

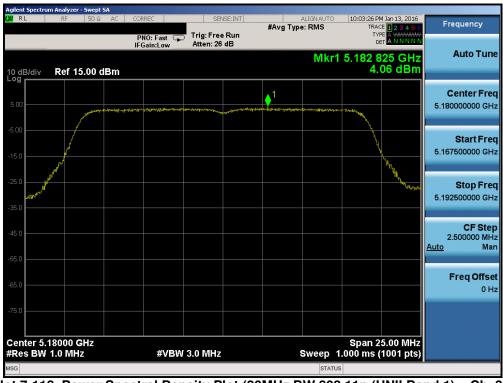
Antenna-2 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]		Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
	5180	36	а	6	3.95	11.0	-7.06	Pass
	5200	40	а	6	4.17	11.0	-6.83	Pass
	5240	48	а	6	4.18	11.0	-6.82	Pass
F	5180	36	n (20MHz)	6.5/7.2 (MCS0)	4.06	11.0	-6.94	Pass
Band	5200	40	n (20MHz)	6.5/7.2 (MCS0)	3.97	11.0	-7.03	Pass
B	5240	48	n (20MHz)	6.5/7.2 (MCS0)	3.54	11.0	-7.46	Pass
	5190	38	n (40MHz)	13.5/15 (MCS0)	-0.20	11.0	-11.20	Pass
	5230	46	n (40MHz)	13.5/15 (MCS0)	-0.26	11.0	-11.26	Pass
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-3.32	11.0	-14.32	Pass
	5260	52	а	6	4.12	11.0	-6.89	Pass
	5280	56	а	6	4.04	11.0	-6.96	Pass
	5320	64	а	6	4.43	11.0	-6.58	Pass
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	3.50	11.0	-7.50	Pass
Band	5280	56	n (20MHz)	6.5/7.2 (MCS0)	3.81	11.0	-7.19	Pass
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	4.07	11.0	-6.93	Pass
	5270	54	n (40MHz)	13.5/15 (MCS0)	-0.25	11.0	-11.25	Pass
	5310	62	n (40MHz)	13.5/15 (MCS0)	-0.27	11.0	-11.27	Pass
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-3.23	11.0	-14.23	Pass
	5500	100	а	6	4.10	11.0	-6.90	Pass
	5580	116	а	6	4.25	11.0	-6.76	Pass
	5720	144	а	6	4.33	11.0	-6.67	Pass
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	3.71	11.0	-7.29	Pass
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	3.86	11.0	-7.14	Pass
Band	5720	144	n (20MHz)	6.5/7.2 (MCS0)	3.94	11.0	-7.06	Pass
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	-0.66	11.0	-11.66	Pass
	5550	110	n (40MHz)	13.5/15 (MCS0)	-0.30	11.0	-11.30	Pass
	5710	142	n (40MHz)	13.5/15 (MCS0)	-0.33	11.0	-11.33	Pass
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-4.31	11.0	-15.31	Pass

Table 7-19. Conducted Power Spectral Density Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dece 97 of 990	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 87 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

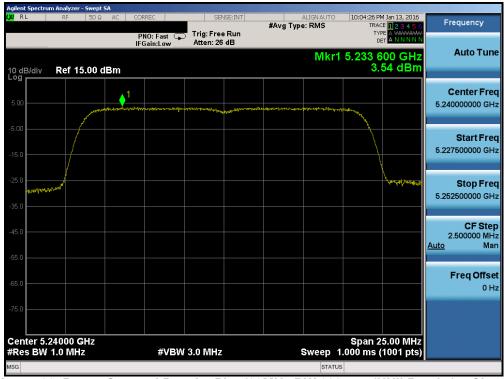
Plot 7-115. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)


Plot 7-116. Power Spectral Density Plot (802.11a (UNII Band 1) – Ch. 40)

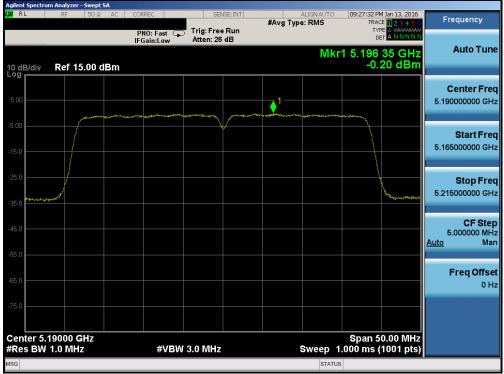
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 00 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 88 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

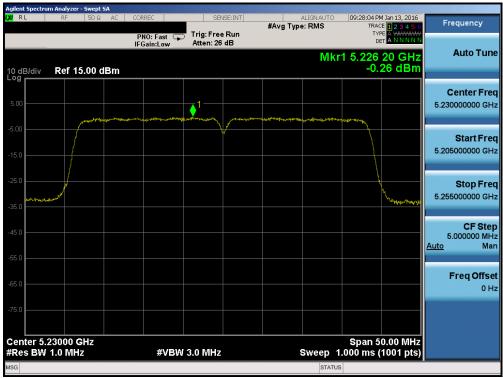
Agilent Spectrum Analyzer - Swept SA	CORREC	SENSE:INT	01.7	GN AUTO 09:10:37 P	M Jan 13, 2016	
KL RF JUSZAL			#Avg Type: F	RMS TRAC	De 1 2 3 4 5 6 PE A WARAWA	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 26 dB		D		
				Mkr1 5.243 6	75 GHz	Auto Tune
10 dB/div Ref 15.00 dBm				4.	18 dBm	
			▲1			Center Freq
5.00	กละเหนาใจระปกจะใจ้เจ้าม ะละการ	Adama and and and and and a start				5.240000000 GHz
-5.00				\		
						Start Freq
-15.0						5.227500000 GHz
-25.0					Adappapart	
-23.0 Mustwower						Stop Freq 5.252500000 GHz
-35.0						3.232300000 GHz
						CF Step
-45.0						2.500000 MHz <u>Auto</u> Man
-55.0						Auto Mari
						Freq Offset
-65.0						0 Hz
-75.0						
Center 5.24000 GHz				Span 2	5.00 MHz	
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sv	veep 1.000 ms ((1001 pts)	
MSG				STATUS		

Plot 7-117. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)


Plot 7-118. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 90 of 990
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 89 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-119. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 40)


Plot 7-120. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

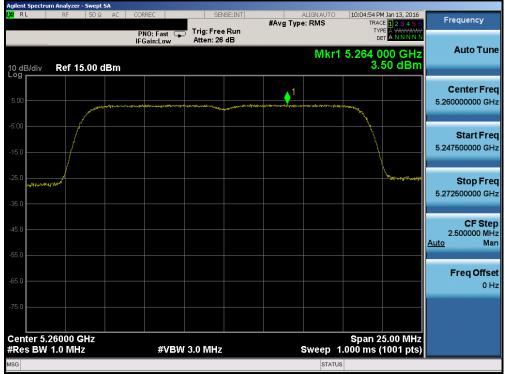
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 90 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-122. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) – Ch. 46)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 01 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 91 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-124. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

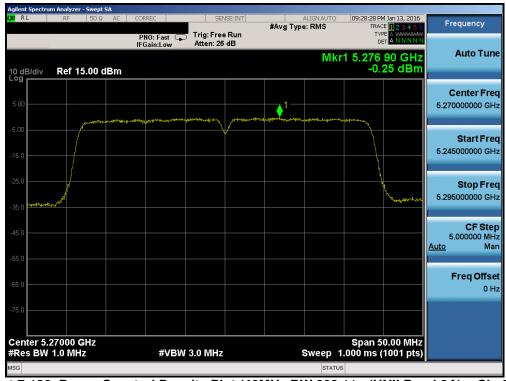
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Baga 02 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 92 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-125. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-126. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 02 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 93 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-127. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) – Ch. 52)


Plot 7-128. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 04 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 94 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-129. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) – Ch. 64)

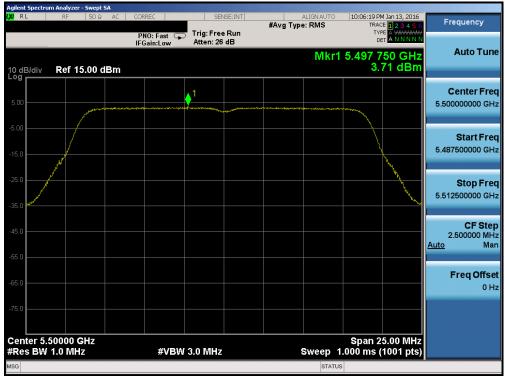

Plot 7-130. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage OF of 200
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 95 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

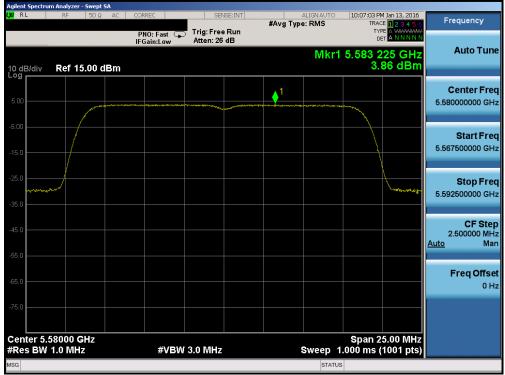
Plot 7-131. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 62)

Plot 7-132. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama OC of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 96 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				


Plot 7-134. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

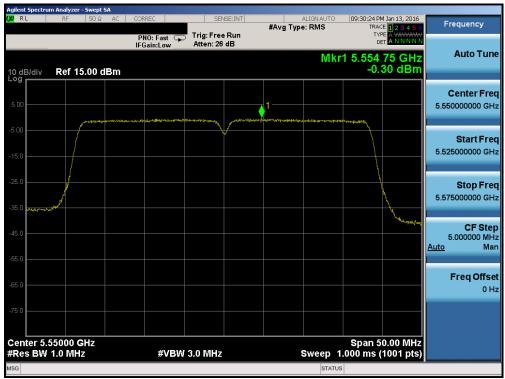
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 07 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 97 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3




Plot 7-136. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

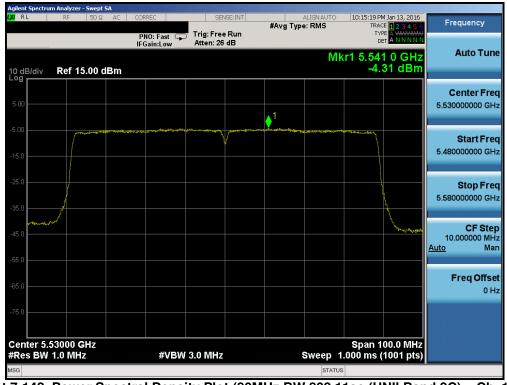
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 98 of 220
© 2016 PCTEST Engineering Laboratory, Inc.			V 3.3	

Plot 7-137. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)


Plot 7-138. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dese 00 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 99 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-139. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)


Plot 7-140. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 100 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-141. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 142)

Plot 7-142. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 101 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 101 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-143. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 102 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3	

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]		Max Permissible Power Density [dBm/500kHz]	Margin [dB]	Pass / Fail
	5745	149	а	6	1.49	30.0	-28.51	Pass
	5785	157	а	6	1.56	30.0	-28.44	Pass
	5825	165	а	6	1.30	30.0	-28.70	Pass
ო	5745	149	n (20MHz)	6.5/7.2 (MCS0)	1.14	30.0	-28.86	Pass
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	0.97	30.0	-29.04	Pass
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	1.07	30.0	-28.93	Pass
	5755	151	n (40MHz)	13.5/15 (MCS0)	-3.15	30.0	-33.15	Pass
	5795	159	n (40MHz)	13.5/15 (MCS0)	-3.19	30.0	-33.19	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-6.66	30.0	-36.66	Pass

Table 7-20. Band 3 Conducted Power Spectral Density Measurements

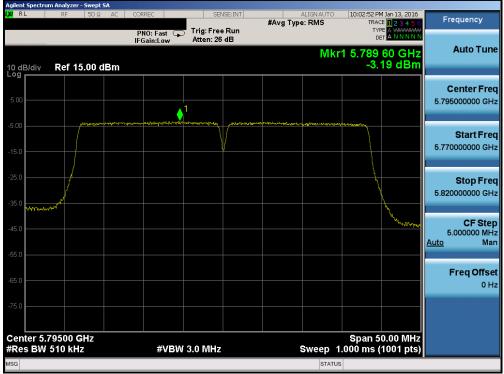
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 102 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 103 of 220
© 2016 PCTEST Engineering Laboratory, Inc.			V 3.3	

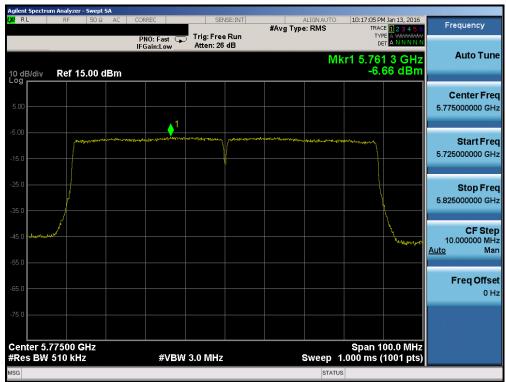
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 104 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 104 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-147. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

Plot 7-148. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 105 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3


Plot 7-149. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-150. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dece 100 ef 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 106 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-152. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 107 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 107 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Summed MIMO Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	Antenn-2 Power Density [dBm]	Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	2.53	4.06	6.37	11.0	-4.63	Pass
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	3.67	3.97	6.83	11.0	-4.17	Pass
- P	5240	48	n (20MHz)	6.5/7.2 (MCS0)	3.51	3.54	6.54	11.0	-4.46	Pass
Band	5190	38	n (40MHz)	13.5/15 (MCS0)	-1.57	-0.20	2.18	11.0	-8.82	Pass
_	5230	46	n (40MHz)	13.5/15 (MCS0)	-0.64	-0.26	2.57	11.0	-8.43	Pass
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-4.66	-3.32	-0.93	11.0	-11.93	Pass
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	3.73	3.50	6.62	11.0	-4.38	Pass
4	5280	56	n (20MHz)	6.5/7.2 (MCS0)	3.42	3.81	6.63	11.0	-4.37	Pass
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	3.92	4.07	7.01	11.0	-3.99	Pass
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	-0.92	-0.25	2.44	11.0	-8.56	Pass
	5310	62	n (40MHz)	13.5/15 (MCS0)	-0.45	-0.27	2.65	11.0	-8.35	Pass
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-4.07	-3.23	-0.62	11.0	-11.62	Pass
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	4.13	3.71	6.93	11.0	-4.07	Pass
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	4.07	3.86	6.97	11.0	-4.03	Pass
0	5720	144	n (20MHz)	6.5/7.2 (MCS0)	3.36	3.94	6.67	11.0	-4.33	Pass
d 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	-0.38	-0.66	2.49	11.0	-8.51	Pass
Band	5550	110	n (40MHz)	13.5/15 (MCS0)	-0.28	-0.30	2.72	11.0	-8.28	Pass
	5710	142	n (40MHz)	13.5/15 (MCS0)	-1.28	-0.33	2.23	11.0	-8.77	Pass
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-3.96	-4.31	-1.12	11.0	-12.12	Pass

Table 7-21. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	-	Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Mardin	Pass / Fail
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	1.50	1.14	4.34	30.0	-25.66	Pass
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	1.56	0.97	4.28	30.0	-25.72	Pass
d 3	5825	165	n (20MHz)	6.5/7.2 (MCS0)	-1.52	1.07	2.98	30.0	-27.02	Pass
Ban	5755	151	n (40MHz)	13.5/15 (MCS0)	-2.41	-3.15	0.25	30.0	-29.75	Pass
	5795	159	n (40MHz)	13.5/15 (MCS0)	-2.72	-3.19	0.06	30.0	-29.94	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-5.87	-6.66	-3.24	30.0	-33.24	Pass

Table 7-22. Band 3 MIMO Conducted Power Spectral Density Measurements

Note:

Per KDB 662911 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz the average conducted power spectral density was measured to be 2.53 dBm for Antenna-1 and 4.06 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(2.53 dBm + 4.06 dBm) = (1.79 mW + 2.55 mW) = 4.34 mW = 6.37 dBm

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	6 Portable Handset		Page 108 of 220
© 2016 PCTEST Engineering	Laboratory Inc			V 3 3

© 2016 PCTEST Engineering Laboratory, Inc.

