

FCC NFC REPORT

FCC Certification

Applicant Name: LG Electronics MobileComm U.S.A., Inc.

Address: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 Date of Issue: March 08, 2016 Test Site/Location: HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majangmyeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-R-1603-F036 HCT FRN: 0005866421

IC Recognition No.: 5944A-5

FCC ID:	ZNFH840	
APPLICANT:	LG Electronics MobileComm U.S.A., Inc.	
Model(s): Additional Model(s): EUT Type:	LG-H840 LGH840, H840, LG-H845, LGH845, H845, LG-H840AR, LGH840AR, H840AR GSM/WCDMA/LTE Phone with Bluetooth, WLAN, NFC	
RF Output Field Strength: Frequency of Operation:	24.53 dBuV/m @30 m 13.5597 MHz	
Modulation type:	ASK	
FCC Classification:	Low Power Communication Device – Transmitter	
FCC Rule Part(s):	FCC Part 15.225 Subpart C	

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Seul Ki Lee Test Engineer of RF Team

Approved by : Sang Jun Lee Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd. HCT CO., LTD.

Model: LG-H840

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1603-F036	March 08, 2016	- First Approval Report

Table of Contents

1. GENERAL INFORMATION
2. EUT DESCRIPTION
3. TEST METHODOLOGY
3.1 EUT CONFIGURATION
3.2 EUT EXERCISE
3.3 GENERAL TEST PROCEDURES
3.4 DESCRIPTION OF TEST MODES
3.5 STANDARDS
4. INSTRUMENT CALIBRATION
5. FACILITIES AND ACCREDITATIONS
5.1 FACILITIES
5.2 EQUIPMENT
6. ANTENNA REQUIREMENTS
7. TEST SUMMARY
8. RADIATED EMISSION MEASUREMENT 9
8.1. RADIATED EMISSION 9 kHz – 30 MHz 10
8.2. RADIATED EMISSION 30 MHz – 1000 MHz 13
9. EMISSION BANDWIDTH PLOT 15
10. FREQUENCY TOLERANCE 16
11. POWERLINE CONDUCTE EMISSIONS 18
12. LIST OF TEST EQUIPMENT
12.1 LIST OF TEST EQUIPMENT(Conducted Test) 27
12.2 LIST OF TEST EQUIPMENT(Radiated Test)

1. GENERAL INFORMATION

Applicant:	LG Electronics MobileComm U.S.A., Inc
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632
FCC ID:	ZNFH840
EUT Type:	GSM/WCDMA/LTE Phone with Bluetooth, WLAN, NFC
Model name(s):	LG-H840
Additional Model name(s):	LGH840, H840, LG-H845, LGH845, H845, LG-H840AR, LGH840AR, H840AR
Date(s) of Tests:	January 15, 2016 ~ February 23, 2016
Place of Tests:	HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea
	(IC Recognition No. : 5944A-5)

2. EUT DESCRIPTION

Model Name	LG-H840
Additional Model name(s):	LGH840, H840, LG-H845, LGH845, H845, LG-H840AR, LGH840AR, H840AR
EUT Type	GSM/WCDMA/LTE Phone with Bluetooth, WLAN, NFC
Power Supply	DC 3.85 V
Pottom Information	Model: BL-43D1F
Battery Infomation	Type: Li-ion Battery
Frequency of Operation	13.5597 MHz
Transmit Power	24.53 dBuV/m @30 m
Modulation Type	ASK
Antonno Specification	Manufacturer: IM-TECH
Antenna Specification	Antenna type: FPCB Antenna

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10:2013).

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.225 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.3 of ANSI C63.10. (Version: 2013).

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3.5 STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating

compliance With

FCC Part 15.Subpart C

Regulation	Measurement standard	Range	
Title 47 of the CFR: Part 15 Subpart (c),			
Clause 15.225(a)	ANSI C63.10:2013	13.553MHz to 13.567MHz	
Title 47 of the CFR: Part 15 Subpart (c),			
Clause 15.225(d)	ANSI C63.10:2013	outside of the 13.110-14.010 MHz band	
Title 47 of the CFR: Part 15 Subpart (c),			
Clause 15.209	ANSI C63.10:2013	9kHz to 30MHz	
Title 47 of the CFR: Part 15 Subpart (c),		30MHz to 1GHz	
Clause 15.209	ANSI C63.10:2013		
Title 47 of the CFR: Part 15 Subpart (c),			
Clause 15.207	ANSI C63.10:2013	150kHz to 30MHz	
Title 47 of the CFR: Part 15 Subpart (c),			
Clause 15.225(e)	ANSI C63.10:2013	0.01% of nominal	
Title 47 of the CFR: Part 15 Subpart (c),	ANSI 062 10:2012		
Clause 15.215(c)	ANSI C63.10:2013	-	

Model: LG-H840

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

All equipment(spectrum, antenna, accessory, etc.) for measurement is calibrated in accordance with the requirements of ANSI C63.5 (Version: 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

Report No.: HCT-R-1603-F036

The 10 m semi anechoic chamber used to collect the Conducted and Radiated data is located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4 (Version: 2014). Detailed description of test facilities was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned loop, dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of §15.203

