MHz
149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	н	-	-	-80.14	21.95	0.00	48.81	53.98	-5.17
*	11490.00	Peak	Н	-	-	-67.44	21.95	0.00	61.51	73.98	-12.47
	17235.00	Peak	Н	-	-	-69.00	26.93	0.00	64.93	68.20	-3.27
*	22980.00	Average	Н	-	-	-113.18	44.68	-9.54	28.96	53.98	-25.02
*	22980.00	Peak	н	-	-	-102.47	44.68	-9.54	39.67	73.98	-34.31
	28725.00	Peak	Н	-	-	-102.85	48.26	-9.54	42.87	68.20	-25.33

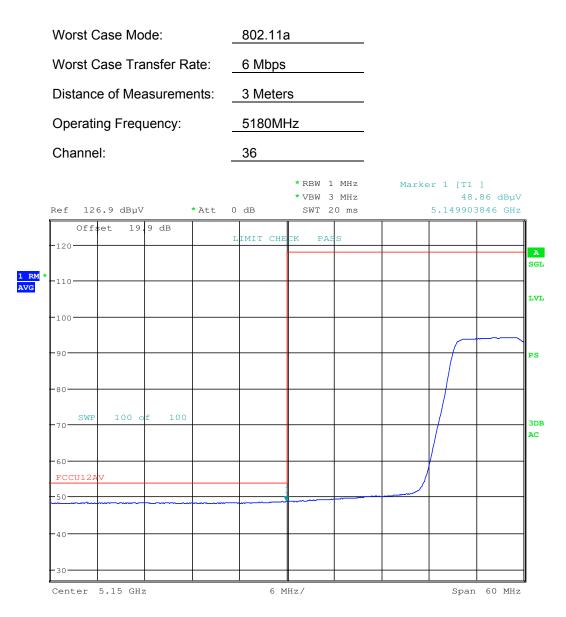
Table 7-49. Radiated Measurements

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager						
Test Report S/N:	Test Dates:	EUT Type:		Dega 129 of 225						
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 138 of 225						
© 2016 PCTEST Engineering Laboratory, Inc.										

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	-	-	-79.76	22.18	0.00	49.42	53.98	-4.56
*	11570.00	Peak	Н	-	-	-67.60	22.18	0.00	61.58	73.98	-12.40
	17355.00	Peak	Н	-	-	-69.21	26.68	0.00	64.47	68.20	-3.73
	23140.00	Peak	Н	-	-	-101.57	44.75	-9.54	40.64	68.20	-27.56
	28925.00	Peak	н	-	-	-103.41	48.29	-9.54	42.34	68.20	-25.86

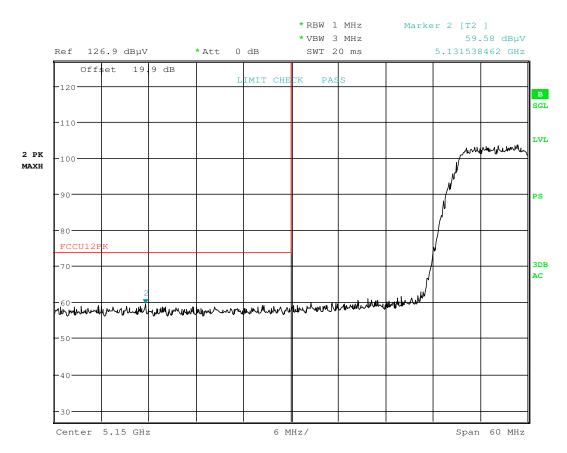
Table 7-50. Radiated Measurements


Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	-	-	-80.01	22.51	0.00	49.50	53.98	-4.48
*	11650.00	Peak	Н	-	-	-68.60	22.51	0.00	60.91	73.98	-13.07
	17475.00	Peak	Н	-	-	-69.86	26.60	0.00	63.74	68.20	-4.46
	23300.00	Peak	Н	-	-	-102.79	44.75	-9.54	39.42	68.20	-28.78
	29125.00	Peak	Н	-	-	-102.00	48.28	-9.54	43.74	68.20	-24.46

Table 7-51. Radiated Measurements

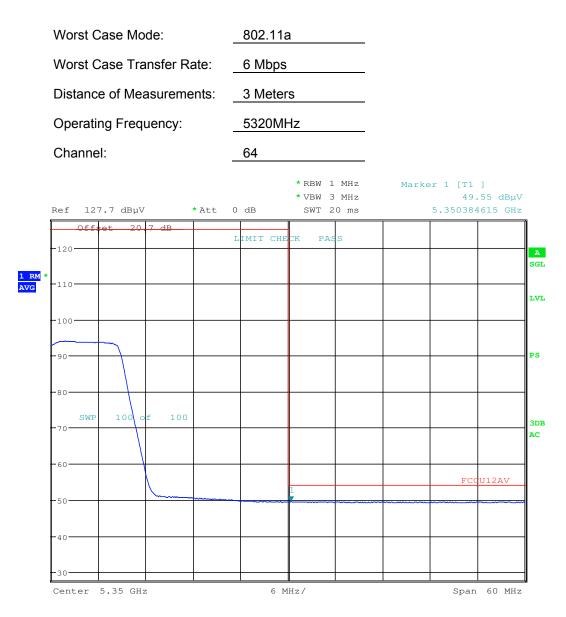
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 120 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 139 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					



Date: 8.JUL.2016 12:50:05

Plot 7-177. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

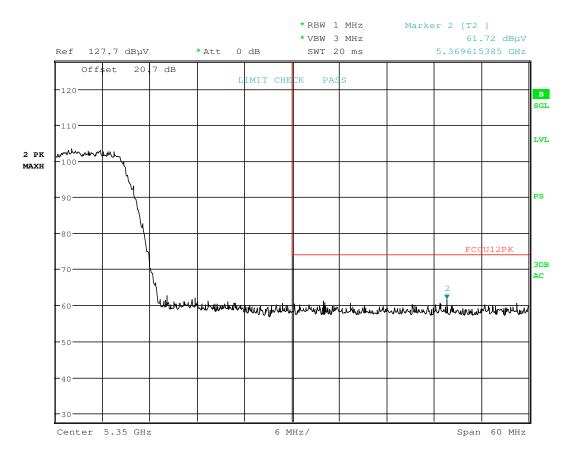
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 140 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 140 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 12:50:30

Plot 7-178. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

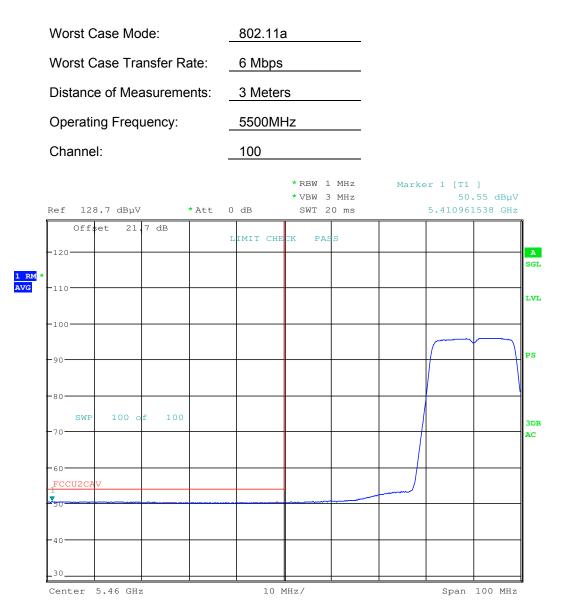
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 141 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 141 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:01:09

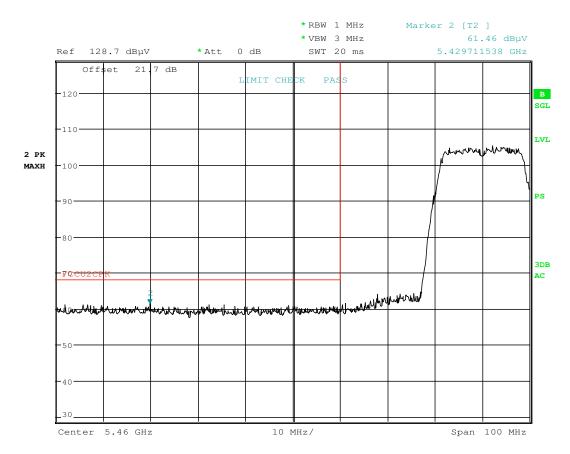
Plot 7-179. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 142 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 142 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:01:21

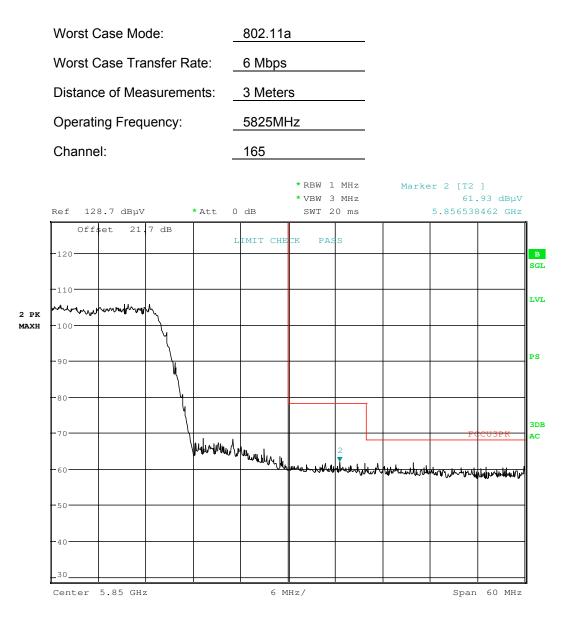
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 143 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 143 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:12:10

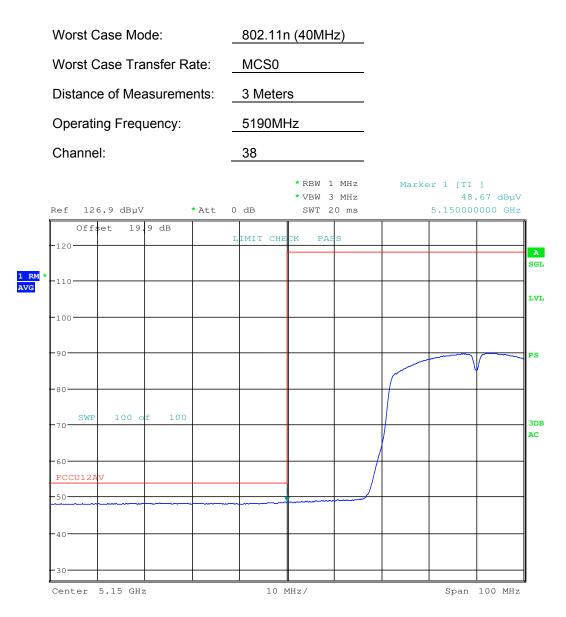
Plot 7-181. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 144 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 144 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:12:21

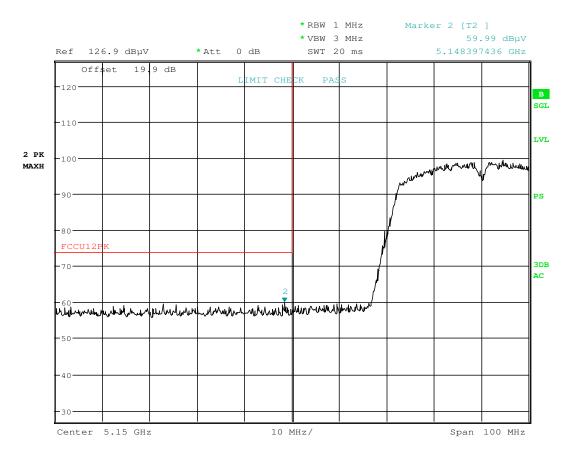
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 145 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 145 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:15:50