7.6 Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30° C and $+50^{\circ}$ C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,180,000,000	Hz
CHANNEL:	36	-
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	5,179,999,833	-167	-0.00000322
100 %		- 30	5,179,999,744	-256	-0.00000494
100 %		- 20	5,179,999,971	-29	-0.00000056
100 %		- 10	5,180,000,064	64	0.00000124
100 %		0	5,180,000,052	52	0.00000100
100 %		+ 10	5,180,000,060	60	0.00000116
100 %		+ 20	5,180,000,053	53	0.00000102
100 %		+ 30	5,180,000,029	29	0.00000056
100 %		+ 40	5,180,000,058	58	0.00000112
100 %		+ 50	5,179,999,946	-54	-0.00000104
BATT. ENDPOINT	3.40	+ 20	5,179,999,994	-6	-0.00000012
Table 7-23	B. Frequency	Stability Mea	asurements for U	NII Band 1 (Ch. 36)

Note:

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 109 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30° C and $+50^{\circ}$ C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,260,000,000	Hz
CHANNEL:	52	_
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	5,260,000,058	58	0.00000110
100 %		- 30	5,259,999,848	-152	-0.00000289
100 %		- 20	5,260,000,097	97	0.00000184
100 %		- 10	5,260,000,138	138	0.00000262
100 %		0	5,260,000,041	41	0.00000078
100 %		+ 10	5,259,999,817	-183	-0.00000348
100 %		+ 20	5,260,000,324	324	0.00000616
100 %		+ 30	5,260,000,235	235	0.00000447
100 %		+ 40	5,259,999,919	-81	-0.00000154
100 %		+ 50	5,260,000,060	60	0.00000114
BATT. ENDPOINT	3.40	+ 20	5,259,999,880	-120	-0.00000228
Table 7-24.	Frequency S	Stability Mea	surements for UN	III Band 2A	(Ch. 52)

Note:

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Demo 110 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 110 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30° C and $+50^{\circ}$ C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,500,000,000	Hz
CHANNEL:	100	_
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	5,500,000,089	89	0.00000162
100 %		- 30	5,500,000,133	133	0.00000242
100 %		- 20	5,500,000,172	172	0.00000313
100 %		- 10	5,499,999,796	-204	-0.00000371
100 %		0	5,499,999,769	-231	-0.00000420
100 %		+ 10	5,499,999,877	-123	-0.00000224
100 %		+ 20	5,499,999,959	-41	-0.00000075
100 %		+ 30	5,499,999,976	-24	-0.00000044
100 %		+ 40	5,500,000,036	36	0.00000065
100 %		+ 50	5,499,999,839	-161	-0.00000293
BATT. ENDPOINT	3.40	+ 20	5,500,000,038	38	0.00000069
Table 7-25.	Frequency S	tability Meas	surements for UN	II Band 2C (Ch. 100)

Note:

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 111 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 111 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30° C and $+50^{\circ}$ C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,745,000,000	Hz
CHANNEL:	149	-
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)			
100 %	3.80	+ 20 (Ref)	5,745,000,179	179	0.00000312			
100 %		- 30	5,744,999,949	-51	-0.0000089			
100 %		- 20	5,744,999,688	-312	-0.00000543			
100 %		- 10	5,744,999,845	-155	-0.00000270			
100 %		0	5,744,999,845	-155	-0.00000270			
100 %		+ 10	5,744,999,989	-11	-0.00000019			
100 %		+ 20	5,744,999,900	-100	-0.00000174			
100 %		+ 30	5,745,000,081	81	0.00000141			
100 %		+ 40	5,745,000,132	132	0.00000230			
100 %		+ 50	5,745,000,022	22	0.0000038			
BATT. ENDPOINT	3.40	+ 20	5,745,000,387	387	0.00000674			
Table 7-26. Frequency Stability Measurements for UNII Band 3 (Ch. 149)								

Note:

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Demo 110 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 112 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

7.7 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b.1)(b.6) §15.205 §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-27 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]	
Above 960.0 MHz	500	3	

Table 7-27. Radiated Limits

Test Procedures Used

KDB 789033 D02 v01 - Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dece 110 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 113 of 220	
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3	

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

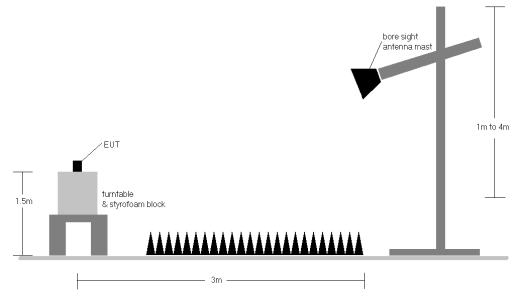


Figure 7-5. Test Instrument & Measurement Setup

Test Notes

- All radiated spurious emissions levels were measured in a radiated test setup per the guidance of KDB 789033 D02 v01 Section H.
- 2. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 are below the limit shown in Table 7-27.
- 3. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-11. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 114 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 114 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested with its standard battery.
- 6. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 9. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.

Sample Calculations

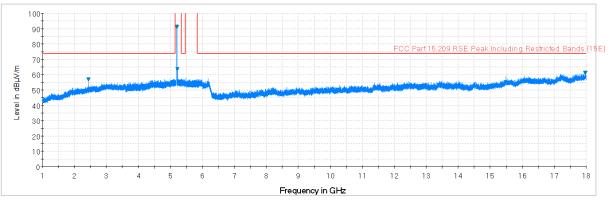
Determining Spurious Emissions Levels

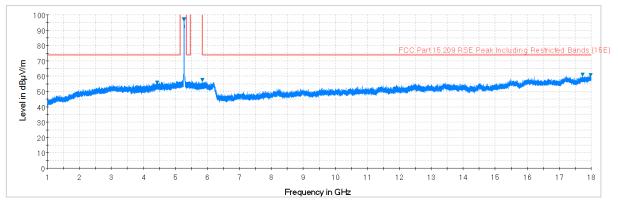
- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBµV/m] Limit [dBµV/m]

Radiated Band Edge Measurement Offset

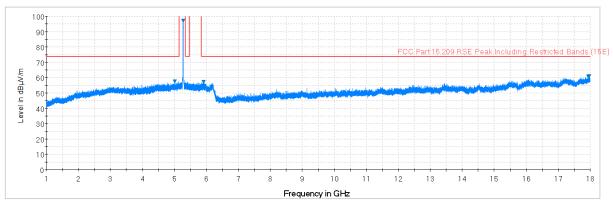
• The amplitude offset shown in the radiated restricted band edge plots in Section 6.8 was calculated using the formula:

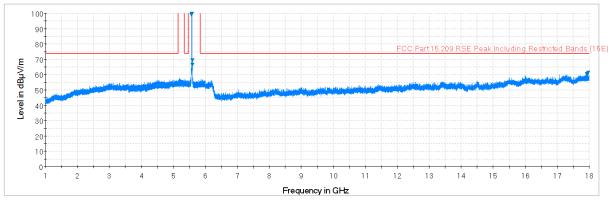
Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain


FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 115 of 220		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Fage 115 01 220		
© 2016 PCTEST Engineering Laboratory, Inc.						

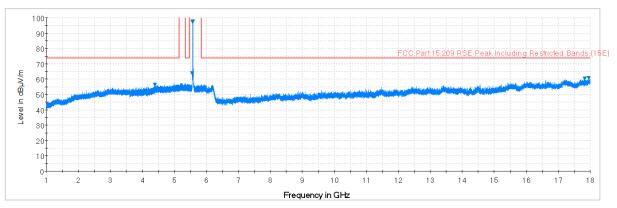

7.7.1 Antenna-1 Radiated Spurious Emission Measurements

Plot 7-153. Radiated Spurious Plot above 1GHz (802.11a - U1 Ch. 40, Ant. Pol. H)

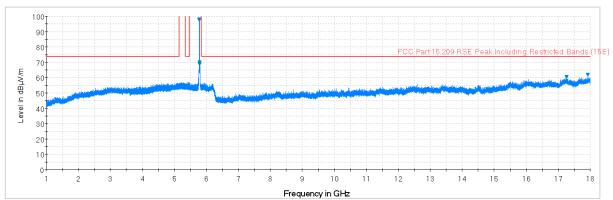

Plot 7-154. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

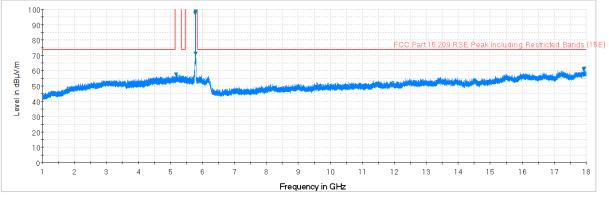

Plot 7-155. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Degra 110 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 116 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					



Plot 7-156. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)

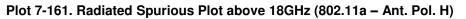

Plot 7-157. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. H)


Plot 7-158. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. V)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 117 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-159. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

Plot 7-160. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)


FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Demo 110 of 000		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 118 of 220		
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.					

Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

MultiView	Spectrum								~
Ref Level 100		RBW							
Att 1 Frequency S ^x		T 34 ms	3 MHZ Mode	Auto Sweep					●1Pk Max
Limit Che			PAS	S					
Line HIG	H FREQ AUTO		PAS	s					
90 dBµV									
50 dbp+									
80 dBµV									
HIGH FREQ AUTO									
70 dBµV									
60 dBµV									
00 000									
50 dBµV									
ىرى بىرى بىرىملىوللە	معاشينا بحجر بالتعام	taulaan ibiki bir	and a second contraction of the second		المرب المرابعة والمربي والمرابع	a transmission and designation	فيتأثل ويستعمل وروالم مطفوران	بار وهايانيك التعريق ومراقعه والمنا	wall contract a partition of
and the state of the state of the second second	and the probability of the second		a polose, el bi del trabilitatione del trabase	No. of Concession, Name	and the survey as a state of the barriers of the	And a strange st	and finite property block and a second second	Contract Contract of Contraction Street,	and the second se
30 dBµV									
20 dBµV									
10 dBµV									
10.0.011									
18.0 GHz			20001 pt	s	85	0.0 MHz/			26.5 GHz
			Instrument wa	arming up		\$	Measuring 🔳	1	29.01.2016

Date: 29.JAN.2016 02:21:15

MultiView		L L							
Ref Level 100 Att		RBW	1 MHz 3 MHz Mode	Auto Sween					
1 Frequency Sv			o mile mode						●1Pk Max
Limit Che			PAS						ĺ
Line HIG	H FREQ AUTO		PAS	S					
90 dBµV									
									1
80 dBμV									
HIGH FREQ AUTO 70 dBµV									
70 00µV									
60 dBµV									l
50 dBµV									
									I
والمعادلة ومراطئة المعادية		وكالألوان المتحجبا التلاحين	ومرواحة احصافهم المراجع وسران		a a galada a sa a sa a sa sa sa sa sa sa sa sa sa	والمالية أفأسه ورابيل ورور والخواهرية	n and a design following and the	Anthropeon of March 111-11	
and the second secon	Name and Address of the Address of t	and the second		Construction of the second	alledized as a second with the state of the state of	the first of the party provides the state of the state of the			1
30 dBµV									
20 dBµV									
20 000									1
10 dBµV									l
18.0 GHz			20001 pt	s	85	0.0 MHz/			26.5 GHz
			Instrument wa	rming up		¢	Measuring		29.01.2016

Date: 29.JAN.2016 02:22:34

Plot 7-162. Radiated Spurious Plot above 18GHz (802.11a - Ant. Pol. V)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 110 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 119 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-99.47	48.05	0.00	55.58	68.20	-12.62
*	15540.00	Average	н	-	-	-111.66	53.93	0.00	49.27	53.98	-4.71
*	15540.00	Peak	н	-	-	-99.17	53.93	0.00	61.76	73.98	-12.22
*	20720.00	Average	н	-	-	-113.24	44.39	-9.54	28.61	53.98	-25.37
*	20720.00	Peak	н	-	-	-101.60	44.39	-9.54	40.25	73.98	-33.73
	25900.00	Peak	н	-	-	-99.54	45.11	-9.54	43.03	68.20	-25.17

Table 7-28. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	-	-	-99.42	48.16	0.00	55.73	68.20	-12.47
*	15600.00	Average	Н	-	-	-111.23	53.51	0.00	49.27	53.98	-4.71
*	15600.00	Peak	н	-	-	-99.14	53.51	0.00	61.36	73.98	-12.62
*	20800.00	Average	Н	-	-	-112.94	44.39	-9.54	28.91	53.98	-25.07
*	20800.00	Peak	Н	-	-	-100.94	44.39	-9.54	40.91	73.98	-33.07
	26000.00	Peak	Н	-	-	-100.45	45.12	-9.54	42.12	68.20	-26.08
	Table 7-29 Badiated Measurements										

Table 7-29. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset	Page 120 of 220		
© 2016 PCTECT Engineering Laboratory Inc.					

