PG1

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name: LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 08/10/15 - 08/31/15 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1508101503-R3.ZNF

FCC ID: ZNFH900

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset Application Type: Certification FCC Rule Part(s): CFR §2.1093

Model(s): LG-H900, LGH900, H900

Equipment	Band & Mode Tx	Tx Frequency	SAR			
Class	Balla a Mode	TX Frequency	1 gm Head (W/kg)	1 gm Body-Worn (W/kg)	1 gm Hotspot (W/kg)	10 gm Phablet (W/kg)
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.30	0.36	0.40	
PCE	UMTS 850	826.40 - 846.60 MHz	0.23	0.33	0.33	
PCE	GSWGPRS/EDGE 1900	1850.20 - 1909.80 MHz	< 0.1	0.27	0.33	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.16	0.53	0.67	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.23	0.48	0.58	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.28	0.33	0.33	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.20	0.69	0.76	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.18	0.56	0.81	
PCE	LTE Band 30	2307.5 - 2312.5 MHz	< 0.1	0.28	0.41	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.59	< 0.1	0.12	
NII	U-NII-1	5180 - 5240 MHz				
NII	U-NII-2A	5260 - 5320 MHz	0.21	0.37		0.71
NII	U-NII-2C	5500 - 5720 MHz	0.11	0.31		0.57
NII	U-NII-3	5745 - 5825 MHz	0.13	0.24	0.24	
DSS/DTS Bluetooth 2402 - 2480 MHz				N	'A	
Simultaneous	Simultaneous SAR per KDB 690783 D01v01r03:		0.89	1.06	1.05	0.71

Note: This revised Test Report (S/N: 0Y1508101503-R3.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 1 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 1 of 81

© 2015 PCTEST Engineering Laboratory, Inc.

08/06/201

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	10
3	INTRODI	JCTION	11
4	DOSIME	TRIC ASSESSMENT	12
5	DEFINIT	ON OF REFERENCE POINTS	13
6	TEST CO	NFIGURATION POSITIONS FOR HANDSETS	14
7	RF EXPO	OSURE LIMITS	17
8	FCC ME	ASUREMENT PROCEDURES	18
9	RF CONI	DUCTED POWERS	23
10	SYSTEM	VERIFICATION	51
11	SAR DAT	TA SUMMARY	55
12	FCC MUI	LTI-TX AND ANTENNA SAR CONSIDERATIONS	69
13	SAR ME	ASUREMENT VARIABILITY	74
14	ADDITIO	NAL TESTING PER FCC GUIDANCE	75
15	EQUIPM	ENT LIST	76
16	MEASUF	REMENT UNCERTAINTIES	77
17	CONCLU	ISION	79
18	REFERE	NCES	80
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 2 of 04
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 2 of 81

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSWGPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
U-NII-1	Data	5180 - 5240 MHz
U-NII-2A	Data	5260 - 5320 MHz
U-NII-2C	Data	5500 - 5720 MHz
U-NII-3	Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

	I	I		I		
Mode / Band		Voice	Burst Avei	rage GMSK	Burst Avei	rage 8-PSK
		(dBm)	(dE	3m)	(dE	Bm)
		1 TX Slot	1 TX Slot	2 TX Slots	1 TX Slots	2 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.7	33.7	32.2	27.2	27.2
GSIVI/GPRS/EDGE 650	Nominal	33.2	33.2	31.7	26.7	26.7
GSM/GPRS/EDGE 1900	Maximum	30.2	30.2	29.2	26.2	26.2
GSIVI/GPRS/EDGE 1900	Nominal	29.7	29.7	28.7	25.7	25.7

	Modulated Average (dBm)			
Mode / Band	3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	
110.4TC D	Maximum	24.7	24.7	24.7
UMTS Band 5 (850 MHz)	Nominal	24.2	24.2	24.2
UMTS Band 2 (1900 MHz)	Maximum	24.7	24.7	24.7
OWITS Balla 2 (1900 WHZ)	Nominal	24.2	24.2	24.2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 2 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 3 of 81

Mode / Band		Modulated Average (dBm)
LTE Band 12	Maximum	25.0
LIE Ballu 12	Nominal	24.5
LTE Band 17	Maximum	25.0
LIE Ballu 17	Nominal	24.5
LTE Dand E (Call)	Maximum	24.7
LTE Band 5 (Cell)	Nominal	24.2
LTE Dand 4 (A)A(C)	Maximum	25.0
LTE Band 4 (AWS)	Nominal	24.5
LTE Daniel 3 (DCC)	Maximum	25.0
LTE Band 2 (PCS)	Nominal	24.5
LTE Dand 20	Maximum	22.7
LTE Band 30	Nominal	22.2

Mode / Band	Modulated Average (dBm)			
	1	2-10	11	
IEEE 802.11b (2.4 GHz) Maximum Nominal		17.0		
			16.0	
IEEE 802 11a (2 4 CHz)	Maximum	13.0	15.0	13.0
IEEE 802.11g (2.4 GHz)	Nominal	12.0	14.0	12.0
IEEE 802.11n (2.4 GHz)	Maximum	12.0	14.0	11.0
(HT20)	Nominal	11.0	13.0	10.0
IEEE 802.11ac (2.4 GHz)	Maximum		12.0	
(HT20)	Nominal		11.0	

Mode / Band	Modulated Average (dBm)	
Division the (1 Minus CESK)	Maximum	9.0
Bluetooth (1 Mbps, GFSK)	Nominal	8.0
Division the (2 Million CESK)	Maximum	4.5
Bluetooth (2 Mbps, GFSK)	Nominal	3.5
Divistanth (2 Mbrs. CESK)	Maximum	4.5
Bluetooth (3 Mbps, GFSK)	Nominal	3.5
Bluetooth LE	Maximum	5.0

FCC ID: ZNFH900	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 4 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 4 of 81

Mode / Band		Modulated Average (dBm)					
20 MHz Bandwi	dth	36	40-60	64	100	104-161	165
IEEE 003 44° (E CH-)	Maximum	14.0	15.0	14.0	13.0	15.0	15.0
IEEE 802.11a (5 GHz)	Nominal	13.0	14.0	13.0	12.0	14.0	14.0
IEEE 002 11n /E CU-)	Maximum	13.0	15.0	13.0	12.0	13.0	14.0
IEEE 802.11n (5 GHz)	Nominal	12.0	14.0	12.0	11.0	12.0	13.0
IEEE 802.11ac (5 GHz)	Maximum	13.0	15.0	13.0	12.0	15.0	14.0
1666 902.11dC (3 GHZ)	Nominal	12.0	14.0	12.0	11.0	14.0	13.0
40 MHz Bandwi	dth	38	46-54	62	102	110-159	
IEEE 003 11° /E CH-)	Maximum	12.0	13.0	12.0	11.0	13.0	
IEEE 802.11n (5 GHz)	Nominal	11.0	12.0	11.0	10.0	12.0	
IFFF 902 1100/F CU-V	Maximum	12.0	13.0	12.0	11.0	13.0	
IEEE 802.11ac (5 GHz)	Nominal	11.0	12.0	11.0	10.0	12.0	
80 MHz Bandwidth		42	58	106	138-155		
JEEE 902 1126 /E CH2)	Maximum	10.0	10.0	9.0	11.0		
IEEE 802.11ac (5 GHz)	Nominal	9.0	9.0	8.0	10.0		

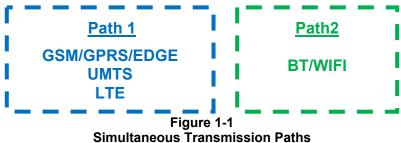
1.3 DUT Antenna Locations

The overall dimensions of this device are $\geq 9 \times 5$ cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Table 1-1
Device Edges/Sides for SAR Testing

Dovido Lagoorolado los oras rodalig							
Mode	Back	Front	Top	Bottom	Right	Left	
GPRS 850	Yes	Yes	No	Yes	Yes	Yes	
UMTS 850	Yes	Yes	No	Yes	Yes	Yes	
GPRS 1900	Yes	Yes	No	Yes	No	Yes	
UMTS 1900	Yes	Yes	No	Yes	No	Yes	
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 2 (PCS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 30	Yes	Yes	No	Yes	Yes	Yes	
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes	
5 GHz WLAN	Yes	Yes	Yes	No	No	Yes	

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR or Phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02 guidance, page 2 and FCC KDB 648474 D04v01r02. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, 5.2-5.7 GHz WLAN operations are disabled. Therefore 5.2-5.7 GHz WLAN operations are not considered in this section.


1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo E of 04
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 5 of 81

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
3	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes	
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
5	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
6	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes	
7	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
8	LTE + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
9	LTE + 2.4 GHz Bluetooth	N/A	Yes	N/A	Yes	
10	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	*-Pre-installed VOIP applications are considered.
11	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	*-Pre-installed VOIP applications are considered.
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	Yes	*-Pre-installed VOIP applications are considered.

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Simultaneous transmission scenarios involving WIFI direct are specified above.
- 5. 5 GHz Wireless Router is only supported for the 5.8 GHz Band by S/W, therefore 5.2-5.7 GHz Bands were not evaluated for wireless router conditions.
- 6. 5.8 GHz WIFI supports Hotspot and WIFI-Direct (GO/GC).
- 7. This device supports VoLTE.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 6 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 0 01 61

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A & U-NII-2C WIFI, only 2.4 GHz and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg for 1g SAR and less than 3.0 W/kg for 10g SAR, SAR is not required for U-NII-1 band according to FCC KDB 248227 D01v02r01.

Per FCC KDB 447498 D01v05, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; $[(8/10)^* \sqrt{2.480}] = 1.3 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v05, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \le 7.5$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Phablet Bluetooth SAR was not required; $[(8/5)^* \sqrt{2.480}] = 2.5 < 7.5$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) Band gap channels are supported

Per FCC KDB Publication 648474 D04v01r02, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-1, U-NII-2A & U-NII-2C WLAN, Phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 7 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 7 01 01

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r03.

This device supports both LTE Band 12 and LTE Band 17. Since the supported frequency span for LTE Band 17 falls completely within the supported frequency span for LTE Band 12, both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE Band 12.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r01, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

Per FCC KDB Publication 648474 D04v01r02, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for licensed technologies since wireless router 1g SAR was < 1.2 W/kg for these modes.

1.7 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.8 Wireless Charging Battery Cover

This DUT may be used with a standard battery cover or with an optional wireless charging battery cover. Per FCC KDB Publication 648474 D04v01r02, SAR was measured using the standard battery cover and then repeated with the wireless charging battery cover for the configuration with the highest reported SAR for each wireless technology, frequency band, operating mode, and exposure condition. Since reported SAR did not exceed 1.2 W/kg, additional testing with the wireless charging battery cover was not required.

1.9 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03, D05v02r03, D05Av01, D06v02 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r01 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05r02 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r03, D02v01r01 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r02 (Phablet Procedures, Wireless Charging Cover)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 9 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 8 of 81

1.10 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	•	Phablet Serial Number
GSM/GPRS/EDGE 850	05010	05010	05010	-
UMTS 850	05010	05010	05010	-
GSMGPRS/EDGE 1900	05010	05028	05028	-
UMTS 1900	05010	05010	05010	-
LTE Band 12	05051	05069	05069	-
LTE Band 5 (Cell)	05069	05051	05051	-
LTE Band 4 (AWS)	05036	05069	05069	-
LTE Band 2 (PCS)	05051	05051	05051	-
LTE Band 30	05069	05844	05844	-
2.4 GHz WLAN	05077	05077	05077	-
U-NII-2A & U-NII-2C	05085	05085	-	05085
U-NII-3	05085	05085	05085	-

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye 9 01 61

LTE INFORMATION 2

	LTE Information				
FCC ID		ZNFH900			
Form Factor		Portable Handset			
Frequency Range of each LTE transmission band		LTE Band 12 (699.7 - 715.3 MHz)			
	LTE Band 17 (706.5 - 713.5 MHz)				
	LTE Band 5 (Cell) (824.7 - 848.3 MHz)				
		TE Band 4 (AWS) (1710.7 - 1754.3 MI	<i>'</i>		
	L ⁻	TE Band 2 (PCS) (1850.7 - 1909.3 MF	łz)		
		LTE Band 30 (2307.5 - 2312.5 MHz)			
Channel Bandwidths	LTE	Band 12: 1.4 MHz, 3 MHz, 5 MHz, 10) MHz		
		LTE Band 17: 5 MHz, 10 MHz			
		ind 5 (Cell): 1.4 MHz, 3 MHz, 5 MHz,			
		S): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz			
	LTE Band 2 (PCS	S): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,	15 MHz, 20 MHz		
Channel Numbers and Fraguencies (MIIII)	Low	LTE Band 30: 5 MHz, 10 MHz	Lliab		
Channel Numbers and Frequencies (MHz) LTE Band 12: 1.4 MHz	Low 699.7 (23017)	Mid 707 5 (22005)	High 715.3 (23173)		
LTE Band 12: 1.4 MHz	` '	707.5 (23095)	` ,		
	700.5 (23025)	707.5 (23095)	714.5 (23165)		
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)		
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)		
LTE Band 17: 5 MHz	706.5 (23755)	710 (23790)	713.5 (23825)		
LTE Band 17: 10 MHz	709 (23780)	710 (23790)	711 (23800)		
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)		
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)		
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)		
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)		
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)		
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)		
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)		
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)		
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)		
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)		
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)		
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)		
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)		
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)		
LTE Band 30: 5 MHz	2307.5 (27685)	2310 (27710)	2312.5 (27735)		
LTE Band 30: 10 MHz	2310 (27710)	2310 (27710)	2310 (27710)		
UE Category	Ì	6	,		
Modulations Supported in UL		QPSK, 16QAM			
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided)		YES			
, , ,					
A-MPR (Additional MPR) disabled for SAR Testing?	YES				
LTE Carrier Aggregation Possible Combinations	The technical description includes all the possible carrier aggregation combinations				
LTE Release 10 Additional Information	This device does not support full CA features on 3GPP Release 10. It supports a maximum of 2 carriers in the downlink. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only the combinations listed above are supported. The following LTE Release 10 Features are not supported: Relay, HetNet, Enhanced MIMO, eICI, WIFI Offloading, MDH, eMBMA, Cross-Carrier Scheduling, Enhanced SC-FDMA.				

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 10 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 10 01 61

3 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 11 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 11 of 81

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

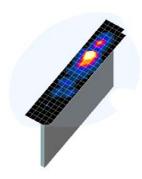


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01*

	Maximum Area Scan Resolution (mm)		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	,,	,,	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	,
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤ 4	≤ 2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 12 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye 12 01 61

© 2015 PCTEST Engineering Laboratory, Inc.

08/06/2015

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

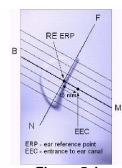


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2
Front, back and side view of SAM Twin Phantom

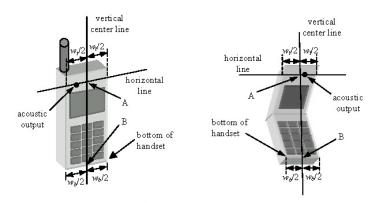


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 13 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 13 01 61

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 14 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 14 of 81

Figure 6-2 Front, Side and Top View of Ear/15°
Tilt Position

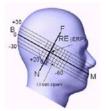


Figure 6-3 Side view w/ relevant markings

6.4 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r02, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

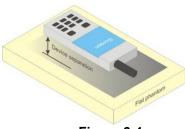


Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05 should be applied to determine SAR test requirements.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 15 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye 150161

Per KDB Publication 447498 D01v05, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.7 Phablet Configurations

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC minitablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04 v01r02 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 16 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 16 of 81

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR Head	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 17 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 17 of 81

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 19 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 18 of 81

© 2015 PCTEST Engineering Laboratory, Inc.

08/06/2015

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r03 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 19 of 81

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r03:

- a. Per Section 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 4.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 4.2.1.
- c. Per Section 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 4.2.4 and 4.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 4.2.1 through 4.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 Downlink Carrier Aggregation

LTE Carrier Aggregation (CA) measurements are made in accordance to 3GPP TS 36.521-1 V10.4.0 (2012-12). The RRC connection is only handled by one cell, the Primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds the Secondary component carrier (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to release 8 specifications on the PCC. Additional output powers are measured using two carriers in the downlink for the release 8 configurations with the highest output power among all channels, RB configurations and bandwidths for each uplink band. Per FCC KDB Publication 941225 D05A v01r01, no SAR measurements are required when the average output power with downlink carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink carrier aggregation inactive.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r01 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 84
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 20 of 81

© 2015 PCTEST Engineering Laboratory, Inc.

must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47-5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60-5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 21 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 210101

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.6).

8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is $\leq 1.2 \text{ W/kg}$, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 22 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 22 of 81

RF CONDUCTED POWERS

9.1 GSM Conducted Powers

			Maximum Bu	rst-Averaged (Output Power				
		Voice	GPRS/EDGE	Data (GMSK)	EDGE Dat	ta (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	33.10	33.10	31.70	26.57	26.47			
GSM 850	190	33.20	32.99	31.90	26.55	26.50			
	251	33.10	32.97	31.80	26.45	26.40			
	512	30.10	30.10	29.00	25.50	25.56			
GSM 1900	661	30.11	30.00	28.90	25.50	25.60			
	810	30.15	30.20	29.15	25.60	25.66			
		Calculated Maximum Frame-Averaged Output Power							
		Voice	GPRS/EDGE	Data (GMSK)	EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	24.07	24.07	25.68	17.54	20.45			
GSM 850	190	24.17	23.96	25.88	17.52	20.48			
	251	24.07	23.94	25.78	17.42	20.38			
	512	21.07	21.07	22.98	16.47	19.54			
GSM 1900	661	21.08	20.97	22.88	16.47	19.58			
	810	21.12	21.17	23.13	16.57	19.64			
GSM 850	Frame	24.17	24.17	25.68	17.67	20.68			
GSM 1900	Avg.Targets:	20.67	20.67	22.68	16.67	19.68			

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 10 (Max 2 Tx Uplink Slots)
EDGE Multislot class: 10 (Max 2 Tx Uplink Slots)
DTM Multislot Class: N/A

Figure 9-1
Power Measurement Setup

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 23 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 23 01 61

9.2 UMTS Conducted Powers

3GPP Release Mode		3GPP 34.121 Subtest	Cellular Band [dBm]			PCS	3GPP MPR [dB]		
Version		Gustost	4132	4183	4233	9262	9400	9538	WIFIX [UD]
99	WCDMA	12.2 kbps RMC	24.51	24.54	24.52	24.50	24.55	24.49	-
99	VVCDIVIA	12.2 kbps AMR	24.50	24.53	24.50	24.48	24.51	24.53	-
6		Subtest 1	24.48	24.56	24.55	24.36	24.46	24.41	0
6	HSDPA	Subtest 2	24.32	24.41	24.51	24.45	24.50	24.55	0
6	TIODIA	Subtest 3	23.98	23.93	24.10	23.99	23.89	24.00	0.5
6		Subtest 4	23.89	23.91	24.05	23.91	23.91	24.05	0.5
6		Subtest 1	24.00	23.90	24.01	24.34	23.98	24.11	0
6		Subtest 2	22.22	22.51	22.34	22.22	22.41	22.44	2
6	HSUPA	Subtest 3	23.43	23.21	23.27	23.54	23.37	23.26	1
6		Subtest 4	22.14	22.39	22.39	22.45	22.23	22.34	2
6		Subtest 5	24.05	24.16	24.22	24.15	24.34	24.31	0

This device does not support DC-HSDPA.

Figure 9-2
Power Measurement Setup

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 24 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 24 of 81

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

Table 9-1
LTE Band 12 Conducted Powers – 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	707.5	23095	10	QPSK	1	0	24.95	0	0
	707.5	23095	10	QPSK	1	25	24.74	0	0
	707.5	23095	10	QPSK	1	49	24.78	0	0
	707.5	23095	10	QPSK	25	0	23.72	0-1	1
	707.5	23095	10	QPSK	25	12	23.66	0-1	1
	707.5	23095	10	QPSK	25	25	23.61	0-1	1
рį	707.5	23095	10	QPSK	50	0	23.71	0-1	1
Mid	707.5	23095	10	16QAM	1	0	23.94	0-1	1
	707.5	23095	10	16QAM	1	25	23.84	0-1	1
	707.5	23095	10	16QAM	1	49	23.94	0-1	1
	707.5	23095	10	16QAM	25	0	22.77	0-2	2
	707.5	23095	10	16QAM	25	12	22.74	0-2	2
	707.5	23095	10	16QAM	25	25	22.72	0-2	2
	707.5	23095	10	16QAM	50	0	22.62	0-2	2

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 25 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 23 01 61

Table 9-2 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

_	LIE Band 12 Conducted Powers – 5 MHZ Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	701.5	23035	5	QPSK	1	0	24.97	0	0		
	701.5	23035	5	QPSK	1	12	24.98	0	0		
	701.5	23035	5	QPSK	1	24	25.00	0	0		
	701.5	23035	5	QPSK	12	0	23.79	0-1	1		
	701.5	23035	5	QPSK	12	6	23.88	0-1	1		
	701.5	23035	5	QPSK	12	13	23.77	0-1	1		
Low	701.5	23035	5	QPSK	25	0	23.79	0-1	1		
2	701.5	23035	5	16-QAM	1	0	23.70	0-1	1		
	701.5	23035	5	16-QAM	1	12	23.81	0-1	1		
	701.5	23035	5	16-QAM	1	24	23.82	0-1	1		
	701.5	23035	5	16-QAM	12	0	22.85	0-2	2		
	701.5	23035	5	16-QAM	12	6	22.88	0-2	2		
	701.5	23035	5	16-QAM	12	13	22.76	0-2	2		
	701.5	23035	5	16-QAM	25	0	22.84	0-2	2		
	707.5	23095	5	QPSK	1	0	24.70	0	0		
H	707.5	23095	5	QPSK	1	12	24.99	0	0		
ll	707.5	23095	5	QPSK	1	24	24.79	0	0		
H	707.5	23095	5	QPSK	12	0	23.68	0-1	1		
ll	707.5	23095	5	QPSK	12	6	23.80	0-1	1		
ll	707.5	23095	5	QPSK	12	13	23.88	0-1	1		
Mid	707.5	23095	5	QPSK	25	0	23.84	0-1	1		
Σ	707.5	23095	5	16-QAM	1	0	23.71	0-1	1		
	707.5	23095	5	16-QAM	1	12	23.73	0-1	1		
	707.5	23095	5	16-QAM	1	24	23.81	0-1	1		
	707.5	23095	5	16-QAM	12	0	22.81	0-2	2		
	707.5	23095	5	16-QAM	12	6	22.83	0-2	2		
	707.5	23095	5	16-QAM	12	13	22.89	0-2	2		
ll	707.5	23095	5	16-QAM	25	0	22.87	0-2	2		
	713.5	23155	5	QPSK	1	0	25.00	0	0		
	713.5	23155	5	QPSK	1	12	24.80	0	0		
	713.5	23155	5	QPSK	1	24	24.88	0	0		
	713.5	23155	5	QPSK	12	0	23.77	0-1	1		
	713.5	23155	5	QPSK	12	6	23.87	0-1	1		
	713.5	23155	5	QPSK	12	13	23.89	0-1	1		
ر پا	713.5	23155	5	QPSK	25	0	23.88	0-1	1		
High	713.5	23155	5	16-QAM	1	0	23.71	0-1	1		
	713.5	23155	5	16-QAM	1	12	23.98	0-1	1		
	713.5	23155	5	16-QAM	1	24	23.70	0-1	1		
	713.5	23155	5	16-QAM	12	0	22.89	0-2	2		
	713.5	23155	5	16-QAM	12	6	22.73	0-2	2		
	713.5	23155	5	16-QAM	12	13	22.81	0-2	2		
	713.5	23155	5	16-QAM	25	0	22.80	0-2	2		

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 26 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye 20 01 6 1

Table 9-3 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

_	LIE Band 12 Conducted Powers – 3 MHZ Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	700.5	23025	3	QPSK	1	0	25.00	0	0		
	700.5	23025	3	QPSK	1	7	24.82	0	0		
	700.5	23025	3	QPSK	1	14	24.61	0	0		
	700.5	23025	3	QPSK	8	0	23.98	0-1	1		
	700.5	23025	3	QPSK	8	4	23.78	0-1	1		
	700.5	23025	3	QPSK	8	7	23.66	0-1	1		
Low	700.5	23025	3	QPSK	15	0	23.72	0-1	1		
P	700.5	23025	3	16-QAM	1	0	23.88	0-1	1		
	700.5	23025	3	16-QAM	1	7	23.97	0-1	1		
	700.5	23025	3	16-QAM	1	14	23.86	0-1	1		
	700.5	23025	3	16-QAM	8	0	22.78	0-2	2		
	700.5	23025	3	16-QAM	8	4	23.00	0-2	2		
	700.5	23025	3	16-QAM	8	7	22.86	0-2	2		
	700.5	23025	3	16-QAM	15	0	22.64	0-2	2		
	707.5	23095	3	QPSK	1	0	24.93	0	0		
	707.5	23095	3	QPSK	1	7	24.74	0	0		
	707.5	23095	3	QPSK	1	14	24.75	0	0		
	707.5	23095	3	QPSK	8	0	23.67	0-1	1		
	707.5	23095	3	QPSK	8	4	23.62	0-1	1		
	707.5	23095	3	QPSK	8	7	23.84	0-1	1		
Mid	707.5	23095	3	QPSK	15	0	23.82	0-1	1		
Σ	707.5	23095	3	16-QAM	1	0	23.92	0-1	1		
	707.5	23095	3	16-QAM	1	7	24.00	0-1	1		
	707.5	23095	3	16-QAM	1	14	23.79	0-1	1		
	707.5	23095	3	16-QAM	8	0	22.87	0-2	2		
	707.5	23095	3	16-QAM	8	4	22.86	0-2	2		
	707.5	23095	3	16-QAM	8	7	22.82	0-2	2		
	707.5	23095	3	16-QAM	15	0	22.80	0-2	2		
	714.5	23165	3	QPSK	1	0	24.87	0	0		
	714.5	23165	3	QPSK	1	7	24.75	0	0		
	714.5	23165	3	QPSK	1	14	24.84	0	0		
	714.5	23165	3	QPSK	8	0	23.82	0-1	1		
	714.5	23165	3	QPSK	8	4	23.70	0-1	1		
	714.5	23165	3	QPSK	8	7	23.81	0-1	1		
High	714.5	23165	3	QPSK	15	0	23.84	0-1	1		
Ξ̈́	714.5	23165	3	16-QAM	1	0	23.83	0-1	1		
	714.5	23165	3	16-QAM	1	7	23.68	0-1	1		
	714.5	23165	3	16-QAM	1	14	23.83	0-1	1		
	714.5	23165	3	16-QAM	8	0	22.81	0-2	2		
	714.5	23165	3	16-QAM	8	4	22.83	0-2	2		
	714.5	23165	3	16-QAM	8	7	22.83	0-2	2		
	714.5	23165	3	16-QAM	15	0	22.82	0-2	2		

FCC ID: ZNFH900	PCTEST.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 27 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 27 01 61

Table 9-4 LTE Band 12 Conducted Powers – 1.4 MHz Bandwidth

_	LTE Band 12 Conducted Powers – 1.4 MHZ Bandwidth									
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	699.7	23017	1.4	QPSK	1	0	24.85	0	0	
	699.7	23017	1.4	QPSK	1	2	24.91	0	0	
	699.7	23017	1.4	QPSK	1	5	24.88	0	0	
	699.7	23017	1.4	QPSK	3	0	24.92	0	0	
	699.7	23017	1.4	QPSK	3	2	24.97	0	0	
	699.7	23017	1.4	QPSK	3	3	24.92	0	0	
Low	699.7	23017	1.4	QPSK	6	0	24.00	0-1	1	
2	699.7	23017	1.4	16-QAM	1	0	23.60	0-1	1	
	699.7	23017	1.4	16-QAM	1	2	23.72	0-1	1	
	699.7	23017	1.4	16-QAM	1	5	23.84	0-1	1	
	699.7	23017	1.4	16-QAM	3	0	23.76	0-1	1	
	699.7	23017	1.4	16-QAM	3	2	23.83	0-1	1	
	699.7	23017	1.4	16-QAM	3	3	23.88	0-1	1	
	699.7	23017	1.4	16-QAM	6	0	22.70	0-2	2	
	707.5	23095	1.4	QPSK	1	0	24.81	0	0	
	707.5	23095	1.4	QPSK	1	2	24.88	0	0	
	707.5	23095	1.4	QPSK	1	5	24.81	0	0	
	707.5	23095	1.4	QPSK	3	0	24.85	0	0	
	707.5	23095	1.4	QPSK	3	2	24.75	0	0	
	707.5	23095	1.4	QPSK	3	3	24.69	0	0	
р	707.5	23095	1.4	QPSK	6	0	23.81	0-1	1	
Mid	707.5	23095	1.4	16-QAM	1	0	23.87	0-1	1	
	707.5	23095	1.4	16-QAM	1	2	23.61	0-1	1	
	707.5	23095	1.4	16-QAM	1	5	23.72	0-1	1	
	707.5	23095	1.4	16-QAM	3	0	23.85	0-1	1	
	707.5	23095	1.4	16-QAM	3	2	23.73	0-1	1	
	707.5	23095	1.4	16-QAM	3	3	23.87	0-1	1	
	707.5	23095	1.4	16-QAM	6	0	22.84	0-2	2	
	715.3	23173	1.4	QPSK	1	0	24.71	0	0	
	715.3	23173	1.4	QPSK	1	2	24.67	0	0	
	715.3	23173	1.4	QPSK	1	5	24.96	0	0	
	715.3	23173	1.4	QPSK	3	0	24.77	0	0	
	715.3	23173	1.4	QPSK	3	2	25.00	0	0	
	715.3	23173	1.4	QPSK	3	3	24.99	0	0	
유	715.3	23173	1.4	QPSK	6	0	23.82	0-1	1	
High	715.3	23173	1.4	16-QAM	1	0	23.60	0-1	1	
	715.3	23173	1.4	16-QAM	1	2	23.83	0-1	1	
	715.3	23173	1.4	16-QAM	1	5	23.85	0-1	1	
	715.3	23173	1.4	16-QAM	3	0	23.61	0-1	1	
	715.3	23173	1.4	16-QAM	3	2	23.68	0-1	1	
	715.3	23173	1.4	16-QAM	3	3	23.84	0-1	1	
L	715.3	23173	1.4	16-QAM	6	0	22.63	0-2	2	

FCC ID: ZNFH900	€\ PCTEST	SAR EVALUATION REPORT	(1) LG	Reviewed by:
FCC ID: ZNFH900	SNG(NEEDING LABORATISTY, INC.	SAR EVALUATION REPORT	LG LG	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 28 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 20 01 01

9.3.2 LTE Band 5

Table 9-5
LTE Band 5 (Cell) Conducted Powers – 10 MHz Bandwidth

				(,					
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	836.5	20525	10	QPSK	1	0	24.50	0	0
	836.5	20525	10	QPSK	1	25	24.59	0	0
	836.5	20525	10	QPSK	1	49	24.54	0	0
	836.5	20525	10	QPSK	25	0	23.55	0-1	1
	836.5	20525	10	QPSK	25	12	23.31	0-1	1
	836.5	20525	10	QPSK	25	25	23.40	0-1	1
р	836.5	20525	10	QPSK	50	0	23.52	0-1	1
Mid	836.5	20525	10	16QAM	1	0	23.56	0-1	1
	836.5	20525	10	16QAM	1	25	23.31	0-1	1
	836.5	20525	10	16QAM	1	49	23.61	0-1	1
	836.5	20525	10	16QAM	25	0	22.56	0-2	2
	836.5	20525	10	16QAM	25	12	22.45	0-2	2
	836.5	20525	10	16QAM	25	25	22.45	0-2	2
	836.5	20525	10	16QAM	50	0	22.48	0-2	2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 29 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye 29 01 61

Table 9-6 LTE Band 5 (Cell) Conducted Powers – 5 MHz Bandwidth

_	LIE Band 5 (Cell) Conducted Powers – 5 MHZ Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	826.5	20425	5	QPSK	1	0	24.44	0	0		
	826.5	20425	5	QPSK	1	12	24.70	0	0		
	826.5	20425	5	QPSK	1	24	24.47	0	0		
	826.5	20425	5	QPSK	12	0	23.50	0-1	1		
	826.5	20425	5	QPSK	12	6	23.48	0-1	1		
	826.5	20425	5	QPSK	12	13	23.48	0-1	1		
>	826.5	20425	5	QPSK	25	0	23.46	0-1	1		
Low	826.5	20425	5	16-QAM	1	0	23.52	0-1	1		
	826.5	20425	5	16-QAM	1	12	23.35	0-1	1		
	826.5	20425	5	16-QAM	1	24	23.45	0-1	1		
	826.5	20425	5	16-QAM	12	0	22.63	0-2	2		
	826.5	20425	5	16-QAM	12	6	22.42	0-2	2		
	826.5	20425	5	16-QAM	12	13	22.42	0-2	2		
	826.5	20425	5	16-QAM	25	0	22.42	0-2	2		
	836.5	20525	5	QPSK	1	0	24.62	0	0		
	836.5	20525	5	QPSK	1	12	24.67	0	0		
	836.5	20525	5	QPSK	1	24	24.34	0	0		
	836.5	20525	5	QPSK	12	0	23.41	0-1	1		
	836.5	20525	5	QPSK	12	6	23.57	0-1	1		
	836.5	20525	5	QPSK	12	13	23.35	0-1	1		
Mid	836.5	20525	5	QPSK	25	0	23.34	0-1	1		
Σ	836.5	20525	5	16-QAM	1	0	23.53	0-1	1		
	836.5	20525	5	16-QAM	1	12	23.34	0-1	1		
	836.5	20525	5	16-QAM	1	24	23.61	0-1	1		
	836.5	20525	5	16-QAM	12	0	22.47	0-2	2		
	836.5	20525	5	16-QAM	12	6	22.55	0-2	2		
	836.5	20525	5	16-QAM	12	13	22.38	0-2	2		
	836.5	20525	5	16-QAM	25	0	22.57	0-2	2		
	846.5	20625	5	QPSK	1	0	24.35	0	0		
	846.5	20625	5	QPSK	1	12	24.70	0	0		
	846.5	20625	5	QPSK	1	24	24.57	0	0		
	846.5	20625	5	QPSK	12	0	23.60	0-1	1		
	846.5	20625	5	QPSK	12	6	23.60	0-1	1		
	846.5	20625	5	QPSK	12	13	23.36	0-1	1		
3h	846.5	20625	5	QPSK	25	0	23.41	0-1	1		
High	846.5	20625	5	16-QAM	1	0	23.50	0-1	1		
	846.5	20625	5	16-QAM	1	12	23.59	0-1	1		
	846.5	20625	5	16-QAM	1	24	23.43	0-1	1		
	846.5	20625	5	16-QAM	12	0	22.39	0-2	2		
	846.5	20625	5	16-QAM	12	6	22.40	0-2	2		
	846.5	20625	5	16-QAM	12	13	22.44	0-2	2		
	846.5	20625	5	16-QAM	25	0	22.47	0-2	2		

FCC ID: ZNFH900	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 20 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 30 of 81