Plot 7-183. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

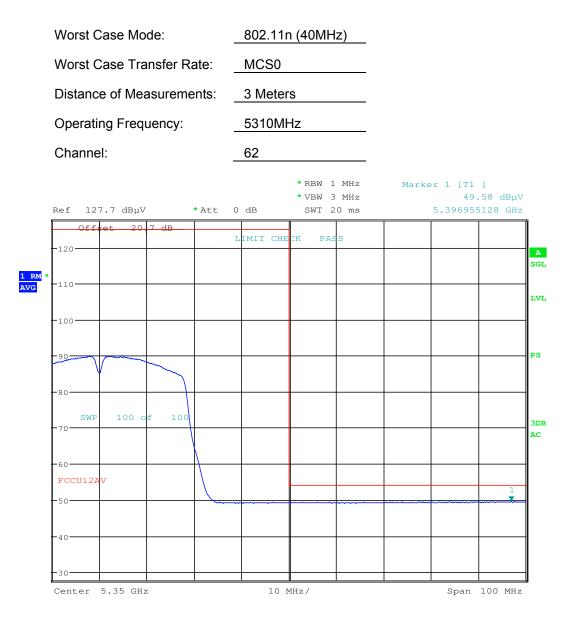
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 146 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 146 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					



Date: 8.JUL.2016 13:22:25

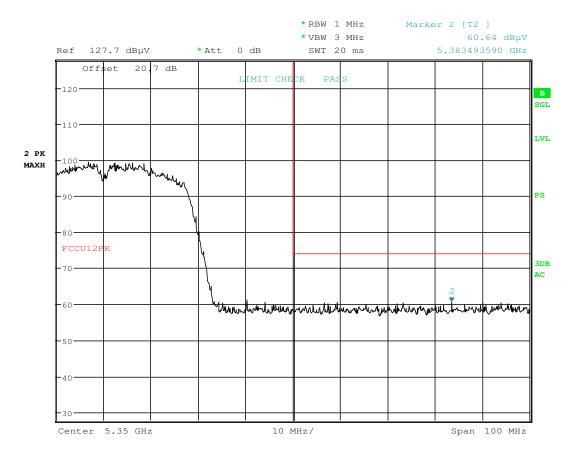
Plot 7-184. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 147 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 147 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:22:35

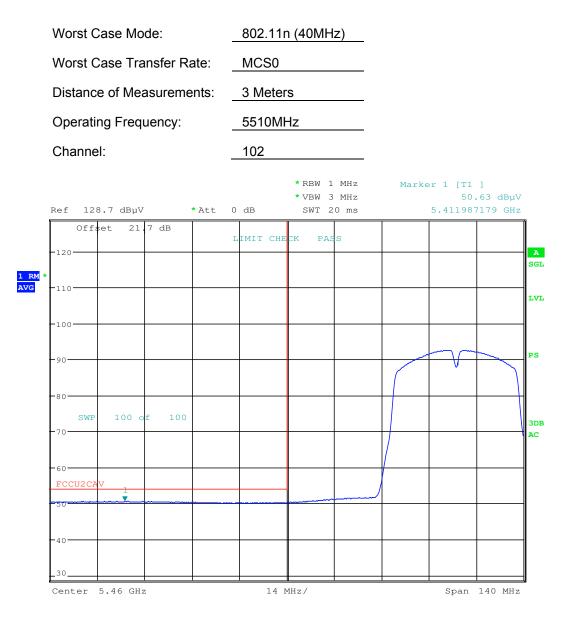
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 148 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 146 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 13:28:01

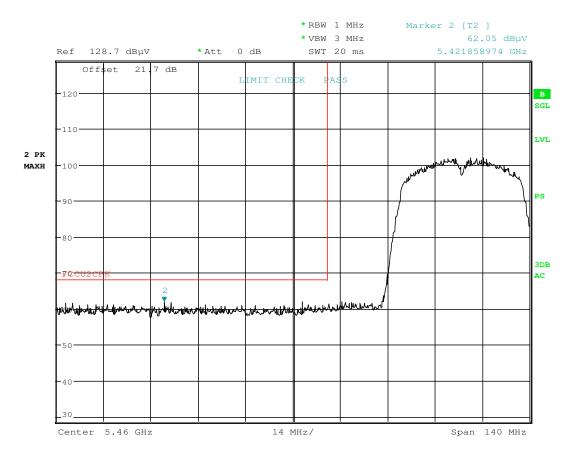
Plot 7-186. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 140 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 149 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:28:12

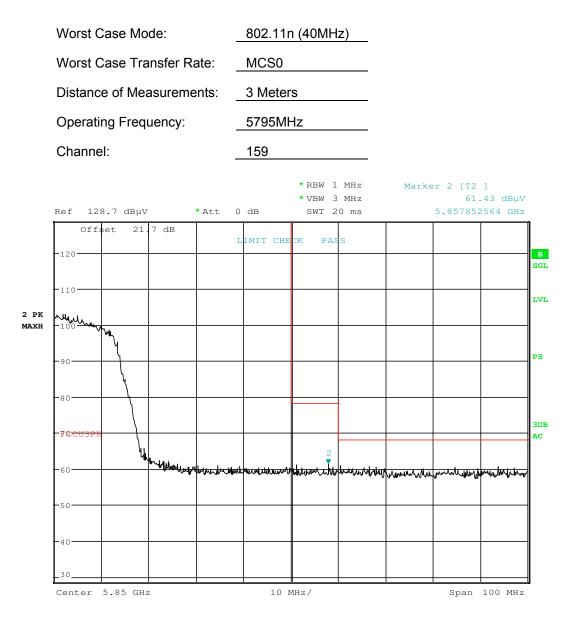
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 150 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 150 01 225
2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 13:31:57

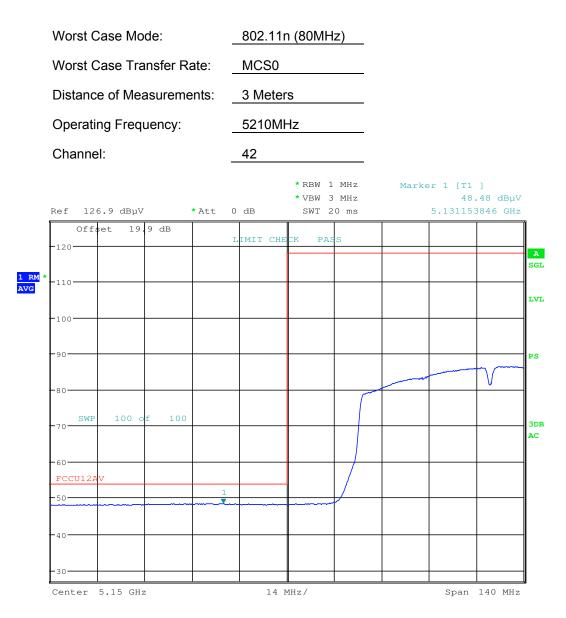
Plot 7-188. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 151 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 151 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:32:07

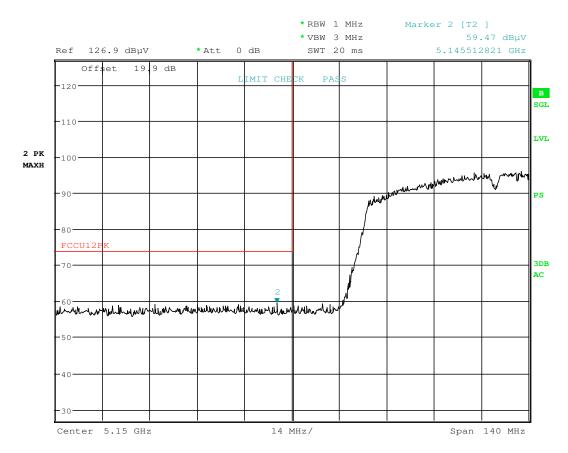
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 152 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 152 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 13:35:35

Plot 7-190. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

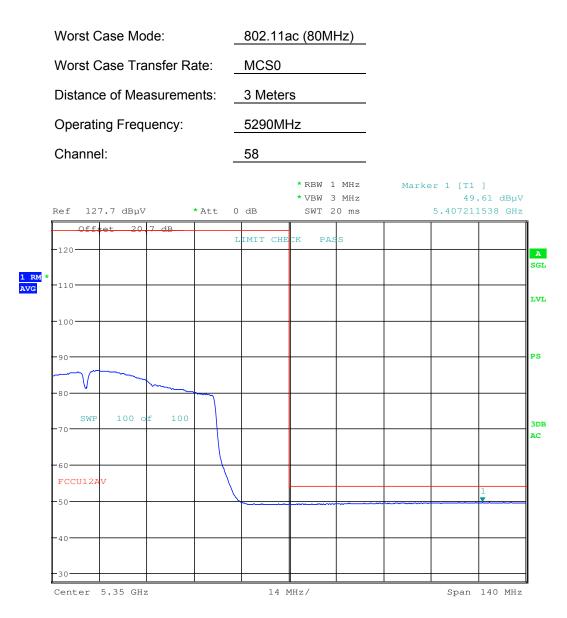
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 152 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 153 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:41:41

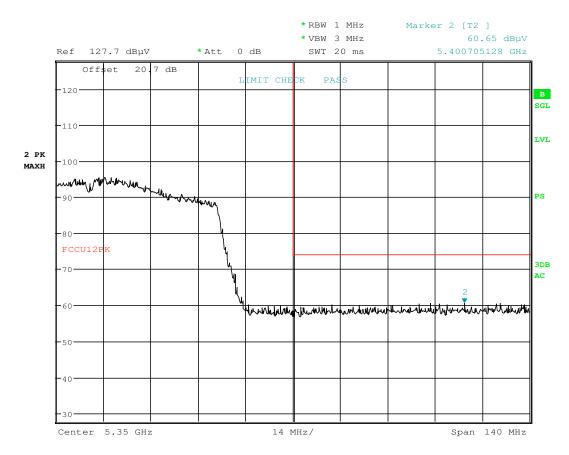
Plot 7-191. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 154 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 154 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:41:51

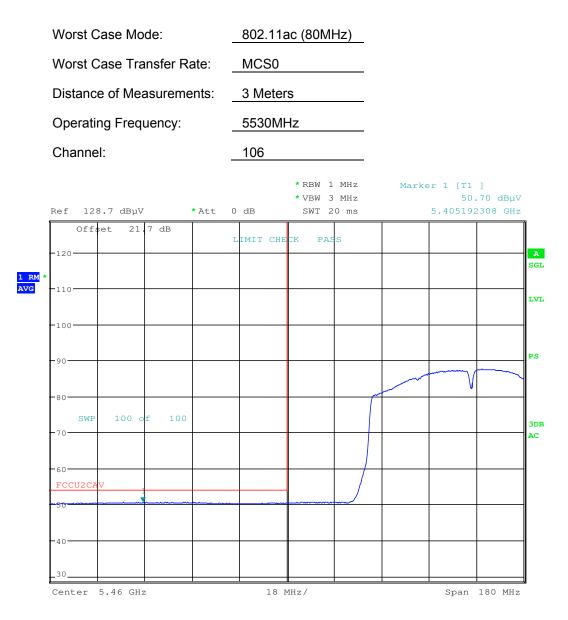
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 155 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 155 01 225
2 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 13:46:26

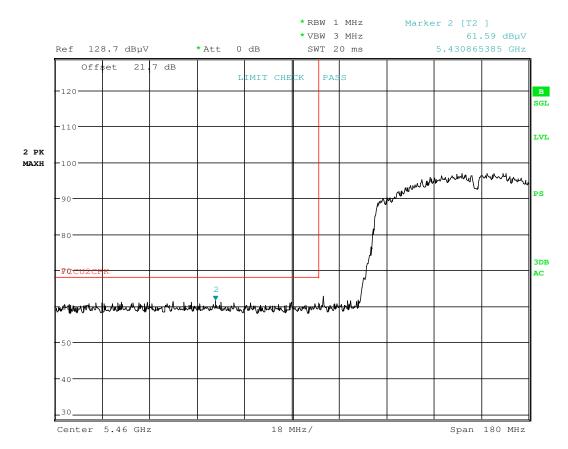
Plot 7-193. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 156 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 156 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 13:46:36