© 2016 PCTEST Engineering Laboratory, Inc.

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	-	-	-99.59	48.37	0.00	55.79	68.20	-12.41
*	15720.00	Average	н	-	-	-111.23	52.90	0.00	48.66	53.98	-5.31
*	15720.00	Peak	н	-	-	-97.69	52.90	0.00	62.20	73.98	-11.77
*	20960.00	Average	н	-	-	-113.04	44.31	-9.54	28.73	53.98	-25.25
*	20960.00	Peak	н	-	-	-101.94	44.31	-9.54	39.83	73.98	-34.15
	26200.00	Peak	н	-	-	-100.59	45.01	-9.54	41.88	68.20	-26.32

Table 7-30. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a				
6 Mbps				
1 & 3 Meters				
5260MHz				
52				

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	Н	-	-	-97.97	48.42	0.00	57.45	68.20	-10.75
*	15780.00	Average	Н	-	-	-112.71	52.64	0.00	46.93	53.98	-7.05
*	15780.00	Peak	н	-	-	-101.02	52.64	0.00	58.62	73.98	-15.36
*	21040.00	Average	н	-	-	-112.67	44.29	-9.54	29.07	53.98	-24.91
*	21040.00	Peak	н	-	-	-100.64	44.29	-9.54	41.10	73.98	-32.88
	26300.00	Peak	н	-	-	-100.42	45.00	-9.54	42.04	68.20	-26.16

Table 7-31. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset	Page 121 of 220		
© 2016 PCTEST Engineering Laboratory, Inc.					

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	-	-	-99.96	48.40	0.00	55.44	68.20	-12.76
*	15840.00	Average	Н	-	-	-112.47	52.60	0.00	47.13	53.98	-6.85
*	15840.00	Peak	Н	-	-	-101.05	52.60	0.00	58.55	73.98	-15.43
*	21120.00	Average	Н	-	-	-112.73	44.28	-9.54	29.01	53.98	-24.97
*	21120.00	Peak	Н	-	-	-100.91	44.28	-9.54	40.83	73.98	-33.15
	26400.00	Peak	Н	-	-	-99.81	45.02	-9.54	42.67	68.20	-25.53

Table 7-32. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

	802.11a
	6 Mbps
	1 & 3 Meters
	5320MHz
_	64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	-	-	-110.92	48.40	0.00	44.48	53.98	-9.50
*	10640.00	Peak	н	-	-	-98.77	48.40	0.00	56.63	73.98	-17.35
*	15960.00	Average	н	-	-	-111.79	52.79	0.00	47.99	53.98	-5.99
*	15960.00	Peak	н	-	-	-99.95	52.79	0.00	59.83	73.98	-14.15
*	21280.00	Average	н	-	-	-112.60	44.26	-9.54	29.12	53.98	-24.86
*	21280.00	Peak	н	-	-	-101.24	44.26	-9.54	40.48	73.98	-33.50
	26600.00	Peak	н	-	-	-101.88	47.61	-9.54	43.19	68.20	-25.01

Table 7-33. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dana 100 at 000		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 122 of 220		
© 2016 PCTEST Engineering Laboratory, Inc.						

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	-	-	-111.02	48.20	0.00	44.18	53.98	-9.80
*	11000.00	Peak	Н	-	-	-99.69	48.20	0.00	55.51	73.98	-18.47
	16500.00	Peak	н	-	-	-101.00	51.96	0.00	57.96	68.20	-10.24
	22000.00	Peak	н	-	-	-100.96	44.50	-9.54	40.99	68.20	-27.21
	27500.00	Peak	н	-	-	-101.70	47.97	-9.54	43.73	68.20	-24.47

Table 7-34. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5580MHz
116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	н	-	-	-110.65	48.34	0.00	44.69	53.98	-9.29
*	11160.00	Peak	Н	-	-	-98.80	48.34	0.00	56.54	73.98	-17.44
	16740.00	Peak	н	-	-	-99.73	52.35	0.00	59.62	68.20	-8.58
*	22320.00	Average	н	-	-	-112.16	44.56	-9.54	29.86	53.98	-24.12
*	22320.00	Peak	н	-	-	-100.82	44.56	-9.54	41.20	73.98	-32.78
	27900.00	Peak	н	-	-	-102.23	48.08	-9.54	43.31	68.20	-24.89

Table 7-35. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 123 of 220
© 2016 PCTEST Engineering	g Laboratory, Inc.	·		V 3.:

802.11a
6 Mbps
1 & 3 Meters
5720MHz
144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	-	-	-111.29	48.28	0.00	44.00	53.98	-9.98
*	11440.00	Peak	н	-	-	-99.77	48.28	0.00	55.52	73.98	-18.46
	17160.00	Peak	н	-	-	-99.52	54.24	0.00	61.72	68.20	-6.48
*	22880.00	Average	н	-	-	-112.84	44.61	-9.54	29.23	53.98	-24.75
*	22880.00	Peak	н	-	-	-101.65	44.61	-9.54	40.42	73.98	-33.56
	28600.00	Peak	н	-	-	-101.72	48.29	-9.54	44.03	68.20	-24.17

Table 7-36. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5745MHz	
149	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	-	-	-111.34	48.29	0.00	43.96	53.98	-10.02
*	11490.00	Peak	Н	-	-	-99.11	48.29	0.00	56.19	73.98	-17.79
	17235.00	Peak	Н	-	-	-99.26	54.54	0.00	62.29	68.20	-5.91
*	22980.00	Average	н	-	-	-113.16	44.68	-9.54	28.98	53.98	-25.00
*	22980.00	Peak	Н	-	-	-101.86	44.68	-9.54	40.28	73.98	-33.70
	28725.00	Peak	н	-	-	-101.71	48.26	-9.54	44.01	68.20	-24.19

Table 7-37. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 104 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 124 of 220
© 2016 PCTEST Engineering L	aboratory, Inc.			V 3.3

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
11570.00	Average	Н	-	-	-111.28	48.63	0.00	44.35	53.98	-9.63
11570.00	Peak	Н	-	-	-99.54	48.63	0.00	56.09	73.98	-17.89
17355.00	Peak	н	-	-	-100.31	54.81	0.00	61.50	68.20	-6.70
23140.00	Peak	Н	-	-	-101.08	44.75	-9.54	41.13	68.20	-27.07
28925.00	Peak	Н	-	-	-101.36	48.29	-9.54	44.39	68.20	-23.81

Table 7-38. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
11650.00	Average	н	-	-	-111.17	48.87	0.00	44.70	53.98	-9.27
11650.00	Peak	Н	-	-	-100.03	48.87	0.00	55.84	73.98	-18.13
17475.00	Peak	Н	-	-	-99.36	55.45	0.00	63.09	68.20	-5.11
23300.00	Peak	н	-	-	-101.64	44.75	-9.54	40.56	68.20	-27.64
29125.00	Peak	н	-	-	-102.15	48.28	-9.54	43.60	68.20	-24.60

Table 7-39. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 105 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 125 of 220
© 2016 PCTEST Engineering L	aboratory, Inc.			V 3.3

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

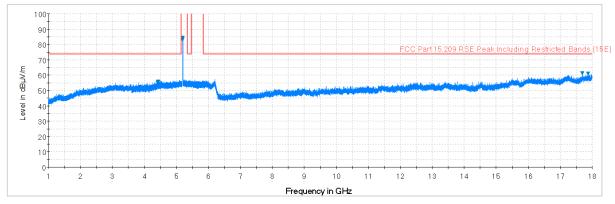
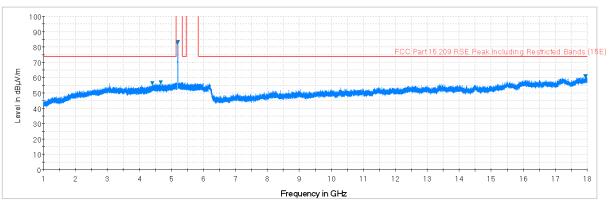
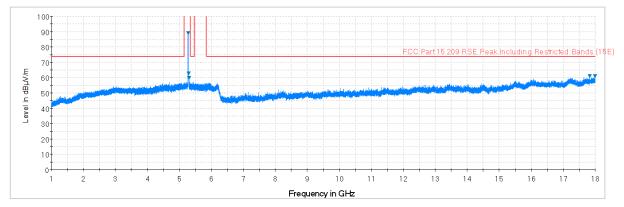
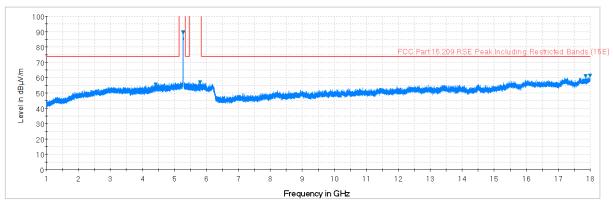

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-100.14	48.05	0.00	54.91	68.20	-13.29
*	15540.00	Average	Н	-	-	-112.08	53.93	0.00	48.85	53.98	-5.13
*	15540.00	Peak	Н	-	-	-100.16	53.93	0.00	60.77	73.98	-13.21

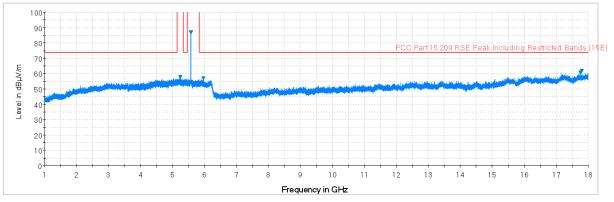
Table 7-40. Radiated Measurements with Camera Module Accessory


FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 126 of 220
© 2016 PCTEST Engineering L	aboratory, Inc.	•		V 3.3

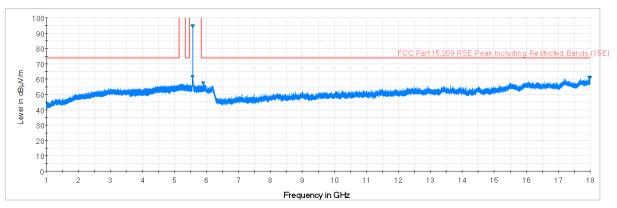


Plot 7-163. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)

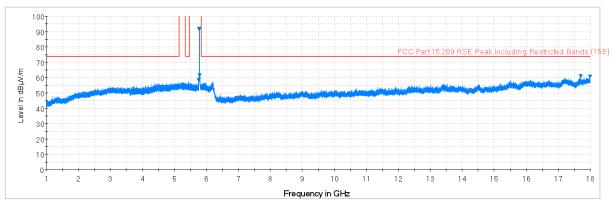

Plot 7-164. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

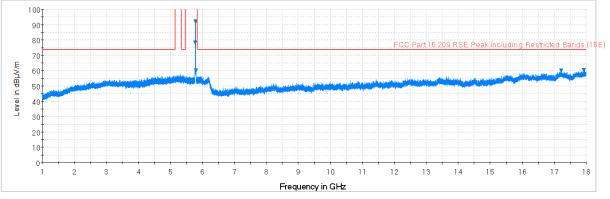

Plot 7-165. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 127 of 220
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3



Plot 7-166. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)

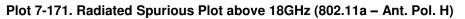

Plot 7-167. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. H)


Plot 7-168. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. V)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 128 of 220
© 2016 PCTEST Engineering L	aboratory, Inc.			V 3.3

Plot 7-169. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

Plot 7-170. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)


FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 129 of 220
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 3.3

Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

MultiView	Spectrum								~
Ref Level 100		RBW							
Att 1 Frequency System		T 34 ms	3 MHZ Mode	Auto Sweep					●1Pk Max
Limit Che	ck		PAS	S					
Line HIG	H FREQ AUTO		PAS	s					
90 dBµV									
50 dbp+									
80 dBµV									
HIGH FREQ AUTO									
70 dBµV									
60 dBµV									
00 UBHV									
50 dBµV									
a subsection of the	in the second						at sate of a second	the state of the s	والمعاقلة المتراكبين المحاد المتقويون
Number 1997 and a local set of the set of th			Andrease Description of Proceeding Sec.		التورارية المتلكة التعاد أحزار والمتلالة			and the second s	and the state of the
30 dBµV									
30 UBHV									
20 dBµV									
10 dBμV									
18.0 GHz		•	20001 pt	s	. 85	0.0 MHz/			26.5 GHz
			Instrument wa	arming up		¢	Measuring		29.01.2016

Date: 29.JAN.2016 02:16:57

MultiView									∇
Ref Level 100 Att	0.00 dBµV 0 dB SW	RBW T 34 ms VBW	1 MHz 3 MHz Mode	Auto Sweep					
1 Frequency Sv	weep								⊙1Pk Max
Limit Che	ck		PAS	s					
	H FREQ AUTO		PAS						
Line Hito	THE Q ADIO			P					
90 dBµV									
80 dBµV									
HIGH FREQ AUTO									
70 dBμV									
60 dBµV									
50 dBµV									
ويروا والمتلاط والمتلاط والتناقية والمتلاف والمتلا	المارية المربية والمستعمل والمتعاولة	فيعجو ويرغى ومتالطته والبريس والألا	a di la Juliana da Mutana a sela	وعا وجدهاته فظافته شتاطأ والساريل وررجين	ites a second state of a second state of the s	وبالمربطالية ليلديه التقريب المتعادية	فكالاراء بالكالبا أسلانها ورأحما فبقرى	فتراء والعالم ألبط فيتقلب متناف العامية فالت	And the state of the
second and the second second second party second	the state of a state of the state on the local line of the	and the second state of the second state of the	Agence, and this ball and the second second second	and a second	Street, and the street of the second second	and the second	A DESCRIPTION OF A DESC		in the second
30 dBµV									
·									
20 dBµV									
10 dBµV									
10 UBHV									
10.0 CU-		1	20001	-	05				
18.0 GHz			20001 pt	s	85	0.0 MHz/			26.5 GHz
			Instrument wa	rmina up		÷	Measuring	144	29.01.2016
L,									

Date: 29.JAN.2016 02:19:38

Plot 7-172. Radiated Spurious Plot above 18GHz (802.11a - Ant. Pol. V)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Bogo 120 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 130 of 220
© 2016 PCTEST Engineering L	aboratory, Inc.			V 3.3

Antenna-2 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-98.04	48.05	0.00	57.01	68.20	-11.19
*	15540.00	Average	Н	-	-	-111.43	53.93	0.00	49.50	53.98	-4.48
*	15540.00	Peak	н	-	-	-99.48	53.93	0.00	61.45	73.98	-12.53
*	20720.00	Average	н	-	-	-112.90	44.39	-9.54	28.95	53.98	-25.03
*	20720.00	Peak	н	-	-	-101.82	44.39	-9.54	40.03	73.98	-33.95
	25900.00	Peak	н	-	-	-99.62	45.11	-9.54	42.95	68.20	-25.25

Table 7-41. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	-	-	-99.48	48.16	0.00	55.67	68.20	-12.53
*	15600.00	Average	н	-	-	-111.43	53.51	0.00	49.07	53.98	-4.91
*	15600.00	Peak	н	-	-	-99.38	53.51	0.00	61.12	73.98	-12.86
*	20800.00	Average	н	-	-	-113.11	44.39	-9.54	28.74	53.98	-25.24
*	20800.00	Peak	н	-	-	-101.69	44.39	-9.54	40.16	73.98	-33.82
	26000.00	Peak	н	-	-	-100.54	45.12	-9.54	42.03	68.20	-26.17
				Tal	ם 7-42 B	adiated N	loggurom	onto			

Table 7-42. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 101 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 131 of 220
@ 2016 BCTEST Engineering	Laboratory Inc.			1/2

© 2016 PCTEST Engineering Laboratory, Inc.