Table 9-7 LTE Band 5 (Cell) Conducted Powers – 3 MHz Bandwidth

	LTE Band 5 (Cell) Conducted Powers – 3 MHz Bandwidth										
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	825.5	20415	3	QPSK	1	0	24.67	0	0		
	825.5	20415	3	QPSK	1	7	24.65	0	0		
	825.5	20415	3	QPSK	1	14	24.48	0	0		
	825.5	20415	3	QPSK	8	0	23.47	0-1	1		
	825.5	20415	3	QPSK	8	4	23.37	0-1	1		
	825.5	20415	3	QPSK	8	7	23.33	0-1	1		
Low	825.5	20415	3	QPSK	15	0	23.47	0-1	1		
P	825.5	20415	3	16-QAM	1	0	23.65	0-1	1		
	825.5	20415	3	16-QAM	1	7	23.63	0-1	1		
	825.5	20415	3	16-QAM	1	14	23.45	0-1	1		
	825.5	20415	3	16-QAM	8	0	22.59	0-2	2		
	825.5	20415	3	16-QAM	8	4	22.42	0-2	2		
	825.5	20415	3	16-QAM	8	7	22.57	0-2	2		
	825.5	20415	3	16-QAM	15	0	22.45	0-2	2		
	836.5	20525	3	QPSK	1	0	24.70	0	0		
	836.5	20525	3	QPSK	1	7	24.45	0	0		
	836.5	20525	3	QPSK	1	14	24.55	0	0		
	836.5	20525	3	QPSK	8	0	23.55	0-1	1		
	836.5	20525	3	QPSK	8	4	23.57	0-1	1		
	836.5	20525	3	QPSK	8	7	23.58	0-1	1		
Mid	836.5	20525	3	QPSK	15	0	23.57	0-1	1		
Σ	836.5	20525	3	16-QAM	1	0	23.58	0-1	1		
	836.5	20525	3	16-QAM	1	7	23.31	0-1	1		
	836.5	20525	3	16-QAM	1	14	23.48	0-1	1		
	836.5	20525	3	16-QAM	8	0	22.57	0-2	2		
	836.5	20525	3	16-QAM	8	4	22.45	0-2	2		
	836.5	20525	3	16-QAM	8	7	22.53	0-2	2		
	836.5	20525	3	16-QAM	15	0	22.41	0-2	2		
	847.5	20635	3	QPSK	1	0	24.51	0	0		
	847.5	20635	3	QPSK	1	7	24.68	0	0		
	847.5	20635	3	QPSK	1	14	24.70	0	0		
	847.5	20635	3	QPSK	8	0	23.59	0-1	1		
	847.5	20635	3	QPSK	8	4	23.66	0-1	1		
	847.5	20635	3	QPSK	8	7	23.63	0-1	1		
3h	847.5	20635	3	QPSK	15	0	23.57	0-1	1		
High	847.5	20635	3	16-QAM	1	0	23.51	0-1	1		
	847.5	20635	3	16-QAM	1	7	23.42	0-1	1		
	847.5	20635	3	16-QAM	1	14	23.51	0-1	1		
	847.5	20635	3	16-QAM	8	0	22.52	0-2	2		
	847.5	20635	3	16-QAM	8	4	22.53	0-2	2		
	847.5	20635	3	16-QAM	8	7	22.49	0-2	2		
	847.5	20635	3	16-QAM	15	0	22.55	0-2	2		

FCC ID: ZNFH900	PCTEST**** **** **** **** **** **** **** *	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 24 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 31 of 81

Table 9-8 LTE Band 5 (Cell) Conducted Powers - 1.4 MHz Bandwidth

			- Danu 3	5 (Cell) Conducted Powers – 1.4 MHZ Bandwidth					
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	824.7	20407	1.4	QPSK	1	0	24.50	0	0
	824.7	20407	1.4	QPSK	1	2	24.53	0	0
	824.7	20407	1.4	QPSK	1	5	24.42	0	0
	824.7	20407	1.4	QPSK	3	0	24.66	0	0
	824.7	20407	1.4	QPSK	3	2	24.61	0	0
	824.7	20407	1.4	QPSK	3	3	24.58	0	0
Low	824.7	20407	1.4	QPSK	6	0	23.48	0-1	1
임	824.7	20407	1.4	16-QAM	1	0	23.64	0-1	1
	824.7	20407	1.4	16-QAM	1	2	23.57	0-1	1
	824.7	20407	1.4	16-QAM	1	5	23.50	0-1	1
	824.7	20407	1.4	16-QAM	3	0	23.48	0-1	1
	824.7	20407	1.4	16-QAM	3	2	23.60	0-1	1
	824.7	20407	1.4	16-QAM	3	3	23.59	0-1	1
	824.7	20407	1.4	16-QAM	6	0	22.43	0-2	2
	836.5	20525	1.4	QPSK	1	0	24.35	0	0
	836.5	20525	1.4	QPSK	1	2	24.34	0	0
	836.5	20525	1.4	QPSK	1	5	24.50	0	0
	836.5	20525	1.4	QPSK	3	0	24.54	0	0
	836.5	20525	1.4	QPSK	3	2	24.58	0	0
	836.5	20525	1.4	QPSK	3	3	24.53	0	0
рi	836.5	20525	1.4	QPSK	6	0	23.52	0-1	1
Mid	836.5	20525	1.4	16-QAM	1	0	23.46	0-1	1
	836.5	20525	1.4	16-QAM	1	2	23.43	0-1	1
	836.5	20525	1.4	16-QAM	1	5	23.52	0-1	1
	836.5	20525	1.4	16-QAM	3	0	23.45	0-1	1
	836.5	20525	1.4	16-QAM	3	2	23.41	0-1	1
	836.5	20525	1.4	16-QAM	3	3	23.51	0-1	1
	836.5	20525	1.4	16-QAM	6	0	22.43	0-2	2
	848.3	20643	1.4	QPSK	1	0	24.47	0	0
	848.3	20643	1.4	QPSK	1	2	24.53	0	0
	848.3	20643	1.4	QPSK	1	5	24.43	0	0
	848.3	20643	1.4	QPSK	3	0	24.48	0	0
	848.3	20643	1.4	QPSK	3	2	24.58	0	0
	848.3	20643	1.4	QPSK	3	3	24.52	0	0
뜐	848.3	20643	1.4	QPSK	6	0	23.47	0-1	1
High	848.3	20643	1.4	16-QAM	1	0	23.59	0-1	1
	848.3	20643	1.4	16-QAM	1	2	23.54	0-1	1
	848.3	20643	1.4	16-QAM	1	5	23.34	0-1	1
	848.3	20643	1.4	16-QAM	3	0	23.54	0-1	1
	848.3	20643	1.4	16-QAM	3	2	23.54	0-1	1
	848.3	20643	1.4	16-QAM	3	3	23.48	0-1	1
	848.3	20643	1.4	16-QAM	6	0	22.41	0-2	2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 32 of 81	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		

9.3.3 LTE Band 4

Table 9-9
LTE Band 4 (AWS) Conducted Powers – 20 MHz Bandwidth

				(
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	1732.5	20175	20	QPSK	1	0	24.91	0	0	
	1732.5	20175	20	QPSK	1	50	24.82	0	0	
	1732.5	20175	20	QPSK	1	99	24.64	0	0	
	1732.5	20175	20	QPSK	50	0	23.77	0-1	1	
	1732.5	20175	20	QPSK	50	25	23.65	0-1	1	
	1732.5	20175	20	QPSK	50	50	23.60	0-1	1	
<u>i</u>	1732.5	20175	20	QPSK	100	0	23.68	0-1	1	
Σ	1732.5	20175	20	16QAM	1	0	23.81	0-1	1	
	1732.5	20175	20	16QAM	1	50	23.69	0-1	1	
	1732.5	20175	20	16QAM	1	99	23.78	0-1	1	
	1732.5	20175	20	16QAM	50	0	22.79	0-2	2	
	1732.5	20175	20	16QAM	50	25	22.87	0-2	2	
	1732.5	20175	20	16QAM	50	50	22.96	0-2	2	
	1732.5	20175	20	16QAM	100	0	22.65	0-2	2	

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 94	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 33 of 81	

Table 9-10 LTE Band 4 (AWS) Conducted Powers – 15 MHz Bandwidth

LTE Band 4 (AWS) Conducted Powers – 15 MHZ Bandwidth									
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1717.5	20025	15	QPSK	1	0	24.88	0	0
	1717.5	20025	15	QPSK	1	36	24.97	0	0
	1717.5	20025	15	QPSK	1	74	25.00	0	0
	1717.5	20025	15	QPSK	36	0	23.74	0-1	1
	1717.5	20025	15	QPSK	36	18	23.92	0-1	1
	1717.5	20025	15	QPSK	36	37	24.00	0-1	1
Low	1717.5	20025	15	QPSK	75	0	23.86	0-1	1
P	1717.5	20025	15	16QAM	1	0	23.89	0-1	1
	1717.5	20025	15	16QAM	1	36	23.82	0-1	1
	1717.5	20025	15	16QAM	1	74	23.68	0-1	1
	1717.5	20025	15	16QAM	36	0	22.96	0-2	2
	1717.5	20025	15	16QAM	36	18	22.91	0-2	2
	1717.5	20025	15	16QAM	36	37	22.97	0-2	2
	1717.5	20025	15	16QAM	75	0	22.96	0-2	2
П	1732.5	20175	15	QPSK	1	0	24.80	0	0
	1732.5	20175	15	QPSK	1	36	24.78	0	0
ll	1732.5	20175	15	QPSK	1	74	24.87	0	0
ll	1732.5	20175	15	QPSK	36	0	23.84	0-1	1
	1732.5	20175	15	QPSK	36	18	23.79	0-1	1
	1732.5	20175	15	QPSK	36	37	23.63	0-1	1
Mid	1732.5	20175	15	QPSK	75	0	23.68	0-1	1
Σ	1732.5	20175	15	16QAM	1	0	23.91	0-1	1
	1732.5	20175	15	16QAM	1	36	23.78	0-1	1
	1732.5	20175	15	16QAM	1	74	23.90	0-1	1
ll	1732.5	20175	15	16QAM	36	0	22.86	0-2	2
	1732.5	20175	15	16QAM	36	18	22.74	0-2	2
	1732.5	20175	15	16QAM	36	37	22.76	0-2	2
	1732.5	20175	15	16QAM	75	0	22.79	0-2	2
	1747.5	20325	15	QPSK	1	0	24.79	0	0
li	1747.5	20325	15	QPSK	1	36	24.98	0	0
li	1747.5	20325	15	QPSK	1	74	24.71	0	0
li	1747.5	20325	15	QPSK	36	0	23.93	0-1	1
li	1747.5	20325	15	QPSK	36	18	23.97	0-1	1
	1747.5	20325	15	QPSK	36	37	23.96	0-1	1
High	1747.5	20325	15	QPSK	75	0	23.88	0-1	1
Ξ̈́	1747.5	20325	15	16QAM	1	0	23.61	0-1	1
	1747.5	20325	15	16QAM	1	36	24.00	0-1	1
	1747.5	20325	15	16QAM	1	74	23.60	0-1	1
	1747.5	20325	15	16QAM	36	0	22.99	0-2	2
	1747.5	20325	15	16QAM	36	18	23.00	0-2	2
	1747.5	20325	15	16QAM	36	37	22.83	0-2	2
\bigsqcup	1747.5	20325	15	16QAM	75	0	22.87	0-2	2

FCC ID: ZNFH900	POTEST*	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 24 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 34 of 81

Table 9-11 LTE Band 4 (AWS) Conducted Powers – 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1715	20000	10	QPSK	1	0	24.91	0	0
	1715	20000	10	QPSK	1	25	24.96	0	0
	1715	20000	10	QPSK	1	49	24.83	0	0
	1715	20000	10	QPSK	25	0	23.79	0-1	1
	1715	20000	10	QPSK	25	12	23.85	0-1	1
	1715	20000	10	QPSK	25	25	23.99	0-1	1
Low	1715	20000	10	QPSK	50	0	23.91	0-1	1
12	1715	20000	10	16QAM	1	0	23.63	0-1	1
	1715	20000	10	16QAM	1	25	24.00	0-1	1
	1715	20000	10	16QAM	1	49	23.84	0-1	1
	1715	20000	10	16QAM	25	0	22.95	0-2	2
	1715	20000	10	16QAM	25	12	22.85	0-2	2
	1715	20000	10	16QAM	25	25	22.98	0-2	2
	1715	20000	10	16QAM	50	0	22.90	0-2	2
	1732.5	20175	10	QPSK	1	0	24.84	0	0
	1732.5	20175	10	QPSK	1	25	24.96	0	0
	1732.5	20175	10	QPSK	1	49	24.80	0	0
	1732.5	20175	10	QPSK	25	0	23.96	0-1	1
	1732.5	20175	10	QPSK	25	12	23.79	0-1	1
	1732.5	20175	10	QPSK	25	25	23.77	0-1	1
9	1732.5	20175	10	QPSK	50	0	23.79	0-1	1
Mid –	1732.5	20175	10	16QAM	1	0	24.00	0-1	1
	1732.5	20175	10	16QAM	1	25	24.00	0-1	1
	1732.5	20175	10	16QAM	1	49	23.87	0-1	1
	1732.5	20175	10	16QAM	25	0	22.97	0-2	2
	1732.5	20175	10	16QAM	25	12	22.74	0-2	2
	1732.5	20175	10	16QAM	25	25	22.64	0-2	2
	1732.5	20175	10	16QAM	50	0	22.69	0-2	2
	1750	20350	10	QPSK	1	0	24.86	0	0
	1750	20350	10	QPSK	1	25	24.97	0	0
	1750	20350	10	QPSK	1	49	24.91	0	0
	1750	20350	10	QPSK	25	0	23.96	0-1	1
	1750	20350	10	QPSK	25	12	23.85	0-1	1
	1750	20350	10	QPSK	25	25	23.76	0-1	1
ج	1750	20350	10	QPSK	50	0	23.87	0-1	1
High	1750	20350	10	16QAM	1	0	23.71	0-1	1
	1750	20350	10	16QAM	1	25	24.00	0-1	1
	1750	20350	10	16QAM	1	49	23.60	0-1	1
	1750	20350	10	16QAM	25	0	22.97	0-2	2
	1750	20350	10	16QAM	25	12	22.95	0-2	2
	1750	20350	10	16QAM	25	25	22.95	0-2	2
	1750	20350	10	16QAM	50	0	22.89	0-2	2

FCC ID: ZNFH900	€\ PCTEST	SAR EVALUATION REPORT	(L) LG	Reviewed by:
1 66 IB. 2INI 11900	*** V SNOTHLESED LABORATORY, INC.	SAK EVALUATION KEI OKT	L Ld	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 35 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	rage 33 01 61	

Table 9-12 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

	Frequency		Bandwidth						
	[MHz]	Channel	[MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1712.5	19975	5	QPSK	1	0	25.00	0	0
	1712.5	19975	5	QPSK	1	12	25.00	0	0
	1712.5	19975	5	QPSK	1	24	24.92	0	0
	1712.5	19975	5	QPSK	12	0	23.84	0-1	1
	1712.5	19975	5	QPSK	12	6	23.87	0-1	1
	1712.5	19975	5	QPSK	12	13	23.87	0-1	1
Low	1712.5	19975	5	QPSK	25	0	23.93	0-1	1
٦L	1712.5	19975	5	16-QAM	1	0	23.74	0-1	1
	1712.5	19975	5	16-QAM	1	12	23.75	0-1	1
	1712.5	19975	5	16-QAM	1	24	23.72	0-1	1
	1712.5	19975	5	16-QAM	12	0	22.69	0-2	2
	1712.5	19975	5	16-QAM	12	6	22.86	0-2	2
	1712.5	19975	5	16-QAM	12	13	22.79	0-2	2
	1712.5	19975	5	16-QAM	25	0	22.88	0-2	2
	1732.5	20175	5	QPSK	1	0	24.61	0	0
	1732.5	20175	5	QPSK	1	12	24.99	0	0
	1732.5	20175	5	QPSK	1	24	24.83	0	0
	1732.5	20175	5	QPSK	12	0	23.86	0-1	1
	1732.5	20175	5	QPSK	12	6	23.68	0-1	1
	1732.5	20175	5	QPSK	12	13	23.62	0-1	1
Mid	1732.5	20175	5	QPSK	25	0	23.79	0-1	1
≥	1732.5	20175	5	16-QAM	1	0	23.81	0-1	1
	1732.5	20175	5	16-QAM	1	12	23.83	0-1	1
	1732.5	20175	5	16-QAM	1	24	23.81	0-1	1
	1732.5	20175	5	16-QAM	12	0	22.72	0-2	2
	1732.5	20175	5	16-QAM	12	6	22.82	0-2	2
	1732.5	20175	5	16-QAM	12	13	22.70	0-2	2
	1732.5	20175	5	16-QAM	25	0	22.77	0-2	2
	1752.5	20375	5	QPSK	1	0	24.97	0	0
	1752.5	20375	5	QPSK	1	12	25.00	0	0
	1752.5	20375	5	QPSK	1	24	24.71	0	0
	1752.5	20375	5	QPSK	12	0	23.96	0-1	1
	1752.5	20375	5	QPSK	12	6	23.90	0-1	1
	1752.5	20375	5	QPSK	12	13	23.79	0-1	1
High	1752.5	20375	5	QPSK	25	0	23.96	0-1	1
Ξ̈́	1752.5	20375	5	16-QAM	1	0	23.78	0-1	1
	1752.5	20375	5	16-QAM	1	12	23.85	0-1	1
	1752.5	20375	5	16-QAM	1	24	23.71	0-1	1
	1752.5	20375	5	16-QAM	12	0	22.78	0-2	2
	1752.5	20375	5	16-QAM	12	6	22.74	0-2	2
	1752.5	20375	5	16-QAM	12	13	22.74	0-2	2
	1752.5	20375	5	16-QAM	25	0	22.78	0-2	2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 36 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 30 01 61

Table 9-13 LTE Band 4 (AWS) Conducted Powers – 3 MHz Bandwidth

_			L Dalla T	(AVVO) COI	iducted i	JWCI3 - J	MHZ Bandw		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1711.5	19965	3	QPSK	1	0	25.00	0	0
	1711.5	19965	3	QPSK	1	7	24.84	0	0
	1711.5	19965	3	QPSK	1	14	24.96	0	0
	1711.5	19965	3	QPSK	8	0	23.91	0-1	1
	1711.5	19965	3	QPSK	8	4	24.00	0-1	1
	1711.5	19965	3	QPSK	8	7	23.86	0-1	1
Low	1711.5	19965	3	QPSK	15	0	23.94	0-1	1
P	1711.5	19965	3	16-QAM	1	0	23.95	0-1	1
	1711.5	19965	3	16-QAM	1	7	23.94	0-1	1
	1711.5	19965	3	16-QAM	1	14	23.62	0-1	1
	1711.5	19965	3	16-QAM	8	0	22.83	0-2	2
	1711.5	19965	3	16-QAM	8	4	22.89	0-2	2
	1711.5	19965	3	16-QAM	8	7	22.68	0-2	2
	1711.5	19965	3	16-QAM	15	0	22.92	0-2	2
	1732.5	20175	3	QPSK	1	0	24.77	0	0
	1732.5	20175	3	QPSK	1	7	24.94	0	0
	1732.5	20175	3	QPSK	1	14	24.62	0	0
	1732.5	20175	3	QPSK	8	0	23.78	0-1	1
	1732.5	20175	3	QPSK	8	4	23.78	0-1	1
	1732.5	20175	3	QPSK	8	7	23.79	0-1	1
Mid	1732.5	20175	3	QPSK	15	0	23.71	0-1	1
Σ	1732.5	20175	3	16-QAM	1	0	23.91	0-1	1
	1732.5	20175	3	16-QAM	1	7	23.91	0-1	1
	1732.5	20175	3	16-QAM	1	14	23.90	0-1	1
	1732.5	20175	3	16-QAM	8	0	22.96	0-2	2
	1732.5	20175	3	16-QAM	8	4	22.90	0-2	2
	1732.5	20175	3	16-QAM	8	7	22.82	0-2	2
	1732.5	20175	3	16-QAM	15	0	22.71	0-2	2
	1753.5	20385	3	QPSK	1	0	24.92	0	0
	1753.5	20385	3	QPSK	1	7	24.93	0	0
	1753.5	20385	3	QPSK	1	14	24.94	0	0
	1753.5	20385	3	QPSK	8	0	23.82	0-1	1
	1753.5	20385	3	QPSK	8	4	23.96	0-1	1
	1753.5	20385	3	QPSK	8	7	23.89	0-1	1
High	1753.5	20385	3	QPSK	15	0	23.84	0-1	1
Ξ̈́	1753.5	20385	3	16-QAM	1	0	23.65	0-1	1
	1753.5	20385	3	16-QAM	1	7	23.91	0-1	1
	1753.5	20385	3	16-QAM	1	14	23.74	0-1	1
	1753.5	20385	3	16-QAM	8	0	22.84	0-2	2
	1753.5	20385	3	16-QAM	8	4	22.79	0-2	2
	1753.5	20385	3	16-QAM	8	7	22.77	0-2	2
	1753.5	20385	3	16-QAM	15	0	22.65	0-2	2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dags 27 of 94	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 37 of 81	

Table 9-14 LTE Band 4 (AWS) Conducted Powers - 1.4 MHz Bandwidth

_				A110) 0011	aucteu i o	WC13 - 1	MHZ Bandy		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1710.7	19957	1.4	QPSK	1	0	24.85	0	0
	1710.7	19957	1.4	QPSK	1	2	24.85	0	0
	1710.7	19957	1.4	QPSK	1	5	24.84	0	0
	1710.7	19957	1.4	QPSK	3	0	24.85	0	0
	1710.7	19957	1.4	QPSK	3	2	24.91	0	0
	1710.7	19957	1.4	QPSK	3	3	24.87	0	0
Low	1710.7	19957	1.4	QPSK	6	0	23.85	0-1	1
임	1710.7	19957	1.4	16-QAM	1	0	23.70	0-1	1
	1710.7	19957	1.4	16-QAM	1	2	23.70	0-1	1
	1710.7	19957	1.4	16-QAM	1	5	23.78	0-1	1
	1710.7	19957	1.4	16-QAM	3	0	23.76	0-1	1
	1710.7	19957	1.4	16-QAM	3	2	23.71	0-1	1
	1710.7	19957	1.4	16-QAM	3	3	23.84	0-1	1
	1710.7	19957	1.4	16-QAM	6	0	22.64	0-2	2
	1732.5	20175	1.4	QPSK	1	0	24.79	0	0
	1732.5	20175	1.4	QPSK	1	2	24.77	0	0
	1732.5	20175	1.4	QPSK	1	5	24.68	0	0
	1732.5	20175	1.4	QPSK	3	0	24.93	0	0
	1732.5	20175	1.4	QPSK	3	2	24.96	0	0
	1732.5	20175	1.4	QPSK	3	3	24.82	0	0
р	1732.5	20175	1.4	QPSK	6	0	23.63	0-1	1
Mid	1732.5	20175	1.4	16-QAM	1	0	23.65	0-1	1
	1732.5	20175	1.4	16-QAM	1	2	23.83	0-1	1
	1732.5	20175	1.4	16-QAM	1	5	23.71	0-1	1
	1732.5	20175	1.4	16-QAM	3	0	23.78	0-1	1
	1732.5	20175	1.4	16-QAM	3	2	23.68	0-1	1
	1732.5	20175	1.4	16-QAM	3	3	23.75	0-1	1
	1732.5	20175	1.4	16-QAM	6	0	22.70	0-2	2
	1754.3	20393	1.4	QPSK	1	0	24.78	0	0
	1754.3	20393	1.4	QPSK	1	2	24.96	0	0
	1754.3	20393	1.4	QPSK	1	5	24.83	0	0
	1754.3	20393	1.4	QPSK	3	0	24.98	0	0
	1754.3	20393	1.4	QPSK	3	2	25.00	0	0
	1754.3	20393	1.4	QPSK	3	3	24.84	0	0
유	1754.3	20393	1.4	QPSK	6	0	23.78	0-1	1
High	1754.3	20393	1.4	16-QAM	1	0	23.83	0-1	1
	1754.3	20393	1.4	16-QAM	1	2	23.87	0-1	1
	1754.3	20393	1.4	16-QAM	1	5	23.63	0-1	1
	1754.3	20393	1.4	16-QAM	3	0	23.85	0-1	1
	1754.3	20393	1.4	16-QAM	3	2	23.80	0-1	1
	1754.3	20393	1.4	16-QAM	3	3	23.91	0-1	1
L	1754.3	20393	1.4	16-QAM	6	0	22.96	0-2	2

FCC ID: ZNFH900	€\ PCTEST	SAR EVALUATION REPORT	(1) LG	Reviewed by:
1 00 IB: 2141 11300	SNOINLEBES LAFORATREY, INC.	SAK EVALUATION KEI OKT	L Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 38 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 36 01 61

9.3.4 LTE Band 2

Table 9-15 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

	Frequency	Channel	Bandwidth	Modulation	RB Size	RB Offset	Conducted	MPR Allowed per	MPR [dB]
	[MHz]		[MHz]				Power [dBm]	3GPP [dB]	
	1860	18700	20	QPSK	1	0	24.70	0	0
	1860	18700	20	QPSK	1	50	24.93	0	0
	1860	18700	20	QPSK	1	99	24.66	0	0
	1860	18700	20	QPSK	50	0	23.83	0-1	1
	1860	18700	20	QPSK	50	25	23.96	0-1	1
	1860	18700	20	QPSK	50	50	23.85	0-1	1
Low	1860	18700	20	QPSK	100	0	23.90	0-1	1
۲	1860	18700	20	16QAM	1	0	23.80	0-1	1
	1860	18700	20	16QAM	1	50	23.75	0-1	1
	1860	18700	20	16QAM	1	99	23.91	0-1	1
	1860	18700	20	16QAM	50	0	22.73	0-2	2
	1860	18700	20	16QAM	50	25	22.91	0-2	2
	1860	18700	20	16QAM	50	50	22.90	0-2	2
	1860	18700	20	16QAM	100	0	22.81	0-2	2
	1880.0	18900	20	QPSK	1	0	24.79	0	0
	1880.0	18900	20	QPSK	1	50	24.62	0	0
	1880.0	18900	20	QPSK	1	99	24.60	0	0
	1880.0	18900	20	QPSK	50	0	23.91	0-1	1
	1880.0	18900	20	QPSK	50	25	23.79	0-1	1
	1880.0	18900	20	QPSK	50	50	23.89	0-1	1
Mid	1880.0	18900	20	QPSK	100	0	23.64	0-1	1
≥	1880.0	18900	20	16QAM	1	0	23.50	0-1	1
	1880.0	18900	20	16QAM	1	50	24.00	0-1	1
	1880.0	18900	20	16QAM	1	99	23.80	0-1	1
	1880.0	18900	20	16QAM	50	0	22.85	0-2	2
	1880.0	18900	20	16QAM	50	25	22.81	0-2	2
	1880.0	18900	20	16QAM	50	50	22.78	0-2	2
	1880.0	18900	20	16QAM	100	0	22.74	0-2	2
	1900	19100	20	QPSK	1	0	24.53	0	0
	1900	19100	20	QPSK	1	50	24.93	0	0
	1900	19100	20	QPSK	1	99	24.66	0	0
	1900	19100	20	QPSK	50	0	23.73	0-1	1
	1900	19100	20	QPSK	50	25	23.79	0-1	1
	1900	19100	20	QPSK	50	50	23.91	0-1	1
High	1900	19100	20	QPSK	100	0	23.72	0-1	1
Ξ̈́	1900	19100	20	16QAM	1	0	23.52	0-1	1
	1900	19100	20	16QAM	1	50	23.95	0-1	1
	1900	19100	20	16QAM	1	99	23.57	0-1	1
	1900	19100	20	16QAM	50	0	22.80	0-2	2
	1900	19100	20	16QAM	50	25	22.85	0-2	2
	1900	19100	20	16QAM	50	50	22.95	0-2	2
	1900	19100	20	16QAM	100	0	22.79	0-2	2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 39 of 81	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15 Portable Handset		Page 39 01 61	

Table 9-16 LTE Band 2 (PCS) Conducted Powers – 15 MHz Bandwidth

LIE Balld 2 (PCS) Colludated Powers - 13 MH2 Balldwidth									
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1857.5	18675	15	QPSK	1	0	24.91	0	0
	1857.5	18675	15	QPSK	1	36	24.91	0	0
	1857.5	18675	15	QPSK	1	74	25.00	0	0
	1857.5	18675	15	QPSK	36	0	24.00	0-1	1
	1857.5	18675	15	QPSK	36	18	23.95	0-1	1
	1857.5	18675	15	QPSK	36	37	23.96	0-1	1
Low	1857.5	18675	15	QPSK	75	0	23.94	0-1	1
2	1857.5	18675	15	16QAM	1	0	23.79	0-1	1
	1857.5	18675	15	16QAM	1	36	23.93	0-1	1
	1857.5	18675	15	16QAM	1	74	24.00	0-1	1
	1857.5	18675	15	16QAM	36	0	22.69	0-2	2
	1857.5	18675	15	16QAM	36	18	22.89	0-2	2
	1857.5	18675	15	16QAM	36	37	22.80	0-2	2
	1857.5	18675	15	16QAM	75	0	22.80	0-2	2
	1880.0	18900	15	QPSK	1	0	24.99	0	0
	1880.0	18900	15	QPSK	1	36	24.73	0	0
	1880.0	18900	15	QPSK	1	74	24.99	0	0
	1880.0	18900	15	QPSK	36	0	23.80	0-1	1
	1880.0	18900	15	QPSK	36	18	23.82	0-1	1
	1880.0	18900	15	QPSK	36	37	23.82	0-1	1
Mid	1880.0	18900	15	QPSK	75	0	23.99	0-1	1
Σ	1880.0	18900	15	16QAM	1	0	23.51	0-1	1
	1880.0	18900	15	16QAM	1	36	23.61	0-1	1
	1880.0	18900	15	16QAM	1	74	23.60	0-1	1
	1880.0	18900	15	16QAM	36	0	22.80	0-2	2
	1880.0	18900	15	16QAM	36	18	22.93	0-2	2
	1880.0	18900	15	16QAM	36	37	22.91	0-2	2
	1880.0	18900	15	16QAM	75	0	22.82	0-2	2
	1902.5	19125	15	QPSK	1	0	24.79	0	0
	1902.5	19125	15	QPSK	1	36	24.95	0	0
	1902.5	19125	15	QPSK	1	74	24.79	0	0
	1902.5	19125	15	QPSK	36	0	23.74	0-1	1
	1902.5	19125	15	QPSK	36	18	23.79	0-1	1
	1902.5	19125	15	QPSK	36	37	23.86	0-1	1
High	1902.5	19125	15	QPSK	75	0	23.95	0-1	1
Ī	1902.5	19125	15	16QAM	1	0	23.66	0-1	1
	1902.5	19125	15	16QAM	1	36	23.89	0-1	1
	1902.5	19125	15	16QAM	1	74	23.69	0-1	1
	1902.5	19125	15	16QAM	36	0	22.72	0-2	2
	1902.5	19125	15	16QAM	36	18	22.73	0-2	2
	1902.5	19125	15	16QAM	36	37	22.96	0-2	2
	1902.5	19125	15	16QAM	75	0	22.94	0-2	2

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	G	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dags 40 of 91	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 40 of 81	

Table 9-17 LTE Band 2 (PCS) Conducted Powers – 10 MHz Bandwidth

_				10 2 (PCS) Conducted Powers - 10 MHz Bandwidth					
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1855	18650	10	QPSK	1	0	24.80	0	0
	1855	18650	10	QPSK	1	25	24.95	0	0
	1855	18650	10	QPSK	1	49	24.78	0	0
	1855	18650	10	QPSK	25	0	24.00	0-1	1
	1855	18650	10	QPSK	25	12	24.00	0-1	1
	1855	18650	10	QPSK	25	25	23.90	0-1	1
Low	1855	18650	10	QPSK	50	0	23.85	0-1	1
P	1855	18650	10	16QAM	1	0	23.80	0-1	1
	1855	18650	10	16QAM	1	25	24.00	0-1	1
	1855	18650	10	16QAM	1	49	23.80	0-1	1
	1855	18650	10	16QAM	25	0	22.70	0-2	2
	1855	18650	10	16QAM	25	12	22.94	0-2	2
	1855	18650	10	16QAM	25	25	22.88	0-2	2
	1855	18650	10	16QAM	50	0	22.91	0-2	2
	1880.0	18900	10	QPSK	1	0	24.95	0	0
	1880.0	18900	10	QPSK	1	25	25.00	0	0
	1880.0	18900	10	QPSK	1	49	24.99	0	0
	1880.0	18900	10	QPSK	25	0	23.91	0-1	1
	1880.0	18900	10	QPSK	25	12	23.78	0-1	1
	1880.0	18900	10	QPSK	25	25	23.88	0-1	1
Mid	1880.0	18900	10	QPSK	50	0	23.77	0-1	1
Σ	1880.0	18900	10	16QAM	1	0	23.84	0-1	1
	1880.0	18900	10	16QAM	1	25	23.90	0-1	1
	1880.0	18900	10	16QAM	1	49	23.85	0-1	1
	1880.0	18900	10	16QAM	25	0	22.82	0-2	2
	1880.0	18900	10	16QAM	25	12	22.80	0-2	2
	1880.0	18900	10	16QAM	25	25	22.94	0-2	2
	1880.0	18900	10	16QAM	50	0	22.79	0-2	2
	1905	19150	10	QPSK	1	0	24.62	0	0
	1905	19150	10	QPSK	1	25	24.88	0	0
	1905	19150	10	QPSK	1	49	24.76	0	0
	1905	19150	10	QPSK	25	0	23.68	0-1	1
	1905	19150	10	QPSK	25	12	23.81	0-1	1
	1905	19150	10	QPSK	25	25	23.91	0-1	1
High	1905	19150	10	QPSK	50	0	23.95	0-1	1
Ī	1905	19150	10	16QAM	1	0	23.75	0-1	1
	1905	19150	10	16QAM	1	25	23.99	0-1	1
	1905	19150	10	16QAM	1	49	23.51	0-1	1
	1905	19150	10	16QAM	25	0	22.78	0-2	2
	1905	19150	10	16QAM	25	12	22.86	0-2	2
	1905	19150	10	16QAM	25	25	22.95	0-2	2
	1905	19150	10	16QAM	50	0	22.90	0-2	2

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	.G	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dags 44 of 94	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 41 of 81	

