Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Callbration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signetories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

С

S

| Client | PC Test |
|--------|---------|
|--------|---------|

|                | o: ES3-3334_I      | 344     |
|----------------|--------------------|---------|
| -Cortifizato N | A 1 3 10 1 1 1 4 1 | 10110   |
|                |                    | JUU   1 |
|                |                    |         |
|                |                    |         |

|                                                                                                                                                                      | CERTIFICATI                                                                                                   |                                                                                                                                                                                                                   |                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Object                                                                                                                                                               | ES3DV3 - SN:33                                                                                                | 34                                                                                                                                                                                                                |                                                                                                              |
| Calibration procedure(s)                                                                                                                                             |                                                                                                               | A CAL-23.v5, QA CAL-25.v6<br>dure for dosimetric E-field probes                                                                                                                                                   | CC<br>12/31/PH                                                                                               |
| Calibration date:                                                                                                                                                    | December 16, 20                                                                                               | 714                                                                                                                                                                                                               |                                                                                                              |
|                                                                                                                                                                      | •                                                                                                             | onal standards, which realize the physical units<br>robability are given on the following pages and                                                                                                               |                                                                                                              |
| The measurantents and the unit                                                                                                                                       | onanities with controlice p                                                                                   | consists are direct on the promition profession                                                                                                                                                                   | are pure of the contribute.                                                                                  |
| All calibrations have been cond<br>Calibration Equipment used (Ma                                                                                                    |                                                                                                               | y facility: environment temperature (22 $\pm$ 3)°C a                                                                                                                                                              | and humidity < 70%.                                                                                          |
|                                                                                                                                                                      |                                                                                                               |                                                                                                                                                                                                                   | • • • • • • • • • • • • • • • • • • •                                                                        |
| Primary Standards                                                                                                                                                    |                                                                                                               | Cal Date (Certificate No.)                                                                                                                                                                                        | Scheduled Calibration                                                                                        |
| Primary Standards<br>Power meter E4419B                                                                                                                              |                                                                                                               | Cal Date (Certificate No.)<br>03-Apr-14 (No. 217-01911)                                                                                                                                                           | Scheduled Calibration<br>Apr-15                                                                              |
|                                                                                                                                                                      | ĬD                                                                                                            |                                                                                                                                                                                                                   |                                                                                                              |
| Power meter E4419B                                                                                                                                                   | ID<br>GB41293874                                                                                              | 03-Apr-14 (No. 217-01911)                                                                                                                                                                                         | Apr-15                                                                                                       |
| Power meter E4419B<br>Power sensor E4412A                                                                                                                            | ID<br>GB41293874<br>MY41498087                                                                                | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)                                                                                                                                                            | Apr-15<br>Apr-16                                                                                             |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator                                                                                               | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)                                                              | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)                                                                                                                               | Apr-15<br>Apr-16<br>Apr-15                                                                                   |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                 | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)                                           | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)                                                                                                  | Apr-15<br>Apr-16<br>Apr-15<br>Apr-15<br>Apr-15                                                               |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator                                   | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)                        | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)<br>03-Apr-14 (No. 217-01920)                                                                     | Apr-15<br>Apr-16<br>Apr-15<br>Apr-15<br>Apr-15<br>Apr-16                                                     |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2         | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013            | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)<br>03-Apr-14 (No. 217-01920)<br>30-Dec-13 (No. ES3-3013_Dec13)      | Apr-16           Apr-16           Apr-15           Apr-15           Apr-16           Dec-14                  |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4 | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 789 | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01920)<br>30-Dec-13 (No. ES3-3013_Dec13)<br>30-Apr-14 (No. DAE4-789_Apr14) | Apr-16           Apr-16           Apr-15           Apr-15           Apr-16           Dec-14           Apr-15 |

|                              | Name                                                          | Function                                                         | Signature                                                                                |
|------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Calibrated by:               | Leif Klysner                                                  | Laboratory Technician                                            | Soil Alana                                                                               |
|                              |                                                               |                                                                  | ory myse                                                                                 |
| A                            | Kalia Pokovic                                                 | Technical Manager                                                | 27 er                                                                                    |
| Approved by:                 |                                                               | rechnical Manager                                                | Et de                                                                                    |
|                              | €lija mērajānā kāradājā iz tarākā parastatā ir karā ir karada | a na sana na sana na sana sa | e fer en en Europe ferning e verset i ser en Norte e en |
|                              |                                                               |                                                                  | Issuad: December 16, 2014                                                                |
| This calibration certificate | e shall not be reproduced except in fu                        | Il without written approval of the labo                          | pratory.                                                                                 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Ċ

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

| Ologgi y.           |                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------|
| TSL                 | tissue simulating liquid                                                                     |
| NORMx,y,z           | sensitivity in free space                                                                    |
| ConvF               | sensitivitý in TSL / NORMx,y,ž                                                               |
| DCP                 | diode compression point                                                                      |
| CF                  | crest factor (1/duty_cycle) of the RF signal                                                 |
| A, B, C, D          | modulation dependent linearization parameters                                                |
| Polarization $\phi$ | φ rotation around probe axis                                                                 |
| Polarization 9      | 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), |
|                     | i.e., 9 = 0 is normal to probe axis                                                          |
| Connector Angle     | Information used in DASY system to align probe sensor X to the robot coordinate system       |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe ES3DV3

## SN:3334

Manufactured: Repaired: Calibrated: January 24, 2012 December 9, 2014 December 16, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3334\_Dec14

Page 3 of 13

## **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.04     | 1.05     | 1.01     | ± 10.1 %  |
| DCP (mV) <sup>8</sup>    | 106.5    | 105.0    | 105.6    |           |

## **Modulation Calibration Parameters**

| UID                                    | Communication System Name                         |     | A<br>dB | B<br>dB√μV | C    | D<br>dB   | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|----------------------------------------|---------------------------------------------------|-----|---------|------------|------|-----------|----------|---------------------------|
| 0                                      | CW                                                | X   | 0.0     | 0.0        | 1.0  | 0.00      | 188.0    | ±3.0 %                    |
|                                        |                                                   | Y   | 0.0     | 0.0        | 1.0  |           | 183.2    |                           |
|                                        |                                                   | Z   | 0.0     | 0.0        | 1.0  |           | 181.8    |                           |
| 10010-<br>CAA                          | SAR Validation (Square, 100ms, 10ms)              | X   | 4.61    | 67.2       | 13.7 | 10.00     | 38.4     | ±1,4 %                    |
|                                        |                                                   | Y   | 20,36   | 82.7       | 18,7 |           | 38.0     |                           |
|                                        |                                                   | Z   | 17.55   | 80.3       | 17.6 |           | 37.0     |                           |
| 10011-<br>CAB                          | UMTS-FDD (WCDMA)                                  | X   | 3.56    | 68.4       | 19.1 | 2.91      | 148.4    | ±0.7 %                    |
| `                                      |                                                   | Y   | 3.44    | 68.1       | 19.2 |           | 146.9    |                           |
|                                        |                                                   | Z   | 3.52    | 68.3       | 19.1 |           | 144.7    |                           |
| 10012-<br>CAB                          | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps)       | ×   | 3.54    | 71.9       | 20,0 | 1.87      | 148.0    | ±0.7 %                    |
|                                        |                                                   | Y., | 3.51    | 72.2       | 20.5 |           | 148.9    |                           |
|                                        |                                                   | Z   | 3.80    | 73.3       | 20.6 |           | 144.6    |                           |
| 10013-<br>CAB                          | IEEE 802.11g WIFI 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | ×   | 11.39   | 71.1       | 23.3 | 9.46      | 149.8    | ±3.8 %                    |
|                                        |                                                   | Υ   | 11.54   | 71.8       | 24.0 |           | 149.5    |                           |
|                                        |                                                   | Z   | 11.11   | 70.5       | 23,0 |           | 141.6    |                           |
| 10021-<br>DAB                          | GSM-FDD (TDMA, GMSK)                              | ×   | 15.29   | 91.3       | 25.0 | 9,39      | 131.9    | ±1.7 %                    |
| ······································ |                                                   | Y   | 24.16   | 100.0      | 28,4 |           | 142.8    |                           |
|                                        |                                                   | Z   | 13.05   | 89.2       | 24.5 |           | 126.5    |                           |
| 10023-<br>DAB                          | GPRS-FDD (TDMA, GMSK, TN 0)                       | X   | 16.07   | 91.7       | 25.1 | 9.57      | 144.0    | ±2.2 %                    |
|                                        |                                                   | Y   | 19.00   | 95.3       | 26,8 |           | 136.4    |                           |
|                                        |                                                   | Z   | 13.93   | 89.8       | 24.6 |           | 141.0    |                           |
| 10024-<br>DAB                          | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X   | 19.98   | 91,0       | 22.4 | 6,56      | 134.2    | ±1.9 %                    |
|                                        |                                                   | Y.  | 34.78   | 99.7       | 25.5 |           | 145.0    |                           |
|                                        |                                                   | Z   | 29,89   | 96.8       | 24.1 |           | 129,8    |                           |
| 10027-<br>DAB                          | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X   | 56.30   | 99.7       | 22.8 | 4.80      | 125.2    | ±1.9 %                    |
|                                        |                                                   | Y   | 41.16   | 99.6       | 23,9 |           | 131,2    |                           |
|                                        |                                                   | Z   | 50.78   | 99.8       | 23,1 | · · · · · | 147.6    |                           |
| 10028-<br>DAB                          | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X   | 49,35   | 99.7       | 22,5 | 3.55      | 133.2    | ±2.2 %                    |
|                                        |                                                   | Y   | 46.49   | 99.6       | 22.9 |           | 139,2    |                           |
| · ·                                    |                                                   | Z   | 58,21   | 99.7       | 22.0 |           | 129.4    |                           |
| 10032-<br>CAA                          | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | X   | 56.54   | 100.0      | 20.2 | 1.16      | 128.0    | ±1.7 %                    |
|                                        |                                                   | Ý   | 20.03   | 99,3       | 22.4 |           | 130.3    |                           |
|                                        |                                                   | Z   | 84.01   | 100.0      | 19.4 |           | 141.0    |                           |
| 10100-<br>CAB                          | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)       | X   | 6.44    | 67.6       | 19.6 | 5.67      | 138.5    | ±1.4 %                    |
|                                        |                                                   | Ý   | 6.50    | 67,9       | 20.0 |           | 142.1    |                           |
|                                        |                                                   | Z   | 6.31    | 67.2       | 19.4 |           | 129,4    |                           |

Certificate No: ES3-3334\_Dec14

#### ES3DV3-SN:3334

#### December 16, 2014

| 10103-        | LTE-TDD (SC-FDMA, 100% RB, 20               | X        | 9.77         | 73.6         | 24.6         | 9.29     | 129.6          | ±3.3 %    |
|---------------|---------------------------------------------|----------|--------------|--------------|--------------|----------|----------------|-----------|
| CAB           | MHz, QPSK)                                  | Y        | 10,52        | 76.0         | 26.3         |          | 132,1          |           |
|               |                                             | z        | 10.32        | 75.0         | 25.4         |          | 147.7          |           |
| 10108-        | LTE-FDD (SC-FDMA, 100% RB, 10               | X        | 6.36         | 67.2         | 19.6         | 5.80     | 136.8          | ±1.4 %    |
| CAC           | MHz, QPŠK)                                  | Y        | 6.31         | 67.3         | 19.8         |          | 137.2          |           |
|               |                                             | z        | 6.20         | 66.7         | 19.3         |          | 128,8          |           |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | X        | 9.96         | 68,3         | 20,8         | 8.07     | 126.5          | ±2.5 %    |
|               |                                             | Y        | 10,12        | 68.8         | 21.3         |          | 126.6          |           |
|               |                                             | Z        | 10,22        | 69.0         | 21.2         |          | 143.7          |           |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)  | ×        | 9.29         | 73.0         | 24.4         | 9.28     | 125.3          | ±3.3 %    |
|               | · · · · · · · · · · · · · · · · · · ·       | Y        | 9.65         | 74.5         | 25.6         |          | 124.4          |           |
|               |                                             | Z        | 9.65         | 74.3         | 25.2         |          | 141.1          |           |
| 10154-<br>CAC | LTE-FDD (SC-FDMA, 50% RB, 10 MHz,<br>QPSK)  | X        | 6.03         | 66.7         | 19,3         | 5.75     | 132.7          | ±1.4 %    |
|               |                                             | Y_       | 5.97         | 66.7         | 19.5         |          | 132.7          |           |
|               |                                             | Z        | 6.17         | 67.3         | 19.7         |          | 148.3          |           |
| 10160-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 15 MHz,<br>QPSK)  | X        | 6.47         | 67,2         | 19.5         | 5.82     | 138.1          | ±1.4 %    |
|               |                                             | Y        | 6,44         | 67,3         | 19.8         |          | 138.2          |           |
|               |                                             | Z        | 6.27         | 66.6         | 19.2         |          | 126.8          |           |
| 10169-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X        | 5.03         | 66.9         | 19.6         | 5.73     | 137.2          | ±1.2 %    |
|               |                                             | Y.       | 4.97         | 67.0         | 19.9         |          | 135.7          |           |
|               |                                             | Z        | 4.91         | 66,5         | 19.5         |          | 127.1          |           |
| 10172-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | ×        | 8.53         | 77.4         | 26.9         | 9.21     | 142.4          | ±2.7 %    |
|               |                                             | Y        | 9.59         | 81.3         | 29,3         |          | 142.3          |           |
|               |                                             | Z        | 7:78         | 75.0         | 25.7         |          | 126.7          | 1.1 C 01  |
| 10175-<br>CAC | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X        | 5.02         | 67.0         | 19.7         | 5.72     | 131.8          | ±1.2 %    |
|               |                                             | Y        | 4.98         | 67.0         | 19.9         |          | 136.1          |           |
|               |                                             | Z        | 4.95         | 66.8         | 19.6         |          | 128.1          |           |
| 10181-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,<br>QPSK)    | X        | 4.99         | 66.8         | 19.6         | 5.72     | 131,2          | ±1.2 %    |
|               |                                             | Y        | 4.99         | 67.1         | 20.0         |          | 136.2          |           |
|               |                                             | Z        | 4.92         | 66.6         | 19.5         | <u>.</u> | 127.9          |           |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)  | ×        | 9.98         | 68.8         | 21.2         | 8.10     | 141.7          | ±2.5 %    |
|               | · · · · · · · · · · · · · · · · · · ·       | Y        | 10.14        | 69.5         | 21.8         | · .      | 147.2          |           |
| 40005         |                                             | Z        | 9.85         | 68,6         | 21.1         | E 07     | 137.5          | 14.4.0/   |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                            | X        | 7.17         | 67.5         | 19.6         | 5,97     | 146,0          | ±1.4 %    |
|               |                                             | Y        | 7,13         | 67.7         | 19.9         |          | 149.9          |           |
| 10007         |                                             | Z        | 7.12         | 67.5         | 19.6         | 10.04    | 142.9          | 10 7 11   |
| 10237-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X        | 8.29         | 76.6         | 26.5         | 9.21     | 136.1<br>142.3 | ±2.7 %    |
|               | · · · · · · · · · · · · · · · · · · ·       | Y        | 9.60         | 81.4         | 29.3         |          | 132.9          | · · · · · |
| 10252-        | LTE-TDD (SC-FDMA, 50% RB, 10 MHz,           | Z<br>X   | 7,98<br>9.27 | 75.8<br>74.1 | 26.1<br>25.1 | 9.24     | 132.9          | ±3,3 %    |
| CAB           | QPSK)                                       | <u> </u> |              |              | 07.1         |          | 140.0          |           |
|               |                                             | Y        | 10.25        | 77.5         | 27.4         | <u> </u> | 146.3          | <u> </u>  |
| 40007         |                                             | Z        | 9.07         | 73.7         | 25.0         | 0.00     | 135.8          | 10 0 0/   |
| 10267-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X        | 9,95         | 74.9         | 25.4         | 9,30     | 147.0          | ±3.3 %    |
|               |                                             | Y        | 9.80         | 75.0         | 25.9         | <u> </u> | 125.9          | ļ         |
|               |                                             | Ż        | 9.74         | 74.6         | 25.4         |          | 143.8          | l         |

Certificate No: ES3-3334\_Dec14

#### ES3DV3-SN:3334

#### December 16, 2014

| 10275-<br>CAB | UMTS-FDD (HSUPA, Sublest 5, 3GPP<br>Rel8.4)                       | X | 4.63  | 67.6 | 19.0 | 3.96 | 147.5 | ±0.7 % |
|---------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
|               |                                                                   | Y | 4.41  | 66.9 | 18.9 |      | 129.5 |        |
|               |                                                                   | Z | 4.61  | 67.6 | 19.1 |      | 148.1 |        |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                                    | X | 3,83  | 67.7 | 19.0 | 3.46 | 133.7 | ±0,7 % |
|               |                                                                   | Y | 3.71  | 67.4 | 19.0 |      | 139.0 |        |
|               |                                                                   | Z | 3.86  | 68.1 | 19.2 |      | 133.7 |        |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                                    | X | 3.85  | 68,2 | 19.2 | 3.39 | 136.7 | ±0.5 % |
|               |                                                                   | Y | 3.67  | 67.5 | 19.1 |      | 141.3 |        |
|               |                                                                   | Z | 3.75  | 67.8 | 19.0 |      | 136.2 |        |
| 10297-<br>AAA | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)                        | X | 6.31  | 67.1 | 19.5 | 5.81 | 130.6 | ±1.4 % |
|               | · · · · · ·                                                       | Y | 6.32  | 67.3 | 19,8 |      | 135.1 |        |
|               |                                                                   | Z | 6.24  | 66.9 | 19,4 |      | 129.2 |        |
| 10311-<br>AAA | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X | 6.85  | 67.5 | 19.8 | 6.06 | 135.1 | ±1.4 % |
|               |                                                                   | Y | 6.90  | 67.9 | 20.2 |      | 141.5 |        |
|               |                                                                   | Z | 6.82  | 67.5 | 19.8 | 11   | 135.1 |        |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                        | × | 5.04  | 69.1 | 19,1 | 3.76 | 126.0 | ±0.5 % |
|               |                                                                   | Y | 4.90  | 69,0 | 19.3 |      | 129.6 |        |
|               |                                                                   | Z | 5.11  | 69.7 | 19.4 |      | 125.8 |        |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                        | X | 5.05  | 69.6 | 19.4 | 3.77 | 147.1 | ±0.7 % |
|               |                                                                   | Υ | 4.84  | 69.2 | 19.5 |      | 127.8 |        |
|               |                                                                   | Z | 5.15  | 70.1 | 19.6 |      | 143.3 |        |
| 10415-<br>AAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | X | 3.13  | 71.2 | 19.9 | 1.54 | 144.5 | ±0.5 % |
|               |                                                                   | Ý | 2.93  | 70.4 | 19.9 |      | 149.8 |        |
|               | ·                                                                 | Z | 3.18  | 71.6 | 20,1 |      | 141.4 |        |
| 10416-<br>AAA | IEEE 802.11g WIFI 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X | 10,11 | 69.0 | 21.4 | 8.23 | 144.3 | ±2.5 % |
|               |                                                                   | Y | 10.21 | 69.6 | 21.9 |      | 148.3 |        |
|               |                                                                   | Z | 9.99  | 68.9 | 21.3 |      | 141.1 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 <sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 7 and 8).
 <sup>B</sup> Numerical linearization parameter: uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

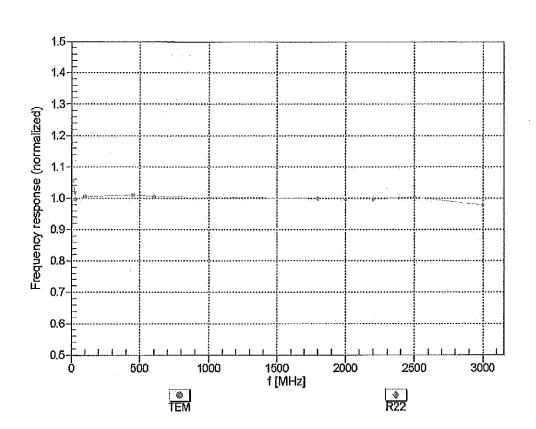
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.51    | 6,51    | 6.51    | 0.80               | 1.17                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                               | 6.25    | 6.25    | 6.25    | 0.38               | 1.58                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                               | 5.21    | 5.21    | 5.21    | 0.43               | 1.63                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                               | 5.03    | 5.03    | 5.03    | 0.53               | 1.45                       | ± 12.0 %       |
| 2450                 | 39.2                                  | 1,80                               | 4.51    | 4.51    | 4.51    | 0.80               | 1.26                       | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                               | 4.31    | 4.31    | 4.31    | 0.79               | 1.27                       | ± 12.0 %       |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>6</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is epplied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c end σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

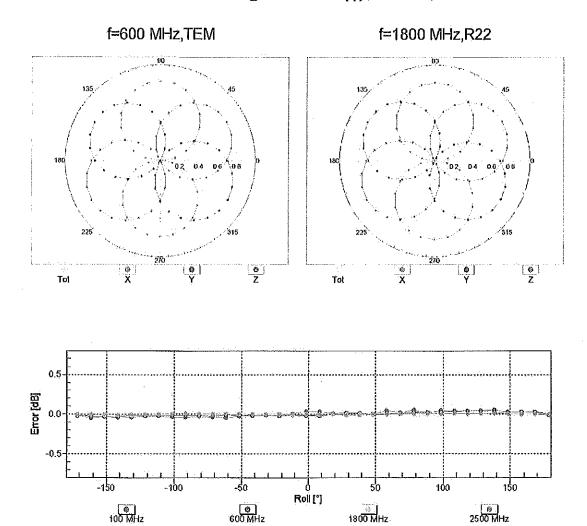
<sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>0</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 6.09    | 6.09    | 6.09    | 0.49               | 1.47                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.14    | 6.14    | 6.14    | 0.69               | 1.27                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 4.94    | 4.94    | 4.94    | 0.80               | 1.24                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 4.73    | 4.73    | 4.73    | 0.62               | 1.44                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 4.28    | 4.28    | 4.28    | 0.80               | 1.13                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 4.16    | 4.16    | 4.16    | 0.75               | 1.25                       | ± 12.0 %       |

#### **Calibration Parameter Determined in Body Tissue Simulating Media**

<sup>6</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to  $\pm$  110 MHz. The validity of tissue parameters (s and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

diameter from the boundary.

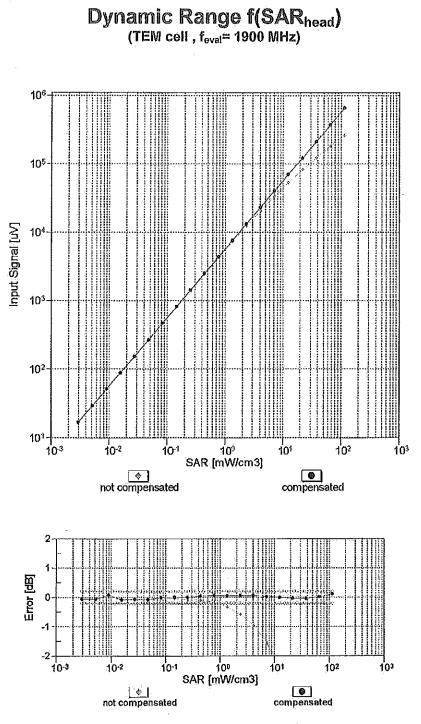

December 16, 2014



## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

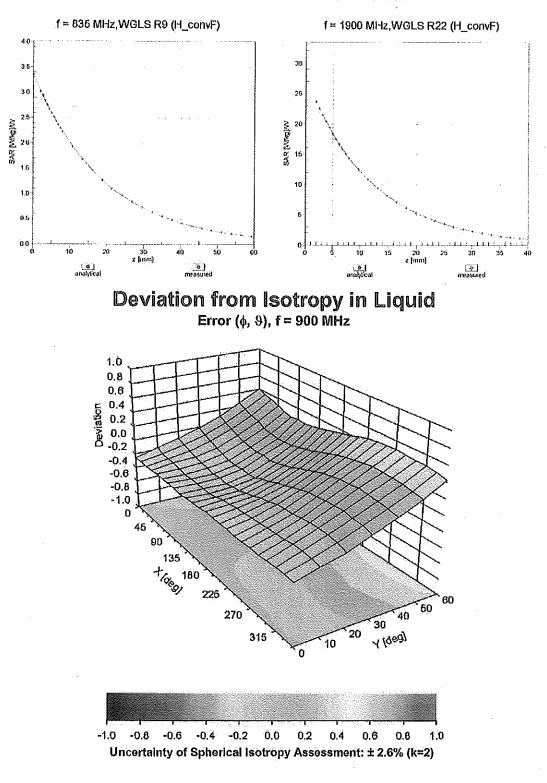
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

December 16, 2014




Receiving Pattern ( $\phi$ ),  $\vartheta = 0^{\circ}$ 

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3334\_Dec14

December 16, 2014



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 11 of 13



## **Conversion Factor Assessment**

Certificate No: ES3-3334\_Dac14

Page 12 of 13

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 18.5       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

Page 13 of 13

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland





Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Accreditation No.: SCS 108

S

## Certificate No: ES3-3333\_Oct14

| Object                                                                                                                                                                                      | ES3DV3 - SN:33                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                             |                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                    | QA CAL-01.v9, Q<br>Calibration proce                                                                                                                                                  | A CAL-23.v5, QA CAL-25.v6<br>dure for dosimetric E-field probes                                                                                                                                                                                                                | CC<br>101311                                                                                                                             |
| Celibration date:                                                                                                                                                                           | October 24, 2014                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                          |
| The measurements and the unc                                                                                                                                                                | ertaintles with confidence pr                                                                                                                                                         | onal standards, which realize the physical units<br>obability are given on the following pages and a                                                                                                                                                                           | are part of the certificate.                                                                                                             |
| All calibrations have been conducted and calibration Equipment used (Mf                                                                                                                     |                                                                                                                                                                                       | y facility: environment temperature (22 ± 3)°C a                                                                                                                                                                                                                               | ina numioliy < 70%.                                                                                                                      |
|                                                                                                                                                                                             |                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                          |                                                                                                                                          |
| Primary Standards                                                                                                                                                                           | ID                                                                                                                                                                                    | Cal Date (Certificate No.)                                                                                                                                                                                                                                                     | Scheduled Calibration                                                                                                                    |
|                                                                                                                                                                                             | ID<br>GB41293874                                                                                                                                                                      | Cal Date (Certificate No.)<br>03-Apr-14 (No. 217-01911)                                                                                                                                                                                                                        | Scheduled Calibration<br>Apr-15                                                                                                          |
| Power meter E4419B                                                                                                                                                                          |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                |                                                                                                                                          |
| Power meter E4419B<br>Power sensor E4412A                                                                                                                                                   | GB41293874                                                                                                                                                                            | 03-Apr-14 (No. 217-01911)                                                                                                                                                                                                                                                      | Apr-15                                                                                                                                   |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator                                                                                                                      | GB41293874<br>MY41498087                                                                                                                                                              | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)                                                                                                                                                                                                                         | Apr-15<br>Apr-15                                                                                                                         |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                        | GB41293874<br>MY41498087<br>SN: S5054 (3c)                                                                                                                                            | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)                                                                                                                                                                                            | Apr-15<br>Apr-16<br>Apr-15                                                                                                               |
|                                                                                                                                                                                             | GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)                                                                                                                         | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)                                                                                                                                                               | Apr-15<br>Apr-16<br>Apr-15<br>Apr-15<br>Apr-15                                                                                           |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2                                | GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)                                                                                                      | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)<br>03-Apr-14 (No. 217-01920)                                                                                                                                  | Apr-15           Apr-15           Apr-15           Apr-15           Apr-15           Apr-15                                              |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4                        | GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013                                                                                          | 03-Apr-14 (No. 217-01911)           03-Apr-14 (No. 217-01911)           03-Apr-14 (No. 217-01915)           03-Apr-14 (No. 217-01919)           03-Apr-14 (No. 217-01920)           30-Dec-13 (No. ES3-3013_Dec13)                                                             | Apr-15           Apr-16           Apr-15           Apr-15           Apr-15           Apr-15           Apr-14                             |
| Power mater E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards | GB41293874           MY41498087           SN: S5054 (3c)           SN: S5277 (20x)           SN: S5129 (30b)           SN: 3013           SN: 660                                     | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)<br>03-Apr-14 (No. 217-01920)<br>30-Dec-13 (No. ES3-3013_Dec13)<br>13-Dec-13 (No. DAE4-660_Dec13)                                 | Apr-15           Apr-16           Apr-15           Apr-15           Apr-15           Dec-14           Dec-14                             |
| Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards | GB41293874           MY41498087           SN: S5054 (3c)           SN: S5277 (20x)           SN: S5129 (30b)           SN: 3013           SN: 660           ID                        | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01919)<br>03-Apr-14 (No. 217-01920)<br>30-Dec-13 (No. ES3-3013_Dec13)<br>13-Dec-13 (No. DAE4-660_Dec13)<br>                                                          | Apr-15           Apr-15           Apr-15           Apr-15           Apr-15           Dec-14           Dec-14           Scheduled Check   |
| Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards<br>RF generator HP 8648C                     | GB41293874           MY41498087           SN: S5054 (3c)           SN: S5277 (20x)           SN: S5129 (30b)           SN: 3013           SN: 660           ID           US3642U01700 | 03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01911)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01915)<br>03-Apr-14 (No. 217-01920)<br>30-Dec-13 (No. ES3-3013_Dec13)<br>13-Dec-13 (No. DAE4-660_Dec13)<br>Check Date (in house)<br>4-Aug-99 (in house check Apr-13) | Apr-15         Apr-15         Apr-15         Apr-15         Dec-14         Dec-14         Scheduled Check         In house check: Apr-16 |

Issued: October 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the faboratory.