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	-	-	-98.77	48.37	0.00	56.61	68.20	-11.59
*	15720.00	Average	н	-	-	-111.38	52.90	0.00	48.51	53.98	-5.46
*	15720.00	Peak	н	-	-	-99.46	52.90	0.00	60.43	73.98	-13.54
*	20960.00	Average	н	-	-	-112.91	44.31	-9.54	28.86	53.98	-25.12
*	20960.00	Peak	н	-	-	-101.40	44.31	-9.54	40.37	73.98	-33.61
	26200.00	Peak	Н	-	-	-100.55	45.01	-9.54	41.92	68.20	-26.28

Table 7-43. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5260MHz
52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	Н	-	-	-99.41	48.42	0.00	56.01	68.20	-12.19
*	15780.00	Average	Н	-	-	-112.26	52.64	0.00	47.38	53.98	-6.60
*	15780.00	Peak	Н	-	-	-100.60	52.64	0.00	59.04	73.98	-14.94
*	21040.00	Average	Н	-	-	-112.78	44.29	-9.54	28.96	53.98	-25.02
*	21040.00	Peak	Н	-	-	-101.69	44.29	-9.54	40.05	73.98	-33.93
	26300.00	Peak	Н	-	-	-98.70	45.00	-9.54	43.76	68.20	-24.44

Table 7-44. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager		
Test Report S/N:	est Report S/N: Test Dates: EUT Type:			Degra 100 of 000		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 132 of 220		
© 2016 PCTEST Engineering Laboratory, Inc.						

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	н	-	-	-98.68	48.40	0.00	56.72	68.20	-11.48
*	15840.00	Average	н	-	-	-112.51	52.60	0.00	47.09	53.98	-6.89
*	15840.00	Peak	н	-	-	-100.47	52.60	0.00	59.13	73.98	-14.85
*	21120.00	Average	н	-	-	-112.81	44.28	-9.54	28.93	53.98	-25.05
*	21120.00	Peak	н	-	-	-101.53	44.28	-9.54	40.21	73.98	-33.77
	26400.00	Peak	н	-	-	-98.55	45.02	-9.54	43.93	68.20	-24.27

Table 7-45. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5320MHz
64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	-	-	-111.10	48.40	0.00	44.30	53.98	-9.68
*	10640.00	Peak	н	-	-	-99.14	48.40	0.00	56.26	73.98	-17.72
*	15960.00	Average	н	-	-	-111.98	52.79	0.00	47.80	53.98	-6.18
*	15960.00	Peak	н	-	-	-99.91	52.79	0.00	59.87	73.98	-14.11
*	21280.00	Average	н	-	-	-112.57	44.26	-9.54	29.15	53.98	-24.83
*	21280.00	Peak	н	-	-	-100.36	44.26	-9.54	41.36	73.98	-32.62
_	26600.00	Peak	н	-	-	-102.00	47.61	-9.54	43.07	68.20	-25.13

Table 7-46. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16		Page 133 of 220	
@ 0040 DOTEOT Fasting and	ala avaita multa a			Vo

© 2016 PCTEST Engineering Laboratory, Inc.

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100
	· · · · · · · · · · · · · · · · · · ·

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	н	-	-	-111.02	48.20	0.00	44.18	53.98	-9.80
*	11000.00	Peak	Н	-	-	-99.27	48.20	0.00	55.93	73.98	-18.05
	16500.00	Peak	Н	-	-	-99.69	51.96	0.00	59.27	68.20	-8.93
	22000.00	Peak	Н	-	-	-100.01	44.50	-9.54	41.94	68.20	-26.26
	27500.00	Peak	н	-	-	-101.47	47.97	-9.54	43.96	68.20	-24.24

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5580MHz
116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	н	-	-	-110.67	48.34	0.00	44.67	53.98	-9.31
*	11160.00	Peak	н	-	-	-99.05	48.34	0.00	56.29	73.98	-17.69
	16740.00	Peak	н	-	-	-100.65	52.35	0.00	58.70	68.20	-9.50
*	22320.00	Average	н	-	-	-112.52	44.56	-9.54	29.50	53.98	-24.48
*	22320.00	Peak	н	-	-	-101.24	44.56	-9.54	40.78	73.98	-33.20
	27900.00	Peak	н	-	-	-101.70	48.08	-9.54	43.84	68.20	-24.36

Table 7-48. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dega 124 of 000				
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 134 of 220				
© 2016 PCTEST Engineering Laboratory, Inc.								

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	-	-	-111.30	48.28	0.00	43.99	53.98	-9.99
*	11440.00	Peak	н	-	-	-99.62	48.28	0.00	55.67	73.98	-18.31
	17160.00	Peak	н	-	-	-98.33	54.24	0.00	62.91	68.20	-5.29
*	22880.00	Average	Н	-	-	-112.68	44.61	-9.54	29.39	53.98	-24.59
*	22880.00	Peak	н	-	-	-100.48	44.61	-9.54	41.59	73.98	-32.39
	28600.00	Peak	Н	-	-	-102.13	48.29	-9.54	43.62	68.20	-24.58

Table 7-49. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5745MHz
149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	-	-	-111.25	48.29	0.00	44.05	53.98	-9.93
*	11490.00	Peak	Н	-	-	-98.71	48.29	0.00	56.59	73.98	-17.39
	17235.00	Peak	Н	-	-	-98.29	54.54	0.00	63.26	68.20	-4.94
*	22980.00	Average	н	-	-	-112.93	44.68	-9.54	29.21	53.98	-24.77
*	22980.00	Peak	н	-	-	-102.08	44.68	-9.54	40.06	73.98	-33.92
	28725.00	Peak	н	-	-	-101.42	48.26	-9.54	44.30	68.20	-23.90

Table 7-50. Radiated Measurements

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 105 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 135 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				

802.11a
6 Mbps
1 & 3 Meters
5785MHz
157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	-	-	-110.75	48.63	0.00	44.88	53.98	-9.10
*	11570.00	Peak	Н	-	-	-99.15	48.63	0.00	56.48	73.98	-17.50
	17355.00	Peak	Н	-	-	-99.98	54.81	0.00	61.83	68.20	-6.37
	23140.00	Peak	Н	-	-	-100.33	44.75	-9.54	41.88	68.20	-26.32
	28925.00	Peak	Н	-	-	-102.69	48.29	-9.54	43.06	68.20	-25.14

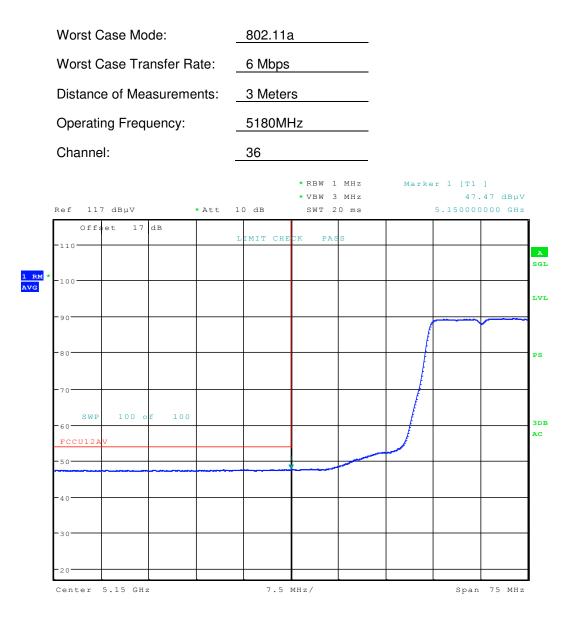
Table 7-51. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	н	-	-	-110.71	48.87	0.00	45.16	53.98	-8.81
*	11650.00	Peak	н	-	-	-99.43	48.87	0.00	56.44	73.98	-17.53
	17475.00	Peak	н	-	-	-98.77	55.45	0.00	63.68	68.20	-4.52
	23300.00	Peak	н	-	-	-101.39	44.75	-9.54	40.81	68.20	-27.39
	29125.00	Peak	н	-	-	-101.46	48.28	-9.54	44.29	68.20	-23.91

Table 7-52. Radiated Measurements

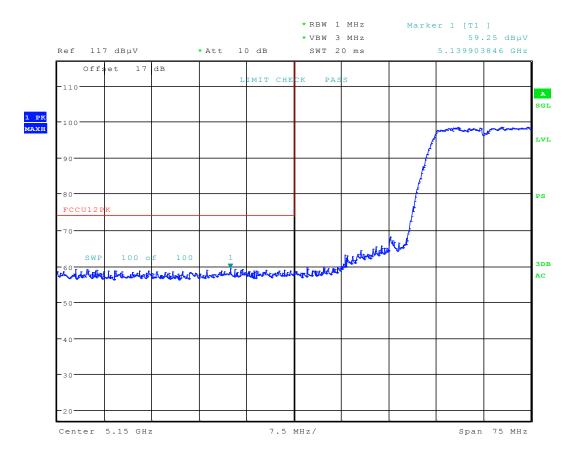
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 100 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 136 of 220	
© 2016 PCTEST Engineering Laboratory, Inc.					


Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [m]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-100.44	48.05	0.00	54.61	68.20	-13.59
*	15540.00	Average	Н	-	-	-112.13	53.93	0.00	48.80	53.98	-5.18
*	15540.00	Peak	н	-	-	-99.80	53.93	0.00	61.13	73.98	-12.85

Table 7-53. Radiated Measurements with Camera Module Accessory

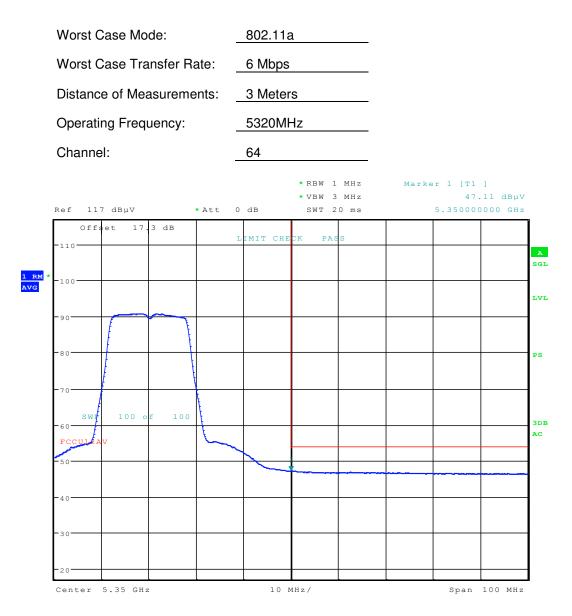
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 137 of 220
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 3.3



Date: 27.JAN.2016 19:23:41

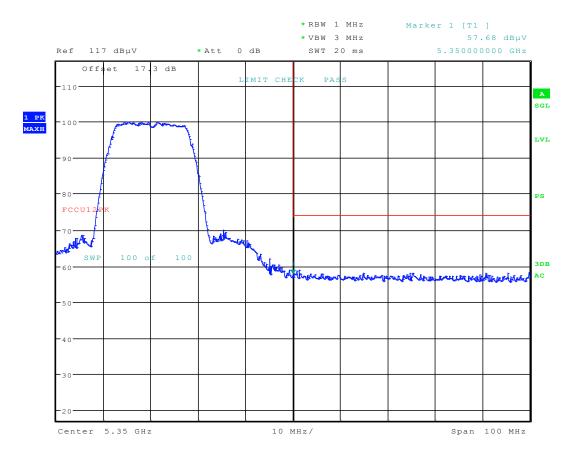
Plot 7-173. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 138 of 220		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					



Date: 27.JAN.2016 19:24:02

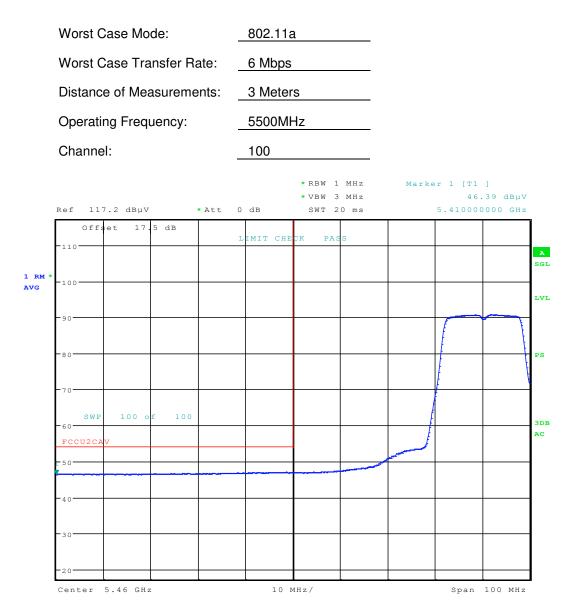
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dere 100 of 000		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 139 of 220		
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.					