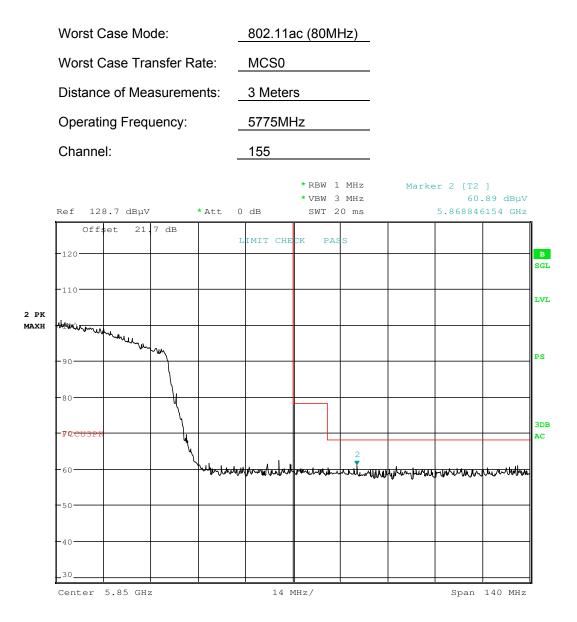
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 157 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 157 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 13:49:37

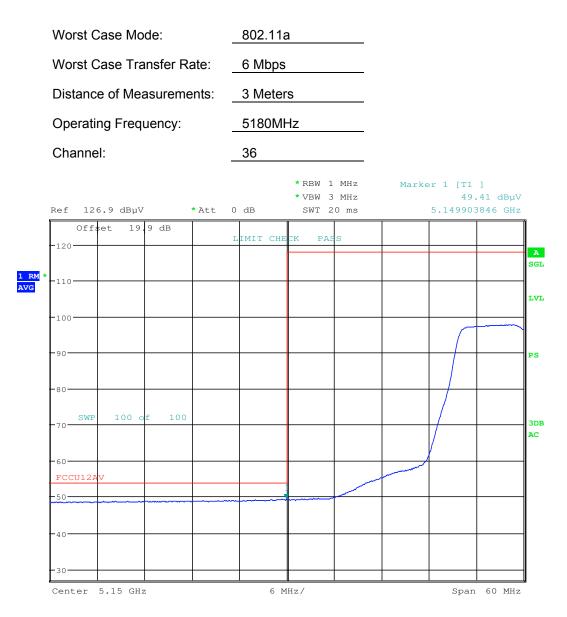
Plot 7-195. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 159 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 158 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016



Date: 8.JUL.2016 13:49:47

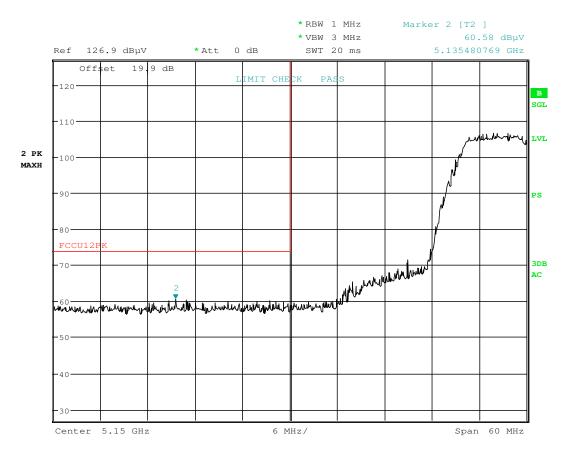
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 159 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 159 01 225
© 2016 PCTEST Engineering L	2 2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 13:53:37

Plot 7-197. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

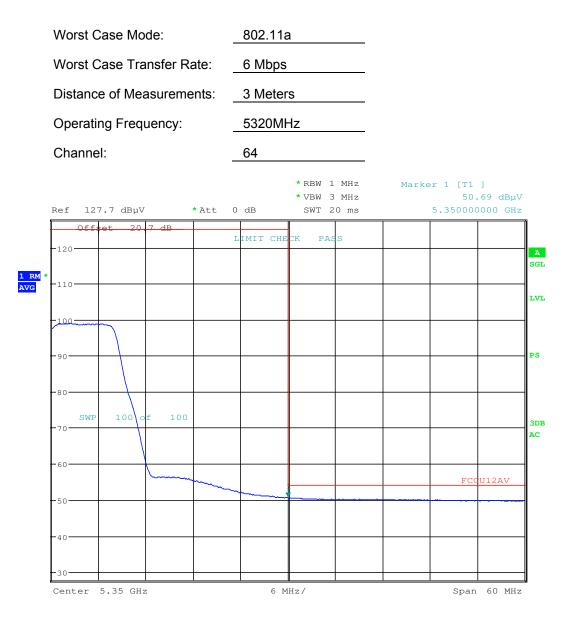
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 160 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 160 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:19:57

Plot 7-198. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

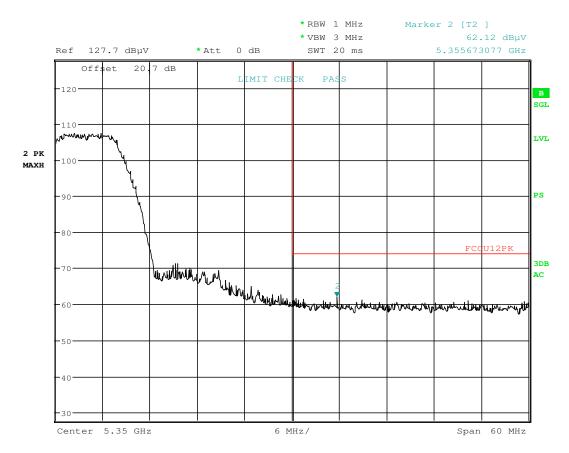
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 161 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 161 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:20:08

Plot 7-199. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

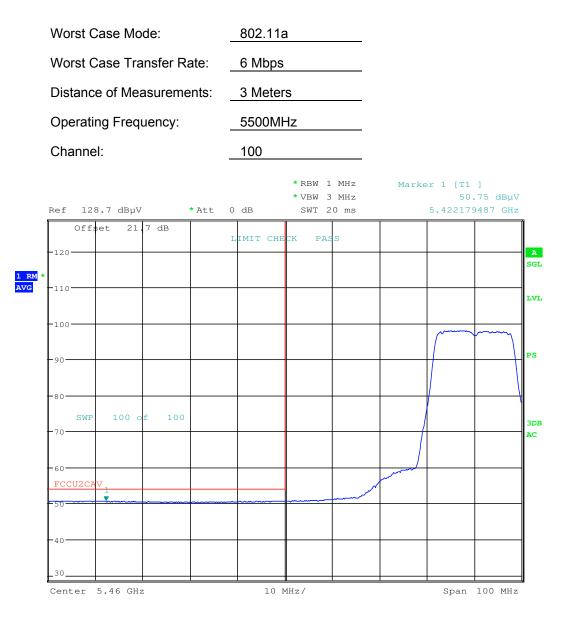
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 162 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 162 01 225
2 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:24:30

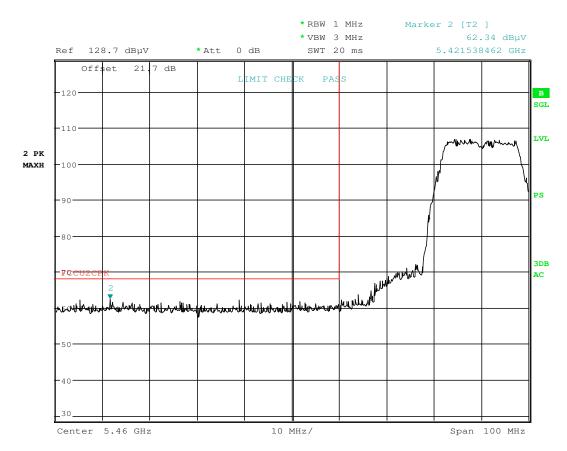
Plot 7-200. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 162 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 163 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:24:40

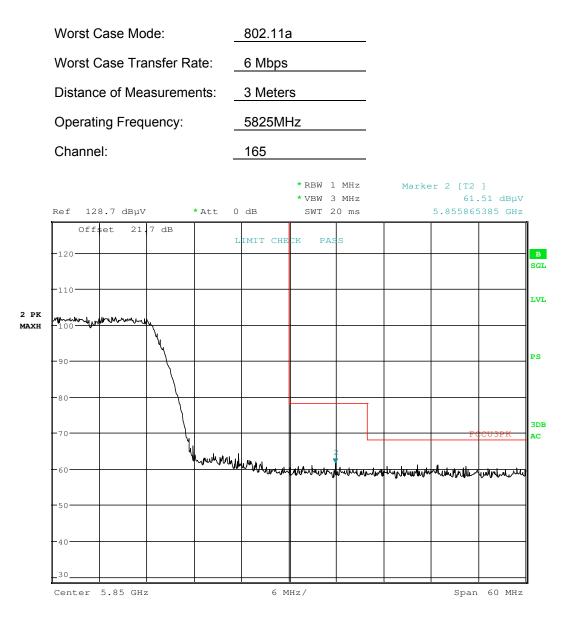
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 164 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 164 01 225
2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 14:28:23

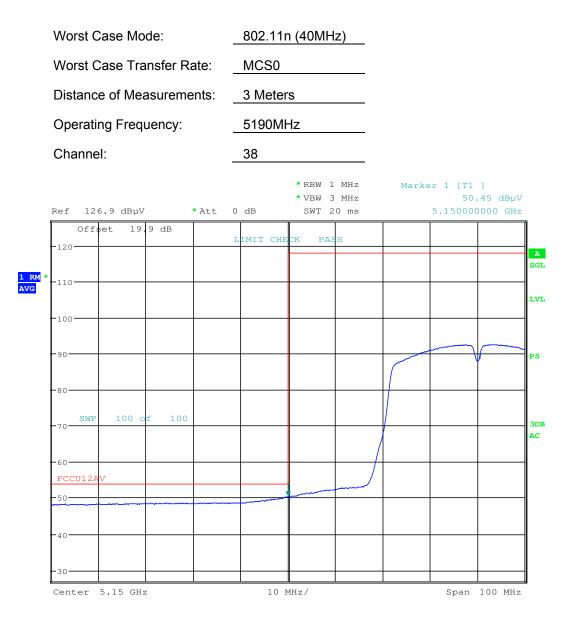
Plot 7-202. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 165 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 165 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:28:34

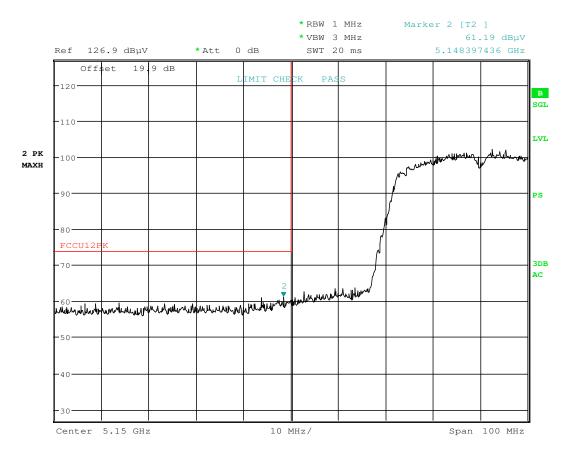
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 166 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 100 01 225	
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:31:46

Plot 7-204. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFH910	<u> <u> PCTEST</u> </u>	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 167 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 167 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:37:01

