

FCC LTE REPORT

FCC Certification

Applicant Name: LG Electronics Mobile(Address:	G Electronics MobileComm U.S.A., Inc.			Date of Issue: January 31, 2017 Location: HCT CO., LTD.,					
1000 Sylvan Avenue, E	32 74, 5	Seoicheon-ro 5	78beon-gil, M	ajang-myeon	Ι,				
		Rep	on-si, Gyeongg ort No.: HCT-F FRN: 0005866	R-1701-F038	Rep. of KORE	ΞA			
FCC ID:	ZNFH870								
APPLICANT:	LG Electron	ics Mobile(Comm U.S.A	., Inc.					
FCC Model(s):	LG-H870								
Additional FCC Model(s):	LGH870, H870, LG-H87 LGH870K, H870K				S, H870DS, L	G-H870			
EUT Type:	Multi-band GSM/EDGE/W	CDMA/LTE phone	e with Bluetooth, V	VLAN, NFC					
FCC Classification:	Licensed Portable Transm	itter Held to Ear ((PCE)						
FCC Rule Part(s):	§27, §2								
.,									
Mode	Tx Frequency	Emission		E	RP	1			

	TELE	Englanding.		EI	RP
Mode (MHz)	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W)	Max. Power (dBm)
	000 7 745 0	1M08G7D	QPSK	0.079	18.98
LTE – Band12 (1.4)	699.7 - 715.3	1M08W7D	16QAM	0.064	18.10
TE Deeddo (2)	700 5 744 5	2M69G7D	QPSK	0.088	19.47
LTE - Band12 (3)	700.5 - 714.5	2M68W7D	16QAM	0.070	18.45
TE De-112 (17 (5)	701.5 - 713.5	4M52G7D	QPSK	0.088	19.45
LTE - Band12 / 17 (5)	701.5 - 713.5	4M51W7D	16QAM	0.068	18.31
TE Deeddo (47 (40)	7040 7440	8M97G7D	QPSK	0.088	19.44
LTE – Band12 / 17 (10)	704.0 - 711.0	8M95W7D	16QAM	0.064	18.09

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant

to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Jeong Ho Kim Test engineer of RF Team

Approved by : Jong Seok Lee Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Model:LG-H870

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1701-F038	January 31, 2017	- First Approval Report

Table of Contents

2.1. EUT DESCRIPTION 5 2.2. MEASURING INSTRUMENT CALIBRATION 5 2.3. TEST FACILITY 5 3. DESCRIPTION OF TESTS 6 3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS 6 3.2 BLOCK B FREQUENCY RANGE (704 – 710 and 734 – 740 MHz, 777 – 792 MHz) 6 3.3 OCCUPIED BANDWIDTH 8 3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 9 3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 10 4. LIST OF TEST EQUIPMENT 11 5. MEASUREMENT UNCERTAINTY 12 6. SUMMARY OF TEST RESULTS 13 7. SAMPLE CALCULATION 14 8. TEST DATA 15 8.1 EFFECTIVE RADIATED POWER 15 8.1 EFFECTIVE RADIATED POWER 15 8.2 RADIATED SPURIOUS EMISSIONS 1.4 MHz Band 12 LTE) 17 8.2.2 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 18 8.2.3 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 20 8.3 OCCUPIED BANDWIDTH 21 8.4 CONDUCTED SPURIOUS EMISSIONS 22 8.4.1 BAND EDGE 22	1. GENERAL INFORMATION
2.2. MEASURING INSTRUMENT CALIBRATION 5 2.3. TEST FACILITY 5 3. DESCRIPTION OF TESTS. 6 3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS 6 3.2 BLOCK B FREQUENCY RANGE (704 – 710 and 734 – 740 MHz, 777 – 792 MHz) 6 3.3 OCCUPIED BANDWIDTH 8 3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 9 3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 10 4. LIST OF TEST EQUIPMENT 11 5. MEASUREMENT UNCERTAINTY 12 6. SUMMARY OF TEST RESULTS 13 7. SAMPLE CALCULATION 14 8. TEST DATA 15 8.1 EFFECTIVE RADIATED POWER 15 8.2 RADIATED SPURIOUS EMISSIONS 17 8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE) 17 8.2.2 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 18 8.2.3 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 20 8.3 OCCUPIED BANDWIDTH 21 8.4 CONDUCTED SPURIOUS EMISSIONS 22 8.4.1 BAND EDGE 22 8.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE </td <td>2. INTRODUCTION</td>	2. INTRODUCTION
2.3. TEST FACILITY53. DESCRIPTION OF TESTS.63.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS63.2 BLOCK B FREQUENCY RANGE (704 – 710 and 734 – 740 MHz, 777 – 792 MHz)63.3 OCCUPIED BANDWIDTH.83.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL93.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE104. LIST OF TEST EQUIPMENT115. MEASUREMENT UNCERTAINTY126. SUMMARY OF TEST RESULTS137. SAMPLE CALCULATION148. TEST DATA158.1 EFFECTIVE RADIATED POWER158.2 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)188.2.3 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)208.3 OCCUPIED BANDWIDTH218.4 CONDUCTED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)208.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.2 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.3 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)25	2.1. EUT DESCRIPTION
3. DESCRIPTION OF TESTS. 6 3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS 6 3.2 BLOCK B FREQUENCY RANGE (704 – 710 and 734 – 740 MHz, 777 – 792 MHz) 6 3.3 OCCUPIED BANDWIDTH. 8 3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL. 9 3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 10 4. LIST OF TEST EQUIPMENT 11 5. MEASUREMENT UNCERTAINTY 12 6. SUMMARY OF TEST RESULTS 13 7. SAMPLE CALCULATION 14 8. TEST DATA 15 8.1 EFFECTIVE RADIATED POWER 15 8.2 RADIATED SPURIOUS EMISSIONS 1.4 MHz Band 12 LTE) 17 8.2.1 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE) 18 8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 18.3 OCCUPIED BANDWIDTH 21 8.4.1 BAND EDGE 22 8.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 23 8.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 23 8.5.2 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 23 8.5.3 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERAT	2.2. MEASURING INSTRUMENT CALIBRATION
3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS 6 3.2 BLOCK B FREQUENCY RANGE (704 – 710 and 734 – 740 MHz, 777 – 792 MHz) 6 3.3 OCCUPIED BANDWIDTH. 8 3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	2.3. TEST FACILITY
3.2 BLOCK B FREQUENCY RANGE (704 - 710 and 734 - 740 MHz, 777 - 792 MHz)63.3 OCCUPIED BANDWIDTH.83.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL93.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE104. LIST OF TEST EQUIPMENT115. MEASUREMENT UNCERTAINTY.126. SUMMARY OF TEST RESULTS137. SAMPLE CALCULATION.148. TEST DATA158.1 EFFECTIVE RADIATED POWER158.2 RADIATED SPURIOUS EMISSIONS178.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)198.2.3 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)208.3 OCCUPIED BANDWIDTH218.4 CONDUCTED SPURIOUS EMISSIONS228.4.1 BAND EDGE228.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.2 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.3 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE248.5.3 FREQUENCY STABILITY / S MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)25	3. DESCRIPTION OF TESTS
3.3 OCCUPIED BANDWIDTH.83.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.93.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE104. LIST OF TEST EQUIPMENT115. MEASUREMENT UNCERTAINTY126. SUMMARY OF TEST RESULTS137. SAMPLE CALCULATION148. TEST DATA158.1 EFFECTIVE RADIATED POWER158.2 RADIATED SPURIOUS EMISSIONS178.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)208.3 OCCUPIED BANDWIDTH218.4.1 BAND EDGE228.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.2 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.2 FREQUENCY STABILITY / S MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)24	3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	3.2 BLOCK B FREQUENCY RANGE (704 – 710 and 734 – 740 MHz, 777 – 792 MHz)
3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE104. LIST OF TEST EQUIPMENT115. MEASUREMENT UNCERTAINTY126. SUMMARY OF TEST RESULTS137. SAMPLE CALCULATION148. TEST DATA158.1 EFFECTIVE RADIATED POWER158.2 RADIATED SPURIOUS EMISSIONS178.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)188.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)208.3 OCCUPIED BANDWIDTH218.4.1 BAND EDGE228.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.2 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)238.5.3 FREQUENCY STABILITY (3 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)24	3.3 OCCUPIED BANDWIDTH
4. LIST OF TEST EQUIPMENT	3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL
5. MEASUREMENT UNCERTAINTY 12 6. SUMMARY OF TEST RESULTS 13 7. SAMPLE CALCULATION 14 8. TEST DATA 15 8.1 EFFECTIVE RADIATED POWER 15 8.2 RADIATED SPURIOUS EMISSIONS 17 8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE) 17 8.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE) 18 8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 20 8.3 OCCUPIED BANDWIDTH 21 8.4 CONDUCTED SPURIOUS EMISSIONS 22 8.4.1 BAND EDGE 22 8.5.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 23 8.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE) 24 8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE) 24	3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE
6. SUMMARY OF TEST RESULTS 13 7. SAMPLE CALCULATION 14 8. TEST DATA 15 8.1 EFFECTIVE RADIATED POWER 15 8.2 RADIATED SPURIOUS EMISSIONS 17 8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE) 17 8.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE) 18 8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 20 8.3 OCCUPIED BANDWIDTH 21 8.4 CONDUCTED SPURIOUS EMISSIONS 22 8.4.1 BAND EDGE 22 8.5.1 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 23 8.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE) 23 8.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE) 24 8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE) 25	4. LIST OF TEST EQUIPMENT
7. SAMPLE CALCULATION148. TEST DATA158.1 EFFECTIVE RADIATED POWER158.2 RADIATED SPURIOUS EMISSIONS178.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)188.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)198.3 OCCUPIED BANDWIDTH218.4 CONDUCTED SPURIOUS EMISSIONS228.4.1 BAND EDGE228.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)25	5. MEASUREMENT UNCERTAINTY
8. TEST DATA	6. SUMMARY OF TEST RESULTS
8.1 EFFECTIVE RADIATED POWER158.2 RADIATED SPURIOUS EMISSIONS178.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)188.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)198.3 OCCUPIED BANDWIDTH218.4 CONDUCTED SPURIOUS EMISSIONS228.4.1 BAND EDGE228.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)238.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)25	7. SAMPLE CALCULATION
8.2 RADIATED SPURIOUS EMISSIONS 17 8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE) 17 8.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE) 18 8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE) 19 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE) 20 8.3 OCCUPIED BANDWIDTH 21 8.4 CONDUCTED SPURIOUS EMISSIONS 22 8.4.1 BAND EDGE 22 8.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 23 8.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE) 23 8.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE) 24 8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE) 25	8. TEST DATA
8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)178.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)188.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)198.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)208.3 OCCUPIED BANDWIDTH218.4 CONDUCTED SPURIOUS EMISSIONS228.4.1 BAND EDGE228.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)238.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)25	8.1 EFFECTIVE RADIATED POWER
 8.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)	8.2 RADIATED SPURIOUS EMISSIONS
 8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)	8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)
 8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)	8.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)
 8.3 OCCUPIED BANDWIDTH	8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)
 8.3 OCCUPIED BANDWIDTH	8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)
8.4.1 BAND EDGE.228.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE238.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)238.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE)248.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)25	
8.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	8.4 CONDUCTED SPURIOUS EMISSIONS
8.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)	8.4.1 BAND EDGE
8.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE) 24 8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)	8.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE
8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)	8.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)
8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)	8.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE)
	8.5.4 FREQUENCY STABILITY (10 MHz Band 12 LTE)
	9. TEST PLOTS