Date: 27.JAN.2016 20:02:18

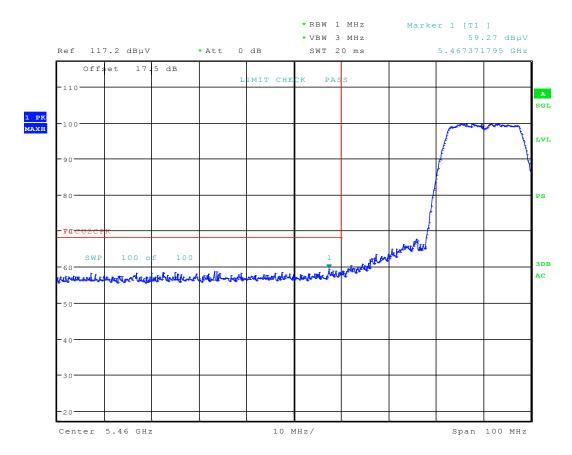
Plot 7-175. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 000		
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 140 of 220		
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.					



Date: 27.JAN.2016 20:02:36

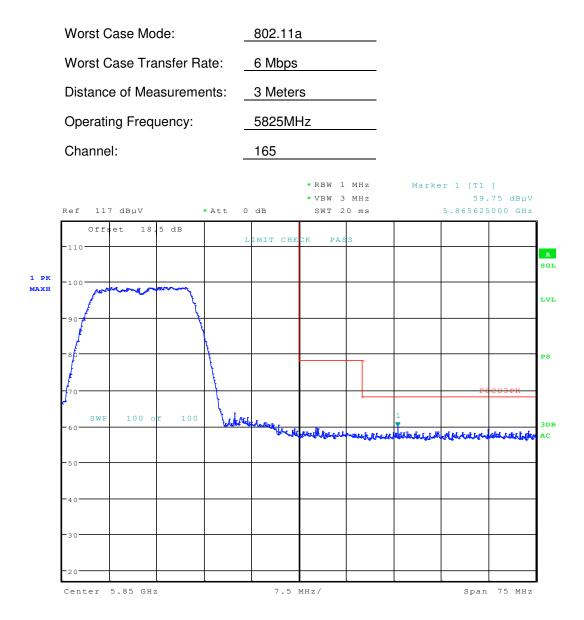
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 141 of 000	
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 141 of 220	
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.				



Date: 27.JAN.2016 20:45:39

Plot 7-177. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

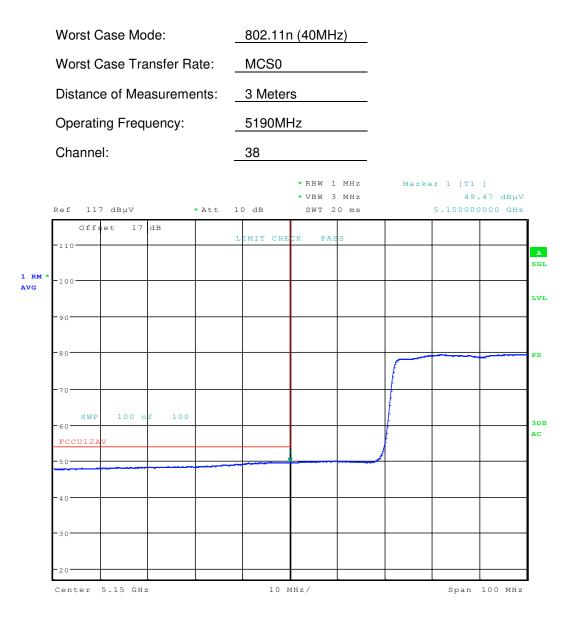
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 142 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:46:06

Plot 7-178. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

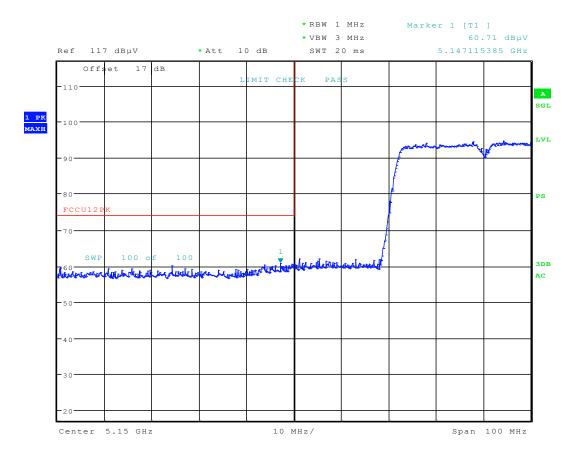
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 142 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 143 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:02:20

Plot 7-179. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

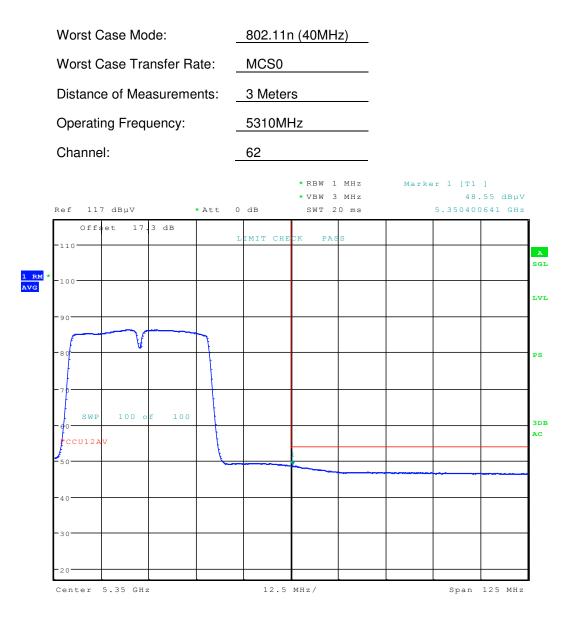
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 144 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 144 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 27.JAN.2016 19:46:28

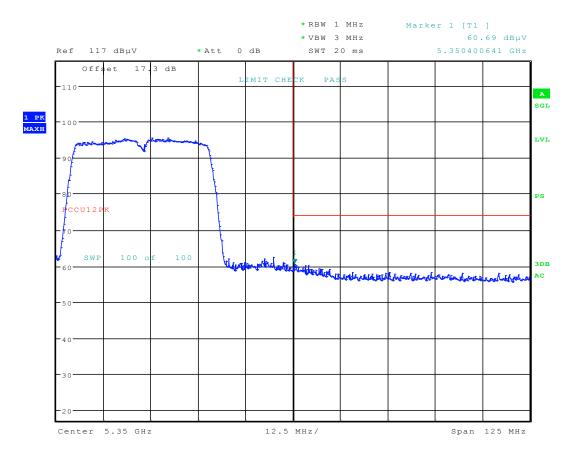
Plot 7-180. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 145 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 145 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 19:39:16

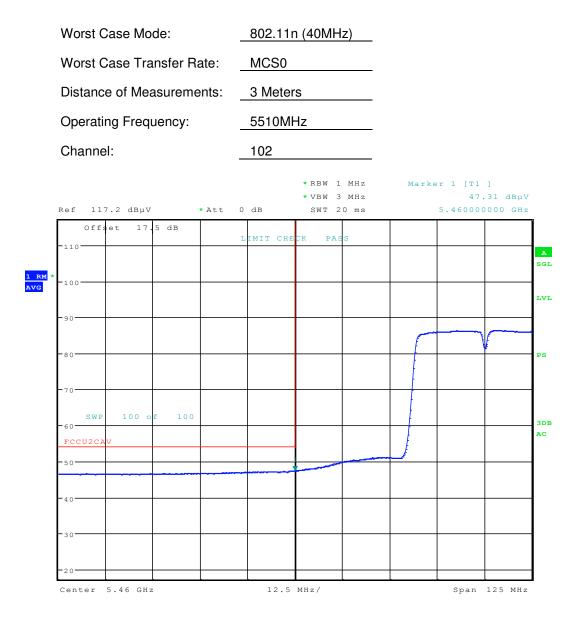
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 146 of 220
© 2016 PCTEST Engineering I	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 27.JAN.2016 20:05:15

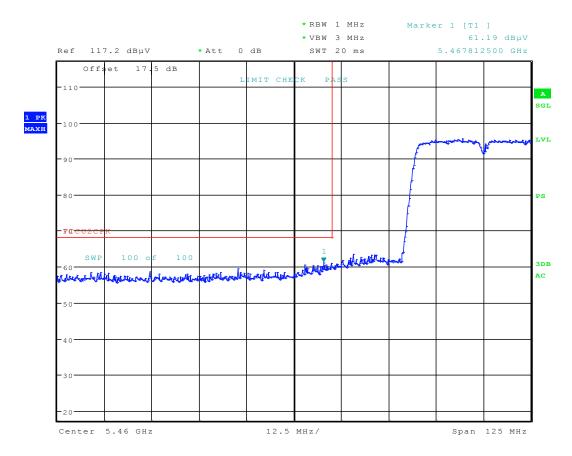
Plot 7-182. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 147 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 147 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 27.JAN.2016 20:04:43

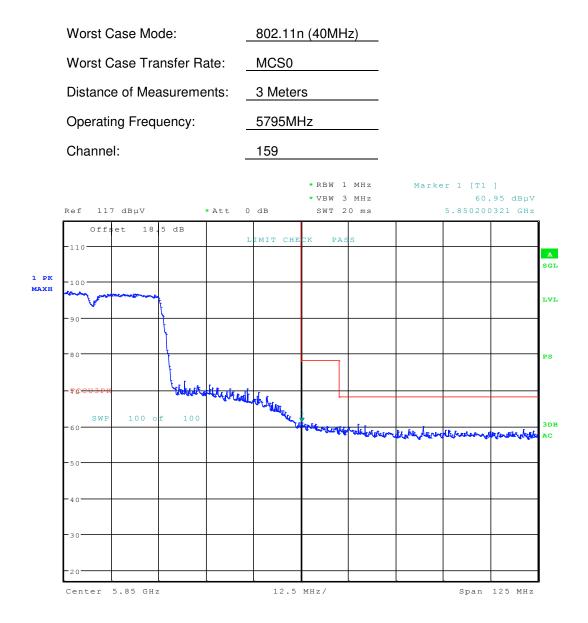
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 149 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 148 of 220
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:49:29

Plot 7-184. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

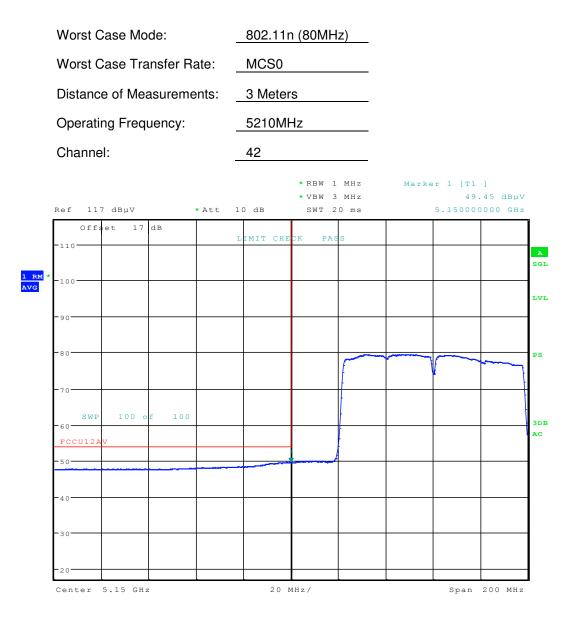
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 149 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:49:07

Plot 7-185. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

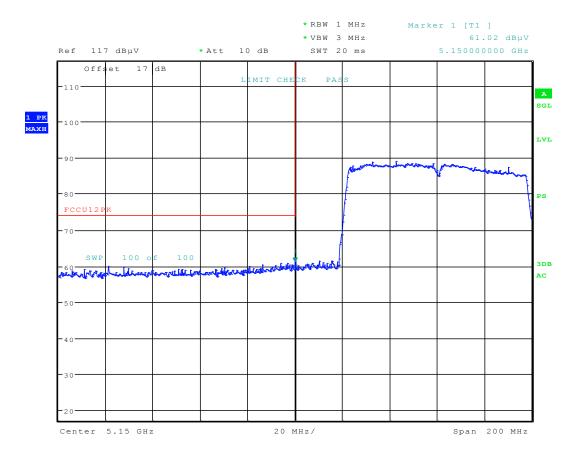
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 150 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 150 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:06:40

Plot 7-186. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

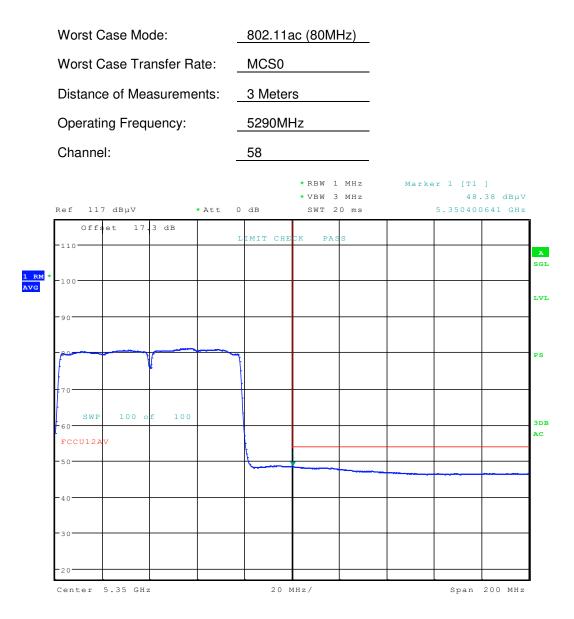
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 151 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 151 of 220
0 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 19:47:49

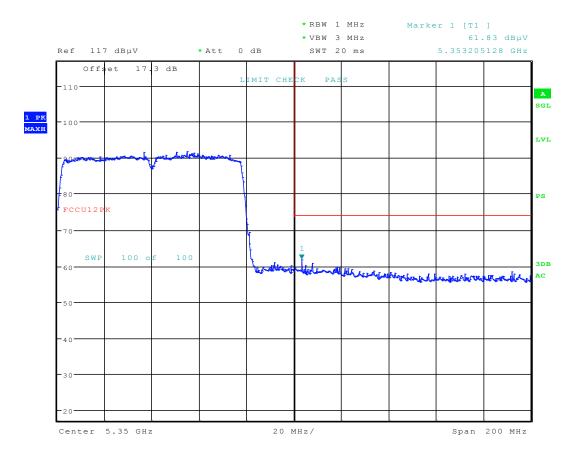
Plot 7-187. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 150 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 152 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 27.JAN.2016 19:48:25