7. TEST SUMMARY

The results in this report apply only to sample tested

Regulation	Test Type	Range	Result
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.225(a)	Radiated Electric Field Emissions	13.553MHz to 13.567MHz	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.225(b)	Radiated Electric Field Emissions	13.410MHz to 13.553MHz and 13.567MHz to 13.710MHz	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.225(c)	Radiated Electric Field Emission	13.110 MHz to 13.410 MHz and 13.710 MHz to 14.010 MHz	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.209 (d)	Radiated Electric Field Emissions	9kHz to 30MHz	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.209	Radiated Electric Field Emissions	30MHz to 1GHz	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.207	AC power conducted emissions	150kHz to 30MHz	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.225(e)	Frequency Stability	0.01% of nominal	Pass
Title 47 of the CFR: Part 15 Subpart (c), Clause 15.215(c)	20 dB Bandwidth	-	Pass

8. RADIATED EMISSION MEASUREMENT

Requirement(s): 15.209, 15.225

Except as provided elsewhere in this paragraph the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Rule Part	Frequency (MHz)	Limit
	0.009 ~ 0.490	2400/F(kHz) uV/m@300 m
	0.490 ~1.705	24000/F(kHz) uV/m@30 m
	1.705 ~ 30	30 uV/m@30 m
Part 15.209	30 ~ 88	100 ** uV/m@3 m
	88 ~ 216	150 ** uV/m@3 m
	216 ~ 960	200 ** uV/m@3 m
	Above 960	500 uV/m@3 m

Minimum Standard: FCC Part 15.225 / 15.209

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

15.225 Operation within the band 13.110 – 14.010 MHz.

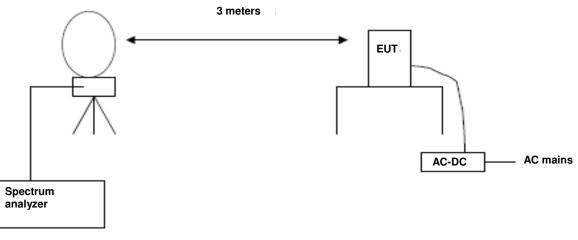
(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter (= 84 dBuV/m) at 30 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (=50.5dBuV/m) at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed

106 microvolts/meter (=40.5 dBuV/m) at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.


(e) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

(f) In the case of radio frequency powered tags designed to operate with a device authorized under this section, the tag may be approved with the device or be considered as a separate device subject to its own authorization. Powered tags approved with a device under a single application shall be labeled with the same identification number as the device.

8.1. RADIATED EMISSION 9 kHz - 30 MHz

Test Set-up

Test Procedure

The EUT was placed on a non-conductive table located on a large open test site. The loop antenna was placed at a location 3m from the EUT. Radiated emissions were measured with the loop antenna both parallel and perpendicular to the plane of the EUT loop antenna and with x, y, z planes in EUT.

The limit is converted from microvolts/meter to decibel microvolts/meter. Sample Calculation:

Corrected Amplitude = Raw Amplitude($dB\mu V/m$) + ACF(dB) + Cable Loss(dB) – Distance Correction Factor

The spectrum analyzer is set to:

Frequency Range = 9 kHz ~ 1 GHz

RBW = 9 kHz (9 kHz ~ 30 MHz) = 120 kHz (30 MHz ~ 1 GHz)

Trace Mode = max hold Detector Mode = peak / Quasi-peak Sweep time = auto

Test Results (Worst case : y-H)

13.553 MHz-13.567 MHz							
Frequency	Read Level	Ant.Factor+Cable	Distance	Result Level	Limit	Margin	
		Loss	Correction				
(MHz)	(dBuV/m)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)	
13.5597	45.95	18.58	-40	24.53	84	59.47	
13.5605	41.84	18.58	-40	20.42	84	63.58	

13.410 MHz-13.553 MHz and 13.567 MHz-13.710 MHz							
Frequency	ency Read Level Ant.Factor+Cable Distance Result Level Limit I						
		Loss	Correction				
(MHz)	(dBuV/m)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)	
13.4546	34.08	18.58	-40	12.66	50.47	37.81	
13.6668	34.04	18.58	-40	12.62	50.47	37.85	

13.110 MHz – 13.410 MHz and 13.710 MHz-14.010 MHz							
Frequency	Read Level	Ant.Factor+Cable	Distance	Result Level	Limit	Margin	
		Loss	Correction				
(MHz)	(dBuV/m)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)	
13.3488	24.34	18.58	-40	2.92	40.51	37.59	
13.7718	24.29	18.58	-40	2.87	40.51	37.64	

9 kHz -30 MHz								
Frequency	Read Level	Ant.Factor+Cable	Distance	Result Level	Limit	Margin		
		Loss	Correction					
(MHz)	(dBuV/m)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)		
13.0575	15.23	18.58	-40	-6.19	29.54	35.73		
14.0739	16.39	18.58	-40	-5.03	29.54	34.57		
27.1196	15.19	18.78	-40	-6.03	29.54	35.57		
27.1214	15.05	18.78	-40	-6.17	29.54	35.71		

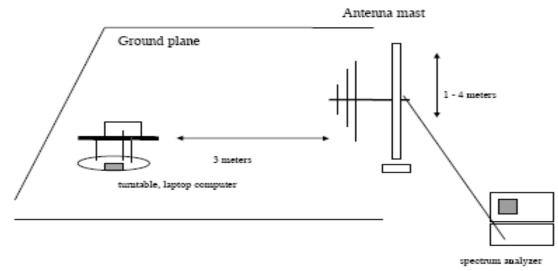
HCT CO.,LTD.