Table 9-18 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

$\overline{}$				(. 00/00.	uuotou i t		VITIZ Dalluwi		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1852.5	18625	5	QPSK	1	0	25.00	0	0
	1852.5	18625	5	QPSK	1	12	24.94	0	0
	1852.5	18625	5	QPSK	1	24	24.71	0	0
	1852.5	18625	5	QPSK	12	0	23.98	0-1	1
	1852.5	18625	5	QPSK	12	6	23.95	0-1	1
	1852.5	18625	5	QPSK	12	13	23.86	0-1	1
>	1852.5	18625	5	QPSK	25	0	23.95	0-1	1
Low	1852.5	18625	5	16-QAM	1	0	23.75	0-1	1
	1852.5	18625	5	16-QAM	1	12	23.95	0-1	1
	1852.5	18625	5	16-QAM	1	24	23.50	0-1	1
	1852.5	18625	5	16-QAM	12	0	22.81	0-2	2
	1852.5	18625	5	16-QAM	12	6	23.00	0-2	2
	1852.5	18625	5	16-QAM	12	13	22.90	0-2	2
	1852.5	18625	5	16-QAM	25	0	22.80	0-2	2
	1880.0	18900	5	QPSK	1	0	24.93	0	0
	1880.0	18900	5	QPSK	1	12	25.00	0	0
	1880.0	18900	5	QPSK	1	24	24.82	0	0
	1880.0	18900	5	QPSK	12	0	23.82	0-1	1
	1880.0	18900	5	QPSK	12	6	23.73	0-1	1
	1880.0	18900	5	QPSK	12	13	23.77	0-1	1
Mid	1880.0	18900	5	QPSK	25	0	23.70	0-1	1
Σ	1880.0	18900	5	16-QAM	1	0	23.82	0-1	1
	1880.0	18900	5	16-QAM	1	12	23.61	0-1	1
	1880.0	18900	5	16-QAM	1	24	23.86	0-1	1
	1880.0	18900	5	16-QAM	12	0	22.68	0-2	2
	1880.0	18900	5	16-QAM	12	6	22.62	0-2	2
	1880.0	18900	5	16-QAM	12	13	22.56	0-2	2
	1880.0	18900	5	16-QAM	25	0	22.65	0-2	2
	1907.5	19175	5	QPSK	1	0	24.83	0	0
	1907.5	19175	5	QPSK	1	12	25.00	0	0
	1907.5	19175	5	QPSK	1	24	24.99	0	0
	1907.5	19175	5	QPSK	12	0	23.89	0-1	1
	1907.5	19175	5	QPSK	12	6	23.82	0-1	1
	1907.5	19175	5	QPSK	12	13	23.89	0-1	1
High	1907.5	19175	5	QPSK	25	0	23.82	0-1	1
Ī	1907.5	19175	5	16-QAM	1	0	23.75	0-1	1
	1907.5	19175	5	16-QAM	1	12	23.80	0-1	1
	1907.5	19175	5	16-QAM	1	24	23.65	0-1	1
	1907.5	19175	5	16-QAM	12	0	22.73	0-2	2
	1907.5	19175	5	16-QAM	12	6	22.82	0-2	2
	1907.5	19175	5	16-QAM	12	13	22.69	0-2	2
	1907.5	19175	5	16-QAM	25	0	23.00	0-2	2

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 42 of 94	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 42 of 81	

Table 9-19 LTE Band 2 (PCS) Conducted Powers – 3 MHz Bandwidth

_			L Danu Z	(1 00) 0011	uucteu i t	Weis - 5	MHZ Bandwi		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1851.5	18615	3	QPSK	1	0	24.88	0	0
	1851.5	18615	3	QPSK	1	7	25.00	0	0
	1851.5	18615	3	QPSK	1	14	24.89	0	0
	1851.5	18615	3	QPSK	8	0	23.83	0-1	1
	1851.5	18615	3	QPSK	8	4	23.91	0-1	1
	1851.5	18615	3	QPSK	8	7	23.87	0-1	1
Low	1851.5	18615	3	QPSK	15	0	23.86	0-1	1
P	1851.5	18615	3	16-QAM	1	0	23.91	0-1	1
	1851.5	18615	3	16-QAM	1	7	23.86	0-1	1
	1851.5	18615	3	16-QAM	1	14	23.83	0-1	1
	1851.5	18615	3	16-QAM	8	0	22.89	0-2	2
	1851.5	18615	3	16-QAM	8	4	22.98	0-2	2
	1851.5	18615	3	16-QAM	8	7	22.95	0-2	2
	1851.5	18615	3	16-QAM	15	0	22.99	0-2	2
	1880.0	18900	3	QPSK	1	0	24.98	0	0
	1880.0	18900	3	QPSK	1	7	24.86	0	0
	1880.0	18900	3	QPSK	1	14	24.78	0	0
	1880.0	18900	3	QPSK	8	0	23.73	0-1	1
	1880.0	18900	3	QPSK	8	4	23.74	0-1	1
	1880.0	18900	3	QPSK	8	7	23.72	0-1	1
Mid	1880.0	18900	3	QPSK	15	0	23.69	0-1	1
Σ	1880.0	18900	3	16-QAM	1	0	23.75	0-1	1
	1880.0	18900	3	16-QAM	1	7	23.74	0-1	1
	1880.0	18900	3	16-QAM	1	14	23.81	0-1	1
	1880.0	18900	3	16-QAM	8	0	22.73	0-2	2
	1880.0	18900	3	16-QAM	8	4	22.80	0-2	2
	1880.0	18900	3	16-QAM	8	7	22.75	0-2	2
	1880.0	18900	3	16-QAM	15	0	22.80	0-2	2
	1908.5	19185	3	QPSK	1	0	24.97	0	0
	1908.5	19185	3	QPSK	1	7	24.89	0	0
	1908.5	19185	3	QPSK	1	14	25.00	0	0
	1908.5	19185	3	QPSK	8	0	23.86	0-1	1
	1908.5	19185	3	QPSK	8	4	23.96	0-1	1
	1908.5	19185	3	QPSK	8	7	23.97	0-1	1
²	1908.5	19185	3	QPSK	15	0	23.82	0-1	1
High	1908.5	19185	3	16-QAM	1	0	23.62	0-1	1
	1908.5	19185	3	16-QAM	1	7	23.69	0-1	1
	1908.5	19185	3	16-QAM	1	14	23.50	0-1	1
	1908.5	19185	3	16-QAM	8	0	22.62	0-2	2
	1908.5	19185	3	16-QAM	8	4	22.66	0-2	2
	1908.5	19185	3	16-QAM	8	7	22.59	0-2	2
	1908.5	19185	3	16-QAM	15	0	22.73	0-2	2

FCC ID: ZNFH900	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 43 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 43 01 6 1

Table 9-20 LTE Band 2 (PCS) Conducted Powers – 1.4 MHz Bandwidth

_	LIE Band 2			i coj conc	ucteu i o	WC13 - 1. 1	WILL Dallaw		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1850.7	18607	1.4	QPSK	1	0	24.80	0	0
	1850.7	18607	1.4	QPSK	1	2	24.80	0	0
	1850.7	18607	1.4	QPSK	1	5	24.82	0	0
	1850.7	18607	1.4	QPSK	3	0	24.80	0	0
	1850.7	18607	1.4	QPSK	3	2	24.70	0	0
	1850.7	18607	1.4	QPSK	3	3	24.70	0	0
>	1850.7	18607	1.4	QPSK	6	0	24.00	0-1	1
Low	1850.7	18607	1.4	16-QAM	1	0	24.00	0-1	1
	1850.7	18607	1.4	16-QAM	1	2	23.90	0-1	1
	1850.7	18607	1.4	16-QAM	1	5	23.90	0-1	1
	1850.7	18607	1.4	16-QAM	3	0	23.90	0-1	1
	1850.7	18607	1.4	16-QAM	3	2	23.80	0-1	1
	1850.7	18607	1.4	16-QAM	3	3	24.00	0-1	1
	1850.7	18607	1.4	16-QAM	6	0	23.00	0-2	2
	1880.0	18900	1.4	QPSK	1	0	24.90	0	0
	1880.0	18900	1.4	QPSK	1	2	24.80	0	0
	1880.0	18900	1.4	QPSK	1	5	24.80	0	0
	1880.0	18900	1.4	QPSK	3	0	24.70	0	0
	1880.0	18900	1.4	QPSK	3	2	24.90	0	0
	1880.0	18900	1.4	QPSK	3	3	24.90	0	0
р	1880.0	18900	1.4	QPSK	6	0	24.00	0-1	1
Mid	1880.0	18900	1.4	16-QAM	1	0	23.90	0-1	1
	1880.0	18900	1.4	16-QAM	1	2	23.90	0-1	1
	1880.0	18900	1.4	16-QAM	1	5	23.90	0-1	1
	1880.0	18900	1.4	16-QAM	3	0	24.00	0-1	1
	1880.0	18900	1.4	16-QAM	3	2	24.00	0-1	1
	1880.0	18900	1.4	16-QAM	3	3	24.00	0-1	1
	1880.0	18900	1.4	16-QAM	6	0	22.90	0-2	2
	1909.3	19193	1.4	QPSK	1	0	24.85	0	0
	1909.3	19193	1.4	QPSK	1	2	24.69	0	0
	1909.3	19193	1.4	QPSK	1	5	24.69	0	0
	1909.3	19193	1.4	QPSK	3	0	24.91	0	0
	1909.3	19193	1.4	QPSK	3	2	24.93	0	0
	1909.3	19193	1.4	QPSK	3	3	24.86	0	0
, L	1909.3	19193	1.4	QPSK	6	0	23.90	0-1	1
High	1909.3	19193	1.4	16-QAM	1	0	23.54	0-1	1
	1909.3	19193	1.4	16-QAM	1	2	23.76	0-1	1
	1909.3	19193	1.4	16-QAM	1	5	23.64	0-1	1
	1909.3	19193	1.4	16-QAM	3	0	23.62	0-1	1
	1909.3	19193	1.4	16-QAM	3	2	23.65	0-1	1
	1909.3	19193	1.4	16-QAM	3	3	23.59	0-1	1
	1909.3	19193	1.4	16-QAM	6	0	22.72	0-2	2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 44 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 44 of 81

9.3.5 LTE Band 30

Table 9-21
LTE Band 30 Conducted Powers – 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	2310.0	27710	10	QPSK	1	0	22.50	0	0
	2310.0	27710	10	QPSK	1	25	22.57	0	0
	2310.0	27710	10	QPSK	1	49	22.42	0	0
	2310.0	27710	10	QPSK	25	0	21.45	0-1	1
	2310.0	27710	10	QPSK	25	12	21.41	0-1	1
	2310.0	27710	10	QPSK	25	25	21.34	0-1	1
Mid	2310.0	27710	10	QPSK	50	0	21.52	0-1	1
Σ	2310.0	27710	10	16QAM	1	0	21.70	0-1	1
	2310.0	27710	10	16QAM	1	25	21.53	0-1	1
	2310.0	27710	10	16QAM	1	49	21.70	0-1	1
	2310.0	27710	10	16QAM	25	0	20.56	0-2	2
	2310.0	27710	10	16QAM	25	12	20.37	0-2	2
	2310.0	27710	10	16QAM	25	25	20.53	0-2	2
	2310.0	27710	10	16QAM	50	0	20.54	0-2	2

Table 9-22 LTE Band 30 Conducted Powers – 5 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	2310.0	27710	5	QPSK	1	0	22.40	0	0
	2310.0	27710	5	QPSK	1	12	22.32	0	0
	2310.0	27710	5	QPSK	1	24	22.41	0	0
	2310.0	27710	5	QPSK	12	0	21.54	0-1	1
	2310.0	27710	5	QPSK	12	6	21.54	0-1	1
	2310.0	27710	5	QPSK	12	13	21.50	0-1	1
pị	2310.0	27710	5	QPSK	25	0	21.34	0-1	1
Mid	2310.0	27710	5	16-QAM	1	0	21.51	0-1	1
	2310.0	27710	5	16-QAM	1	12	21.40	0-1	1
	2310.0	27710	5	16-QAM	1	24	21.50	0-1	1
	2310.0	27710	5	16-QAM	12	0	20.39	0-2	2
	2310.0	27710	5	16-QAM	12	6	20.38	0-2	2
	2310.0	27710	5	16-QAM	12	13	20.34	0-2	2
	2310.0	27710	5	16-QAM	25	0	20.53	0-2	2

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 45 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 45 of 81

9.3.6 LTE Carrier Aggregation Conducted Powers

Table 9-23
LTE Carrier Aggregation Conducted Powers

		D/			99.39.					Davis		
	PCC						SCC				Power	
PCC Band	PCC Bandwidth [MHz]	PCC (UL) Frequency [MHz]	PCC (UL) Channel	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Frequency [MHz]	SCC (DL) Channel	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)	
LTE B2	15	1857.5	18675	1	74	LTE B29	10	722.5	9715	24.82	25.00	
LTE B4	15	1717.5	20025	1	74	LTE B5	10	881.5	2525	24.87	25.00	
LTE B5	5	846.5	20625	1	12	LTE B4	20	2132.5	2175	24.53	24.70	
LTE B4	15	1717.5	20025	1	74	LTE B12	10	737.5	5095	24.93	25.00	
LTE B12	5	713.5	23155	1	0	LTE B4	20	2132.5	2175	24.79	25.00	
LTE B2	15	1857.5	18675	1	74	LTE B12	10	737.5	5095	24.83	25.00	
LTE B12	5	713.5	23155	1	0	LTE B2	20	1960	900	24.85	25.00	
LTE B4	15	1717.5	20025	1	74	LTE B29	10	722.5	9715	24.95	25.00	
LTE B2	15	1857.5	18675	1	74	LTE B5	10	881.5	2525	24.81	25.00	
LTE B5	5	846.5	20625	1	12	LTE B2	20	1960	900	24.65	24.70	

Notes:

- 1. The device does not support all Rel. 10 Carrier Aggregation features due to modem chipset limitation.
- 2. The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. Power measurements were performed with two DL carriers for the Release 8 configuration that had the highest output power (across all bandwidths, channels and RB Configurations) for each band.
- 3. The technical description includes all the possible carrier aggregation combinations.
- 4. All control and acknowledge data is sent on uplink channels that operate identical to release 8 specifications.
- 5. This device supports both LTE Band 12 and LTE Band 17. Since the supported frequency span for LTE Band 17 falls completely within the supported frequency span for LTE band 12, LTE Band 17 has same or lower target power as LTE Band 12, and both LTE bands share the same transmission path, LTE CA SAR combinations were only assessed for LTE Band 12.

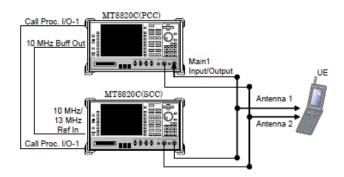


Figure 9-3 Power Measurement Setup

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 46 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 46 of 81

9.4 WLAN Conducted Powers

Table 9-24 IEEE 802.11b Average RF Power

2.4GHz Conducted Power [dBm]							
Freq [MHz]	802.11b						
2412	1	16.21					
2437	6	16.01					
2462	11	16.41					

Table 9-25 IEEE 802.11g Average RF Power

2.4GHz Conducted Power [dBm]							
Freq [MHz] Channel 802.11g							
2412	1	12.55					
2417	2	14.35					
2437	6	14.13					
2457	10	14.43					
2462	11	12.98					

Table 9-26 IEEE 802.11a Average RF Power

5GHz (20N	5GHz (20MHz) Conducted Power [dBm]							
Freq [MHz]								
5180	36	13.62						
5200	40	14.65						
5220	44	14.49						
5240	48	14.47						
5260	52	14.53						
5280	56	14.74						
5300	60	14.89						
5320	64	13.92						
5500	100	12.76						
5580	116	14.71						
5660	132	14.57						
5720	144	14.07						
5745	149	14.82						
5785	157	14.77						
5825	165	14.73						

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 47 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 47 of 81

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r01:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

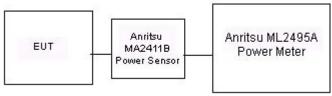


Figure 9-4
Power Measurement Setup for Bandwidths < 50 MHz

9.5 Additional Conducted Powers

This device uses three sub-bands for UMTS Band 5, LTE Band 5, and LTE B12. The channel closest to the middle of the each sub-band was selected for additional evaluation, per FCC Guidance.

Table 9-27
Additional UMTS Conducted Powers

3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Ba	3GPP MPR [dB]	
Version	Ouble 3t	4149	4219	iiii it [ab]	
99	WCDMA	12.2 kbps RMC	24.50	24.53	-
99	VVCDIVIA	12.2 kbps AMR	24.52	24.48	-

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 40 of 01
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 48 of 81

Table 9-28 Additional LTE Band 12 Conducted Powers

			aitionai Lii	_ Dallu 12	Conducte			
Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
704.5	23065	10	QPSK	1	0	24.63	0	0
704.5	23065	10	QPSK	1	25	24.76	0	0
704.5	23065	10	QPSK	1	49	24.75	0	0
704.5	23065	10	QPSK	25	0	23.66	0	1
704.5	23065	10	QPSK	25	12	23.70	0	1
704.5	23065	10	QPSK	25	25	23.65	0-1	1
704.5	23065	10	QPSK	50	0	23.60	0-1	1
704.5	23065	10	16QAM	1	0	23.61	0-1	1
704.5	23065	10	16QAM	1	25	23.69	0-1	1
704.5	23065	10	16QAM	1	49	23.72	0-1	1
704.5	23065	10	16QAM	25	0	22.72	0-1	2
704.5	23065	10	16QAM	25	12	22.71	0-1	2
704.5	23065	10	16QAM	25	25	22.74	0-2	2
704.5	23065	10	16QAM	50	0	22.76	0-2	2
711	23130	10	QPSK	1	0	24.77	0	0
711	23130	10	QPSK	1	25	24.73	0	0
711	23130	10	QPSK	1	49	24.80	0	0
711	23130	10	QPSK	25	0	23.71	0	1
711	23130	10	QPSK	25	12	23.65	0	1
711	23130	10	QPSK	25	25	23.69	0-1	1
711	23130	10	QPSK	50	0	23.64	0-1	1
711	23130	10	16QAM	1	0	23.70	0-1	1
711	23130	10	16QAM	1	25	23.73	0-1	1
711	23130	10	16QAM	1	49	23.71	0-1	1
711	23130	10	16QAM	25	0	22.61	0-1	2
711	23130	10	16QAM	25	12	22.65	0-1	2
711	23130	10	16QAM	25	25	22.64	0-2	2
711	23130	10	16QAM	50	0	22.68	0-2	2

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 49 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 49 01 61

Table 9-29 Additional LTE Band 5 (Cell) Conducted Powers

			Oliai ETE E	Janu 5 (Ce	ii) Conduc	tea Powers	1	
Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
831	20470	10	QPSK	1	0	24.53	0	0
831	20470	10	QPSK	1	25	24.51	0	0
831	20470	10	QPSK	1	49	24.46	0	0
831	20470	10	QPSK	25	0	23.50	0	1
831	20470	10	QPSK	25	12	23.42	0	1
831	20470	10	QPSK	25	25	23.48	0-1	1
831	20470	10	QPSK	50	0	23.40	0-1	1
831	20470	10	16QAM	1	0	23.51	0-1	1
831	20470	10	16QAM	1	25	23.50	0-1	1
831	20470	10	16QAM	1	49	23.56	0-1	1
831	20470	10	16QAM	25	0	22.36	0-1	2
831	20470	10	16QAM	25	12	22.49	0-1	2
831	20470	10	16QAM	25	25	22.46	0-2	2
831	20470	10	16QAM	50	0	22.43	0-2	2
842.5	20585	10	QPSK	1	0	24.48	0	0
842.5	20585	10	QPSK	1	25	24.53	0	0
842.5	20585	10	QPSK	1	49	24.56	0	0
842.5	20585	10	QPSK	25	0	23.46	0	1
842.5	20585	10	QPSK	25	12	23.50	0	1
842.5	20585	10	QPSK	25	25	23.53	0-1	1
842.5	20585	10	QPSK	50	0	23.48	0-1	1
842.5	20585	10	16QAM	1	0	23.49	0-1	1
842.5	20585	10	16QAM	1	25	23.55	0-1	1
842.5	20585	10	16QAM	1	49	23.51	0-1	1
842.5	20585	10	16QAM	25	0	22.37	0-1	2
842.5	20585	10	16QAM	25	12	22.49	0-1	2
842.5	20585	10	16QAM	25	25	22.45	0-2	2
842.5	20585	10	16QAM	50	0	22.50	0-2	2

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 50 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 50 of 81

10 SYSTEM VERIFICATION

10.1 Tissue Verification

Table 10-1
Measured Tissue Properties – Head

	Measured Tissue Properties – Head										
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε		
			700	0.890	41.600	0.889	42.201	0.11%	-1.42%		
08/17/2015	750H	22.1	710	0.895	41.461	0.890	42.149	0.56%	-1.63%		
06/17/2015	75011	22.1	740	0.926	41.036	0.893	41.994	3.70%	-2.28%		
			755	0.938	40.786	0.894	41.916	4.92%	-2.70%		
			820	0.914	41.209	0.899	41.578	1.67%	-0.89%		
08/13/2015	835H	22.7	835	0.931	41.122	0.900	41.500	3.44%	-0.91%		
			850	0.938	40.843	0.916	41.500	2.40%	-1.58%		
			820	0.914	41.203	0.899	41.578	1.67%	-0.90%		
08/17/2015	835H	835H 21.2	835	0.930	41.122	0.900	41.500	3.33%	-0.91%		
			850	0.937	40.842	0.916	41.500	2.29%	-1.59%		
	1750H				1710	1.325	39.295	1.348	40.142	-1.71%	-2.11%
08/11/2015		50H 22.3	1750	1.364	39.124	1.371	40.079	-0.51%	-2.38%		
			1790	1.403	38.927	1.394	40.016	0.65%	-2.72%		
	1900H			1850	1.376	39.636	1.400	40.000	-1.71%	-0.91%	
08/13/2015		1900H 22.0	1880	1.407	39.504	1.400	40.000	0.50%	-1.24%		
			1910	1.438	39.364	1.400	40.000	2.71%	-1.59%		
			2300	1.677	39.739	1.670	39.500	0.42%	0.61%		
08/17/2015	2300H	23.5	2310	1.687	39.695	1.679	39.480	0.48%	0.54%		
			2320	1.697	39.656	1.687	39.460	0.59%	0.50%		
			2400	1.817	38.624	1.756	39.289	3.47%	-1.69%		
08/10/2015	2400H	23.4	2450	1.874	38.426	1.800	39.200	4.11%	-1.97%		
			2500	1.933	38.215	1.855	39.136	4.20%	-2.35%		
			5300	4.592	37.248	4.758	35.871	-3.49%	3.84%		
			5580	4.860	37.077	5.045	35.551	-3.67%	4.29%		
08/18/2015	5200H-5800H	I-5800H 22.8	5600	4.895	37.030	5.065	35.529	-3.36%	4.22%		
			5745	5.019	36.918	5.214	35.363	-3.74%	4.40%		
			5800	5.084	36.644	5.270	35.300	-3.53%	3.81%		

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 51 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 510161

Table 10-2
Measured Tissue Properties – Body

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%devσ	%devε
			700	0.915	55.310	0.959	55.726	-4.59%	-0.75%
			710	0.922	55.193	0.960	55.687	-3.96%	-0.89%
08/31/2015	750B	21.2	720	0.930	55.073	0.961	55.648	-3.23%	-1.03%
			740	0.950	54.820	0.963	55.570	-1.35%	-1.35%
			755	0.961	54.672	0.964	55.512	-0.31%	-1.51%
			820	0.990	53.760	0.969	55.258	2.17%	-2.71%
08/10/2015	835B	21.7	835	1.005	53.595	0.970	55.200	3.61%	-2.91%
			850	1.020	53.423	0.988	55.154	3.24%	-3.14%
			820	1.001	52.920	0.969	55.258	3.30%	-4.23%
08/31/2015	835B	22.8	835	1.016	52.779	0.970	55.200	4.74%	-4.39%
			850	1.032	52.628	0.988	55.154	4.45%	-4.58%
	1750B		1710	1.417	51.735	1.463	53.537	-3.14%	-3.37%
08/10/2015		22.6	1750	1.457	51.568	1.488	53.432	-2.08%	-3.49%
			1790	1.497	51.405	1.514	53.326	-1.12%	-3.60%
			1850	1.482	51.538	1.520	53.300	-2.50%	-3.31%
08/10/2015	1900B	1900B 22.1	1880	1.514	51.448	1.520	53.300	-0.39%	-3.47%
			1910	1.549	51.350	1.520	53.300	1.91%	-3.66%
			1850	1.468	51.516	1.520	53.300	-3.42%	-3.35%
08/12/2015	1900B	22.3	1880	1.505	51.362	1.520	53.300	-0.99%	-3.64%
			1910	1.536	51.313	1.520	53.300	1.05%	-3.73%
			2300	1.839	52.359	1.809	52.900	1.66%	-1.02%
08/18/2015	2300B	21.7	2310	1.847	52.343	1.816	52.887	1.71%	-1.03%
			2320	1.859	52.313	1.826	52.873	1.81%	-1.06%
			2401	1.955	51.937	1.903	52.765	2.73%	-1.57%
08/12/2015	2450B	23.2	2450	2.016	51.739	1.950	52.700	3.38%	-1.82%
			2499	2.087	51.536	2.019	52.638	3.37%	-2.09%
			5300	5.407	46.508	5.416	48.879	-0.17%	-4.85%
			5580	5.768	46.233	5.743	48.499	0.44%	-4.67%
08/10/2015	5200B-5800B	22.7	5600	5.785	46.151	5.766	48.471	0.33%	-4.79%
			5745	5.963	45.890	5.936	48.275	0.45%	-4.94%
			5800	6.028	45.839	6.000	48.200	0.47%	-4.90%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 52 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye 52 01 61

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3
System Verification Results – 1g

				Syster	n Verific	cation	Resui	ts – 1	9			
					•	m Verifica T & MEAS						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
В	750	HEAD	08/17/2015	24.5	23.1	0.200	1046	3334	1.600	8.040	8.000	-0.50%
С	835	HEAD	08/13/2015	22.5	22.7	0.200	4d132	3333	1.960	9.250	9.800	5.95%
С	835	HEAD	08/17/2015	21.7	21.2	0.200	4d132	3333	1.960	9.250	9.800	5.95%
В	1750	HEAD	08/11/2015	23.2	22.2	0.100	1008	3334	3.640	37.700	36.400	-3.45%
J	1900	HEAD	08/13/2015	23.0	22.0	0.100	5d141	3319	3.840	39.900	38.400	-3.76%
Н	2300	HEAD	08/17/2015	23.5	23.5	0.100	1008	3263	5.230	49.900	52.300	4.81%
E	2450	HEAD	08/10/2015	23.2	22.8	0.100	719	3332	5.160	52.100	51.600	-0.96%
Α	5300	HEAD	08/18/2015	21.5	22.8	0.050	1191	3914	4.110	85.800	82.200	-4.20%
Α	5600	HEAD	08/18/2015	21.5	22.8	0.050	1191	3914	4.310	86.900	86.200	-0.81%
Α	5800	HEAD	08/18/2015	21.5	22.8	0.050	1191	3914	4.080	82.300	81.600	-0.85%
Н	750	BODY	08/31/2015	23.3	21.2	0.200	1054	3263	1.780	8.530	8.900	4.34%
J	835	BODY	08/10/2015	20.9	21.7	0.200	4d119	3319	1.960	9.200	9.800	6.52%
В	835	BODY	08/31/2015	24.0	22.8	0.200	4d132	3334	1.940	9.140	9.700	6.13%
В	1750	BODY	08/10/2015	24.1	22.8	0.100	1008	3334	3.730	38.000	37.300	-1.84%
I	1900	BODY	08/10/2015	22.4	22.1	0.100	5d141	3213	3.940	40.000	39.400	-1.50%
I	1900	BODY	08/12/2015	22.7	22.3	0.100	5d141	3213	3.810	40.000	38.100	-4.75%
G	2300	BODY	08/18/2015	21.3	20.9	0.100	1008	3318	4.730	48.100	47.300	-1.66%
E	2450	BODY	08/12/2015	23.5	22.8	0.100	882	3332	5.440	50.700	54.400	7.30%
Α	5300	BODY	08/10/2015	24.2	23.1	0.050	1191	3914	4.100	79.900	82.000	2.63%
Α	5600	BODY	08/10/2015	24.2	23.1	0.050	1191	3914	4.210	84.100	84.200	0.12%
Α	5800	BODY	08/10/2015	24.2	23.1	0.050	1191	3914	4.010	78.000	80.200	2.82%

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 53 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 55 01 61

Table 10-4 System Verification Results - 10a

	System vermoation results – rog													
	System Verification TARGET & MEASURED													
SAR System #														
Α	5300	BODY	08/10/2015	24.2	23.1	0.050	1191	3914	1.130	22.300	22.600	1.35%		
Α	5600	BODY	08/10/2015	24.2	23.1	0.050	1191	3914	1.150	23.300	23.000	-1.29%		

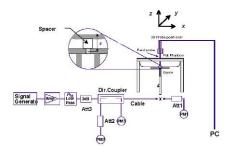


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 54 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 54 01 61

SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

						14E A	CUDEME	NT DECI	II TO							
						MEA	SUREME	ENT RES	JLIS							
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power Drift [dB]	Side	Test Position	Device Serial	Cover Type	# of Time	Duty	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [aB]		Position	Number	,	Siots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.20	0.03	Right	Cheek	05010	Standard	1	1:8.3	0.197	1.122	0.221	
836.60	190	GSM 850	GSM	33.7	33.20	0.03	Right	Cheek	05010	Wireless Charging	1	1:8.3	0.198	1.122	0.222	
836.60	190	GSM 850	GSM	33.7	33.20	0.15	Right	Tilt	05010	Standard	1	1:8.3	0.088	1.122	0.099	
836.60	190	GSM 850	GSM	33.7	33.20	-0.07	Left	Cheek	05010	Standard	1	1:8.3	0.156	1.122	0.175	
836.60	190	GSM 850	GSM	33.7	33.20	0.11	Left	Tilt	05010	Standard	1	1:8.3	0.089	1.122	0.100	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.06	Right	Cheek	05010	Standard	2	1:4.15	0.252	1.072	0.270	
836.60	190	GSM 850	GPRS	32.2	31.90	0.00	Right	Cheek	05010	Wireless Charging	2	1:4.15	0.279	1.072	0.299	A1
836.60	190	GSM 850	GPRS	32.2	31.90	-0.06	Right	Tilt	05010	Standard	2	1:4.15	0.120	1.072	0.129	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.02	Left	Cheek	05010	Standard	2	1:4.15	0.194	1.072	0.208	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.04	Left	Tilt	05010	Standard	2	1:4.15	0.107	1.072	0.115	
		ANSI	IEEE C95.1 19	92 - SAFETY	LIMIT							Head			•	
	Spatial Peak										1.6	W/kg (m\	N/g)			
	Uncontrolled Exposure/General Population										averag	ged over 1	gram			

Table 11-2 UMTS 850 Head SAR

						CIVII	3 030	Heau	אואט							
						ME	ASUREM	ENT RES	ULTS							
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test Position	Device Serial	Cover Type	Duty	Tuning State	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		Cycle	State	(W/kg)	Factor	(W/kg)	
829.80	4149	UMTS 850	RMC	24.7	24.50	-0.01	Right	Cheek	05010	Standard	1:1	S0	0.205	1.047	0.215	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.05	Right	Cheek	05010	Standard	1:1	S0	0.218	1.038	0.226	A2
836.60	4183	UMTS 850	RMC	24.7	24.54	0.03	Right	Cheek	05010	Wireless Charging	1:1	S0	0.211	1.038	0.219	
843.80	4219	UMTS 850	RMC	24.7	24.53	-0.03	Right	Cheek	05010	Standard	1:1	S0	0.216	1.040	0.225	
829.80	4149	UMTS 850	RMC	24.7	24.50	0.05	Right	Tilt	05010	Standard	1:1	S0	0.099	1.047	0.104	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.14	Right	Tilt	05010	Standard	1:1	S0	0.102	1.038	0.106	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.05	Right	Tilt	05010	Standard	1:1	S0	0.104	1.040	0.108	
829.80	4149	UMTS 850	RMC	24.7	24.50	-0.05	Left	Cheek	05010	Standard	1:1	S0	0.165	1.047	0.173	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.01	Left	Cheek	05010	Standard	1:1	S0	0.176	1.038	0.183	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.01	Left	Cheek	05010	Standard	1:1	S0	0.172	1.040	0.179	
829.80	4149	UMTS 850	RMC	24.7	24.50	0.07	Left	Tilt	05010	Standard	1:1	S0	0.094	1.047	0.098	
836.60	4183	UMTS 850	RMC	24.7	24.54	-0.01	Left	Tilt	05010	Standard	1:1	S0	0.103	1.038	0.107	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.13	Left	Tilt	05010	Standard	1:1	S0	0.100	1.040	0.104	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population											Head W/kg (m) ged over 1				

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 55 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Fage 55 01 61
© 2015 PCTEST Engineering Labor	ratory, Inc.			REV 16.3 M

Table 11-3 GSM 1900 Head SAR

						COIN	1000	Heau	OAIX							
						MEA	SUREME	ENT RESI	JLTS							
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Cover Type	# of Time	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	,,,,	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.2	30.11	0.07	Right	Cheek	05010	Standard	1	1:8.3	0.056	1.021	0.057	
1880.00	661	GSM 1900	GSM	30.2	30.11	0.20	Right	Tilt	05010	Standard	1	1:8.3	0.025	1.021	0.026	
1880.00	661	GSM 1900	GSM	30.2	30.11	0.17	Left	Cheek	05010	Standard	1	1:8.3	0.060	1.021	0.061	
1880.00	661	GSM 1900	GSM	30.2	30.11	0.11	Left	Cheek	05010	Wireless Charging	1	1:8.3	0.059	1.021	0.060	
1880.00	661	GSM 1900	GSM	30.2	30.11	0.05	Left	Tilt	05010	Standard	1	1:8.3	0.017	1.021	0.017	
1880.00	661	GSM 1900	GPRS	29.2	28.90	-0.15	Right	Cheek	05010	Standard	2	1:4.15	0.076	1.072	0.081	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.18	Right	Tilt	05010	Standard	2	1:4.15	0.033	1.072	0.035	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.09	Left	Cheek	05010	Standard	2	1:4.15	0.080	1.072	0.086	A3
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.15	Left	Cheek	05010	Wireless Charging	2	1:4.15	0.065	1.072	0.070	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.09	Left	Tilt	05010	Standard	2	1:4.15	0.021	1.072	0.023	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population											Head W/kg (m\ ged over 1				

Table 11-4 UMTS 1900 Head SAR

						MEASU	REMENT	RESUL	гѕ						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Cover Type	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, , ,	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	-0.02	Right	Cheek	05010	Standard	1:1	0.151	1.035	0.156	A4
1880.00	9400	UMTS 1900	RMC	24.7	24.55	-0.14	Right	Cheek	05010	Wireless Charging	1:1	0.142	1.035	0.147	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.12	Right	Tilt	05010	Standard	1:1	0.062	1.035	0.064	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.21	Left	Cheek	05010	Standard	1:1	0.148	1.035	0.153	
1880.00	80.00 9400 UMTS 1900 RMC 24.7 24.55 0.08								05010	Standard	1:1	0.044	1.035	0.046	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									ŧ	1.6 W/kg	ead g (mW/g) over 1 gram			

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo FC of 01
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 56 of 81