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	LG Electronics MobileCo	mm U.S.A., Inc.
Address:	1000 Sylvan Avenue, Eng	glewood Cliffs NJ 07632
FCC ID:	ZNFH870	
Application Type:	Certification	
FCC Classification:	Licensed Portable Transr	mitter Held to Ear (PCE)
FCC Rule Part(s):	§27, §2	
EUT Type:	Multi-band GSM/EDGE/V	VCDMA/LTE phone with Bluetooth, WLAN, NFC
FCC Model(s):	LG-H870	
Additional FCC Model(s):		870S, LGH870S, H870S, LG-H870DS, LGH870DS, H870DS, LG-H870K,
Tx Frequency:	700.5 MHz – 714.5 MHz 701.5 MHz – 713.5 MHz	(LTE – Band12 (1.4 MHz)) (LTE – Band12 (3 MHz)) (LTE – Band12 / 17 (5 MHz)) (LTE – Band12 / 17 (10 MHz))
Max. RF Output Power:	Band 12 (1.4 MHz) : Band 12 (3 MHz) : Band 12 / 17 (5 MHz) : Band 12 / 17 (10 MHz) :	0.079 W (QPSK) (18.98 dBm) 0.064 W (16-QAM) (18.10 dBm) 0.088 W (QPSK) (19.47 dBm) 0.070 W (16-QAM) (18.45 dBm) 0.088 W (QPSK) (19.45 dBm) 0.068 W (16-QAM) (18.31 dBm) 0.088 W (QPSK) (19.44 dBm) 0.064 W (16-QAM) (18.09 dBm)
Emission Designator(s):	Band 12 (1.4 MHz) : Band 12 (3 MHz) : Band 12 / 17 (5 MHz) : Band 12 / 17 (10 MHz) :	1M08G7D (QPSK) / 1M08W7D (16-QAM) 2M69G7D (QPSK) / 2M68W7D (16-QAM) 4M52G7D (QPSK) / 4M51W7D (16-QAM) 8M97G7D (QPSK) / 8M95W7D (16-QAM)
Date(s) of Tests:	December 20, 2016 ~ Ja	nuary 31, 2017
Antenna Specification:	Manufacturer: Antenna type: Peak Gain:	KOMATECH Co., Ltd. PIFA Antenna (Planar Inverted F) Band 12 / 17: -4.9 dBi

2. INTRODUCTION

2.1. EUT DESCRIPTION

The LG Electronics MobileComm U.S.A., Inc. LG-H870 Multi-band GSM/EDGE/WCDMA/LTE phone with Bluetooth, WLAN, NFC consists of LTE 12 and 17.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **17383**, **Rep. of KOREA**.

3. DESCRIPTION OF TESTS

3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS

Note: ERP(Effective Radiated Power)

Test Procedure

Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-D-2010 Clause 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using a RMS detector.

A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

Radiated spurious emissions

: Frequency Range : 9 kHz ~ 10th Harmonics of highest channel fundamental frequency.

3.2 BLOCK B FREQUENCY RANGE (704 - 710 and 734 - 740 MHz, 777 - 792 MHz)

§27.5(c)

698-746 MHz Band. The following frequencies are available for licensing pursuant to this part in the 698–746

MHz band: (1) Three paired channel blocks of 12 MHz each are available for assignment as follows :

Block A : 698 - 704 MHz and 728 - 734 MHz ;

Block B : 704 - 710 MHz and 734 - 740 MHz ; and

Block C : 710 – 716 MHz and 740 – 746 MHz.

Model:LG-H870

5.1.1 Peak power measurements with a spectrum/signal analyzer or EMI receiver

The following procedure can be used to determine the total peak output power.

- a) Set the RBW \geq OBW.
- b) Set VBW $\ge 3 \times RBW$.
- c) Set span $\ge 2 \times RBW$
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Ensure that the number of measurement points \geq span/RBW.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the peak amplitude level.

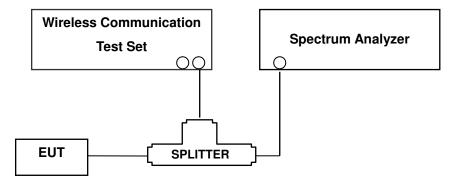
5.2.2 Procedures for use with a spectrum/signal analyzer when EUT cannot be configured to transmit continuously and sweep triggering/signal gating cannot be properly implemented

If the EUT cannot be configured to transmit continuously (burst duty cycle < 98%), then one of the following procedures can be used. The selection of the applicable procedure will depend on the characteristics of the measured burst duty cycle.

Measure the burst duty cycle with a spectrum/signal analyzer or EMC receiver can be used in zero-span mode if the response time and spacing between bins on the sweep are sufficient to permit accurate measurement of the burst on/off time of the transmitted signal.