Note : The test results for below 30 MHz is correlated to an open site.

The result on OATS is about 6.5 dB higher than semi-anechoic chamber(10 m chamber)

- Distance Correction Below 30MHz = 40log(3m/30m) = 40 dB Measurement Distance : 3 m (Below 30 MHz)
- 2. Factor = Antenna Factor + Cable Loss
- 3. Result Level = Read Level + Factor + Distance Correction
- 4. Margin = Limit Result Level
- 5. We have done x, y, z planes in EUT
- 6. Antenna rotated about its vertical/horizontal axis for maximum response at each azimuth position around the EUT.
- 7. Worst case of operating mode is type A, analog mode and 106 kbps.

RESULT PLOTS


Radiated Emissions (9kHz~30MHz) plot Ś *RBW 9 kHz Marker 1 [T1] *VBW 30 kHz 39.45 dBµV Ref 80 dBµV *Att 0 dB SWT 2.5 ms 13.559748000 MHz 80 А 1 FK 2 PR CLEWE PRN 1.4 kHz/ Start 13.553 MHz Stop 13.567 MHz Date: 2.FEB.2016 07:57:22

Note : Only the worst case plots for Radiated Emissions.

8.2. RADIATED EMISSION 30 MHz - 1000 MHz

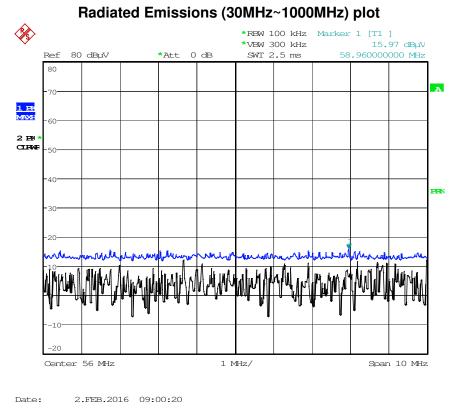
Test Set-up

Test Procedures: Radiated emissions were measured according to ANSI C63.10.

The EUT was set to transmit at the highest output power.

The EUT was set 3 meter away from the measuring antenna.

Test Results


Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dΒμN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB
44.98	15.24	12.30	0.68	Н	28.22	40.00	11.78
58.96	15.97	11.82	0.74	Н	28.53	40.00	11.47
86.19	14.89	7.96	0.83	V	23.68	40.00	16.32
*120.58	16.66	11.64	0.96	Н	29.26	43.50	14.24
*135.86	15.82	12.24	1.01	Н	29.07	43.50	14.43
*150.69	15.97	13.12	1.07	V	30.16	43.50	13.34

Remark

- 1. Result Level = Read Level + (Antenna Factor+ Cable Loss)
- 2. Margin = Limit Result Level
- 3. "*' is the result for restricted band.

RESULT PLOTS

Note : Only the worst case plots for Radiated Emissions.

9. EMISSION BANDWIDTH PLOT.


Requirement(s):

Test Set-up: The EUT was connected to a spectrum analyzer.

Test Procedure: The 20 dB bandwidth was measured by using a spectrum analyzer.

RBW = Auto VBW = Auto Span = Adequately in the operating Tx. Detector = Peak Trace mode = Max hold Allow the trace to stabilize

Test Results

10. FREQUENCY TOLERANCE

Procedure: Part 15.225, ANSI 63.10

If required, the operating or transmitting frequency of an intentional radiator should be measured in accordance with the following procedure to ensure that the device operates outside certain precluded frequency bands and within the frequency range. No modulation needs to be supplied to the intentional radiator during these tests, unless modulation is required to produce an output, e.g., single-sideband suppressed carrier transmitters.

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -20°C to + 50°C using an environmental chamber.
- b) For battery operated equipment, the equipment tests shall be performed using a new battery.
- c) Test Procedure
 - Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
 - Set the temperature control on the chamber to the highest specified in the regulatoryrequirements for the type of device and allow the oscillator heater and the chamber temperatureto stabilize.
 - While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.
- d) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.
 - Note : Below the measurement result is worst value of the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized

Measurement Result:

PERATING FREQUENCY:	13.56 MHz
REFERENCE VOLTAGE:	3.85 VDC
DEVIATION LIMIT:	0.01% = 1356 Hz

Voltage	Power	Temp.	Frequency	Frequency Dev.	Frequency Dev.
(%)	(VDC)	(°C)	(MHz)	(Hz)	(%)
100%		-20	13.560176	176	0.0012979
100%		-10	13.560181	181	0.0013348
100%		0	13.560188	188	0.0013864
100%	0.05	+10	13.560194	194	0.0014307
100%	3.85	+20(Ref.)	13.560201	201	0.0014823
100%		+30	13.560209	209	0.0015413
100%		+40	13.560218	218	0.0016077
100%		+50	13.560226	226	0.0016667
Highest point	4.40	+20	13.560205	205	0.0015118
Batt. Endpoint	3.60	+20	13.560203	203	0.0014971