Table 11-5 LTE Band 12 Head SAR

									MEAS	SUREME	NT RESU										
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR	Side	Test	Device Serial	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	Tuning	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	CI	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]	Side	Position	Number	Cover Type	modulation	ND SIZE	KBOIIset	Duty Cycle	State	(W/kg)	Factor	(W/kg)	riot#
704.50	23065	Low	LTE Band 12	10	25.0	24.76	-0.15	0	Right	Cheek	05051	Standard	QPSK	1	25	1:1	S0	0.168	1.057	0.178	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	0.14	0	Right	Cheek	05051	Standard	QPSK	1	0	1:1	S0	0.220	1.012	0.223	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	-0.07	0	Right	Cheek	05051	Wireless Charging	QPSK	1	0	1:1	S0	0.224	1.012	0.227	A5
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.17	0	Right	Cheek	05051	Standard	QPSK	1	49	1:1	S0	0.141	1.047	0.148	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	-0.01	1	Right	Cheek	05051	Standard	QPSK	25	12	1:1	S0	0.133	1.072	0.143	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	0.02	1	Right	Cheek	05051	Standard	QPSK	25	0	1:1	S0	0.148	1.067	0.158	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.04	1	Right	Cheek	05051	Standard	QPSK	25	0	1:1	S0	0.141	1.069	0.151	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	-0.04	0	Right	Tilt	05051	Standard	QPSK	1	25	1:1	S0	0.064	1.057	0.068	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	-0.10	0	Right	Tilt	05051	Standard	QPSK	1	0	1:1	S0	0.088	1.012	0.089	
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.07	0	Right	Tilt	05051	Standard	QPSK	1	49	1:1	S0	0.053	1.047	0.055	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	0.06	1	Right	Tilt	05051	Standard	QPSK	25	12	1:1	S0	0.051	1.072	0.055	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	-0.18	1	Right	Tilt	05051	Standard	QPSK	25	0	1:1	S0	0.057	1.067	0.061	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.04	1	Right	Tilt	05051	Standard	QPSK	25	0	1:1	S0	0.057	1.069	0.061	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	-0.02	0	Left	Cheek	05051	Standard	QPSK	1	25	1:1	S0	0.173	1.057	0.183	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	0.04	0	Left	Cheek	05051	Standard	QPSK	1	0	1:1	S0	0.212	1.012	0.215	
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.09	0	Left	Cheek	05051	Standard	QPSK	1	49	1:1	S0	0.149	1.047	0.156	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	-0.09	1	Left	Cheek	05051	Standard	QPSK	25	12	1:1	S0	0.115	1.072	0.123	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	0.09	1	Left	Cheek	05051	Standard	QPSK	25	0	1:1	S0	0.129	1.067	0.138	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.05	1	Left	Cheek	05051	Standard	QPSK	25	0	1:1	S0	0.118	1.069	0.126	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	-0.20	0	Left	Tilt	05051	Standard	QPSK	1	25	1:1	S0	0.056	1.057	0.059	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	0.17	0	Left	Tilt	05051	Standard	QPSK	1	0	1:1	S0	0.091	1.012	0.092	
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.06	0	Left	Tilt	05051	Standard	QPSK	1	49	1:1	S0	0.052	1.047	0.054	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	0.16	1	Left	Tilt	05051	Standard	QPSK	25	12	1:1	S0	0.047	1.072	0.050	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	0.03	1	Left	Tilt	05051	Standard	QPSK	25	0	1:1	S0	0.059	1.067	0.063	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.05	1	Left	Tilt	05051	Standard	QPSK	25	0	1:1	S0	0.056	1.069	0.060	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												ē	Head 1.6 W/kg (r averaged over	mW/g)						

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 57 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Fage 37 01 61

Table 11-6 LTE Band 5 (Cell) Head SAR

										SUREME			<u> </u>								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR	Side	Test	Device Serial	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	Tuning	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	CI	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]	Oide	Position	Number	GOTEL TYPE	modulation	TOOLE	no onser	buty oyele	State	(W/kg)	Factor	(W/kg)	1 101 11
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.02	0	Right	Cheek	05069	Standard	QPSK	1	0	1:1	S0	0.191	1.040	0.199	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.03	0	Right	Cheek	05069	Standard	QPSK	1	25	1:1	S0	0.242	1.026	0.248	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.12	0	Right	Cheek	05069	Wireless Charging	QPSK	1	25	1:1	S0	0.270	1.026	0.277	A6
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	0.01	0	Right	Cheek	05069	Standard	QPSK	1	49	1:1	S0	0.220	1.033	0.227	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.03	1	Right	Cheek	05069	Standard	QPSK	25	0	1:1	S0	0.159	1.047	0.166	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.01	1	Right	Cheek	05069	Standard	QPSK	25	0	1:1	S0	0.195	1.035	0.202	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	-0.02	1	Right	Cheek	05069	Standard	QPSK	25	25	1:1	S0	0.176	1.040	0.183	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	0.06	0	Right	Tilt	05069	Standard	QPSK	1	0	1:1	S0	0.094	1.040	0.098	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	0.10	0	Right	Tilt	05069	Standard	QPSK	1	25	1:1	S0	0.111	1.026	0.114	
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	0.14	0	Right	Tilt	05069	Standard	QPSK	1	49	1:1	S0	0.105	1.033	0.108	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.02	1	Right	Tilt	05069	Standard	QPSK	25	0	1:1	S0	0.079	1.047	0.083	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.11	1	Right	Tilt	05069	Standard	QPSK	25	0	1:1	S0	0.078	1.035	0.081	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.10	1	Right	Tilt	05069	Standard	QPSK	25	25	1:1	S0	0.082	1.040	0.085	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	0.08	0	Left	Cheek	05069	Standard	QPSK	1	0	1:1	S0	0.161	1.040	0.167	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.03	0	Left	Cheek	05069	Standard	QPSK	1	25	1:1	S0	0.211	1.026	0.216	
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	0.09	0	Left	Cheek	05069	Standard	QPSK	1	49	1:1	S0	0.174	1.033	0.180	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.06	1	Left	Cheek	05069	Standard	QPSK	25	0	1:1	S0	0.136	1.047	0.142	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	-0.06	1	Left	Cheek	05069	Standard	QPSK	25	0	1:1	S0	0.145	1.035	0.150	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.05	1	Left	Cheek	05069	Standard	QPSK	25	25	1:1	S0	0.144	1.040	0.150	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.05	0	Left	Tilt	05069	Standard	QPSK	1	0	1:1	S0	0.088	1.040	0.092	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	0.04	0	Left	Tilt	05069	Standard	QPSK	1	25	1:1	S0	0.123	1.026	0.126	
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	0.02	0	Left	Tilt	05069	Standard	QPSK	1	49	1:1	S0	0.094	1.033	0.097	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.00	1	Left	Tilt	05069	Standard	QPSK	25	0	1:1	S0	0.072	1.047	0.075	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	-0.11	1	Left	Tilt	05069	Standard	QPSK	25	0	1:1	S0	0.083	1.035	0.086	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.00	1	Left	Tilt	05069	Standard	QPSK	25	25	1:1	S0	0.076	1.040	0.079	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									•			Head 1.6 W/kg (r	nW/g)	•						

Table 11-7 LTE Band 4 (AWS) Head SAR

										, ,,,,	<u>,</u>	aa o								
									MEASUR	EMENT R	ESULTS									
FF	REQUENCY		Mode	Bandwidth	Maximum	Conducted	Power	MPR	Side	Test	Device Serial	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]		Position	Number						(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	-0.09	0	Right	Cheek	05036	Standard	QPSK	1	0	1:1	0.145	1.021	0.148	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	0.02	1	Right	Cheek	05036	Standard	QPSK	50	0	1:1	0.108	1.054	0.114	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0	Right	Tilt	05036	Standard	QPSK	1	0	1:1	0.053	1.021	0.054		
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	0.15	1	Right	Tilt	05036	Standard	QPSK	50	0	1:1	0.038	1.054	0.040	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.12	0	Left	Cheek	05036	Standard	QPSK	1	0	1:1	0.178	1.021	0.182	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.12	0	Left	Cheek	05036	Wireless Charging	QPSK	1	0	1:1	0.198	1.021	0.202	A7
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	0.07	1	Left	Cheek	05036	Standard	QPSK	50	0	1:1	0.123	1.054	0.130	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.17	0	Left	Tilt	05036	Standard	QPSK	1	0	1:1	0.050	1.021	0.051	
1732.50	2.50 20175 Mid LTE Band 4 (AWS) 20 24.0 23.77 0.01 1										05036	Standard	QPSK	50	0	1:1	0.032	1.054	0.034	
				Spatial	92 - SAFETY Peak /General Po										Head W/kg (mW/g led over 1 gra					

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 50 of 01
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 58 of 81

Table 11-8 LTE Band 2 (PCS) Head SAR

										<u> </u>	,	<u>uu 0,</u>								
									MEASUR	EMENT R	RESULTS	;								
FF	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR	Side	Test	Device Serial	Cover Type	Modulation	RB Size	RR Offset	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	CI	١.	iii ode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]	O.GC	Position	Number	остет турс	modulation	12020	na onset	buty byth	(W/kg)	Factor	(W/kg)	1 101 11
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.03	0	Right	Cheek	05051	Standard	QPSK	1	50	1:1	0.177	1.016	0.180	A8
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.12	0	Right	Cheek	05051	Wireless Charging	QPSK	1	50	1:1	0.164	1.016	0.167	
1860.00 18700 Low LTE Band 2 (PCS) 20 24.0 23.96 0.17									Right	Cheek	05051	Standard	QPSK	50	25	1:1	0.135	1.009	0.136	
1860.00 18700 Low LTE Band 2 (PCS) 20 25.0 24.93 0.12 0					0	Right	Tilt	05051	Standard	QPSK	1	50	1:1	0.053	1.016	0.054				
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.96	0.20	1	Right	Tilt				50	25	1:1	0.044	1.009	0.044	
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.06	0	Left	Cheek	05051	Standard	QPSK	1	50	1:1	0.144	1.016	0.146	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.96	0.06	1	Left	Cheek	05051	Standard	QPSK	50	25	1:1	0.115	1.009	0.116	
1860.00 18700 Low LTE Band 2 (PCS) 20 25.0 24.93 0.03 0									Left	Tilt	05051	Standard	QPSK	1	50	1:1	0.036	1.016	0.037	
1860.00	00 18700 Low LTE Band 2 (PCS) 20 24.0 23.96 0.06 1									Tilt	05051	Standard	QPSK	50	25	1:1	0.028	1.009	0.028	
			ANSI / IE		92 - SAFETY	LIMIT						•			Head				•	
			Uncontrolle	Spatial d Exposure	Peak /General Po	pulation									V/kg (mW/g ed over 1 gra					

Table 11-9 LTE Band 30 Head SAR

								<u></u>	- aa.	<u> </u>		O/\ii\								
								1	MEASUR	EMENT R	ESULTS									
FR	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm)	Power Drift [dB]	MPR [dB]	Side	Test Position	Device Serial	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	CI	1.		[MHZ]	Power [dBm]	Power [dbill]	Driit [db]	[GB]		Position	Number						(W/kg)	ractor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.15	0	Right	Cheek	05069	Standard	QPSK	1	25	1:1	0.054	1.030	0.056	A9
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.13	0	Right	Cheek	05069	Wireless Charging	QPSK	1	25	1:1	0.040	1.030	0.041	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	0.19	1	Right	Cheek	05069	Standard	QPSK	25	0	1:1	0.052	1.059	0.055	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	0.07	1	Right	Cheek	05069	Standard	QPSK	50	0	1:1	0.042	1.042	0.044	
2310.00 27710 Mid LTE Band 30 10 22.7 22.57 0.12 0									Right	Tilt	05069	Standard	QPSK	1	25	1:1	0.014	1.030	0.014	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	0.13	1	Right	Tilt	05069	Standard	QPSK	25	0	1:1	0.012	1.059	0.013	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	0.21	1	Right	Tilt	05069	Standard	QPSK	50	0	1:1	0.013	1.042	0.014	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.14	0	Left	Cheek	05069	Standard	QPSK	1	25	1:1	0.025	1.030	0.026	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	0.11	1	Left	Cheek	05069	Standard	QPSK	25	0	1:1	0.023	1.059	0.024	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	0.10	1	Left	Cheek	05069	Standard	QPSK	50	0	1:1	0.023	1.042	0.024	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.15	0	Left	Tilt	05069	Standard	QPSK	1	25	1:1	0.023	1.030	0.024	
2310.00	27710 Mid LTE Band 30 10 21.7 21.45 0.16 1									Tilt	05069	Standard	QPSK	25	0	1:1	0.025	1.059	0.026	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	0.11	1	Left	Tilt	05069	Standard	QPSK	50	0	1:1	0.024	1.042	0.025	
				Spatial	92 - SAFETY Peak /General Po										Head V/kg (mW/g ed over 1 gra					

Table 11-10 DTS Head SAR

								MEA	SUREME	NT RESU	LTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted	Power	Side	Test Position	De vice Serial	Cover Type	Data Rate	Duty	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot #
MHz	MHz Ch. Power[dBm]									Number		(Mbps)	Cycle (%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	17.0	16.41	0.13	Right	Cheek	05077	Standard	1	99.8	0.592	0.493	1.146	1.002	0.566	
2462	11	802.11b	DSSS	22	17.0	16.41	-0.08	Right	Cheek	05077	Wireless Charging	1	99.8	0.573	0.516	1.146	1.002	0.592	A10
2462	11	802.11b	DSSS	22	17.0	16.41	0.04	Right	Tilt	05077	Standard	1	99.8	0.335	0.241	1.146	1.002	0.277	
2462	11	802.11b	DSSS	22	17.0	16.41	-	Left	Cheek	05077	Standard	1	99.8	0.217	-	1.146	1.002		
2462	2462 11 802.11b DSSS 22 17.0 16.41 - Left										Standard	1	99.8	0.225	-	1.146	1.002	-	
			ANSI / IE	EEE C95.1 19	92 - SAFETY	LIMIT								-	Head				
				Spatial											kg (mW/g)				
			Uncontroll	ed Exposure	e/General Po	pulation								averaged	l over 1 gram				

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 50 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 59 of 81

Table 11-11 NII Head SAR

								MEAS	SUREME	NT RESU	LTS								
FREQUI	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Cover Type	Data Rate	Duty	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(Mbps)	Cycle (%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5300	60	802.11a	OFDM	20	15.0	14.89	0.14	Right	Cheek	05085	Standard	6	99.1	0.513	0.205	1.026	1.009	0.212	A11
5300	60	802.11a	OFDM	20	15.0	14.89	0.10	Right	Cheek	05085	Wireless Charging	6	99.1	0.192	0.087	1.026	1.009	0.090	
5300	60	802.11a	OFDM	20	15.0	14.89	-	Right	Tilt	05085	Standard	6	99.1	0.244	-	1.026	1.009	-	
5300	60	802.11a	OFDM	20	15.0	14.89	-	Left	Cheek	05085	Standard	6	99.1	0.230	-	1.026	1.009	-	
5300	60	802.11a	OFDM	20	15.0	14.89	-	Left	Tilt	05085	Standard	6	99.1	0.188	-	1.026	1.009	-	
5580	116	802.11a	OFDM	20	15.0	14.71	0.18	Right	Cheek	05085	Standard	6	99.1	0.284	0.103	1.069	1.009	0.111	
5580	116	802.11a	OFDM	20	15.0	14.71	-	Right	Tilt	05085	Standard	6	99.1	0.113		1.069	1.009	-	
5580	116	802.11a	OFDM	20	15.0	14.71	-	Left	Cheek	05085	Standard	6	99.1	0.209	-	1.069	1.009	-	
5580	116	802.11a	OFDM	20	15.0	14.71	-	Left	Tilt	05085	Standard	6	99.1	0.187	-	1.069	1.009	-	
5745	149	802.11a	OFDM	20	15.0	14.82	0.18	Right	Cheek	05085	Standard	6	99.1	0.329	0.123	1.042	1.009	0.129	
5745	149	802.11a	OFDM	20	15.0	14.82	-	Right	Tilt	05085	Standard	6	99.1	0.137	-	1.042	1.009	-	
5745 149 802.11a OFDM 20 15.0 14.82 - Left C										05085	Standard	6	99.1	0.269		1.042	1.009	-	
5745	149	802.11a	OFDM	20	15.0	14.82	-	Left	Tilt	05085	Standard	6	99.1	0.204		1.042	1.009	-	
				Spatial	92 - SAFETY Peak /General Po									1.6 W/	lead kg (mW/g) I over 1 gram				

11.2 Standalone Body-Worn SAR Data

Table 11-12 GSM/UMTS Body-Worn SAR

									RESULTS								
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Side	Device Serial	Cover Type	# of Time	Duty	Tuning	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.	modo	0011100	Power [dBm]	Power [dBm]	Drift [dB]	opuomg	0.00	Number	5010ypc	Slots	Cycle	State	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.20	-0.07	10 mm	back	05010	Standard	1	1:8.3	N/A	0.244	1.122	0.274	
836.60	190	GSM 850	GSM	33.7	33.20	-0.01	10 mm	back	05010	Wireless Charging	1	1:8.3	N/A	0.262	1.122	0.294	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.04	10 mm	back	05010	Standard	2	1:4.15	N/A	0.338	1.072	0.362	A12
836.60	190	GSM 850	GPRS	32.2	31.90	-0.06	10 mm	back	05010	Wireless Charging	2	1:4.15	N/A	0.307	1.072	0.329	
829.80	4149	UMTS 850	RMC	24.7	24.50	0.03	10 mm	back	05010	Standard	N/A	1:1	S0	0.285	1.047	0.298	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.00	10 mm	back	05010	Standard	N/A	1:1	S0	0.302	1.038	0.313	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.01	10 mm	back	05010	Standard	N/A	1:1	S0	0.315	1.040	0.328	A14
843.80	4219	UMTS 850	RMC	24.7	24.53	-0.01	10 mm	back	05010	Wireless Charging	N/A	1:1	S0	0.312	1.040	0.324	
1880.00	661	GSM 1900	GSM	30.2	30.11	0.06	10 mm	back	05028	Standard	1	1:8.3	N/A	0.173	1.021	0.177	
1880.00	661	GSM 1900	GSM	30.2	30.11	-0.03	10 mm	back	05028	Wireless Charging	1	1:8.3	N/A	0.165	1.021	0.168	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.00	10 mm	back	05028	Standard	2	1:4.15	N/A	0.255	1.072	0.273	A16
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.08	10 mm	back	05028	Wireless Charging	2	1:4.15	N/A	0.213	1.072	0.228	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.08	10 mm	back	05010	Standard	N/A	1:1	N/A	0.509	1.035	0.527	A18
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.09	10 mm	back	05010	Wireless Charging	N/A	1:1	N/A	0.474	1.035	0.491	
		ANSI /	IEEE C95.1 199 Spatial		LIMIT								ody g (mW/g)				
		Uncontro	Spatial Illed Exposure		pulation						a		over 1 gran	n			

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 60 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Fage 60 01 61

Table 11-13 LTE Body-Worn SAR

									_ D(uy-	VVOII	JAK	`								
									MEAS	UREME	NT RESU	LTS									
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Spacing	Side	Device Serial Number	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	Tuning State	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	С	h.		[MT2]	Power [dBm]	rower [dbiii]	Drift [db]				Number						State	(W/kg)	ractor	(W/kg)	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	-0.06	0	10 mm	back	05069	Standard	QPSK	1	25	1:1	S0	0.446	1.057	0.471	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	0.10	0	10 mm	back	05069	Standard	QPSK	1	0	1:1	S0	0.403	1.012	0.408	
711.00	23130	High	LTE Band 12	10	25.0	24.80	0.00	0	10 mm	back	05069	Standard	QPSK	1	49	1:1	S0	0.457	1.047	0.478	A20
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.10	0	10 mm	back	05069	Wireless Charging	QPSK	1	49	1:1	S0	0.396	1.047	0.415	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	0.10	1	10 mm	back	05069	Standard	QPSK	25	12	1:1	S0	0.348	1.072	0.373	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	0.03	1	10 mm	back	05069	Standard	QPSK	25	0	1:1	S0	0.319	1.067	0.340	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.00	1	10 mm	back	05069	Standard	QPSK	25	0	1:1	S0	0.323	1.069	0.345	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.10	0	10 mm	back	05051	Standard	QPSK	1	0	1:1	S0	0.222	1.040	0.231	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	0.02	0	10 mm	back	05051	Standard	QPSK	1	25	1:1	S0	0.314	1.026	0.322	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.10	0	10 mm	back	05051	Wireless Charging	QPSK	1	25	1:1	S0	0.319	1.026	0.327	A22
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	0.03	0	10 mm	back	05051	Standard	QPSK	1	49	1:1	S0	0.276	1.033	0.285	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	-0.01	1	10 mm	back	05051	Standard	QPSK	25	0	1:1	S0	0.186	1.047	0.195	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.01	1	10 mm	back	05051	Standard	QPSK	25	0	1:1	S0	0.219	1.035	0.227	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.00	1	10 mm	back	05051	Standard	QPSK	25	25	1:1	S0	0.232	1.040	0.241	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.13	0	10 mm	back	05069	Standard	QPSK	1	0	1:1	N/A	0.655	1.021	0.669	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	-0.05	0	10 mm	back	05069	Wireless Charging	QPSK	1	0	1:1	N/A	0.674	1.021	0.688	A23
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	-0.02	1	10 mm	back	05069	Standard	QPSK	50	0	1:1	N/A	0.432	1.054	0.455	
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.10	0	10 mm	back	05051	Standard	QPSK	1	50	1:1	N/A	0.519	1.016	0.527	
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.09	0	10 mm	back	05051	Wireless Charging	QPSK	1	50	1:1	N/A	0.546	1.016	0.555	A25
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.96	0.09	1	10 mm	back	05051	Standard	QPSK	50	25	1:1	N/A	0.370	1.009	0.373	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.04	0	10 mm	back	05844	Standard	QPSK	1	25	1:1	N/A	0.273	1.030	0.281	A27
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.01	0	10 mm	back	05844	Wireless Charging	QPSK	1	25	1:1	N/A	0.269	1.030	0.277	
2310.00	27710	Mid	LTE Band 30	10	10 mm	back	05844	Standard	QPSK	25	0	1:1	N/A	0.220	1.059	0.233					
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	-0.04	1	10 mm	back	05844	Standard	QPSK	50	0	1:1	N/A	0.227	1.042	0.237	
			ANSI / IEI	EE C95.1 199 Spatial	2 - SAFETY	LIMIT									Bo 1.6 W/kg	-					
			Uncontrolle		General Po	pulation								á	veraged o						

Table 11-14 DTS Body-Worn SAR

								MEASU	JREMEI	NT RES	ULTS								
FREQUE	NCY	Mode	Service	Bandwidth	Maximum	Conducted	Power	Spacing	Side	Device Serial	Cover Type	Data Rate		Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	•		Number		(Mbps)	Cycle (%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	17.0	16.41	-0.03	10 mm	back	05077	Standard	1	99.8	0.082	0.071	1.146	1.002	0.081	
2462	11	802.11b	DSSS	22	17.0	16.41	0.09	10 mm	back	05077	Wireless Charging	1	99.8	0.087	0.073	1.146	1.002	0.084	A29
			ANSI / IEE	E C95.1 1992	- SAFETY L	IMIT									Body				
				Spatial P	eak									1.6 W	/kg (mW/g)				
			Uncontrolled	Exposure/0	Seneral Popu	ulation								average	d over 1 gran	n			

Table 11-15 NII Body-Worn SAR

								`	<u> </u>	• • • • •									
								MEASU	JREME	NT RES	ULTS								
FREQUI	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Spacing	Side	Device Serial	Cover Type	Data Rate		Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot#
MHz										Number	-	(Mbps)	Cycle (%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5300	60	802.11a	OFDM	20	15.0	14.89	0.10	10 mm	back	05085	Standard	6	99.1	0.823	0.358	1.026	1.009	0.370	A31
5300	60	802.11a	OFDM	20	15.0	14.89	0.05	10 mm	back	05085	Wireless Charging	6	99.1	0.709	0.293	1.026	1.009	0.304	
5580	116	802.11a	OFDM	20	15.0	14.71	0.06	10 mm	back	05085	Standard	6	99.1	0.743	0.288	1.069	1.009	0.311	
5745	15 149 802.11a OFDM 20 15.0 14.82 -0.01 10 mm										Standard	6	99.1	0.620	0.230	1.042	1.009	0.242	
			ANSI / IEE	E C95.1 1992	- SAFETY L	IMIT									Body				
				Spatial P	eak									1.6 W	/kg (mW/g)				
			Uncontrolled	Exposure/0	Seneral Popu	ulation								average	d over 1 gran	n			
																			_

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 61 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 01 01 01

11.3 Standalone Wireless Router SAR Data

Table 11-16 GPRS/UMTS Hotspot SAR

									RESULTS								
FREQUE	NCY			Maximum	Conducted	Power	Π		Device Serial		# of GPRS	Duty	Tuning	SAR (1g)	Scaling	Scaled SAR	
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Power [dBm]		Spacing	Side	Number	Cover Type	Slots	Cycle	State	(W/kg)	Factor	(1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	32.2	31.90	-0.04	10 mm	back	05010	Standard	2	1:4.15	N/A	0.338	1.072	0.362	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.05	10 mm	front	05010	Standard	2	1:4.15	N/A	0.311	1.072	0.333	
836.60	190	GSM 850	GPRS	32.2	31.90	0.02	10 mm	bottom	05010	Standard	2	1:4.15	N/A	0.228	1.072	0.244	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.08	10 mm	right	05010	Standard	2	1:4.15	N/A	0.347	1.072	0.372	
836.60	190	GSM 850	GPRS	32.2	31.90	-0.05	10 mm	right	05010	Wireless Charging	2	1:4.15	N/A	0.373	1.072	0.400	A13
836.60	190	GSM 850	GPRS	32.2	31.90	0.17	10 mm	left	05010	Standard	2	1:4.15	N/A	0.116	1.072	0.124	
829.80	4149	UMTS 850	RMC	24.7	24.50	0.03	10 mm	back	05010	Standard	N/A	1:1	S0	0.285	1.047	0.298	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.00	10 mm	back	05010	Standard	N/A	1:1	S0	0.302	1.038	0.313	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.01	10 mm	back	05010	Standard	N/A	1:1	S0	0.315	1.040	0.328	
829.80	4149	UMTS 850	RMC	24.7	24.50	0.00	10 mm	front	05010	Standard	N/A	1:1	S0	0.286	1.047	0.299	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.00	10 mm	front	05010	Standard	N/A	1:1	S0	0.298	1.038	0.309	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.02	10 mm	front	05010	Standard	N/A	1:1	S0	0.321	1.040	0.334	A15
843.80	4219	UMTS 850	RMC	24.7	24.53	-0.05	10 mm	front	05010	Wireless Charging	N/A	1:1	S0	0.318	1.040	0.331	
829.80	4149	UMTS 850	RMC	24.7	24.50	-0.10	10 mm	bottom	05010	Standard	N/A	1:1	S0	0.194	1.047	0.203	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.04	10 mm	bottom	05010	Standard	N/A	1:1	S0	0.180	1.038	0.187	
843.80	4219	UMTS 850	RMC	24.7	24.53	-0.04	10 mm	bottom	05010	Standard	N/A	1:1	S0	0.194	1.040	0.202	
829.80	4149	UMTS 850	RMC	24.7	24.50	0.01	10 mm	right	05010	Standard	N/A	1:1	S0	0.294	1.047	0.308	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.00	10 mm	right	05010	Standard	N/A	1:1	S0	0.302	1.038	0.313	
843.80	4219	UMTS 850	RMC	24.7	24.53	-0.06	10 mm	right	05010	Standard	N/A	1:1	S0	0.292	1.040	0.304	
829.80	4149	UMTS 850	RMC	24.7	24.50	-0.01	10 mm	left	05010	Standard	N/A	1:1	S0	0.110	1.047	0.115	
836.60	4183	UMTS 850	RMC	24.7	24.54	0.16	10 mm	left	05010	Standard	N/A	1:1	S0	0.104	1.038	0.108	
843.80	4219	UMTS 850	RMC	24.7	24.53	0.06	10 mm	left	05010	Standard	N/A	1:1	S0	0.103	1.040	0.107	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.00	10 mm	back	05028	Standard	2	1:4.15	N/A	0.255	1.072	0.273	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.08	10 mm	front	05028	Standard	2	1:4.15	N/A	0.307	1.072	0.329	A17
1880.00	661	GSM 1900	GPRS	29.2	28.90	-0.12	10 mm	front	05028	Wireless Charging	2	1:4.15	N/A	0.288	1.072	0.309	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.08	10 mm	bottom	05028	Standard	2	1:4.15	N/A	0.304	1.072	0.326	
1880.00	661	GSM 1900	GPRS	29.2	28.90	0.01	10 mm	left	05028	Standard	2	1:4.15	N/A	0.193	1.072	0.207	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.08	10 mm	back	05010	Standard	N/A	1:1	N/A	0.509	1.035	0.527	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.07	10 mm	front	05010	Standard	N/A	1:1	N/A	0.563	1.035	0.583	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.07	10 mm	bottom	05010	Standard	N/A	1:1	N/A	0.651	1.035	0.674	A19
1880.00	9400	UMTS 1900	RMC	24.7	24.55	0.02	10 mm	bottom	05010	Wireless Charging	N/A	1:1	N/A	0.641	1.035	0.663	
1880.00	9400	UMTS 1900	RMC	24.7	24.55	-0.06	10 mm	left	05010	Standard	N/A	1:1	N/A	0.383	1.035	0.396	
			IEEE C95.1 199 Spatial I	Peak							a	Boo 1.6 W/kg veraged ov	(mW/g)				

FCC ID: ZNFH900	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 62 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 62 of 81

Table 11-17 LTE Band 12 Hotspot SAR

											NT RESU	JUL S.									
	EQUENCY			Г	Maximum				WILAG	OKLINIL	I KESO	L13		1						Scaled SAR	
			Mode	Bandwidth [MHz]	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Spacing	Side	Device Serial Number	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	Tuning State	SAR (1g)	Scaling Factor	(1g)	Plot#
MHz	23065		1.TE D140	40		04.70	0.00		40	h di	05000	Otenderd	opor	_	05	4.4	S0	(W/kg)	4.057	(W/kg)	
704.50	23095	Low	LTE Band 12 LTE Band 12	10	25.0 25.0	24.76 24.95	-0.06 0.10	0	10 mm	back	05069 05069	Standard Standard	QPSK QPSK	1	25 0	1:1	S0	0.446	1.057	0.471	
711.00	23130	High	LTE Band 12	10	25.0	24.95	0.10	0	10 mm	back	05069	Standard	QPSK	1	49	1:1	S0	0.403	1.012	0.408	
704.50	23130	Low	LTE Band 12	10	24.0	23.70	0.00	1	10 mm	back	05069		QPSK	25	12	1:1	S0	0.457	1.047	0.478	
704.50	23095	Mid	LTE Band 12	10	24.0	23.70	0.10	1	10 mm	back	05069	Standard Standard	QPSK	25	0	1:1	S0	0.348	1.072	0.373	
711.00	23130	High	LTE Band 12	10	24.0	23.72	0.00	1	10 mm	back	05069	Standard	QPSK	25	0	1:1	S0	0.319	1.067	0.340	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	-0.05	0		front	05069	Standard	QPSK	1	25	1:1	S0	0.523	1.069	0.545	
	23095	Mid		10			0.01	0	10 mm	front			QPSK	1	0		S0	0.362		0.366	
707.50	23130		LTE Band 12 LTE Band 12	10	25.0 25.0	24.95 24.80	-0.03	0	10 mm		05069 05069	Standard	QPSK	1	49	1:1	S0	0.362	1.012	0.510	
711.00	23130	High	LTE Band 12	10	24.0	23.70	0.10	1	10 mm	front	05069	Standard Standard	QPSK	25	12	1:1	S0	0.487	1.047	0.510	
704.50	23095	Mid	LTE Band 12	10	24.0	23.70	-0.02	1	10 mm	front	05069	Standard	QPSK	25	0	1:1	S0	0.376	1.072	0.403	
															0						
711.00	23130	High	LTE Band 12 LTE Band 12	10	24.0 25.0	23.71	-0.01	0	10 mm	front	05069 05069	Standard	QPSK QPSK	25	25	1:1	S0 S0	0.349	1.069	0.373	
704.50		Low		10						bottom		Standard	QPSK	1	0		S0			0.271	
707.50	23095	Mid	LTE Band 12		25.0	24.95	-0.11	0	10 mm	bottom	05069	Standard				1:1		0.203	1.012		
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.08	0	10 mm	bottom	05069	Standard	QPSK	1	49 12	1:1	S0	0.262	1.047	0.274	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	0.08	1	10 mm	bottom	05069	Standard	QPSK	25		1:1	S0	0.184	1.072	0.197	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	-0.14	1	10 mm	bottom	05069	Standard	QPSK	25	0	1:1	S0	0.165	1.067	0.176	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.00	1	10 mm	bottom	05069	Standard	QPSK	25	0	1:1	S0	0.182	1.069	0.195	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	0.14	0	10 mm	right	05069	Standard	QPSK	1	25	1:1	S0	0.510	1.057	0.539	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	-0.04	0	10 mm	right	05069	Standard	QPSK	1	0	1:1	S0	0.385	1.012	0.390	
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.13	0	10 mm	right	05069	Standard Wireless	QPSK	1	49	1:1	S0	0.554	1.047	0.580	A21
711.00	23130	High	LTE Band 12	10	25.0	24.80	-0.03	0	10 mm	right	05069	Charging	QPSK	1	49	1:1	S0	0.301	1.047	0.315	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	-0.03	1	10 mm	right	05069	Standard	QPSK	25	12	1:1	S0	0.384	1.072	0.412	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	-0.06	1	10 mm	right	05069	Standard	QPSK	25	0	1:1	S0	0.311	1.067	0.332	
711.00	23130	High	LTE Band 12	10	24.0	23.71	0.01	1	10 mm	right	05069	Standard	QPSK	25	0	1:1	S0	0.380	1.069	0.406	
704.50	23065	Low	LTE Band 12	10	25.0	24.76	0.04	0	10 mm	left	05069	Standard	QPSK	1	25	1:1	S0	0.278	1.057	0.294	
707.50	23095	Mid	LTE Band 12	10	25.0	24.95	0.01	0	10 mm	left	05069	Standard	QPSK	1	0	1:1	S0	0.250	1.012	0.253	
711.00	23130	High	LTE Band 12	10	25.0	24.80	0.00	0	10 mm	left	05069	Standard	QPSK	1	49	1:1	S0	0.287	1.047	0.300	
704.50	23065	Low	LTE Band 12	10	24.0	23.70	0.10	1	10 mm	left	05069	Standard	QPSK	25	12	1:1	S0	0.223	1.072	0.239	
707.50	23095	Mid	LTE Band 12	10	24.0	23.72	-0.02	1	10 mm	left	05069	Standard	QPSK	25	0	1:1	S0	0.188	1.067	0.201	
711.00	23130	High	LTE Band 12	10	24.0	23.71	-0.02	1	10 mm	left	05069	Standard	QPSK	25	0	1:1	S0	0.204	1.069	0.218	
			ANSI / IE	EE C95.1 199 Spatial	92 - SAFETY Peak	LIMIT									1.6 W/kg	-					
			Uncontrolle	d Exposure	General Po	oulation								ā	averaged o	ver 1 gram					

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 62 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 63 of 81