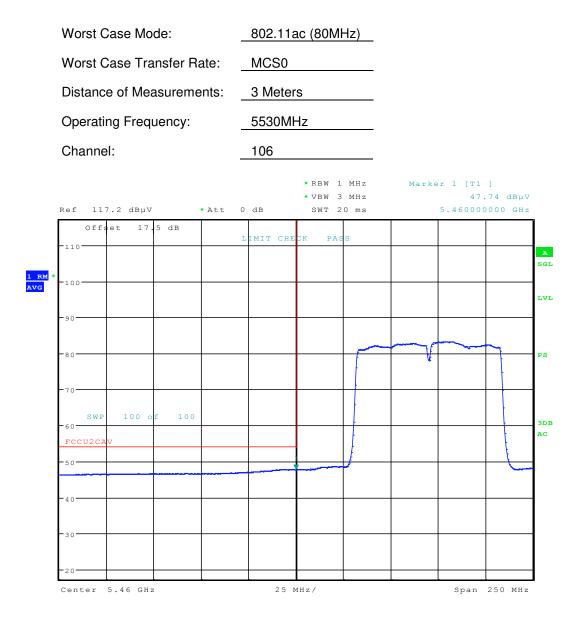
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 150 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 153 of 220
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 27.JAN.2016 20:08:27

Plot 7-189. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

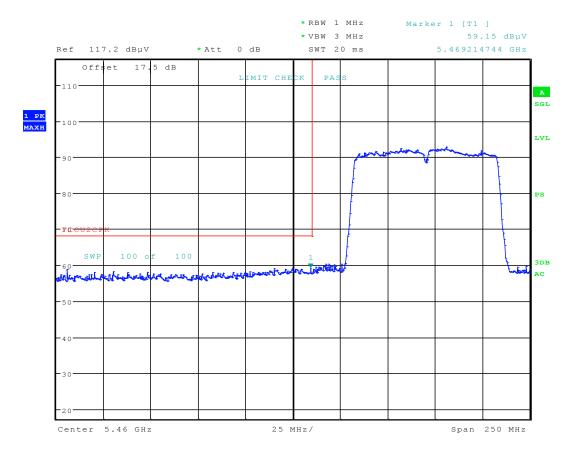
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 154 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 154 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 20:09:05

Plot 7-190. Radiated Restricted Upper Band Edge Plot (Peak – UNII Band 2A)

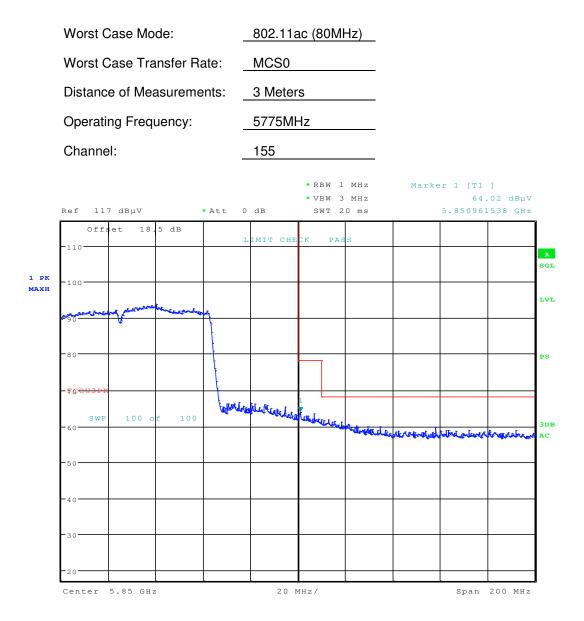
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 155 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 155 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 20:55:31

Plot 7-191. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

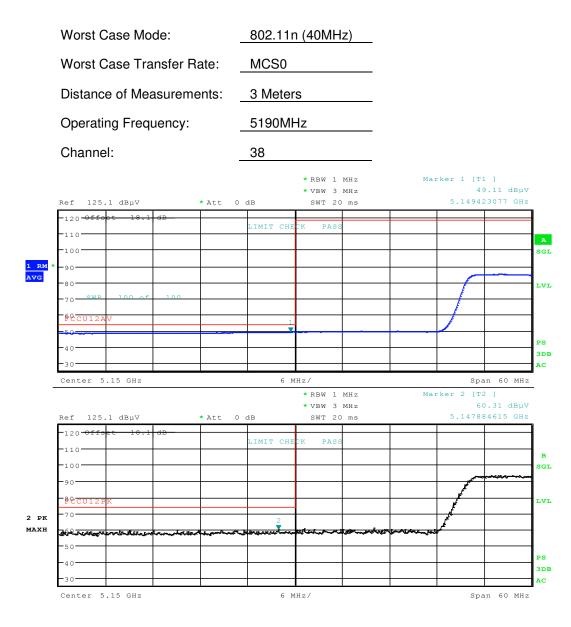
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 150 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 156 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 20:54:55

Plot 7-192. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

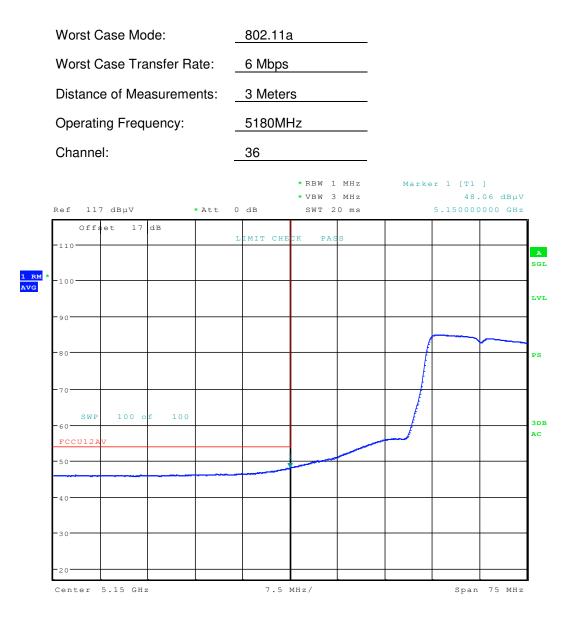
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 157 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 157 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:08:41

Plot 7-193. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

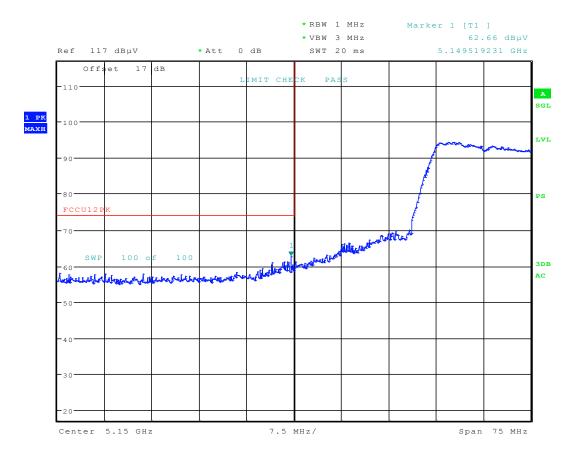
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 150 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 158 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 22.FEB.2016 20:23:04

Plot 7-194. Radiated Restricted Lower Band Edge Plot with Camera Module (Average & Peak – UNII Band 1)

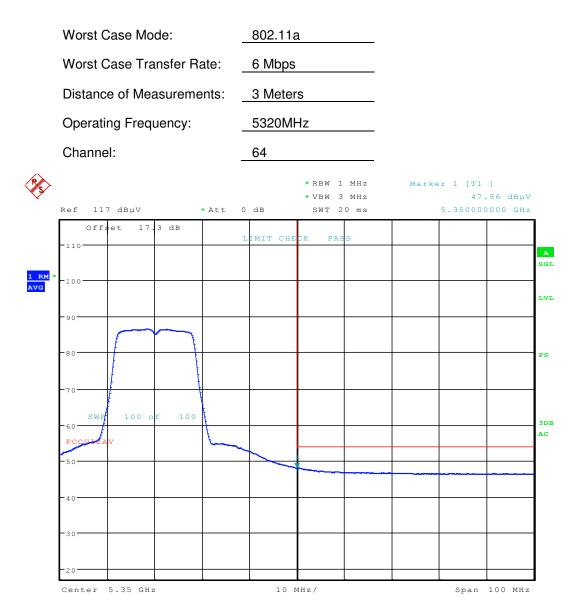
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 150 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 159 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 27.JAN.2016 21:35:08

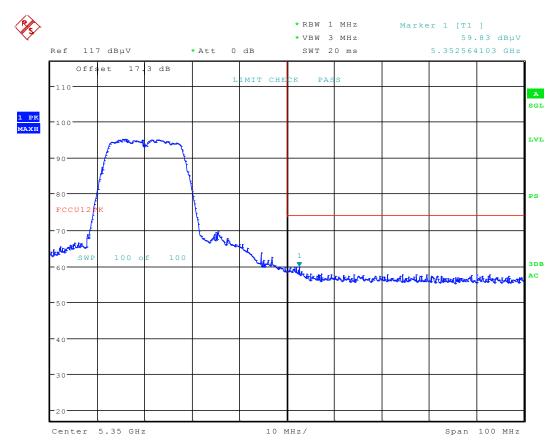
Plot 7-195. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 160 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:35:28

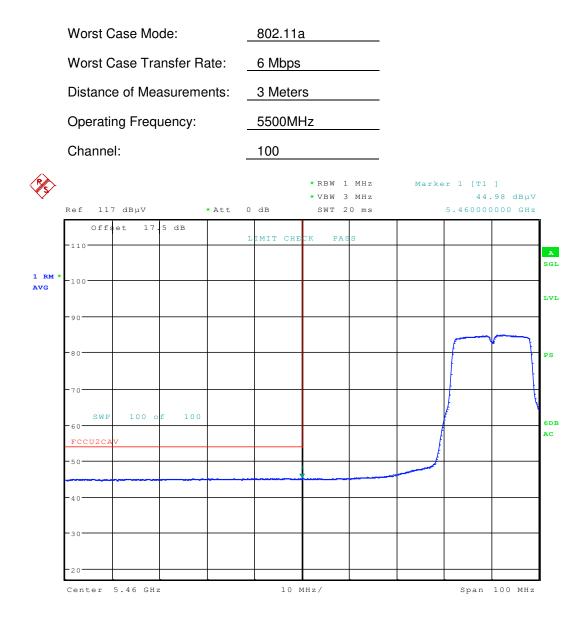
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Bogo 161 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 161 of 220
2016 PCTEST Engineering Laboratory, Inc.			V 3.3	



Date: 29.JAN.2016 18:56:19

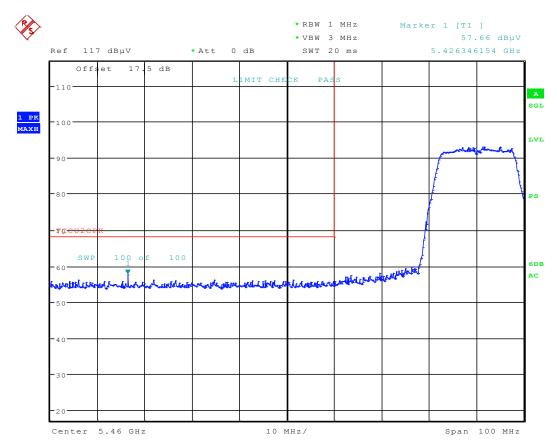
Plot 7-197. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 162 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 18:56:41

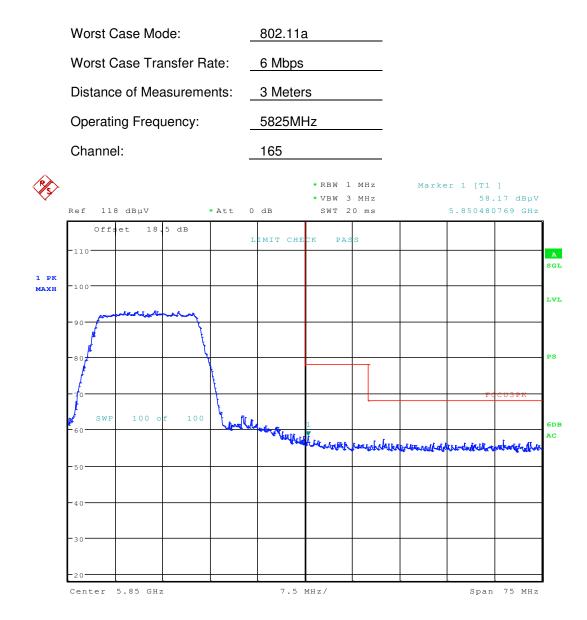
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 163 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:15:34

Plot 7-199. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

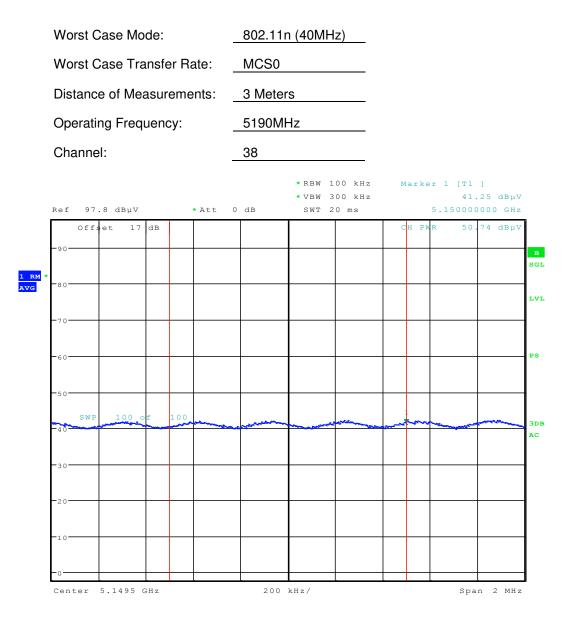
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 104 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 164 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:16:10

Plot 7-200. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

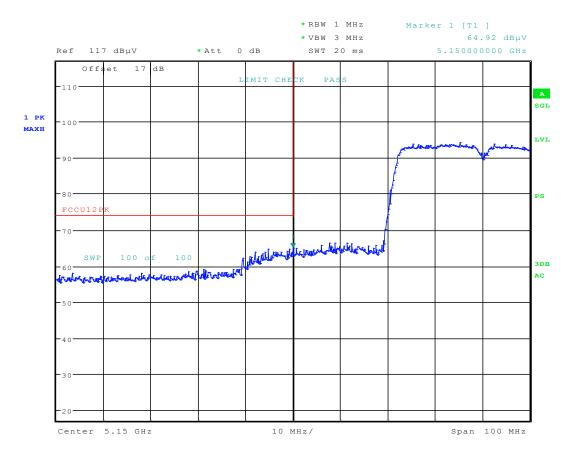
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 105 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 165 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:39:58