#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## **Glossary:**

| TSL                 | tissue simulating liquid                                                                     |
|---------------------|----------------------------------------------------------------------------------------------|
| NORMx, y, z         | sensitivity in free space                                                                    |
| ConvF               | sensitivity in TSL / NORMx,y,z                                                               |
| DCP                 | diode compression point                                                                      |
| CF                  | crest factor (1/duty_cycle) of the RF signal                                                 |
| A, B, C, D          | modulation dependent linearization parameters                                                |
| Polarization $\phi$ | φ rotation around probe axis                                                                 |
| Polarization 9      | 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), |
|                     | i.e., $\vartheta = 0$ is normal to proba axis                                                |
| Connector Anale     | information used in DASY system to align probe sensor X to the robot coordinate system       |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wiraless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is ė. implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom 8 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe ES3DV3

## SN:3333

Manufactured: Calibrated: January 24, 2012 October 24, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.08     | 0.90     | 0.88     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 102.7    | 107.7    | 106.3    |           |

## **Modulation Calibration Parameters**

| UID           | Communication System Name                         |          | A<br>dB | B<br>dB√μV | C    | D<br>dB  | VR<br>mV | Unc <sup>E</sup><br>(k=2)             |
|---------------|---------------------------------------------------|----------|---------|------------|------|----------|----------|---------------------------------------|
| 0             | CW                                                | X        | 0.0     | 0.0        | 1.0  | 0.00     | 190.7    | ±2.5 %                                |
|               | ·····                                             | Y        | 0.0     | 0.0        | 1.0  |          | 183.3    |                                       |
|               |                                                   | Z        | 0.0     | 0.0        | 1.0  |          | 197.9    |                                       |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | X        | 3,17    | 61.7       | 12.2 | 10.00    | 42.4     | ±1.9 %                                |
|               |                                                   | Y        | 3.16    | 63.7       | 12.4 |          | 38.0     |                                       |
|               |                                                   | Z        | 1.84    | 59.2       | 10.5 |          | 39.9     |                                       |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | ×        | 3.22    | 65.9       | 17.6 | 2.91     | 128.5    | ±0.5 %                                |
|               |                                                   | Ŷ        | 3.60    | 69.3       | 19.8 |          | 146.7    |                                       |
|               |                                                   | Z        | 3.51    | 68.1       | 18.8 |          | 133.7    |                                       |
| 10012-<br>CAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1<br>Mbps)       | ×        | 3.14    | 68.6       | 18.2 | 1,87     | 132.6    | ±0.7 %                                |
|               |                                                   | Y        | 3.64    | 73.3       | 21.1 | <u> </u> | 127.5    |                                       |
|               |                                                   | Z        | 3.50    | 71.4       | 19.6 | 0.40     | 136.4    | 19 6 9/                               |
| 10013-<br>CAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | ×        | 11.56   | 70.8       | 23.0 | 9.46     | 135.8    | ±3.5 %                                |
|               |                                                   | Y        | 10,93   | 70.2       | 23.0 |          | 122.3    | · · · · · · · · · · · · · · · · · · · |
|               |                                                   | Z        | 10.93   | 70.0       | 22.6 |          | 132.8    |                                       |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | X        | 24.60   | 96.9       | 27.6 | 9.39     | 147.6    | ±1.9 %                                |
|               |                                                   | Y        | 19.44   | 94.3       | 26.1 |          | 148.6    |                                       |
|               |                                                   | Z        | 9.58    | 82.7       | 21.9 | ļ        | 138.2    |                                       |
| 10023-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0)                       | X        | 20.09   | 93.0       | 26.4 | 9.57     | 141.7    | ±2.7 %                                |
|               |                                                   | Y        | 24.86   | 99.0       | 27.9 | Ļ        | 143.5    |                                       |
|               |                                                   | Z        | 11.74   | 86.4       | 23.4 |          | 134.4    |                                       |
| 10024-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | Х        | 23.76   | 91.2       | 23.1 | 6.56     | 147.8    | ±2.5 %                                |
|               |                                                   | Y.       | 37.10   | 99.8       | 25.3 |          | 149.9    | · · ·                                 |
|               |                                                   | Z        | 16.01   | 88.1       | 21,6 |          | 128.0    |                                       |
| 10027-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X        | 36.24   | 94.5       | 22.6 | 4.80     | 128.6    | ±2.5 %                                |
|               |                                                   | <u>Y</u> | 47.57   | 99.9       | 23.7 |          | 133.5    |                                       |
|               |                                                   | Z        | 44.37   | 99.7       | 23.6 | L        | 140.1    | 1070                                  |
| 10028-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X        | 65,86   | 99.7       | 22.7 | 3.55     | 133.1    | ±2.7 %                                |
|               |                                                   | Y        | 55.92   | 100.0      | 22.6 |          | 142,0    | ļ                                     |
| ·             |                                                   | Z        | 59.41   | 100.0      | 22.2 |          | 125.1    |                                       |
| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | X        | 85.87   | 100.0      | 20.1 | 1.16     | 138.3    | ±2.2 %                                |
|               |                                                   | Y        | 14.41   | 99.2       | 23.3 |          | 130.5    |                                       |
|               |                                                   | Z        | 85.82   | 99.8       | 19.3 |          | 135.9    |                                       |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)       | X        | 6.49    | 67.4       | 19.4 | 5.67     | 144.6    | ±1.7 %                                |
|               | · · · · · · · · · · · · · · · · · · ·             | Y        | 6,49    | 68.0       | 20.1 |          | 139.9    | ļ                                     |
|               |                                                   | Z        | 6.54    | 67.9       | 19.7 |          | 147.3    |                                       |

Certificate No: ES3-3333\_Oct14

#### ES3DV3-- SN:3333

#### October 24, 2014

| 10103-                                | LTE-TDD (SC-FDMA, 100% RB, 20               | x          | 10.81        | 74.7         | 24.9         | 9.29     | 122.0          | ±3.0 %                                        |
|---------------------------------------|---------------------------------------------|------------|--------------|--------------|--------------|----------|----------------|-----------------------------------------------|
| CAB                                   | MHz, QPSK)                                  | Y          | 10.50        | 75.9         | 26.1         |          | 131.6          |                                               |
|                                       |                                             | Z          | 9.76         | 73.5         | 24.5         |          | 138.6          |                                               |
| 10108-<br>CAB                         | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | x          | 6.43         | 67.2         | 19.4         | 5.80     | 143.3          | ±1.7 %                                        |
|                                       |                                             | Y          | 6.37         | 67.7         | 20.0         |          | 138.0          |                                               |
|                                       | ······································      | Z          | 6.43         | 67.5         | 19.7         |          | 146.7          |                                               |
| 10117-<br>CAA                         | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | х          | 10.19        | 68.6         | 20.9         | 8.07     | 136.2          | ±2.5 %                                        |
|                                       |                                             | Y          | 10,15        | 68.9         | 21.4         |          | 128.3          |                                               |
|                                       |                                             | Ż          | 10.12        | 68,7         | 21.0         |          | 137.9          | 10 0 0/                                       |
| 10151-<br>CAB                         | LTE-TDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)  | X          | 11.48        | 77.0         | 26.1         | 9.28     | 147.5<br>125.7 | ±3.3 %                                        |
|                                       |                                             | Y          | 9.81         | 74.9         | 25.8         |          | 123.7          |                                               |
| · · · · · · · · · · · · · · · · · · · |                                             | Z          | 9,22         | 72.8         | 24.3         | 5.75     | 140.0          | ±1.7 %                                        |
| 10154-<br>CAB                         | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | ×          | 6.10         | 66,5         | 19,1         | 0.70     | 134.8          | II.4 70                                       |
|                                       |                                             | Y          | 6.04         | 67.1         | 19.8         |          | 143.2          |                                               |
| 1010-                                 |                                             | Z          | 6.12         | 67.1         | 19.5<br>19.4 | 5.82     | 145.2          | ±1.7 %                                        |
| 10160-<br>CAB                         | LTE-FDD (SC-FDMA, 50% RB, 15 MHz,<br>QPSK)  | х          | 6.57         | 67.2         | 19.4         | 0.02     |                |                                               |
| UND                                   |                                             | Y          | 6.47         | 67.6         | 20.0         |          | 139.6          |                                               |
|                                       |                                             | Z          | 6.56         | 67,6         | 19.7         |          | 148.5          |                                               |
| 10169-<br>CAB                         | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X          | 5.16         | 66.7         | 19.4         | 5.73     | 145.8          | ±1.4 %                                        |
|                                       |                                             | Y          | 5.02         | 67.5         | 20.2         | ļ        | 137.5          |                                               |
|                                       |                                             | Z          | 5.07         | 67.2         | 19.7         |          | 147.1          |                                               |
| 10172-<br>CAB                         | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | ×          | 10.07        | 79.2         | 27.3         | 9.21     | 136.5          | ±3.0 %                                        |
|                                       |                                             | Y          | 9.70         | 81.5         | 29.3         | <u> </u> | 142.5          | <u> </u>                                      |
|                                       |                                             | Z          | 7.63         | 74.3         | 25.3         | 679      | 125.0          | ±1.4 %                                        |
| 10175-<br>CAB                         | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X          | 5.13         | 66.6         | 19.3         | 5.72     | 145.9          | 11.4 /0                                       |
|                                       |                                             | Y          | 5.01         | 67.4         | 20.1         |          | 146.3          |                                               |
|                                       |                                             | Z          | 5.04         | 67.1         | 19.7         | 5.72     | 145.7          | ±1.4 %                                        |
| 10181-<br>CAB                         | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,<br>QPSK)    | X          | 5.14         | 66.6         | 19.3<br>20.3 | 0.12     | 137.4          | <u>, , , , , , , , , , , , , , , , , , , </u> |
|                                       | · · · · · · · · · · · · · · · · · · ·       | Y          | 5.03         | 67.5         | 19.7         |          | 146.6          |                                               |
| 10196-                                | IEEE 802.11n (HT Mixed, 6.5 Mbps,           | Z<br>X     | 5.06<br>9.88 | 67.2<br>68.3 | 20.8         | 8.10     | 130.9          | ±2.5 %                                        |
| CAA                                   | BPSK)                                       | Y          | 10.13        | 69.6         | 21.8         |          | 149.0          |                                               |
|                                       |                                             | z          | 9.77         | 68.4         | 20.9         | ·        | 131.6          | 1                                             |
| 10225-<br>CAB                         | UMTS-FDD (HSPA+)                            | ×          | 6.98         | 66.5         | 19.0         | 5.97     | 132.9          | ±1,7 %                                        |
|                                       |                                             | Ý          | 7.14         | 67.8         | 20,0         |          | 149.7          |                                               |
|                                       |                                             | Z          | 7.02         | 67.2         | 19.4         |          | 134.3          |                                               |
| 10237-<br>CAB                         | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X          | 10.13        | 79.4         | 27.4         | 9.21     | 137.5          | ±3.0 %                                        |
|                                       |                                             | Y          | 9.73         | 81.6         | 29.3         |          | 143.3          | <u> </u>                                      |
| ·····                                 |                                             | Z          | 7.59         | 74.1         | 25.1         |          | 125.6          | 1000                                          |
| 10252-<br>CAB                         | LTE-TDD (SC-FDMA, 50% RB, 10 MHz,<br>QPSK)  | ×          | 10.80        | 76.4         | 25.9         | 9.24     | 140.0          | ±3.3 %                                        |
|                                       |                                             | Y          | 10.19        | 77.2         | 27.1         |          | 147.2          |                                               |
|                                       |                                             | Z          | 8.55         | 71.8         | 23.9         |          | 124.9          | 1 49 # 0/                                     |
| 10267-<br>CAB                         | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X          | 11.59        | 77.3         | 26.3         | 9.30     | 148.4<br>126.0 | ±3.5 %                                        |
|                                       |                                             | Y          | 9.87         | 75.1         | 25.9         |          |                |                                               |
| · · · · ·                             |                                             | <u>  z</u> | 9.21         | 72.7         | 24,2         |          | 133.6          |                                               |

Certificate No: ES3-3333\_Oct14

.

#### ES3DV3-- SN:3333

October 24, 2014

| 10275-<br>CAB                         | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8.4)                       | X  | 4.40 | 66.1 | 18.1 | 3.96 | 134.1 | ±0.7 % |
|---------------------------------------|-------------------------------------------------------------------|----|------|------|------|------|-------|--------|
| 0,10                                  |                                                                   | Y  | 4.48 | 67.4 | 19.2 |      | 129.7 |        |
|                                       |                                                                   | Z  | 4.54 | 67.2 | 18.7 |      | 137.4 |        |
| 10291-<br>AAB                         | CDMA2000, RC3, SO55, Full Rate                                    | х  | 3.59 | 65.7 | 17.7 | 3.46 | 127.5 | ±0.7 % |
| / 0 ,00                               | •                                                                 | Y  | 3.85 | 68.4 | 19.7 |      | 143.4 |        |
|                                       |                                                                   | Z  | 3,78 | 67.6 | 18.8 |      | 129.7 |        |
| 10292-<br>AAB                         | CDMA2000, RC3, SO32, Full Rate                                    | X  | 3.56 | 65.9 | 17.8 | 3.39 | 127.9 | ±0.7 % |
|                                       |                                                                   | Y  | 3.81 | 68.6 | 19.8 |      | 144.2 |        |
|                                       | ······································                            | Ż  | 3,71 | 67.5 | 18.8 |      | 130.7 |        |
| 10297-<br>AAA                         | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)                        | X  | 6.44 | 67.1 | 19.4 | 5.81 | 143.0 | ±1.7 % |
|                                       |                                                                   | Y. | 6.37 | 67.6 | 20.0 |      | 137.9 |        |
|                                       |                                                                   | Z  | 6.43 | 67.5 | 19.7 |      | 146.5 |        |
| 10311-<br>AAA                         | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X  | 7.02 | 67.8 | 19.8 | 6.06 | 148.7 | ±1.9 % |
|                                       |                                                                   | Y  | 6.96 | 68.2 | 20.4 |      | 143.6 |        |
|                                       |                                                                   | Z  | 6.72 | 67.1 | 19.5 |      | 126.9 |        |
| 10403-<br>AAB                         | CDMA2000 (1xEV-DO, Rev. 0)                                        | Х  | 4.73 | 67.0 | 17.9 | 3.76 | 140.2 | ±0.7 % |
| 1.11.1                                |                                                                   | Y  | 4,96 | 69.4 | 19.5 | · ·  | 130.7 |        |
| · · · · · · · · · · · · · · · · · · · |                                                                   | Z  | 5.05 | 69.3 | 19.1 |      | 140.9 |        |
| 10404-<br>AAB                         | CDMA2000 (1xEV-DO, Rev. A)                                        | X  | 4.70 | 67.2 | 18.1 | 3.77 | 138.1 | ±0.7 % |
|                                       |                                                                   | Y  | 4.85 | 69.5 | 19.6 |      | 129.6 |        |
|                                       |                                                                   | Z  | 5.14 | 70.1 | 19.5 |      | 139.3 |        |
| 10415-<br>AAA                         | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | X  | 2.47 | 66.1 | 17.1 | 1.54 | 133.2 | ±0.7 % |
|                                       |                                                                   | Y  | 3,15 | 72.2 | 20.9 |      | 127,9 | L      |
|                                       |                                                                   | Z  | 3,32 | 72.0 | 20.1 |      | 137.2 |        |
| 10416-<br>AAA                         | IEEE 802.11g WiFI 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X  | 9,99 | 68.4 | 21.0 | 8.23 | 131.6 | ±2.5 % |
|                                       |                                                                   | Y  | 9.84 | 68.6 | 21.4 | 1    | 123.3 |        |
|                                       |                                                                   | Z  | 9.89 | 68,6 | 21.1 |      | 133.4 | I      |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 7 and 8). <sup>B</sup> Numerical linearization parameter: uncertainty not required. <sup>C</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

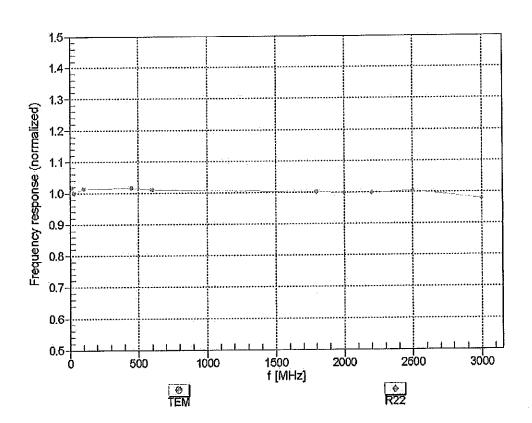
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k≓2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.55    | 6,55    | 6.55    | 0.34               | 1.74                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                               | 6.33    | 6.33    | 6.33    | 0.44               | 1.48                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                               | 5.26    | 5.26    | 5.26    | 0.73               | 1.21                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                               | 5.11    | 5.11    | 5.11    | 0.66               | 1.32                       | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                               | 4.53    | 4.53    | 4.53    | 0.62               | 1.40                       | ± 12.0 %       |
| 2600                 | 39.0                                  | 1,96                               | 4,40    | 4.40    | 4.40    | 0.68               | 1.38                       | ± 12.0 %       |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 end 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to  $\pm$  110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c end  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha?(Daph are determined union existing the tissue parameters)

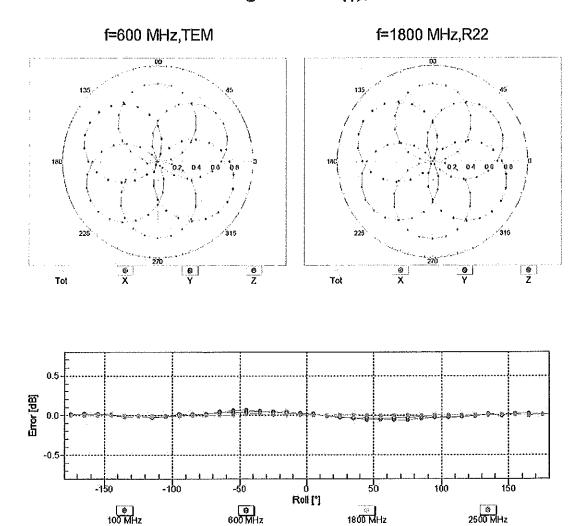
<sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>0</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2)  |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------|
| 750                  | 55.5                                  | 0.96                               | 6,14    | 6.14    | 6.14    | 0.35               | 1.76                       | ± 12.0 %        |
| 835                  | 55.2                                  | 0.97                               | 6.12    | 6.12    | 6.12    | 0.57               | 1.37                       | ± 12.0 %        |
| 1750                 | 53.4                                  | 1.49                               | 4.89    | 4.89    | 4.89    | 0.80               | 1.24                       | ± 12.0 %        |
| 1900                 | 53.3                                  | 1.52                               | 4.67    | 4.67    | 4.67    | 0.75               | 1.29                       | ± 12.0 %        |
| 2450                 | 52.7                                  | 1.95                               | 4.26    | 4.26    | 4.26    | 0.80               | 1.01                       | <u>± 12.0 %</u> |
| 2600                 | 52,5                                  | 2,16                               | 4.13    | 4.13    | 4.13    | 0.80               | 0.99                       | ± 12.0 %        |

## Calibration Parameter Determined in Body Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF essessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

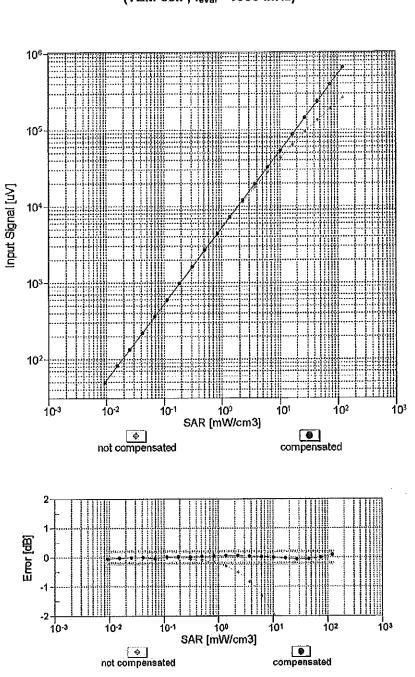
validity can be extended to  $\pm$  110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the Compensation formula is applied to.


the ConvF uncertainty for indicated target tissue parameters. <sup>O</sup> Alpha/Depth ere determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

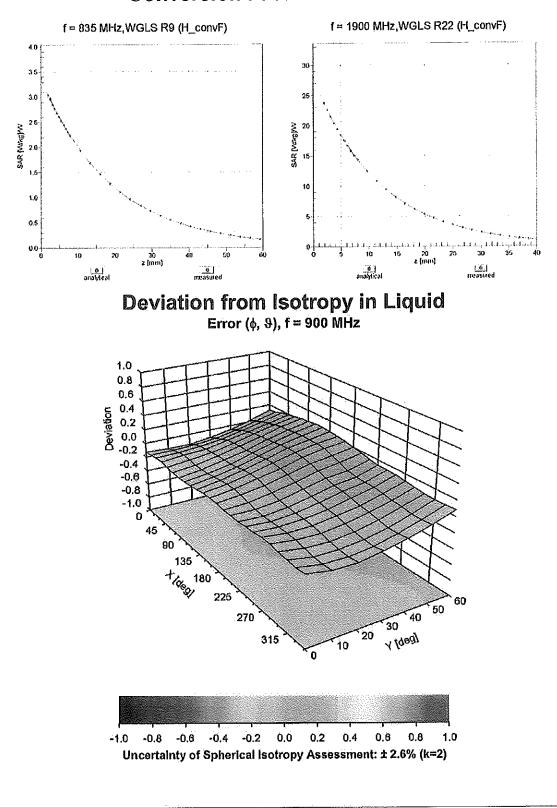
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


October 24, 2014



## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


October 24, 2014



## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 11 of 13



## **Conversion Factor Assessment**

Page 12 of 13

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -34.9      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Hac-MRA



S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: ES3-3319\_Mar15

## CALIBRATION CERTIFICATE

| Object                                                                | ES3DV3 - SN:3319                                                                                                                                                                                              | рн   | $\checkmark$ |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|
| Calibration procedure(s)                                              | QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6<br>Calibration procedure for dosimetric E-field probes                                                                                                               | 3/26 | /15          |
| Calibration date:                                                     | March 19, 2015                                                                                                                                                                                                |      |              |
| This calibration certificate docume<br>The measurements and the uncer | ents the traceability to national standards, which realize the physical units of measurements (SI).<br>tainties with confidence probability are given on the following pages and are part of the certificate. |      |              |
| All calibrations have been conduc                                     | ted in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%.                                                                                                             |      |              |
| Calibration Equipment used (M&T                                       | E critical for calibration)                                                                                                                                                                                   |      |              |

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Power sensor E4412A        | MY41498087      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 03-Apr-14 (No. 217-01915)         | Apr-15                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919)         | Apr-15                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920)         | Apr-15                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-660_Jan15)    | Jan-16                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |

|                              | Name                                   | Function                              | Signature              |
|------------------------------|----------------------------------------|---------------------------------------|------------------------|
| Calibrated by:               | Israe Elnaouq                          | Laboratory Techniciar                 | I Il a I false al      |
| Approved by:                 | Katja Pokovic                          | Technical Manager                     | Jol 14                 |
|                              |                                        |                                       | Issued: March 19, 2015 |
| This calibration certificate | e shall not be reproduced except in fu | Il without written approval of the la | boratory.              |

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Accreditation No.: SCS 0108

- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

| TSL             | tissue simulating liquid                                                                           |
|-----------------|----------------------------------------------------------------------------------------------------|
| NORMx,y,z       | sensitivity in free space                                                                          |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                                     |
| DCP             | diode compression point                                                                            |
| CF              | crest factor (1/duty_cycle) of the RF signal                                                       |
| A, B, C, D      | modulation dependent linearization parameters                                                      |
| Polarization φ  | φ rotation around probe axis                                                                       |
| Polarization 9  | artheta rotation around an axis that is in the plane normal to probe axis (at measurement center), |
|                 | i.e., $\vartheta = 0$ is normal to probe axis                                                      |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system             |
|                 |                                                                                                    |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

## Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f  $\leq$  800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe ES3DV3

# SN:3319

Manufactured: Calibrated: January 10, 2012 March 19, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

## **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.12     | 1.08     | 1.15     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 104.4    | 106.0    | 104.4    |           |

## **Modulation Calibration Parameters**

| UID           | Communication System Name                         |   | A<br>dB | Β<br>dB√μV | С    | D<br>dB | VR<br>mV | Unc <sup>⊨</sup><br>(k≔2) |
|---------------|---------------------------------------------------|---|---------|------------|------|---------|----------|---------------------------|
| 0             | CW                                                | X | 0.0     | 0.0        | 1.0  | 0.00    | 176.1    | ±3.3 %                    |
|               |                                                   | Y | 0.0     | 0.0        | 1.0  |         | 192.7    |                           |
|               |                                                   | Z | 0.0     | 0.0        | 1.0  |         | 174.6    |                           |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | X | 3.26    | 64.8       | 13.4 | 10.00   | 41.7     | ±1.9 %                    |
| 0,0,          |                                                   | Y | 2.66    | 62.2       | 11.7 |         | 39.5     |                           |
|               |                                                   | Z | 3.51    | 64.8       | 13.2 |         | 42.1     |                           |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | х | 3.47    | 68.1       | 19.1 | 2.91    | 142.9    | ±0.5 %                    |
|               |                                                   | Y | 3.37    | 67.9       | 19.1 |         | 133.0    |                           |
|               |                                                   | Ζ | 3.57    | 68.7       | 19.4 |         | 138.6    |                           |
| 10012-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps)       | × | 3.48    | 71.8       | 20.2 | 1.87    | 143.9    | ±0.7 %                    |
|               |                                                   | Y | 3.23    | 70.9       | 19.9 |         | 134.6    |                           |
|               |                                                   | Z | 3.68    | 72.8       | 20.6 |         | 140.5    |                           |
| 10013-<br>CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | X | 11.18   | 70.5       | 23.1 | 9.46    | 143.4    | ±3.3 %                    |
|               |                                                   | Y | 10.98   | 70.5       | 23.2 |         | 129.9    |                           |
|               |                                                   | Z | 11.19   | 70.6       | 23.1 |         | 138.8    |                           |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | X | 15.55   | 92.7       | 26.1 | 9.39    | 126.5    | ±1.7 %                    |
|               |                                                   | Y | 21.21   | 98.0       | 27.2 |         | 142.0    |                           |
|               |                                                   | Z | 19.50   | 96.1       | 27.0 |         | 125.4    |                           |
| 10023-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0)                       | × | 23.54   | 100.0      | 28.4 | 9.57    | 142.6    | ±2.2 %                    |
|               |                                                   | Y | 23.24   | 99.9       | 28.0 |         | 137.4    |                           |
|               |                                                   | Z | 23.57   | 99.6       | 28.2 |         | 139.7    |                           |
| 10024-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X | 17.00   | 90.2       | 22.7 | 6.56    | 128.9    | ±2.2 %                    |
|               |                                                   | Y | 35.20   | 99.7       | 24.9 |         | 148.2    |                           |
|               |                                                   | Z | 33.12   | 99.6       | 25.4 |         | 123.8    |                           |
| 10027-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X | 44.20   | 99.6       | 23.6 | 4.80    | 146.0    | ±1.9 %                    |
|               |                                                   | Y | 49.99   | 99.9       | 23.0 |         | 136.6    |                           |
|               |                                                   | Z | 41.43   | 99.6       | 23.9 |         | 141.4    |                           |
| 10028-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | × | 46.56   | 99.7       | 22.7 | 3.55    | 127.7    | ±2.2 %                    |
|               |                                                   | Y | 58.11   | 99.8       | 21.9 |         | 145.3    |                           |
|               |                                                   | Z | 55.65   | 99.6       | 22.2 |         | 124.3    |                           |
| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | X | 34.25   | 99.4       | 21.1 | 1.16    | 140.3    | ±1.7 %                    |
|               |                                                   | Y | 40.72   | 100.0      | 20.6 |         | 135.7    |                           |
|               |                                                   | Z | 45.39   | 100.0      | 20.8 |         | 136.4    |                           |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)       | X | 6.30    | 67.1       | 19.5 | 5.67    | 127.4    | ±1.4 %                    |
|               |                                                   | Y | 6.58    | 68.4       | 20.3 |         | 149.0    |                           |
|               |                                                   | Z | 6.55    | 68.0       | 19.9 | 1       | 146.3    |                           |