Table 11-18 LTE Band 5 (Cell) Hotspot SAR

						<u>'</u>		Dai		•	NT RESU	_	SAR								
-	EQUENCY			ı	Maximum				IIILAO	OKLINE	I			П						Scaled SAR	
	C		Mode	Bandwidth [MHz]	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Spacing	Side	Device Serial Number	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	Tuning State	SAR (1g)	Scaling Factor	(1g)	Plot#
MHz 831.00	20470	n. Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.10	0	10 mm	back	05051	Standard	QPSK	1	0	1:1	S0	(W/kg) 0.222	1.040	(W/kg) 0.231	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.53	0.02	0	10 mm	back	05051	Standard	QPSK	1	25	1:1	S0	0.222	1.040	0.322	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.10	0	10 mm	back	05051	Wireless	QPSK	1	25	1:1	S0	0.314	1.026	0.322	A22
842.50	20525	High	LTE Band 5 (Cell)	10	24.7	24.59	0.03	0	10 mm	back	05051	Charging Standard	QPSK	1	49	1:1	S0	0.319	1.020	0.327	AZZ
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	-0.01	1	10 mm	back	05051	Standard	QPSK	25	0	1:1	S0	0.186	1.033	0.195	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.01	1	10 mm	back	05051	Standard	QPSK	25	0	1:1	S0	0.219	1.035	0.193	
842.50	20525	High	LTE Band 5 (Cell)	10	23.7	23.53	0.00	1	10 mm	back	05051	Standard	QPSK	25	25	1:1	S0	0.219	1.035	0.227	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.05	0	10 mm	front	05051	Standard	QPSK	1	0	1:1	S0	0.209	1.040	0.241	
	20525	Mid		10	24.7	24.53			10 mm		05051		QPSK		25		S0			0.217	
836.50 842.50	20525	High	LTE Band 5 (Cell)	10	24.7	24.59	-0.01	0	10 mm	front	05051	Standard	QPSK	1	49	1:1	S0	0.297	1.026	0.305	
831.00	20585	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.09	1	10 mm	front	05051	Standard	QPSK	25	0	1:1	S0	0.258	1.033	0.267	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.00	1	10 mm	front	05051	Standard	QPSK	25	0	1:1	S0	0.172	1.035	0.100	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.02	1	10 mm	front	05051	Standard	QPSK	25	25	1:1	S0	0.217	1.040	0.217	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.09	0	10 mm	bottom	05051	Standard	QPSK	1	0	1:1	S0	0.130	1.040	0.135	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.04	0	10 mm	bottom	05051	Standard	QPSK	1	25	1:1	S0	0.176	1.026	0.181	
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	-0.05	0	10 mm	bottom	05051	Standard	QPSK	1	49	1:1	S0	0.160	1.033	0.165	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	-0.12	1	10 mm	bottom	05051	Standard	QPSK	25	0	1:1	S0	0.111	1.047	0.116	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.00	1	10 mm	bottom	05051	Standard	QPSK	25	0	1:1	S0	0.124	1.035	0.128	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	-0.09	1	10 mm	bottom	05051	Standard	QPSK	25	25	1:1	S0	0.131	1.040	0.136	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	0.15	0	10 mm	right	05051	Standard	QPSK	1	0	1:1	S0	0.218	1.040	0.227	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	-0.01	0	10 mm	right	05051	Standard	QPSK	1	25	1:1	S0	0.298	1.026	0.306	
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	0.04	0	10 mm	right	05051	Standard	QPSK	1	49	1:1	S0	0.255	1.033	0.263	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.06	1	10 mm	right	05051	Standard	QPSK	25	0	1:1	S0	0.185	1.047	0.194	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	0.03	1	10 mm	right	05051	Standard	QPSK	25	0	1:1	S0	0.210	1.035	0.217	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.03	1	10 mm	right	05051	Standard	QPSK	25	25	1:1	S0	0.213	1.040	0.222	
831.00	20470	Low	LTE Band 5 (Cell)	10	24.7	24.53	-0.07	0	10 mm	left	05051	Standard	QPSK	1	0	1:1	S0	0.085	1.040	0.088	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.59	0.05	0	10 mm	left	05051	Standard	QPSK	1	25	1:1	S0	0.110	1.026	0.113	
842.50	20585	High	LTE Band 5 (Cell)	10	24.7	24.56	-0.18	0	10 mm	left	05051	Standard	QPSK	1	49	1:1	S0	0.088	1.033	0.091	
831.00	20470	Low	LTE Band 5 (Cell)	10	23.7	23.50	0.04	1	10 mm	left	05051	Standard	QPSK	25	0	1:1	S0	0.070	1.047	0.073	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.55	-0.06	1	10 mm	left	05051	Standard	QPSK	25	0	1:1	S0	0.081	1.035	0.084	
842.50	20585	High	LTE Band 5 (Cell)	10	23.7	23.53	0.01	1	10 mm	left	05051	Standard	QPSK	25	25	1:1	S0	0.074	1.040	0.077	
			ANSI / IE	EE C95.1 199 Spatial	92 - SAFETY	LIMIT					1				Bo 1.6 W/kg	-		1			
			Uncontrolle		reak /General Po _l	oulation								i	veraged o						

Table 11-19 LTF Band 4 (AWS) Hotspot SAR

						LI		ma	4 (A	vv 5)	HOLS	ροι ၁	AK							
								ME	ASURE	MENT	RESULTS									
FR	EQUENCY		Mode	Bandwidth	Maximum	Conducted	Power	MPR	Spacing	Side	Device Serial	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]			Number					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.13	0	10 mm	back	05069	Standard	QPSK	1	0	1:1	0.655	1.021	0.669	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	-0.02	1	10 mm	back	05069	Standard	QPSK	50	0	1:1	0.432	1.054	0.455	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.07	0	10 mm	front	05069	Standard	QPSK	1	0	1:1	0.707	1.021	0.722	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	-0.10	0	10 mm	Charging										
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	0.03	1	10 mm											
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	-0.03	0	10 mm	bottom	05069	Standard	QPSK	1	0	1:1	0.596	1.021	0.609	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	-0.01	1	10 mm	bottom	05069	Standard	QPSK	50	0	1:1	0.402	1.054	0.424	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	24.91	0.11	0	10 mm	mm left 05069 Standard QPSK 1 0 1:1 0.521 1.021 0.532										
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.77	1	10 mm	left	05069	Standard	QPSK	50	0	1:1	0.355	1.054	0.374		
			ANSI / IE	EE C95.1 19	92 - SAFETY	LIMIT	•		•		•				Body					
				Spatial											W/kg (mW	-				
			Uncontrolle	ed Exposure	/General Pop	pulation								averag	ged over 1	gram				

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 64 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 64 of 81

Table 11-20 LTE Band 2 (PCS) Hotspot SAR

								<u> </u>	<u> </u>	,	11013									
								ME	ASURE	MENT	RESULTS									
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR	Spacing	Side	Device Serial	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[dB]	.,		Number					,	(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.10	0	10 mm	back	05051	Standard	QPSK	1	50	1:1	0.519	1.016	0.527	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.96	0.09	1	10 mm	back	05051	Standard	QPSK	50	25	1:1	0.370	1.009	0.373	
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	-0.03	0	10 mm	front	05051	Standard	QPSK	1	50	1:1	0.480	1.016	0.488	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.96	-0.04	1	10 mm											
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.18	0	10 mm											
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	0.01	0	10 mm	bottom	05051	Wireless Charging	QPSK	1	50	1:1	0.799	1.016	0.812	A26
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	23.96	-0.06	1	10 mm	bottom	05051	Standard	QPSK	50	25	1:1	0.487	1.009	0.491	
1860.00	18700	Low	LTE Band 2 (PCS)	20	25.0	24.93	-0.03	0	10 mm	left	05051	Standard	QPSK	1	50	1:1	0.328	1.016	0.333	
1860.00 18700 Low LTE Band 2 (PCS) 20 24.0 23.96 -0.06 1											05051	Standard	QPSK	50	25	1:1	0.230	1.009	0.232	
			ANSI / IE		2 - SAFETY	LIMIT								4.01	Body					
			Uncontrolle	Spatial d Exposure	Peak /General Po _l	pulation									N/kg (mW jed over 1 (-				

Table 11-21 LTE Band 30 Hotspot SAR

MHz	QUENCY CI 27710				1			ME	ASURE	MENT	RESULTS									
MHz	CI																			
-			Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Spacing	Side	Device Serial Number	Cover Type	Modulation	RB Size	RB Offset	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
2310.00	27710	n.		[MHZ]	Power [dBm]	Power (asm)	Drift (asj	[aB]			Number						(W/kg)	Factor	(W/kg)	
	21110	Mid	LTE Band 30	10	22.7	22.57	0.04	0	10 mm	back	05844	Standard	QPSK	1	25	1:1	0.273	1.030	0.281	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	0.02	1	10 mm	back	05844	Standard	QPSK	25	0	1:1	0.220	1.059	0.233	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	-0.04	1	10 mm	back	05844	Standard	QPSK	50	0	1:1	0.227	1.042	0.237	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.00	0	10 mm	front	05844	Standard	QPSK	1	25	1:1	0.344	1.030	0.354	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	0.00	1	10 mm	front	05844	Standard	QPSK	25	0	1:1	0.241	1.059	0.255	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	0.00	1	10 mm	front	05844	Standard	QPSK	50	0	1:1	0.249	1.042	0.259	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	-0.07	0	10 mm	bottom	05844	Standard	QPSK	1	25	1:1	0.376	1.030	0.387	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.03	0	10 mm	bottom	05844	Wireless Charging	QPSK	1	25	1:1	0.394	1.030	0.406	A28
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	-0.07	1	10 mm	bottom	05844	Standard	QPSK	25	0	1:1	0.320	1.059	0.339	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	-0.08	1	10 mm	bottom	05844	Standard	QPSK	50	0	1:1	0.318	1.042	0.331	
2310.00	27710	Mid	LTE Band 30	10	22.7	22.57	0.12	0	10 mm	right	05844	Standard	QPSK	1	25	1:1	0.029	1.030	0.030	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.45	-0.03	1	10 mm	right	05844	Standard	QPSK	25	0	1:1	0.024	1.059	0.025	
2310.00 2	27710	Mid	LTE Band 30	10	21.7	21.52	0.09	1	10 mm	right	05844	Standard	QPSK	50	0	1:1	0.025	1.042	0.026	
2310.00 2	27710	Mid	LTE Band 30	10	22.7	22.57	0.18	0	10 mm	left	05844	Standard	QPSK	1	25	1:1	0.005	1.030	0.005	
2310.00 2	27710	Mid	LTE Band 30	10	21.7	21.45	0.15	1	10 mm	left	05844	Standard	QPSK	25	0	1:1	0.005	1.059	0.005	
2310.00	27710	Mid	LTE Band 30	10	21.7	21.52	0.19	1	10 mm	left	05844	Standard	QPSK	50	0	1:1	0.004	1.042	0.004	
				Spatial	92 - SAFETY Peak /General Po										Body V/kg (mW jed over 1 s					

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 65 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 65 of 81

Table 11-22 WLAN Hotspot SAR

										990	. O /\.\	<u> </u>							
								MEASU	REME	NT RES	ULTS								
FREQUE	NCY	Mode	Se rvice	Bandwidth	Maximum Allowed	Conducted	Power	Spacing	Side	Device Serial	Cover Type	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	., 5		Number	2,00	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	17.0	16.41	-0.03	10 mm	back	05077	Standard	1	99.8	0.082	-	1.146	1.002		
2462	11	802.11b	DSSS	22	17.0	16.41	-	10 mm	front	05077	Standard	1	99.8	0.115	-	1.146	1.002	-	
2462	11	802.11b	DSSS	22	17.0	16.41	-	10 mm	top	05077	Standard	1	99.8	0.054	-	1.146	1.002	-	
2462	11	802.11b	DSSS	22	17.0	16.41	0.00	10 mm	left	05077	Standard	1	99.8	0.137	0.101	1.146	1.002	0.116	A30
2462	11	802.11b	DSSS	22	17.0	16.41	0.09	10 mm	left	05077	Wireless Charging	1	99.8	0.120	0.101	1.146	1.002	0.116	
5745	149	802.11a	OFDM	20	15.0	14.82	-0.01	10 mm	back	05085	Standard	6	99.1	0.620	0.230	1.042	1.009	0.242	A32
5745	149	802.11a	OFDM	20	15.0	14.82	0.19	10 mm	back	05085	Wireless Charging	6	99.1	0.274	0.156	1.042	1.009	0.164	
5745	149	802.11a	OFDM	20	15.0	14.82	-	10 mm	front	05085	Standard	6	99.1	0.068	-	1.042	1.009	-	
5745	149	802.11a	OFDM	20	15.0	14.82	-	10 mm	top	05085	Standard	6	99.1	0.024	-	1.042	1.009	-	
5745	149	802.11a	10 mm	left	05085	Standard	6	99.1	0.128	-	1.042	1.009	-						
				Spatial I	2 - SAFETY I Peak General Pop										Body V/kg (mW/g) ed over 1 gra				

11.4 Standalone Phablet SAR Data

Table 11-23 WLAN Phablet SAR

	MEASUREMENT RESULTS																		
FREQUE	ENCY	Mode	Se rvice	Bandwidth	Maximum	Conducted	Power	Spacing	Side	Device Serial	Cover Type	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor	Scaling Factor (Duty	Scaled SAR (10g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift (dB)	.,		Number		(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5300	60	802.11a	OFDM	20	15.0	14.89	0.08	0 mm	back	05085	Standard	6	99.1	7.490	0.559	1.026	1.009	0.579	
5300	60	802.11a	OFDM	20	15.0	14.89	0.07	0 mm	back	05085	Wireless Charging	6	99.1	11.101	0.685	1.026	1.009	0.709	A33
5300	60	802.11a	OFDM	20	15.0	14.89	-	0 mm	front	05085	Standard	6	99.1	0.531	-	1.026	1.009	-	
5300	60	802.11a	OFDM	20	15.0	14.89	-	0 mm	top	05085	Standard	6	99.1	0.137	-	1.026	1.009	-	
5300	60	802.11a	OFDM	20	15.0	14.89	-	0 mm	left	05085	Standard	6	99.1	0.812		1.026	1.009		
5580	116	802.11a	OFDM	20	15.0	14.71	0.16	0 mm	back	05085	Standard	6	99.1	7.669	0.529	1.069	1.009	0.571	
5580	116	802.11a	OFDM	20	15.0	14.71	-	0 mm	front	05085	Standard	6	99.1	1.022	-	1.069	1.009	-	
5580	116	802.11a	OFDM	20	15.0	14.71	-	0 mm	top	05085	Standard	6	99.1	0.271	-	1.069	1.009	-	
5580	116	802.11a	OFDM	20	15.0	14.71	-	0 mm	left	05085	Standard	6	99.1	1.352		1.069	1.009	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									4.0 \	Phablet N/kg (mW/g) d over 10 gra								

FCC ID: ZNFH900	SAR EVALUATION REPORT		(LG	Reviewed by: Quality Manager
Document S/N:	ument S/N: Test Dates: DUT Type:			Dogo 66 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 66 of 81	

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r02, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01 v01, variability SAR tests were not performed since the measured SAR results for a frequency band were less than 0.8 W/kg. Please see Section 13 for variability
- During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.6 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r02, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, hand SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. Per FCC KDB Publication 648474 D04v01r02, SAR was measured using the standard battery cover and then repeated with the wireless charging battery cover for the configuration with the highest reported SAR for each wireless technology, frequency band, operating mode, and exposure condition. Since reported SAR did not exceed 1.2 W/kg, additional testing with the wireless charging battery cover was not required.
- 12. This device supports dynamic antenna tuning for UMTS Band 5, LTE Bands 5, and LTE Band 12/17. Per FCC Guidance, SAR was measured according to the normally required SAR measurement configurations with the closed loop tuner active in S0. Please see Section 14 for supplemental data to demonstrate the tuning states used in the full SAR measurements represent worst case or close to worst case conditions.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR. GPRS was additionally evaluated for head and body-worn voice calls to cover VoIP.
- Justification for reduced test configurations per KDB Publication 941225 D01v03 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

FCC ID: ZNFH900		SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 67 of 91	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 67 of 81	

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r03. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests
 were performed with the same number of RB and RB offsets transmitting on all TTI frames
 (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r01, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r01 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r01 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 8.6.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	ocument S/N: Test Dates: DUT Type:		Dago 69 of 91	
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 68 of 81	

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05r02 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated 1g SAR =
$$\frac{\sqrt{f(GHz)}}{7.5}$$
 * $\frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	9.00	10	0.168

Note:

- 1. Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.
- 2. Main antenna SAR testing was not required for Phablet exposure conditions per FCC KDB 648474 D04v01r02. Therefore, no further analysis was required to determine that possible simultaneous scenarios would not exceed the SAR limit.
- 3. The highest reported SAR for each exposure condition is used for SAR summation purpose.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
		DUT Type:	Page 69 of 81	
		Portable Handset		

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.299	0.592	0.891
	UMTS 850	0.226	0.592	0.818
	GSM/GPRS 1900	0.086	0.592	0.678
	UMTS 1900	0.156	0.592	0.748
Head SAR	LTE Band 12	0.227	0.592	0.819
	LTE Band 5 (Cell)	0.277	0.592	0.869
	LTE Band 4 (AWS)	0.202	0.592	0.794
	LTE Band 2 (PCS)	0.180	0.592	0.772
	LTE Band 30	0.056	0.592	0.648

Table 12-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.299	0.212	0.511
	UMTS 850	0.226	0.212	0.438
	GSM/GPRS 1900	0.086	0.212	0.298
	UMTS 1900	0.156	0.212	0.368
Head SAR	LTE Band 12	0.227	0.212	0.439
	LTE Band 5 (Cell)	0.277	0.212	0.489
	LTE Band 4 (AWS)	0.202	0.212	0.414
	LTE Band 2 (PCS)	0.180	0.212	0.392
	LTE Band 30	0.056	0.212	0.268

Note: The worst case 5 GHz WIFI reported SAR for each head configuration was considered for simultaneous SAR exclusion via summation of standalone SAR, regardless of whether the WIFI channel has WIFI Hotspot capability, for simplicity to determine compliance. Please note that the actual simultaneous transmission SAR will not exceed the summed levels indicated.

FCC ID: ZNFH900		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 70 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 70 of 81

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-4
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

			· · · · · · · · · · · · · · · · · · ·	
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.362	0.084	0.446
	UMTS 850	0.328	0.084	0.412
	GSM/GPRS 1900	0.273	0.084	0.357
	UMTS 1900	0.527	0.084	0.611
Body-Worn	LTE Band 12	0.478	0.084	0.562
	LTE Band 5 (Cell)	0.327	0.084	0.411
	LTE Band 4 (AWS)	0.688	0.084	0.772
	LTE Band 2 (PCS)	0.555	0.084	0.639
	LTE Band 30	0.281	0.084	0.365

Table 12-5
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.362	0.370	0.732
	UMTS 850	0.328	0.370	0.698
	GSM/GPRS 1900	0.273	0.370	0.643
	UMTS 1900	0.527	0.370	0.897
Body-Worn	LTE Band 12	0.478	0.370	0.848
	LTE Band 5 (Cell)	0.327	0.370	0.697
	LTE Band 4 (AWS)	0.688	0.370	1.058
	LTE Band 2 (PCS)	0.555	0.370	0.925
	LTE Band 30	0.281	0.370	0.651

Note: The worst case 5 GHz WIFI reported SAR for each body-worn configuration was considered for simultaneous SAR exclusion via summation of standalone SAR, regardless of whether the WIFI channel has WIFI Hotspot capability, for simplicity to determine compliance. Please note that the actual simultaneous transmission SAR will not exceed the summed levels indicated.

FCC ID: ZNFH900		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 71 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 71 of 81

Table 12-6
Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Body-Worn	GSM/GPRS 850	0.362	0.168	0.530
	UMTS 850	0.328	0.168	0.496
	GSM/GPRS 1900	0.273	0.168	0.441
	UMTS 1900	0.527	0.168	0.695
	LTE Band 12	0.478	0.168	0.646
	LTE Band 5 (Cell)	0.327	0.168	0.495
	LTE Band 4 (AWS)	0.688	0.168	0.856
	LTE Band 2 (PCS)	0.555	0.168	0.723
	LTE Band 30	0.281	0.168	0.449

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

12.5 Hotspot SAR Simultaneous Transmission Analysis

Table 12-7
Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Hotspot SAR	GPRS 850	0.400	0.116	0.516
	UMTS 850	0.334	0.116	0.450
	GPRS 1900	0.329	0.116	0.445
	UMTS 1900	0.674	0.116	0.790
	LTE Band 12	0.580	0.116	0.696
	LTE Band 5 (Cell)	0.327	0.116	0.443
	LTE Band 4 (AWS)	0.762	0.116	0.878
	LTE Band 2 (PCS)	0.812	0.116	0.928
	LTE Band 30	0.406	0.116	0.522

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 72 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 72 of 81

Table 12-8
Simultaneous Transmission Scenario (5 GHz Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	0.400	0.242	0.642
	UMTS 850	0.334	0.242	0.576
	GPRS 1900	0.329	0.242	0.571
	UMTS 1900	0.674	0.242	0.916
Hotspot SAR	LTE Band 12	0.580	0.242	0.822
	LTE Band 5 (Cell)	0.327	0.242	0.569
	LTE Band 4 (AWS)	0.762	0.242	1.004
	LTE Band 2 (PCS)	0.812	0.242	1.054
	LTE Band 30	0.406	0.242	0.648

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 72 of 04
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 73 of 81

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed since measured 1g SAR values for all frequency bands are below 0.80 W/kg and all 10g SAR values for all frequency bands are below 2.0 W/kg.

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 74 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 74 of 81

14 ADDITIONAL TESTING PER FCC GUIDANCE

Per FCC Guidance, the following test procedures were followed to demonstrate that the tuning states used in the SAR results in Section 11 represent a conservative worst case condition. For each exposure condition and operating mode, the test position and sub-band with the highest reported SAR configuration was selected. The SAR probe was positioned at the highest measured SAR point in the area scan and time-sweep SAR measurements at the single point were performed for all available tuning states. Tuning states were configured via test tools and the device was not moved between measurements.

Per FCC guidance, LTE B17 was not evaluated for antenna tuning states since the LTE B17 tuning parameters for S0 and S1 are the same as LTE B12 for overlapping frequencies, with the S0 tuning state exhibiting the worst case SAR. Therefore, since the tuning parameters for the S0 and S1 state are identical for B17 and B12, and the SAR values for S2, S3, and S4 are lower for all tests, the additional tests for B17 (711 – 716 MHz) S2, S3, and S4 states were not evaluated. Additionally, Band 17 supports 5 and 10 MHz BW's with the lowest center frequency at 706.5 MHz. The tuning parameters are selected based on the channel operating frequency. Therefore, the 704 - 705 MHz range for Band 17 will not be used to select the tuning parameters and is not separately evaluated as the lowest center frequency for Band 17 is 706.5 MHz. (Reference operational description for further information pertaining to the tuning parameters.)

It is noted that some point SAR measurements are slightly higher than 1g SAR measurements. Although not typically expected, these variations are less than 0.1 W/kg and determined to be a result of repositioning the DUT between 1g SAR and point SAR measurements. The FCC guidance procedures were followed. However, it should be noted that due to DUT re-positioning due to a physical connection to the DUT in order to change tuning states, the primary method of measurement was not feasible and additional scans were performed to position the probe for point SAR measurements.

Table 14-1
Supplemental Head Data

Mode	Service/ Modulation	Bandwidth (MHz)	Sub-band	Frequency (MHz)	Channel	RB Size	RB offset	Test Position	Spacing	Measured 1g SAR (W/kg)			erage Value Sweep (W		
											S0	S1	S2	S3	S4
UMTS B5	RMC	N/A	Mid	836.6	4183	N/A	N/A			0.218	0.244	0.166	0.120	0.077	0.033
LTE B12	QPSK	10	Mid	707.5	23095	1	0	Di da		0.220	0.157	0.152	0.098	0.068	0.033
			Low	831	20470	1	0	Right Touch	N/A	0.191	0.211	0.208	0.190	0.094	0.033
LTE B5	QPSK	10	Mid	836.5	20525	1	25	Touch		0.242	0.231	0.179	0.120	0.077	0.033
			High	842.5	20585	1	49			0.220	0.320	0.303	0.203	0.097	0.054

Table 14-2 Supplemental Body-Worn Data

Mode	Service/ Modulation	Bandwidth (MHz)	Sub-band	Frequency (MHz)	Channel	RB Size	RB offset	Test Position	Spacing	Measured 1g SAR (W/kg)			erage Value Sweep (V		
											S0	S1	S2	S3	S4
UMTS B5	RMC	N/A	High	843.8	4219	N/A	N/A		10 mm	0.315	0.430	0.371	0.250	0.127	0.075
			Low	704.5	23065	1	25		10 mm	0.446	0.508	0.503	0.339	0.214	0.087
LTE B12	QPSK	10	Mid	707.5	23095	1	0	Back Side	10 mm	0.403	0.523	0.452	0.337	0.212	0.085
			High	711	23130	1	49		10 mm	0.457	0.563	0.475	0.261	0.110	0.058
LTE B5	QPSK	10	Mid	836.5	20525	1	25		10 mm	0.314	0.406	0.326	0.239	0.151	0.068

Table 14-3
Supplemental Hotspot Data

Mode	Service/ Modulation	Bandwidth (MHz)	Sub-band	Frequency (MHz)	Channel	RB Size	RB offset	Test Position	Spacing	Measured 1g SAR (W/kg)			erage Value Sweep (V		
											S0	S1	S2	S3	S4
UMTS B5	RMC	N/A	High	843.8	4219	N/A	N/A	Front Side	10 mm	0.321	0.405	0.328	0.198	0.091	0.050
			Low	704.5	23065	1	25		10 mm	0.510	0.422	0.400	0.262	0.177	0.057
LTE B12	QPSK	10	Mid	707.5	23095	1	0	Right Edge	10 mm	0.385	0.431	0.343	0.237	0.154	0.058
			High	711	23130	1	49		10 mm	0.554	0.532	0.381	0.280	0.107	0.054
LTE B5	QPSK	10	Mid	836.5	20525	1	25	Back Side	10 mm	0.314	0.406	0.326	0.239	0.151	0.068

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 75 of 91
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Page 75 of 81

© 2015 PCTEST Engineering Laboratory, Inc.

08/06/2015

15 EQUIPMENT LIST

Mindeliner	Warned actions	Model	December 1 and 1 a	Cal Date	Onlintonal	Cal Due	On aled Name have
Agent							
Applicat							
Applied 19735							
Ageinst							
Agillate	Agilent	8753ES	S-Parameter Network Analyzer	3/12/2015	Annual	3/12/2016	MY40000670
Agricor CAMPATON CONTROLLED CONTROLLED CAMPATON CAMPAT	Agilent	8753ES	Network Analyzer	3/20/2015	Annual	3/20/2016	MY40001472
Applient	Agilent	E4432B	ESG-D Series Signal Generator	3/16/2015	Annual	3/16/2016	US40053896
Applient	Agilent	E4438C		4/1/2014	Biennial		
Applied 1870					Biennial		GB41450275
Ageine		E8257D			Annual		MY45470194
Aginst Million Milli					N/A		
Applied MASSIA MASSIA MASSIAN 1927/2015 Applied Applied 1927/2015 Appl							
Amplifier Research							
Amplitude National							
Acritis							
Austral							
Annibu							
Annto							
Annthol MoX2655 Power Sensor \$767,00055 Annual \$70,00056 2400							
Auntitia	Anritsu		Pulse Power Sensor		Annual		
Annition	Anritsu	MA2481A	Power Sensor	3/10/2015	Annual	3/10/2016	2400
Annitst	Anritsu	MA2481A	Power Sensor	3/11/2015	Annual	3/11/2016	5318
Annitis	Anritsu	ML2495A	Power Meter	10/31/2013	Biennial	10/31/2015	941001
Annibu	Anritsu	ML2496A	Power Meter	3/13/2015	Annual	3/13/2016	1306009
Annthol		ML2496A		3/13/2015			1351001
Amiss							
COMTRECT ARREST-95-7998 Solid State Ampiller CET N/A CET MINALOD 1002 CONTROC COMPANY ADDI Digital Thermometer 17/18/2015 Bennial 37/18/2017 100100001 CONTROC COMPANY ADDI Digital Thermometer 17/18/2015 Bennial 37/18/2017 100100001 CONTROC COMPANY ADDI Digital Thermometer 37/18/2015 Bennial 37/18/2017 100100001 CONTROC COMPANY ADDI							
COMTECH							
Centres Company							
Control Company 450							
Control Company		10.10					
Content Cont							
Gigstronics 8070A							
Gigstronics	Fisher Scientific				Biennial		
Mexistry	Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/30/2014	Annual	10/30/2015	1833460
MCL BW-N0V5 Golf Attenutor CET N/A CET 1139	Gigatronics	8651A	Universal Power Meter	10/30/2014	Annual	10/30/2015	8650319
MCL	Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Minicircuits			6dB Attenuator				
Minicircuits		SLP-2400+					
Mini-Circuits				CRT			
Mini-Circuits NIV-12009-1							
Mini-Crousis N.P2009							
Mint-Circuits NIA-2850+ Low Pass Filter Ct. op 2000 Mitz CRT N/A CRT N/A							
Mintary							
Narda							
Narda							
Narda							
Pastermack NC-100 Torque Wrench S/21/2015 Blennial S/21/2017 N/A Pastermack PE209-10 Bidirectional Coupler CBT N/A CBT N/A Pastermack PE209-10 Bidirectional Coupler CBT N/A CBT N/A Patermack NC-100 Torque Wrench S/21/2015 Blennial S/21/2017 N/A Robele & Schwarz CMU200 Base Station Simulator G/3/2015 Annual G/3/2016 103692 Robele & Schwarz CMU200 Base Station Simulator G/3/2015 Annual J/22/2016 103692 Robele & Schwarz CMU200 Base Station Simulator J/22/2015 Annual J/22/2016 103692 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 101699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100699 Robele & Schwarz CMW500 Rado Communication Tester J/22/2015 Annual J/22/2016 100690 SPEAG D750/3 750 MHz Dipole J/19/2015 Annual J/19/2016 104690 SPEAG D855/2 835 MHz SAR Dipole J/19/2015 Annual J/19/2016 40119 SPEAG D855/2 835 MHz SAR Dipole J/22/2015 Annual J/18/2016 40119 SPEAG D1565/2 1765 MHz SAR Dipole J/22/2015 Annual J/18/2016 40119 SPEAG D2450/2 2450 MHz SAR Dipole J/22/2015 Annual J/18/2016 1008 SPEAG D2450/2 2450 MHz SAR Dipole J/22/2015 Annual J/18/2016 1008 SPEAG D2450/2 2450 MHz SAR Dipole J/22/2015 Annual J/18/2016 1008 SPEAG D2450/2 2450 MHz SAR Dipole J/22/2015 Annual J/22/2016 802							
Pastermack PE208-6 Bidirectional Coupler CBT N/A CBT N/A	Narda				N/A		
Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Rohde R Schwarz NC-100 Torque Winch 572/2015 Biennial 572/2017 N/A Rohde & Schwarz CMU200 Base Station Simulator 6/3/2015 Annual 6/3/2016 109892 Rohde & Schwarz CMU200 Base Station Simulator 3/23/2015 Annual 3/23/2016 38637/10079 Rohde & Schwarz CMU200 Radio Communication Tester 4/22/2015 Annual 4/22/2016 101699 Rohde & Schwarz CMW500 Radio Communication Tester 4/22/2015 Annual 4/22/2016 101699 Rohde & Schwarz CMW500 Radio Communication Tester 5/28/2015 Annual 5/28/2016 100800 Seekonk NC-100 Torque Winch 3/18/2014 Biennial 3/18/2016 22313 SPEAG D750/3 750 MHz Dipole 2/19/2015 Annual 2/19/2016 1046 SPEAG D750/3 750 MHz Dipole 2/19/2015 Annual 2/19/2016 1046 SPEAG D750/3 750 MHz Dipole 3/11/2015 Annual 3/11/2016 1054 SPEAG D835V2 825 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 4d119 SPEAG D835V2 835 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 4d119 SPEAG D835V2 B35 MHz SAR Dipole 1/16/2015 Annual 5/13/2016 4d132 SPEAG D150V2 1765 MHz SAR Dipole 1/16/2015 Annual 5/13/2016 1048 SPEAG D150V2 1276 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D150V2 2200 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D236V2 2200 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D236V2 2200 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D236V2 2200 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D236V2 2200 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D236V2 2350 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D236V3 2450 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D245W2 2450 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 54141 SPEAG D245W2 2450 MHz SAR Dipole 4/14/2015 Annual 4/14/2016	Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	
Patemack NC-100 Torque Wrench \$/21/2015 Biennial \$/21/2017 N/A	Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz CMU200 Base Station Simulator 3/23/2015 Annual 3/23/2016 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 4/22/2015 Annual 4/22/2016 101699 Rohde & Schwarz CMW500 Radio Communication Tester 5/28/2015 Annual 4/22/2016 102060 Seekonk NC-100 Torque Wrench 3/18/2014 Blennial 3/18/2016 22313 SPEAG 075093 750 MHz Dipole 2/19/2015 Annual 3/11/2016 1066 SPEAG 075093 750 MHz Dipole 3/11/2015 Annual 3/11/2016 1054 SPEAG D835V2 835 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 40132 SPEAG D835V2 835 MHz SAR Dipole 4/13/2015 Annual 1/16/2016 40132 SPEAG D1500V2 1765 MHz SAR Dipole 5/13/2015 Annual 5/13/2016 1008 SPEAG D2300V2 12300 MHz SAR Dipole 1/12/2015 Annual 1/12/2016 </td <td>Paternack</td> <td>NC-100</td> <td>Torque Wrench</td> <td>5/21/2015</td> <td>Biennial</td> <td>5/21/2017</td> <td>N/A</td>	Paternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Rohde & Schwarz	Rohde & Schwarz	CMU200	Base Station Simulator	6/3/2015	Annual	6/3/2016	109892
Rohde & Schwarz CMMS00 Radio Communication Tester 4/22/2015 Annual 4/22/2016 101699 Rohde & Schwarz CMMS00 Radio Communication Tester 5/28/2015 Annual 5/28/2016 102060 Seekonk N.C.100 Torque Wrench 3/18/2014 Blennial 3/18/2016 22313 SPEAG 075093 750 MHz Dipole 2/19/2015 Annual 2/19/2016 106 SPEAG 075093 750 MHz Dipole 3/11/2015 Annual 2/19/2016 106 SPEAG D75093 750 MHz Dipole 3/11/2015 Annual 2/19/2016 106 SPEAG D835V2 835 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 4d119 SPEAG D1355V2 1765 MHz SAR Dipole 1/16/2015 Annual 1/16/2016 4d112 SPEAG D1350V2 1900 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 51341 SPEAG D1200V2 2300 MHz SAR Dipole 1/12/2015 Annual 1/27/2016 1008		CMU200					836371/0079
Rohde & Schwarz CMW500 Radio Communication Tester 5/28/2015 Annual 5/28/2016 102060					Annual		
Seekonk NC-100 Torque Wrench 3/18/2016 Blennial 3/18/2016 22313							
SPEAG D750/3 750 MHz Dipole 2/19/2015 Annual 2/19/2016 1046 SPEAG D750/3 750 MHz Dipole 3/11/2015 Annual 3/11/2016 1054 SPEAG D839V2 835 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 40119 SPEAG D839V2 835 MHz SAR Dipole 1/16/2015 Annual 1/16/2016 40119 SPEAG D839V2 835 MHz SAR Dipole 1/16/2015 Annual 1/16/2016 40112 SPEAG D1765V2 1765 MHz SAR Dipole 5/13/2015 Annual 1/16/2016 40112 SPEAG D1765V2 1765 MHz SAR Dipole 5/13/2015 Annual 5/13/2016 1008 SPEAG D1900V2 1900 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 50141 SPEAG D2300V2 2300 MHz SAR Dipole 1/27/2015 Annual 4/14/2016 50141 SPEAG D2350V2 2450 MHz SAR Dipole 8/11/2014 Annual 8/11/2015 719 SPEAG D2450V2 2450 MHz SAR Dipole 2/18/2015 Annual 2/18/2016 882 SPEAG D2450V2 2450 MHz SAR Dipole 2/18/2015 Annual 2/18/2016 882 SPEAG D2450V2 2450 MHz SAR Dipole 9/25/2014 Annual 3/15/2016 882 SPEAG D36Hz V2 SGHz SAR Dipole 9/25/2014 Annual 9/25/2015 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 6/17/2016 889 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2015 Annual 9/17/2016 889 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 1/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 1/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 1/17/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 1/17/2014 Annual 1/17/2015 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 1/17/2014 Annual 1/17/2015 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 1/17/2014 Annual 1/17/2015 1408 SPEAG DAE4 Dasy Data Acquisitio							
SPEAG D750V3 750 MHz Dipole 3/11/2015 Annual 3/11/2016 1054							
SPEAG D835V2 835 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 4d119							
SPEAG D835V2 835 MHz SAR Dipole 1/16/2015 Annual 1/16/2016 4d132 SPEAG D176SV2 1765 MHz SAR Dipole 5/13/2015 Annual 5/13/2016 1008 SPEAG D1900V2 1900 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 5/14/1 SPEAG D2300V2 2300 MHz SAR Dipole 1/27/2015 Annual 1/27/2016 1008 SPEAG D2450V2 2450 MHz SAR Dipole 8/11/2014 Annual 1/127/2016 1008 SPEAG D2450V2 2450 MHz SAR Dipole 8/11/2014 Annual 4/14/2016 882 SPEAG D2450V2 2450 MHz SAR Dipole 9/25/2014 Annual 2/18/2016 882 SPEAG D56/HzV2 5GHz SAR Dipole 9/25/2014 Annual 9/25/2015 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 9/25/2015 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/17/2016 859 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG D1765V2 1765 MH's SAR Dipole 5/13/2015 Annual 5/13/2016 1008							
SPEAG D190V12 1900 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 5d141							
SPEAG D2300V2 2300 MHz SAR Dipole 1/27/2015 Annual 1/27/2016 1008 SPEAG D2450V2 2450 MHz SAR Dipole 8/11/2014 Annual 8/11/2015 719 SPEAG D2450V2 2450 MHz SAR Dipole 2/18/2015 Annual 2/18/2016 882 SPEAG DSGHzV2 5GHz SAR Dipole 9/25/2014 Annual 9/25/2015 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 9/25/2016 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/12014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual							
SPEAG D2450V2 2450 MHt SAR Dipole B/11/2015 Annual B/11/2015 719							
SPEAG D2X50V2 2450 MHz SAR Dipole 2/18/2015 Annual 2/18/2016 882 SPEAG D5GHtV2 SGHz SAR Dipole 9/25/2014 Annual 9/25/2015 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 6/17/2016 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 10/31/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 10/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 10/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 10/31/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 10/23/2014 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG DSGHtV2 SGHz SAR Dipole 9/25/2014 Annual 9/25/2015 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 6/17/2016 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 1/3/3/2015 Annual 1/3/3/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/20/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/23/2014 Annual 1/21/2/2015 1418 SPEAG DAE4 Dasy Data Acquisition Electronics 1/21							
SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 6/17/2016 859 SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 10/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/2/32/2015 Annual 10/23/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/2/2/2015 Annual 10/23/2015 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/2/2/2014 Annual 10/23/2015 1407 SPEAG DAE4 Dasy Data Acquisition Electronics </td <td></td> <td></td> <td></td> <td></td> <td>Annual</td> <td></td> <td></td>					Annual		
SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 19/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/20015 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 10/23/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 11/23/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 11/21/2014 Annual 12/12/2015 1418 SPEAG DAE4 Dasy Data Acquisition Electronics 11/21/2014 Annual 12/12/2015 1418 SPEAG DAE4 Dasy Data Acquisition Electronic	SPEAG	D5GHzV2	5GHz SAR Dipole	9/25/2014	Annual	9/25/2015	1191
SPEAG DAE4 Dasy Data Acquisition Electronics 1/14/2015 Annual 1/14/2016 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 10/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 10/32/2014 Annual 1/20/2015 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 11/23/2014 Annual 1/20/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 11/21/2014 Annual 12/12/2015 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1418 SPEAG DAE4 Dasy Data Acquisition Electronics </td <td>SPEAG</td> <td>DAE4</td> <td>Dasy Data Acquisition Electronics</td> <td>6/17/2015</td> <td>Annual</td> <td>6/17/2016</td> <td>859</td>	SPEAG	DAE4	Dasy Data Acquisition Electronics	6/17/2015	Annual	6/17/2016	859
SPEAG DAE4 Dasy Data Acquisition Electronics 9/17/2014 Annual 9/17/2015 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 10/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 10/23/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 11/23/2014 Annual 11/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 11/23/2014 Annual 11/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 11/23/2014 Annual 11/23/2015 1415 SPEAG DAK-3.5 Dielectric Assessment Kit 5/12/2015 Annual 5/12/2016 1070 SPEAG ES3DV3 SAR Probe 1/20/2015	SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2015	Annual		1272
SPEAG DAE4 Dasy Data Acquisition Electronics 10/31/2014 Annual 10/31/2015 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 3/33/2015 Annual 3/33/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 10/23/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2015 Annual 12/12/2015 1070 SPEAG ES3DV3 SAR Probe		DAE4					
SPEAG DAE4 Dasy Data Acquisition Electronics 3/13/2015 Annual 3/13/2016 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/2015 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 10/33/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1415 SPEAG DAK-3.5 Dielectric Assessment Kit 5/22/2015 Annual 12/12/2016 1070 SPEAG ES30V3 SAR Probe 1/20/2015 Annual 1/20/2016 3213 SPEAG ES30V3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES30V3 SAR Probe 1/23/2015 Annual 1/22/2016 3318 SPEAG ES30V3 SAR Probe 3/19/2015 Annual 1/22/2016 3318 SPEAG ES30V3 SAR Probe 3/19/2015 Annual 3/19/2016 3319							
SPEAG DAE4 Dasy Data Acquisition Electronics 4/20/2015 Annual 4/20/2016 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 10/23/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1415 SPEAG DAK 3.5 Dielectric Assessment Kit 5/12/2015 Annual 5/12/2016 1070 SPEAG ES3DV3 SAR Probe 1/20/2015 Annual 1/20/2016 3213 SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES3DV3 SAR Probe 1/23/2015 Annual 1/22/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 19/18/2014 Annual 19/24/2015 3332 SPEA							
SPEAG DAE4 Dasy Data Acquisition Electronics 10/23/2014 Annual 10/23/2015 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1415 SPEAG DAK-3.5 Dielectric Assessment Kit 5/12/2015 Annual 5/12/2016 1070 SPEAG ES3DV3 SAR Probe 1/20/2015 Annual 1/20/2016 3213 SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES3DV3 SAR Probe 1/23/2015 Annual 1/23/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 11/26/2014 Annual 10/24/2015 3333 SPEAG E				1			
SPEAG DAE4 Dasy Data Acquisition Electronics 12/12/2014 Annual 12/12/2015 1415 SPEAG DAK-3.5 Dielectric Assessment Kit 5/12/2015 Annual 5/12/2016 1070 SPEAG ES3DV3 SAR Probe 1/20/2015 Annual 1/20/2016 3213 SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES3DV3 SAR Probe 1/23/2015 Annual 1/22/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 11/26/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 11/26/2014 Annual 11/26/2015 3333 SPEAG ES3DV3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
SPEAG DAK-3.5 Dielectric Assessment Kit 5/12/2015 Annual 5/12/2016 1070 SPEAG ES3DV3 SAR Probe 1/20/2015 Annual 1/20/2016 3213 SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES3DV3 SAR Probe 1/23/2015 Annual 1/23/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 11/26/2014 Annual 11/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3333							
SPEAG ES3DV3 SAR Probe 1/20/2015 Annual 1/20/2016 3213 SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES3DV3 SAR Probe 1/23/2015 Annual 1/23/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/6/2014 Annual 12/16/2015 3333							
SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG ES3DV3 SAR Probe 1/22/2015 Annual 1/22/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334							
SPEAG ES3DV3 SAR Probe 1/23/2015 Annual 1/23/2016 3318 SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334							
SPEAG ES3DV3 SAR Probe 3/19/2015 Annual 3/19/2016 3319 SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334	SPEAG	ES3DV3	SAR Probe	5/20/2015	Annual		3263
SPEAG ES3DV3 SAR Probe 9/18/2014 Annual 9/18/2015 3332 SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334	SPEAG	ES3DV3	SAR Probe	1/23/2015	Annual	1/23/2016	3318
SPEAG ES3DV3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334	SPEAG	ES3DV3	SAR Probe	3/19/2015	Annual	3/19/2016	3319
SPEAG ES30V3 SAR Probe 10/24/2014 Annual 10/24/2015 3333 SPEAG ES30V3 SAR Probe 12/16/2014 Annual 12/16/2015 3334	SPEAG	ES3DV3	SAR Probe	9/18/2014	Annual	9/18/2015	3332
SPEAG ES3DV3 SAR Probe 12/16/2014 Annual 12/16/2015 3334							
200 4 10 Million 4 10 Million 4 10 Million 30 Million 3							
	J. LAG	LAGOVA	Santione	-, 10/2013	,	2, 20, 2010	2314