5.2.2.2 Constant burst duty cycle

If the measured burst duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then:


- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \ge 3 x RBW.
- Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (power averaging).
- g) Set sweep trigger to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- j) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission).

For example, add 10 log (1/0.25) = 6 dB if the duty cycle is a constant 25%.

3.3 OCCUPIED BANDWIDTH.

Test set-up

(Configuration of conducted Emission measurement)

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

Test Procedure

OBW is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 4.2.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels(low, middle and high operational range.)

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

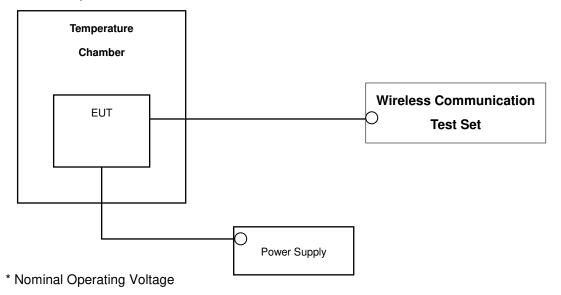
The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test Procedure

Spurious and harmonic emissions at antenna terminal is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 6.0.

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.


The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least 30kHz bandwidth may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency

NOTES: The analyzer plot offsets were determined by below conditions.

• Total offset 26.9 dB = 20 dB attenuator + 6 dB Divider + 0.9 dB RF cables.

3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

Frequency stability is tested in accordance with ANSI/TIA-603-D-2010 section 2.2.2

The frequency stability of the transmitter is measured by:

a.) **Temperature:** The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.

b.) **Primary Supply Voltage:** The primary supply voltage is varied from the end point to 100 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification — the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Date	Calibration Interval	Calibration Due
REOHDE&SCHWAR Z	SCU 18 / AMPLIFIER	10094	09/07/2016	Annual	09/07/2017
Wainwright	WHK1.2/15G-10EF/H.P.F	4	04/11/2016	Annual	04/11/2017
Wainwright	WHK3.3/18G-10EF/H.P.F	2	04/11/2016	Annual	04/11/2017
Hewlett Packard	11667B / Power Splitter	10545	02/15/2016	Annual	02/15/2017
Hewlett Packard	11667B / Power Splitter	11275	04/29/2016	Annual	04/29/2017
Agilent	E3632A/DC Power Supply	KR75303243	07/12/2016	Annual	07/12/2017
Schwarzbeck	UHAP/ Dipole Antenna	557	03/23/2015	Biennial	03/23/2017
Schwarzbeck	UHAP/ Dipole Antenna	558	03/23/2015	Biennial	03/23/2017
EXP	EX-TH400/ Chamber	None	05/31/2016	Annual	05/31/2017
Schwarzbeck	BBHA 9120D/ Horn Antenna	147	09/09/2016	Biennial	09/09/2018
Schwarzbeck	BBHA 9120D/ Horn Antenna	1299	05/15/2015	Biennial	05/15/2017
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170342	04/30/2015	Biennial	04/30/2017
Schwarzbeck	BBHA 9170/ Horn Antenna(15~35GHz)	BBHA9170124	04/30/2015	Biennial	04/30/2017
Agilent	N9020A/Signal Analyzer	MY52090906	05/13/2016	Annual	05/13/2017
Hewlett Packard	8493C/ATTENUATOR	17280	06/22/2016	Annual	06/22/2017
REOHDE&SCHWAR Z	FSV40/Spectrum Analyzer	1307.9002K40-100931- NK	06/15/2016	Annual	06/15/2017
Agilent	8960 (E5515C)/ Base Station(Now)	MY48360800	10/19/2016	Annual	10/19/2017
Schwarzbeck	FMZB1513/ Loop Antenna(9kHz~30MHz)	1513-175	02/23/2016	Biennial	02/23/2018
Schwarzbeck	VULB9160/ Bilog Antenna	3150	09/30/2016	Biennial	09/30/2018
Schwarzbeck	VULB9160/ Bilog Antenna	3368	10/14/2016	Biennial	10/14/2018
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6200863156	02/26/2016	Annual	02/26/2017
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6201026545	02/16/2016	Annual	02/16/2017

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	6.07

6. SUMMARY OF TEST RESULTS

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Bandwidth	N/A		PASS
2.1051, 27.53(g)	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	< 43 +10 log10 (P[Watts]) at Band Edge and for all-of-band emissions	CONDUCTED	PASS
2.1046	*Conducted Output Power	N/A		PASS
2.1055, 27.54	Frequency stability / variation of ambient temperature	Emission must remain in band		PASS
27.50(c)(10)	Effective Radiated Power	< 3 Watts max. ERP		PASS
2.1053, 27.53(g)	Undesirable Out-of-Band Emissions	< 43 +10 log10 (P[Watts]) for all out- of-band emissions	RADIATED	PASS

*: See SAR Report

7. SAMPLE CALCULATION

A. ERP Sample Calculation

Mode	Ch.	/ Freq.	Measured	Substitute	Ant. Gain	C.L	Pol.	Limit	EF	RP
Mode	channel	Freq.(MHz)	Level(dBm)	LEVEL(dBm)	(dBd)	U.L	P0I.	w	w	dBm
LTE Band12	23095	707.50	-28.85	31.95	-10.21	1.08	Н	< 3.00	0.116	20.66

ERP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a wooden tripod is 2.5 meter above test site ground level.
- 2) During the test , the turn table is rotated and the antenna height is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).

6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power (**ERP**).

B. Emission Designator

QPSK Modulation

Emission Designator = 4M48G7D

- LTE BW = 4.48 MHz
- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data transmission; telemetry; telecommand

16QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = main carrier modulated in a combination of two

or more of the following modes;

amplitude, angle, pulse

- 7 = Quantized/Digital Info
- D = Data transmission; telemetry; telecommand

8. TEST DATA

Erog	Freq		Measured	Substitute	Ant.			Limit	ER	Р
(MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Gain (dBd)	C.L	Pol.	w	w	dBm
		QPSK	-31.76	30.45	-10.17	1.54	V		0.075	18.74
699.7		16-QAM	-32.58	29.63	-10.17	1.54	V		0.062	17.92
707 5		QPSK	-31.40	30.40	-10.21	1.54	V	0.00	0.073	18.65
707.5	1.4 MHz	16-QAM	-31.97	29.83	-10.21	1.54	V	< 3.00	0.064	18.08
745.0		QPSK	-30.63	30.78	-10.25	1.55	V		0.079	18.98
715.3		16-QAM	-31.51	29.90	-10.25	1.55	V		0.064	18.10

8.1 EFFECTIVE RADIATED POWER

Effective Radiated Power Data (1.4 MHz Band 12 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

Freq			Measured	Substitute	Ant.		-	Limit	ER	Р
(MHz)	Bandwidth	Modulation	Level	Level	Gain	C.L	Pol.	w	w	dBm
			(dBm)	(dBm)	(dBd)					
700.5		QPSK	-31.47	30.69	-10.17	1.54	V		0.079	18.98
700.5		16-QAM	-32.45	29.71	-10.17	1.54	V		0.063	18.00
707.5	3 MHz	QPSK	-30.73	31.07	-10.21	1.54	V	. 2.00	0.085	19.32
707.5		16-QAM	-31.82	29.98	-10.21	1.54	V	< 3.00	0.066	18.23
714 5		QPSK	-30.17	31.27	-10.25	1.55	V	7 [0.088	19.47
714.5		16-QAM	-31.19	30.25	-10.25	1.55	V		0.070	18.45

Effective Radiated Power Data (3 MHz Band 12 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

Report No.: HCT-R-1701-F038

Model:LG-H870

Freq	rog		Measured	Substitute	Ant.			Limit	ERP	
(MHz)	Bandwidth	Modulation	Level	Level	Gain	C.L	Pol.	w	W	dPm
(101112)			(dBm)	(dBm)	(dBd)			vv	VV	dBm 19.12 17.90 19.42 18.21
701.5		QPSK	-31.23	30.84	-10.18	1.54	V		0.082	19.12
701.5		16-QAM	-32.45	29.62	-10.18	1.54	V		0.062	17.90
707.5	5 MHz	QPSK	-30.63	31.17	-10.21	1.54	V	. 2.00	0.087	19.42
707.5		16-QAM	-31.84	29.96	-10.21	1.54	V	< 3.00	0.066	18.21
710 5		QPSK	-30.19	31.24	-10.24	1.55	V		0.088	19.45
713.5		16-QAM	-31.34	30.10	-10.24	1.55	V		0.068	18.31