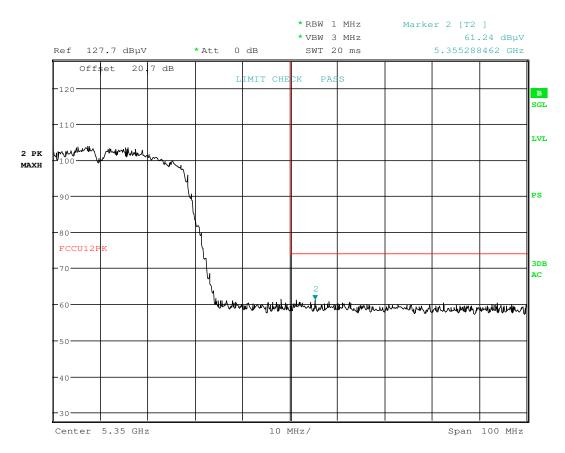
Plot 7-205. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 169 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 168 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Date: 8.JUL.2016 14:37:12

Plot 7-206. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

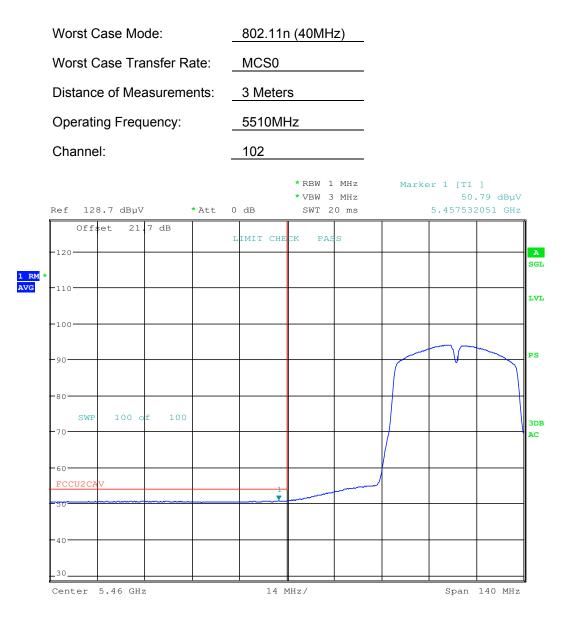
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 160 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 169 of 225
2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 14:40:31

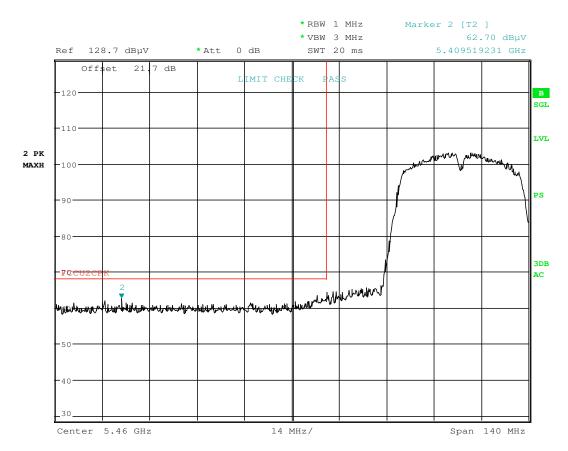
Plot 7-207. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 170 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 170 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:40:42

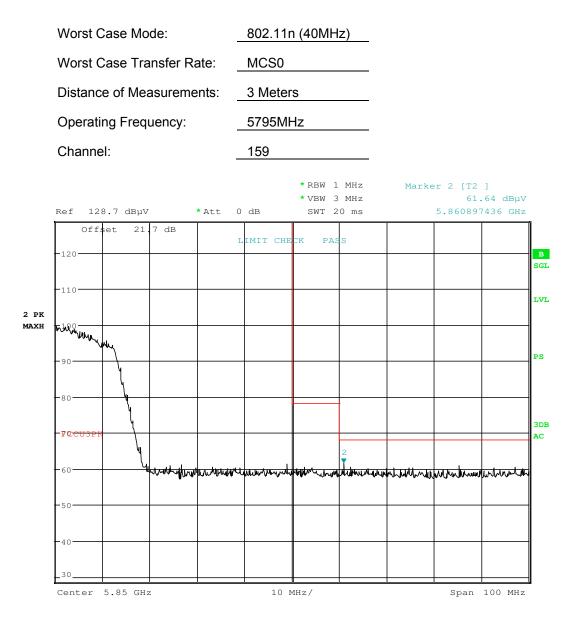
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 171 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 171 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 14:44:26

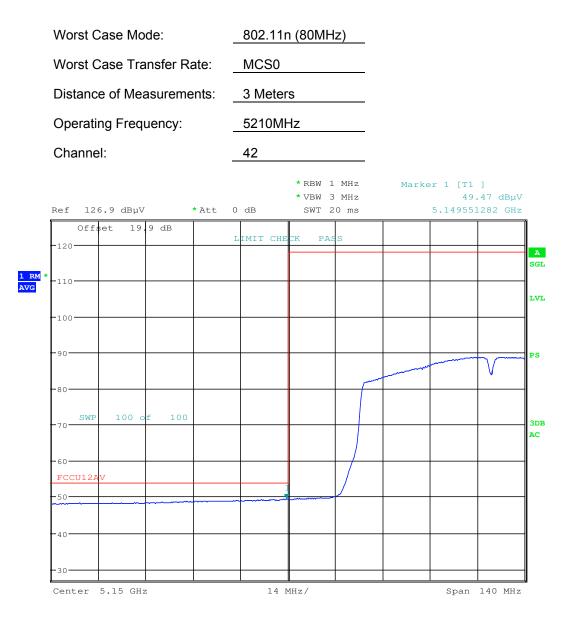
Plot 7-209. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 170 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 172 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:44:43

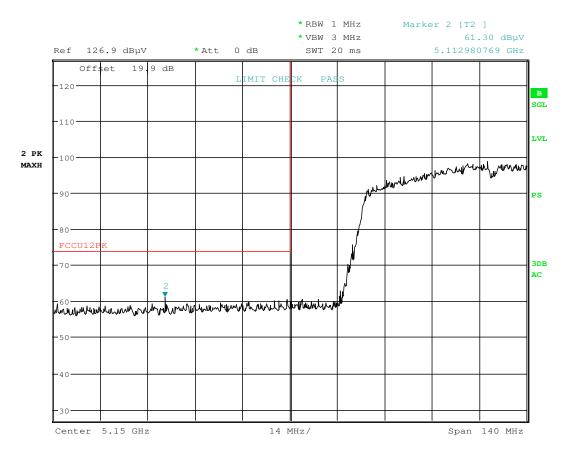
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 173 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 175 01 225
2 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:49:34

Plot 7-211. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

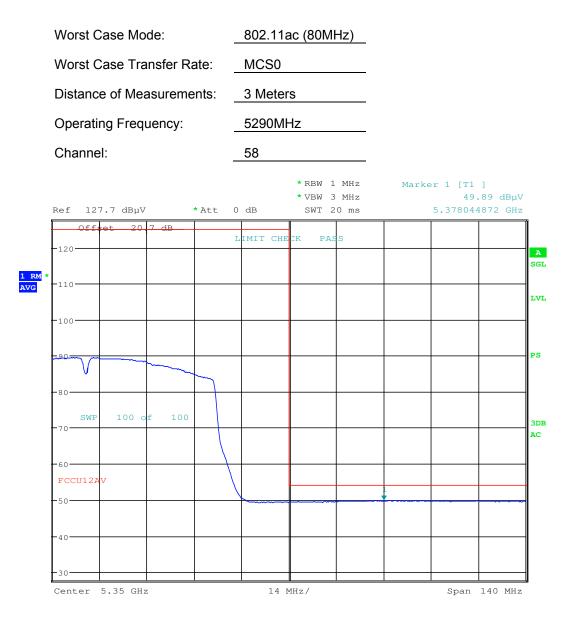
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 174 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 174 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:54:00

Plot 7-212. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

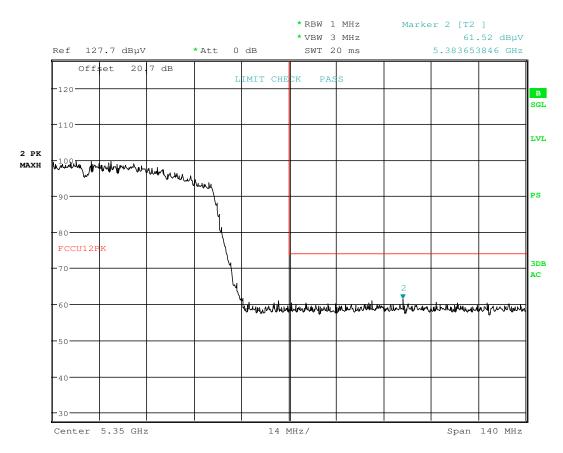
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 175 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 175 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:54:10

Plot 7-213. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

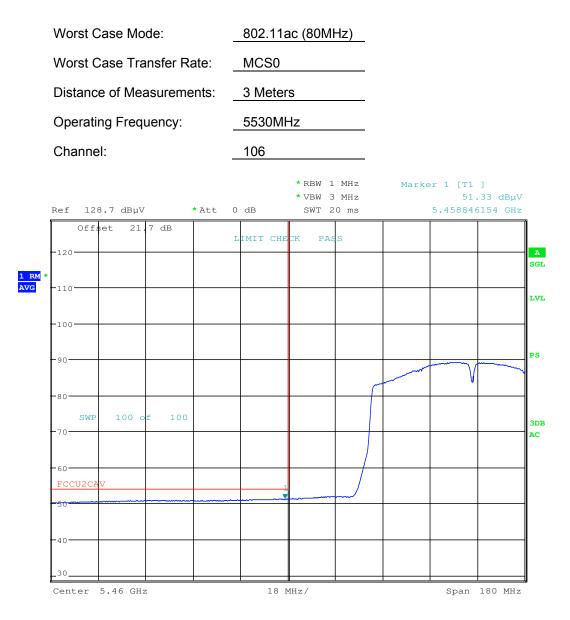
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 176 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 176 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 14:58:40

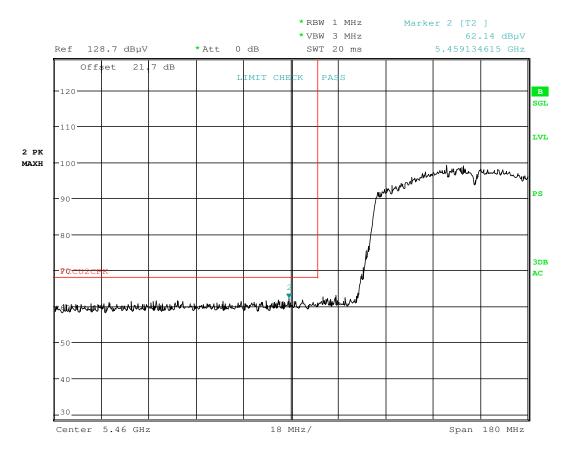
Plot 7-214. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 177 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 177 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 14:58:49

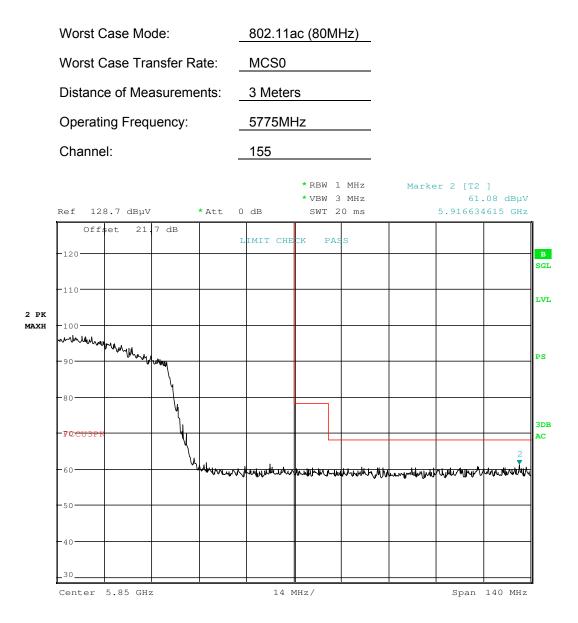
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 178 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 176 01 225
© 2016 PCTEST Engineering L	2 2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 15:02:23