Note:

- 1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- All equipment was used within its calibration period.

FCC ID: ZNFH900	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 76 of 94
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset		Page 76 of 81

16 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
- Component	Sec.	_ /3/		2			(± %)	(±%)	'
Measurement System							<u> </u>	(= 11)	
Probe Calibration	E.2.1	6.0	Ν	1	1.0	1.0	6.0	6.0	-xo
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	× ×
System Detection Limits	E.2.5	5.1	Z	1	1.0	1.0	5.1	5.1	8
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	oc
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	× ×
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	× ×
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	8
Extrapolation, Interpolation & Integration algorithms for Max. S AR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	-x
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS			,	12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 77 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	Faye // 0101

Applicable for frequencies up to 6 GHz.

	ı.		ı.		f		l.		1.
a	b	С	d	e=	ī	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1EEE 1528	Tol.	Prob.		c _i	c _i	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	ui	v _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. S AR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS			-	12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 78 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	

17 CONCLUSION

17.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 79 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	

18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 80 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01v02r01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFH900	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 81 of 81
0Y1508101503-R3.ZNF	08/10/15 - 08/31/15	Portable Handset	

APPENDIX A: SAR TEST DATA

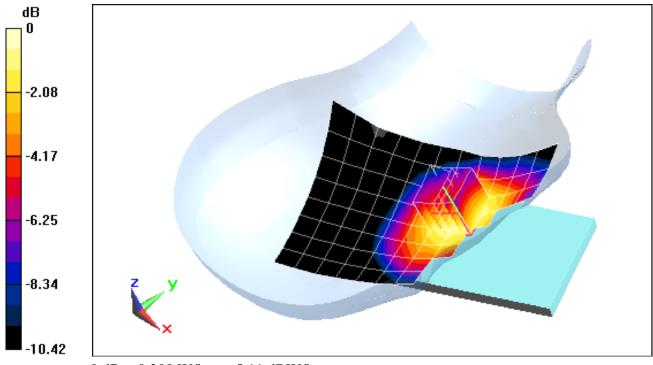
DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.931 \text{ S/m}; \ \epsilon_r = 41.092; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-17-2015; Ambient Temp: 21.7°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3333; ConvF(6.33, 6.33, 6.33); Calibrated: 10/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 10/23/2014
Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 2 Tx Slots, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.79 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.279 W/kg

0 dB = 0.308 W/kg = -5.11 dBW/kg

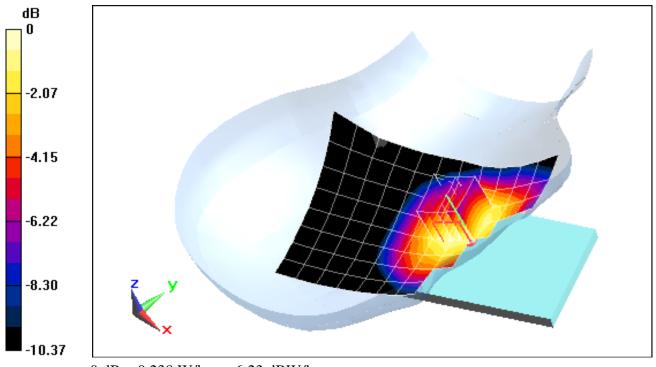
DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.931 \text{ S/m}; \ \epsilon_r = 41.092; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-17-2015; Ambient Temp: 21.7°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3333; ConvF(6.33, 6.33, 6.33); Calibrated: 10/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 10/23/2014
Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Right Head, Cheek, Mid.ch, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.68 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.218 W/kg

0 dB = 0.238 W/kg = -6.23 dBW/kg

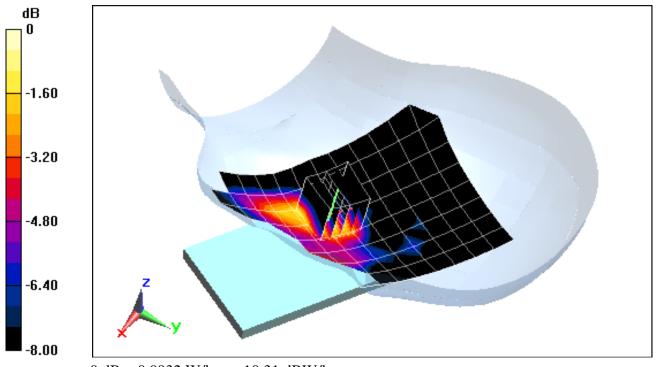
DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.407 \text{ S/m}; \ \epsilon_r = 39.504; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-13-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3319; ConvF(5.1, 5.1, 5.1); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 2 Tx Slots, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.739 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.080 W/kg

0 dB = 0.0932 W/kg = -10.31 dBW/kg

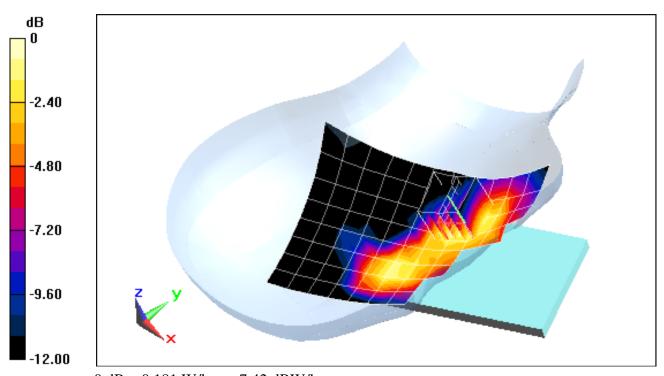
DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.407 \text{ S/m}; \ \epsilon_r = 39.504; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-13-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3319; ConvF(5.1, 5.1, 5.1); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.31 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.151 W/kg

0 dB = 0.181 W/kg = -7.42 dBW/kg

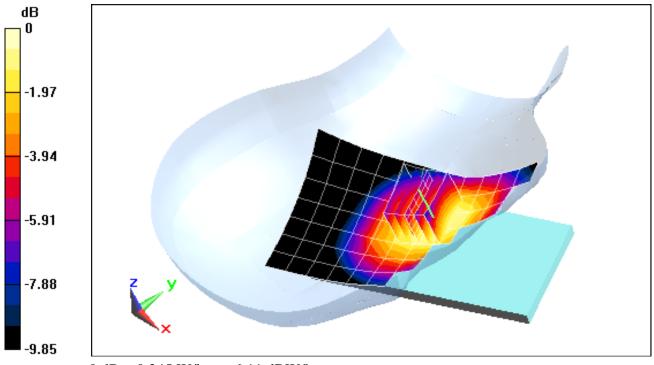
DUT: ZNFH900; Type: Portable Handset; Serial: 05051

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head, Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.894 \text{ S/m}; \ \epsilon_r = 41.496; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-17-2015; Ambient Temp: 24.5°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3334; ConvF(6.51, 6.51, 6.51); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: Sub Twin Sam v5.0; Type: QD000P40CD; Serial: TP:1626
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Cover


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.02 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.224 W/kg

0 dB = 0.245 W/kg = -6.11 dBW/kg

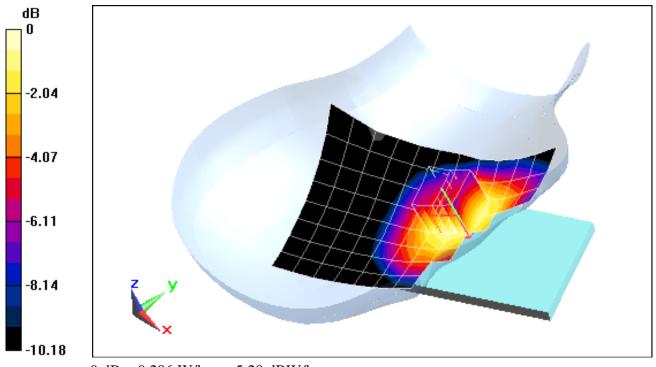
DUT: ZNFH900; Type: Portable Handset; Serial: 05069

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.932 \text{ S/m}; \ \epsilon_r = 41.094; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-13-2015; Ambient Temp: 22.5°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3333; ConvF(6.33, 6.33, 6.33); Calibrated: 10/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 10/23/2014
Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.59 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.339 W/kg

SAR(1 g) = 0.270 W/kg

0 dB = 0.296 W/kg = -5.29 dBW/kg

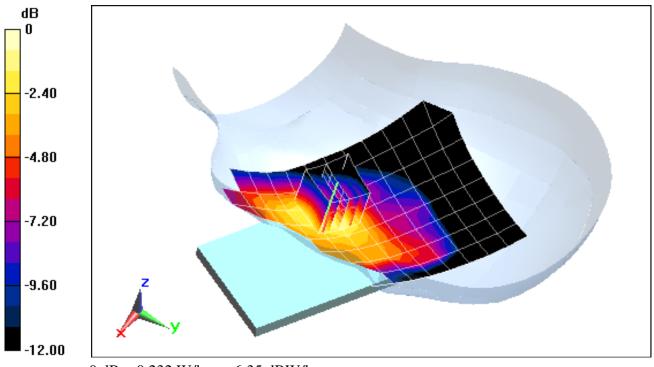
DUT: ZNFH900; Type: Portable Handset; Serial: 05036

Communication System: UID 0, LTE RF Band 4; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head, Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.347 \text{ S/m}; \ \epsilon_r = 39.199; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-11-2015; Ambient Temp: 23.2°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3334; ConvF(5.21, 5.21, 5.21); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: Sub Twin Sam v5.0; Type: QD000P40CD; Serial: TP:1626
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.32 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.198 W/kg

0 dB = 0.232 W/kg = -6.35 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05051

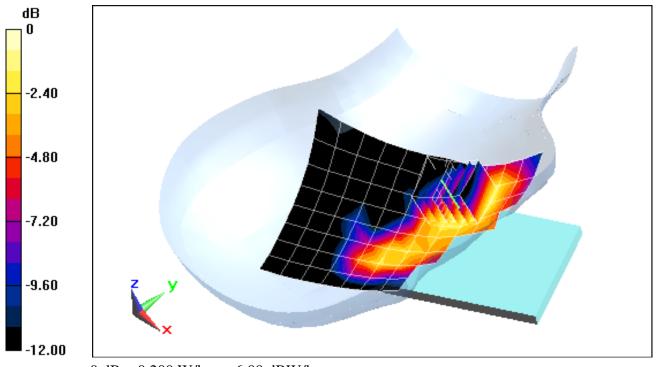
Communication System: UID 0, LTE Band 2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.386 \text{ S/m}; \ \epsilon_r = 39.592; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-13-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3319; ConvF(5.1, 5.1, 5.1); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Right Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.50 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.177 W/kg

0 dB = 0.200 W/kg = -6.99 dBW/kg

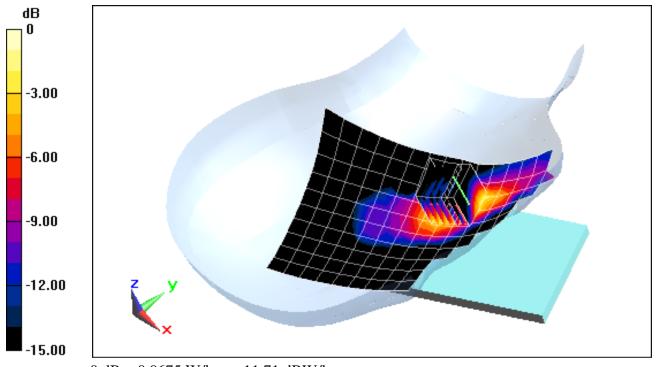
DUT: ZNFH900; Type: Portable Handset; Serial: 05069

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2300 Head, Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.687 \text{ S/m}; \ \epsilon_r = 39.695; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-17-2015; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3263; ConvF(4.63, 4.63, 4.63); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset, Standard Back Cover


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.067 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0990 W/kg

SAR(1 g) = 0.054 W/kg

0 dB = 0.0675 W/kg = -11.71 dBW/kg

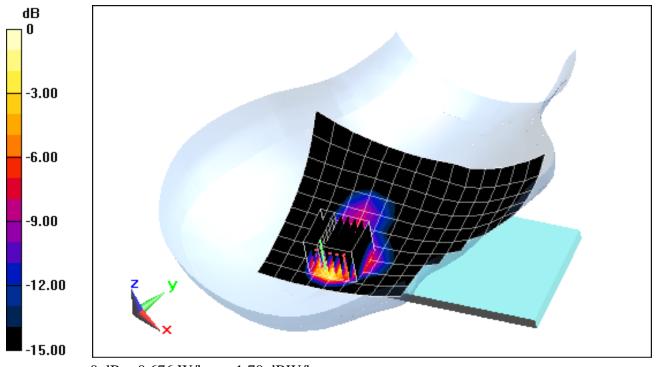
DUT: ZNFH900; Type: Portable Handset; Serial: 05077

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.888 \text{ S/m}; \ \epsilon_r = 38.375; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-10-2015; Ambient Temp: 23.2°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3332; ConvF(4.49, 4.49, 4.49); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 11, 1 Mbps, Wireless Charging Cover


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.61 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.516 W/kg

0 dB = 0.676 W/kg = -1.70 dBW/kg

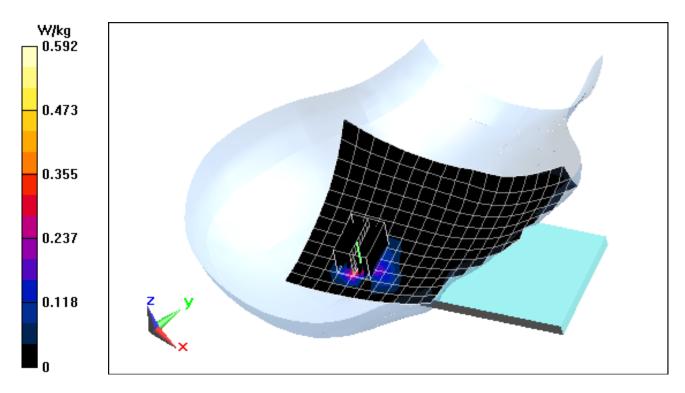
DUT: ZNFH900; Type: Portable Handset; Serial: 05085

Communication System: UID 0, 802.11a; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head, Medium parameters used: $f = 5300 \text{ MHz}; \ \sigma = 4.592 \text{ S/m}; \ \epsilon_r = 37.248; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-18-2015; Ambient Temp: 21.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3914; ConvF(5.06, 5.06, 5.06); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Right Head, Cheek, Ch 60, 6 Mbps, Standard Back Cover


Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 6.831 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.205 W/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.007 \text{ S/m}; \ \epsilon_r = 53.577; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 20.9°C; Tissue Temp: 21.7°C

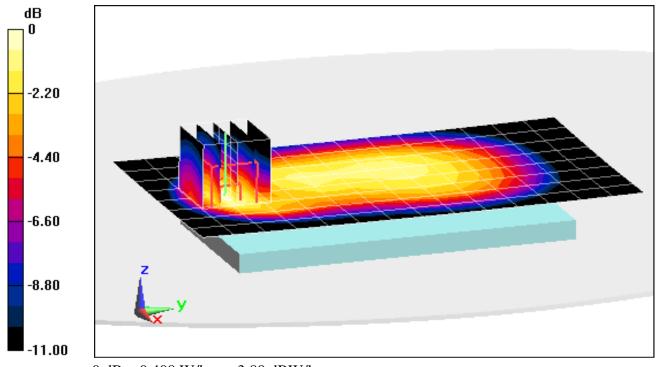
Probe: ES3DV3 - SN3319; ConvF(6.07, 6.07, 6.07); Calibrated: 3/19/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Back Side, Mid.ch, 2 Tx Slots, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.67 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.527 W/kg

SAR(1 g) = 0.338 W/kg

0 dB = 0.408 W/kg = -3.89 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.007 \text{ S/m}; \ \epsilon_r = 53.577; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

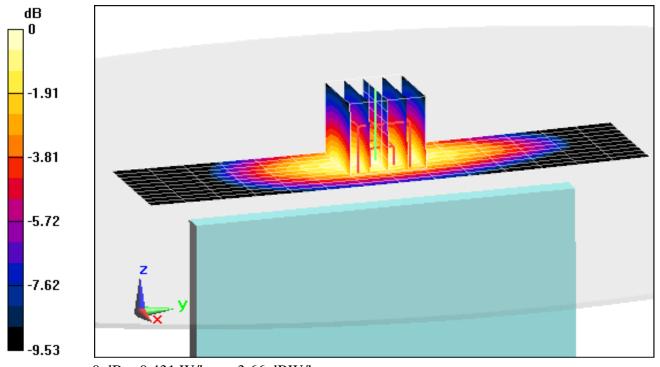
Test Date: 08-10-2015; Ambient Temp: 20.9°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3319; ConvF(6.07, 6.07, 6.07); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Right Edge, Mid.ch, 2 Tx Slots, Wireless Charging Cover


Area Scan (11x15x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.76 V/m; Power Drift = -0.05dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.373 W/kg

0 dB = 0.431 W/kg = -3.66 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, UMTS; Frequency: 843.8 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): $f = 843.8 \text{ MHz}; \ \sigma = 1.025 \text{ S/m}; \ \epsilon_r = 52.69; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

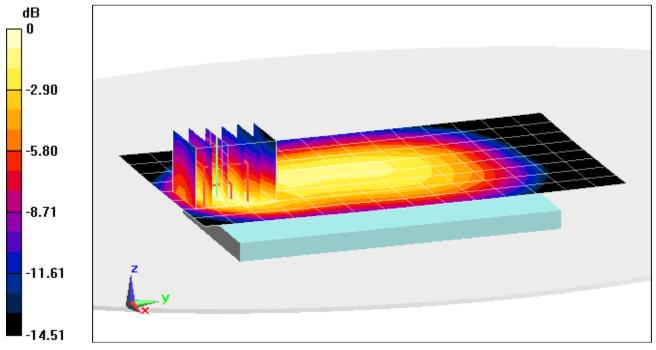
Test Date: 08-31-2015; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(6.14, 6.14, 6.14); Calibrated: 12/16/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 12/12/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back Side, High.ch Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.27 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.496 W/kg

SAR(1 g) = 0.315 W/kg

0 dB = 0.373 W/kg = -4.28 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05010

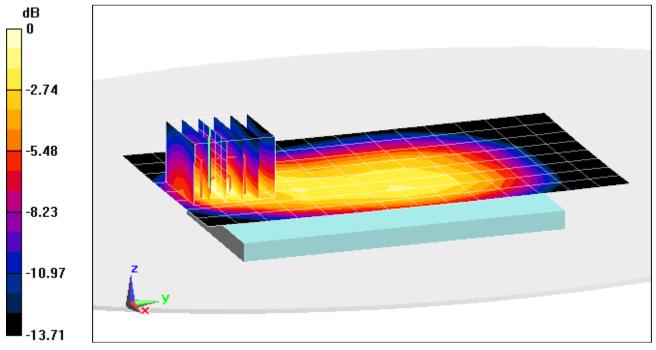
Communication System: UID 0, UMTS; Frequency: 843.8 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): f = 843.8 MHz; $\sigma = 1.025$ S/m; $\varepsilon_r = 52.69$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2015; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(6.14, 6.14, 6.14); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Front Side, High.ch Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.10 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.547 W/kg

SAR(1 g) = 0.321 W/kg

0 dB = 0.369 W/kg = -4.33 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05028

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.505 \text{ S/m}; \ \epsilon_r = 51.362; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 22.7°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Back Side, Mid.ch, 2 Tx Slots, Standard Back Cover

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.12 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.399 W/kg

SAR(1 g) = 0.255 W/kg

0 dB = 0.302 W/kg = -5.20 dBW/kg

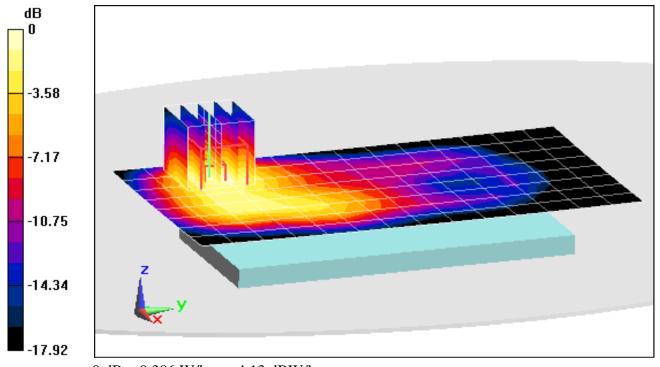
DUT: ZNFH900; Type: Portable Handset; Serial: 05028

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.505 \text{ S/m}; \ \epsilon_r = 51.362; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 22.7°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Front Side, Mid.ch, 2 Tx Slots, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.21 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.566 W/kg

SAR(1 g) = 0.307 W/kg

0 dB = 0.386 W/kg = -4.13 dBW/kg

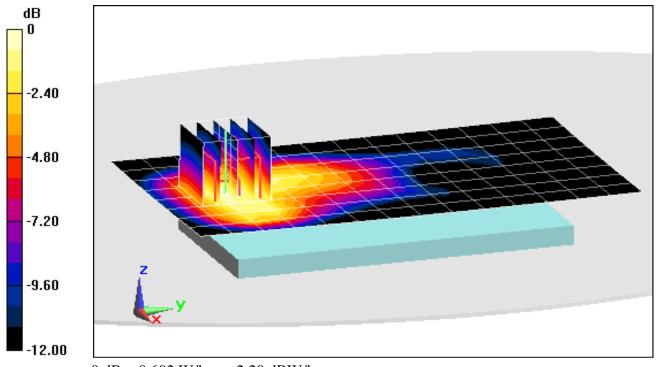
DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used: f = 1880 MHz; $\sigma = 1.514 \text{ S/m}$; $\varepsilon_r = 51.448$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 22.4°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back Side, Mid.ch, Standard Back Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.07 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.788 W/kg

SAR(1 g) = 0.509 W/kg

0 dB = 0.602 W/kg = -2.20 dBW/kg

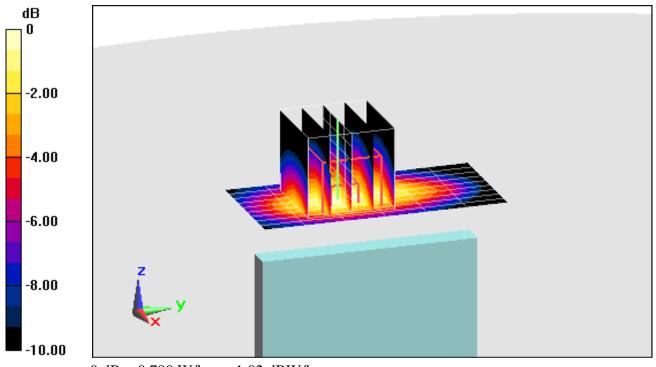
DUT: ZNFH900; Type: Portable Handset; Serial: 05010

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used: f = 1880 MHz; $\sigma = 1.514 \text{ S/m}$; $\epsilon_r = 51.448$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 22.4°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Bottom Edge, Mid.ch, Standard Back Cover


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.63 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.651 W/kg

0 dB = 0.790 W/kg = -1.02 dBW/kg

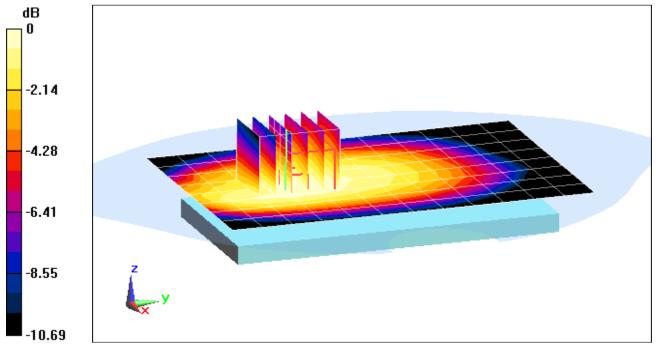
DUT: ZNFH900; Type: Portable Handset; Serial: 05069

Communication System: UID 0, LTE Band 12; Frequency: 711 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used (interpolated): f = 711 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 55.181$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2015; Ambient Temp: 23.3°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3263; ConvF(6.07, 6.07, 6.07); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back Side, High.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset, Standard Back Cover


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.88 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.457 W/kg

0 dB = 0.499 W/kg = -3.02 dBW/kg

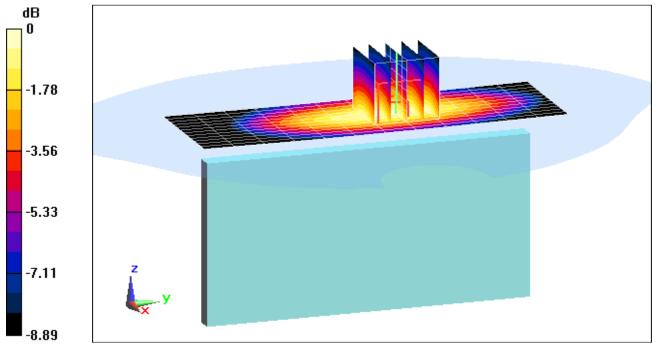
DUT: ZNFH900; Type: Portable Handset; Serial: 05069

Communication System: UID 0, LTE Band 12; Frequency: 711 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used (interpolated): f = 711 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 55.181$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2015; Ambient Temp: 23.3°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3263; ConvF(6.07, 6.07, 6.07); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Right Edge, High.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset, Standard Back Cover


Area Scan (13x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.75 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.777 W/kg

SAR(1 g) = 0.554 W/kg

0 dB = 0.637 W/kg = -1.96 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05051

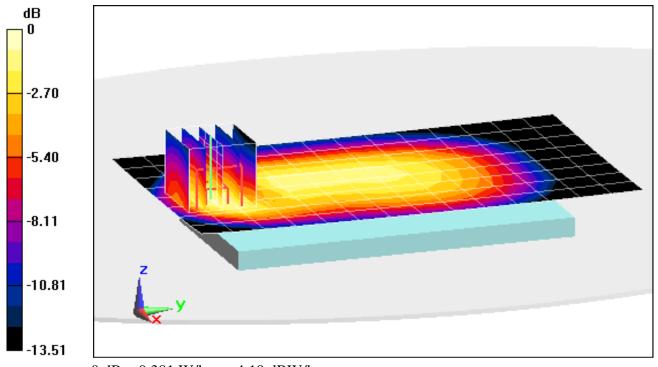
Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.006$ S/m; $\varepsilon_r = 53.578$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 20.9°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3319; ConvF(6.07, 6.07, 6.07); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Back Side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.13 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.319 W/kg

0 dB = 0.381 W/kg = -4.19 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05069

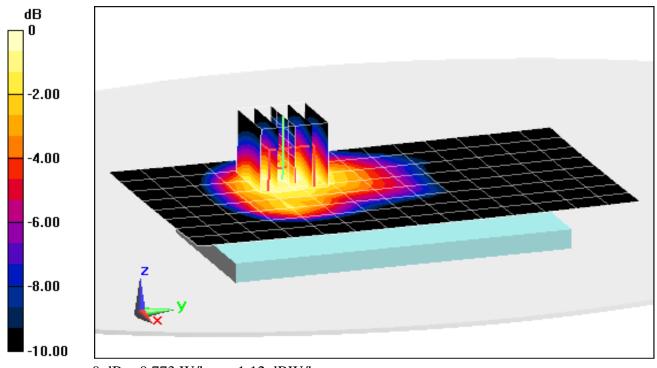
Communication System: UID 0, LTE Band 4; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.44 \text{ S/m}$; $\epsilon_r = 51.641$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.1°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(4.94, 4.94, 4.94); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.34 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.997 W/kg

SAR(1 g) = 0.674 W/kg

0 dB = 0.773 W/kg = -1.12 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05069