Effective Radiated Power Data (5 MHz Band 12 / 17 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

Freq (MHz)		dwidth Modulation	Measured	Substitute	Ant.			Limit	EF	RP
	Bandwidth		Level (dBm)	Level (dBm)	Gain (dBd)	C.L	Pol.	w	W	dBm
704.0	10 MHz	QPSK	-31.12	30.82	-10.19	1.54	V		0.081	19.09
704.0		16-QAM	-32.45	29.49	-10.19	1.54	V		0.060	17.76
707 5		QPSK	-30.76	31.04	-10.21	1.54	V	0.00	0.085	19.29
707.5		16-QAM	-31.96	29.84	-10.21	1.54	V	< 3.00	0.064	18.09
711.0		QPSK	-30.27	31.22	-10.23	1.55	V		0.088	19.44
711.0		16-QAM	-31.82	29.67	-10.23	1.55	V		0.062	17.89

Effective Radiated Power Data (10 MHz Band 12 / 17 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

NOTES:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For LTE signals, RBW = 1-5% of the OBW, not to exceed 1MHz, VBW \geq 3 x RBW, Detector = RMS. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in LTE mode. Also worst case of detecting Antenna is vertical polarization in LTE mode.

8.2 RADIATED SPURIOUS EMISSIONS 8.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 12 LTE)

OPERATING FREQUENTY:	<u>715.30 MHz</u>
MEASURED OUTPUT POWER:	<u>18.98 dBm = 0.079 W</u>
MODULATION SIGNAL:	1.4 MHz QPSK
DISTANCE:	3 meters
LIMIT: 43 + 10 log10 (W) =	<u>31.98 dBc</u>

Ch.	Measured Ant. Gain Substitute Freq.(MHz) Level [dBm] (dBd) Level [dBm]		C.L	Pol.	ERP (dBm)	dBc		
00017	1,399.40	-45.60	7.96	-53.82	1.19	V	-47.05	66.03
23017 (699.7)	2,099.10	-44.41	10.43	-52.48	1.21	V	-43.26	62.24
(099.7)	2,798.80	-57.19	11.17	-63.42	1.28	V	-53.53	72.51
2200E	1,415.00	-48.73	8.06	-56.88	1.19	V	-50.01	68.99
23095	2,122.50	-47.18	10.46	-54.75	1.18	V	-45.47	64.45
(707.5)	2,830.00	-55.79	11.19	-61.97	1.24	Н	-52.02	71.00
00170	1,430.60	-48.27	8.15	-57.13	1.18	V	-50.16	69.14
23173 (715.3)	2,145.90	-47.13	10.50	-54.05	1.18	V	-44.73	63.71
	2,861.20	-56.27	11.20	-62.31	1.30	V	-52.41	71.39

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:</u>

2. We are performed all frequency to 10th harmonics from 9 kHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

8.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 12 LTE)

OPERATING FREQUENTY:	<u>714.50 MHz</u>
MEASURED OUTPUT POWER:	<u>19.47 dBm = 0.088 W</u>
MODULATION SIGNAL:	<u>3 MHz QPSK</u>
DISTANCE:	<u>3 meters</u>
LIMIT: 43 + 10 log10 (W) =	32.47 dBc

Ch.	Freq.(MHz)	Measured Level [dBm]	Ant. Gain (dBd)	Substitute Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
00005	1,401.00	-47.45	7.96	-55.67	1.19	V	-48.90	68.37
23025	2,101.50	-42.36	10.43	-50.43	1.21	Н	-41.21	60.68
(700.5)	2,802.00	-57.17	11.17	-63.40	1.28	V	-53.51	72.98
23095	1,415.00	-49.99	8.06	-58.14	1.19	V	-51.27	70.74
(707.5)	2,122.50	-44.06	10.46	-51.63	1.18	Н	-42.35	61.82
(707.5)	2,830.00	-57.00	11.19	-63.18	1.24	Н	-53.23	72.70
00105	1,429.00	-49.82	8.15	-58.68	1.18	V	-51.71	71.18
23165 (714.5)	2,143.50	-42.30	10.50	-49.22	1.18	Н	-39.90	59.37
	2,858.00	-56.37	11.20	-62.41	1.30	V	-52.51	71.98

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:</u>

2. We are performed all frequency to 10th harmonics from 9 kHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

8.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 12 LTE)

OPERATING FREQUENTY:	<u>713.50 MHz</u>
MEASURED OUTPUT POWER:	<u>19.45 dBm = 0.088 W</u>
MODULATION SIGNAL:	<u>5 MHz QPSK</u>
DISTANCE:	<u>3 meters</u>
LIMIT: 43 + 10 log10 (W) =	<u>32.45 dBc</u>

Ch.	Freq.(MHz)	Measured Level [dBm]	Ant. Gain (dBd)	Substitute Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
00005	1,403.00	-48.53	7.96	-56.75	1.19	V	-49.98	69.43
23035	2,104.50	-41.62	10.44	-49.44	1.20	Н	-40.20	59.65
(701.5)	2,806.00	-56.64	11.18	-62.79	1.26	V	-52.87	72.32
23095	1,415.00	-50.09	8.06	-58.24	1.19	V	-51.37	70.82
(707.5)	2,122.50	-43.80	10.46	-51.37	1.18	Н	-42.09	61.54
(707.5)	2,830.00	-56.80	11.19	-62.98	1.24	Н	-53.03	72.48
00455	1,427.00	-48.95	8.15	-57.59	1.18	٧	-50.62	70.07
23155	2,140.50	-43.47	10.49	-50.32	1.23	Н	-41.05	60.50
(713.5)	2,854.00	-56.90	11.20	-63.06	1.28	Н	-53.14	72.59

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:</u>

2. We are performed all frequency to 10th harmonics from 9 kHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

8.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 12 LTE)

OPERATING FREQUENTY:	<u>711.00 MHz</u>
MEASURED OUTPUT POWER:	<u>19.44 dBm = 0.088 W</u>
MODULATION SIGNAL:	<u>10 MHz QPSK</u>
DISTANCE:	<u>3 meters</u>
LIMIT: 43 + 10 log10 (W) =	<u>32.44 dBc</u>

Ch.	Freq.(MHz)	Measured Level [dBm]	Ant. Gain (dBd)	Substitute Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,408.00	-49.86	8.00	-57.86	1.19	V	-51.05	70.49
23060	2,112.00	-39.67	10.44	-47.18	1.19	Н	-37.93	57.37
(704.0)	2,816.00	-57.09	11.17	-63.33	1.23	V	-53.39	72.83
23095	1,415.00	-49.41	8.06	-57.56	1.19	V	-50.69	70.13
(707.5)	2,122.50	-39.91	10.46	-47.48	1.18	Н	-38.20	57.64
(707.5)	2,830.00	-57.15	11.19	-63.33	1.24	Н	-53.38	72.82
00100	1,422.00	-52.12	8.11	-60.53	1.18	V	-53.60	73.04
23130	2,133.00	-42.94	10.47	-50.08	1.17	Н	-40.78	60.22
(711.0)	2,844.00	-56.86	11.19	-63.05	1.26	V	-53.12	72.56

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:</u>

2. We are performed all frequency to 10th harmonics from 9 kHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

8.3 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
	1.4 MHz		QPSK	6	0	1.0831
	1.4 MHZ	707.5	16-QAM	6	0	1.0807
	3 MHz		QPSK	15	0	2.6887
12			16-QAM	15	0	2.6836
12			QPSK	25	0	4.5157
	5 MHz		16-QAM	25	0	4.5055
	10 MU		QPSK	50	0	8.9685
	10 MHz		16-QAM	50	0	8.9491

- Plots of the EUT's Occupied Bandwidth are shown Page 28 \sim 31.