11. POWERLINE CONDUCTE EMISSIONS

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits (dBµV)					
Frequency Range (MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

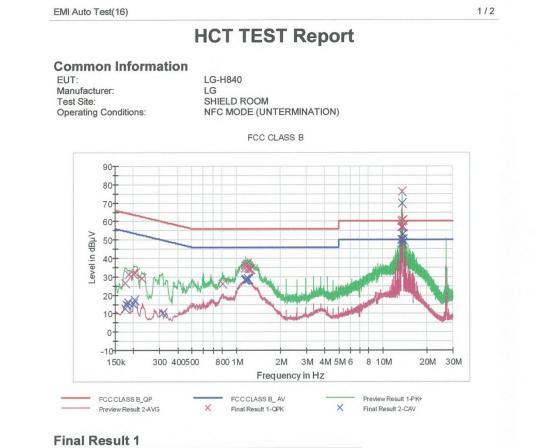
Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected


- For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

Test Plots Unterminate the Antenna Conducted Emissions (Line 1)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.176000	26.7	9.000	Off	N	9.6	38.0	64.7
0.186000	31.0	9.000	Off	N	9.6	33.2	64.2
0.200000	31.7	9.000	Off	N	9.6	31.9	63.6
0.206000	32.1	9.000	Off	N	9.6	31.3	63.4
0.228000	29.2	9.000	Off	N	9.6	33.3	62.5
0.806000	26.1	9.000	Off	N	9.7	29.9	56.0
1.148000	34.5	9.000	Off	N	9.7	21.5	56.0
1.164000	36.2	9.000	Off	N	9.7	19.8	56.0
1.188000	37.2	9.000	Off	N	9.7	18.8	56.0
1.202000	34.6	9.000	Off	N	9.7	21.4	56.0
1.232000	34.0	9.000	Off	N	9.7	22.0	56.0
1.266000	34.0	9.000	Off	N	9.7	22.0	56.0
13.446000	56.9	9.000	Off	N	10.1	3.1	60.0
13.454000	60.2	9.000	Off	N	10.1	-0.2	60.0
13.560000	76.2	9.000	Off	N	10.1	-16.2	60.0
13.656000	57.2	9.000	Off	N	10.1	2.8	60.0
13.666000	60.4	9.000	Off	N	10.1	-0.4	60.0
13.674000	57.1	9.000	Off	N	10.1	2.9	60.0

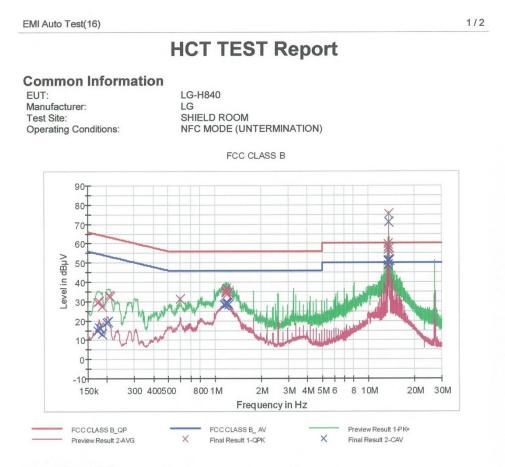
2/23/2016

9:16:35

EMI Auto Test(16)

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.176000	12.6	9.000	Off	N	9.6	42.1	54.7
0.180000	14.8	9.000	Off	N	9.6	39.7	54.5
0.184000	16.1	9.000	Off	N	9.6	38.2	54.3
0.198000	15.1	9.000	Off	N	9.6	38.6	53.7
0.204000	17.2	9.000	Off	N	9.6	36.2	53.4
0.316000	10.3	9.000	Off	N	9.6	39.5	49.8
1.148000	28.2	9.000	Off	N	9.7	17.8	46.0
1.164000	28.6	9.000	Off	N	9.7	17.4	46.0
1.186000	28.3	9.000	Off	N	9.7	17.7	46.0
1.200000	29.3	9.000	Off	N	9.7	16.8	46.0
1.204000	29.0	9.000	Off	N	9.7	17.0	46.0
1.218000	28.7	9.000	Off	N	9.7	17.3	46.0
13.454000	50.3	9.000	Off	N	10.1	-0.3	50.0
13.560000	69.9	9.000	Off	N	10.1	-19.9	50.0
13.656000	48.0	9.000	Off	N	10.1	2.0	50.0
13.664000	50.1	9.000	Off	N	10.1	-0.1	50.0
13.668000	50.1	9.000	Off	N	10.1	-0.1	50.0
13.772000	53.2	9.000	Off	N	10.1	-3.2	50.0

2/23/2016


9:16:35

F-TP22-03 (Rev.00) FCC ID: ZNFH840 HCT CO., LTD.