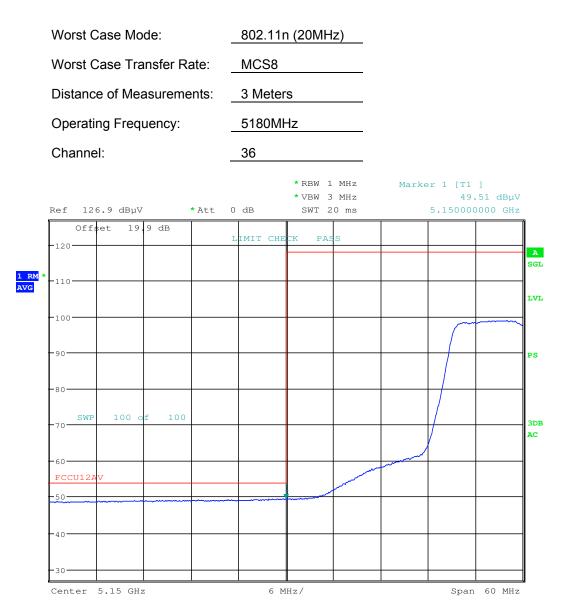
Plot 7-216. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 170 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 179 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 15:02:33

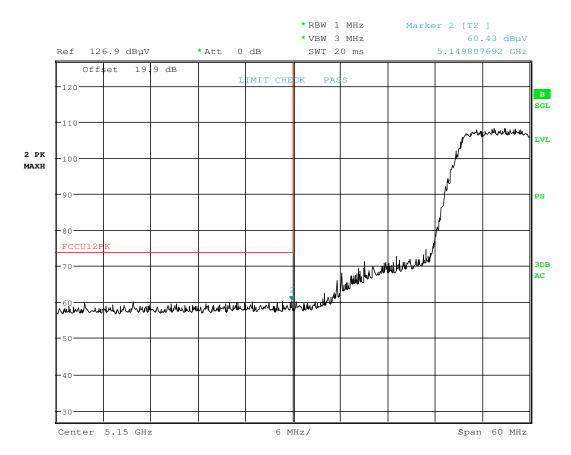
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 180 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 160 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				


Date: 8.JUL.2016 15:05:34

Plot 7-218. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 101 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 181 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

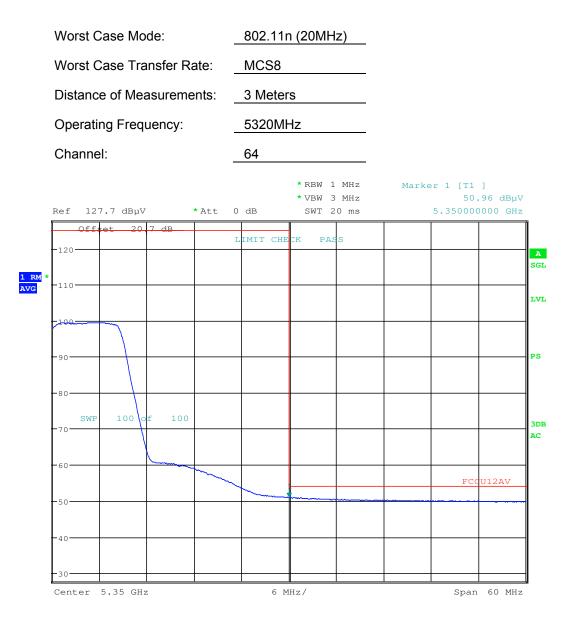
7.7.9 MIMO Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 8.JUL.2016 15:37:59

Plot 7-219. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 192 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 182 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

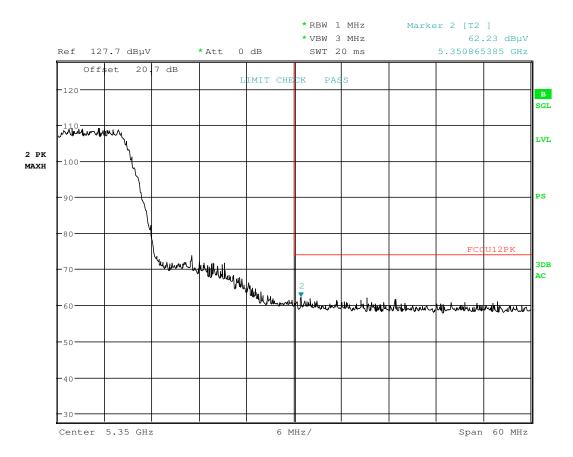
MIMO Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 8.JUL.2016 15:38:11

Plot 7-220. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

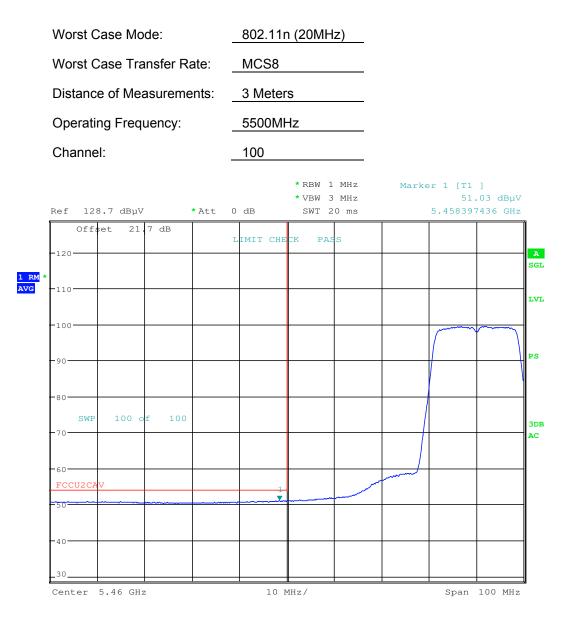
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 192 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 183 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 15:43:25

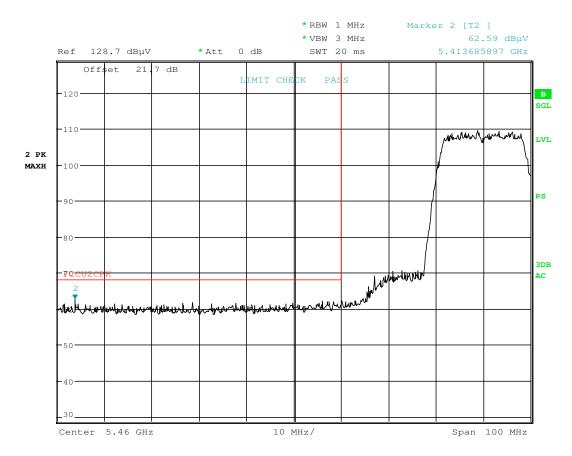
Plot 7-221. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 194 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 184 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 15:43:35

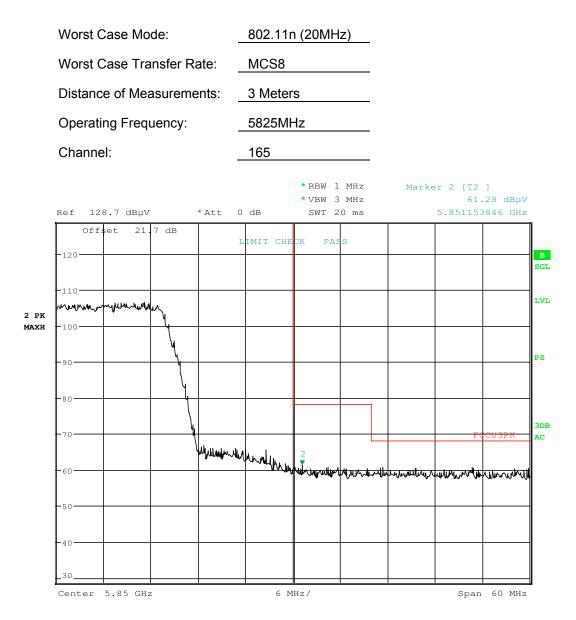
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 185 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Faye 105 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 15:48:53

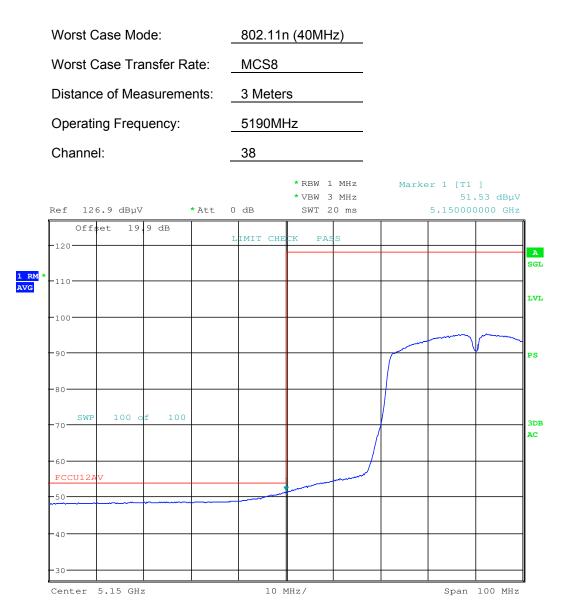
Plot 7-223. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 196 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 186 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 15:49:04

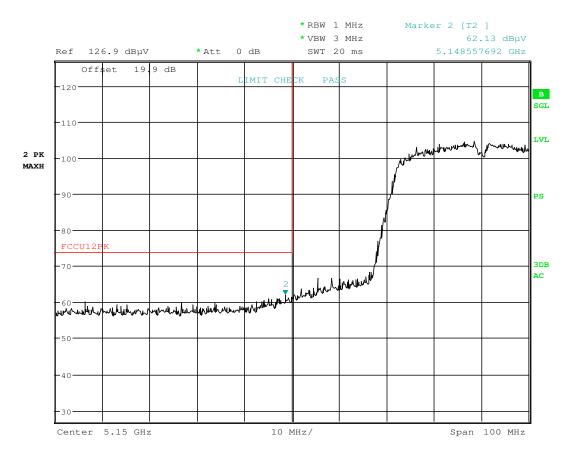
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 197 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 187 of 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 15:54:33

Plot 7-225. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

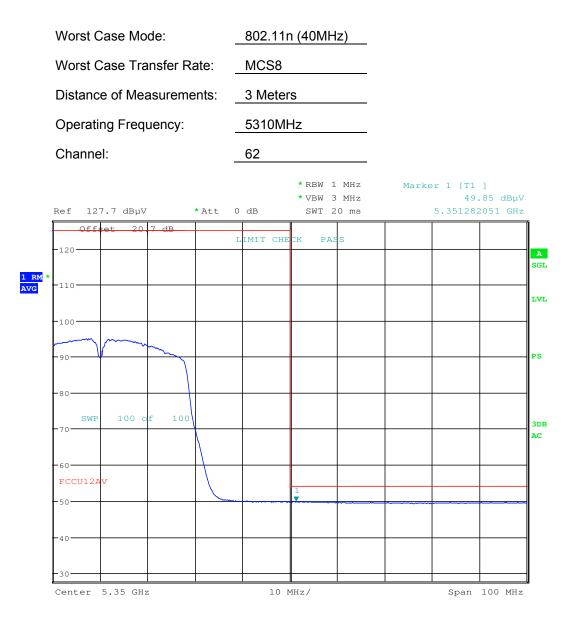
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 199 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 188 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:12:53