## ES3DV3-- SN:3319

| 10103-        | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK) | x      | 10.47        | 75.6         | 25.8         | 9.29    | 146.6 | ±3.0 %  |
|---------------|---------------------------------------------|--------|--------------|--------------|--------------|---------|-------|---------|
| CAB           | MHZ, QPSK)                                  | Y      | 10.18        | 75.8         | 26.3         |         | 136.2 |         |
|               |                                             | z      | 10.38        | 75.3         | 25.6         |         | 140.8 |         |
| 10108-<br>CAC | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X      | 6,18         | 66.6         | 19.4         | 5.80    | 126.9 | ±1.4 %  |
| CAU           |                                             | Y      | 6.40         | 67.8         | 20.1         |         | 147.0 |         |
|               |                                             | Z      | 6.44         | 67.6         | 19.9         |         | 145.7 |         |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | ×      | 10.24        | 69.0         | 21.3         | 8.07    | 142.7 | ±2.5 %  |
|               |                                             | Y      | 10.25        | 69.2         | 21.5         |         | 136.7 |         |
|               |                                             | Z      | 10.16        | 68.8         | 21.2         |         | 136.6 |         |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)     | Х      | 9.85         | 74.8         | 25.6         | 9.28    | 140.8 | ±3.0 %  |
|               |                                             | Υ      | 9.49         | 74.7         | 25.9         |         | 130.5 |         |
|               |                                             | Ζ      | 9.90         | 74.8         | 25.6         |         | 136.8 |         |
| 10154-<br>CAC | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | Х      | 6.13         | 67.1         | 19.7         | 5.75    | 146.6 | ±1.4 %  |
|               |                                             | Y      | 6.11         | 67.4         | 19.9         |         | 147.7 |         |
|               |                                             | Z      | 6.12         | 67.1         | 19.7         | <b></b> | 142.3 | 14 4 07 |
| 10160-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)     | ×      | 6.33         | 66.7         | 19.4         | 5.82    | 128.9 | ±1.4 %  |
|               |                                             | Y      | 6.33         | 67.1         | 19.7         |         | 128.7 |         |
|               |                                             | Z      | 6.57         | 67.6         | 19.9         |         | 147.4 | 14.0.0/ |
| 10169-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)       | ×      | 4.89         | 66.4         | 19.5         | 5.73    | 127.5 | ±1.2 %  |
|               |                                             | Y      | 4.99         | 67.5         | 20.2         |         | 149.3 |         |
|               |                                             | Z      | 5.09         | 67.3         | 20.0         |         | 145.1 | 1070/   |
| 10172-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)       | ×      | 7.99         | 75.8         | 26.3         | 9.21    | 127.6 | ±2.7 %  |
|               |                                             | Y      | 9.29         | 81.7         | 29.6         |         | 149.8 |         |
|               |                                             | Z      | 8.04         | 75.8         | 26.3         | 5 70    | 149.3 | ±1.4 %  |
| 10175-<br>CAC | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X      | 5.08         | 67.3         | 20.0         | 5.72    | 149.5 | 11.4 /0 |
|               |                                             | Y      | 5.00         | 67.6         | 20.3         | 1       | 145.0 |         |
|               |                                             | Z      | 5.09         | 67.3         | 20.0         | 5.72    | 143.0 | ±1.4 %  |
| 10181-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,<br>QPSK)    | X      | 5.08         | 67.3         | 20.0         | 5.72    | 146.5 | 1.4 /0  |
|               |                                             | Y      | 5.06         | 67.9         | 20.4         |         | 147.1 |         |
|               |                                             | Z      | 5.11         | 67.4         | 20.0         | 8.10    | 134.6 | ±2.2 %  |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)  | X      | 9.89         | 68.7         | 21.2         | 0.10    | 134.0 | 12.2 70 |
|               |                                             | Y      | 9.84         | 68.9         | 21.4         |         | 130.4 |         |
|               |                                             | Z      | 9.82         | 68.5         | 21.1         | 5.97    | 138.0 | ±1.4 %  |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                            | X      | 7.02         | 67.1         | 19.5         | 5.87    | 133.2 | 1.4 70  |
| ļ             |                                             | Y      | 6.88         | 67.0         | 19.5         |         | 134.6 |         |
| 40007         |                                             | Z      | 7.01         | 67.1         | 19.5         | 9.21    | 128.0 | ±2.7 %  |
| 10237-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X      | 8.01         | 75.9         | 26.4         |         | 149.7 |         |
|               |                                             | Y<br>7 | 9.39         | 82.1         | 29.9         |         | 129.1 | 1       |
| 10252-        | LTE-TDD (SC-FDMA, 50% RB, 10 MHz,           | Z<br>X | 8.34<br>9.05 | 76.9<br>73.6 | 26.9<br>25.1 | 9.24    | 130.6 | ±3.0 %  |
| CAB           | QPSK)                                       | Y      | 8.76         | 73.7         | 25.5         |         | 123.6 |         |
|               |                                             | Ż      | 9.10         | 73.6         | 25.1         | 1       | 127.8 |         |
| 10267-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X      | 9.81         | 74.7         | 25.6         | 9.30    | 139.3 | ±3.0 %  |
|               |                                             | Y      | 9.50         | 74.8         | 25.9         |         | 130.7 |         |
|               |                                             | Z      | 9.81         | 74.6         | 25.5         |         | 135.0 |         |

#### ES3DV3-- SN:3319

March 19, 2015

| 10275-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rei8.4)                       | X | 4.49  | 67.1 | 18.9 | 3.96 | 140.1 | ±0.7 % |
|---------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
|               |                                                                   | Y | 4.46  | 67.2 | 19.0 |      | 137.6 |        |
|               |                                                                   | Z | 4.52  | 67.1 | 18.9 |      | 137.1 |        |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                                    | X | 3.68  | 67.0 | 18.8 | 3.46 | 129.3 | ±0.7 % |
|               |                                                                   | Y | 3.64  | 67.3 | 19.0 |      | 130.3 |        |
|               |                                                                   | Z | 3.84  | 67.9 | 19.2 |      | 148.6 |        |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                                    | X | 3.64  | 67.2 | 18.8 | 3.39 | 131.8 | ±0.5 % |
|               |                                                                   | Y | 3.60  | 67.4 | 19.1 |      | 128.2 |        |
|               |                                                                   | Z | 3.71  | 67.5 | 19.0 |      | 128.0 |        |
| 10297-<br>AAA | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                           | X | 6.43  | 67.5 | 19.9 | 5.81 | 147.2 | ±1.7 % |
|               |                                                                   | Y | 6.39  | 67.7 | 20.0 |      | 145.4 |        |
|               |                                                                   | Z | 6.42  | 67.5 | 19.8 |      | 143.2 |        |
| 10311-<br>AAA | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X | 6.73  | 67.1 | 19.7 | 6.06 | 129.7 | ±1.4 % |
|               |                                                                   | Y | 6.75  | 67.5 | 19.9 |      | 130.8 |        |
|               |                                                                   | Z | 6.75  | 67.3 | 19.7 |      | 126.2 |        |
| 10400-<br>AAB | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)               | X | 10.14 | 68.9 | 21.5 | 8.37 | 136.7 | ±2.5 % |
|               |                                                                   | Y | 10.23 | 69.5 | 22.0 |      | 136.5 |        |
|               |                                                                   | Ζ | 10.13 | 68.9 | 21.5 |      | 132.8 |        |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                        | Х | 4.97  | 69.2 | 19.3 | 3.76 | 143.5 | ±0.5 % |
|               |                                                                   | Y | 4.87  | 69.3 | 19.4 |      | 141.0 |        |
|               |                                                                   | Z | 5.02  | 69.2 | 19.3 |      | 139.6 |        |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                        | X | 4.91  | 69.3 | 19.4 | 3.77 | 139.8 | ±0.7 % |
|               |                                                                   | Y | 4.67  | 68.9 | 19.1 |      | 138.9 |        |
|               |                                                                   | Z | 4.89  | 69.1 | 19.3 |      | 137.1 |        |
| 10415-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | X | 2.93  | 70.1 | 19.6 | 1.54 | 137.8 | ±0.7 % |
|               |                                                                   | Y | 2.84  | 69.8 | 19.6 |      | 138.2 |        |
|               |                                                                   | Z | 3.04  | 70.8 | 19.9 |      | 134.2 |        |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | Х | 9.94  | 68.7 | 21.3 | 8.23 | 134.6 | ±2.2 % |
|               |                                                                   | Y | 10.00 | 69.1 | 21.7 |      | 134.1 |        |
|               |                                                                   | Z | 9.89  | 68.5 | 21.2 |      | 130.1 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 7 and 8).
 <sup>B</sup> Numerical linearization parameter: uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the statement of the square of the sq field value.

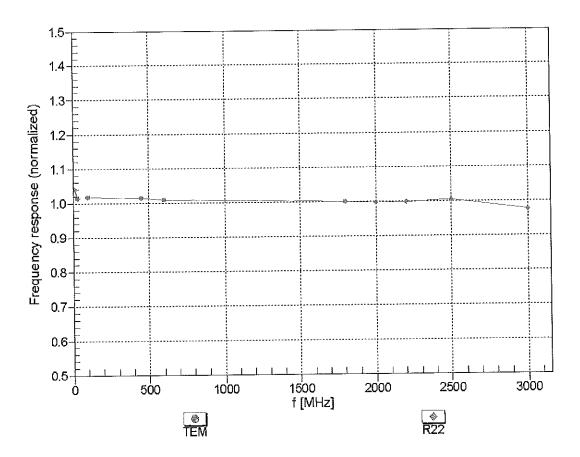
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 1 (0112)             | Termatricy                            |                                    |         |         |         |                    |                            |                |
| 750                  | 41.9                                  | 0.89                               | 6.69    | 6.69    | 6.69    | 0.40               | 1.70                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                               | 6.41    | 6.41    | 6.41    | 0.43               | 1.62                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                               | 5.29    | 5.29    | 5.29    | 0.80               | 1.16                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                               | 5.10    | 5.10    | 5.10    | 0.80               | 1.24                       | ± 12.0 %       |
| 2300                 | 39.5                                  | 1.67                               | 4.77    | 4.77    | 4.77    | 0.64               | 1.38                       | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                               | 4.55    | 4.55    | 4.55    | 0.80               | 1.29                       | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                               | 4.39    | 4.39    | 4.39    | 0.80               | 1.31                       | ± 12.0 %       |

## Calibration Parameter Determined in Head Tissue Simulating Media

<sup>6</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to

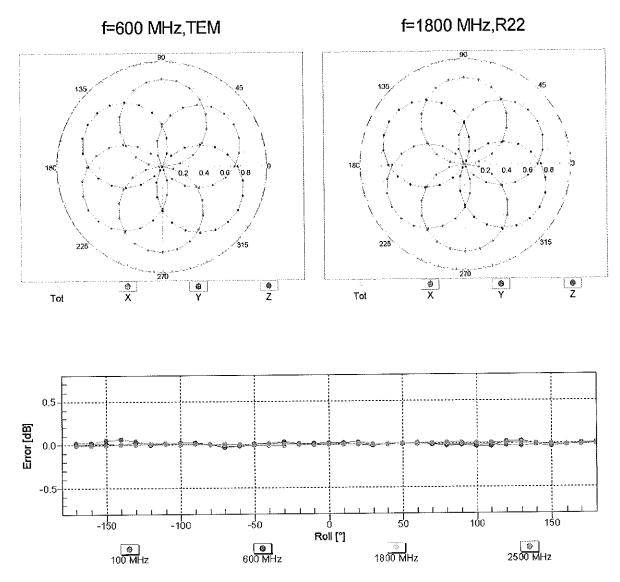
<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the CorvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k≔2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
|                      | [ Chanterity                          | (0,111)                            |         |         |         |                    |                            |                |
| 750                  | 55.5                                  | 0.96                               | 6.10    | 6.10    | 6.10    | 0.34               | 1.80                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.07    | 6.07    | 6.07    | 0.47               | 1.56                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 4.83    | 4.83    | 4.83    | 0.70               | 1.36                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 4.53    | 4.53    | 4.53    | 0.71               | 1.39                       | ± 12.0 %       |
| 2300                 | 52.9                                  | 1.81                               | 4.24    | 4.24    | 4.24    | 0.80               | 1.26                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 4.11    | 4.11    | 4.11    | 0.80               | 1.10                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 3.90    | 3.90    | 3.90    | 0.80               | 1.11                       | ± 12.0 %       |

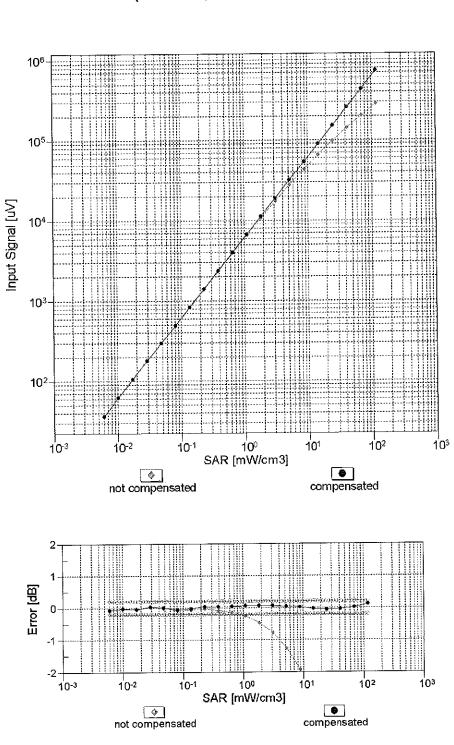
## Calibration Parameter Determined in Body Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  100 MHz.


validity can be extended to  $\pm$  110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha Depth are determined during collipsifient SPEAC warrants that the tempining deviation due to the houndary officet after componention is

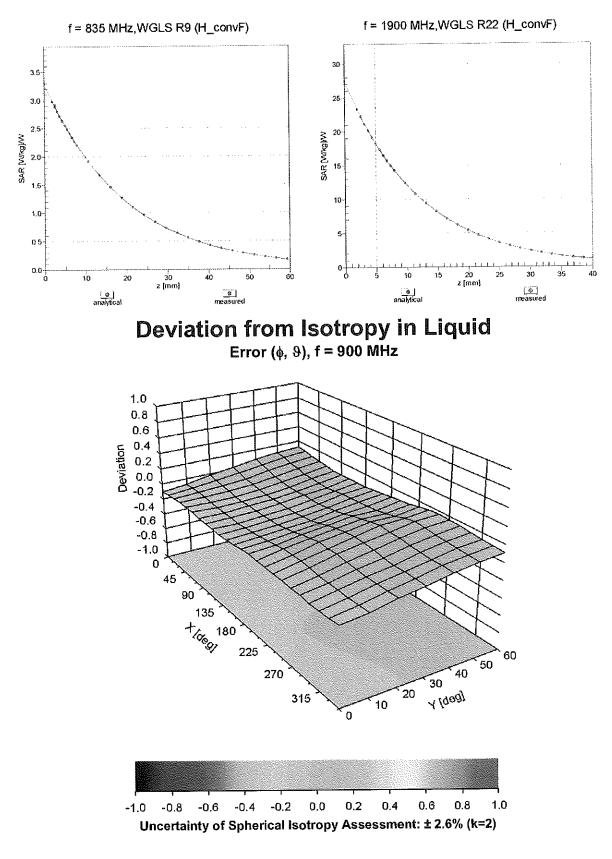
<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



**Conversion Factor Assessment** 

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -120.2     |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3263\_May15

## CALIBRATION CERTIFICATE

| Object                                                                | ES3DV3 - SN:3263                                                                                                                                                                                          |            |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Calibration procedure(s)                                              | QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6<br>Calibration procedure for dosimetric E-field probes                                                                                                           | BN 5128/15 |
| Calibration date:                                                     | May 20, 2015                                                                                                                                                                                              | 7          |
| This calibration certificate docume<br>The measurements and the uncer | nts the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate. |            |
| All calibrations have been conduct                                    | red in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%.                                                                                                         |            |

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 01-Apr-15 (No. 217-02128)         | Mar-16                 |
| Power sensor E4412A        | MY41498087      | 01-Apr-15 (No. 217-02128)         | Mar-16                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 01-Apr-15 (No. 217-02129)         | Mar-16                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132)         | Mar-16                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133)         | Mar-16                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-660_Jan15)    | Jan-16                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |

|                              | Name                                 | Function                                    | Signature            |
|------------------------------|--------------------------------------|---------------------------------------------|----------------------|
| Calibrated by:               | Leif Klysner                         | Laboratory Technician                       | Sin Mille            |
|                              |                                      |                                             | og ngin              |
| Approved by:                 | Katja Pokovic                        | Technical Manager                           | A AML                |
|                              |                                      |                                             | 101010               |
|                              |                                      |                                             | Issued: May 19, 2015 |
| This calibration certificate | shall not be reproduced except in fu | ll without written approval of the laborato | rv.                  |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Glossary:



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| ologgary.       |                                                                                                                                                      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSL             | tissue simulating liquid                                                                                                                             |
| NORMx,y,z       | sensitivity in free space                                                                                                                            |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                                                                                       |
| DCP             | diode compression point                                                                                                                              |
| CF              | crest factor (1/duty_cycle) of the RF signal                                                                                                         |
| A, B, C, D      | modulation dependent linearization parameters                                                                                                        |
| Polarization φ  | φ rotation around probe axis                                                                                                                         |
| Polarization 9  | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system                                                               |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
  b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe ES3DV3

## SN:3263

Manufactured: Calibrated:

January 25, 2010 May 20, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.21     | 1.25     | 1.13     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 106.1    | 103.6    | 108.3    | ······    |

#### **Modulation Calibration Parameters**

| UID           | Communication System Name                         |   | A<br>dB | B<br>dB√μV | С    | D<br>dB   | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|---------------|---------------------------------------------------|---|---------|------------|------|-----------|----------|---------------------------|
| 0             | ĊW                                                | X | 0.0     | 0.0        | 1.0  | 0.00      | 205.3    | ±3.3 %                    |
|               |                                                   | Y | 0.0     | 0.0        | 1.0  |           | 207.3    |                           |
|               |                                                   | Z | 0.0     | 0.0        | 1.0  |           | 199.5    |                           |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | X | 1.83    | 58.4       | 9.4  | 10.00     | 41.2     | ±1.4 %                    |
|               |                                                   | Y | 3.88    | 63.3       | 12.9 |           | 47.5     |                           |
|               |                                                   | Z | 1.42    | 56.8       | 8.7  |           | 39.5     |                           |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | X | 3.27    | 67.4       | 18.6 | 2.91      | 140.1    | ±0.7 %                    |
|               |                                                   | Y | 3.39    | 67.5       | 18.7 |           | 142.7    |                           |
| 10010         |                                                   | Z | 3.32    | 67.6       | 18.6 |           | 136.9    |                           |
| 10012-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps)       | × | 2.85    | 68.8       | 18.8 | 1.87      | 142.2    | ±0.7 %                    |
|               |                                                   | Y | 3.38    | 70.7       | 19.5 |           | 144.8    |                           |
| 10013-        |                                                   | Z | 3.07    | 70.0       | 19.1 |           | 138.1    |                           |
| 10013-<br>CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | × | 10.99   | 70.8       | 23.4 | 9.46      | 135.9    | ±2.5 %                    |
|               |                                                   | Y | 11.36   | 70.3       | 22.8 |           | 124.7    |                           |
| 40004         |                                                   | Z | 10.57   | 70.0       | 22.9 |           | 129.4    |                           |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | X | 9.38    | 84.7       | 22.1 | 9.39      | 139.8    | ±1.9 %                    |
|               |                                                   | Y | 27.79   | 100.0      | 28.7 |           | 129.4    |                           |
| 10023-        | CRRS EDD (TDMA, CMCK, TMC)                        | Z | 9.29    | 86.8       | 23.8 |           | 134.5    |                           |
| DAB           | GPRS-FDD (TDMA, GMSK, TN 0)                       | X | 9.63    | 84.9       | 22.1 | 9.57      | 134.1    | ±2.5 %                    |
|               |                                                   | Y | 25.29   | 98.2       | 28.2 |           | 124.0    |                           |
| 10024-        |                                                   | Z | 9.65    | 87.7       | 24.3 |           | 128.2    |                           |
| DAB           | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X | 16.20   | 88.9       | 21.0 | 6.56      | 145.2    | ±1.4 %                    |
|               |                                                   | Y | 41.82   | 99.7       | 25.6 |           | 128.5    |                           |
| 10027-        |                                                   | Z | 24.57   | 96.8       | 24.1 |           | 142.0    |                           |
| DAB           | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X | 55.77   | 99.6       | 22.1 | 4.80      | 138.5    | ±2.2 %                    |
|               |                                                   | Y | 53.39   | 99.7       | 23.9 |           | 140.5    |                           |
| 10028-        |                                                   | Z | 40.28   | 99.6       | 23.2 | <u> </u>  | 134.3    |                           |
| DAB           | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X | 81.43   | 99.8       | 20.7 | 3.55      | 148.6    | ±1.7 %                    |
|               |                                                   | Y | 60.49   | 99.7       | 22.9 | ļ <u></u> | 146.0    |                           |
| 10032-        |                                                   | Z | 62.69   | 99.6       | 21.2 |           | 145.0    |                           |
| CAA           | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | X | 96.06   | 93.7       | 16.0 | 1.16      | 140.3    | ±1.9 %                    |
|               |                                                   | Y | 77.08   | 99.9       | 20.1 |           | 149.0    |                           |
| 10100         |                                                   | Z | 99.64   | 99.9       | 18.6 |           | 138.0    |                           |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)       | X | 6.24    | 67.2       | 19.6 | 5.67      | 131.7    | ±1.4 %                    |
|               |                                                   | Y | 6.39    | 67.3       | 19.5 |           | 133.8    |                           |
|               |                                                   | Z | 6.19    | 67.2       | 19.6 |           | 126.8    |                           |

;

| 10103-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK) | X      | 10.13               | 76.3         | 26.6         | 9.29 | 142.6          | ±2.7 % |
|---------------|---------------------------------------------|--------|---------------------|--------------|--------------|------|----------------|--------|
|               |                                             | Y      | 12.07               | 77.9         | 26.6         |      | 138.9          |        |
| -             |                                             | Z      | 9.41                | 74.3         | 25.6         |      | 134.1          |        |
| 10108-<br>CAC | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X      | 6.13                | 66.9         | 19.5         | 5.80 | 129.6          | ±1.4 % |
|               |                                             | Y      | 6.35                | 67.1         | 19.5         |      | 133.7          |        |
|               |                                             | Z      | 6.39                | 68.0         | 20.1         |      | 150.0          |        |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | X      | 10.34               | 69.6         | 21.7         | 8.07 | 147.0          | ±1.9 % |
| ·····         |                                             | Y      | 10.05               | 68.3         | 20.9         |      | 123.4          |        |
|               |                                             | Z      | 10.08               | 69.1         | 21.3         |      | 138.2          |        |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)  | X      | 9.44                | 75.3         | 26.3         | 9.28 | 137.0          | ±3.5 % |
|               |                                             | Y      | 11.36               | 76.9         | 26.3         |      | 134.5          |        |
| 10154-        |                                             | Z      | 8.85                | 73.5         | 25.3         |      | 130.3          |        |
| CAC           | LTE-FDD (SC-FDMA, 50% RB, 10 MHz,<br>QPSK)  | X      | 5.79                | 66.2         | 19.2         | 5.75 | 126.9          | ±1.2 % |
|               |                                             | Y      | 6.05                | 66.5         | 19.3         |      | 130.9          |        |
| 10160-        | LTE-FDD (SC-FDMA, 50% RB, 15 MHz,           | Z      | 5.92                | 66.9         | 19.5         |      | 145.5          |        |
| CAB           | QPSK)                                       | X      | 6.25                | 66.9         | 19.5         | 5.82 | 131.8          | ±1.4 % |
|               |                                             | Y      | 6.47                | 67.0         | 19.5         |      | 135.4          |        |
| 10169-        | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,             | Z      | 6.09                | 66.5         | 19.3         |      | 127.5          |        |
| CAB           | QPSK)                                       | X      | 4.78                | 66.7         | 19.7         | 5.73 | 130.0          | ±1.2 % |
|               |                                             | Y      | 5.14                | 66.7         | 19.5         |      | 135.0          |        |
| 10172-        | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,             | Z      | 4.83                | 67.1         | 19.9         |      | 147.9          |        |
| CAB           | QPSK)                                       | X      | 8.63                | 80.4         | 29.1         | 9.21 | 147.7          | ±2.7 % |
|               |                                             | Y      | 9.72                | 78.5         | 27.2         |      | 123.9          |        |
| 10175-<br>CAC | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | Z<br>X | <u>7.63</u><br>4.75 | 76.7<br>66.6 | 27.2<br>19.6 | 5.72 | 142.5<br>128.2 | ±1.2 % |
|               |                                             | Y      | 5.12                | 66.6         | 19.5         |      | 134.3          |        |
|               |                                             | z      | 4.87                | 67.1         | 19.9         |      | 148.0          |        |
| 10181-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)       | X      | 4.76                | 66.6         | 19.6         | 5.72 | 127.9          | ±1.2 % |
|               |                                             | Y      | 5.12                | 66.6         | 19.5         |      | 134.5          |        |
|               |                                             | Z      | 4.87                | 67.3         | 20.0         |      | 147.0          |        |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)  | X      | 9.87                | 69.1         | 21.6         | 8.10 | 135.8          | ±2.2 % |
|               |                                             | Y      | 10.19               | 69.1         | 21.4         |      | 145.3          |        |
|               |                                             | Ζ      | 9.65                | 68.8         | 21.3         |      | 130.5          |        |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                            | X      | 6.90                | 67.2         | 19.5         | 5.97 | 139.2          | ±1.7 % |
|               |                                             | Y      | 7.22                | 67.3         | 19.6         |      | 148.0          |        |
| 10237-        |                                             | Z      | 6.75                | 67.0         | 19.4         |      | 134.1          |        |
| CAB           | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)       | X      | 8.68                | 80.6         | 29.2         | 9.21 | 148.0          | ±3.0 % |
|               |                                             | Y      | 9.82                | 78.8         | 27.3         |      | 125.0          |        |
| 10252-        | LITE TOD (SC EDMA 50% DD 40 M               | Z      | 7.85                | 77.6         | 27.7         |      | 143.5          |        |
| CAB           | LTE-TDD (SC-FDMA, 50% RB, 10 MHz,<br>QPSK)  | X      | 8.56                | 73.7         | 25.6         | 9.24 | 126.6          | ±3.5 % |
|               |                                             | Y      | 10.58               | 76.0         | 25.9         |      | 126.3          |        |
| 10267-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | Z<br>X | 8.84<br>9.24        | 74.8<br>74.6 | 26.1<br>25.9 | 9.30 | 146.7<br>133.6 | ±3.3 % |
| 5/10          |                                             | Y      | 11.38               | 76.9         | 26.2         |      | 134.3          |        |
|               |                                             |        |                     |              |              |      |                |        |

#### ES3DV3-SN:3263

| 10275-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8.4)                       | X | 4.39  | 67.0 | 18.9 | 3.96 | 143.8 | ±0.9 % |
|---------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
|               |                                                                   | Y | 4.55  | 67.1 | 18.8 |      | 147.3 |        |
|               |                                                                   | Z | 4.42  | 67.4 | 19.0 |      | 139.9 |        |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                                    | X | 3.59  | 67.2 | 18.9 | 3.46 | 132.2 | ±0.5 % |
|               |                                                                   | Y | 3.68  | 66.7 | 18.5 |      | 136.0 |        |
|               |                                                                   | Z | 3.57  | 67.1 | 18.6 |      | 128.5 |        |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                                    | X | 3.50  | 67.0 | 18.7 | 3.39 | 134.0 | ±0.7 % |
|               |                                                                   | Y | 3.62  | 66.6 | 18.4 |      | 138.6 |        |
|               |                                                                   | Z | 3.50  | 67.2 | 18.7 |      | 129.8 |        |
| 10297-<br>AAA | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)                        | X | 6.11  | 66.8 | 19.4 | 5.81 | 127.7 | ±1.4 % |
|               |                                                                   | Y | 6.33  | 67.0 | 19.5 |      | 132.1 |        |
|               |                                                                   | Z | 6.28  | 67.6 | 19.9 |      | 146.6 |        |
| 10311-<br>AAA | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X | 6.71  | 67.5 | 19.9 | 6.06 | 134.2 | ±1.7 % |
|               |                                                                   | Y | 6.93  | 67.7 | 19.9 | [    | 138.0 |        |
|               |                                                                   | Z | 6.57  | 67.2 | 19.6 |      | 128.0 | 5574A  |
| 10400-<br>AAC | IEEE 802.11ac WiFi (20MHz, 64-QAM,<br>99pc duty cycle)            | X | 10.17 | 69.5 | 21.9 | 8.37 | 138.5 | ±2.5 % |
|               |                                                                   | Y | 10.55 | 69.5 | 21.8 |      | 148.0 |        |
|               |                                                                   | Z | 9.92  | 69.0 | 21.6 |      | 132.5 |        |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                        | X | 4.79  | 69.2 | 19.1 | 3.76 | 144.1 | ±0.7 % |
|               |                                                                   | Y | 4.71  | 67.0 | 18.2 |      | 129.2 |        |
|               |                                                                   | Z | 4.72  | 69.3 | 19.2 |      | 139.3 |        |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                        | × | 4.69  | 69.2 | 19.2 | 3.77 | 142.1 | ±0.7 % |
|               |                                                                   | Y | 4.71  | 67.5 | 18.5 |      | 126.7 |        |
|               | -                                                                 | Z | 4.51  | 68.6 | 18.8 |      | 137.3 |        |
| 10415-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | × | 2.55  | 68.0 | 18.5 | 1.54 | 141.7 | ±0.7 % |
|               |                                                                   | Y | 2.67  | 68.4 | 18.6 |      | 144.0 |        |
|               |                                                                   | Z | 2.98  | 70.8 | 19.5 |      | 138.0 |        |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X | 10.01 | 69.3 | 21.8 | 8.23 | 137.3 | ±2.5 % |
|               |                                                                   | Y | 10.31 | 69.3 | 21.6 |      | 146.0 |        |
|               |                                                                   | Z | 9.69  | 68.8 | 21.4 |      | 129.9 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 7 and 8).
 <sup>B</sup> Numerical linearization parameter: uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the source the square of the square state. field value.