2/2

Conducted Emissions (Line 2)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.174000	29.4	9.000	Off	L1	9.6	35.4	64.8
0.178000	29.7	9.000	Off	L1	9.6	34.9	64.6
0.186000	27.2	9.000	Off	L1	9.6	37.0	64.2
0.206000	33.0	9.000	Off	L1	9.6	30.4	63.4
0.210000	32.6	9.000	Off	L1	9.6	30.6	63.2
0.598000	31.2	9.000	Off	L1	9.7	24.8	56.0
1.174000	35.5	9.000	Off	L1	9.7	20.5	56.0
1.184000	34.4	9.000	Off	L1	9.7	21.6	56.0
1.188000	36.6	9.000	Off	L1	9.7	19.4	56.0
1.196000	34.7	9.000	Off	L1	9.7	21.3	56.0
1.206000	33.8	9.000	Off	L1	9.7	22.2	56.0
1.230000	34.4	9.000	Off	L1	9.7	21.6	56.0
13.448000	56.9	9.000	Off	L1	10.1	3.1	60.0
13.454000	59.8	9.000	Off	L1	10.1	0.2	60.0
13.458000	57.9	9.000	Off	L1	10.1	2.1	60.0
13.560000	75.4	9.000	Off	L1	10.1	-15.4	60.0
13.662000	57.8	9.000	Off	L1	10.1	2.2	60.0
13.670000	57.8	9.000	Off	L1	10.1	2.2	60.0

2/23/2016

9:05:48

2/2

EMI Auto Test(16)

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.174000	14.8	9.000	Off	L1	9.6	40.0	54.8
0.178000	16.4	9.000	Off	L1	9.6	38.2	54.6
0.182000	16.1	9.000	Off	L1	9.6	38.3	54.4
0.186000	13.3	9.000	Off	L1	9.6	40.9	54.2
0.200000	18.9	9.000	Off	L1	9.6	34.7	53.6
0.204000	19.3	9.000	Off	L1	9.6	34.1	53.4
1.154000	28.2	9.000	Off	L1	9.7	17.8	46.0
1.158000	28.1	9.000	Off	L1	9.7	17.9	46.0
1.174000	28.9	9.000	Off	L1	9.7	17.1	46.0
1.202000	28.9	9.000	Off	L1	9.7	17.1	46.0
1.214000	29.3	9.000	Off	L1	9.7	16.7	46.0
1.230000	28.1	9.000	Off	L1	9.7	17.9	46.0
13.448000	48.9	9.000	Off	L1	10.1	1.1	50.0
13.452000	50.9	9.000	Off	L1	10.1	-0.9	50.0
13.456000	51.1	9.000	Off	L1	10.1	-1.1	50.0
13.468000	49.0	9.000	Off	L1	10.1	1.0	50.0
13.560000	71.0	9.000	Off	L1	10.1	-21.0	50.0
13.666000	51.5	9.000	Off	L1	10.1	-1.5	50.0

2/23/2016

9:05:48

F-TP22-03 (Rev.00) FCC ID: ZNFH840 HCT CO., LTD.

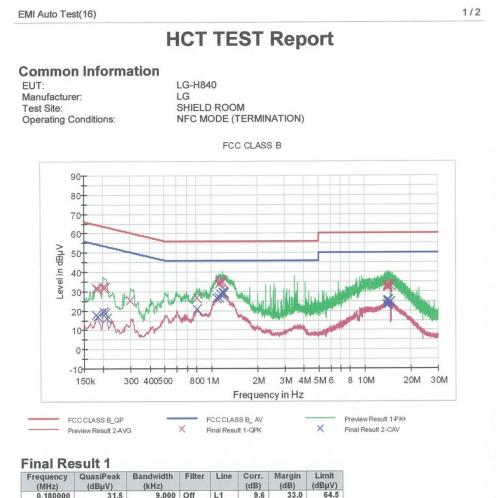
Terminate the Antenna Conducted Emissions (Line 1)