8.4 CONDUCTED SPURIOUS EMISSIONS

■FACTORS FOR FREQUENCY

Frequency Range (GHz)	Factor [dB]
0.03 – 1	27.145
1 – 5	26.960
5 – 10	27.542
10 – 15	28.439
15 – 20	29.144
Above 20	30.148

NOTES:

Factor(dB) = Cable Loss + Attenuator + Power Splitter

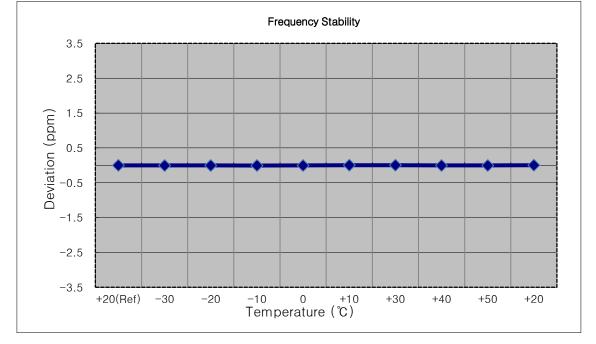
Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
		699.7	1.3989	26.960	-67.758	-40.798	
	1.4	707.5	1.4148	26.960	-68.040	-41.080	
		715.3	1.4303	26.960	-69.140	-42.180	
	3	700.5	1.3994	26.960	-68.040	-41.080]
		707.5	1.4133	26.960	-67.950	-40.990	
10		714.5	1.4273	26.960	-68.690	-41.730	-13.00
12		701.5	1.3994	26.960	-66.418	-39.458	-13.00
	5	707.5	1.4113	26.960	-67.285	-40.325	
		713.5	1.4233	26.960	-67.040	-40.080	
		704.0	1.3999	26.960	-67.300	-40.340	
	10	707.5	1.4069	26.960	-67.759	-40.799	
		711.0	1.4138	26.960	-67.920	-40.960	

NOTES:

1. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0

2. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)

- Plots of the EUT's Conducted Spurious Emissions are shown Page 44 ~ 49.

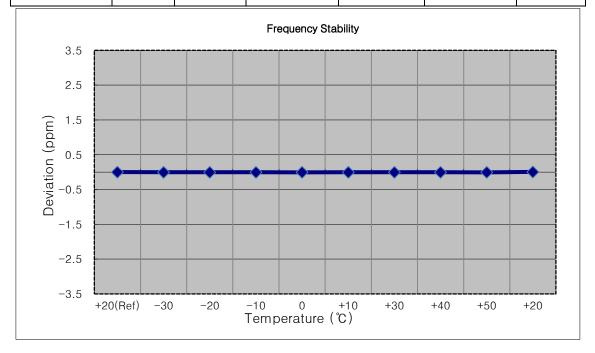

8.4.1 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 32 ~ 43.

8.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 8.5.1 FREQUENCY STABILITY (1.4 MHz Band 12 LTE)

OPERATING FREQUENCY:	<u>707,500,000 Hz</u>
CHANNEL:	<u>23095 (1.4 MHz)</u>
REFERENCE VOLTAGE:	<u>3.8 VDC</u>
DEVIATION LIMIT:	<u>Emission must remain in band</u>

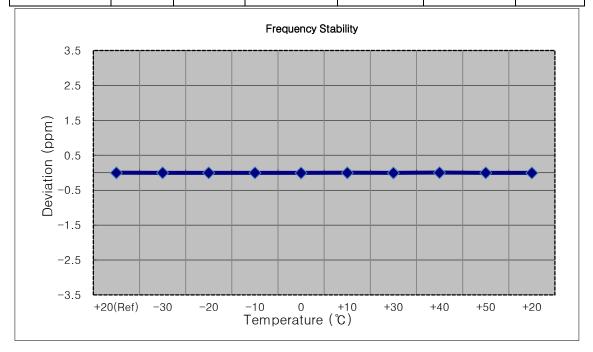
Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(Ĵ)	(Hz)	(Hz) Error (Hz)		ppm
100%		+20(Ref)	707 500 002	0.0	0.000 000	0.000
100%		-30	707 500 000	-2.1	0.000 000	-0.003
100%		-20	707 499 999	-2.6	0.000 000	-0.004
100%		-10	707 499 998	-4.3	-0.000 001	-0.006
100%	3.8	0	707 499 999	-2.7	0.000 000	-0.004
100%		+10	707 500 004	2.2	0.000 000	0.003
100%		+30	707 500 005	3.4	0.000 000	0.005
100%		+40	707 499 999	-2.5	0.000 000	-0.004
100%		+50	707 499 999	-2.4	0.000 000	-0.003
Batt. Endpoint	3.6	+20	707 500 004	2.6	0.000 000	0.004



8.5.2 FREQUENCY STABILITY (3 MHz Band 12 LTE)

OPERATING FREQUENCY:	<u>707,500,000 Hz</u>
CHANNEL:	<u>23095 (3 MHz)</u>
REFERENCE VOLTAGE:	<u>3.8 VDC</u>
DEVIATION LIMIT:	Emission must remain in band

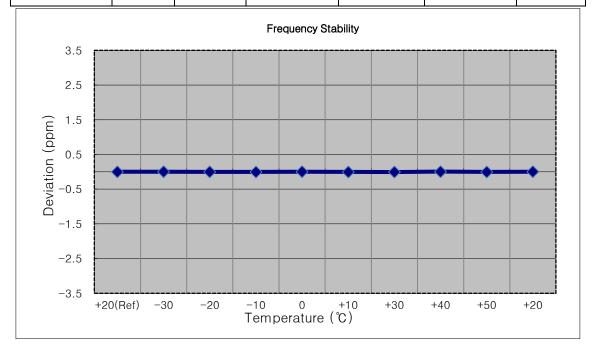
Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°°)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	707 500 003	0.0	0.000 000	0.000
100%		-30	707 500 000	-3.0	0.000 000	-0.004
100%		-20	707 500 000	-3.2	0.000 000	-0.005
100%		-10	707 500 000	-3.8	-0.000 001	-0.005
100%	3.8	0	707 499 999	-4.0	-0.000 001	-0.006
100%		+10	707 500 000	-3.4	0.000 000	-0.005
100%		+30	707 500 000	-3.2	0.000 000	-0.005
100%		+40	707 500 001	-2.7	0.000 000	-0.004
100%]	+50	707 499 999	-4.6	-0.000 001	-0.007
Batt. Endpoint	3.6	+20	707 500 006	2.7	0.000 000	0.004



8.5.3 FREQUENCY STABILITY (5 MHz Band 12 LTE)

OPERATING FREQUENCY:	<u>707,500,000 Hz</u>
CHANNEL:	<u>23095 (5 MHz)</u>
REFERENCE VOLTAGE:	<u>3.8 VDC</u>
DEVIATION LIMIT:	Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°°)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	707 500 002	0.0	0.000 000	0.000
100%		-30	707 500 000	-2.4	0.000 000	-0.003
100%		-20	707 500 001	-1.7	0.000 000	-0.002
100%		-10	707 500 000	-2.7	0.000 000	-0.004
100%	3.8	0	707 499 999	-3.4	0.000 000	-0.005
100%		+10	707 500 001	-1.2	0.000 000	-0.002
100%		+30	707 499 999	-3.4	0.000 000	-0.005
100%		+40	707 500 004	1.9	0.000 000	0.003
100%]	+50	707 500 000	-2.4	0.000 000	-0.003
Batt. Endpoint	3.6	+20	707 499 999	-3.6	-0.000 001	-0.005