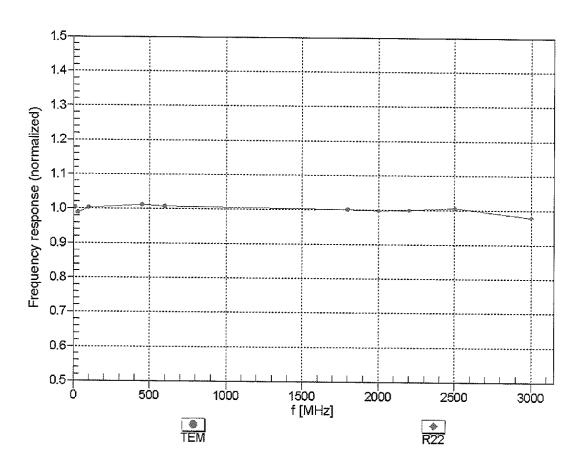
|                      |                                       |                                    |         |         |         | <b>J</b>           |                            |                |  |  |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|--|--|
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |  |  |
| 750                  | 41.9                                  | 0.89                               | 6.27    | 6.27    | 6.27    | 0.29               | 1.87                       | ± 12.0 %       |  |  |
| 835                  | 41.5                                  | 0.90                               | 6.18    | 6.18    | 6.18    | 0.49               | 1.42                       | ± 12.0 %       |  |  |
| 1750                 | 40.1                                  | 1.37                               | 5.27    | 5.27    | 5.27    | 0.49               | 1.46                       | ± 12.0 %       |  |  |
| 1900                 | 40.0                                  | 1.40                               | 4.96    | 4.96    | 4.96    | 0.66               | 1.28                       | ± 12.0 %       |  |  |
| 2300                 | 39.5                                  | 1.67                               | 4.63    | 4.63    | 4.63    | 0.58               | 1.41                       | ± 12.0 %       |  |  |
| 2450                 | 39.2                                  | 1.80                               | 4.40    | 4.40    | 4.40    | 0.71               | 1.34                       | ± 12.0 %       |  |  |
| 2600                 | 39.0                                  | 1.96                               | 4.25    | 4.25    | 4.25    | 0.80               | 1.25                       | ± 12.0 %       |  |  |

#### **Calibration Parameter Determined in Head Tissue Simulating Media**

<sup>c</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to  $\pm$  110 MHz.

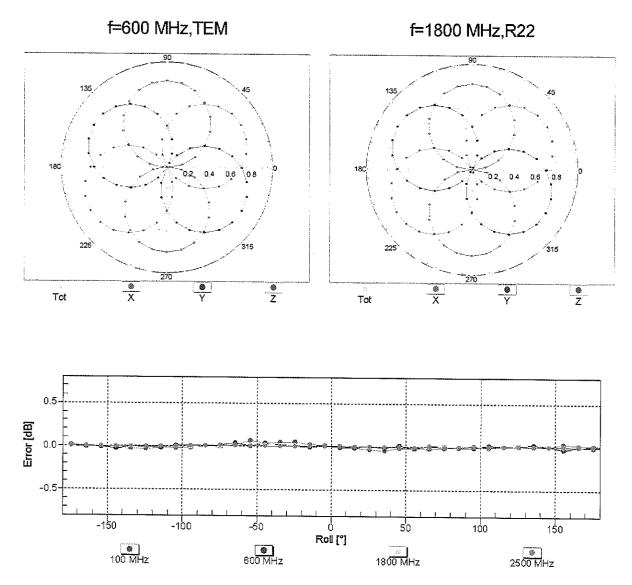
<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 6.07    | 6.07    | 6.07    | 0.53               | 1.42                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.08    | 6.08    | 6.08    | 0.57               | 1.36                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 4.88    | 4.88    | 4.88    | 0.54               | 1.50                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 4.66    | 4.66    | 4.66    | 0.56               | 1.51                       | ± 12.0 %       |
| 2300                 | 52.9                                  | 1.81                               | 4.42    | 4.42    | 4.42    | 0.69               | 1.33                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 4.28    | 4.28    | 4.28    | 0.80               | 1.08                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 4.11    | 4.11    | 4.11    | 0.80               | 1.09                       | ± 12.0 %       |

#### **Calibration Parameter Determined in Body Tissue Simulating Media**

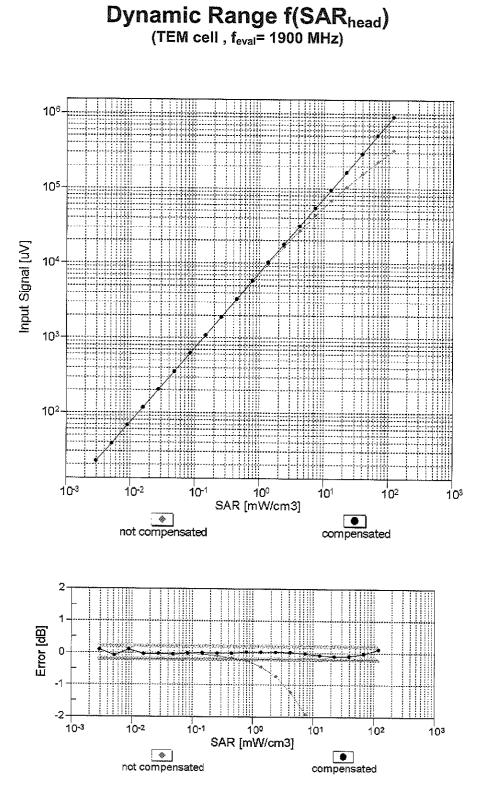
<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm 110$  MHz.


At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

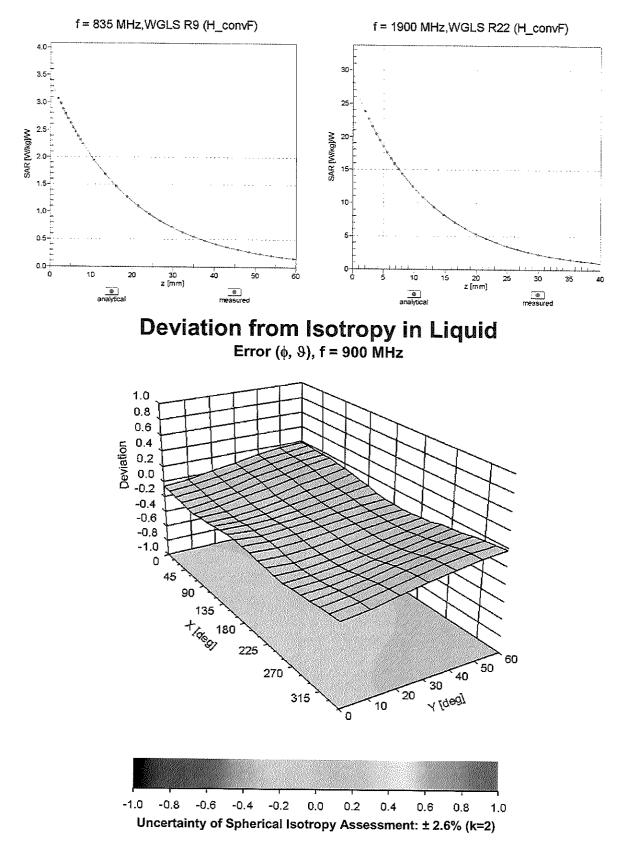
always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

May 20, 2015



Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 65.6       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3332\_Sep14/2

| CALIBRATION                        | CERTIFICATE                                                    | E (Replacement of No:                                                                                                                                  | ES3-3332_Sep14)                        |
|------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Object                             | ES3DV3 - SN:33                                                 | 32                                                                                                                                                     |                                        |
| Calibration procedure(s)           |                                                                | A CAL-23.v5, QA CAL-25.v6<br>dure for dosimetric E-field probes                                                                                        | CC                                     |
|                                    |                                                                |                                                                                                                                                        |                                        |
| Calibration date:                  | September 18, 2                                                | <b>)14</b>                                                                                                                                             |                                        |
| The measurements and the unc       | ertainties with confidence pr<br>ucted in the closed laborator | onal standards, which realize the physical units<br>obability are given on the following pages and<br>y facility: environment temperature (22 ± 3)°C a | are part of the cartificate.           |
| Primary Standards                  |                                                                | Cal Date (Certificate No.)                                                                                                                             | Scheduled Calibration                  |
| Power meter E4419B                 | GB41293874                                                     | 03-Apr-14 (No. 217-01911)                                                                                                                              | Apr-15                                 |
| Power sensor E4412A                | MY41498087                                                     | 03-Apr-14 (No. 217-01911)                                                                                                                              | Apr-15                                 |
| Reference 3 dB Attenuator          | SN: S5054 (3c)                                                 | 03-Apr-14 (No. 217-01915)                                                                                                                              | Apr-15                                 |
| Reference 20 dB Attenuator         | SN: S5277 (20x)                                                | 03-Apr-14 (No. 217-01919)                                                                                                                              | Apr-15                                 |
| Reference 30 dB Attenuator         | SN: S5129 (30b)                                                | 03-Apr-14 (No. 217-01920)                                                                                                                              | Apr-15                                 |
| Reference Probe ES3DV2             | SN: 3013                                                       | 30-Dec-13 (No. ES3-3013_Dec13)                                                                                                                         | Dec-14                                 |
| DAE4                               | SN: 660                                                        | 13-Dec-13 (No. DAE4-660_Dec13)                                                                                                                         | Dec-14                                 |
| Secondary Standards                | ID                                                             | Check Date (in house)                                                                                                                                  | Scheduled Check                        |
| RF generator HP 8648C              | US3642U01700                                                   | 4-Aug-99 (in house check Apr-13)                                                                                                                       | In house check: Apr-16                 |
| Network Analyzer HP 8753E          | US37390585                                                     | 18-Oct-01 (in house check Oct-13)                                                                                                                      | In house check: Oct-14                 |
| Calibrated by:                     | Name<br>Israe El-Naouq                                         | Function<br>Laboratory Technician                                                                                                                      | Signature<br>Mrau CV Jacoury           |
| Approved by:                       | Katja Pokovic                                                  | Technical Manager                                                                                                                                      | EUG-                                   |
|                                    |                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                  | Issued: November 3, 2014               |
| This calibration certificate shall | not be reproduced except in                                    | full without written approval of the laboratory.                                                                                                       | ······································ |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
  - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

| Glossary:       |                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------|
| TSL             | tissue simulating liquid                                                                     |
| NORMx,y,z       | sensitivity in free space                                                                    |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                               |
| DCP             | diode compression point                                                                      |
| CF              | crest factor (1/duty_cycle) of the RF signal                                                 |
| A, B, C, D      | modulation dependent linearization parameters                                                |
| Polarization φ  | φ rotation around probe axis                                                                 |
| Polarization 9  | 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), |
|                 | i.e., $\vartheta = 0$ is normal to probe axis                                                |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system       |
|                 |                                                                                              |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Charl). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe ES3DV3

## SN:3332

Manufactured: Calibrated:

January 24, 2012 September 18, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sénsor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.94     | 1.15     | 0.98     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 105.8    | 103.8    | 112.4    |           |

#### **Modulation Calibration Parameters**

| UID           | Communication System Name                         |   | A<br>dB | B<br>dBõV | C    | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|---------------|---------------------------------------------------|---|---------|-----------|------|---------|----------|---------------------------|
| 0             | CW                                                | X | 0.0     | 0.0       | 1.0  | 0.00    | 178.7    | ±3.0 %                    |
|               |                                                   | Ý | 0.0     | 0.0       | 1.0  |         | 199.5    |                           |
|               |                                                   | Z | 0.0     | 0.0       | 1.0  |         | 186.5    |                           |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | X | 55.60   | 92,4      | 20.6 | 10.00   | 35,7     | ±1.7 %                    |
|               |                                                   | Y | 2.80    | 61.2      | 11.6 |         | 42.9     |                           |
|               |                                                   | Z | 10.49   | 80.1      | 18.0 |         | 36.1     |                           |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | X | 3.47    | 67.9      | 18.8 | 2.91    | 141.3    | ±0.7 %                    |
|               |                                                   | Y | 3.29    | 67.0      | 18.4 |         | 138.2    |                           |
|               |                                                   | Z | 3.78    | 70.4      | 20.1 |         | 147.9    |                           |
| 10012-<br>CAA | IEEE 802.11b WiFI 2.4 GHz (DSSS, 1<br>Mbps)       | × | 3,53    | 72.0      | 20.1 | 1.87    | 141.7    | ±0.7 %                    |
|               |                                                   | Y | 3.03    | 69,1      | 18.8 |         | 141.1    |                           |
|               | ·                                                 | Z | 4.06    | 75,5      | 21.6 |         | 148.2    |                           |
| 10013-<br>CAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | X | 10.87   | 69.8      | 22.6 | 9.46    | 137.3    | ±3.5 %                    |
|               |                                                   | Y | 11.63   | 71.7      | 23,9 |         | 141.9    |                           |
|               |                                                   | Z | 10.51   | 69.6      | 22.5 |         | 139.2    |                           |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | X | 6.92    | 78.4      | 20.1 | 9,39    | 137.0    | ±2.5 %                    |
|               |                                                   | Y | 26.20   | 99.6      | 27.8 |         | 141.5    |                           |
|               |                                                   | Z | 5.13    | 78.3      | 21.1 |         | 144.7    |                           |
| 10023-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0)                       | X | 9.10    | 83.6      | 22.5 | 9.57    | 144.0    | ±2.5 %                    |
|               |                                                   | Y | 26.31   | 100.0     | 28.1 |         | 136.7    |                           |
|               |                                                   | Z | 6.15    | 81.6      | 22.5 |         | 139.9    |                           |
| 10024-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X | 10.54   | 84.1      | 20,4 | 6.56    | 141.8    | ±2.5 %                    |
|               |                                                   | Y | 40.55   | 99.6      | 24,9 |         | 142.2    |                           |
| ·             |                                                   | Z | 6.45    | 81.5      | 20.2 |         | 145.7    | <u> </u>                  |
| 10027-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X | 28.34   | 94.6      | 21.9 | 4.80    | 131.4    | ±2.5 %                    |
|               |                                                   | Y | 52.22   | 99.6      | 23.3 |         | 126.8    |                           |
|               |                                                   | Z | 28.33   | 99.5      | 23.9 |         | 140.7    |                           |
| 10028-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X | 52.17   | 100.0     | 22.2 | 3.55    | 147.0    | ±1.7 %                    |
|               |                                                   | Y | 57.29   | 99.6      | 22.4 |         | 133.0    | <u> </u>                  |
|               |                                                   | Z | 25.84   | 99.5      | 23.3 |         | 126.2    |                           |
| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | × | 59.05   | 100.0     | 19.9 | 1.16    | 135.5    | ±1.9 %                    |
|               |                                                   | Υ | 100.00  | 99.7      | 19.2 |         | 143.5    |                           |
|               |                                                   | Z | 34.97   | 100.0     | 20.4 | 1       | 143.1    |                           |

Certificate No: ES3-3332\_Sep14/2

#### ES3DV3-- SN:3332

#### September 18, 2014

| 10039-<br>CAB | CDMA2000 (1xRTT, RC1)                       | X        | 4.78          | 66.9         | 18.9         | 4.57              | 134.6          | ±0.9 %  |
|---------------|---------------------------------------------|----------|---------------|--------------|--------------|-------------------|----------------|---------|
|               |                                             | Y        | 4.85          | 67.1         | 19.1         | 1                 | 141.0          | l       |
|               |                                             | z        | 4.76          | 67.8         | 19.4         | 1                 | 140.7          |         |
| 10081-<br>CAB | CDMA2000 (1xRTT, RC3)                       | X        | 3.98          | 66.4         | 18.6         | 3. <del>9</del> 7 | 130.4          | ±0.7 %  |
|               |                                             | Y        | 3.98          | 66.5         | 18,7         |                   | 136.2          |         |
|               |                                             | Z        | 4.04          | 67.7         | 19.2         |                   | 137.4          |         |
| 10098-<br>CAB | UMTS-FDD (HSUPA, Subtest 2)                 | ×        | 4.75          | 67.3         | 18.8         | 3.98              | 144.4          | ±0.7 %  |
|               |                                             | Y        | 4.55          | 66.5         | 18,5         |                   | 126.5          |         |
| 40400         |                                             | Z        | 4.72          | 67.9         | 19.0         |                   | 128.1          |         |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK) | X        | 6.26          | 66.9         | 19.2         | 5.67              | 124.5          | ±1.2 %  |
|               |                                             | Y        | 6.38          | 67.4         | 19.7         |                   | 131.7          |         |
| 10100         |                                             | Z        | 6.36          | 67.7         | 19.7         | L                 | 132.3          |         |
| 10108-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X        | 6.44          | 67.5         | 19.7         | 5.80              | 147.4          | ±1.4 %  |
|               |                                             | Y        | 6.31          | 67,2         | 19.7         |                   | 130.2          |         |
| 10110-        | LTE-FDD (SC-FDMA, 100% RB, 5 MHz,           | Z        | 6.17          | 67.2         | 19.6         | 6 76              | 130.1          | 14:4.01 |
| CAB           | QPSK)                                       | X        | 6,08          | 66,9         | 19,5         | 5,75              | 142.7          | ±1.4 %  |
|               |                                             | Y        | 5.97          | 66.6         | 19.4         |                   | 127.3          |         |
| 10114-        | IEEE 802.11n (HT Greenfield, 13.5           | <u>Z</u> | 5.84          | 66.7         | 19.3         | 8.10              | 126.2<br>136.9 | 10 5 0/ |
| CAA           | Mbps, BPSK)                                 | X        | 10.13         | 68.7         | 21.0         | 0.10              |                | ±2.5 %  |
|               |                                             | Y        | 10.57         | 69.9         | 21.9         | ļ                 | 146.3<br>143.6 | ļ       |
| 10117-        | IEEE 802.11n (HT Mixed, 13.5 Mbps,          |          | 10.06         | 69.0         | 21.1         | 8.07              | 143.6          | ±2.5 %  |
| CAA           | BPSK)                                       | X<br>Y   | 10.12         | 68.6         | 21.0         | 0.0/              | 138.2          | 12.3 %  |
|               |                                             |          | 10.60         | <u>69.9</u>  | 21.9         |                   | 148.0          |         |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)     | Z<br>X   | 10.07<br>8.76 | 69.0<br>71.7 | 21.1<br>23.8 | 9.28              | 146.6          | ±3.0 %  |
|               |                                             | Y        | 10.03         | 75.2         | 25.9         |                   | 121.5          |         |
|               | · · · · · · · · · · · · · · · · · · ·       | Z        | 8.15          | 70.7         | 23.5         |                   | 134.1          |         |
| 10154-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | X        | 6.10          | 67.0         | 19.5         | 5.75              | 144.4          | ±1.4 %  |
|               |                                             | Y        | 5.98          | 66.6         | 19.4         |                   | 127.8          |         |
|               |                                             | Z        | 5.84          | 66.6         | 19.3         |                   | 127.2          |         |
| 10160-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 15 MHz,<br>QPSK)  | ×        | 6.56          | 67.5         | 19,7         | 5.82              | 149.5          | ±1.7 %  |
|               |                                             | Y        | 6.41          | 67.1         | 19,6         |                   | 132.5          |         |
| 10100         |                                             | Z        | 6.17          | 66.8         | 19.4         |                   | 130.4          |         |
| 10169-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | ×        | 5.01          | 67.0         | 19.7         | 5.73              | 147.8          | ±1.2 %  |
|               |                                             | Y        | 5.01          | 66.9         | 19.8         |                   | 132.1          |         |
| 10170         |                                             | Z        | 4.75          | 66.9         | 19.7         | 2.02              | 130.3          | 10 7 61 |
| 10172-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X        | 7.65          | 75.0         | 25.8         | 9.21              | 144.9          | ±2.7 %  |
|               |                                             | Y        | 10.17         | 82.4         | 29.7         |                   | 136.4          |         |
| 10175-        |                                             | Z        | 6.53          | 72.3         | 24.6         | 6 70              | 145.6          | 440.00  |
| CAB           | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X        | 4.98          | 66.9         | 19.6         | 5.72              | 141.0          | ±1.2 %  |
| · · · ·       |                                             | Y        | 4.98          | 66.7         | 19.7         |                   | 130.5          |         |
|               | l                                           | Z        | 4.71          | 66.7         | 19.5         |                   | 128.1          |         |

#### ES3DV3-SN:3332

#### September 18, 2014

| 10181-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,<br>QPSK)        | X  | 4.95  | 66.7 | 19.5 | 5.72 | 139.8 | ±1.2 %    |
|---------------|-------------------------------------------------|----|-------|------|------|------|-------|-----------|
|               |                                                 | Y  | 4.97  | 66.7 | 19.7 |      | 129.5 |           |
|               |                                                 | Z  | 4.72  | 66.8 | 19,6 |      | 128.0 |           |
| 10193-<br>CAA | IEEE 802.11n (HT Greenfield, 6.5 Mbps,<br>BPSK) | X  | 9.75  | 68.2 | 20.9 | 8.09 | 131.8 | ±2.5 %    |
|               |                                                 | Y  | 10.16 | 69.4 | 21.7 |      | 139,2 |           |
|               |                                                 | Z  | 9.62  | 68.6 | 21.0 |      | 137,3 |           |
| 10196-<br>CAA | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)      | X  | 9.77  | 68.3 | 20.9 | 8,10 | 133.6 | ±2.5 %    |
|               |                                                 | Y  | 10.17 | 69.4 | 21.8 |      | 140.1 |           |
|               |                                                 | Z  | 9.61  | 68.5 | 21.0 |      | 140.1 |           |
| 10219-<br>CAA | IEEE 802.11n (HT Mixed, 7.2 Mbps,<br>BPSK)      | x  | 9,69  | 68.3 | 20,9 | 8.03 | 133.6 | ±2.5 %    |
|               |                                                 | Y  | 10.05 | 69.3 | 21.7 |      | 139.2 |           |
|               |                                                 | Z  | 9.58  | 68.7 | 21,1 |      | 139.4 |           |
| 10222-<br>CAA | IEEE 802.11n (HT Mixed, 15 Mbps,<br>BPSK)       | X  | 10.13 | 68.7 | 21,0 | 8.06 | 140.7 | ±2.5 %    |
|               |                                                 | Υ  | 10,51 | 69.8 | 21.8 |      | 145.1 |           |
|               |                                                 | Z  | 10.11 | 69.1 | 21.2 |      | 148.4 |           |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                                | X  | 7.03  | 67.2 | 19.4 | 5.97 | 138.0 | ±1.4 %    |
|               |                                                 | Y  | 7.07  | 67.2 | 19.6 |      | 140.2 |           |
|               |                                                 | Z  | 6.97  | 67.8 | 19.7 |      | 144.6 |           |
| 10237-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)        | X  | 7.11  | 72.9 | 24.7 | 9.21 | 124.6 | ±2.7 %    |
|               |                                                 | Y  | 10.04 | 82.0 | 29.5 |      | 135.7 |           |
|               |                                                 | Z  | 6.29  | 71.2 | 24.0 |      | 126.2 |           |
| 10252-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)         | X  | 8.61  | 72.5 | 24.3 | 9,24 | 145.2 | ±3.3 %    |
| <u>.</u>      |                                                 | Y  | 10.53 | 77.8 | 27.4 |      | 136.7 |           |
|               |                                                 | Z  | 7.56  | 70,0 | 23.1 |      | 126.7 |           |
| 10267-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)     | X  | 8.74  | 71.6 | 23.8 | 9.30 | 128.7 | ±3.3 %    |
|               |                                                 | Y  | 11.51 | 79.1 | 28.0 |      | 147.2 |           |
|               |                                                 | Z  | 8.07  | 70.4 | 23.2 |      | 134.1 |           |
| 10274-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rei8.10)    | X  | 5.90  | 66.7 | 18.7 | 4.87 | 128.0 | ±0.9 %    |
|               | · · · ·                                         | Y  | 5.93  | 66.8 | 18.9 |      | 134.5 |           |
|               |                                                 | Z  | 5.92  | 67.6 | 19.1 |      | 138.2 |           |
| 10275-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8.4)     | X  | 4.53  | 67.1 | 18.8 | 3.96 | 133.8 | ±0.7 %    |
|               |                                                 | Y  | 4.48  | 67.0 | 18.8 |      | 139.6 |           |
|               |                                                 | Z  | 4,62  | 68.3 | 19.3 |      | 145.0 |           |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                  | ×  | 3.82  | 67.8 | 19.0 | 3.46 | 147.6 | ±0.7 %    |
|               |                                                 | Y  | 3.66  | 67.0 | 18.8 |      | 131.7 |           |
|               |                                                 | Ζ. | 3.97  | 69.6 | 20.0 |      | 135.9 |           |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                  | ×  | 3.70  | 67.5 | 18.8 | 3.39 | 128.1 | ±0.7 %    |
|               |                                                 | Y  | 3.60  | 66.9 | 18.7 |      | 132.5 |           |
| 1000-         |                                                 | Z  | 3.80  | 68.9 | 19.5 | L    | 139.8 |           |
| 10297+<br>AAA | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)      | X  | 6.47  | 67.6 | 19.8 | 5.81 | 149.7 | ±1.7 %    |
|               |                                                 | Y  | 6.24  | 66.9 | 19.5 |      | 126.3 | . <u></u> |
|               |                                                 | Z  | 6.20  | 67.3 | 19.6 |      | 130.9 |           |

Certificate No: ES3-3332\_Sep14/2

#### ES3DV3- SN:3332

#### September 18, 2014

| 10311-<br>AAA | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X | 6.72  | 67.1 | 19.5 | 6.06 | 128.8 | ±1.4 % |
|---------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
|               |                                                                   | Ý | 6.85  | 67.7 | 20.0 |      | 132.4 |        |
| <u> </u>      |                                                                   | Z | 6.75  | 67.7 | 19.8 |      | 136.6 |        |
| 10315-<br>AAA | IEEE 802.11b WiFI 2.4 GHz (DSSS, 1<br>Mbps, 96pc duty cycle)      | X | 3.27  | 71.1 | 19.8 | 1.71 | 140.1 | ±0.7 % |
| ·             |                                                                   | Y | 2.95  | 69.4 | 19.1 |      | 139.8 |        |
|               |                                                                   | Z | 3.75  | 74.4 | 21.2 |      | 146.9 |        |
| 10316-<br>AAA | IEEE 802.11g WiFI 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 96pc duty cycle) | X | 10.04 | 68.7 | 21,3 | 8,36 | 136.3 | ±2.5 % |
| ,             |                                                                   | Y | 10.42 | 69.8 | 22.1 |      | 138.1 |        |
|               |                                                                   | Z | 9.84  | 68.9 | 21.3 |      | 139.7 |        |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                        | X | 5.01  | 69.3 | 19.2 | 3.76 | 144.3 | ±0.7 % |
|               |                                                                   | Y | 4.79  | 68.1 | 18.7 |      | 146.3 |        |
|               |                                                                   | Z | 5,40  | 72.5 | 20.8 |      | 146.7 |        |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                        | X | 4.97  | 69.5 | 19.3 | 3,77 | 141.3 | ±0.7 % |
|               |                                                                   | Y | 4.72  | 68.2 | 18.8 |      | 143.1 |        |
|               |                                                                   | Z | 5.12  | 71.8 | 20.5 |      | 144.4 |        |
| 10415-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | X | 3.05  | 70.5 | 19.5 | 1.54 | 139.7 | ±0.7 % |
|               |                                                                   | Y | 2.71  | 68.7 | 18.9 |      | 140.2 |        |
|               |                                                                   | Z | 4.22  | 77.3 | 22.5 |      | 145.9 |        |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X | 9.92  | 68.6 | 21.1 | 8.23 | 136.3 | ±2.5 % |
|               |                                                                   | Y | 10.20 | 69,4 | 21.8 |      | 138.3 |        |
|               |                                                                   | Z | 9.76  | 68.8 | 21.3 |      | 138.9 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX, Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 8 and 9).
 <sup>B</sup> Numerical linearization parameter: uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the first order. field value.