Plot 7-201. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

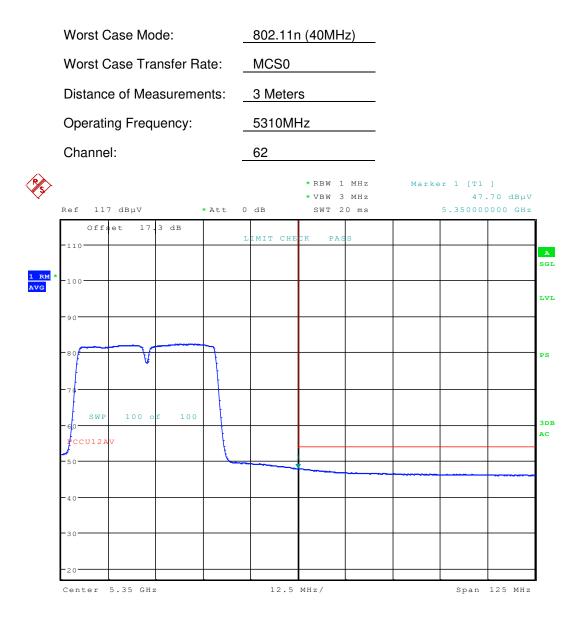
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 166 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 19.FEB.2016 18:19:23

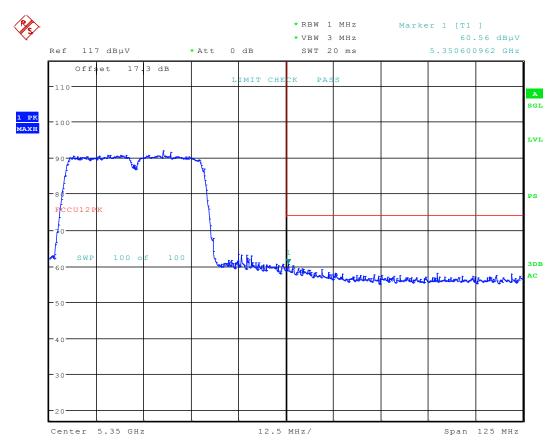
Plot 7-202. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 167 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:43:22

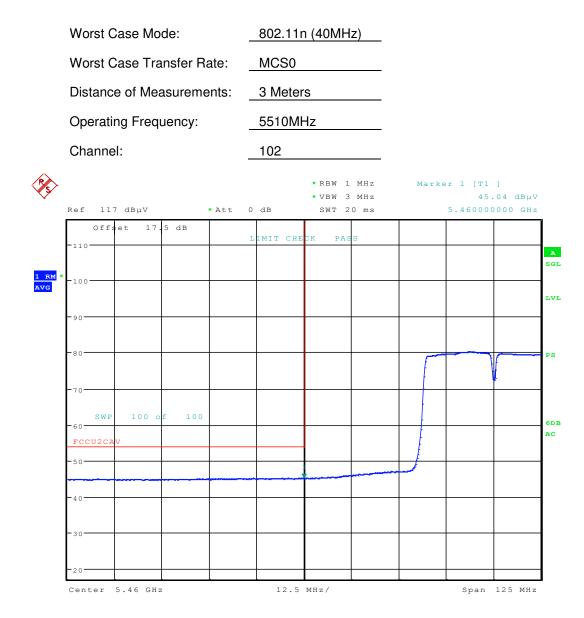
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 168 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:01:49

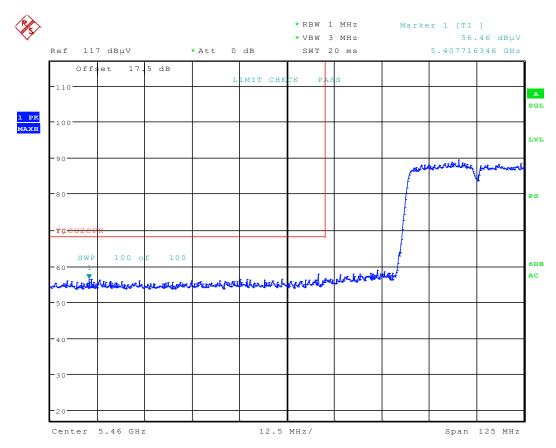
Plot 7-204. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 169 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 18:59:25

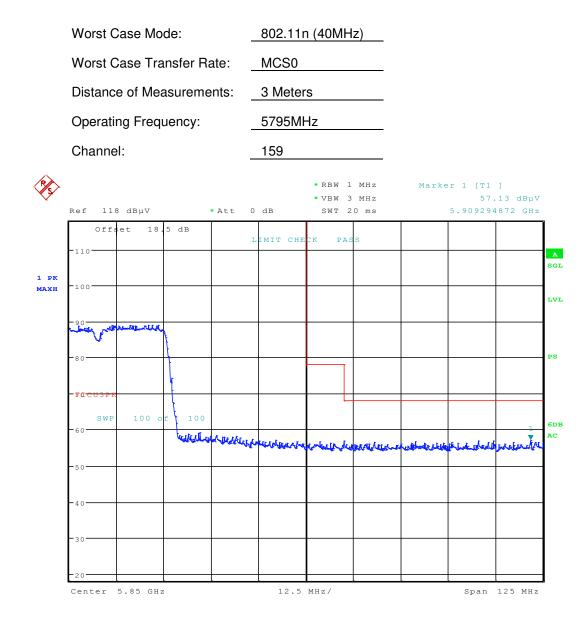
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 170 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:20:22

Plot 7-206. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

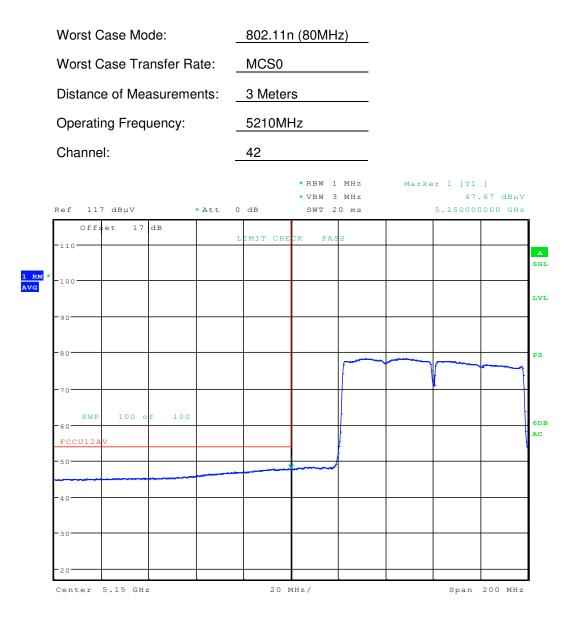
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 171 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 171 of 220
0 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:19:55

Plot 7-207. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

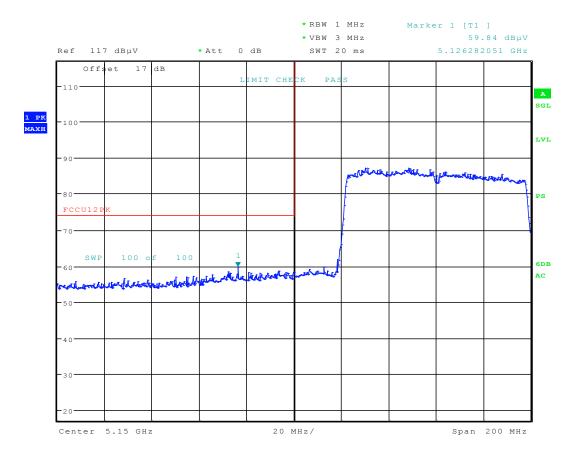
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 172 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:38:19

Plot 7-208. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

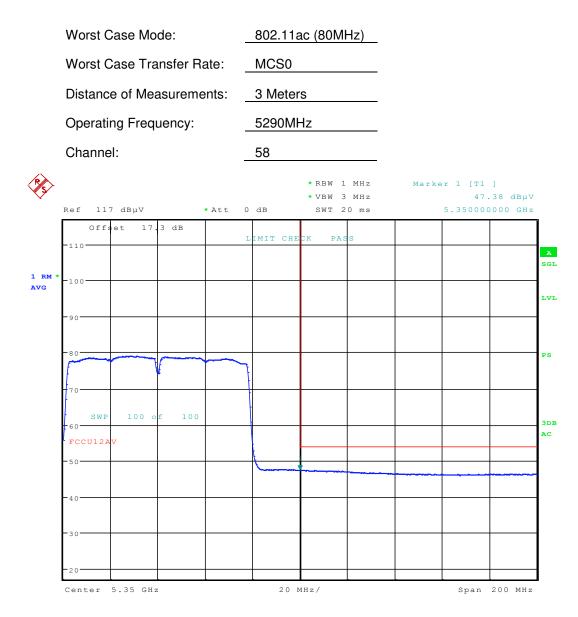
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 173 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:53:26

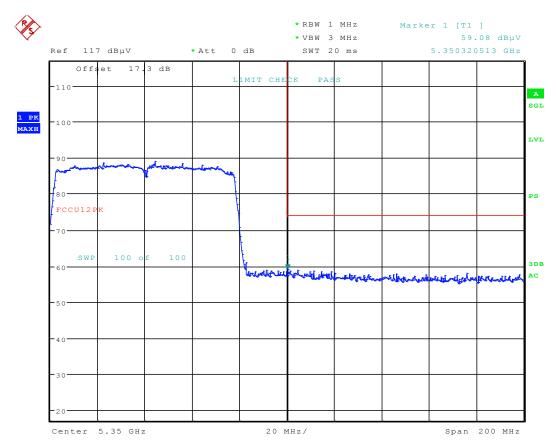
Plot 7-209. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 174 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 174 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 21:54:13

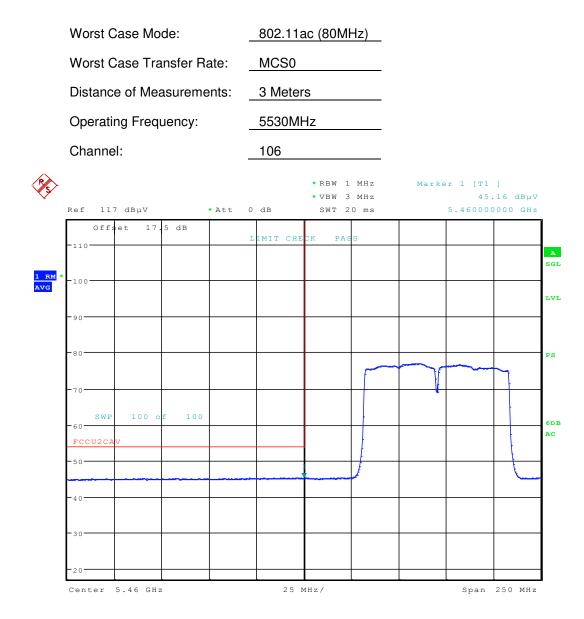
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 175 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 175 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:05:48

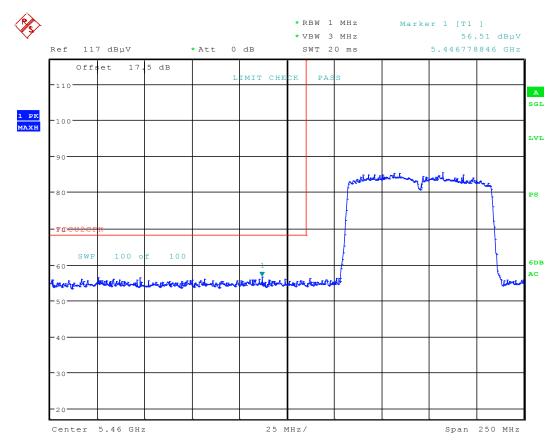
Plot 7-211. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 176 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:06:32

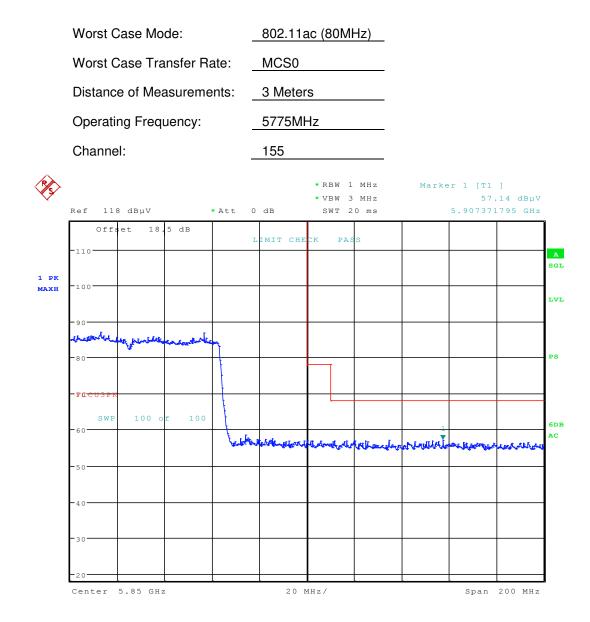
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 177 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 177 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:24:44

Plot 7-213. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

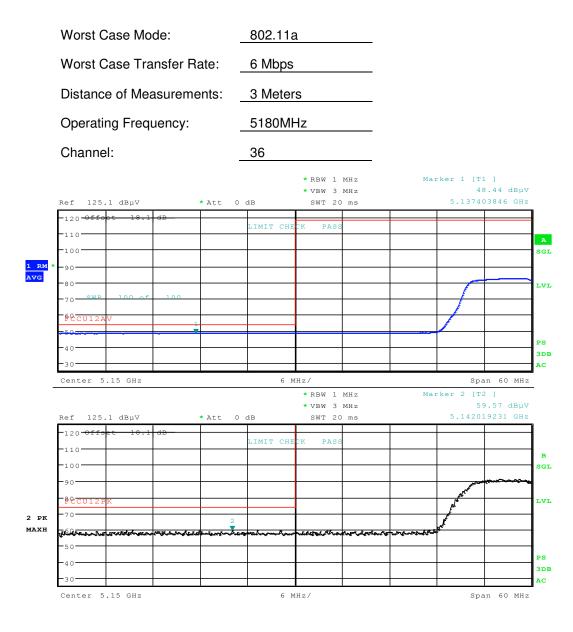
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 179 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 178 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 29.JAN.2016 19:26:02