Plot 7-226. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

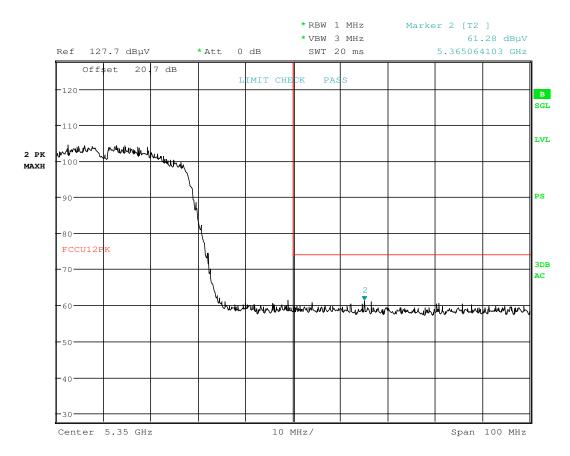
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 190 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 189 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:13:05

Plot 7-227. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

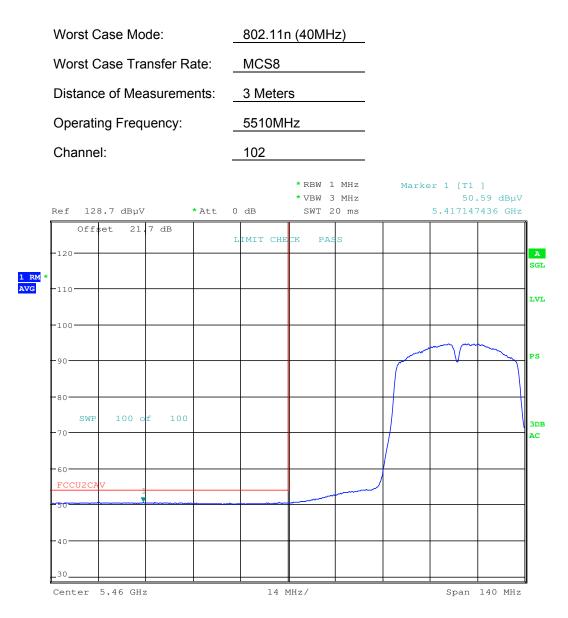
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 190 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 190 01 225
© 2016 PCTEST Engineering L	0 2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 16:18:11

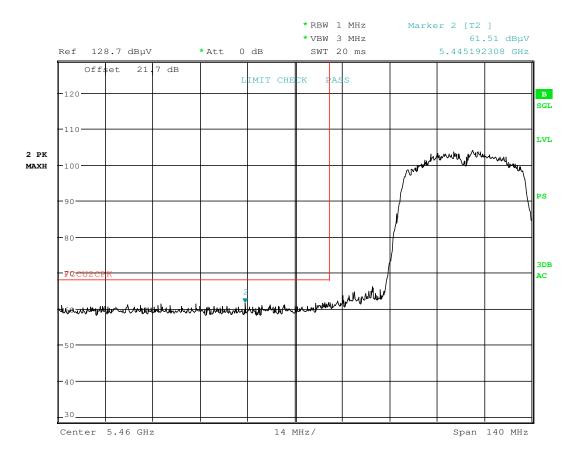
Plot 7-228. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 101 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 191 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:18:24

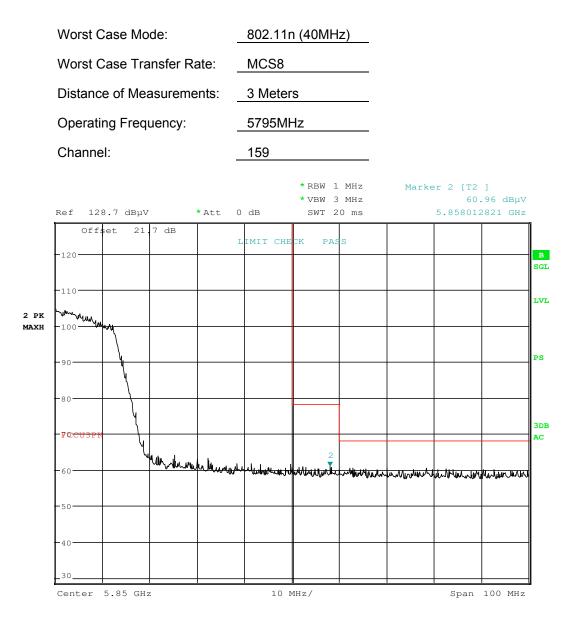
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 192 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 192 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 16:23:53

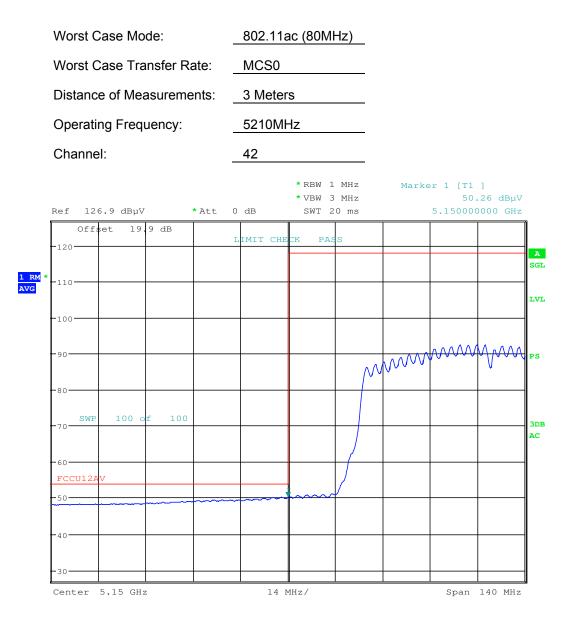
Plot 7-230. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 102 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 193 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:24:41

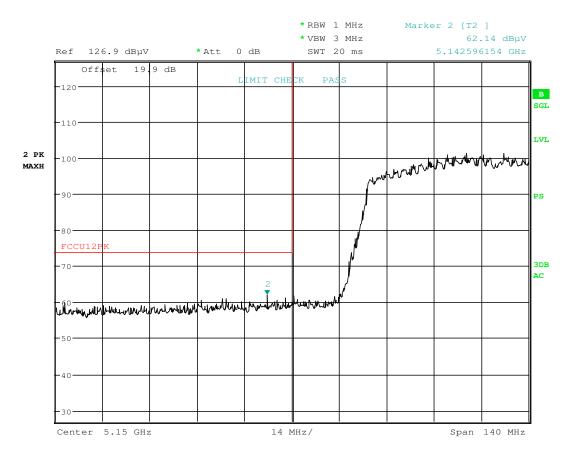
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 194 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 194 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 8.JUL.2016 16:31:06

Plot 7-232. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

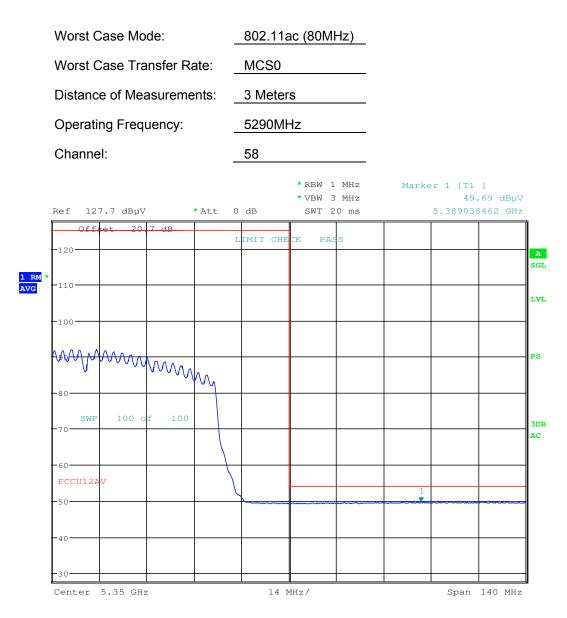
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 195 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016



Date: 8.JUL.2016 16:36:39

Plot 7-233. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

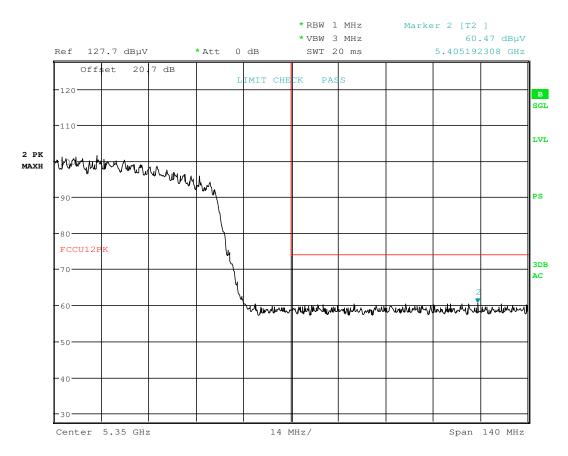
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 106 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 196 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:36:49

Plot 7-234. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

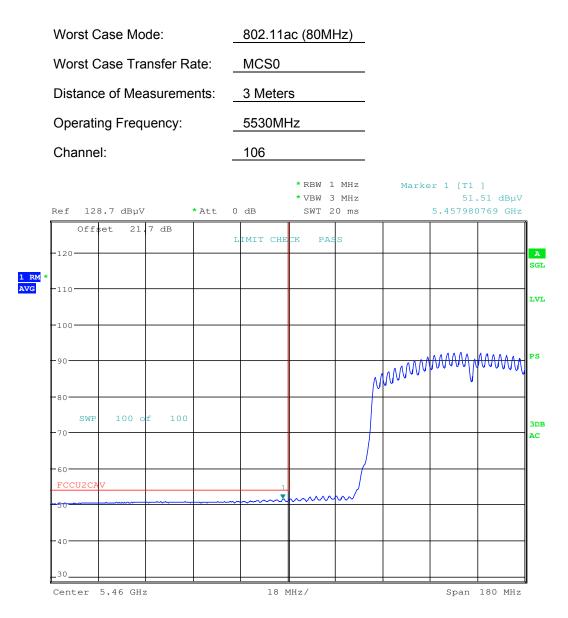
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 107 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 197 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:41:09

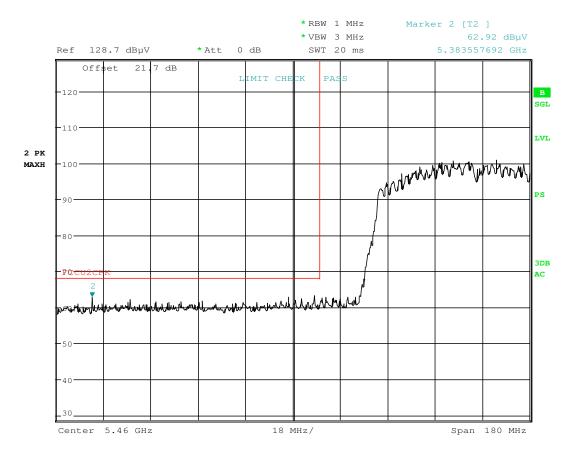
Plot 7-235. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 198 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:41:23

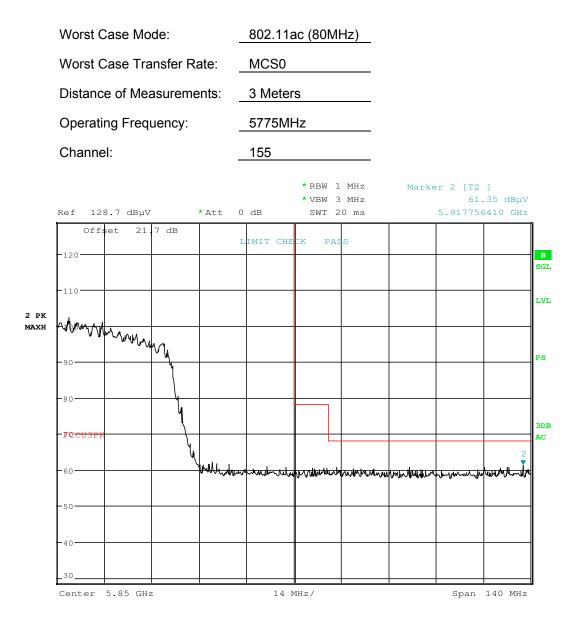
FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 199 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 199 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 8.JUL.2016 16:48:12

Plot 7-237. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 200 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 200 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 8.JUL.2016 16:48:24

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 201 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 201 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Date: 8.JUL.2016 16:54:05

Plot 7-239. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 202 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 202 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-52 per Section 15.209.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-52. Radiated Limits

Test Procedures Used

ANSI C63.4-2014

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 202 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 203 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

<u>Test Setup</u>

The EUT and measurement equipment were set up as shown in the diagrams below.