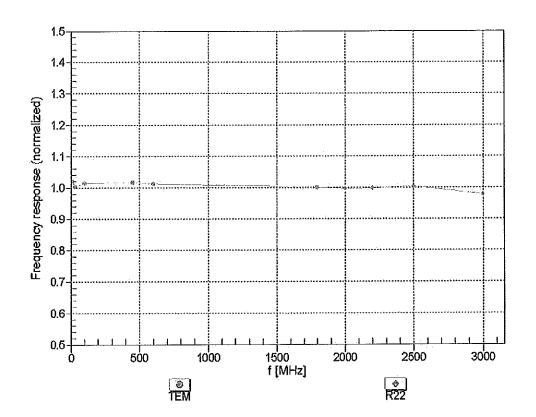
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>o</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.56    | 6.56    | 6,56    | 0.50               | 1.43                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                               | 6.31    | 6.31    | 6.31    | 0.61               | 1.31                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                               | 5.17    | 5.17    | 5.17    | 0.62               | 1.33                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                               | 5.04    | 5.04    | 5.04    | 0.80               | 1.17                       | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                               | 4.49    | 4.49    | 4.49    | 0.77               | 1.24                       | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                               | 4.35    | 4.35    | 4.35    | 0.73               | 1.38                       | ± 12.0 %       |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>6</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity balow 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity cen be extended to  $\pm$  110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) can be relaxed to  $\pm$  10% if flouid compensation formula is applied to more than 2 SAB when a first extended to  $\pm$  5%. The uncertainty is the RSS of the R

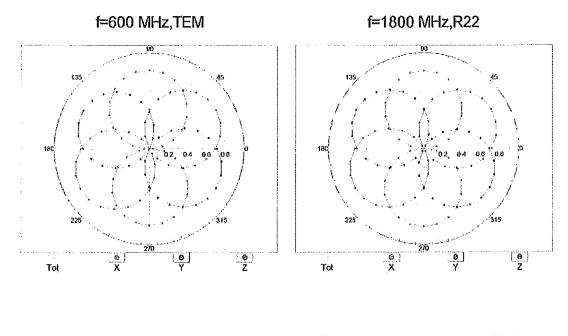
<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>o</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

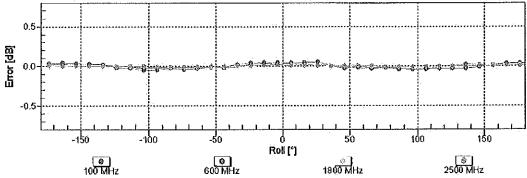

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k≈2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 6.24    | 6.24    | 6.24    | 0.50               | 1.50                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.21    | 6.21    | 6.21    | 0.45               | 1.59                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 4.88    | 4.88    | 4.88    | 0.39               | 1.78                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 4.64    | 4.64    | 4.64    | 0.61               | 1.47                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 4.31    | 4.31    | 4.31    | 0.80               | 1.18                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 4.11    | 4.11    | 4.11    | 0.68               | 0.99                       | ± 12.0 %       |

#### **Calibration Parameter Determined in Body Tissue Simulating Media**

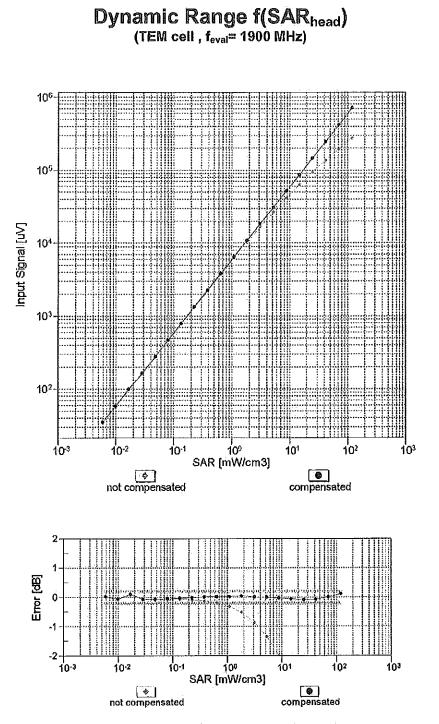
<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at celibration frequency end the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF essessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters (s and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of


the ConvF uncertainly for indicated target tissue parameters. Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe lip diameter from the boundary.

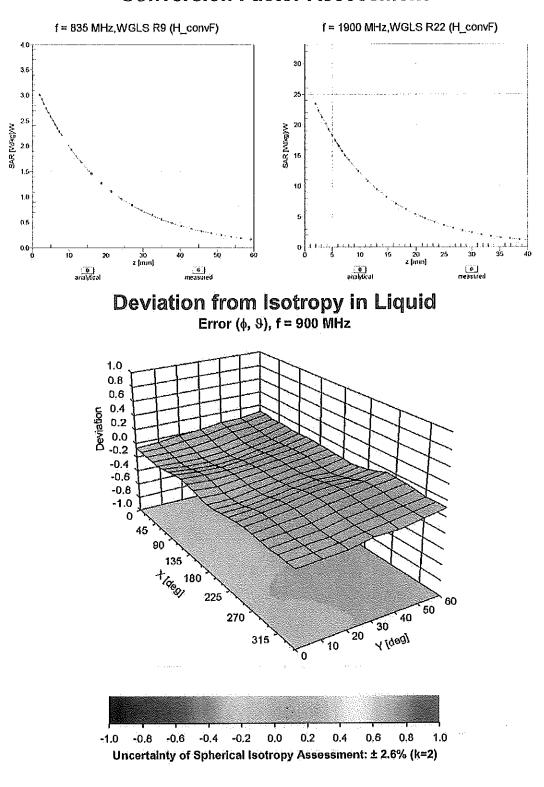



### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 12 of 14



#### **Conversion Factor Assessment**

Page 13 of 14

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -3.7       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

#### **Other Probe Parameters**

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

**PC Test** Client

Certificate No: EX3-3914\_Feb15

## CALIBRATION CERTIFICATE

| Object                           | EX3DV4 - SN:3914                      |                                                                                              | CC~<br>3/6/15         |
|----------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|
| Calibration procedure(s)         |                                       | AL-14.v4, QA CAL-23.v5, QA C<br>for dosimetric E-field probes                                | AL-25.v6              |
| Calibration date:                | February 10, 2015                     |                                                                                              |                       |
|                                  |                                       | andards, which realize the physical units of<br>ity are given on the following pages and are |                       |
| All calibrations have been condu | ucted in the closed laboratory facili | ty: environment temperature (22 $\pm$ 3)°C and                                               | d humidity < 70%.     |
| Calibration Equipment used (Ma   | TE critical for calibration)          |                                                                                              |                       |
| Defense of the second            |                                       | Cal Date (Certificate No.)                                                                   | Scheduled Calibration |

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Power sensor E4412A        | MY41498087      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 03-Apr-14 (No. 217-01915)         | Apr-15                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919)         | Apr-15                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920)         | Apr-15                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-660_Jan15)    | Jan-16                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |
|                            |                 |                                   |                        |

|                              | Name                                 | Function                              | \$ignature                |
|------------------------------|--------------------------------------|---------------------------------------|---------------------------|
| Calibrated by:               | Claudio Leubler                      | Laboratory Technician                 |                           |
|                              |                                      |                                       | $\mathcal{VO}$            |
| Approved by:                 | Katja Pokovic                        | Technical Manager                     | OO MC.                    |
|                              |                                      |                                       | 1510 19                   |
|                              |                                      |                                       | Issued: February 10, 2015 |
| This calibration certificate | shall not be reproduced except in fu | I without written approval of the lat | poratory.                 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL             | tissue simulating liquid                                                                                                                             |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| NORMx,y,z       | sensitivity in free space                                                                                                                            |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                                                                                       |
| DCP             | diode compression point                                                                                                                              |
| CF              | crest factor (1/duty_cycle) of the RF signal                                                                                                         |
| A, B, C, D      | modulation dependent linearization parameters                                                                                                        |
| Polarization φ  | φ rotation around probe axis                                                                                                                         |
| Polarization 9  | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system                                                               |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe EX3DV4

## SN:3914

Manufactured: Repaired: Calibrated:

December 18, 2012 January 23, 2015 February 10, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

#### Basic Calibration Parameters

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.48     | 0.42     | 0.45     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 102.7    | 103.2    | 101.3    |           |

#### **Modulation Calibration Parameters**

| UID           | Communication System Name                         |   | A<br>dB | Β<br>dB√μV | С    | D<br>dB | VR<br>mV | Unc <sup>≿</sup><br>(k=2) |
|---------------|---------------------------------------------------|---|---------|------------|------|---------|----------|---------------------------|
| 0             | CW                                                | Х | 0.0     | 0.0        | 1.0  | 0.00    | 137.3    | ±2.7 %                    |
|               |                                                   | Y | 0.0     | 0.0        | 1.0  |         | 140.8    |                           |
|               |                                                   | Z | 0.0     | 0.0        | 1.0  |         | 134.6    |                           |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | х | 1.33    | 60.3       | 9.9  | 10,00   | 40.4     | ±1.2 %                    |
|               |                                                   | Y | 1.02    | 57.7       | 9.2  |         | 42.2     |                           |
|               |                                                   | Ζ | 1.41    | 61.3       | 11.0 |         | 39.9     |                           |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | Х | 3.39    | 67.3       | 18.6 | 2.91    | 148.9    | ±0.5 %                    |
|               |                                                   | Y | 3.47    | 67.6       | 18.6 |         | 130.1    |                           |
|               |                                                   | Z | 3.30    | 66.5       | 17.9 |         | 145.8    |                           |
| 10012-<br>CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1<br>Mbps)       | Х | 2.92    | 68.9       | 18.9 | 1.87    | 149.0    | ±0.7 %                    |
|               |                                                   | Y | 3.17    | 70.1       | 19.2 |         | 131.4    |                           |
|               |                                                   | Z | 2.72    | 67.0       | 17.6 |         | 146.9    |                           |
| 10013-<br>CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | X | 10.52   | 69.1       | 22.1 | 9.46    | 140.7    | ±3.3 %                    |
|               |                                                   | Y | 10.67   | 69.8       | 22.6 |         | 146.8    |                           |
|               |                                                   | Z | 10.44   | 68.9       | 22.0 |         | 136.8    |                           |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | X | 1.64    | 63.4       | 11.8 | 9.39    | 86.2     | ±1.7 %                    |
|               |                                                   | Y | 2.03    | 65.7       | 13.6 |         | 105.2    |                           |
|               |                                                   | Z | 1.78    | 63.6       | 12.4 |         | 85.9     |                           |
| 10023-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0)                       | X | 1.78    | 65.0       | 13.2 | 9.57    | 84.0     | ±2.2 %                    |
|               |                                                   | Y | 1.84    | 63.8       | 12.5 |         | 101.1    |                           |
|               |                                                   | Z | 1.92    | 64.9       | 13.4 |         | 83.0     |                           |
| 10024-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X | 2.04    | 68.8       | 13.2 | 6.56    | 141.3    | ±1.9 %                    |
|               |                                                   | Y | 2.32    | 70.4       | 14.4 |         | 134.7    |                           |
|               |                                                   | Z | 1.59    | 65.5       | 12.3 |         | 139.3    |                           |
| 10027-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X | 1.51    | 67.3       | 11.9 | 4.80    | 148.8    | ±1.9 %                    |
|               |                                                   | Y | 1.27    | 63.7       | 10.0 |         | 136.2    |                           |
|               |                                                   | Z | 3.26    | 75.5       | 15.4 |         | 148.7    |                           |
| 10028-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X | 52.54   | 99.9       | 20.2 | 3.55    | 143.3    | ±1.7 %                    |
|               |                                                   | Y | 2.95    | 74.0       | 13.7 |         | 149.7    |                           |
|               |                                                   | Z | 32.98   | 99.9       | 21.5 |         | 141.9    |                           |
| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | X | 96.97   | 99.5       | 17.5 | 1.16    | 145.3    | ±1.2 %                    |
|               |                                                   | Y | 83.69   | 99.7       | 18.1 |         | 128.6    |                           |
|               |                                                   | Z | 0.69    | 65.4       | 9.0  |         | 143.2    |                           |

#### EX3DV4- SN:3914

February 10, 2015

| 10062-<br>CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps) | X        | 10.27        | 68.9         | 21.5         | 8.68 | 145.1          | ±2.7 %  |
|---------------|---------------------------------------------|----------|--------------|--------------|--------------|------|----------------|---------|
|               |                                             | Y        | 9.95         | 68.4         | 21.3         |      | 123.8          |         |
|               |                                             | Z        | 10.18        | 68.8         | 21,4         |      | 140.9          |         |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK) | х        | 6.38         | 67.0         | 19.3         | 5.67 | 140.1          | ±1.4 %  |
|               |                                             | Y        | 6.54         | 67.7         | 19.6         |      | 147.0          |         |
|               |                                             | Z        | 6.34         | 66.8         | 19.1         |      | 137.4          |         |
| 10103-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK) | X        | 7,44         | 67.6         | 21.6         | 9.29 | 132.4          | ±1.7 %  |
|               |                                             | Y        | 7.78         | 69.0         | 22.4         |      | 140.2          |         |
|               |                                             | Z        | 7.40         | 67.4         | 21.4         |      | 129.5          |         |
| 10108-<br>CAC | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X        | 6.25         | 66.7         | 19.2         | 5.80 | 137.9          | ±1.4 %  |
|               |                                             | Y        | 6.36         | 67.2         | 19.5         |      | 143.3          |         |
|               |                                             | Z        | 6.20         | 66.4         | 19.0         |      | 135.0          |         |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | X        | 10.03        | 68.2         | 20.7         | 8.07 | 128.5          | ±2.5 %  |
|               |                                             | Y        | 10.17        | 68.7         | 21.0         |      | 134.9          |         |
|               |                                             | Z        | 9.94         | 68.0         | 20.5         |      | 125.2          |         |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)     | X        | 7.21         | 67.6         | 21.8         | 9.28 | 149.5          | ±1.9 %  |
|               |                                             | Y        | 7.39         | 68.5         | 22.3         |      | 135.1          |         |
|               |                                             | Z        | 7.19         | 67.5         | 21.7         |      | 147.3          |         |
| 10154-<br>CAC | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | X        | 5.91         | 66.2         | 19.1         | 5.75 | 133.8          | ±1.2 %  |
|               |                                             | Y        | 6.04         | 66.8         | 19.4         |      | 139.4          |         |
|               |                                             | Z        | 5.88         | 66.0         | 18.9         |      | 131.1          |         |
| 10160-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 15 MHz,<br>QPSK)  | X        | 6.36         | 66.7         | 19.3         | 5.82 | 139.0          | ±1.4 %  |
|               |                                             | Y        | 6.51         | 67.4         | 19.7         |      | 145.5          |         |
|               |                                             | Z        | 6.31         | 66.4         | 19.0         | 5 70 | 136.5          | 14.0.0/ |
| 10169-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | ×        | 4.79         | 66.3         | 19.4         | 5.73 | 136.1          | ±1.2 %  |
|               |                                             | Y        | 4.90         | 67.0         | 19.8         |      | 141.5          | L       |
|               |                                             | Z        | 4.76         | 66.0         | 19.1         | 0.04 | 133.8          |         |
| 10172-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X        | 5.66         | 68.8         | 22.7         | 9.21 | 138.2          | ±2.5 %  |
|               |                                             | <u> </u> | 5.93         | 70.3         | 23.7         |      | 147.0          |         |
|               |                                             | Z        | 5.68         | 68.6         | 22.6         | 5 70 | 136.7          | 14.0.0/ |
| 10175-<br>CAC | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X        | 4.77         | 66.2         | 19.3         | 5.72 | 135.7          | ±1.2 %  |
|               |                                             | Y        | 4.92         | 67.1         | 19.8         |      | 141.2<br>133.6 |         |
| 10181-        | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,             | Z<br>X   | 4.72<br>4.77 | 65.8<br>66.2 | 19.0<br>19.3 | 5.72 | 133.6          | ±1.2 %  |
| CAB           | QPSK)                                       | Y        | 4.91         | 67.0         | 19.7         |      | 141.1          |         |
|               |                                             | Z        | 4.76         | 66.0         | 19.1         |      | 132.8          |         |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)  | X        | 9.99         | 68.8         | 21.1         | 8.10 | 146.9          | ±2.5 %  |
|               |                                             | Y        | 9.71         | 68.4         | 21.0         |      | 127.0          |         |
|               |                                             | Z        | 9.91         | 68.7         | 21.0         | 1    | 143.4          |         |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                            | X        | 7.10         | 67.5         | 19.5         | 5.97 | 149.1          | ±1.2 %  |
|               |                                             | Y        | 6.98         | 67.4         | 19.5         |      | 128.9          |         |
|               |                                             | Z        | 7.01         | 67.2         | 19.3         |      | 145.5          |         |

#### EX3DV4-- SN:3914

February 10, 2015

| 10237-        | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,                            | X      | 5.68             | 68.9         | 22.8         | 9.21     | 139.9          | ±2.2 %  |
|---------------|------------------------------------------------------------|--------|------------------|--------------|--------------|----------|----------------|---------|
| CAB           | QPSK)                                                      | Y      | 5.93             | 70.3         | 23.6         |          | 148.1          |         |
|               |                                                            | Z      | 5.70             | 68.8         | 22.7         |          | 137.5          |         |
| 10252-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)                    | X      | 6.81             | 67.4         | 21.7         | 9.24     | 143.4          | ±2.2 %  |
|               |                                                            | Y      | 6.93             | 68.0         | 22.2         |          | 129.3          |         |
|               |                                                            | Z      | 6.79             | 67.2         | 21.6         |          | 140.3          |         |
| 10267-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)                | X      | 7.23             | 67.7         | 21.9         | 9.30     | 149.4          | ±1.9 %  |
| 0/10          |                                                            | Y      | 7.42             | 68.6         | 22.4         |          | 135.2          |         |
|               |                                                            | Z      | 7.19             | 67.4         | 21.6         |          | 146.2          |         |
| 10275-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8.4)                | X      | 4.44             | 66.7         | 18.6         | 3.96     | 129.1          | ±0.7 %  |
|               |                                                            | Y      | 4.57             | 67.4         | 18.9         |          | 134.5          |         |
|               |                                                            | Z      | 4.35             | 66.1         | 18.1         |          | 126.6          |         |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                             | X      | 3.64             | 66.9         | 18.6         | 3.46     | 140.9          | ±0.7 %  |
|               |                                                            | Y      | 3.87             | 68.3         | 19.3         |          | 147.1          |         |
|               |                                                            | Z      | 3.61             | 66.5         | 18.2         |          | 138.4          |         |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                             | X      | 3.64             | 67.4         | 18.8         | 3.39     | 142.3          | ±0.5 %  |
|               |                                                            | Y      | 3.85             | 68.5         | 19.3         |          | 148.3          |         |
|               |                                                            | Z      | 3.5 <del>9</del> | 66.7         | 18.3         |          | 139.6          |         |
| 10297-<br>AAA | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)                 | X      | 6.23             | 66.6         | 19.2         | 5.81     | 136.3          | ±1.4 %  |
|               |                                                            | Y      | 6.42             | 67.4         | 19.7         |          | 142.8          | ·.      |
|               |                                                            | Z      | 6.19             | 66.3         | 19.0         | 0.00     | 133.9          | 14 4 0/ |
| 10311-<br>AAA | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                | ×      | 6.84             | 67.3         | 19.6         | 6.06     | 142.4<br>149.5 | ±1.4 %  |
|               |                                                            | Y      | 6.98             | 67.8         | 19.9         | <u> </u> | 149.0          |         |
|               |                                                            | Z      | 6.75             | 66.8         | 19.3         | 8.36     | 140.0          | ±2.7 %  |
| 10317-<br>AAB | IEEE 802.11a WiFi 5 GHz (OFDM, 6<br>Mbps, 96pc duty cycle) | X      | 10.13            | 68.9         | 21.3         | 0.00     | 127.5          | 12.1 /0 |
|               |                                                            | Y      | 9.84             | 68.4         | 21.1         |          | 143.2          |         |
|               |                                                            | Z      | 10.04            | 68.7         | 21.2         | 8.37     | 143.2          | ±2.7 %  |
| 10400-<br>AAB | IEEE 802.11ac WiFi (20MHz, 64-QAM,<br>99pc duty cycle)     | ×      | 10.24            | 69.0         | 21.4         | 0.37     | 126.6          | 12.1 /0 |
|               |                                                            | Y      | 9.92             | 68.4         | 21.2         |          | 144.6          |         |
|               |                                                            | Z      | 10.14            | 68.8         | 21.3         | 8.60     | 129.4          | ±3.0 %  |
| 10401-<br>AAB | IEEE 802.11ac WiFi (40MHz, 64-QAM,<br>99pc duty cycle)     | X      | 10.60            | 68.6         | 21.2         | 0.00     | 136.8          |         |
|               |                                                            | Y      | 10.77            | 69.1         | 21.5         |          | 125.9          |         |
| 10402-        | IEEE 802.11ac WiFi (80MHz, 64-QAM,                         | Z<br>X | 10.52<br>10.60   | 68.4<br>68.5 | 21.1<br>20.9 | 8.53     | 129.7          | ±3.0 %  |
| AAB           | 99pc duty cycle)                                           | Y      | 11.01            | 69.5         | 21.5         | <u> </u> | 139.1          |         |
|               |                                                            | Z      | 10.54            | 68.3         | 20.8         |          | 126.7          |         |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                 | X      | 5.07             | 70.1         | 19.4         | 3.76     | 127.5          | ±0.5 %  |
|               |                                                            | Y      | 5.47             | 71.9         | 20.2         |          | 133.6          |         |
|               |                                                            | z      | 4.93             | 69.5         | 19.0         |          | 124.9          |         |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                 | X      | 5.01             | 70.2         | 19.5         | 3.77     | 149.3          | ±0.7 %  |
|               |                                                            | Y      | 5.38             | 71.9         | 20.2         |          | 132.0          |         |
|               |                                                            | Z      | 4.94             | 69.9         | 19.2         |          | 146.4          |         |

#### EX3DV4-- SN:3914

#### February 10, 2015

| 10415-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1                                | X | 3.20  | 71.2 | 19.8 | 1.54 | 126.8 | ±0.7 % |
|---------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
| ΑΑΑ           | Mbps, 99pc duty cycle)                                            | Y | 3.51  | 72.6 | 20.4 |      | 134.5 |        |
|               |                                                                   | Z | 2.79  | 68.1 | 18.1 |      | 148.4 |        |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X | 10.07 | 68.8 | 21.2 | 8.23 | 147.8 | ±2.7 % |
| AAA           |                                                                   | Y | 9.81  | 68.4 | 21.1 |      | 128.4 |        |
|               |                                                                   | z | 10.00 | 68.7 | 21.1 |      | 144.0 |        |
| 10417-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps, 99pc duty cycle)      | × | 10.07 | 68.8 | 21.2 | 8.23 | 148.4 | ±2.7 % |
| AAA           | Milps, sope daty cycle)                                           | Y | 9.82  | 68.4 | 21.1 |      | 129.0 |        |
|               |                                                                   | Z | 9.99  | 68.7 | 21.1 |      | 144.6 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- <sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 8 and 9).
- <sup>B</sup> Numerical linearization parameter: uncertainty not required. <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2)  |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------|
| 750                  | 41.9                                  | 0.89                               | 9.82    | 9.82    | 9.82    | 0.39               | 0.92                       | ± 12.0 %        |
| 835                  | 41.5                                  | 0.90                               | 9.50    | 9.50    | 9.50    | 0.43               | 0.83                       | ± 12.0 %        |
| 1750                 | 40.1                                  | 1.37                               | 8.04    | 8.04    | 8.04    | 0.30               | 0.93                       | ± 12.0 %        |
| 1900                 | 40.0                                  | 1.40                               | 7.86    | 7.86    | 7.86    | 0.35               | 0.86                       | ± 12.0 %        |
| 2450                 | 39.2                                  | 1.80                               | 7.02    | 7.02    | 7.02    | 0.28               | 1.05                       | ± 12.0 %        |
| 2600                 | 39.0                                  | 1.96                               | 6.82    | 6.82    | 6.82    | 0.26               | 1.17                       | <u>± 12.0 %</u> |
| 5200                 | 36.0                                  | 4.66                               | 5.26    | 5.26    | 5.26    | 0.35               | 1.80                       | ± 13.1 %        |
| 5300                 | 35.9                                  | 4.76                               | 5.06    | 5.06    | 5.06    | 0.35               | 1.80                       | ± 13.1 %        |
| 5500                 | 35.6                                  | 4.96                               | 4.92    | 4.92    | 4.92    | 0.40               | 1.80                       | ± 13.1 %        |
| 5600                 | 35.5                                  | 5.07                               | 4.73    | 4.73    | 4.73    | 0.40               | 1.80                       | ± 13.1 %        |
| 5800                 | 35.3                                  | 5.27                               | 4.67    | 4.67    | 4.67    | 0.40               | 1.80                       | ± 13.1 %        |

## Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

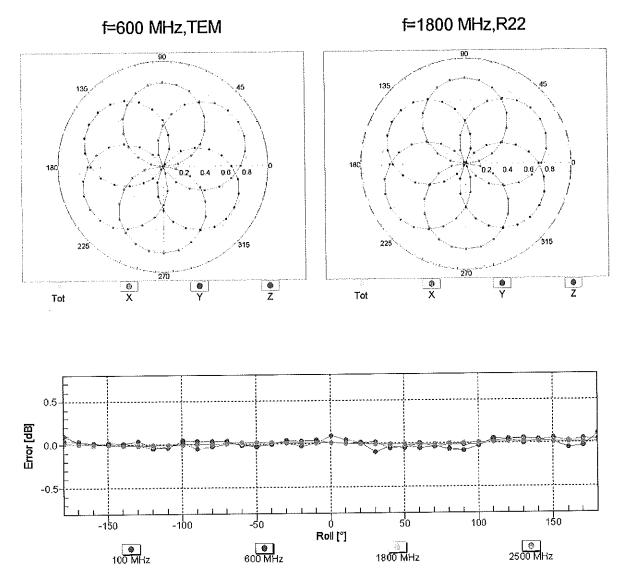
validity can be extended to  $\pm$  110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the Conversion formula to the term of the conversion of the conversion of the conversion of the term of te

the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 9.53    | 9.53    | 9.53    | 0.33               | 1.09                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 9.49    | 9.49    | 9.49    | 0.27               | 1.25                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 7.78    | 7.78    | 7.78    | 0.51               | 0.79                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 7.49    | 7.49    | 7.49    | 0.73               | 0.64                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 7.15    | 7.15    | 7.15    | 0.69               | 0.64                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 6.84    | 6.84    | 6.84    | 0.80               | 0.57                       | ± 12.0 %       |
| 5200                 | 49.0                                  | 5.30                               | 4.50    | 4.50    | 4.50    | 0.45               | 1.90                       | ± 13.1 %       |
| 5300                 | 48.9                                  | 5.42                               | 4.33    | 4.33    | 4.33    | 0.45               | 1.90                       | ± 13.1 %       |
| 5500                 | 48.6                                  | 5.65                               | 3.91    | 3.91    | 3.91    | 0.50               | 1.90                       | ± 13.1 %       |
| 5600                 | 48.5                                  | 5.77                               | 3.89    | 3.89    | 3.89    | 0.50               | 1.90                       | ± 13.1 %       |
| 5800                 | 48.2                                  | 6.00                               | 4.01    | 4.01    | 4.01    | 0.55               | 1,90                       | ± 13.1 %       |

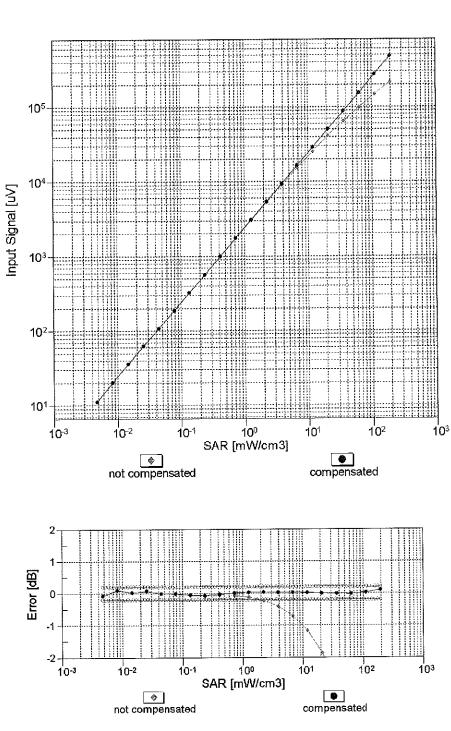
#### Calibration Parameter Determined in Body Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.