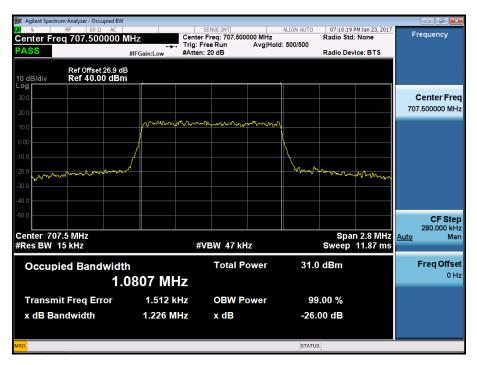


8.5.4 FREQUENCY STABILITY (10 MHz Band 12 LTE)

OPERATING FREQUENCY:	<u>707,500,000 Hz</u>
CHANNEL:	<u>23095 (10 MHz)</u>
REFERENCE VOLTAGE:	<u>3.8 VDC</u>
DEVIATION LIMIT:	Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°°)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	707 500 005	0.0	0.000 000	0.000
100%		-30	707 500 008	2.8	0.000 000	0.004
100%		-20	707 500 003	-1.5	0.000 000	-0.002
100%		-10	707 500 003	-2.4	0.000 000	-0.003
100%	3.8	0	707 500 007	2.0	0.000 000	0.003
100%		+10	707 500 003	-2.0	0.000 000	-0.003
100%		+30	707 500 001	-3.8	-0.000 001	-0.005
100%]	+40	707 500 009	3.8	0.000 001	0.005
100%]	+50	707 500 003	-2.2	0.000 000	-0.003
Batt. Endpoint	3.6	+20	707 500 007	2.0	0.000 000	0.003

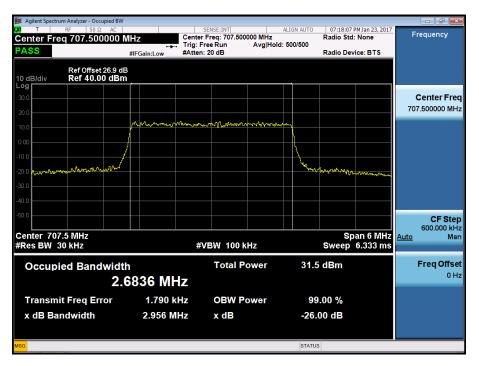
Model:LG-H870


9. TEST PLOTS

🎉 Agilent Spectru	um Analyzer - Occu	pied BW									
Center Fre	W L RF 50 Ω AC Center Freq 707.500000 MHz PASS #/FGain:Low			Center F			ALIGN AUTO	07:11:11 Radio Std: Radio Dev		F	requency
10 dB/div	Ref Offset 2 Ref 40.00	26.9 dB	Junicow								
20.0											Center Freq 7.500000 MHz
10.0 0.00		J	por managed and	yn Mon Ver		er var ve franker som frank					
-10.0 -20.0	hanna harrig	m					han	h-	mm		
-40.0											CF Step
Center 707 #Res BW 1				#VI	3W 47 kł	łz			ו 2.8 MHz 11.87 ms	<u>Auto</u>	280.000 kHz Man
Occupi	Occupied Bandwidth 1.0831 MH			łz	Total P	ower	32.0 dBm				Freq Offset 0 Hz
	Transmit Freq Error122x dB Bandwidth1.225 M				OBW Power x dB		99.00 % -26.00 dB				
MSG							STATUS	6			

BAND 12. Occupied Bandwidth Plot (1.4M BW Ch.23095 QPSK_RB6_0)

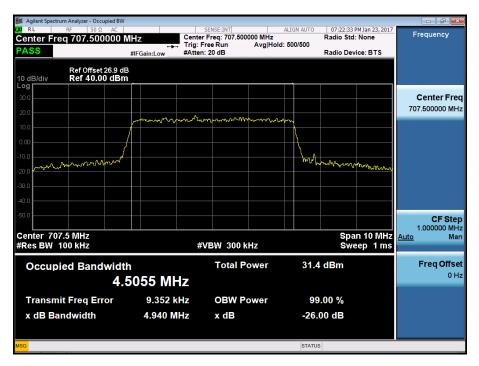
BAND 12. Occupied Bandwidth Plot (1.4M BW Ch.23095 16QAM_RB6_0)



🊺 Agi		Analyzer - Occ										
l <mark>XI</mark> Cent		RF 50 Ω	AC M	Hz		NSE:INT req: 707.500	000 MHz	ALIGN AUTO	07:17:46 Radio Sto	PM Jan 23, 2017 : None	F	requency
PAS		101.000			Trig: Fre #Atten: 2		Avg Hold	: 500/500	Radio De	vice: BTS		
		Ref Offset	26.9 48									
10 dE	3/div	Ref 40.0										
Log 30.0												Center Freq
20.0												7.500000 MHz
10.0				managener	mont	non	hunne	m				
			1									
0.00												
-10.0		Mar Carrows	an we					hm	W. Marrieral			
-20.0	and the second sec									- Carlo and a carl		
-30.0												
-40.0												
-50.0												CF Step
Cent	er 707.	5 MHz							Si	oan 6 MHz	Auto	600.000 kHz Man
#Res	5 BW 30	kHz			#VI	3W 100 k	Hz			6.333 ms		
0	ccunie	d Band	width			Total P	ower	32.	4 dBm			Freq Offset
	ocupic	u Bulla		887 M	47							0 Hz
		Freq Er	ror	2.938		OBW P	ower	9	9.00 %			
x	dB Ban	dwidth		2.986	MHz	x dB		-26	.00 dB			
MSG								STAT	a			

BAND 12. Occupied Bandwidth Plot (3M BW Ch.23095 QPSK_RB15_0)

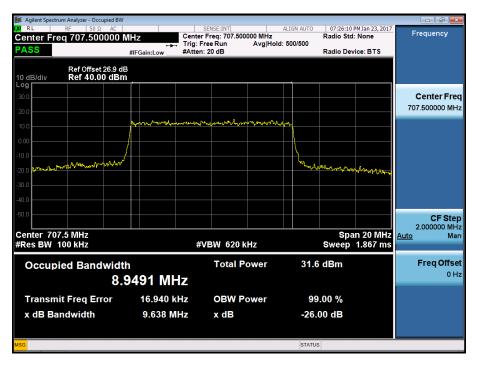
BAND 12. Occupied Bandwidth Plot (3M BW Ch.23095 16QAM_RB15_0)

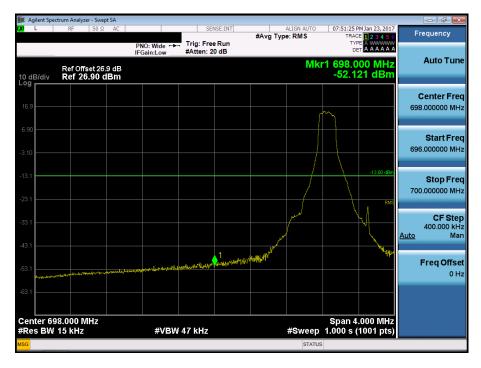


	ent Spectrur	m Analyzer - Occ									
Cent	er Fre	RF 50 Ω q 707.500	AC 0000 MH	lz	Center F	NSE:INT req: 707.50		ALIGN AUT		44 PM Jan 23, 2017 itd: None	Frequency
PAS				⊷ IFGain:Low	Trig: Fre #Atten: 2		Avg Hol	d: 500/500	Radio D	evice: BTS	
		Ref Offset	26.0 48								
10 dB	/div	Ref 40.0									
Log											Center Freq
20.0											707.500000 MHz
10.0			1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	marm	m	rmg			
0.00			/								
-10.00			. [<u>}</u>			
-20.0	m	Morrow	Mr. Mr.					<u>ь</u>	mon	mony	
-30.0 -											
-40.0											
-50.0											CF Step 1.000000 MHz
	er 707.									pan 10 MHz	Auto Man
#Res	BW 1	00 kHz			#VI	3W 300	kHz		S	weep 1ms	
0	ccupi	ed Band	lwidth			Total F	ower	32	.3 dBm		Freq Offset
			4.5	157 M	Hz						0 Hz
Te	anomi					OBW P	ower		99.00 %		
	Transmit Freq Error 24.232 kF x dB Bandwidth 4.971 MF					ower					
xc	18 Bar	idwidth		4.971 M	ЛНZ	x dB		-2	6.00 dB		
MSG	_							STA	TUS		

BAND 12. Occupied Bandwidth Plot (5M BW Ch.23095 QPSK_RB25_0)

BAND 12. Occupied Bandwidth Plot (5M BW Ch.23095 16QAM_RB25_0)