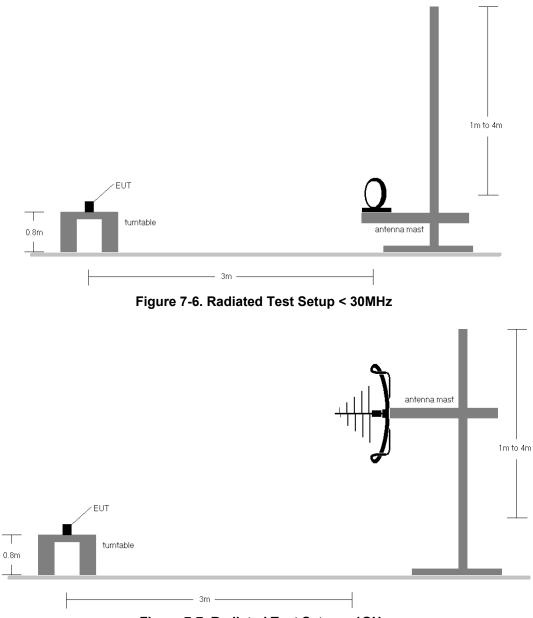
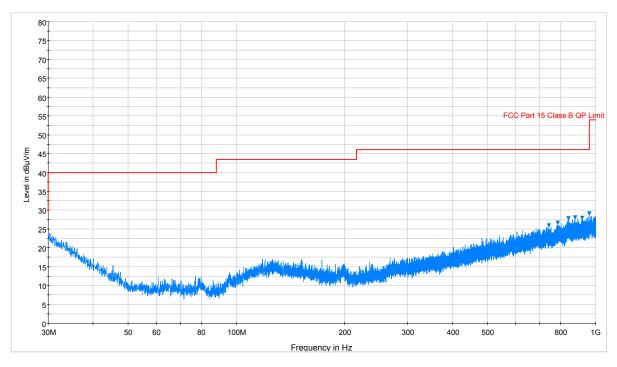


Figure 7-7. Radiated Test Setup < 1GHz

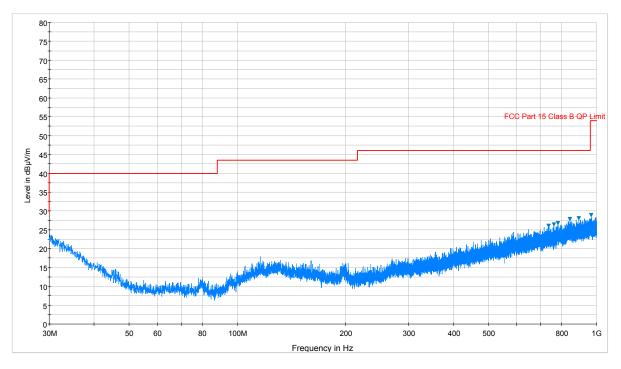
Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-52.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 204 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 204 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

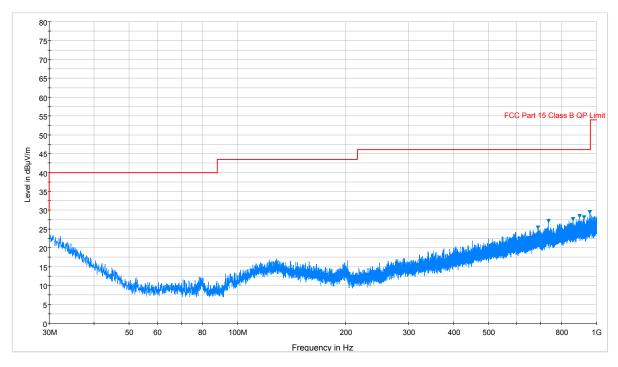


- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

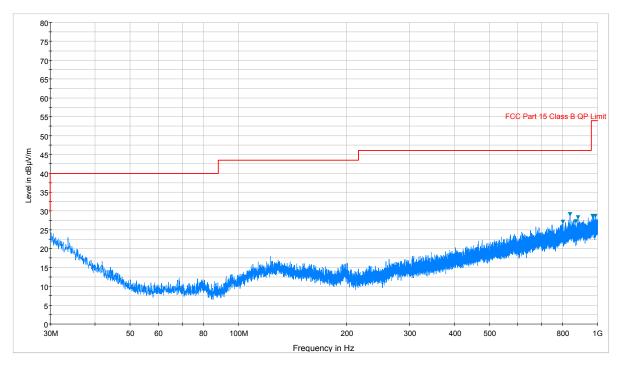

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 205 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 205 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Primary Antenna Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-240. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



Plot 7-241. Radiated Spurious Plot below 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)


FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 206 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 206 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Secondary Antenna Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-242. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

Plot 7-243. Radiated Spurious Plot below 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 207 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 207 01 225
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 4.0

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted	Limit (dBµV)
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-53. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

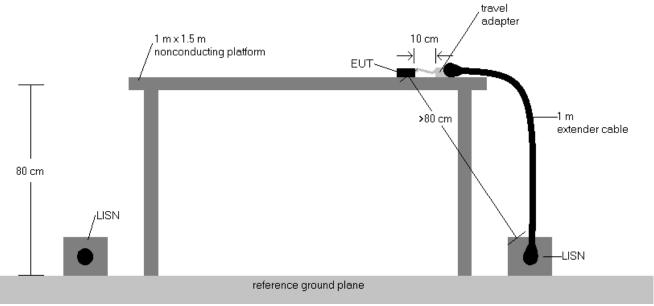
Average Field Strength Measurements

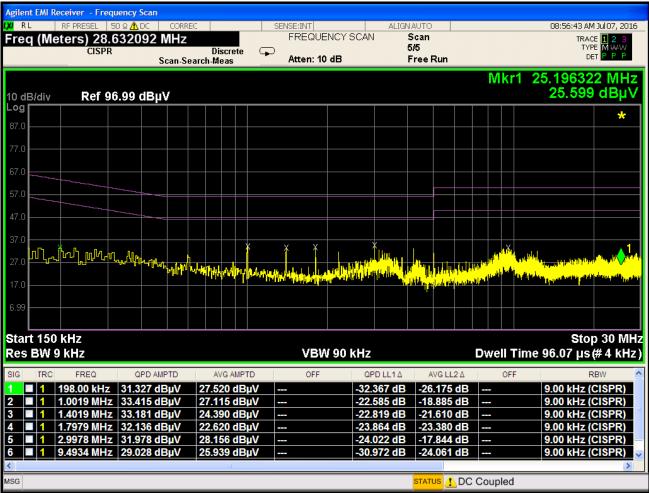
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 208 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 206 01 225
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.			

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

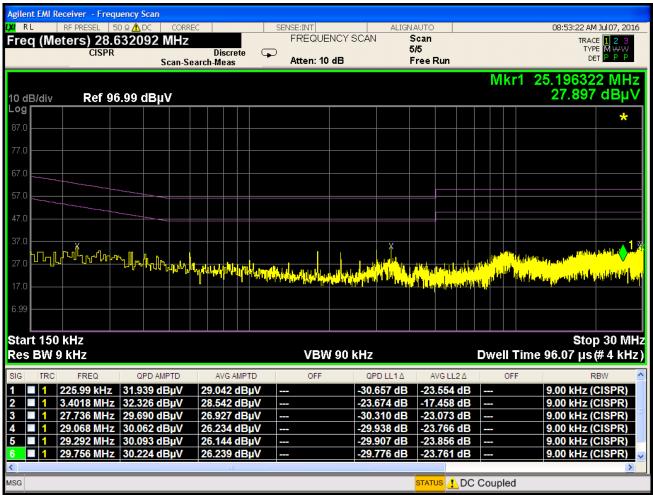



Figure 7-8. Test Instrument & Measurement Setup

Test Notes

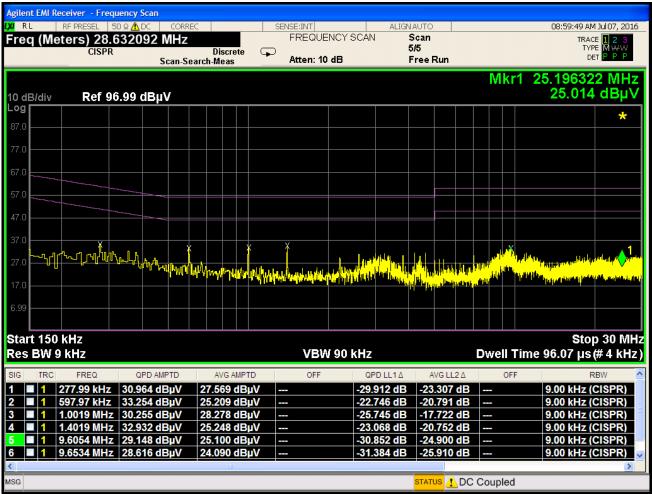
- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 200 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 209 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Plot 7-244. Line Conducted Plot with 802.11a UNII Band 1 (L1)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 210 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 210 01 225
0 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

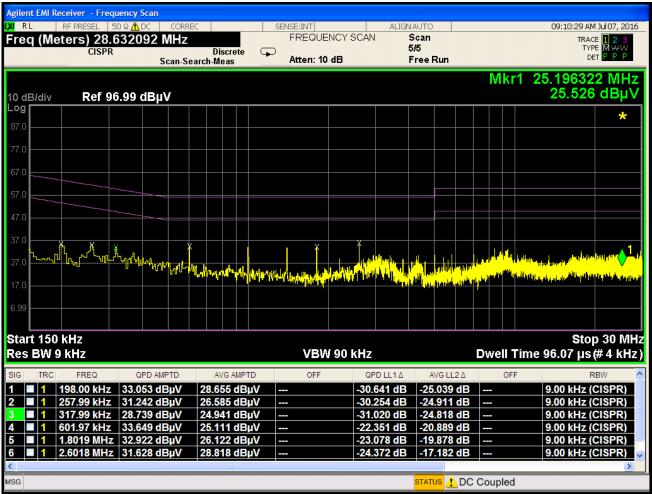


Plot 7-245. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 211 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 211 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

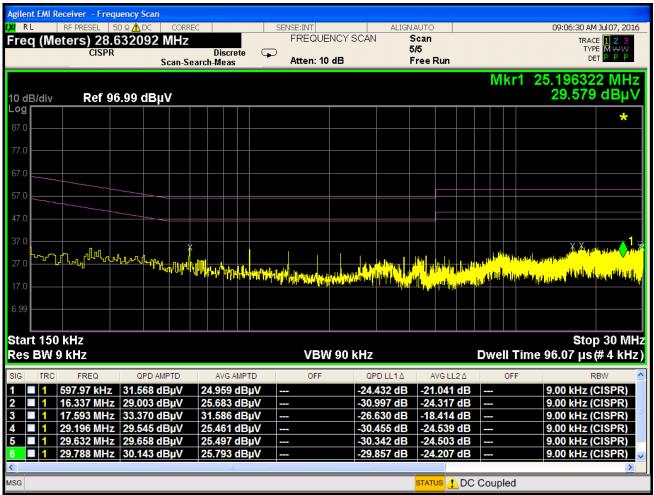
Plot 7-246. Line Conducted Plot with 802.11a UNII Band 2A (L1)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 212 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 212 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