<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

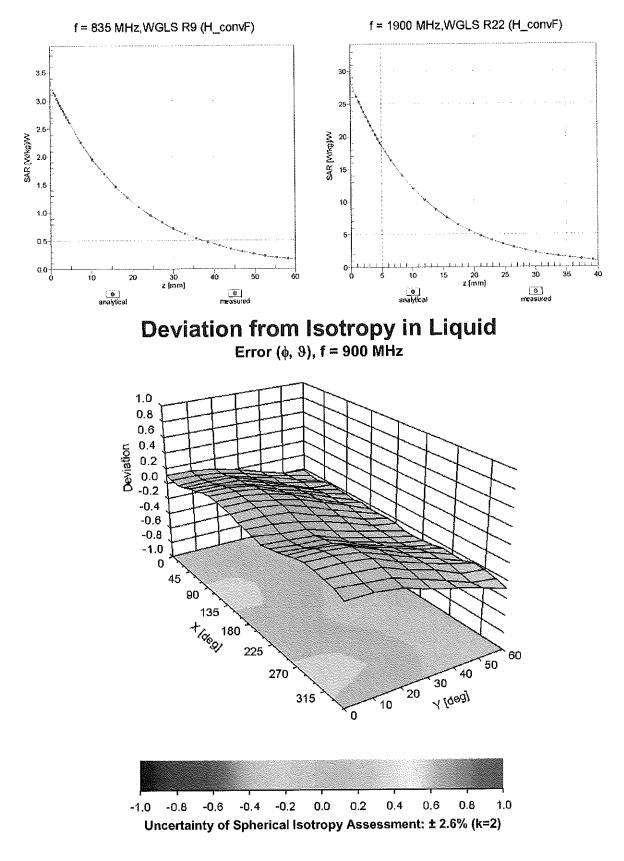
<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

#### **Other Probe Parameters**

| Triangular |
|------------|
| -49.5      |
| enabled    |
| disabled   |
| 337 mm     |
| 10 mm      |
| 9 mm       |
| 2.5 mm     |
| 1 mm       |
| 1 mm       |
| 1 mm       |
| 1.4 mm     |
|            |

#### Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

**CALIBRATION CERTIFIC** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

| NIN WILLIAM |  |
|-------------|--|
| lac-MRA     |  |
| The Andrews |  |



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

CC

1/30/15

S Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ES3-3213\_Jan15

|                  | er en |                                                                                                                 |  |
|------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
|                  |                                           |                                                                                                                 |  |
| ERTIFICATE       |                                           |                                                                                                                 |  |
|                  |                                           | ana ana ang kanang kana ang kanang |  |
| ES3DV3 - SN:3213 |                                           |                                                                                                                 |  |

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

Object

January 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |  |
|----------------------------|-----------------|-----------------------------------|------------------------|--|
| Power meter E4419B         | GB41293874      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |  |
| Power sensor E4412A        | MY41498087      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |  |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 03-Apr-14 (No. 217-01915)         | Apr-15                 |  |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919)         | Apr-15                 |  |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920)         | Apr-15                 |  |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |  |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-660_Jan15)    | Jan-16                 |  |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |  |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |  |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |  |

|                              | Name                                   | Function                            | Signature                |
|------------------------------|----------------------------------------|-------------------------------------|--------------------------|
| Calibrated by:               | Israe Elnaouq                          | Laboratory Technician               | INA MILA                 |
|                              |                                        |                                     | Millin Ewilense          |
| Approved by:                 | Katja Pokovic                          | Technical Manager                   | RAF                      |
|                              |                                        |                                     | /                        |
|                              |                                        |                                     | Issued: January 22, 2015 |
| This calibration certificate | e shall not be reproduced except in fu | without written approval of the lal | boratory.                |

### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service suisse u etatorinage Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| G | lo | S | S | a | r | У | : |  |
|---|----|---|---|---|---|---|---|--|
|   |    |   |   |   |   |   |   |  |

| TSL             | tissue simulating liquid                                                                     |
|-----------------|----------------------------------------------------------------------------------------------|
| NORMx,y,z       | sensitivity in free space                                                                    |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                               |
| DCP             | diode compression point                                                                      |
| CF              | crest factor (1/duty_cycle) of the RF signal                                                 |
| A, B, C, D      | modulation dependent linearization parameters                                                |
| Polarization φ  | φ rotation around probe axis                                                                 |
| Polarization 9  | 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), |
|                 | i.e., $\vartheta = 0$ is normal to probe axis                                                |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system       |

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

## Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe ES3DV3

# SN:3213

Calibrated:

Manufactured: October 14, 2008 January 20, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

#### Basic Calibration Parameters

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.49     | 1.37     | 1.34     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 99.9     | 101.8    | 101.4    |           |

#### **Modulation Calibration Parameters**

| UID           | Communication System Name                         |          | A<br>dB | B<br>dB√μV | С    | D<br>dB  | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|---------------|---------------------------------------------------|----------|---------|------------|------|----------|----------|---------------------------|
| 0             | CW                                                | X        | 0,0     | 0.0        | 1.0  | 0.00     | 169.8    | ±3.8 %                    |
|               |                                                   | Y        | 0.0     | 0.0        | 1.0  |          | 215.4    |                           |
|               |                                                   | Z        | 0.0     | 0.0        | 1.0  |          | 214.5    |                           |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | X        | 1.84    | 57.8       | 10.2 | 10.00    | 47.4     | ±1.9 %                    |
|               |                                                   | Y        | 1.82    | 58.6       | 10.3 |          | 44.3     |                           |
|               |                                                   | Z        | 1.65    | 57.3       | 9.2  |          | 44.2     |                           |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | X        | 3.32    | 66.8       | 18.5 | 2.91     | 135.8    | ±0.5 %                    |
|               |                                                   | Y        | 3.18    | 66.4       | 18.2 |          | 127.9    |                           |
|               |                                                   | Z        | 3.21    | 66.5       | 18.2 |          | 128.1    |                           |
| 10012-<br>CAB | IEEE 802.11b WIFi 2.4 GHz (DSSS, 1<br>Mbps)       | X        | 2.90    | 68.1       | 18.4 | 1.87     | 137.2    | ±0.7 %                    |
|               |                                                   | Y        | 2.97    | 69.2       | 19.0 |          | 130.1    |                           |
|               |                                                   | Z        | 2.80    | 68.0       | 18.4 |          | 129.9    | .0.0.0/                   |
| 10013-<br>CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | X        | 11.40   | 71.2       | 23.7 | 9.46     | 135.1    | ±3.8 %                    |
|               |                                                   | Y        | 11.25   | 71.3       | 23.9 |          | 124.2    |                           |
|               |                                                   | Z        | 10.96   | 70.3       | 23.2 |          | 124.8    | - 1 - 0/                  |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | X        | 18.25   | 96.6       | 27.2 | 9.39     | 140.4    | ±1.7 %                    |
|               |                                                   | Y        | 21.48   | 99.9       | 28.2 | ļ        | 133.3    |                           |
|               |                                                   | Z        | 11.76   | 89.4       | 24.5 |          | 127.3    |                           |
| 10023-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0)                       | X        | 13.12   | 91.7       | 26.0 | 9.57     | 126.4    | ±1.9 %                    |
|               |                                                   | Y        | 17.05   | 95.2       | 26.6 |          | 127.3    |                           |
|               |                                                   | Z        | 8.91    | 85.2       | 23.3 |          | 118.8    |                           |
| 10024-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X        | 34.78   | 100.0      | 25.2 | 6.56     | 116.4    | ±1.7 %                    |
|               |                                                   | Y        | 33.37   | 99.5       | 24.8 |          | 111.7    |                           |
|               |                                                   | Z        | 34.11   | 99.5       | 24.6 |          | 110.5    |                           |
| 10027-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | X        | 37.18   | 99.7       | 24.0 | 4.80     | 131.2    | ±1.7 %                    |
|               |                                                   | Y        | 44.91   | 99.8       | 23.3 | ļ        | 127.4    |                           |
|               |                                                   | Z        | 41.51   | 99.7       | 23.2 |          | 125.0    |                           |
| 10028-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X        | 48.95   | 99.5       | 22.4 | 3.55     | 140.9    | ±1.7 %                    |
|               |                                                   | <u>Y</u> | 67.41   | 99.8       | 21.5 | <u> </u> | 137.8    |                           |
|               |                                                   | Z        | 56.45   | 100.0      | 21.9 |          | 135.0    |                           |
| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | X        | 20.23   | 99.3       | 22.1 | 1.16     | 111.3    | ±1.2 %                    |
|               |                                                   | Y        | 32,72   | 99.5       | 20.6 |          | 109.6    | [                         |
|               |                                                   | Z        | 48.57   | 100.0      | 20.0 |          | 108.8    |                           |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)       | X        | 6.60    | 67.9       | 20.0 | 5.67     | 144.6    | ±1.2 %                    |
|               |                                                   | Y        | 6.55    | 68.2       | 20.2 |          | 142.7    |                           |
|               |                                                   | Z        | 6.50    | 67.8       | 19.9 |          | 141.5    |                           |

#### ES3DV3-SN:3213

January 20, 2015

| 10103-        | LTE-TDD (SC-FDMA, 100% RB, 20               | x        | 10.34        | 75.7         | 26.2         | 9.29 | 133.2          | ±2.5 %   |
|---------------|---------------------------------------------|----------|--------------|--------------|--------------|------|----------------|----------|
| CAB           | MHz, QPSK)                                  | Y        | 10.31        | 76.5         | 26.9         |      | 128.2          |          |
|               |                                             | Z        | 9.74         | 74.5         | 25.6         |      | 127.1          |          |
| 10108-<br>CAC | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X        | 6.50         | 67.6         | 20.0         | 5.80 | 142.8          | ±1.2 %   |
| CAC           |                                             | Y        | 6.41         | 67.7         | 20.1         |      | 140.3          |          |
|               |                                             | Z        | 6.41         | 67.6         | 19.9         |      | 140.2          |          |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | x        | 10.36        | 69.2         | 21.6         | 8.07 | 132.8          | ±2.7 %   |
|               |                                             | Y        | 10.42        | 69.7         | 21.9         |      | 131.4          |          |
|               |                                             | Z        | 10.22        | 69.1         | 21.4         |      | 130.0          |          |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)     | X        | 9.65         | 74.6         | 25.8         | 9.28 | 127.9          | ±2.5 %   |
|               |                                             | Y        | 9.66         | 75.6         | 26.7         |      | 123.7          |          |
|               |                                             | Z        | 9.14         | 73.6         | 25.3         |      | 122.7          |          |
| 10154-<br>CAC | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | X        | 6.14         | 66.9         | 19.6         | 5.75 | 139.3          | ±1.4 %   |
|               |                                             | Y        | 6.08         | 67.2         | 19.9         |      | 138.5          |          |
|               |                                             | Z        | 6.05         | 66.9         | 19.6         |      | 137.3          | 1.4 4 0/ |
| 10160-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)     | X        | 6.58         | 67.5         | 19.9         | 5.82 | 144.3          | ±1.4 %   |
|               |                                             | Y        | 6.54         | 67.8         | 20.1         |      | 143.7          |          |
|               |                                             | Z        | 6.50         | 67.5         | 19.8         | 570  | 142.1<br>120.6 | ±0.9 %   |
| 10169-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | ×        | 4.93         | 66.1         | 19.3         | 5.73 | 120.6          | 10.9 %   |
|               |                                             | <u>Y</u> | 4.93         | 66.7         | 19.8         |      | 118.9          |          |
|               |                                             | Z        | 4.85         | 66.3         | 19.5         | 0.24 | 140.8          | ±2.5 %   |
| 10172-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X        | 8.93         | 79.5         | 28.6         | 9.21 | 140.0          | 12.0 70  |
|               |                                             | Y        | 9.60         | 82.9         | 30.6         |      | 136.6          |          |
| 10175-<br>CAC | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,             | Z<br>X   | 8.30<br>4.90 | 78.2<br>66.0 | 27.9<br>19.3 | 5.72 | 118.8          | ±0.9 %   |
| UAU           | QPSK)                                       | Y        | 4.93         | 66.8         | 19.8         |      | 120.2          |          |
|               |                                             | z        | 4.81         | 66.1         | 19.3         |      | 116.6          |          |
| 10181-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,<br>QPSK)    | ×        | 4.92         | 66.1         | 19.3         | 5.72 | 119.0          | ±0.9 %   |
| 0             |                                             | Y        | 4.92         | 66.6         | 19.8         |      | 120.5          |          |
|               |                                             | Z        | 4.77         | 65.8         | 19.2         |      | 115.8          |          |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)  | X        | 9.93         | 68.7         | 21.4         | 8.10 | 125.0          | ±2.5 %   |
|               |                                             | Y        | 10.06        | 69.4         | 21.9         |      | 128.3          | ļ        |
|               |                                             | Z        | 9.78         | 68.5         | 21.2         |      | 120.5          |          |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                            | X        | 6.66         | 65.7         | 18.8         | 5.97 | 106.5          | ±0.9 %   |
|               |                                             | Y        | 6.81         | 66.6         | 19.3         |      | 112.3          | ļ        |
|               |                                             | Z        | 6.64         | 66.0         | 18.9         |      | 108.0          |          |
| 10237-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X        | 8.91         | 79.4         | 28.5         | 9.21 | 141.4          | ±2.2 %   |
| -             |                                             | <u> </u> | 9.39         | 82.3         | 30.4         |      | 146.7          |          |
| 10252-        | LTE-TDD (SC-FDMA, 50% RB, 10 MHz,           | Z<br>X   | 8.40<br>8.84 | 78.5<br>73.3 | 28.2<br>25.2 | 9.24 | 141.2<br>119.1 | ±2.7 %   |
| CAB           | QPSK)                                       | +        | 0.04         | 74.0         | 060          |      | 118.6          |          |
|               |                                             | <u>Y</u> | 8.94         | 74.6         | 26.3         |      | 114.0          |          |
| 10267-        | LTE-TDD (SC-FDMA, 100% RB, 10               | Z<br>X   | 8.39<br>9.62 | 72.4<br>74.6 | 24.7<br>25.8 | 9.30 | 126.2          | ±2.7 %   |
| CAB           | MHz, QPSK)                                  | Y        | 9.77         | 76.0         | 26.9         |      | 126.1          |          |
|               |                                             | z        | 9.10         | 73.4         | 25.2         |      | 121.4          |          |

#### ES3DV3-SN:3213

January 20, 2015

| 10275-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8.4)                       | X | 4.43  | 66.4 | 18.5 | 3.96 | 132.5 | ±0.7 % |
|---------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
|               |                                                                   | Y | 4.37  | 66.6 | 18.6 |      | 134.1 |        |
|               |                                                                   | Z | 4.40  | 66.7 | 18.6 |      | 130.5 |        |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                                    | Х | 3.63  | 66.4 | 18.4 | 3.46 | 122.5 | ±0.5 % |
|               |                                                                   | Y | 3.54  | 66.5 | 18.5 |      | 124.9 |        |
|               |                                                                   | Z | 3.55  | 66.3 | 18.3 |      | 121.4 |        |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                                    | X | 3.49  | 65.9 | 18.1 | 3.39 | 125.1 | ±0.5 % |
|               |                                                                   | Y | 3.52  | 66.7 | 18.6 |      | 126.1 |        |
|               |                                                                   | Z | 3.51  | 66.5 | 18.4 |      | 123.8 |        |
| 10297-<br>AAA | LTE-FDD (SC-FDMA, 50% RB, 20 MHz,<br>QPSK)                        | X | 6.49  | 67.6 | 19.9 | 5.81 | 143.1 | ±1.4 % |
|               |                                                                   | Y | 6.49  | 68.0 | 20.3 |      | 142.3 |        |
|               |                                                                   | Z | 6.42  | 67.6 | 19.9 |      | 144.3 |        |
| 10311-<br>AAA | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X | 7.06  | 68.1 | 20.2 | 6.06 | 147.6 | ±1.7 % |
|               |                                                                   | Y | 7.09  | 68.7 | 20.7 |      | 148.2 |        |
|               |                                                                   | Z | 7.03  | 68.3 | 20.4 |      | 149.8 |        |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                        | X | 4.66  | 67.4 | 18.4 | 3.76 | 135.3 | ±0.5 % |
|               |                                                                   | Y | 4.69  | 68.1 | 18.7 |      | 134.9 |        |
|               |                                                                   | Z | 4.72  | 68.2 | 18.7 |      | 136.5 |        |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                        | X | 4.58  | 67.4 | 18.3 | 3.77 | 133.4 | ±0.5 % |
|               |                                                                   | Y | 4.68  | 68.4 | 18.9 |      | 132.8 |        |
|               |                                                                   | Z | 4.58  | 67.9 | 18.5 |      | 135.4 |        |
| 10415-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | X | 2.41  | 65.7 | 17.2 | 1.54 | 131.4 | ±0.7 % |
|               |                                                                   | Y | 2.42  | 66.4 | 17.7 |      | 131.3 |        |
|               |                                                                   | Z | 2.59  | 67.7 | 18.2 |      | 134.1 |        |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X | 10.06 | 68.9 | 21.5 | 8.23 | 127.6 | ±2.7 % |
|               |                                                                   | Y | 10.12 | 69.5 | 22.0 |      | 126.3 |        |
|               |                                                                   | Z | 10.04 | 69.1 | 21.7 |      | 129.7 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 <sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 7 and 8).
 <sup>B</sup> Numerical linearization parameter: uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

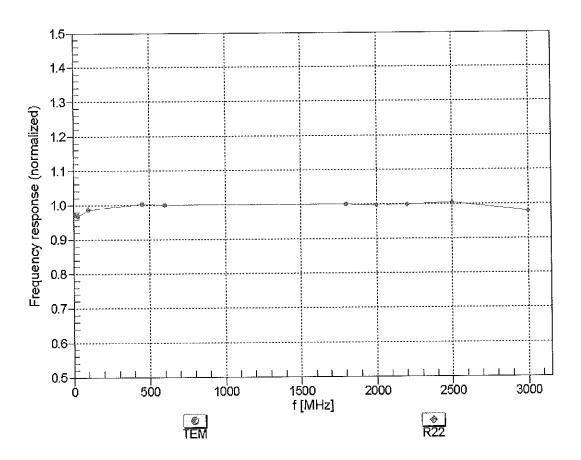
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.45    | 6.45    | 6.45    | 0.57               | 1.37                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                               | 6.26    | 6.26    | 6.26    | 0.65               | 1.26                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                               | 5.22    | 5.22    | 5.22    | 0.47               | 1.47                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                               | 5.06    | 5.06    | 5.06    | 0.80               | 1.14                       | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                               | 4.54    | 4.54    | 4.54    | 0.78               | 1.22                       | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                               | 4.33    | 4.33    | 4.33    | 0.80               | 1.28                       | ± 12.0 %       |

## Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

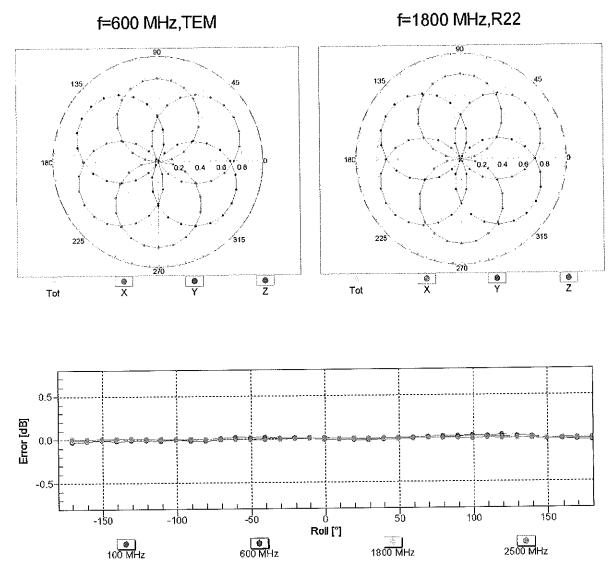
validity can be extended to  $\pm$  110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the Compensation formula tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. <sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 6.11    | 6.11    | 6.11    | 0.71               | 1.24                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.07    | 6.07    | 6.07    | 0.35               | 1.86                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 4.93    | 4.93    | 4.93    | 0.51               | 1.47                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 4.72    | 4.72    | 4.72    | 0.80               | 1.20                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 4.37    | 4.37    | 4.37    | 0.71               | 1.12                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 4.20    | 4.20    | 4.20    | 0.66               | 0.95                       | ± 12.0 %       |

## Calibration Parameter Determined in Body Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.


validity can be extended to  $\pm$  110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the construct uncertainty is related target tissue parameters.

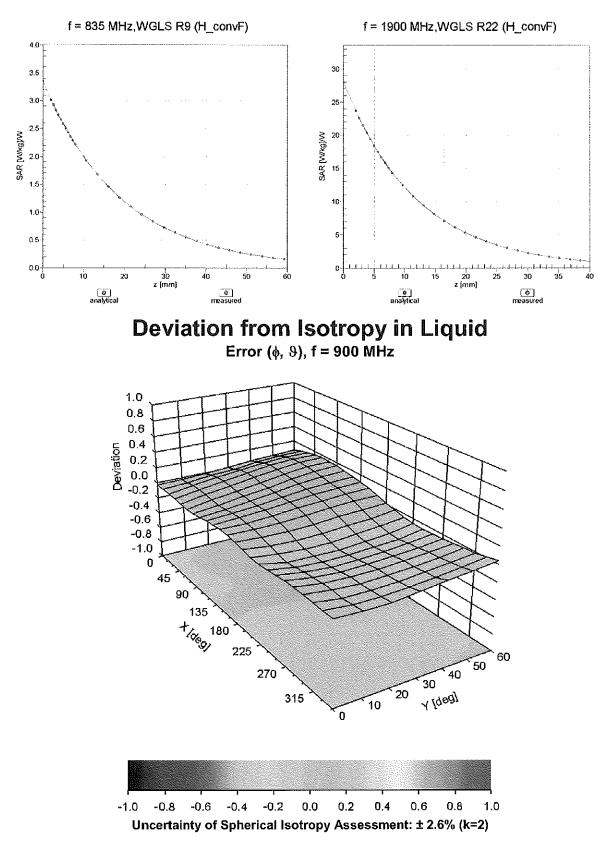
the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -70.6      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland BC MRA



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3318\_Jan15

| CALIBRATION                   | I CERTIFICATE                                                                                                                                                                                                         |               |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Object                        | ES3DV3 - SN:3318                                                                                                                                                                                                      |               |
| Calibration procedure(s)      | QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6<br>Calibration procedure for dosimetric E-field probes                                                                                                                       | CC<br>1/30/15 |
| Calibration date:             | January 23, 2015                                                                                                                                                                                                      |               |
|                               | cuments the traceability to national standards, which realize the physical units of measurements (SI).<br>Incertainties with confidence probability are given on the following pages and are part of the certificate. |               |
| All calibrations have been co | nducted in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%.                                                                                                                 |               |

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Power sensor E4412A        | MY41498087      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 03-Apr-14 (No. 217-01915)         | Apr-15                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919)         | Apr-15                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920)         | Арг-15                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-660_Jan15)    | Jan-16                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |

|                              | Name                                  | Function                             | Signature                |
|------------------------------|---------------------------------------|--------------------------------------|--------------------------|
| Calibrated by:               | Israe Elnaouq                         | Laboratory Technician                | Sten Charles             |
|                              |                                       |                                      | Iselen Analley           |
| Approved by:                 | Katja Pokovic                         | Technical Manager                    | e M                      |
|                              |                                       |                                      |                          |
|                              |                                       |                                      | Issued: January 26, 2015 |
| This calibration certificate | shall not be reproduced except in ful | l without written approval of the la | boratory.                |

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty\_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D φ rotation around probe axis Polarization $\phi$ 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

## Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

# Probe ES3DV3

# SN:3318

Manufactured: Calibrated:

January 10, 2012 January 23, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

#### Basic Calibration Parameters

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.15     | 0.92     | 1.28     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 106.4    | 109.2    | 103.4    |           |

#### **Modulation Calibration Parameters**

| UID           | Communication System Name                         |   | A<br>dB | Β<br>dB√μV | С    | D<br>dB    | VR<br>mV | Unc <sup>⊨</sup><br>(k=2) |
|---------------|---------------------------------------------------|---|---------|------------|------|------------|----------|---------------------------|
| 0             | CW                                                | Х | 0.0     | 0.0        | 1.0  | 0.00       | 200.6    | ±3.5 %                    |
|               |                                                   | Y | 0.0     | 0.0        | 1.0  |            | 185.3    |                           |
|               |                                                   | z | 0.0     | 0.0        | 1.0  |            | 207.7    |                           |
| 10010-<br>CAA | SAR Validation (Square, 100ms, 10ms)              | Х | 3.26    | 66.4       | 14.0 | 10.00      | 41.4     | ±1.2 %                    |
| _,            |                                                   | Y | 1.76    | 59.6       | 9.8  |            | 36.1     |                           |
|               |                                                   | Z | 1.82    | 57.7       | 9.6  |            | 43.6     |                           |
| 10011-<br>CAB | UMTS-FDD (WCDMA)                                  | х | 3.48    | 68.9       | 19.9 | 2.91       | 120.2    | ±0.5 %                    |
|               |                                                   | Y | 3.76    | 70.1       | 19.9 |            | 146.0    |                           |
|               |                                                   | Z | 3.11    | 66.0       | 17.9 |            | 124.4    |                           |
| 10012-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps)       | X | 3.71    | 74.2       | 21.7 | 1.87       | 121.7    | ±0.7 %                    |
|               |                                                   | Y | 3.65    | 73.3       | 20.7 |            | 147.5    |                           |
|               |                                                   | Z | 2.77    | 67.4       | 17.8 |            | 126.6    |                           |
| 10013-<br>CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | Х | 10.68   | 69.5       | 22.7 | 9.46       | 114.7    | ±2.5 %                    |
|               |                                                   | Y | 10.82   | 70.4       | 23.0 |            | 139.8    |                           |
|               |                                                   | Z | 11.22   | 71.1       | 23.7 |            | 122.2    |                           |
| 10021-<br>DAB | GSM-FDD (TDMA, GMSK)                              | Х | 16.13   | 95.0       | 26.6 | 9.39       | 122.7    | ±2.2 %                    |
|               |                                                   | Y | 4.61    | 73.1       | 17.2 |            | 130.8    |                           |
|               |                                                   | Z | 15.10   | 92.0       | 25.4 |            | 135.9    |                           |
| 10023-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0)                       | X | 17.03   | 96.8       | 27.5 | 9.57       | 113.0    | ±1.9 %                    |
|               |                                                   | Y | 4.15    | 71.7       | 16.8 |            | 119.9    |                           |
|               |                                                   | Z | 21.50   | 98.0       | 27.5 |            | 130.9    |                           |
| 10024-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1)                     | X | 35.51   | 99.5       | 24.5 | 6.56       | 147.6    | ±2.7 %                    |
|               |                                                   | Y | 6.12    | 77.2       | 17.1 |            | 118.1    |                           |
|               |                                                   | Z | 38.50   | 99.7       | 24.7 |            | 114.0    |                           |
| 10027-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                   | × | 45.57   | 99.9       | 23.2 | 4.80       | 113.3    | ±1.7 %                    |
|               |                                                   | Y | 2.73    | 68.4       | 12.6 |            | 133.3    |                           |
|               |                                                   | Z | 54.59   | 99.9       | 22.9 |            | 131.0    |                           |
| 10028-<br>DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                 | X | 53.68   | 99.5       | 21.9 | 3.55       | 123.0    | ±3.0 %                    |
|               |                                                   | Y | 60.05   | 99.8       | 21.1 |            | 144.9    |                           |
|               |                                                   | Z | 66.60   | 99.6       | 21.6 |            | 140.7    | 10.0.%                    |
| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)               | × | 20.92   | 99.4       | 21.8 | 1.16       | 136.6    | ±2.2 %                    |
|               |                                                   | Y | 95.40   | 88.3       | 13.8 |            | 117.6    |                           |
|               |                                                   | Z | 100.00  | 99.5       | 18.7 | + <u>-</u> | 110.1    | 14.0.9/                   |
| 10100-<br>CAB | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK)       | × | 6.50    | 68.1       | 20.2 | 5.67       | 130.5    | ±1.2 %                    |
|               |                                                   | Y | 6.11    | 66.7       | 19.2 |            | 107.2    |                           |
|               |                                                   | Z | 6.55    | 68.2       | 20.1 |            | 142.7    |                           |