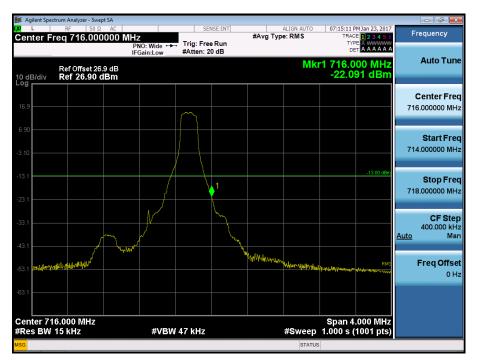

〕 Agilent Spectrur	m Analyzer - Occupied BW								
LXI RL	RF 50 Ω AC		SENSE			IGN AUTO	07:26:22 Radio Std	PM Jan 23, 2017	Frequency
	q 707.500000 l	MHZ	Center Freq Trig: Free R		vg Hold: 5	00/500	Radio Std	: None	,,
PASS		#IFGain:Low	#Atten: 20 d				Radio Dev	rice: BTS	
10 dB/div	Ref Offset 26.9 d Ref 40.00 dBn								
30.0									Center Freq
									707.500000 MHz
20.0				Arris and	_				707.300000 Mil 12
10.0		Wer and the area and a	-vollowing	authe Anno Arner A	/ Yow Wildow	1			
0.00						Λ			
-10.0		1				IX			
. Though	per mar all way					Winn	Marandor - Dr		
-20.0								and and another	
-30.0								<u> </u>	
-40.0									
-50.0									
-50.0									CF Step
Center 707	.5 MHz						Spa	n 20 MHz	2.000000 MHz Auto Man
#Res BW 1			#VBW	620 kHz				1.867 ms	
Occupi	ed Bandwidt	h	т	otal Pow	er	32.7	dBm		Freq Offset
	8.	9685 MI	Ηz						0 Hz
Transmi	t Freq Error	7.127	(Hz O	BW Pow	er	99	.00 %		
x dB Bar	ndwidth	9.634 N	IHz x	dB		-26 (00 dB		
		0.004				20.			
MSG						STATUS			

BAND 12. Occupied Bandwidth Plot (10M BW Ch.23095 QPSK_RB50_0)

BAND 12. Occupied Bandwidth Plot (10M BW Ch.23095 16QAM_RB50_0)

BAND 12. Lower Band Edge Plot (1.4M BW Ch.23017 QPSK_RB1_Offset 0)

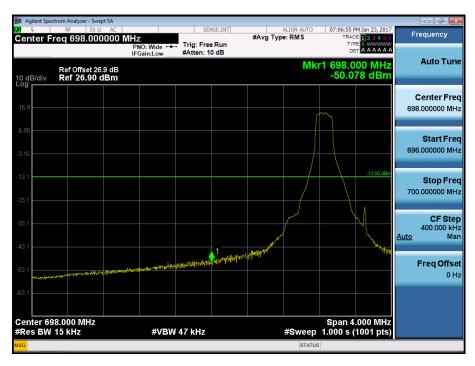
BAND 12. Lower Band Edge Plot (1.4M BW Ch.23017 QPSK_RB6_Offset 0)





BAND 12. Lower Extended Band Edge Plot (1.4M BW Ch.23017 QPSK_RB6_0)

BAND 12. Lower Band Edge Plot (1.4M BW Ch.23025 QPSK_RB1_Offset 0)



BAND 12. Lower Band Edge Plot (1.4M BW Ch.23025 QPSK_RB15_Offset 0)

BAND 12. Lower Extended Band Edge Plot (1.4M BW Ch.23025 QPSK_RB15_0)

BAND 12 / 17. Lower Band Edge Plot (3M BW Ch.23035 QPSK_RB1_Offset 0)

BAND 12 / 17. Lower Band Edge Plot (3M BW Ch.23035 QPSK_RB25_Offset 0)

BAND 12 / 17. Lower Extended Band Edge Plot (3M BW Ch.23035 QPSK_RB25_0)

BAND 12 / 17. Lower Band Edge Plot (3M BW Ch.23060 QPSK_RB1_Offset 0)

BAND 12 / 17. Lower Band Edge Plot (3M BW Ch.23060 QPSK_RB50_Offset 0)

BAND 12 / 17. Lower Extended Band Edge Plot (3M BW Ch.23060 QPSK_RB50_0)

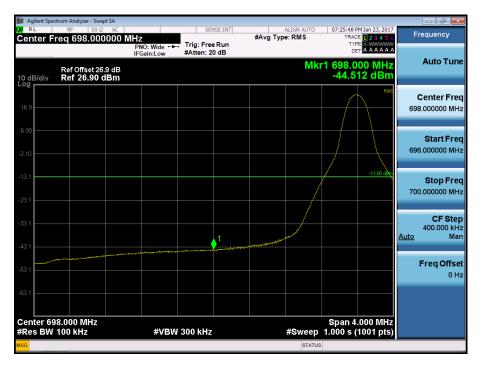
BAND 12. Upper Band Edge Plot (5M BW Ch.23173 QPSK_RB1_Offset 5)

BAND 12. Upper Band Edge Plot (5M BW Ch.23173 QPSK_RB6_Offset 0)

	ctrum Analyzer - Swept SA								- 6 -	
Center F	RF 50Ω AC req 698.000000 N	٨Hz		SE:INT	ALIGN AUTO #Avg Type: RMS		TRACE	1 Jan 23, 2017	Frequency	
		PNO: Wide +++ IFGain:Low	Trig: Free #Atten: 20				TYPE		Auto Tune	
10 dB/div	Ref Offset 26.9 dB Ref 26.90 dBm					Mk	1 698.00 -25.60	00 MHz 03 dBm		
16.9									Center Freq 698.000000 MHz	
-3.10								RMS	Start Freq 696.000000 MHz	
-13.1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	~ 1000			-13.00 dBm	Stop Freq 700.000000 MHz	
-33.1	una lana ang ang ang ang ang ang ang ang ang								CF Step 400.000 kHz <u>Auto</u> Man	
-53.1									Freq Offset 0 Hz	
-63.1	18.000 MHz						Span 4	000 MHz		
#Res BW		#VBW	160 kHz			#Sweep	1.000 s (1	001 pts)		
MSG						STATUS				

BAND 12. Upper Extended Band Edge Plot (5M BW Ch.23173 QPSK_RB6_0)

BAND 12. Upper Band Edge Plot (5M BW Ch.23165 QPSK_RB1_Offset 14)



BAND 12. Upper Band Edge Plot (5M BW Ch.23165 QPSK_RB15_Offset 0)

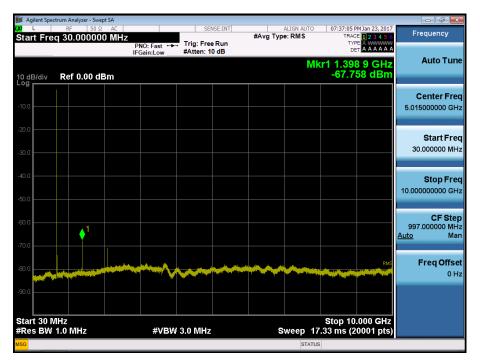
BAND 12. Upper Extended Band Edge Plot (5M BW Ch.23165 QPSK_RB15_0)

BAND 12 / 17. Upper Band Edge Plot (10M BW Ch.23155 QPSK_RB1_Offset 24)

BAND 12 / 17. Upper Band Edge Plot (10M BW Ch.23155 QPSK_RB25_Offset 0)

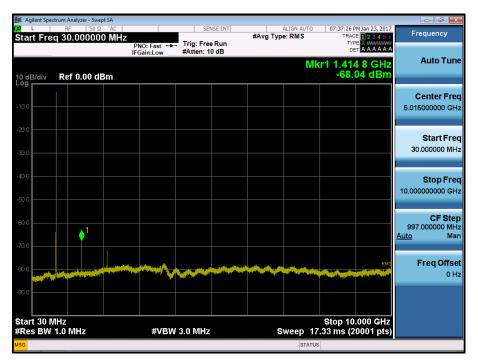
BAND 12 / 17. Upper Extended Band Edge Plot (10M BW Ch.23155 QPSK_RB25_0)