	est(16)								
		F	ЮТ	TE	ST	Rep	ort		
ommo	n Inform	nation							
EUT:		lation	LG-H8	10					
/anufactu	rer:		LG-Ho	40					
est Site:			SHIELI	DROC	M				
	Conditions:					NATION)			
				FC	C CLAS	SB			
	90 .	1						1 1 1	
	80								
3	70-								
	-								
1000	60								
Level in dBµV	50-								
Bh	+								
	40 m. D.			Allen .			1	NUL AND	1
eve	30- 200	1. Makalandar 1	tut lalar				1.11 1.11		-
		Mr. Handren	AL AL	X	State of the state				
	20		anto		Man				
	10	A sile many and	M. M.		and and and and	h d lands			
		U W W			100		Constant of the		
						-			
	0								
	0								
	0	300 400500	800	1 1 M	2M	3M 4I	и 5M 6	8 10M 20	M 30M
	0	300 400500	800				и 5M 6	8 10M 20	м зом
-	0	300 400500	800			3M 4I cy in Hz	и 5M 6	8 10M 20	М ЗОМ
	0	_	;		requen			8 10M 20 Preview Result 1-PK+	м зом
F	0 10 150k			F	Frequen		M 5M 6		м зом
F	0			F CCCLAS	Frequen			Preview Result 1-PK+	М ЗОМ
inal Re	0 10 150k CC CLASS B_OP review Result 2-AV PSult 1	/G	×	F FCCCLAS Final Resu	SS B_ AV		×	Preview Result 1-PK+	М 30М
inal Re	0 10 150k CCCLASS B_OP review Result 2-AV PSUIT 1 QuasiPeak	/G Bandwidth		F CCCLAS	SS B_ AV Int 1-QPK	cy in Hz Margin	X	Preview Result 1-PK+	M 30M
inal Re	0 10 150k CC CLASS B_OP review Result 2-AV PSult 1	/G	×	F FCCCLAS Final Resu	SS B_ AV	cy in Hz	×	Preview Result 1-PK+	М 30М
inal Re Frequency (MHz) 0.150000 0.154000	0 10 150k CC CLASS B_OP review Result 2-AV COLLASS B_OP review Result 2-AV COLLASS B_OP COLLASS B_OP COLA	/G Bandwidth (kHz) 9.000 9.000	Filter Off Off	F CCCLAS Final Resu Line N	Corr. (dB) 9.6 9.6 9.6	Margin (dB) 45.8 47.1	× Limit (dBμV) 66.0 65.8	Preview Result 1-PK+	М ЗОМ
inal Re requency (MHz) 0.1550000 0.154000 0.158000	0 10 150k CC CLASS B_QP review Result 2-AV esult 1 QuasiPeak (dBµV) 20.2 18.7 17.9	/G Bandwidth (kHz) 9.000 9.000 9.000	Filter Off Off	F FCCCLAS Final Resu Line N N N	Corr. (dB) 9.6 9.6 9.6	Margin (dB) 45.8 47.1 47.7	× (dBµV) 66.0 65.8 65.6	Preview Result 1-PK+	М ЗОМ
inal Re Frequency (MHz) 0.150000 0.158000 0.168000	0 10 150k CC CLASS B_OP review Result 2-AV COLASS B_OP Review Review Revi	/G Bandwidth (kHz) 9.000 9.000 9.000	Filter Off Off Off	F CC CLAS Final Resu Line N N N N	Corr. (dB) 9.6 9.6 9.6 9.6	Margin (dB) 45.8 47.1 47.7 45.2	X (dBµV) 66.0 65.8 65.6 65.1	Preview Result 1-PK+	M 30M
inal Re requency (MHz) 0.1550000 0.154000 0.158000	0 10 150k CC CLASS B_QP review Result 2-AV esult 1 QuasiPeak (dBµV) 20.2 18.7 17.9	/G Bandwidth (kHz) 9.000 9.000 9.000	Filter Off Off	F =CCCLAS =Inal Resu Line N N N	Corr. (dB) 9.6 9.6 9.6	Margin (dB) 45.8 47.1 47.7	× (dBµV) 66.0 65.8 65.6	Preview Result 1-PK+	M 30M
inal Re Frequency (MHz) 0.155000 0.158000 0.168000 0.168000 0.178000 0.202000 1.166000	0 10 150k CCCLASS B_QP review Result 2-AV esult 1 QuasiPeak (dBµV) 20.2 18.7 17.9 19.9 32.6 34.0 34.9	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off	Final Result Final Result N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.6	Margin (dB) 45.8 47.1 47.7 45.2 32.0 29.5 21.1	Limit (dBµV) 66.0 65.8 65.6 65.1 64.6 63.5 56.0	Preview Result 1-PK+	M 30M
inal Re Frequency (MHz) 0.150000 0.158000 0.178000 0.178000 0.178000 1.166000 1.170000	0 150k CC CLASS B_0P review Result 2-AV esult 1 QuasiPeak (dBµV) 20.2 18.7 17.9 32.6 34.0 34.9 32.6	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off	Final Result N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.7 9.7	Margin (dB) 45.8 47.1 45.2 32.0 29.5 21.1 1 23.4	X Limit (dBµV) 66.0 65.8 65.6 65.1 64.6 63.5 56.0 56.0	Preview Result 1-PK+	M 30M
inal Re requency (MHz) 0.150000 0.158000 0.158000 0.178000 0.202000 1.176000	0 10 150k CC CLASS B_OP review Result 2-AV COLLASS B_OP review Result 2-AV COLLASS B_OP CC CLASS B_OP review Result 2-AV COLLASS B_OP CC CLASS B_	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off Off	F CC CLAS Final Result N N N N N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7	Margin (dB) 45.8 47.1 47.7 45.2 32.0 29.5 21.1 23.4 21.9	X (dBµV) 66.0 65.8 65.6 65.1 64.6 63.5 56.0 56.0 56.0	Preview Result 1-PK+	M 30M
inal Re Frequency (MHz) 0.150000 0.158000 0.178000 0.178000 0.178000 1.166000 1.170000	0 150k CC CLASS B_0P review Result 2-AV esult 1 QuasiPeak (dBµV) 20.2 18.7 17.9 32.6 34.0 34.9 32.6	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off Off Off	Final Result N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.7 9.7	Margin (dB) 45.8 47.1 45.2 32.0 29.5 21.1 1 23.4	X Limit (dBµV) 66.0 65.8 65.6 65.1 64.6 63.5 56.0 56.0	Preview Result 1-PK+	M 30M
inal Re Frequency (MHz) 0.158000 0.158000 0.158000 0.178000 0.202000 1.166000 1.176000 1.176000 1.204000 1.224000	0 10 150k CC CLASS B_OP review Result 2-AV PS UIT 1 QuasiPeak (dBµV) 20.2 18.7 17.9 32.6 34.0 34.9 32.6 34.1 33.3 33.5 33.7	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off Off Off Of	F CC CLAS Final Resu N N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	Margin (dB) 45.2 32.0 29.5 21.1 23.4 21.9 22.7 22.5 22.3	X (dBµV) 66.0 65.8 65.6 63.5 56.0 56.0 56.0 56.0 56.0 56.0 56.0	Preview Result 1-PK+	M 30M
inal Ree Frequency (MHz) 0.1550000 0.158000 0.158000 0.178000 0.178000 0.202000 1.166000 1.176000 1.176000 1.176000 1.254000 1.254000 1.254000	0 10 150k CC CLASS B_OP review Result 2-AV COLLASS B_OP review Result 2-AV COLLASS B_OP CC CLASS B_OP	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off Off Off Of	F CC C CLAS Final Result N N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 10.1	Margin (dB) 45.8 47.1 47.7 45.2 32.0 29.5 21.1 23.4 21.9 22.7 22.5 22.3 26.3	X Limit (dBµV) 66.0 65.6 65.1 64.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56	Preview Result 1-PK+	M 30M
inal Re requency (MHz) 0.150000 0.154000 0.158000 0.168000 0.168000 0.166000 1.170000 1.170000 1.170000 1.204000 1.204000 1.204000 1.248000	0 150k CC CLASS B_OP review Result 2-AV esult 1 QuasiPeak (dBµV) 20.2 18.7 17.9 19.9 32.6 34.0 34.9 32.6 34.1 33.3 33.3 33.3 33.2	/G Bandwidth (kHz) 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000	Filter Off Off Off Off Off Off Off Off Off Of	F CC C CLAS Final Resu N N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 10.1	Margin (dB) 45.8 47.1 45.2 32.0 29.5 21.1 23.4 21.9 22.7 22.5 22.3 22.3 26.8	X Limit (dBµV) 66.0 65.8 65.6 65.1 64.6 63.5 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56	Preview Result 1-PK+	M 30M
inal Ree Frequency (MHz) 0.1550000 0.158000 0.158000 0.178000 0.178000 0.202000 1.166000 1.176000 1.176000 1.176000 1.254000 1.254000 1.254000	0 10 150k CC CLASS B_OP review Result 2-AV COLLASS B_OP review Result 2-AV COLLASS B_OP CC CLASS B_OP	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off Off Off Of	F CC C CLAS Final Result N N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 10.1	Margin (dB) 45.8 47.1 47.7 45.2 32.0 29.5 21.1 23.4 21.9 22.7 22.5 22.3 26.3	X Limit (dBµV) 66.0 65.6 65.1 64.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56	Preview Result 1-PK+	M 30M
inal Re requency (MHz) 0.155000 0.158000 0.158000 0.178000 0.178000 0.178000 1.170000 1.170000 1.176000 1.176000 1.176000 1.254000 1.254000 14.548000 14.942000	0 10 150k CC CLASS B_OP review Result 2.4V SUIT 1 QuasiPeak (dBµV) 20.2 18.7 17.9 32.6 34.0 34.9 32.6 34.1 33.3 33.5 33.7 33.2 33.2 33.2	/G Bandwidth (kHz) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	Filter Off Off Off Off Off Off Off Off Off Of	F CC C CLAS Final Result N N N N N N N N N N N N N N N N N N N	Corr. (dB) 9.6 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 10.1 10.1	Margin (dB) 455.2 32.0 29.5 21.1 23.4 21.9 22.7 22.5 22.3 26.7 26.8 26.8	X (dBµV) 66.0 65.8 65.6 63.5 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56	Preview Result 1-PK+	M 30M