#### ES3DV3-SN:3318

January 23, 2015

| 10103-        | LTE-TDD (SC-FDMA, 100% RB, 20               | x | 9.76             | 74.8 | 25.9 | 9.29  | 116.0 | ±2.5 %  |
|---------------|---------------------------------------------|---|------------------|------|------|-------|-------|---------|
| CAB           | MHz, QPSK)                                  |   |                  |      |      |       | 134.9 |         |
|               |                                             | Y | 8.85             | 72.2 | 24.1 |       | 134.9 |         |
| 10108-        | LTE-FDD (SC-FDMA, 100% RB, 10               | Z | 10.83            | 77.4 | 27.2 | 5.80  | 131.5 | ±1.2 %  |
| CAC           | MHz, QPSK)                                  | X | 6.36             | 67.7 | 20.1 | 0.00  |       | II.2 /0 |
|               |                                             | Y | 5.92             | 66.1 | 19.0 |       | 106.6 |         |
|               |                                             | Z | 6.42             | 67.7 | 20.0 |       | 140.4 |         |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK) | X | 10.20            | 69.1 | 21.6 | 8.07  | 118.1 | ±2.5 %  |
|               |                                             | Y | 10.27            | 69.3 | 21.4 |       | 143.9 |         |
|               |                                             | Z | 10.43            | 69.7 | 21.8 |       | 131.0 |         |
| 10151-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)     | X | 9.0 <del>9</del> | 73,7 | 25,5 | 9.28  | 112.0 | ±2.7 %  |
|               |                                             | Y | 8.35             | 71.5 | 23.9 |       | 131.1 |         |
|               |                                             | Z | 9.58             | 74.4 | 25.6 |       | 126.8 |         |
| 10154-<br>CAC | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | X | 6.01             | 67.0 | 19.8 | 5.75  | 126.4 | ±1.2 %  |
|               |                                             | Y | 6.17             | 67.7 | 19.9 |       | 148.9 |         |
|               |                                             | Z | 6.07             | 67.1 | 19.7 |       | 137.2 |         |
| 10160-<br>CAB | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)     | X | 6.41             | 67.4 | 19.9 | 5.82  | 130.9 | ±0.9 %  |
|               |                                             | Y | 6.06             | 66.2 | 19.0 |       | 109.1 |         |
|               |                                             | Z | 6.54             | 67.7 | 20.0 |       | 142.6 |         |
| 10169-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X | 4.79             | 66.5 | 19.8 | 5.73  | 109.4 | ±0.9 %  |
|               |                                             | Y | 4.82             | 67.1 | 19.8 |       | 128.8 |         |
|               |                                             | Z | 4.85             | 66.4 | 19.5 |       | 119.0 |         |
| 10172-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)    | X | 8.44             | 79.3 | 28.7 | 9.21  | 125.1 | ±2.5 %  |
|               |                                             | Y | 7.15             | 75.0 | 26.0 | ***** | 144.0 |         |
|               |                                             | Z | 10.13            | 83.8 | 30.8 |       | 141.9 |         |
| 10175-<br>CAC | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)       | X | 5.13             | 68.2 | 20.8 | 5.72  | 146.5 | ±0.9 %  |
|               |                                             | Y | 4.77             | 66.8 | 19.6 |       | 125.2 |         |
|               |                                             | Z | 4.81             | 66.2 | 19.4 |       | 118.5 |         |
| 10181-<br>CAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)       | X | 5.11             | 68.1 | 20.7 | 5.72  | 146.4 | ±0.9 %  |
|               |                                             | Y | 4.79             | 67.0 | 19.7 |       | 126.0 |         |
|               |                                             | Z | 4.88             | 66.6 | 19.7 |       | 118.9 |         |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)  | X | 9.63             | 68.3 | 21.2 | 8.10  | 108.2 | ±2.5 %  |
|               |                                             | Y | 9.84             | 68.9 | 21.3 |       | 135.5 |         |
|               |                                             | Z | 9.99             | 69.2 | 21.7 |       | 124.0 |         |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                            | X | 6.99             | 67.3 | 19.7 | 5.97  | 134.8 | ±0.9 %  |
|               |                                             | Y | 6.73             | 66.8 | 19.2 |       | 115.9 |         |
|               |                                             | Z | 6.71             | 66.2 | 19.0 | [     | 106.3 |         |
| 10237-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz,<br>QPSK)    | X | 7.79             | 76.4 | 27.0 | 9.21  | 126.4 | ±2.5 %  |
|               |                                             | Y | 7.19             | 75.1 | 26.1 |       | 144.7 |         |
|               |                                             | Z | 10.12            | 83.9 | 30.9 |       | 142.0 |         |
| 10252-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)     | X | 8.19             | 71.9 | 24.7 | 9.24  | 103.3 | ±2.2 %  |
|               |                                             | Y | 7.76             | 70.8 | 23.6 |       | 122.0 |         |
|               |                                             | Z | 9.31             | 75.2 | 26.4 | 1     | 119.1 |         |
| 10267-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK) | X | 8.90             | 73.0 | 25.1 | 9.30  | 108.7 | ±2.2 %  |
|               | ,                                           | Y | 8.38             | 71.6 | 24.0 |       | 129.7 |         |
|               |                                             | Z | 10.15            | 76.5 | 26.9 |       | 126.1 |         |

#### ES3DV3-SN:3318

January 23, 2015

| 10275-<br>CAB                                | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8.4)                       | X | 4.42  | 67.2 | 19.2 | 3.96 | 119.1 | ±0.7 % |
|----------------------------------------------|-------------------------------------------------------------------|---|-------|------|------|------|-------|--------|
|                                              |                                                                   | Y | 4.71  | 68.5 | 19.5 |      | 143.8 |        |
|                                              |                                                                   | Z | 4.39  | 66.7 | 18.6 |      | 131.7 |        |
| 10291-<br>AAB                                | CDMA2000, RC3, SO55, Full Rate                                    | Х | 3.65  | 67.5 | 19.3 | 3.46 | 111.3 | ±0.5 % |
|                                              |                                                                   | Y | 3.89  | 69.0 | 19.6 |      | 130.9 |        |
|                                              |                                                                   | Z | 3.49  | 66.1 | 18.2 |      | 122.4 |        |
| 10292-<br>AAB                                | CDMA2000, RC3, SO32, Full Rate                                    | X | 3.60  | 67.6 | 19.3 | 3.39 | 114.4 | ±0.5 % |
|                                              |                                                                   | Y | 3.85  | 69.1 | 19.7 |      | 133.4 |        |
|                                              |                                                                   | Z | 3.45  | 66.2 | 18.2 |      | 123.7 |        |
| 10297-<br>AAA                                | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                           | Х | 6.36  | 67.6 | 20.1 | 5.81 | 128.7 | ±1.2 % |
| <u>, ,                                  </u> |                                                                   | Y | 5.95  | 66.1 | 19.0 |      | 106.5 |        |
|                                              |                                                                   | Z | 6.39  | 67.6 | 19.9 |      | 140.7 |        |
| 10311-<br>AAA                                | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                       | X | 6.98  | 68.4 | 20.6 | 6.06 | 134.9 | ±1.2 % |
|                                              |                                                                   | Y | 6.52  | 66.7 | 19.3 |      | 111.3 |        |
|                                              |                                                                   | Z | 7.06  | 68.6 | 20.5 |      | 146.2 |        |
| 10403-<br>AAB                                | CDMA2000 (1xEV-DO, Rev. 0)                                        | X | 4.97  | 69.7 | 19.7 | 3.76 | 122.2 | ±0.5 % |
|                                              |                                                                   | Υ | 5.31  | 71.6 | 20.2 |      | 143.6 |        |
|                                              |                                                                   | Z | 4.54  | 67.3 | 18.2 |      | 133.0 |        |
| 10404-<br>AAB                                | CDMA2000 (1xEV-DO, Rev. A)                                        | X | 4.77  | 69.4 | 19.6 | 3.77 | 120.8 | ±0.5 % |
|                                              |                                                                   | Y | 5.40  | 72.4 | 20.6 |      | 141.3 |        |
|                                              |                                                                   | Z | 4.71  | 68.5 | 18.9 |      | 131.5 |        |
| 10415-<br>AAA                                | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)      | X | 3.07  | 71.7 | 20.7 | 1.54 | 120.5 | ±0.7 % |
|                                              |                                                                   | Y | 3.52  | 73.8 | 21.0 |      | 142.0 |        |
|                                              |                                                                   | Z | 2.38  | 66.1 | 17.4 |      | 129.6 |        |
| 10416-<br>AAA                                | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle) | X | 9.73  | 68.3 | 21.2 | 8.23 | 114.7 | ±2.5 % |
|                                              |                                                                   | Y | 9.99  | 69.2 | 21.5 |      | 138.0 |        |
|                                              |                                                                   | Z | 10.10 | 69.4 | 21.9 |      | 125.3 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 7 and 8).
 <sup>B</sup> Numerical linearization parameter: uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

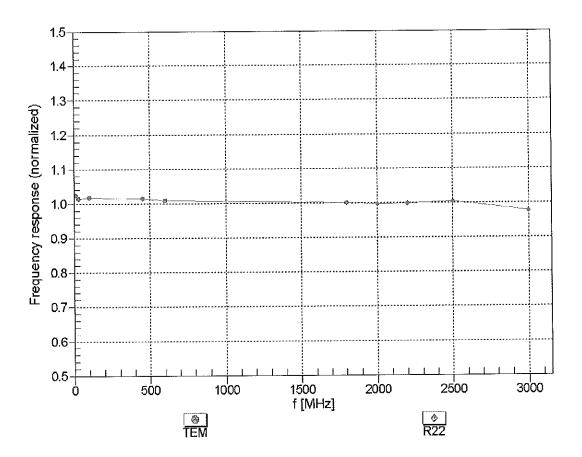
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 6.58    | 6.58    | 6.58    | 0.36               | 1.73                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                               | 6.39    | 6.39    | 6.39    | 0.80               | 1.14                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                               | 5.27    | 5.27    | 5.27    | 0.76               | 1.19                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                               | 5.05    | 5.05    | 5.05    | 0.44               | 1.55                       | ± 12.0 %       |
| 2300                 | 39.5                                  | 1.67                               | 4.78    | 4.78    | 4.78    | 0.80               | 1.23                       | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                               | 4.50    | 4.50    | 4.50    | 0.55               | 1.49                       | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                               | 4.34    | 4.34    | 4.34    | 0.76               | 1.32                       | ± 12.0 %       |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to

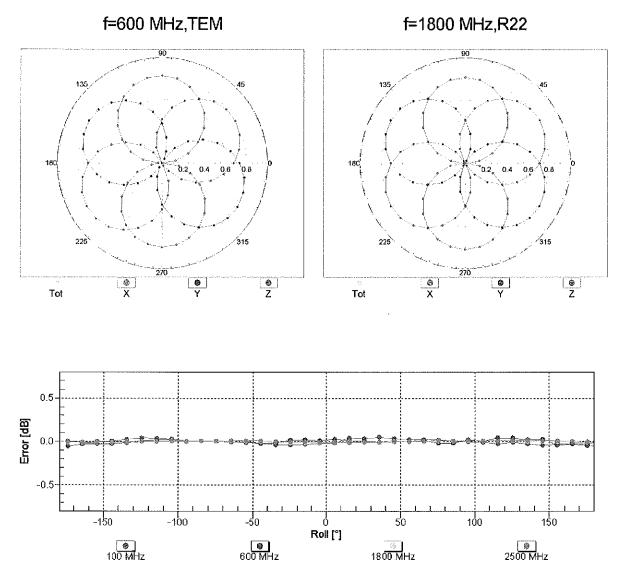
<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                               | 6.22    | 6.22    | 6.22    | 0.67               | 1.28                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.23    | 6.23    | 6.23    | 0.80               | 1.19                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                               | 4.95    | 4.95    | 4.95    | 0.40               | 1.77                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                               | 4.76    | 4.76    | 4.76    | 0.60               | 1.48                       | ± 12.0 %       |
| 2300                 | 52.9                                  | 1.81                               | 4.52    | 4.52    | 4.52    | 0.80               | 1.19                       | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                               | 4.37    | 4.37    | 4.37    | 0.72               | 1.23                       | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                               | 4.17    | 4.17    | 4.17    | 0.80               | 1.00                       | ± 12.0 %       |

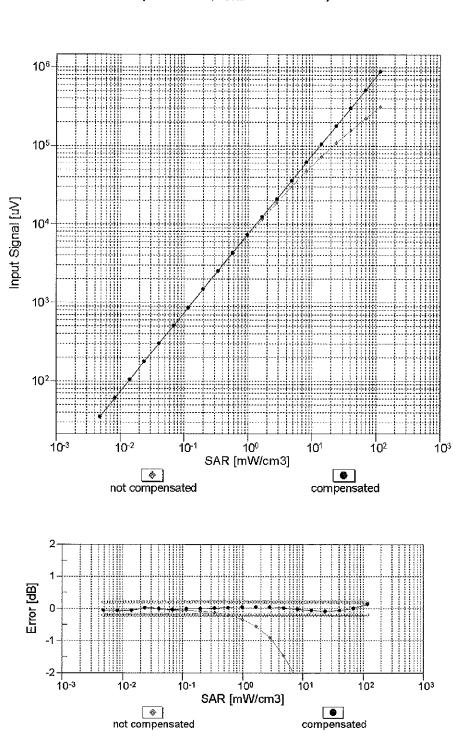
## Calibration Parameter Determined in Body Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to  $\pm$  110 MHz.


<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

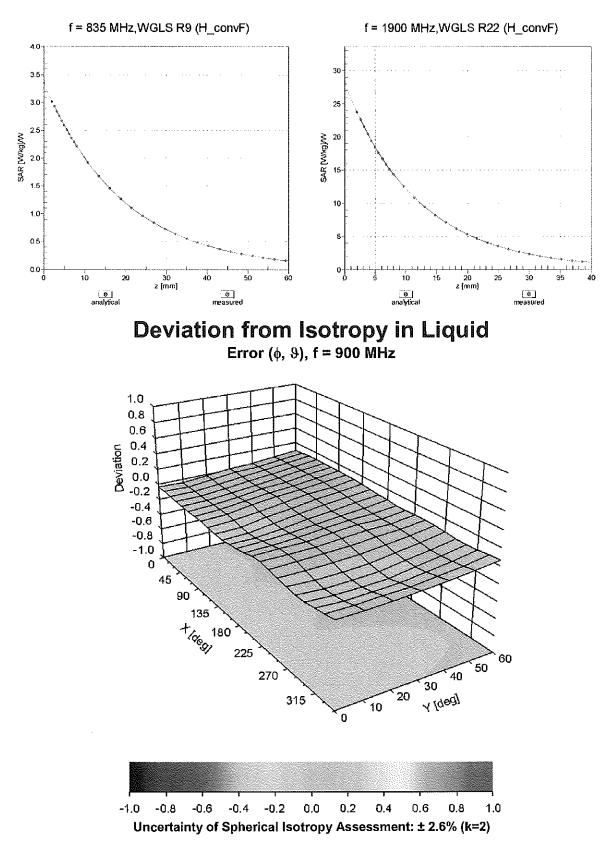
<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



**Conversion Factor Assessment** 

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -104.4     |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

## APPENDIX D:SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}]}{r} d\phi' d\rho' d\rho$$

where *Y* is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively,  $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$ ,  $\omega$  is the angular frequency, and  $j = \sqrt{-1}$ .

|                           |          | Comp            | ositior  | n of the | lissu | e Equiv | valent | Matter |           |           |           |           |  |
|---------------------------|----------|-----------------|----------|----------|-------|---------|--------|--------|-----------|-----------|-----------|-----------|--|
| Frequency (MHz)           | 750      | 750             | 835      | 835      | 1750  | 1750    | 1900   | 1900   | 2300-2450 | 2300-2450 | 5200-5800 | 5200-5800 |  |
| Tissue                    | Head     | Body            | Head     | Body     | Head  | Body    | Head   | Body   | Head      | Body      | Head      | Body      |  |
| Ingredients (% by weight) |          |                 |          |          |       |         |        |        |           |           |           |           |  |
| Bactericide               |          |                 | 0.1      | 0.1      |       |         |        |        |           |           |           |           |  |
| DGBE                      |          |                 |          |          | 47    | 31      | 44.92  | 29.44  |           | 26.7      |           |           |  |
| HEC                       |          |                 | 1        | 1        |       |         |        |        |           |           | <b>C</b>  |           |  |
| NaCl                      | See page | See page<br>2-3 | See page | 1.45     | 0.94  | 0.4     | 0.2    | 0.18   | 0.39      | See page  | 0.1       | See page  |  |
| Sucrose                   |          | -               | 57       | 44.9     |       |         |        |        |           |           | 5         |           |  |
| Polysorbate (Tween) 80    | ]        |                 |          |          |       |         |        |        |           |           |           | 20        |  |
| Water                     |          |                 | 40.45    | 53.06    | 52.6  | 68.8    | 54.9   | 70.17  |           | 73.2      |           | 80        |  |

 Table D-I

 Composition of the Tissue Equivalent Matter

| FCC ID: ZNFH900           |                  | SAR EVALUATION REPORT | 🕒 LG | Reviewed by:<br>Quality Manager |
|---------------------------|------------------|-----------------------|------|---------------------------------|
| Test Dates:               | DUT Type:        |                       |      | APPENDIX D:                     |
| 08/10/15 - 08/31/15       | Portable Handset |                       |      | Page 1 of 5                     |
| © 2015 PCTEST Engineering |                  | REV 16.3 M            |      |                                 |

#### 2 Composition / Information on ingredients

| The Item is composed o | f the following ingredients:                                             |
|------------------------|--------------------------------------------------------------------------|
| H <sub>2</sub> O       | Water, 35 – 58%                                                          |
| Sucrose                | Sugar, white, refined, 40 – 60%                                          |
| NaCl                   | Sodium Chloride, 0 – 6%                                                  |
| Hydroxyethyl-cellulose | Medium Viscosity (CAS# 9004-62-0), <0.3%                                 |
| Preventol-D7           | Preservative: aqueous preparation, (CAS# 55965-84-9), containing         |
|                        | 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, |
|                        | 0.1 - 0.7%                                                               |
|                        | Relevant for safety; Refer to the respective Safety Data Sheet*.         |
|                        | Eiguro D 1                                                               |

#### Figure D-1

#### Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

#### Measurement Certificate / Material Test

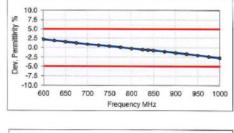
| Item Name    | Body Tissue Simulating Liquid (MSL750V2) |  |  |  |
|--------------|------------------------------------------|--|--|--|
| Product No.  | SL AAM 075 AA (Charge: 150223-3)         |  |  |  |
| Manufacturer | SPEAG                                    |  |  |  |

Measurement Method TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation Validation results were within  $\pm 2.5\%$  towards the target values of Methanol.

#### Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.


#### **Test Condition**

| Ambient         | Environment temperatur (22 ± 3)°C and humidity < 70%. |
|-----------------|-------------------------------------------------------|
| TSL Temperature | 22°C                                                  |
| Test Date       | 25-Feb-15                                             |
| Operator        | IEN                                                   |

#### Additional Information

TSL Density 1.212 g/cm3 TSL Heat-capacity 3.006 kJ/(kg\*K)

|                   | arget [%] | Diff.to T | t     | Targe |       | red   | Measu |         |
|-------------------|-----------|-----------|-------|-------|-------|-------|-------|---------|
| 10.0              | ∆-sigma   | ∆-eps     | sigma | eps   | sigma | HP-e" | HP-e' | f [MHz] |
| % 7.5<br>À 5.0    | -13.2     | 2.2       | 0.95  | 56.1  | 0.83  | 24.76 | 57.3  | 600     |
| 2.5               | -11.0     | 1.8       | 0.95  | 56.0  | 0.85  | 24.43 | 57.1  | 625     |
| 5.0<br>2.5<br>0.0 | -8.8      | 1.5       | 0.96  | 55.9  | 0.87  | 24.09 | 56.8  | 650     |
|                   | -6.7      | 1.2       | 0.96  | 55.8  | 0.89  | 23.80 | 56.5  | 675     |
| -5.0 -            | -4.6      | 0.9       | 0.96  | 55.7  | 0.92  | 23.51 | 56.2  | 700     |
| -/.0 -            | -2.4      | 0.6       | 0.96  | 55.6  | 0.94  | 23.28 | 56.0  | 725     |
| -10.0             | -0.1      | 0.4       | 0.96  | 55.5  | 0.96  | 23.06 | 55.7  | 750     |
| 600 6             | 2.1       | 0.1       | 0.97  | 55.4  | 0.99  | 22.87 | 55.5  | 775     |
|                   | 4.4       | -0.2      | 0.97  | 55.3  | 1.01  | 22.68 | 55.2  | 800     |
|                   | 5.7       | -0.5      | 0.98  | 55.2  | 1.03  | 22.52 | 55.0  | 825     |
|                   | 6.3       | -0.6      | 0.98  | 55.2  | 1.05  | 22.44 | 54.9  | 838     |
| 10.0              | 7.0       | -0.7      | 0.99  | 55.2  | 1.06  | 22.36 | 54.8  | 850     |
| * 7.5             | 6.2       | -1.0      | 1.02  | 55.1  | 1.08  | 22.24 | 54.5  | 875     |
| AT 5.0            | 5.5       | -1.3      | 1.05  | 55.0  | 1.11  | 22.12 | 54.3  | 900     |
| 2.5               | 6.5       | -1.6      | 1.06  | 55.0  | 1.13  | 22.01 | 54.1  | 925     |
| 0.0 -2.5          | 7.6       | -2.0      | 1.08  | 54.9  | 1.16  | 21.89 | 53.9  | 950     |
|                   | 8.8       | -2.3      | 1.09  | 54.9  | 1.18  | 21.81 | 53.6  | 975     |
| -7.5              | 10.1      | -2.7      | 1.10  | 54.8  | 1.21  | 21.73 | 53.4  | 1000    |



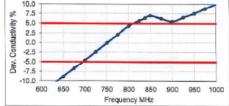



Figure D-2 750MHz Body Tissue Equivalent Matter

| FCC ID: ZNFH900           |                  | SAR EVALUATION REPORT | 🕐 LG | Reviewed by:<br>Quality Manager |
|---------------------------|------------------|-----------------------|------|---------------------------------|
| Test Dates:               | DUT Type:        |                       |      | APPENDIX D:                     |
| 08/10/15 - 08/31/15       | Portable Handset |                       |      | Page 2 of 5                     |
| © 2015 PCTEST Engineering |                  | REV 16.3 M            |      |                                 |

#### Measurement Certificate / Material Test

| Item Name    | Head Tissue Simulating Liquid (HSL750V2) |
|--------------|------------------------------------------|
| Product No.  | SL AAH 075 AA (Charge: 150213-1)         |
| Manufacturer | SPEAG                                    |

#### **Measurement Method**

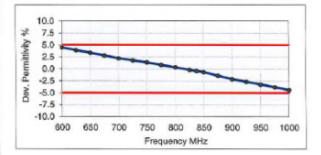
TSL dielectric parameters measured using calibrated OCP probe.

#### Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

#### **Target Parameters**

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.


#### **Test Condition**

| Ambient         | Environment temperatur (22 ± 3)°C and humidity < 70%. |
|-----------------|-------------------------------------------------------|
| TSL Temperature | 22°C                                                  |
| Test Date       | 18-Feb-15                                             |
| Operator        | IEN                                                   |

#### Additional Information

TSL Density 1.284 g/cm<sup>3</sup> TSL Heat-capacity 2.701 kJ/(kg\*K)

|         | Measu | ired  |       | Targe | t     | Diff.to T | arget [%] |
|---------|-------|-------|-------|-------|-------|-----------|-----------|
| f [MHz] | HP-e' | HP-e" | sigma | eps   | sigma | ∆-eps     | ∆-sigma   |
| 600     | 44.6  | 22.42 | 0.75  | 42.7  | 0.88  | 4.5       | -15.1     |
| 625     | 44.3  | 22.20 | 0.77  | 42.6  | 0.88  | 3.9       | -12.7     |
| 650     | 43.9  | 21.98 | 0.79  | 42.5  | 0.89  | 3.3       | -10.3     |
| 675     | 43.5  | 21.75 | 0.82  | 42.3  | 0.89  | 2.8       | -8.0      |
| 700     | 43.1  | 21.53 | 0.84  | 42.2  | 0.89  | 2.2       | -5.7      |
| 725     | 42.8  | 21.38 | 0.86  | 42.1  | 0.89  | 1.8       | -3.3      |
| 750     | 42.5  | 21.22 | 0.89  | 41.9  | 0.89  | 1.3       | -0.9      |
| 775     | 42.2  | 21.06 | 0.91  | 41.8  | 0.90  | 0.8       | 1.4       |
| 800     | 41.8  | 20.90 | 0.93  | 41.7  | 0.90  | 0.3       | 3.7       |
| 825     | 41.5  | 20.77 | 0.95  | 41.6  | 0.91  | -0.2      | 5.1       |
| 838     | 41.4  | 20.71 | 0.96  | 41.5  | 0.91  | -0.4      | 5.8       |
| 850     | 41.2  | 20.65 | 0.98  | 41.5  | 0.92  | -0.7      | 6.6       |
| 875     | 40.9  | 20.53 | 1.00  | 41.5  | 0.94  | -1.4      | 6.0       |
| 900     | 40.6  | 20.42 | 1.02  | 41.5  | 0.97  | -2.1      | 5.4       |
| 925     | 40.4  | 20.32 | 1.05  | 41.5  | 0.98  | -2.6      | 6.5       |
| 950     | 40.1  | 20.22 | 1.07  | 41.4  | 0.99  | -3.2      | 7.5       |
| 975     | 39.8  | 20.14 | 1.09  | 41.4  | 1.00  | -3.8      | 8.7       |
| 1000    | 39.5  | 20.05 | 1.12  | 41.3  | 1.01  | -4.3      | 9.9       |



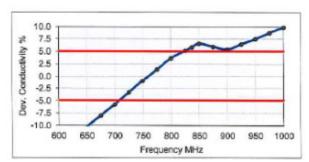



Figure D-3 750MHz Head Tissue Equivalent Matter

| FCC ID: ZNFH900           |                  | SAR EVALUATION REPORT | 🕑 LG | Reviewed by:    |  |
|---------------------------|------------------|-----------------------|------|-----------------|--|
|                           |                  |                       | ~    | Quality Manager |  |
| Test Dates:               | DUT Type:        |                       |      | APPENDIX D:     |  |
| 08/10/15 - 08/31/15       | Portable Handset |                       |      | Page 3 of 5     |  |
| © 2015 PCTEST Engineering |                  | REV 16.3 M            |      |                 |  |

## 2 Composition / Information on ingredients

| The Item is composed of the following ingredients: |                                                                  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| H2O                                                | Water, 52 – 75%                                                  |  |  |  |  |  |  |  |  |  |
| C8H18O3                                            | Diethylene glycol monobutyl ether (DGBE), 25 – 48%               |  |  |  |  |  |  |  |  |  |
|                                                    | (CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)  |  |  |  |  |  |  |  |  |  |
|                                                    | Relevant for safety; Refer to the respective Safety Data Sheet*. |  |  |  |  |  |  |  |  |  |
| NaCl                                               | Sodium Chloride, <1.0%                                           |  |  |  |  |  |  |  |  |  |
| Figure D-4                                         |                                                                  |  |  |  |  |  |  |  |  |  |

## Composition of 2.4 GHz Head Tissue Equivalent Matter

**Note:** 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

#### Measurement Certificate / Material Test

| Item N<br>Produc |              |                | Head     | Tiss         | E DA          | ulating             | Liquid (H               | ISL2450V2)                                              |
|------------------|--------------|----------------|----------|--------------|---------------|---------------------|-------------------------|---------------------------------------------------------|
| Manufa           |              |                | SPEA     |              | S BA (        | unarge              | 150206-3                | 5)                                                      |
| widi iulia       | acture       |                | SPEA     | i di         |               |                     |                         |                                                         |
| Measu            | iremei       | nt Met         | hod      |              |               |                     |                         |                                                         |
| TSL di           | electri      | c para         | meters   | s mea        | sured         | using ca            | alibrated O             | CP probe.                                               |
|                  |              |                |          |              |               |                     |                         |                                                         |
| Setup            |              |                | ioro III | able .       | 0.59/         | torus and a         | the trees               |                                                         |
| valiual          | IOITIE       | suits w        | ele w    | unin ±       | 2.0%          | towards             | s the target            | values of Methanol.                                     |
| Target           | Para         | meters         | s        |              |               |                     |                         |                                                         |
|                  |              |                |          | ined i       | n the I       | EEE 15              | 28 and IEC              | C 62209 compliance standards.                           |
|                  |              |                |          |              |               |                     |                         |                                                         |
| Test C           |              | ion            | -        |              |               |                     |                         |                                                         |
| Ambier           |              | atura          | 23°C     | onme         | nt temp       | peratur             | (22 ± 3)°C              | and humidity < 70%.                                     |
| Test D           |              | ature          | 11-Fe    | b-15         |               |                     |                         |                                                         |
| Operat           |              |                | IEN      | 0-15         |               |                     |                         |                                                         |
| - pro- da        |              |                | - 441.1  |              |               |                     |                         |                                                         |
| Additi           | onal In      | form           | ation    |              |               |                     |                         |                                                         |
| TSL D            |              |                | 0.988    |              |               |                     |                         |                                                         |
| TSL H            | eat-ca       | pacity         | 3.680    | kJ/(k        | g*K)          |                     |                         |                                                         |
|                  |              |                |          | -            |               | -                   |                         |                                                         |
| f (MHz)          | Measu        | HP-e"          | atama    | Targe        |               |                     | arget [%]               | 10.0                                                    |
| 1900             | 40.4         | 11.89          | 1.26     | 40.0         | sigma<br>1.40 | <u>∆-eps</u><br>1.0 | <u>∆-sigma</u><br>-10.2 | 8 <sup>8</sup> 7.5 -                                    |
| 1925             | 40.3         | 11.98          | 1.28     | 40.0         | 1.40          | 0.7                 | -8.3                    | 25<br>0.0                                               |
| 1950             | 40.2         | 12.07          | 1.31     | 40.0         | 1.40          | 0.4                 | -6.4                    | £ 2.5                                                   |
| 1975             | 40.1         | 12.15          | 1.34     | 40.0         | 1.40          | 0.2                 | -4.6                    | 2.5                                                     |
| 2000             | 40.0         | 12.23          | 1.36     | 40.0         | 1.40          | -0.1                | -2.8                    | -5.0                                                    |
| 2025             | 39.9         | 12.32          | 1.39     | 40.0         | 1.42          | -0.2                | -2.4                    | -7.5                                                    |
| 2050             | 39.8         | 12.41          | 1.42     | 39.9         | 1.44          | -0.3                | -2.0                    | -10.0 1900 2000 2100 2200 2300 2400 2500 2600 2700      |
| 2075             | 39.7         | 12.50          | 1.44     | 39.9         |               | -0.4                | -1.6                    | Frequency MHz                                           |
| 2100             | 39.6<br>39.5 | 12.59<br>12.66 | 1.47     | 39.8<br>39.8 | 1.49          | -0.5                | -1.2                    |                                                         |
| 2150             | 39.4         | 12.73          | 1.52     | 39.8         | 1.53          | -0.7                | -0.9                    |                                                         |
| 2175             | 39.3         | 12.83          | 1.55     | 39.7         | 1.56          | -0.9                | -0.2                    | 10.0                                                    |
| 2200             | 39.2         | 12.92          |          | 39.6         | 1.58          | -1.1                | 0.2                     | £ 7.5                                                   |
| 2225             | 39.1         | 13.00          | 1.61     | 39.6         | 1.60          | -1.2                | 0.6                     | 5.0                                                     |
| 2250             | 39.0         | 13.08          | 1.64     | 39.6         | 1.62          | -1.3                | 0.9                     | 15 2.5<br>D 0.0                                         |
| 2275             | 38.9         | 13.17          | 1.67     | 39.5         | 1.64          | -1.5                | 1.4                     | 2.5<br>0.0<br>0.0<br>0.0                                |
| 2300             | 38.8<br>38.7 | 13.26<br>13.34 | 1.70     | 39.5         | 1.67          | -1.7                | 1.8                     | -5.0                                                    |
| 2320             | 38.6         | 13.34          | 1.73     | 39.4<br>39.4 | 1.69          | -1.8<br>-2.0        | 2.2                     |                                                         |
| 2375             | 38.5         | 13.42          | 1.78     | 39.3         | 1.73          | -2.1                | 2.9                     | -10.0 ×<br>1900 2000 2100 2200 2300 2400 2500 2600 2700 |
| 2400             | 38.4         | 13.58          | 1.81     | 39.3         | 1.76          | -2.3                | 3.3                     | Frequency MHz                                           |
| 2425             | 38.3         | 13.65          | 1.84     | 39.2         | 1.78          | -2.4                | 3.6                     |                                                         |
| 2450             | 38.2         | 13.73          | 1.87     | 39.2         | 1.80          | -2.6                | 3.9                     |                                                         |
| 2475             | 38.1         | 13.80          | 1.90     | 39.2         | 1.83          | -2.8                | 4.0                     |                                                         |
| 2500<br>2525     | 38.0<br>37.9 | 13.87          | 1.93     | 39.1         | 1.85          | -3.0                | 4.0                     |                                                         |
| 2525             | 37.9         | 13.90<br>13.93 | 1.95     | 39.1<br>39.1 | 1.88          | -3.1                | 3.8                     |                                                         |
| 2575             | 37.7         | 14.05          | 2.01     | 39.0         | 1.91          | -3.2                | 4.0                     |                                                         |
| 2600             | 37.6         | 14.17          | 2.05     | 39.0         | 1.96          | -3.7                | 4.4                     |                                                         |
|                  | 37.4         | 14.23          | 2.08     | 39.0         | 1.99          | -3.9                | 4.4                     |                                                         |
| 2625             | 37.3         | 14.29          | 2.11     | 38.9         | 2.02          | -4.1                | 4.4                     |                                                         |
| 2650             |              |                |          |              |               |                     |                         |                                                         |
|                  | 37.2<br>37.1 | 14.37<br>14.45 | 2.14     | 38.9<br>38.9 | 2.05          | -4.3<br>-4.5        | 4.6                     |                                                         |