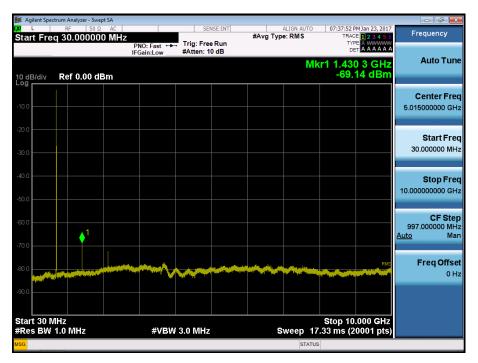
BAND 12 / 17. Upper Band Edge Plot (10M BW Ch.23130 QPSK_RB1_Offset 49)



BAND 12 / 17. Upper Band Edge Plot (10M BW Ch.23130 QPSK_RB50_Offset 0)

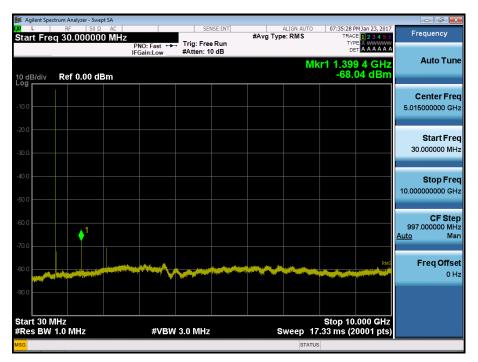
BAND 12 / 17. Upper Extended Band Edge Plot (10M BW Ch.23130 QPSK_RB50_0)

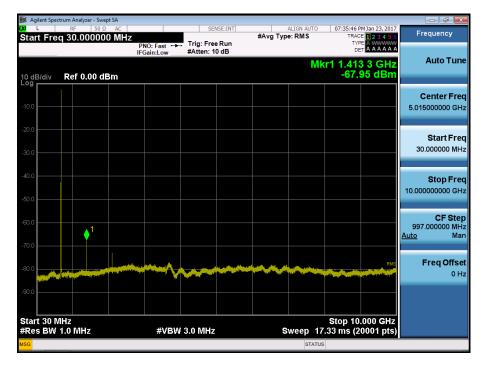

								ctrum Analyzer -	
Frequency	ALIGN AUTO 07:27:47 PM Jan 23, 201 #Avg Type: RMS TRACE 12.3.4.5		SE:INT	SEI	Hz	50 Ω AC 000000 M		X <mark>RL</mark> Center I	
A. 4. 7.			_		Trig: Free #Atten: 2	PNO: Wide		104 1 10.	Donton
Auto Tune	1 717.008 MHz -24.119 dBm	Mkr					t 26.9 dB 90 dBm	Ref Offse Ref 26.9	I0 dB/div
Center Fre									.09
719.000000 MH									16.9
Start Fre									5.90
717.000000 MH									3.10
Stop Fre	-13.00 dBm								13.1
721.000000 MH									23.1
CF Ste	RMS	- Www.	MAMMA	$\sim\sim\sim\sim\sim\sim\sim$	www.w	Mountering	ymmy	man	VM44
400.000 kH Auto Ma									
									3.1
Freq Offs 0 ⊦									53.1
									i3.1
	Span 4.000 MHz 1.000 s (1001 pts)	#Sweep			300 kHz	#VBW	Z	19.000 MH 100 kHz	
		STATUS							sg



BAND 12. Conducted Spurious Plot _ (23017ch_1.4MHz_QPSK_RB 1_0)

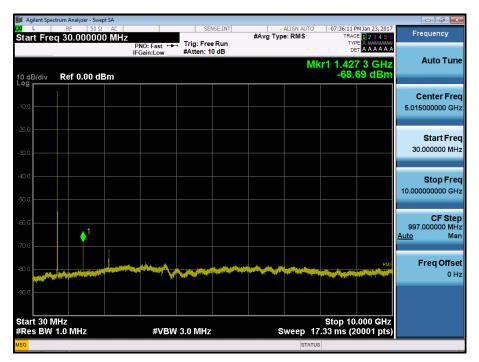
BAND 12. Conducted Spurious Plot _ (23095ch_1.4MHz_QPSK_RB 1_0)





BAND 12. Conducted Spurious Plot _ (23173ch_1.4MHz_QPSK_RB 1_0)

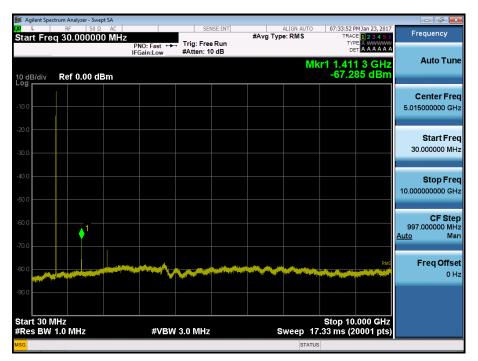
BAND 12. Conducted Spurious Plot _ (23025ch_3MHz_QPSK_RB 1_0)

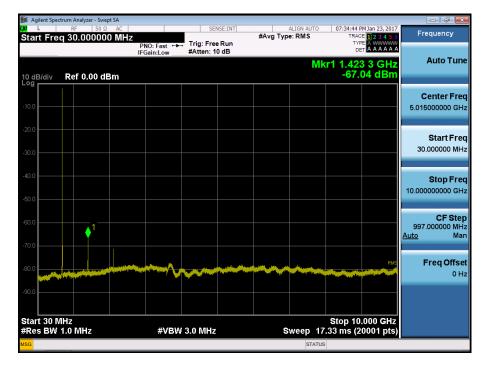




BAND 12. Conducted Spurious Plot _ (23095ch_3MHz_QPSK_RB 1_0)

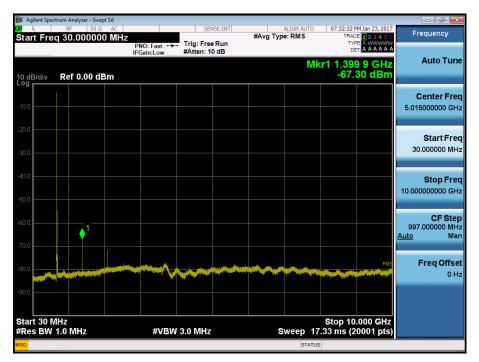
BAND 12. Conducted Spurious Plot _ (23165ch_3MHz_QPSK_RB 1_0)

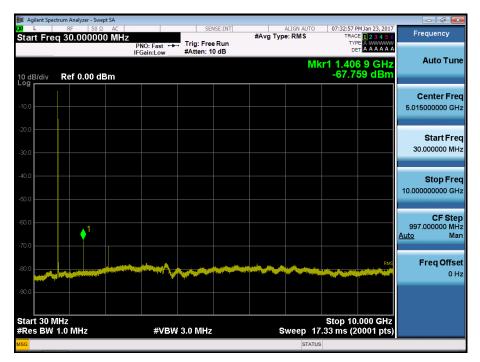




BAND 12. Conducted Spurious Plot _ (23035ch_5MHz_QPSK_RB 1_0)

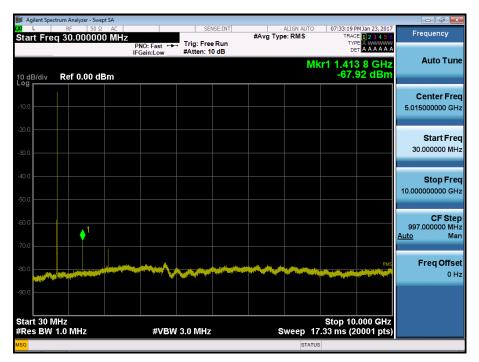
BAND 12. Conducted Spurious Plot _ (23095ch_5MHz_QPSK_RB 1_0)





BAND 12. Conducted Spurious Plot _ (23155ch_5MHz_QPSK_RB 1_0)

BAND 12. Conducted Spurious Plot _ (23060ch_10MHz_QPSK_RB 1_0)



BAND 12. Conducted Spurious Plot _ (23095ch_10MHz_QPSK_RB 1_0)

BAND 12. Conducted Spurious Plot _ (23130ch_10MHz_QPSK_RB 1_0)