Communication System: UID 0, LTE Band 4; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.44 \text{ S/m}$; $\epsilon_r = 51.641$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.1°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(4.94, 4.94, 4.94); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Front Side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Cover

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.97 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.746 W/kg

0 dB = 0.862 W/kg = -0.64 dBW/kg

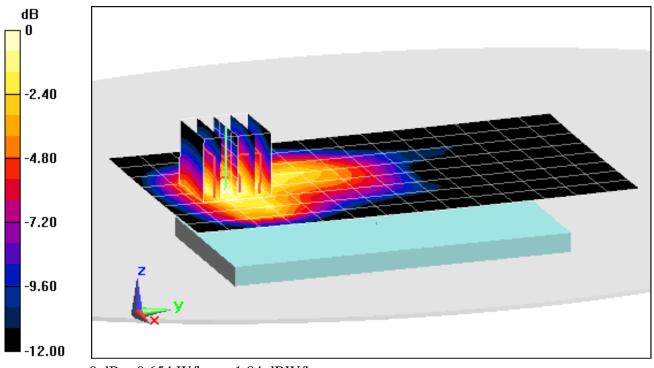
DUT: ZNFH900; Type: Portable Handset; Serial: 05051

Communication System: UID 0, LTE Band 2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.48 \text{ S/m}; \ \epsilon_r = 51.465; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 22.7°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Back Side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.59 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.857 W/kg

SAR(1 g) = 0.546 W/kg

0 dB = 0.654 W/kg = -1.84 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05051

Communication System: UID 0, LTE Band 2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.493 \text{ S/m}$; $\epsilon_r = 51.508$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 22.4°C; Tissue Temp: 22.1°C

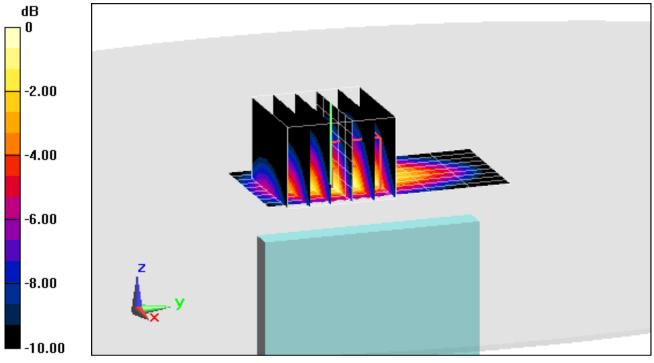
Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/20/2015

Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Bottom Edge, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset, Wireless Charging Cover


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.93 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.799 W/kg

0 dB = 0.952 W/kg = -0.21 dBW/kg

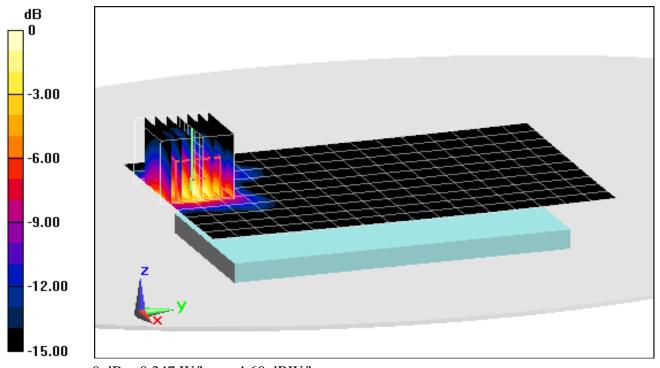
DUT: ZNFH900; Type: Portable Handset; Serial: 05844

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2300 Body, Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.847 \text{ S/m}; \ \epsilon_r = 52.343; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-18-2015; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3318; ConvF(4.52, 4.52, 4.52); Calibrated: 1/23/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/14/2015
Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2027
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 30, Body SAR, Back Side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset, Standard Back Cover


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.39 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.518 W/kg

SAR(1 g) = 0.273 W/kg

0 dB = 0.347 W/kg = -4.60 dBW/kg

DUT: ZNFH900; Type: Portable Handset; Serial: 05844

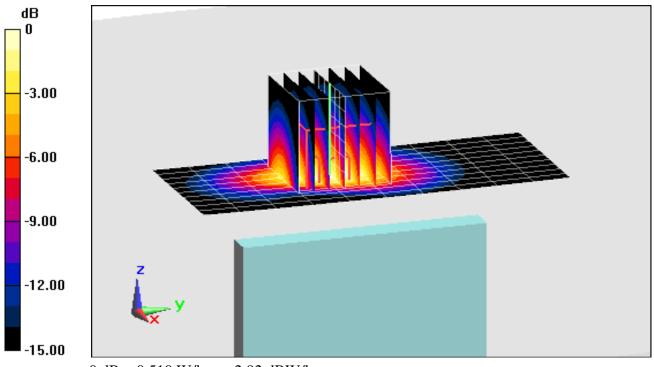
Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2300 Body, Medium parameters used: f = 2310 MHz; $\sigma = 1.847$ S/m; $\varepsilon_r = 52.343$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-18-2015; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3318; ConvF(4.52, 4.52, 4.52); Calibrated: 1/23/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/14/2015
Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2027
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 30, Body SAR, Bottom Edge, Mid.ch, 10 MHz Bandwidth,

OPSK, 1 RB, 25 RB Offset, Wireless Charging Cover


Area Scan (11x11x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.88 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.394 W/kg

0 dB = 0.510 W/kg = -2.92 dBW/kg

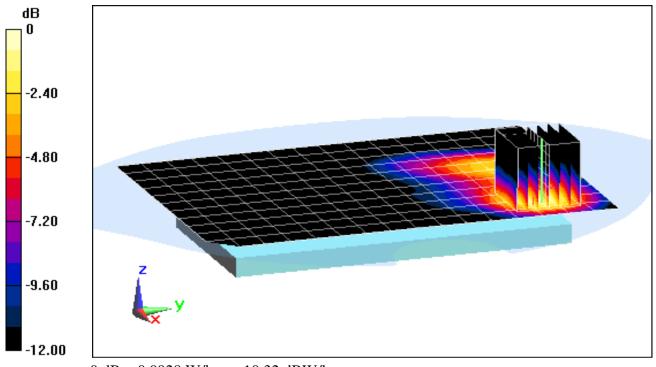
DUT: ZNFH900; Type: Portable Handset; Serial: 05077

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.033 \text{ S/m}; \ \epsilon_r = 51.689; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3332; ConvF(4.31, 4.31, 4.31); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side, Wireless Charging Cover


Area Scan (12x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.181 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.073 W/kg

0 dB = 0.0928 W/kg = -10.32 dBW/kg

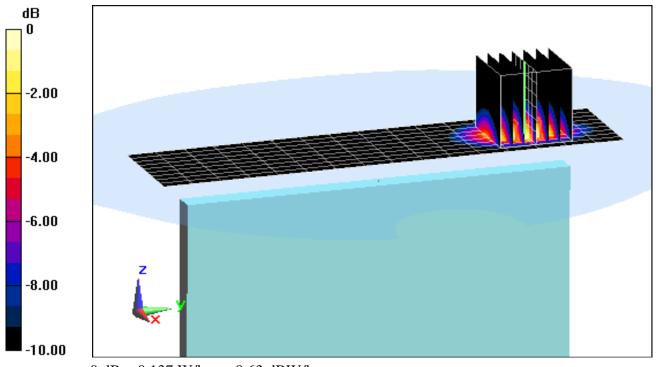
DUT: ZNFH900; Type: Portable Handset; Serial: 05077

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.033 \text{ S/m}; \ \epsilon_r = 51.689; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3332; ConvF(4.31, 4.31, 4.31); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Left Edge, Standard Back Cover


Area Scan (10x17x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.756 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.101 W/kg

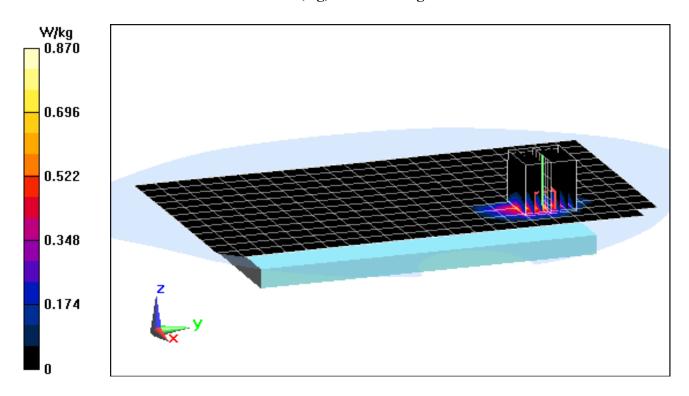
DUT: ZNFH900; Type: Portable Handset; Serial: 05085

Communication System: UID 0, 802.11a; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5300 MHz; $\sigma = 5.407 \text{ S/m}$; $\varepsilon_r = 46.508$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.2°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN3914; ConvF(4.33, 4.33, 4.33); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Body SAR, Ch 60, 6 Mbps, Back Side, Standard Back Cover


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 8.680 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.358 W/kg

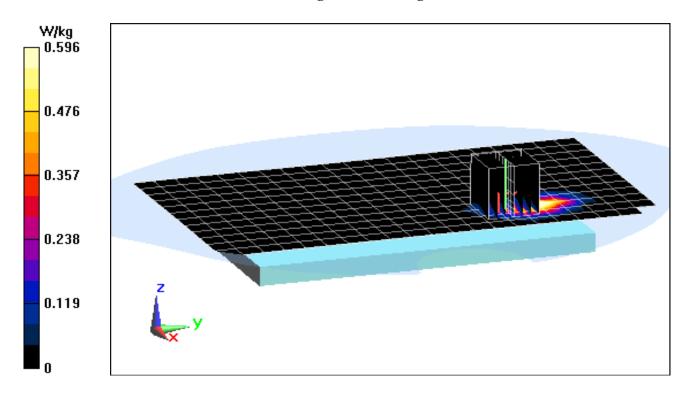
DUT: ZNFH900; Type: Portable Handset; Serial: 05085

Communication System: UID 0, 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5745 MHz; $\sigma = 5.963$ S/m; $\varepsilon_r = 45.89$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.2°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN3914; ConvF(4.01, 4.01, 4.01); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Body SAR, Ch 149, 6 Mbps, Back Side, Standard Back Cover


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 6.597 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.230 W/kg

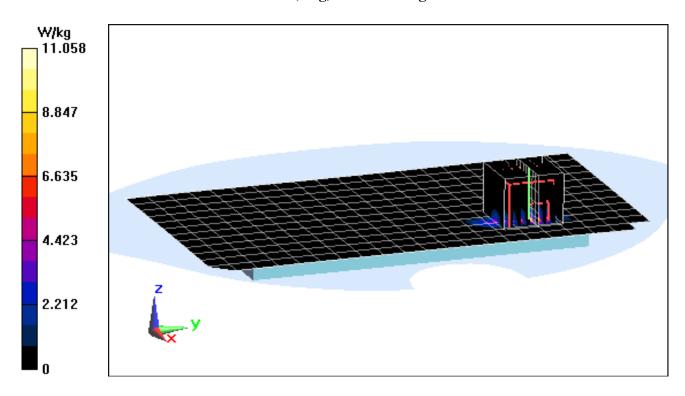
DUT: ZNFH900; Type: Portable Handset; Serial: 05085

Communication System: UID 0, 802.11a; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5300 MHz; $\sigma = 5.407 \text{ S/m}$; $\varepsilon_r = 46.508$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.2°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN3914; ConvF(4.33, 4.33, 4.33); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Phablet SAR, Ch 60, 6 Mbps, Back Side, Wireless Charging Cover


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 29.19 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 22.1 W/kg

SAR(10 g) = 0.685 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1046

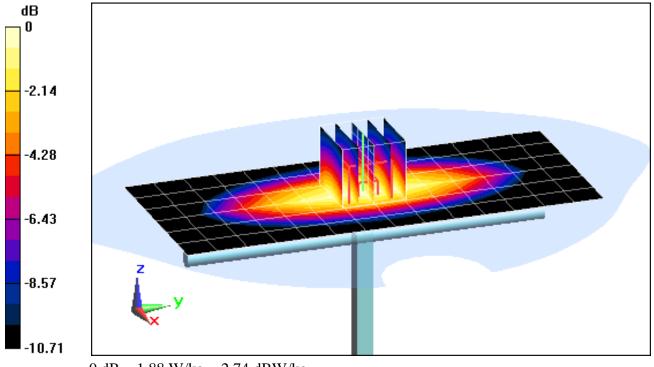
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head, Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.934 \text{ S/m}$; $\epsilon_r = 40.869$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-17-2015; Ambient Temp: 24.5°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3334; ConvF(6.51, 6.51, 6.51); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: Sub Twin Sam v5.0; Type: QD000P40CD; Serial: TP:1626
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.40 W/kg

SAR(1 g) = 1.60 W/kg

Deviation(1 g) = -0.50%

0 dB = 1.88 W/kg = 2.74 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used: f = 835 MHz; $\sigma = 0.931$ S/m; $\epsilon_r = 41.122$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-13-2015; Ambient Temp: 22.5°C; Tissue Temp: 22.7°C

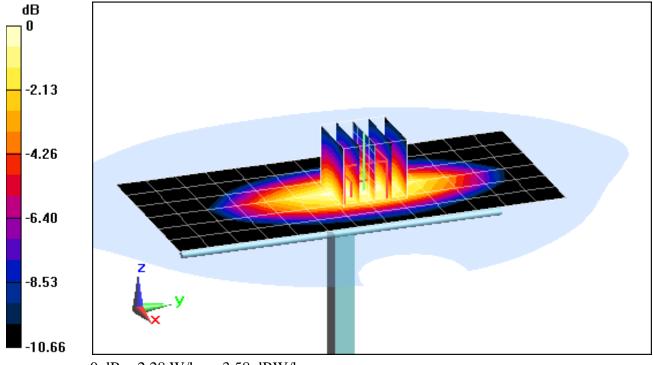
Probe: ES3DV3 - SN3333; ConvF(6.33, 6.33, 6.33); Calibrated: 10/24/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 10/23/2014

Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.93 W/kg

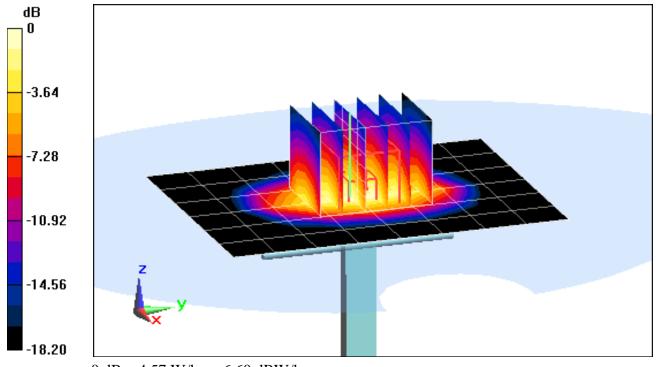
SAR(1 g) = 1.96 W/kg Deviation(1 g) = 5.95%

0 dB = 2.28 W/kg = 3.58 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head, Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.364 \text{ S/m}; \ \epsilon_r = 39.124; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-11-2015; Ambient Temp: 23.2°C; Tissue Temp: 22.2°C


Probe: ES3DV3 - SN3334; ConvF(5.21, 5.21, 5.21); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: Sub Twin Sam v5.0; Type: QD000P40CD; Serial: TP:1626
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 6.45 W/kgSAR(1 g) = 3.64 W/kgDeviation(1 g) = -3.45%

0 dB = 4.57 W/kg = 6.60 dBW/kg

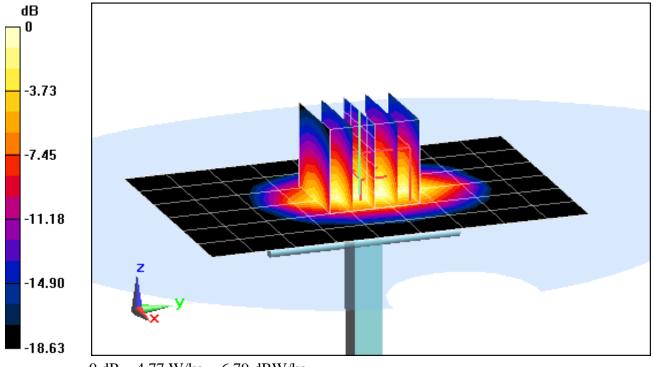
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.428$ S/m; $\varepsilon_r = 39.411$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-13-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3319; ConvF(5.1, 5.1, 5.1); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

ensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015


Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

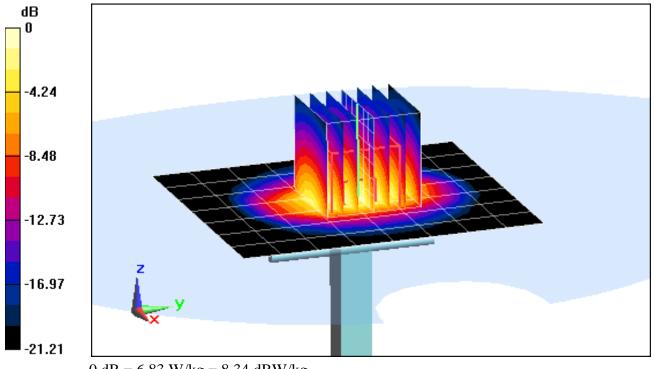
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 6.93 W/kgSAR(1 g) = 3.84 W/kgDeviation(1 g) = -3.76%

0 dB = 4.77 W/kg = 6.79 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Head, Medium parameters used: f = 2300 MHz; $\sigma = 1.677 \text{ S/m}$; $\epsilon_r = 39.739$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 08-17-2015; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3263; ConvF(4.63, 4.63, 4.63); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

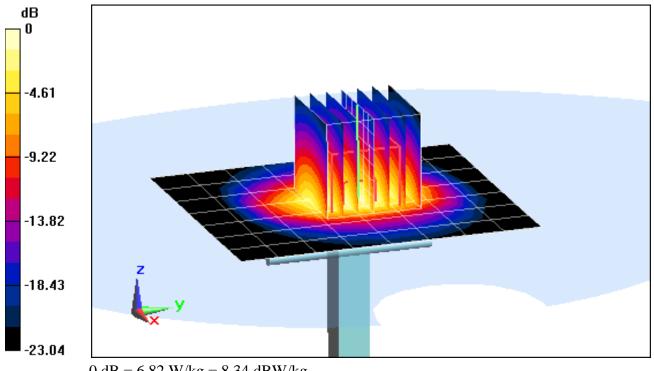
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2300 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW)
Peak SAR (extrapolated) = 10.5 W/kg SAR(1 g) = 5.23 W/kgDeviation(1 g) = 4.81%

0 dB = 6.83 W/kg = 8.34 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head, Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.874 \text{ S/m}; \ \epsilon_r = 38.426; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 23.2°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3332; ConvF(4.49, 4.49, 4.49); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2014 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 10.9 W/kgSAR(1 g) = 5.16 W/kgDeviation(1 g) = -0.96%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

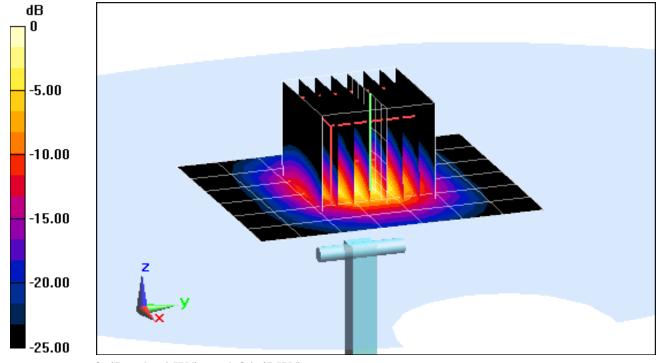
Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head, Medium parameters used: f = 5300 MHz; $\sigma = 4.592$ S/m; $\epsilon_r = 37.248$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-18-2015; Ambient Temp: 21.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3914; ConvF(5.06, 5.06, 5.06); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5300 MHz System Verification

Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 4.11 W/kg

SAR(1 g) = 4.11 W/kg Deviation(1 g) = -4.20%

0 dB = 9.64 W/kg = 9.84 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head, Medium parameters used: f = 5600 MHz; $\sigma = 4.895$ S/m; $\epsilon_r = 37.03$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-18-2015; Ambient Temp: 21.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3914; ConvF(4.73, 4.73, 4.73); Calibrated: 2/10/2015;

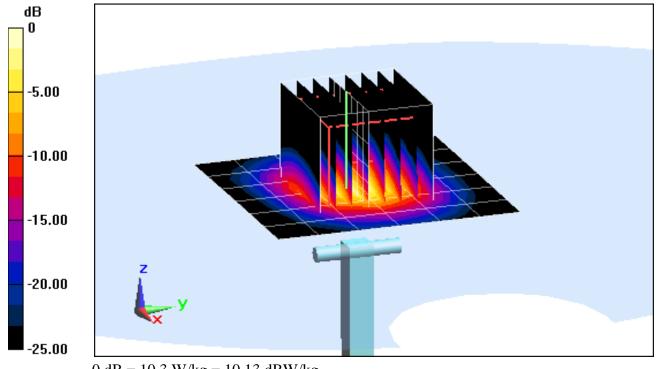
Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 10/31/2014

Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 4.31 W/kg

Deviation(1 g) = -0.81%

0 dB = 10.3 W/kg = 10.13 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head, Medium parameters used: f = 5800 MHz; $\sigma = 5.084$ S/m; $\varepsilon_r = 36.644$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-18-2015; Ambient Temp: 21.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3914; ConvF(4.67, 4.67, 4.67); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014

Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 4.08 W/kgDeviation(1 g) = -0.85%

-5.00 -10.00 -15.00 -20.00 -25.00

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.957 \text{ S/m}$; $\epsilon_r = 54.721$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

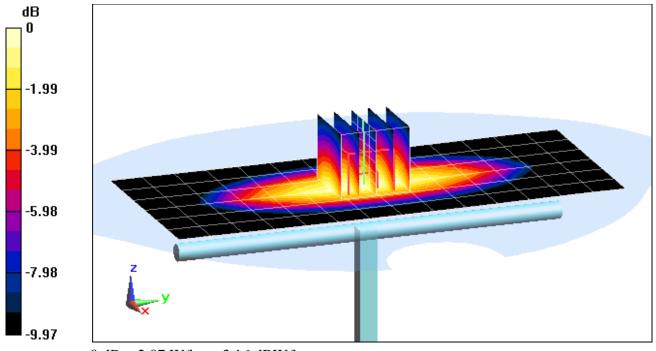
Test Date: 08-31-2015; Ambient Temp: 23.3°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3263; ConvF(6.07, 6.07, 6.07); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759

750 MHz System Verification

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.57 W/kg

SAR(1 g) = 1.78 W/kg

Deviation(1 g) = 4.34%

0 dB = 2.07 W/kg = 3.16 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used: f = 835 MHz; $\sigma = 1.005$ S/m; $\varepsilon_r = 53.595$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-10-2015; Ambient Temp: 20.9°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3319; ConvF(6.07, 6.07, 6.07); Calibrated: 3/19/2015;

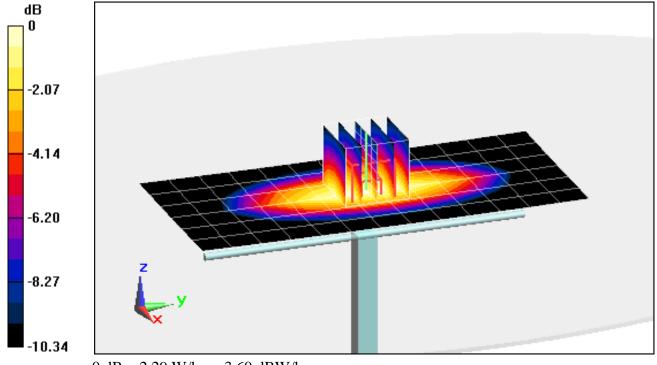
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 1.96 W/kg

SAR(1 g) = 1.96 W/Kg Deviation(1 g) = 6.52%

0 dB = 2.29 W/kg = 3.60 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used: f = 835 MHz; $\sigma = 1.016$ S/m; $\epsilon_r = 52.779$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

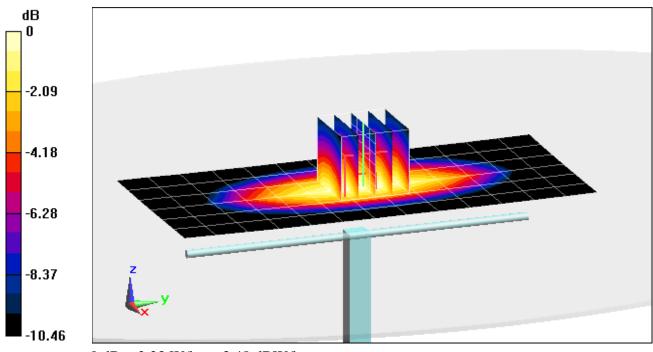
Test Date: 08-31-2015; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(6.14, 6.14, 6.14); Calibrated: 12/16/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phartons ELLy5 0: Type ODOVA 001PR: Social: 1159

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmInput Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.86 W/kg

SAR(1 g) = 1.94 W/kg

Deviation(1 g) = 6.13%

0 dB = 2.23 W/kg = 3.48 dBW/kg

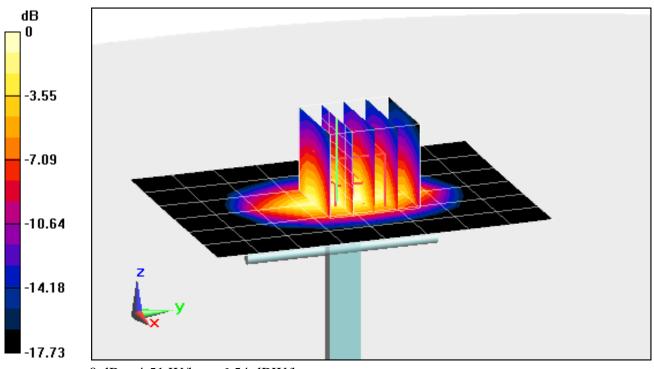
DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used: f = 1750 MHz; $\sigma = 1.457$ S/m; $\varepsilon_r = 51.568$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.1°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(4.94, 4.94, 4.94); Calibrated: 12/16/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 12/12/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 6.64 W/kgSAR(1 g) = 3.73 W/kgDeviation(1 g) = -1.84%

0 dB = 4.51 W/kg = 6.54 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.526 \text{ S/m}$; $\epsilon_r = 51.329$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 22.7°C; Tissue Temp: 22.3°C

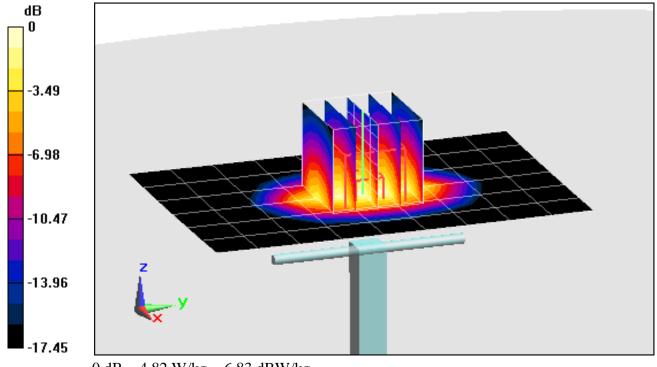
Probe: ES3DV3 - SN3213; ConvF(4.72, 4.72, 4.72); Calibrated: 1/20/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/20/2015

Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 6.86 W/kg

SAR(1 g) = 3.81 W/kg Deviation(1 g) = -4.75%

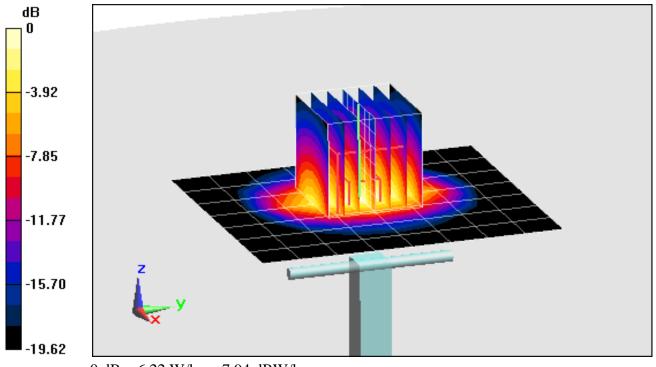
0 dB = 4.82 W/kg = 6.83 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Body, Medium parameters used: f = 2300 MHz; $\sigma = 1.839 \text{ S/m}$; $\epsilon_r = 52.359$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-18-2015; Ambient Temp: 21.3°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3318; ConvF(4.52, 4.52, 4.52); Calibrated: 1/23/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/14/2015
Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2027
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


2300 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 9.38 W/kg

SAR(1 g) = 4.73 W/kg

Deviation(1 g) = -1.66%

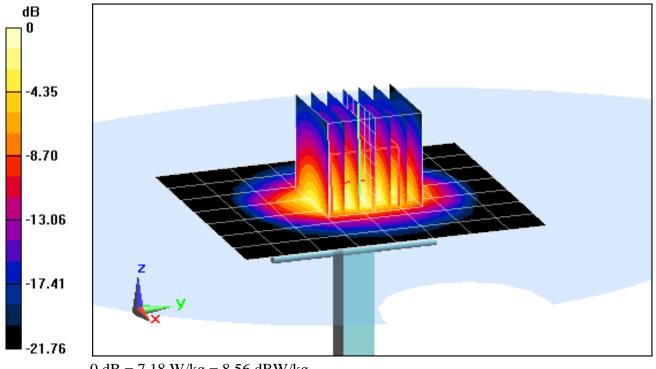
0 dB = 6.22 W/kg = 7.94 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used: f = 2450 MHz; $\sigma = 2.016$ S/m; $\varepsilon_r = 51.739$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-12-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3332; ConvF(4.31, 4.31, 4.31); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 11.3 W/kg

SAR(1 g) = 5.44 W/kg

Deviation(1 g) = 7.30%

0 dB = 7.18 W/kg = 8.56 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

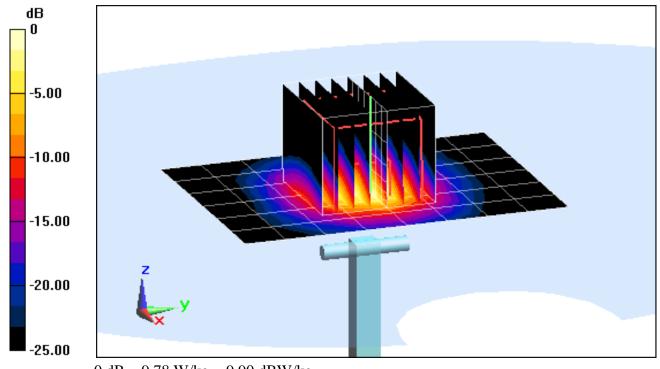
Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5300 MHz; $\sigma = 5.407$ S/m; $\varepsilon_r = 46.508$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.2°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN3914; ConvF(4.33, 4.33, 4.33); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5300 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 4.10 W/kg; SAR(10 g) = 1.13 W/kg

Deviation(1 g) = 2.63%; Deviation(10 g) = 1.35%

0 dB = 9.78 W/kg = 9.90 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5600 MHz; $\sigma = 5.785 \text{ S/m}$; $\epsilon_r = 46.151$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

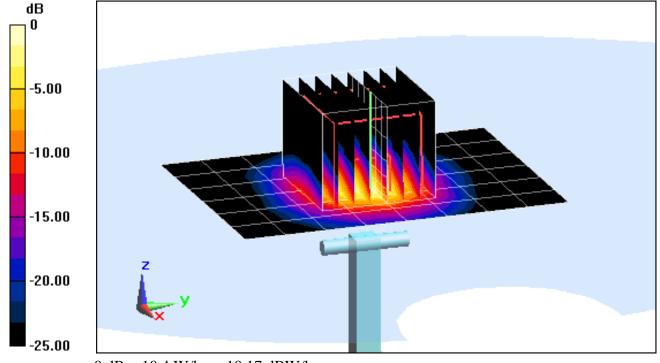
Test Date: 08-10-2015; Ambient Temp: 24.2°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN3914; ConvF(3.89, 3.89, 3.89); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 10/31/2014 Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW) Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 4.21 W/kg; SAR(10 g) = 1.15 W/kg

Deviation(1 g) = 0.12%; Deviation(10 g) = -1.29%

0 dB = 10.4 W/kg = 10.17 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

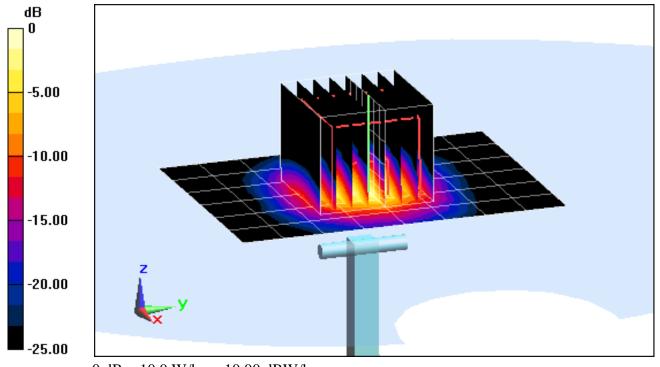
Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5800 MHz; $\sigma = 6.028 \text{ S/m}$; $\epsilon_r = 45.839$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-10-2015; Ambient Temp: 24.2°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN3914; ConvF(4.01, 4.01, 4.01); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 4.01 W/kg

Deviation(1 g) = 2.82%

0 dB = 10.0 W/kg = 10.00 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D750V3-1046_Feb15

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1046

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BN V 316 120 15

Calibration date:

February 19, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-1 12=
		<u> </u>	

Issued: February 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D750V3-1046_Feb15

Approved by:

Page 1 of 8

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D750V3-1046_Feb15

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.04 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.28 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.29 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.47 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1046_Feb15

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.8 Ω + 1.5 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω - 1.3 jΩ
Return Loss	- 34.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.038 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 02, 2011

Certificate No: D750V3-1046_Feb15

DASY5 Validation Report for Head TSL

Date: 18.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1046

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

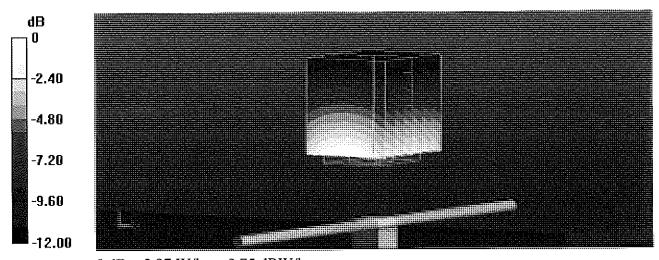
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

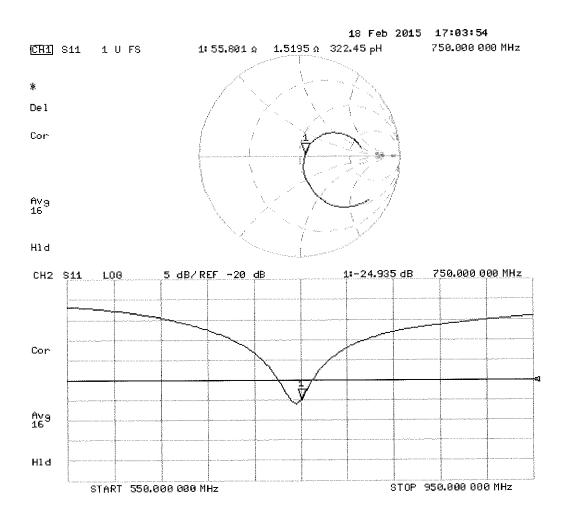
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.99 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.02 W/kg


SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.33 W/kg

Maximum value of SAR (measured) = 2.37 W/kg

0 dB = 2.37 W/kg = 3.75 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1046

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

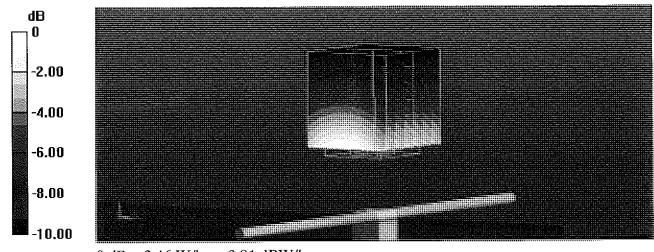
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

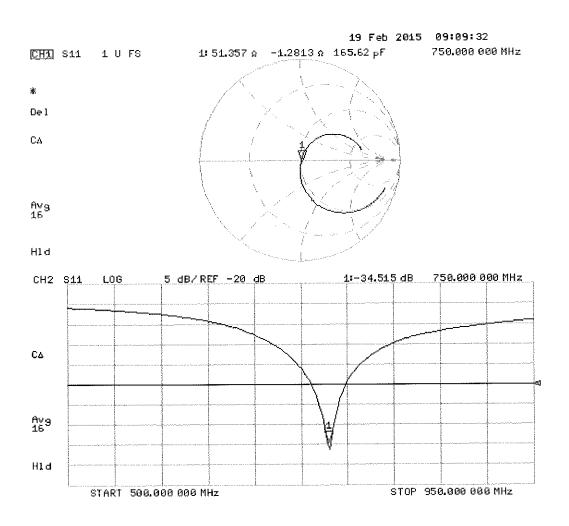
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.00 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.10 W/kg


SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.39 W/kg

Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d132_Jan15

CALIBRATION CERTIFICATE

D835V2 - SN: 4d132 Object

QA CAL-05.v9 Calibration procedure(s)

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 16, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Calibrated by:

Function

Michael Weber

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d132_Jan15

Page 1 of 8

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.25 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.04 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.14 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.98 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.3 jΩ
Return Loss	- 30.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 4.3 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d132_Jan15 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

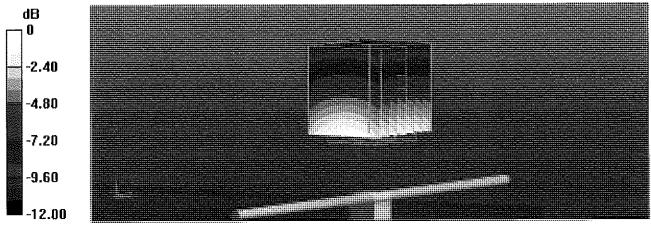
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

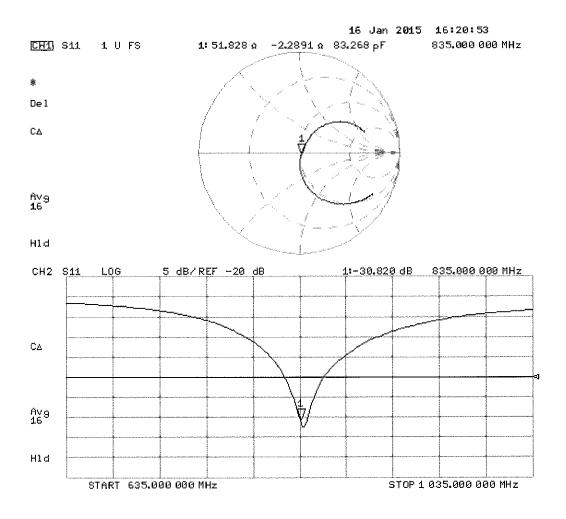
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.27 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.51 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

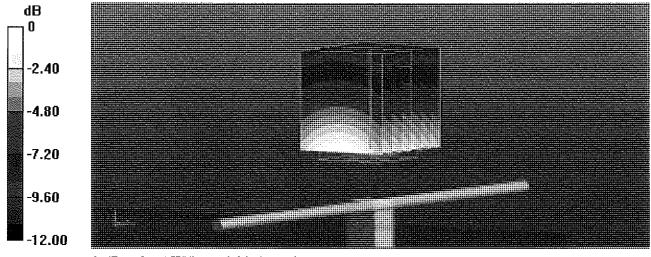
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

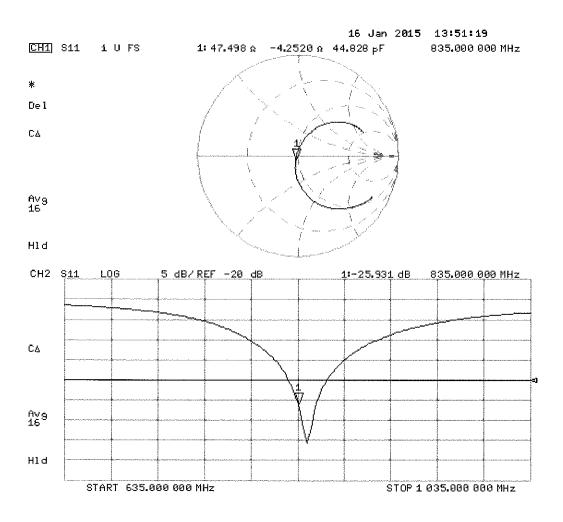
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.27 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.47 W/kg


SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1765V2-1008_May15

CALIBRATION CERTIFICATE

Object D1765V2 - SN: 1008

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

5/28/15

Calibration date:

May 13, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name
Calibrated by: Michael Weber

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: May 15, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1765V2-1008_May15

Page 1 of 8

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1765V2-1008 May15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.38 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.50 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Certificate No: D1765V2-1008_May15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω - 4.6 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 5.3 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 211 ne
· · · · · · · · · · · · · · · · · · ·	1.211 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Certificate No: D1765V2-1008_May15

DASY5 Validation Report for Head TSL

Date: 13.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

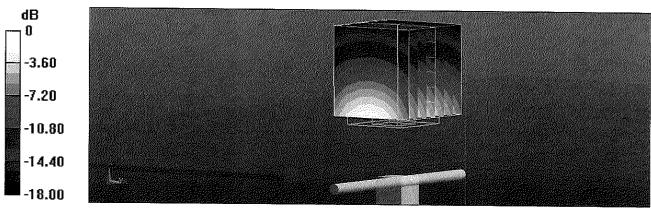
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

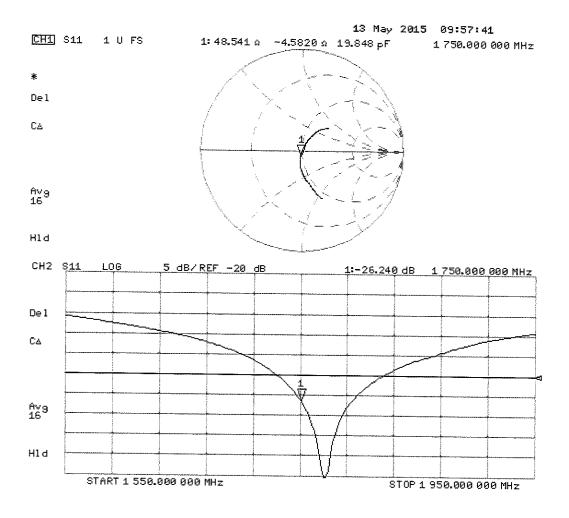
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.56 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.02 W/kg

Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

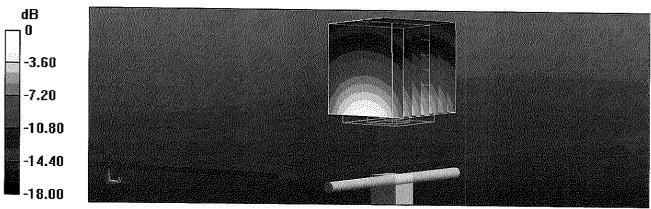
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

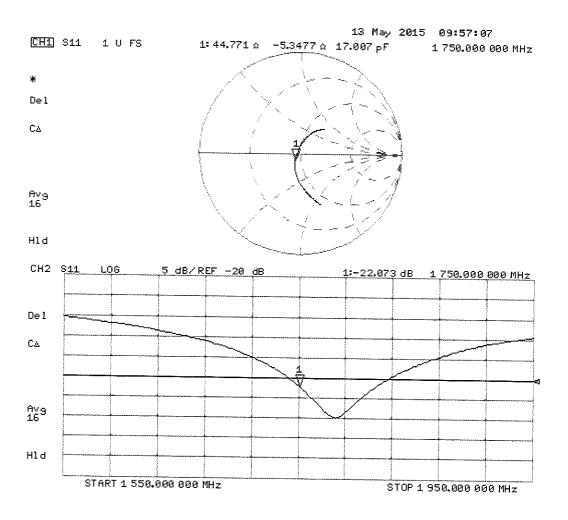
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.70 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.12 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1900V2-5d141_Apr15

Object D1900V2 - SN:5d141

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature 3
Calibrated by:	Claudio Leubler	Laboratory Technician	(X)

Issued: April 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Approved by:

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign:

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d141_Apr15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	a u 12.20	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d141_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 4.6 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω + 5.6 jΩ
Return Loss	- 24.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
	1.130115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d141_Apr15

DASY5 Validation Report for Head TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

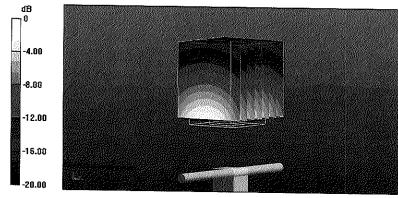
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

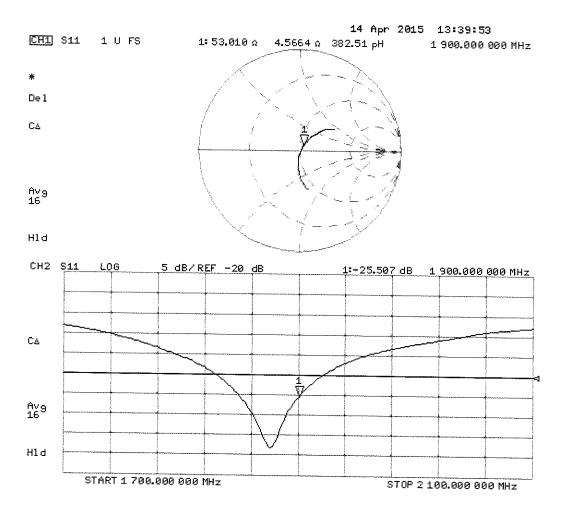
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.18 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.2 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

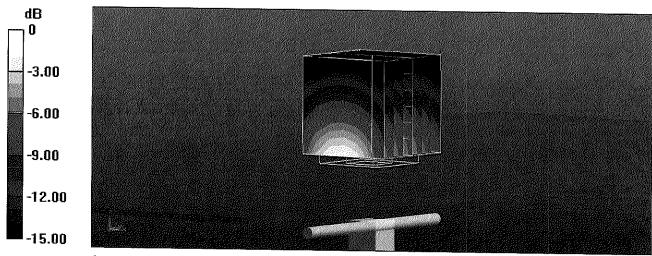
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

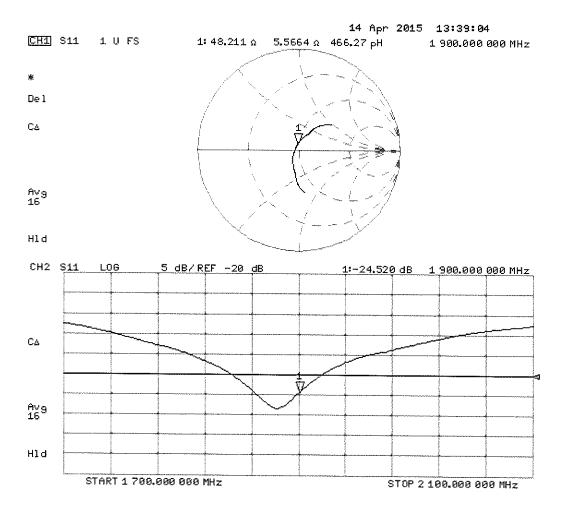
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.73 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.9 W/kg


SAR(1 g) = 9.94 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

C Test

Certificate No: D2300V2-1008_Jan15

CALIBRATION CERTIFICATE

Object

D2300V2 - SN:1008

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

2*i3/i*5

Calibration date:

January 27, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check; Oct-15

Calibrated by:

Name Jeton Kastrati Function

Signature

Approved by:

Katja Pokovic

Technical Manager

Laboratory Technician

Issued: January 27, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2300V2-1008_Jan15

Page 1 of 8

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2300V2-1008_Jan15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.71 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.0 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	48.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.0 W/kg ± 16.5 % (k=2)

Certificate No: D2300V2-1008_Jan15 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 2.0 jΩ
Return Loss	- 32.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 1.5 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.169 ns	Electrical Delay (one direction)	1.1.2.

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

Certificate No: D2300V2-1008_Jan15

DASY5 Validation Report for Head TSL

Date: 27.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: f = 2300 MHz; $\sigma = 1.71 \text{ S/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.75, 4.75, 4.75); Calibrated: 30.12.2014;

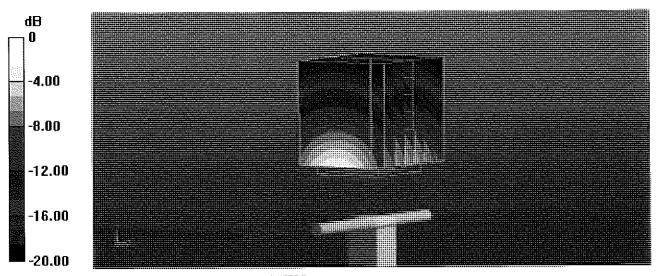
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

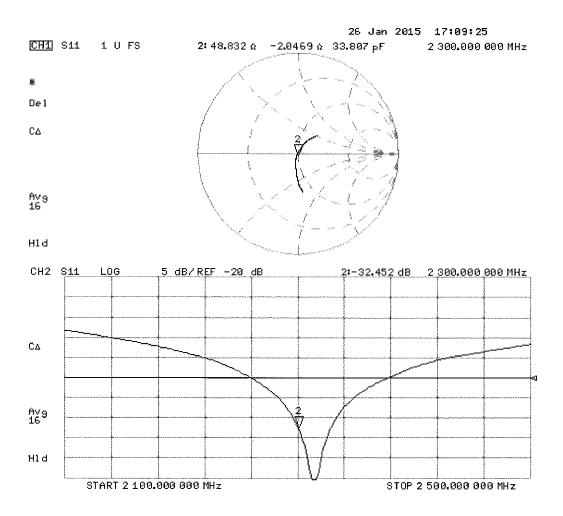
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom


Scan (7x7x7) 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.6 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 24.1 W/kg


SAR(1 g) = 12.6 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 16.3 W/kg

0 dB = 16.3 W/kg = 12.12 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 27.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: f = 2300 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

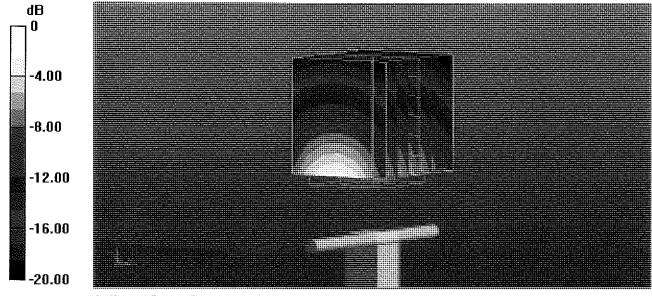
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

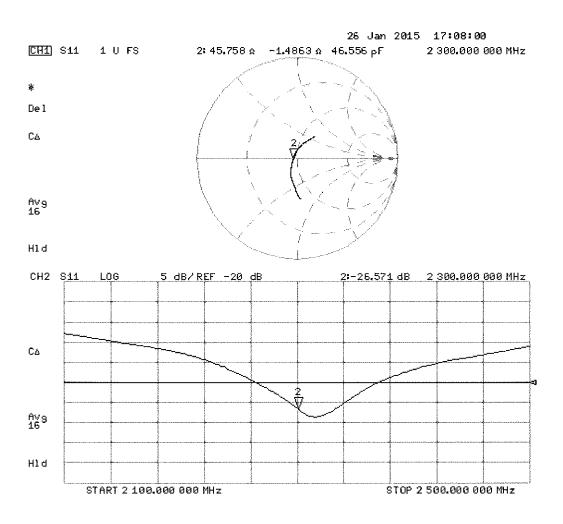
- Probe: ES3DV3 SN3205; ConvF(4.44, 4.44, 4.44); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom


Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.62 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 24.0 W/kg


SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.81 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: D2450V2-719_Aug14

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 719

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 11, 2014

Viole Mily

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature

Calibrated by:

Michael Weber

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: August 12, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-719_Aug14

Page 1 of 8

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-719_Aug14 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5$ mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

tie following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D2450V2-719_Aug14

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω + 3.0 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.9~\Omega + 5.8~\mathrm{j}\Omega$
Return Loss	- 24.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

Certificate No: D2450V2-719_Aug14 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 11.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ S/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

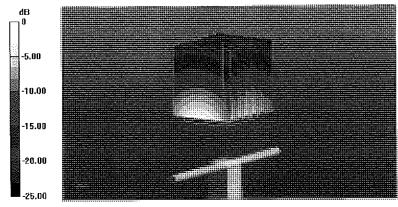
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

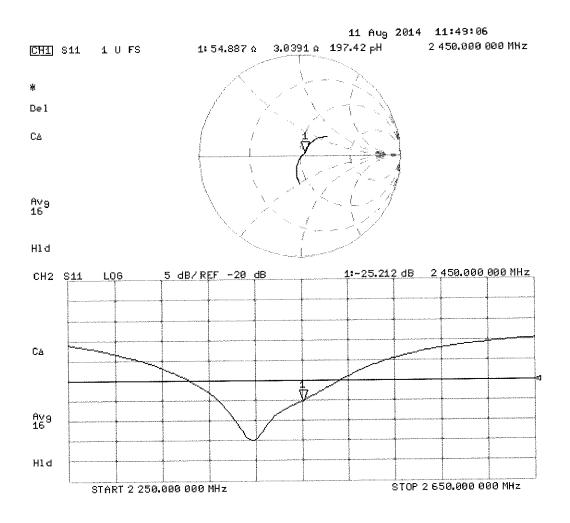
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.6 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.5 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

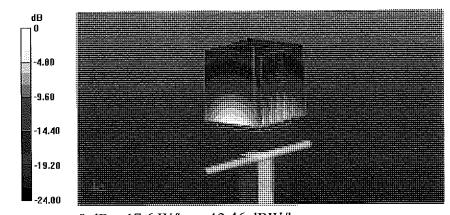
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

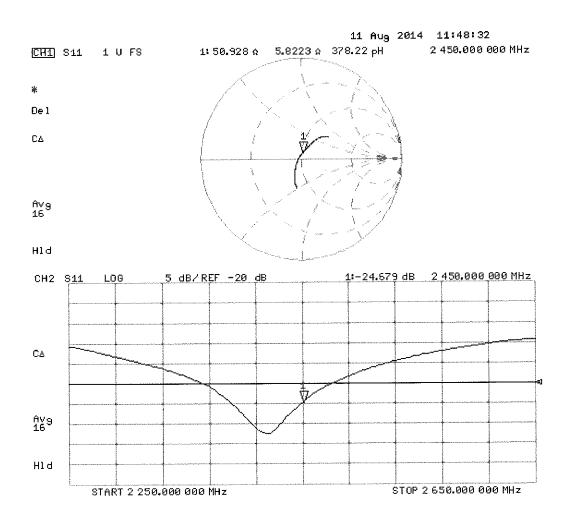
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.08 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.9 W/kg


SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.1 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of catibration certificates

Accreditation No.: SCS 108

C

S

Client

PC Test

Certificate No: D5GHzV2-1191_Sep14

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1191

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

LL Mim

Calibration date:

September 25, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	JŧD#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	ING-

Issued: September 25, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz The following parameters and calculations were applied.

= 1	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.64 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	A 16-44 44	M. 2 M. 4

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.8 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0,5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

The second secon	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	**************************************	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5,30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	n	****

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5,53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	and the side	

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k =2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

To tonoming parameters and careatains in the spe	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.79 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	+++	

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	83.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

Special Control of the Control of th	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.1 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	ushu	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.8 Ω - 9.9]Ω
Return Loss	- 20,1 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	54.5 Ω - 1.5 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.6 Ω - 2.0]Ω
Return Loss	- 33,9 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.5 Ω - 4.4 JΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.6 Ω + 4.4 jΩ	
Return Loss	- 22.6 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point 51.9 Ω - 8.1 j Ω	
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	54.5 Ω + 0.1 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.2 Ω - 0.6 jΩ
Return Loss	- 43.8 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.5 Ω - 3.2 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.2 Ω + 5.2 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 01, 2014

DASY5 Validation Report for Head TSL

Date: 25.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.54 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5300 MHz; $\sigma = 4.64 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5500 MHz; $\sigma = 4.83 \text{ S/m}$; $\varepsilon_r = 34.5$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5600 MHz; $\sigma = 4.93 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5800 MHz; $\sigma = 5.14 \text{ S/m}$; $\varepsilon_r = 34.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2);
 Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86);
 Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.20 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.90 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8.64 W/kg; SAR(10 g) = 2.47 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.91 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 8.93 W/kg; SAR(10 g) = 2.54 W/kg

Maximum value of SAR (measured) = 20.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

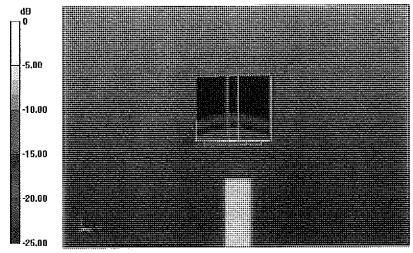
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.29 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 34.8 W/kg

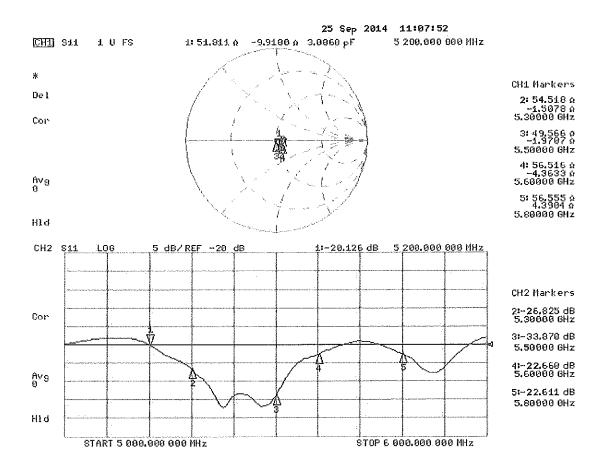
SAR(1 g) = 8.76 W/kg; SAR(10 g) = 2.49 W/kg

Maximum value of SAR (measured) = 20.7 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.74 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.35 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³

Medium parameters used: f = 5300 MHz; $\sigma = 5.53 \text{ S/m}$; $\varepsilon_r = 46.9$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5500 MHz; $\sigma = 5.79 \text{ S/m}$; $\varepsilon_r = 46.6$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5600 MHz; $\sigma = 5.93 \text{ S/m}$; $\varepsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5800 MHz; $\sigma = 6.21 \text{ S/m}$; $\varepsilon_r = 46.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.46 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.42 V/m: Power Drift = 0.03 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.44 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 35.8 W/kg

SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

Certificate No: D5GHzV2-1191_Sep14

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

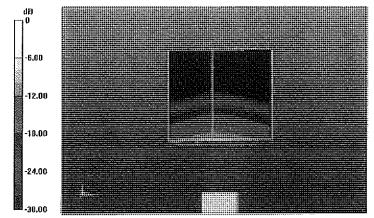
Reference Value = 60.44 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 37.0 W/kg

SAR(1 g) = 8.48 W/kg; SAR(10 g) = 2.35 W/kg

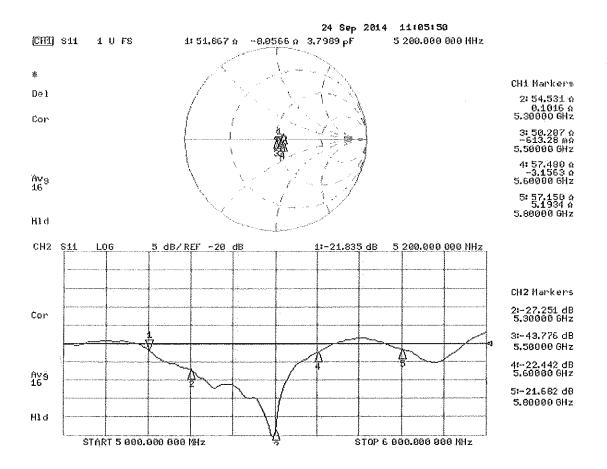
Maximum value of SAR (measured) = 20.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.69 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 36.4 W/kg


SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1054_Mar15

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

20 V 3/26/n

Calibration date:

March 11, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Michael Weber Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 11, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Tie following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and ballotiations more app.	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D750V3-1054_Mar15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω - 0.6 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 2.6 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
· · · · · · · · · · · · · · · · · · ·	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Certificate No: D750V3-1054_Mar15

DASY5 Validation Report for Head TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

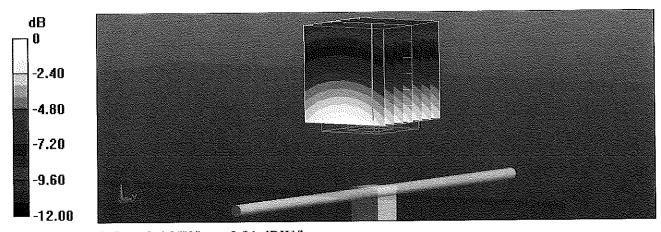
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

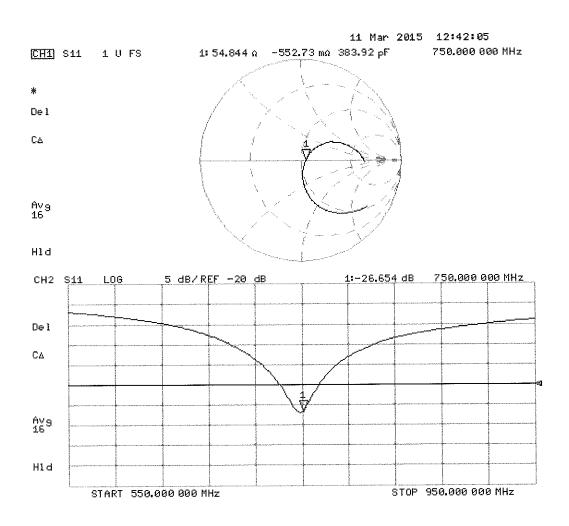
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.06 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

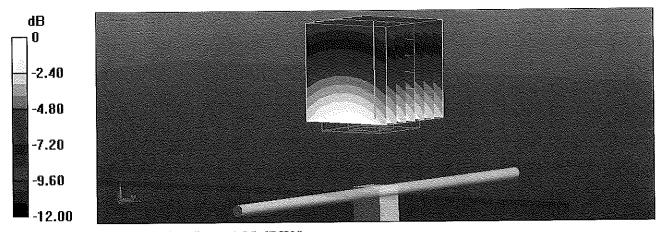
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

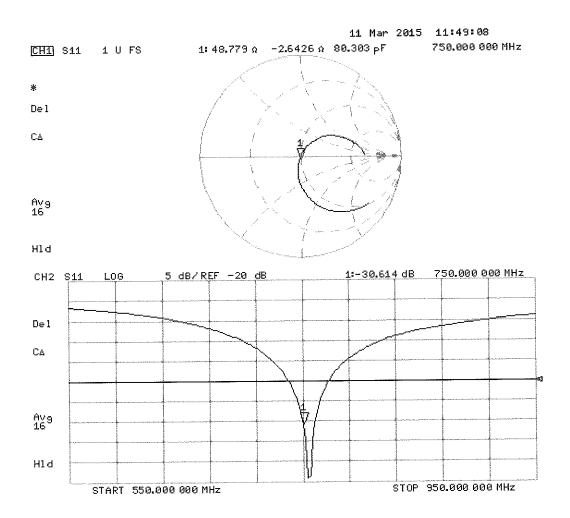
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.35 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.20 W/kg


SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d119_Apr15

Object	D835V2 - SN:4d	119 prikana apari sebelerahan atama	en e
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	RN ove 700 MHz 4/29
Calibration date:	April 13, 2015		
The measurements and the tince	rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°0	nd are part of the certificate.
Primary Standards	ID#	0.15	
Power meter EPM-442A	GB37480704	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02020)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Oct-14 (No. 217-02021)	Oct-15
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02131)	Mar-16
Reference Probe ES3DV3	SN: 3205	01-Apr-15 (No. 217-02134)	Mar-16
DAE4	SN: 601	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
	SN. 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Moreen Chaeceef
Approved by:	Katja Pokovic	Technical Manager	Ally-
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laboratory.	Issued: April 13, 2015

Certificate No: D835V2-4d119_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d119_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VOZ.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with opacer
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.20 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 2.2 jΩ
Return Loss	- 33.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 4.9 ϳΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Flectrical Doloy (one dispetion)	
Electrical Delay (one direction)	1 000
	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr15

DASY5 Validation Report for Head TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

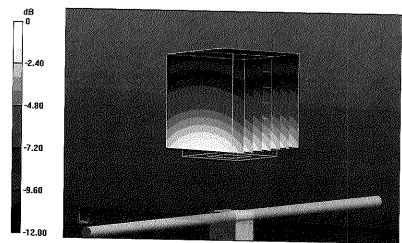
Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

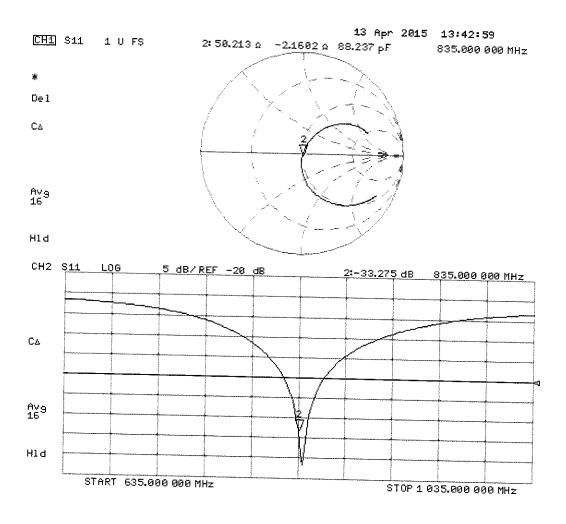
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.77 V/m P

Reference Value = 56.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

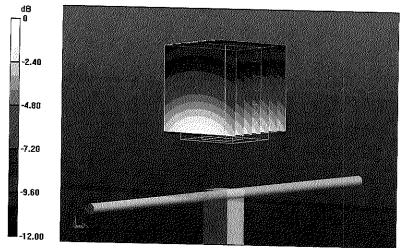
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

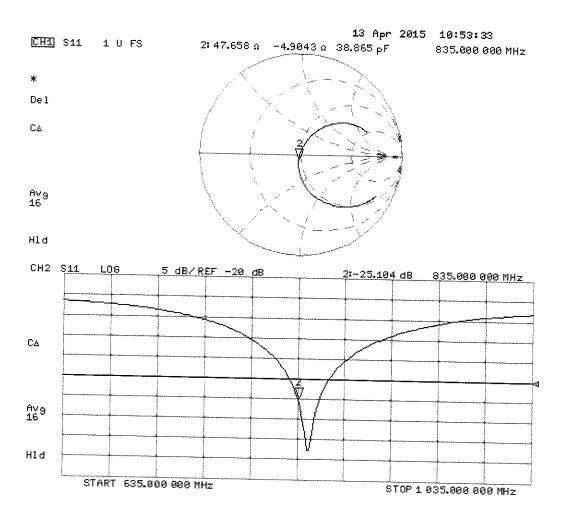
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.52 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-882_Feb15

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:882

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 18, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature

Calibrated by:

Michael Weber

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: February 18, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-882_Feb15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D2450V2-882_Feb15

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	0.00000

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 m h o/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.5 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-882_Feb15 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 0.2 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 1.9 jΩ
Return Loss	- 34.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2011

Certificate No: D2450V2-882_Feb15

DASY5 Validation Report for Head TSL

Date: 18.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;

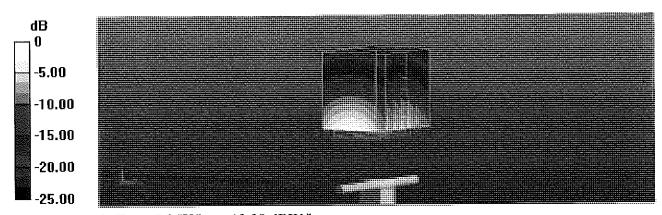
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

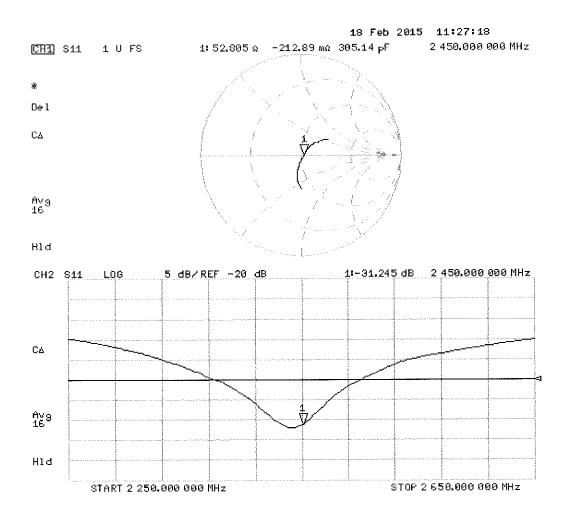
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue - ES Probe/Pin=250 mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.95 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.9 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

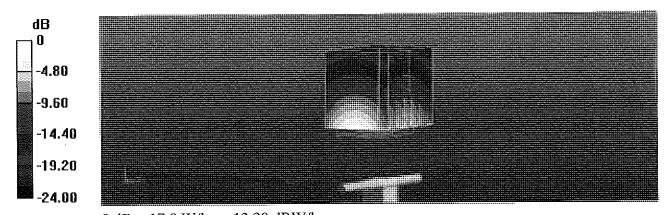
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

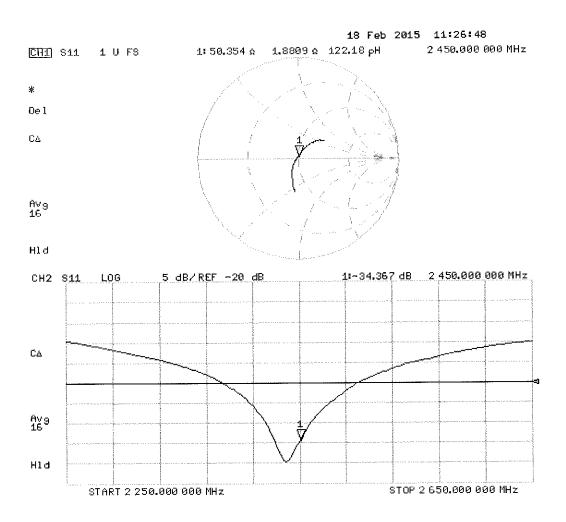
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue - ES Probe/Pin=250 mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.16 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.2 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Body TSL