2.4 GHz Head Tissue Equivalent Matter

| FCC ID: ZNFH900           |                  | SAR EVALUATION REPORT | 🕚 LG | Reviewed by:<br>Quality Manager |
|---------------------------|------------------|-----------------------|------|---------------------------------|
| Test Dates:               | DUT Type:        |                       |      | APPENDIX D:                     |
| 08/10/15 - 08/31/15       | Portable Handset |                       |      | Page 4 of 5                     |
| © 2015 PCTEST Engineering | REV 16.3 M       |                       |      |                                 |

#### 2 Composition / Information on ingredients

The Item is composed of the following ingredients: Water 50 - 65% Mineral oil 10 - 30%

8 - 25%

#### 0-1.5% Figure D-6

#### Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

#### Measurement Certificate / Material Test

Emulsifiers

Sodium salt

|                                                                                                                                            | ame                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    | Liquid (H                                                                                                                                       |                | 500-5                                              | 5800V       | (5)        |        |                  |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------|-------------|------------|--------|------------------|-------------|--------|
| Produc                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                              | 2 AE (                                                                                                                                                       | Charge                                                                                                                                             | 141104-                                                                                                                                         | 1)             |                                                    |             |            |        |                  |             |        |
| Manufa                                                                                                                                     | acturer                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPEA                                                                                                                                                                         | G                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| Measu                                                                                                                                      | remer                                                                                                                                                                                        | nt Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hod                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
|                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | meas                                                                                                                                         | sured                                                                                                                                                        | using ca                                                                                                                                           | alibrated O                                                                                                                                     | CP pr          | obe.                                               |             |            |        |                  |             |        |
|                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| Setup                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                              | 0 50/                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| Validat                                                                                                                                    | ion res                                                                                                                                                                                      | sults w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ere wi                                                                                                                                                                       | thin ±                                                                                                                                       | 2.5%                                                                                                                                                         | towards                                                                                                                                            | s the target                                                                                                                                    | value          | s of M                                             | letha       | nol.       |        |                  |             | _      |
| Target                                                                                                                                     | Para                                                                                                                                                                                         | meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
|                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | ined i                                                                                                                                       | n the I                                                                                                                                                      | EEE 15                                                                                                                                             | 28 and IEC                                                                                                                                      | 0 6220         | 9 cor                                              | npliar      | nce stand  | lards. |                  |             | _      |
|                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| Test C<br>Ambier                                                                                                                           |                                                                                                                                                                                              | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Envir                                                                                                                                                                        | onmor                                                                                                                                        | t tom                                                                                                                                                        | oratur                                                                                                                                             | (22 ± 3)°C                                                                                                                                      | and h          | umidi                                              | h/ - 7      | 0.0/       |        |                  |             |        |
| TSL T                                                                                                                                      |                                                                                                                                                                                              | ature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                              | June                                                                                                                                         | it terni                                                                                                                                                     | ratur                                                                                                                                              | (22 ± 3) 0                                                                                                                                      | anum           | umiu                                               | Ly < 1      | 0 %.       |        |                  |             |        |
| Test D                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25-Fe                                                                                                                                                                        | b-15                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| Operat                                                                                                                                     | tor                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IEN                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
|                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| Additi                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | -                                                                                                                                            | 3                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| TSL D<br>TSL H                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | g/cm                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                 |                |                                                    |             |            |        |                  |             |        |
| ISEN                                                                                                                                       | eat-ca                                                                                                                                                                                       | pacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.303                                                                                                                                                                        | KJ/(K                                                                                                                                        | y N)                                                                                                                                                         |                                                                                                                                                    |                                                                                                                                                 |                |                                                    | _           |            |        |                  |             |        |
|                                                                                                                                            | Measu                                                                                                                                                                                        | ired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              | Targe                                                                                                                                        | 1                                                                                                                                                            | Diff.to T                                                                                                                                          | arget [%]                                                                                                                                       |                |                                                    |             |            |        |                  |             |        |
| f [MHz]                                                                                                                                    |                                                                                                                                                                                              | HP-e"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sigma                                                                                                                                                                        | eps                                                                                                                                          | sigma                                                                                                                                                        | ∆-eps                                                                                                                                              | ∆-sigma                                                                                                                                         |                | 10.0                                               |             |            |        |                  |             |        |
| 3400                                                                                                                                       | 38.5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.86                                                                                                                                                                         | 38.0                                                                                                                                         | 2.81                                                                                                                                                         | 1.2                                                                                                                                                | 1.8                                                                                                                                             | 32             | 7.5                                                | -           |            |        |                  |             |        |
| 3500                                                                                                                                       | 38.4                                                                                                                                                                                         | 15.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.94                                                                                                                                                                         | 37.9                                                                                                                                         | 2.91                                                                                                                                                         | 1.2                                                                                                                                                | 0.9                                                                                                                                             | Permittivity   | 5.0                                                | -           |            | -      |                  |             |        |
| 3600                                                                                                                                       | 38.2                                                                                                                                                                                         | 15.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.02                                                                                                                                                                         | 37.8                                                                                                                                         | 3.02                                                                                                                                                         | 1.0                                                                                                                                                | 0.2                                                                                                                                             | 1 E            | 2.5                                                |             |            |        |                  |             |        |
| 3700                                                                                                                                       | 38.1                                                                                                                                                                                         | 15.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.10                                                                                                                                                                         | 37.7                                                                                                                                         | 3.12                                                                                                                                                         | 1.1                                                                                                                                                | -0.6                                                                                                                                            | Pe-            | 0.0                                                |             |            |        |                  | 00000000000 |        |
| 3800<br>3900                                                                                                                               | 38.0<br>37.9                                                                                                                                                                                 | 15.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.18<br>3.27                                                                                                                                                                 | 37.6<br>37.5                                                                                                                                 | 3.22                                                                                                                                                         | 1.1                                                                                                                                                | -1.2<br>-1.6                                                                                                                                    | Dev.           | -2.5                                               | _           |            |        |                  |             |        |
| 4000                                                                                                                                       | 37.8                                                                                                                                                                                         | 15.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.35                                                                                                                                                                         | 37.4                                                                                                                                         | 3.43                                                                                                                                                         | 1.2                                                                                                                                                | -2.2                                                                                                                                            |                | -5.0                                               |             |            |        |                  |             |        |
| 4100                                                                                                                                       | 37.6                                                                                                                                                                                         | 15.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.44                                                                                                                                                                         | 37.2                                                                                                                                         | 3.53                                                                                                                                                         | 1.0                                                                                                                                                | -2.5                                                                                                                                            |                | -10.0                                              |             |            |        |                  |             |        |
| 4200                                                                                                                                       | 37.5                                                                                                                                                                                         | 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.54                                                                                                                                                                         | 37.1                                                                                                                                         | 3.63                                                                                                                                                         | 1.0                                                                                                                                                | -2.5                                                                                                                                            |                |                                                    | \$00        | 3900       | 4400   | 4900             | 5400        | 59     |
| 4300                                                                                                                                       | 37.4                                                                                                                                                                                         | 15.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.63                                                                                                                                                                         | 37.0                                                                                                                                         | 3.73                                                                                                                                                         | 1.0                                                                                                                                                | -2.7                                                                                                                                            |                |                                                    |             |            | Freque | ncy MHz          |             |        |
| 4400                                                                                                                                       | 37.3                                                                                                                                                                                         | 15.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.73                                                                                                                                                                         | 36.9                                                                                                                                         | 3.84                                                                                                                                                         | 1.1                                                                                                                                                | -2.7                                                                                                                                            |                |                                                    |             |            |        |                  |             |        |
| 1000                                                                                                                                       | 37.1                                                                                                                                                                                         | 15.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.83                                                                                                                                                                         | 36.8                                                                                                                                         | 3.94                                                                                                                                                         | 0.9                                                                                                                                                | -2.7                                                                                                                                            | _              |                                                    |             |            |        |                  |             |        |
| 4500                                                                                                                                       |                                                                                                                                                                                              | 40 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                              | 36.7                                                                                                                                         | 4.04                                                                                                                                                         | 0.9                                                                                                                                                | -2.7                                                                                                                                            |                | 10.0                                               |             |            |        |                  |             |        |
| 4600                                                                                                                                       | 37.0                                                                                                                                                                                         | 15.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                              | 98.6                                                                                                                                         | 4 1 4                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                 | _              |                                                    |             |            |        |                  |             |        |
| 4600<br>4700                                                                                                                               | 37.0<br>36.8                                                                                                                                                                                 | 15.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.03                                                                                                                                                                         | 36.6                                                                                                                                         | 4.14                                                                                                                                                         |                                                                                                                                                    |                                                                                                                                                 |                | 7.5                                                | -           |            |        |                  |             |        |
| 4600                                                                                                                                       | 37.0                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | 36.6<br>36.4<br>36.4                                                                                                                         | 4.14<br>4.25<br>4.30                                                                                                                                         | 0.7                                                                                                                                                | -2.7                                                                                                                                            | 8              | 5.0                                                | _           |            |        |                  |             |        |
| 4600<br>4700<br>4800                                                                                                                       | 37.0<br>36.8<br>36.7                                                                                                                                                                         | 15.42<br>15.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.03<br>4.13                                                                                                                                                                 | 36.4                                                                                                                                         | 4.25                                                                                                                                                         | 0.7                                                                                                                                                | -2.7                                                                                                                                            |                | 5.0                                                | ~           |            |        |                  |             |        |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950                                                                                               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5                                                                                                                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.03<br>4.13<br>4.18<br>4.24<br>4.28                                                                                                                                         | 36.4<br>36.4<br>36.3<br>36.3                                                                                                                 | 4.25<br>4.30<br>4.35<br>4.40                                                                                                                                 | 0.7<br>0.6<br>0.5<br>0.6                                                                                                                           | -2.7<br>-2.7<br>-2.5<br>-2.7                                                                                                                    |                | 5.0                                                | 0000        | None-      |        |                  |             |        |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000                                                                                       | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.5<br>36.4                                                                                                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34                                                                                                                                 | 36.4<br>36.4<br>36.3<br>36.3<br>36.2                                                                                                         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45                                                                                                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5                                                                                                                    | -2.7<br>-2.7<br>-2.5<br>-2.7<br>-2.5                                                                                                            | Conductivity % | 5.0<br>2.5<br>0.0<br>-2.5                          | <b>~</b> ~~ | 1000000000 |        | ***********      | 0000000000  |        |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050                                                                               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.3                                                                                                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39                                                                                                                         | 36.4<br>36.3<br>36.3<br>36.3<br>36.2<br>36.2                                                                                                 | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50                                                                                                                 | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4                                                                                                             | -2.7<br>-2.7<br>-2.5<br>-2.7<br>-2.5<br>-2.5                                                                                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5                          | 0000        | Nonessoo . |        |                  |             |        |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050<br>5100                                                                       | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.3<br>36.2                                                                                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44                                                                                                                 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.1                                                                                         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55                                                                                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3                                                                                                      | -2.7<br>-2.7<br>-2.5<br>-2.7<br>-2.5<br>-2.5<br>-2.5                                                                                            |                | 5.0<br>2.5<br>0.0<br>-2.5                          | 0000        | 100000000  |        |                  | 0000000000  | 00900, |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050<br>5100<br>5150                                                               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.3<br>36.2<br>36.2<br>36.2                                                                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49                                                                                                         | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.1<br>36.1<br>36.0                                                                                 | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60                                                                                                 | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4                                                                                               | -2.7<br>-2.5<br>-2.7<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5                                                                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       | 4400   | 4900             | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050<br>5100                                                                       | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.3<br>36.2                                                                                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44                                                                                                                 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.1                                                                                         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55                                                                                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3                                                                                                      | -2.7<br>-2.7<br>-2.5<br>-2.7<br>-2.5<br>-2.5<br>-2.5                                                                                            | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        | 4900<br>4900 MHz | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050<br>5100<br>5150<br>5250<br>5250<br>5250<br>5300                               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.1                                                                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br><b>15.71</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49<br>4.55                                                                                                 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.1<br>36.0<br><b>36.0</b><br>35.9<br>35.9                                                  | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.66                                                                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3                                                                                        | -2.7<br>-2.7<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5                                                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050<br>5150<br>5150<br>5250<br>5250<br>5250<br>5350                               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.3<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.59<br>15.62<br>15.66<br>15.67<br>15.71<br>15.73<br>15.76<br>15.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49<br>4.55<br>4.59<br>4.65<br>4.70                                                                         | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.1<br>36.0<br>36.0<br>36.0<br>35.9<br>35.9<br>35.8                                                 | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.66<br>4.71<br>4.76<br>4.81                                                                 | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.2                                                                   | -2.7<br>-2.7<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5                                                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>4950<br>5000<br>5050<br>5150<br>5150<br>5250<br>5250<br>5350<br>5350<br>5350<br>5350               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.3<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2                                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br><b>15.71</b><br>15.73<br>15.76<br>15.78<br>15.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49<br>4.55<br>4.59<br>4.65<br>4.70<br>4.75                                                                 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.1<br>36.0<br><b>36.0</b><br><b>36.0</b><br><b>36.0</b><br>35.9<br>35.9<br>35.8<br>35.8            | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.66<br>4.71<br>4.76<br>4.81<br>4.86                                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.2<br>0.1                                                            | -2.7<br>-2.7<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.3<br>-2.3<br>-2.3<br>-2.3<br>-2.3<br>-2.3                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>5000<br>5050<br>5100<br>5150<br>5250<br>5250<br>5300<br>5350<br>5350<br>5400<br>5450               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9<br>35.9<br>35.8<br>35.7                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.71<br>15.73<br>15.76<br>15.78<br>15.81<br>15.81<br>15.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49<br>4.55<br>4.59<br>4.65<br>4.70<br>4.75<br>4.80                                                         | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2                                                                         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.55<br>4.60<br>4.71<br>4.76<br>4.81<br>4.86<br>4.91                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0                                       | -2.7<br>-2.7<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5                                                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>5000<br>5050<br>5100<br>5150<br>5200<br>5250<br>5300<br>5350<br>5400<br>5450<br>55500                      | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9<br>35.8<br>35.7<br>35.6                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.71<br>15.73<br>15.76<br>15.78<br>15.81<br>15.82<br><b>15.84</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.03<br>4.13<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.39<br>4.44<br>4.55<br>4.59<br>4.65<br>4.70<br>4.75<br>4.80<br>4.85                                                 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.2<br>36.1<br>36.0<br>36.0<br>35.9<br>35.9<br>35.8<br>35.8<br>35.8<br>35.7<br><b>35.6</b>  | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.55<br>4.60<br>4.66<br>4.71<br>4.76<br>4.81<br>4.86<br>4.91<br>4.96                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0<br>-0.1                               | -27<br>-27<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25                                                                | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>5000<br>5050<br>5100<br>5150<br>5250<br>5250<br>5300<br>5350<br>5350<br>5400<br>5450               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9<br>35.9<br>35.8<br>35.7                                                 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.71<br>15.73<br>15.76<br>15.78<br>15.81<br>15.81<br>15.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49<br>4.55<br>4.59<br>4.65<br>4.70<br>4.75<br>4.80                                                         | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2                                                                         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.55<br>4.60<br>4.71<br>4.76<br>4.81<br>4.86<br>4.91                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0                                       | -2.7<br>-2.7<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5<br>-2.5                                                                    | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4900<br>4950<br>5000<br>5050<br>5100<br>5100<br>5200<br>5200<br>5300<br>5350<br>5400<br>5450<br>5550               | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.1<br>36.0<br>35.9<br>35.9<br>35.9<br>35.8<br>35.7<br><b>35.6</b>                          | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.71<br>15.73<br>15.76<br>15.78<br>15.81<br>15.82<br><b>15.84</b><br>15.84<br>15.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.49<br>4.55<br>4.59<br>4.65<br>4.70<br>4.75<br>4.80<br>4.85<br>4.80<br>4.85<br>4.90                         | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.1<br>36.0<br>36.0<br>35.9<br>35.9<br>35.8<br>35.8<br>35.8<br>35.8<br>35.7<br><b>35.6</b>          | 4.25<br>4.30<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.66<br>4.71<br>4.76<br>4.81<br>4.86<br>4.91<br>4.96<br>5.01                                         | 0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0<br>0.0                                | -27<br>-27<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23                                           | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>5000<br>5050<br>5100<br>5150<br>5200<br>5350<br>5350<br>5350<br>5400<br>5450<br>5450<br>5550<br>5450<br>54 | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2                                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.77<br>15.70<br>15.78<br>15.81<br>15.82<br>15.84<br>15.82<br>15.84<br>15.87<br>15.90<br>15.94<br>15.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.39<br>4.45<br>4.59<br>4.65<br>4.70<br>4.75<br>4.70<br>4.75<br>4.70<br>4.85<br>4.90<br>4.95<br>5.01<br>5.06 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9<br>35.8<br>35.8<br>35.8<br>35.6<br>35.6<br>35.6<br>35.5<br>35.4         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.55<br>4.60<br>4.71<br>4.76<br>4.81<br>4.86<br>4.91<br>4.96<br>5.01<br>5.07<br>5.12<br>5.17 | 0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0<br>-0.1<br>-0.2<br>0.0                                     | -27<br>-27<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23 | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>5950<br>5050<br>5100<br>5150<br>5250<br>5300<br>5350<br>5350<br>5400<br>5550<br>5550<br>5550<br>55         | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.4<br>36.4<br>36.4<br>36.4<br>36.4<br>36.2<br>36.2<br>36.2<br>36.4<br>35.9<br>35.9<br>35.9<br>35.9<br>35.6<br>35.6<br>35.6<br>35.4<br>35.4<br>35.4 | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.77<br>15.77<br>15.78<br>15.87<br>15.81<br>15.82<br>15.84<br>15.84<br>15.96<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.95<br>15.94<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.97<br>15.94<br>15.97<br>15.94<br>15.97<br>15.94<br>15.97<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94<br>15.94 | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.49<br>4.49<br>4.55<br>4.59<br>4.65<br>4.70<br>4.75<br>4.80<br>4.85<br>4.90<br>5.01<br>5.06<br>5.12                 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9<br>35.8<br>35.8<br>35.8<br>35.7<br>35.6<br>35.5<br>35.5<br>35.5<br>35.5<br>35.5 | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.55<br>4.60<br>4.55<br>4.60<br>4.55<br>4.60<br>4.71<br>4.76<br>4.81<br>4.86<br>6.01<br>5.07<br>5.12<br>5.17<br>5.22 | 0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.2<br>0.1<br>0.0<br>0.0<br>-0.1<br>0.0<br>-0.2<br>0.0<br>-0.2 | -27<br>-27<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23 | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |
| 4600<br>4700<br>4800<br>4850<br>4900<br>5000<br>5000<br>5000<br>5100<br>5150<br>5350<br>5350<br>53                                         | 37.0<br>36.8<br>36.7<br>36.6<br>36.5<br>36.5<br>36.4<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2<br>36.2                                                                         | 15.42<br>15.47<br>15.50<br>15.54<br>15.55<br>15.59<br>15.62<br>15.66<br>15.67<br>15.77<br>15.70<br>15.78<br>15.81<br>15.82<br>15.84<br>15.82<br>15.84<br>15.87<br>15.90<br>15.94<br>15.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.03<br>4.13<br>4.18<br>4.24<br>4.28<br>4.34<br>4.39<br>4.44<br>4.39<br>4.45<br>4.59<br>4.65<br>4.70<br>4.75<br>4.70<br>4.75<br>4.70<br>4.85<br>4.90<br>4.95<br>5.01<br>5.06 | 36.4<br>36.3<br>36.3<br>36.2<br>36.2<br>36.2<br>36.0<br>35.9<br>35.9<br>35.8<br>35.8<br>35.8<br>35.6<br>35.6<br>35.6<br>35.5<br>35.4         | 4.25<br>4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.55<br>4.60<br>4.71<br>4.76<br>4.81<br>4.86<br>4.91<br>4.96<br>5.01<br>5.07<br>5.12<br>5.17 | 0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.4<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0<br>-0.1<br>-0.2<br>0.0                                     | -27<br>-27<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23<br>-23 | Conductivity   | 5.0<br>2.5<br>0.0<br>-2.5<br>-5.0<br>-7.5<br>-10.0 | 400         | 3900       |        |                  | 5400        | 59     |

#### Figure D-7 **5GHz Head Tissue Equivalent Matter**

| FCC ID: ZNFH900               |                  | SAR EVALUATION REPORT | 🕐 LG | Reviewed by:<br>Quality Manager |
|-------------------------------|------------------|-----------------------|------|---------------------------------|
| Test Dates:                   | DUT Type:        |                       |      | APPENDIX D:                     |
| 08/10/15 - 08/31/15           | Portable Handset |                       |      | Page 5 of 5                     |
| © 2015 PCTEST Engineering Lab | poratory Inc     |                       |      | BEV 16.3 M                      |

© 2015 PCTEST Engineering Laboratory, Inc.

## APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

| SAR         |                |            |          |            |         |           |       | PERM.  | 0           | W VALIDATION       | N                 | M         | OD. VALIDATIC  | N    |
|-------------|----------------|------------|----------|------------|---------|-----------|-------|--------|-------------|--------------------|-------------------|-----------|----------------|------|
| SYSTEM<br># | FREQ.<br>[MHz] | DATE       | PROBE SN | PROBE TYPE | PROBE C | AL. POINT | (σ)   | (ɛr)   | SENSITIVITY | PROBE<br>LINEARITY | PROBE<br>ISOTROPY | MOD. TYPE | DUTY<br>FACTOR | PAR  |
| В           | 750            | 1/3/2015   | 3334     | ES3DV3     | 750     | Head      | 0.934 | 42.084 | PASS        | PASS               | PASS              | N/A       | N/A            | N/A  |
| С           | 835            | 11/10/2014 | 3333     | ES3DV3     | 835     | Head      | 0.929 | 41.570 | PASS        | PASS               | PASS              | GMSK      | PASS           | N/A  |
| В           | 1750           | 1/4/2015   | 3334     | ES3DV3     | 1750    | Head      | 1.369 | 39.909 | PASS        | PASS               | PASS              | N/A       | N/A            | N/A  |
| J           | 1900           | 5/25/2015  | 3319     | ES3DV3     | 1900    | Head      | 1.447 | 39.423 | PASS        | PASS               | PASS              | GMSK      | PASS           | N/A  |
| Н           | 2300           | 7/20/2015  | 3263     | ES3DV3     | 2300    | Head      | 1.670 | 39.597 | PASS        | PASS               | PASS              | N/A       | N/A            | N/A  |
| E           | 2450           | 11/5/2014  | 3332     | ES3DV3     | 2450    | Head      | 1.868 | 39.668 | PASS        | PASS               | PASS              | OFDM/TDD  | PASS           | PASS |
| Α           | 5300           | 3/2/2015   | 3914     | EX3DV4     | 5300    | Head      | 4.931 | 36.292 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |
| Α           | 5600           | 3/2/2015   | 3914     | EX3DV4     | 5600    | Head      | 5.276 | 35.683 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |
| A           | 5800           | 3/2/2015   | 3914     | EX3DV4     | 5800    | Head      | 5.110 | 35.100 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |
| Н           | 750            | 7/23/2015  | 3263     | ES3DV3     | 750     | Body      | 0.957 | 23.661 | PASS        | PASS               | PASS              | N/A       | N/A            | N/A  |
| В           | 835            | 1/7/2015   | 3334     | ES3DV3     | 835     | Body      | 0.950 | 52.566 | PASS        | PASS               | PASS              | GMSK      | PASS           | N/A  |
| J           | 835            | 4/28/2015  | 3319     | ES3DV3     | 835     | Body      | 0.992 | 54.192 | PASS        | PASS               | PASS              | GMSK      | PASS           | N/A  |
| В           | 1750           | 1/4/2015   | 3334     | ES3DV3     | 1750    | Body      | 1.527 | 51.873 | PASS        | PASS               | PASS              | N/A       | N/A            | N/A  |
| I           | 1900           | 5/30/2015  | 3213     | ES3DV3     | 1900    | Body      | 1.520 | 52.410 | PASS        | PASS               | PASS              | GMSK      | PASS           | N/A  |
| G           | 2300           | 4/9/2015   | 3318     | ES3DV3     | 2300    | Body      | 1.752 | 52.878 | PASS        | PASS               | PASS              | N/A       | N/A            | N/A  |
| E           | 2450           | 11/3/2014  | 3332     | ES3DV3     | 2450    | Body      | 1.996 | 52.207 | PASS        | PASS               | PASS              | OFDM/TDD  | PASS           | PASS |
| A           | 5300           | 2/19/2015  | 3914     | EX3DV4     | 5300    | Body      | 5.181 | 47.442 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |
| А           | 5600           | 2/19/2015  | 3914     | EX3DV4     | 5600    | Body      | 5.607 | 46.700 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |
| A           | 5800           | 2/19/2015  | 3914     | EX3DV4     | 5800    | Body      | 5.942 | 46.314 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |

Table E-I SAR System Validation Summary – 1g

Table E-II SAR System Validation Summary – 10g

| SAR         | EDEO           |           |          |            | 1       |           | COND. | PERM.  | C           | W VALIDATIO        | 1                 | M         | OD. VALIDATIC  | N    |
|-------------|----------------|-----------|----------|------------|---------|-----------|-------|--------|-------------|--------------------|-------------------|-----------|----------------|------|
| SYSTEM<br># | FREQ.<br>[MHz] | DATE      | PROBE SN | PROBE TYPE | PROBE C | AL. POINT | (σ)   | (Er)   | SENSITIVITY | PROBE<br>LINEARITY | PROBE<br>ISOTROPY | MOD. TYPE | DUTY<br>FACTOR | PAR  |
| А           | 5300           | 2/19/2015 | 3914     | EX3DV4     | 5300    | Body      | 5.181 | 47.442 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |
| Α           | 5600           | 2/19/2015 | 3914     | EX3DV4     | 5600    | Body      | 5.607 | 46.700 | PASS        | PASS               | PASS              | OFDM      | N/A            | PASS |

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

| FCC ID: ZNFH900                            |                     | A PCTEST                       | SAR EVALUATION REPORT | 🕕 LG | Reviewed by:    |  |  |  |  |
|--------------------------------------------|---------------------|--------------------------------|-----------------------|------|-----------------|--|--|--|--|
|                                            |                     | V SNGINGERING LANDKATONY, INC. |                       |      | Quality Manager |  |  |  |  |
|                                            | Test Dates:         | DUT Type:                      |                       |      | APPENDIX E:     |  |  |  |  |
|                                            | 08/10/15 - 08/31/15 | Portable Handset               |                       |      | Page 1 of 1     |  |  |  |  |
| © 2015 PCTEST Engineering Laboratory. Inc. |                     |                                |                       |      |                 |  |  |  |  |