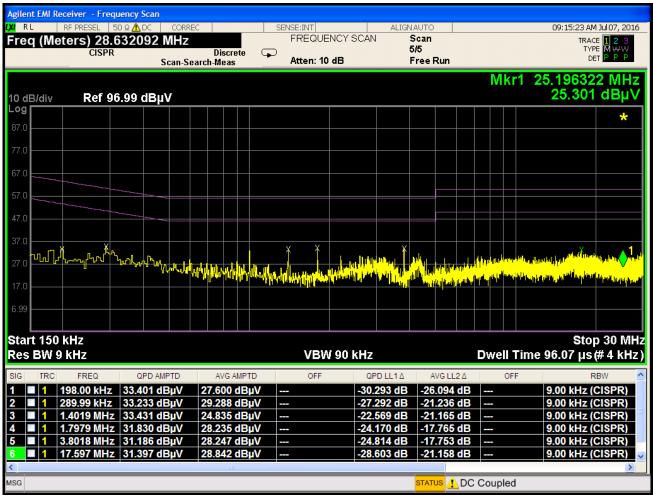
Plot 7-247. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 213 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 213 01 225
0 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



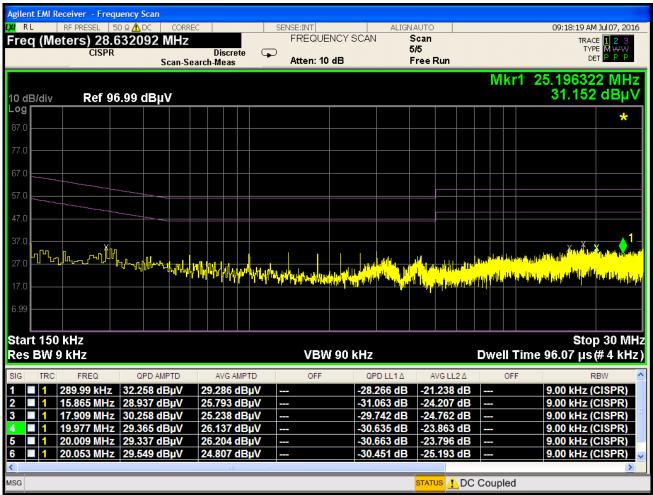
Plot 7-248. Line Conducted Plot with 802.11a UNII Band 2C (L1)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 214 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 214 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Plot 7-249. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 215 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 215 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



Plot 7-250. Line Conducted Plot with 802.11a UNII Band 3 (L1)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 216 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 216 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

Plot 7-251. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 217 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 217 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the LG Portable Handset FCC ID: ZNFH910 is in compliance with Part 15E of the FCC Rules.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 219 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 218 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

APPENDIX A. 802.11A DUAL TX

A.1 Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER M	ODE (TX)				
15.407 (a.1)	Maximum Conducted Output Power	< 250mW (23.98dBm) (5150-5250MHz) < 250mW (5250-5350MHz) < 250mW (5470-5725MHz) < 1W (30dBm) (5725-5850MHz)		PASS	Section A.2
15.407 (a.1), (5)	Maximum Power Spectral Density	< 11 dBm/MHz (5150-5250MHz, 5250- 5350MHz, 5470-5725MHz) < 30 dBm/500kHz (5725-5850MHz)	CONDUCTED	PASS	Section A.3
15.205, 15.407(b.1),(5),(6)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		PASS	Section A.4

Notes:

1) This device employs dual transmission in 802.11a and 802.11g modes using CDD. For all test cases, the device was set to transmit from both antennas simultaneously. The data in this section demonstrates compliance to the dual-transmission requirements specified in KDB 662911 v02r01.

Table A.1-1. Summary of Test Results

- 2) All data found in this section is compiled from plots found in the main body of this test report.
- 3) Since this device is able to transmit the same data through both of its antennas in a given symbol period, then, by the definition specified in KDB 662911 v02r01 Section F)1), the transmission symbols are correlated.
- 4) Since two antennas are supported in this device and a minimum of N_{ss} = 1 antenna can operate at any given time, the maximum array gain for two correlated signals is 10log₁₀(N_{ant}/N_{ss}) = 3dB, where N_{ss} is the number of spatial streams and N_{ant} is the total number of antennas.
- 5) For conducted spurious emissions, per KDB 662911 v02r01 Section E)3)b), the emissions on each individual output complied with its corresponding relative limit for that output, so additional testing was not required for dual transmission operation.

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 210 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 219 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0

A.2 Output Power Measurement §15.247(b.3)

Test Overview

Using the "Measure and Sum" technique, the measured conducted power values were summed in linear power units then converted back to dBm. Original measured values are found in Section 7.4 of this report.

			5GHz (20MHz) Conducted Power [dBm				
Freq [MHz]	Channel	Detector	IEEE	IEEE Transmission Mode			
			ANT1	ANT2	CDD		
5180	36	AVG	14.38	13.50	16.97		
5200	40	AVG	14.38	13.79	17.11		
5220	44	AVG	14.32	13.51	16.94		
5240	48	AVG	14.51	13.49	17.04		
5260	52	AVG	14.88	13.54	17.27		
5280	56	AVG	14.70	13.47	17.14		
5300	60	AVG	14.73	13.47	17.16		
5320	64	AVG	14.68	13.45	17.12		
5500	100	AVG	14.42	13.15	16.84		
5580	116	AVG	14.39	13.50	16.98		
5660	132	AVG	14.40	13.55	17.01		
5720	144	AVG	14.21	13.56	16.91		
5745	149	AVG	14.56	13.65	17.14		
5785	157	AVG	14.48	13.38	16.98		
5825	165	AVG	14.53	13.32	16.98		

Table A2-1. Dual Tx 802.11a-mode Conducted Output Power Measurements

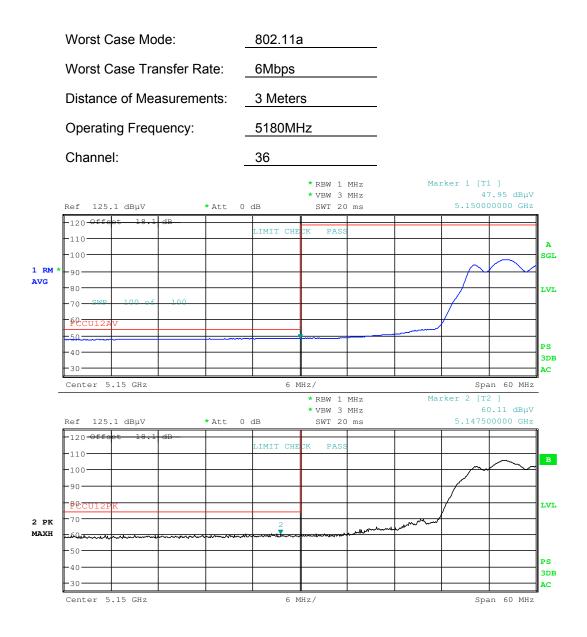
FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 220 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 220 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

A.3 Power Spectral Density §15.247(e)

Test Overview

Using the "Measure and Sum" technique, the measured conducted power density values were summed in linear power units then converted back to dBm.

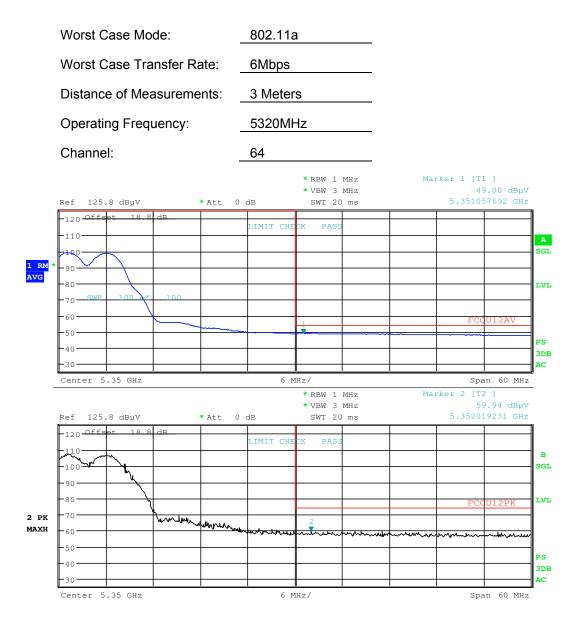
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	-	Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
+	5180	36	a (20MHz)	6	2.44	2.64	5.55	11.0	-5.45	Pass
Band	5200	40	a (20MHz)	6	2.64	1.95	5.32	11.0	-5.68	Pass
ä	5240	48	a (20MHz)	6	2.76	1.79	5.31	11.0	-5.69	Pass
2A	5260	52	a (20MHz)	6	2.58	1.80	5.21	11.0	-5.79	Pass
Band	5280	56	a (20MHz)	6	2.50	2.16	5.34	11.0	-5.66	Pass
Ba	5320	64	a (20MHz)	6	2.60	2.36	5.49	11.0	-5.51	Pass
2C	5500	100	a (20MHz)	6	2.89	2.10	5.53	11.0	-5.47	Pass
Band	5580	116	a (20MHz)	6	2.80	2.14	5.49	11.0	-5.51	Pass
Ba	5600	120	a (20MHz)	6	2.61	2.06	5.35	11.0	-5.65	Pass
3	5745	149	a (20MHz)	6	0.20	-0.64	2.81	30.0	-27.19	Pass
Band	5785	157	a (20MHz)	6	0.21	-0.18	3.03	30.0	-26.97	Pass
ä	5825	165	a (20MHz)	6	1.74	-0.05	3.95	30.0	-26.05	Pass


Table A3-3.802.11a Dual Tx Conducted Power Density Measurements

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 221 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 221 01 225
© 2016 PCTEST Engineering Laboratory, Inc.				

A.4 Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting on both outputs in 802.11a mode.


Date: 20.JUL.2016 21:01:35

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 222 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 222 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

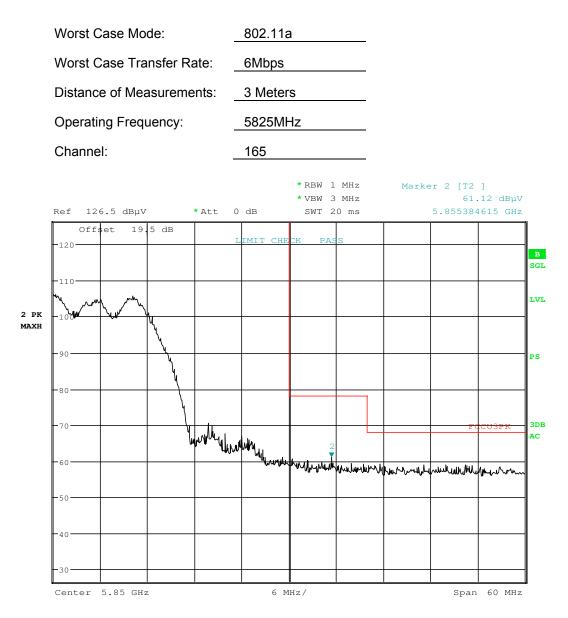
Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209

Date: 20.JUL.2016 21:04:10

Plot A.4-3. Radiated Restricted Upper Band Edge Plot (Average/Peak – UNII Band 2A)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dece 222 of 225	
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 223 of 225	
© 2016 PCTEST Engineering Laboratory, Inc.					

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.JUL.2016 21:07:13

Plot A.4-5. Radiated Restricted Lower Band Edge Plot (Average/Peak – UNII Band 2C)

FCC ID: ZNFH910		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 224 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 224 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209

Date: 20.JUL.2016 21:09:35

Plot A.4-7. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFH910	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 225 of 225
0Y1607051175-R2 .ZNF	7/6 - 7/22/2016	Portable Handset		Page 225 of 225
© 2016 PCTEST Engineering Laboratory, Inc.				