Model: LG-H840

EMI Auto Test(16)

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	11.7	9.000	Off	N	9.6	44.3	56.0
0.156000	10.1	9.000	Off	N	9.6	45.6	55.7
0.160000	10.0	9.000	Off	N	9.6	45.5	55.
0.168000	10.8	9.000	Off	N	9.6	44.3	55.
0.200000	18.0	9.000	Off	N	9.6	35.6	53.6
0.206000	19.4	9.000	Off	N	9.6	34.0	53.4
1.166000	27.9	9.000	Off	N	9.7	18.1	46.0
1.176000	28.3	9.000	Off	N	9.7	17.7	46.0
1.190000	27.9	9.000	Off	N	9.7	18.1	46.0
1.206000	27.8	9.000	Off	N	9.7	18.2	46.0
1.242000	27.5	9.000	Off	N	9.7	18.5	46.0
1.254000	26.3	9.000	Off	N	9.7	19.7	46.0
14.254000	24.4	9.000	Off	N	10.1	25.6	50.0
14.548000	23.7	9.000	Off	N	10.1	26.3	50.0
14.686000	23.5	9.000	Off	N	10.1	26.5	50.0
18.474000	18.5	9.000	Off	N	10.2	31.5	50.0
19.456000	17.3	9.000	Off	N	10.3	32.7	50.0
20.688000	15.5	9.000	Off	N	10.3	34.5	50.0


2/23/2016

8:46:55

F-TP22-03 (Rev.00) FCC ID: ZNFH840 HCT CO.,LTD.

Conducted Emissions (Line 2)

(MHz)	(dBµV)	(kHz)			(dB)	(dB)	(dBµV)
0.180000	31.5	9.000	Off	L1	9.6	33.0	64.5
0.184000	31.0	9.000	Off	L1	9.6	33.3	64.3
0.200000	31.9	9.000	Off	L1	9.6	31.7	63.6
0.206000	31.9	9.000	Off	L1	9.6	31.5	63.4
0.300000	25.3	9.000	Off	L1	9.6	34.9	60.2
0.808000	26.6	9.000	Off	L1	9.7	29.4	56.0
1.126000	33.6	9.000	Off	L1	9.7	22.4	56.0
1.136000	33.9	9.000	Off	L1	9.7	22.1	56.0
1.140000	34.2	9.000	Off	L1	9.7	21.8	56.0
1.152000	35.2	9.000	Off	L1	9.7	20.8	56.0
1.166000	35.7	9.000	Off	L1	9.7	20.3	56.0
1.192000	34.9	9.000	Off	L1	9.7	21.1	56.0
13.972000	31.9	9.000	Off	L1	10.1	28.1	60.0
13.990000	32.5	9.000	Off	L1	10.1	27.5	60.0
13.998000	32.8	9.000	Off	L1	10.1	27.2	60.0
14.104000	33.2	9.000	Off	L1	10.1	26.8	60.0
14.618000	33.1	9.000	Off	L1	10.1	26.9	60.0
14.648000	32.8	9.000	Off	L1	10.1	27.2	60.0

2/23/2016

8:56:02

EMI Auto Test(16)

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.180000	17.8	9.000	Off	L1	9.6	36.7	54.5
0.184000	16.9	9.000	Off	L1	9.6	37.4	54.3
0.202000	19.4	9.000	Off	L1	9.6	34.1	53.5
0.206000	18.8	9.000	Off	L1	9.6	34.6	53.4
0.210000	16.0	9.000	Off	L1	9.6	37.2	53.2
0.808000	20.7	9.000	Off	L1	9.7	25.3	46.0
1.086000	26.5	9.000	Off	L1	9.7	19.5	46.0
1.126000	27.1	9.000	Off	L1	9.7	18.9	46.0
1.152000	28.6	9.000	Off	L1	9.7	17.4	46.0
1.192000	29.4	9.000	Off	L1	9.7	16.6	46.0
1.210000	29.4	9.000	Off	L1	9.7	16.6	46.0
1.214000	28.9	9.000	Off	L1	9.7	17.1	46.0
13.966000	23.3	9.000	Off	L1	10.1	26.7	50.0
13.990000	24.7	9.000	Off	L1	10.1	25.3	50.0
13.998000	25.4	9.000	Off	L1	10.1	24.6	50.0
14.254000	25.3	9.000	Off	L1	10.1	24.7	50.0
14.282000	23.3	9.000	Off	L1	10.1	26.7	50.0
14.648000	24.3	9.000	Off	L1	10.1	25.7	50.0

2/23/2016

8:56:02

F-TP22-03 (Rev.00) FCC ID: ZNFH840 HCT CO., LTD.

2/2

12. LIST OF TEST EQUIPMENT 12.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216/ LISN	12/28/2015	Annual	100073
Agilent	E4440A/ Spectrum Analyzer	03/18/2015	Annual	US45303008
Agilent	N9020A / SIGNAL ANALYZER	06/30/2015	Annual	MY51110085
Agilent	N9020A / SIGNAL ANALYZER	07/02/2015	Annual	MY50510304
Agilent	N1911A/Power Meter	07/09/2015	Annual	MY45100523
Agilent	N1921A /POWER SENSOR	07/09/2015	Annual	MY45241059
Agilent	87300B/Directional Coupler	11/30/2015	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/15/2015	Annual	5001
Hewlett Packard	E3632A / DC POWER SUPPLY	03/11/2015	Annual	KR75303962
Agilent	8493C / Attenuator(10 dB)	07/23/2015	Annual	07560
ESPAC.	SH-642 / Temp & Humidity Chamber	07/23/2015	Annual	93000717

12.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Schwarzbeck	VULB 9160/ TRILOG Antenna	10/10/2014	Biennial	3368
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
CERNEX	CBL18265035 / POWER AMP	07/27/2015	Annual	22966
Schwarzbeck	BBHA 9120D/ Horn Antenna	05/07/2015	Biennial	937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/30/2015	Biennial	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	01/15/2016	Annual	839117/011
Rohde & Schwarz	LOOP ANTENNA	02/04/2016	Biennial	100179
CERNEX	CBL06185030 / POWER AMP	07/21/2015	Annual	22965
CERNEX	CBLU1183540 / POWER AMP	07/21/2015	Annual	22964