Plot 7-214. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

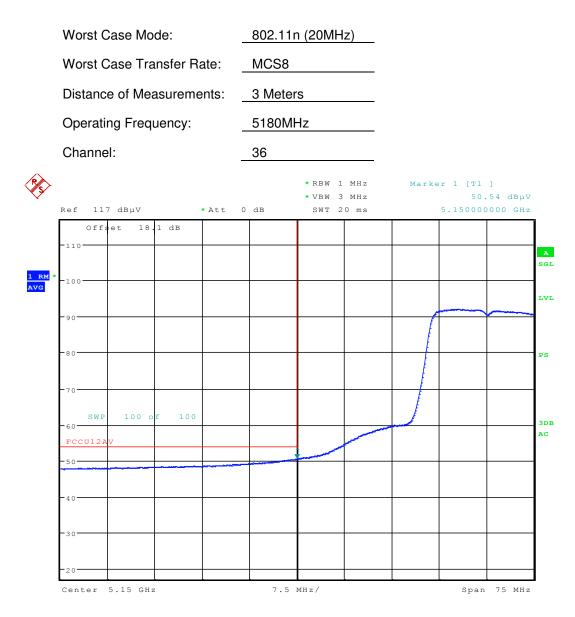
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dece 170 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 179 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3


Date: 29.JAN.2016 19:36:29

Plot 7-215. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 180 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

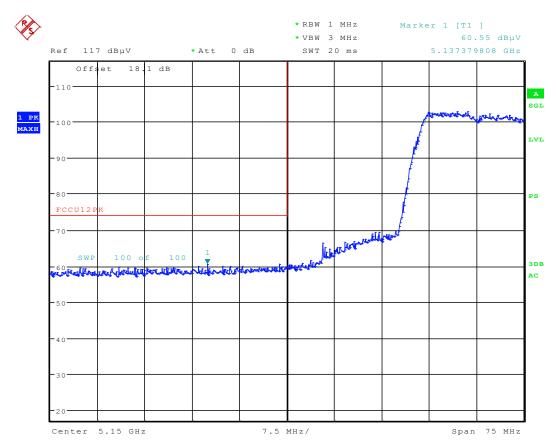
Antenna-2 Radiated Band Edge Measurements with CM Accessory (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 22.FEB.2016 20:33:02

Plot 7-216. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 1)

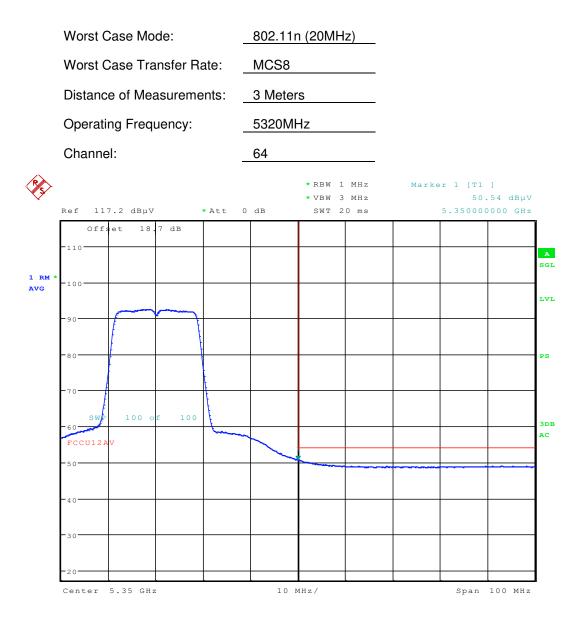
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 181 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				



Date: 9.FEB.2016 16:36:49

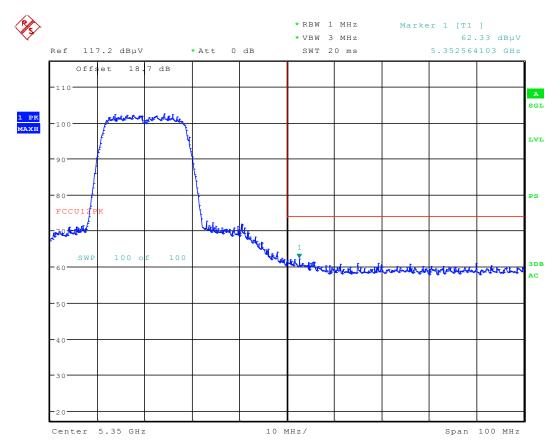
Plot 7-217. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 182 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 9.FEB.2016 16:47:17

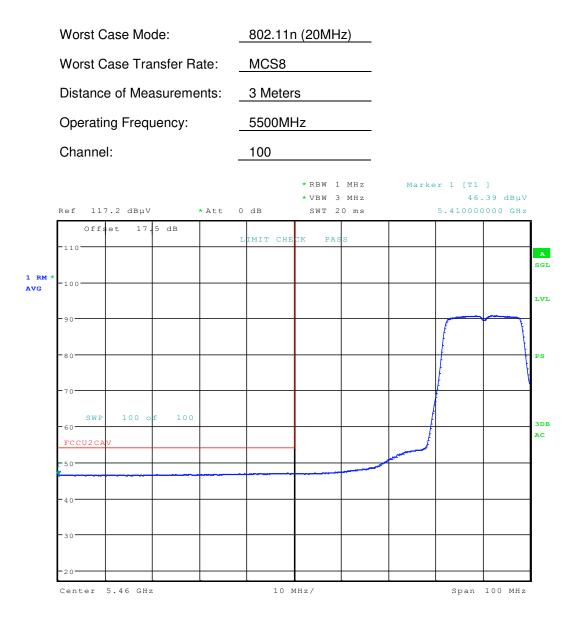
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 183 of 220
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 9.FEB.2016 17:09:38

Plot 7-219. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

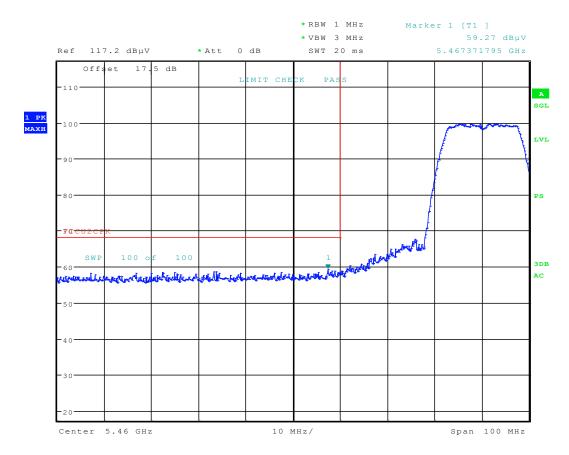
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 194 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 184 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 9.FEB.2016 17:09:59

Plot 7-220. Radiated Restricted Upper Band Edge Plot (Peak – UNII Band 2A)

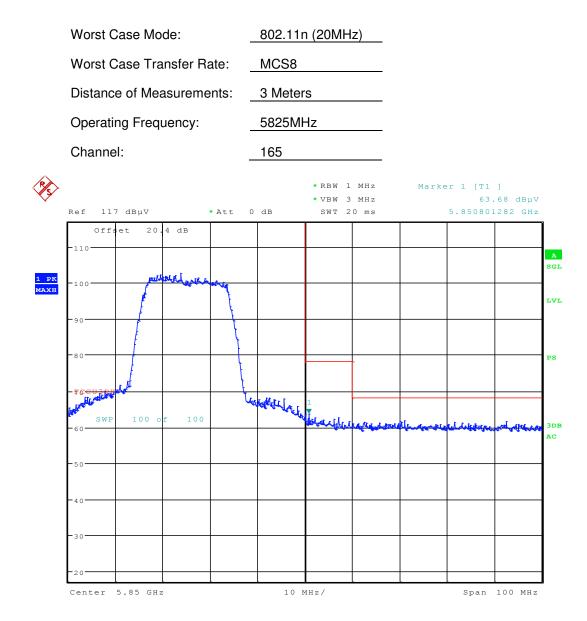
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 195 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 185 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 27.JAN.2016 20:45:39

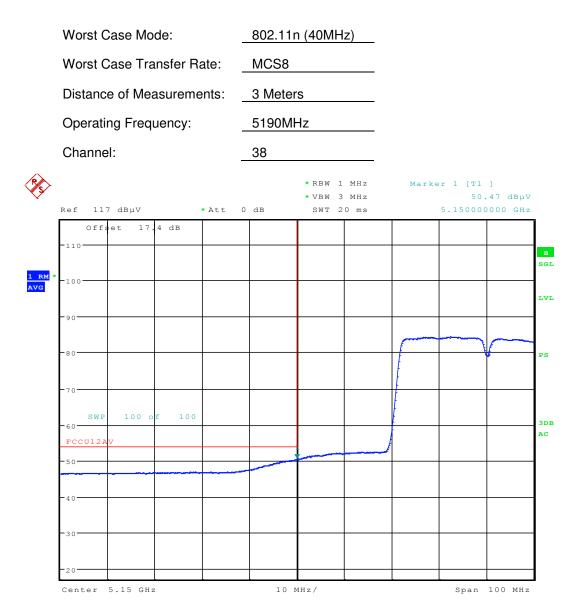
Plot 7-221. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 190 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 186 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:46:06

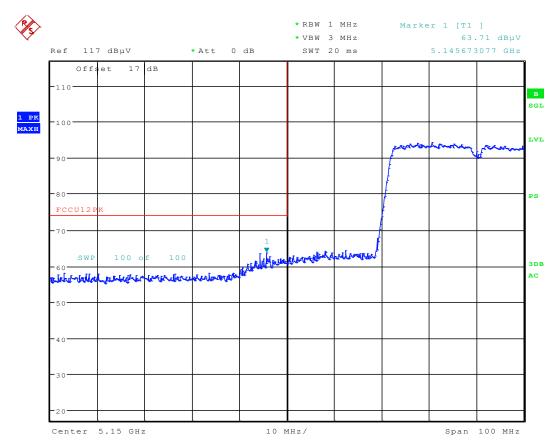
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 197 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 187 of 220
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			



Date: 9.FEB.2016 17:39:36

Plot 7-223. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

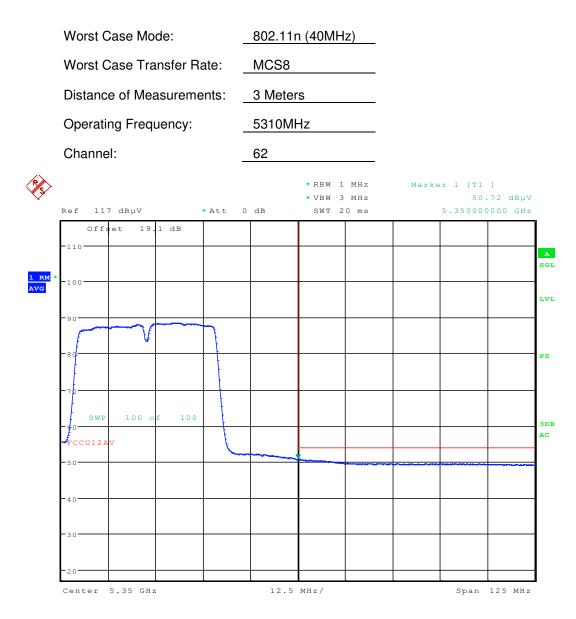
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 188 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 10.FEB.2016 01:04:53

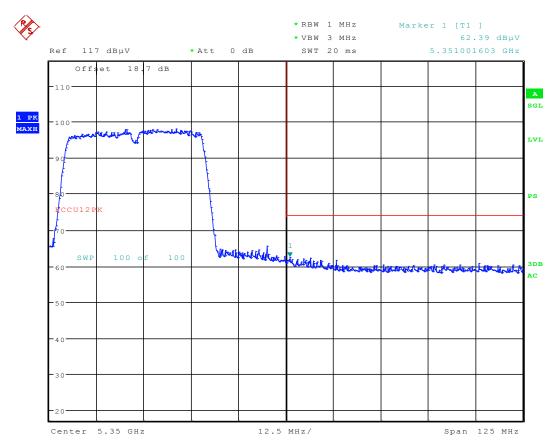
Plot 7-224. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 190 of 990
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 189 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 10.FEB.2016 01:05:26

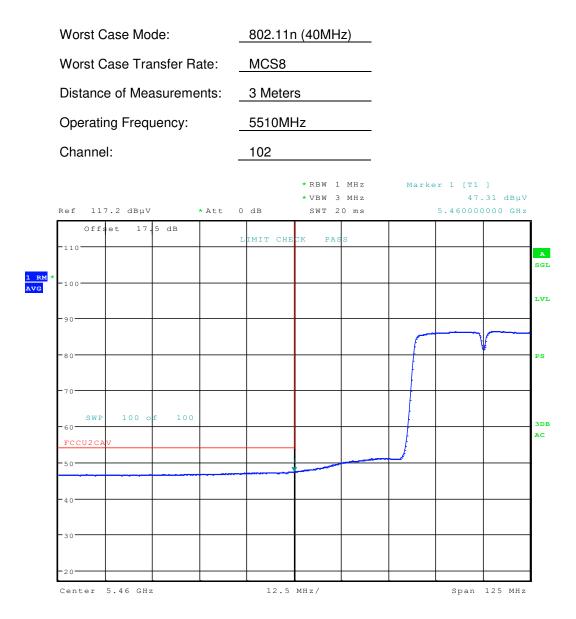
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 190 of 220
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			



Date: 9.FEB.2016 17:12:44

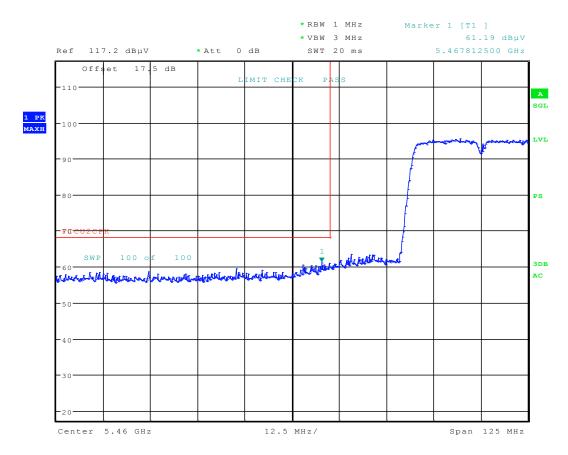
Plot 7-226. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 101 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 191 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 9.FEB.2016 17:12:00

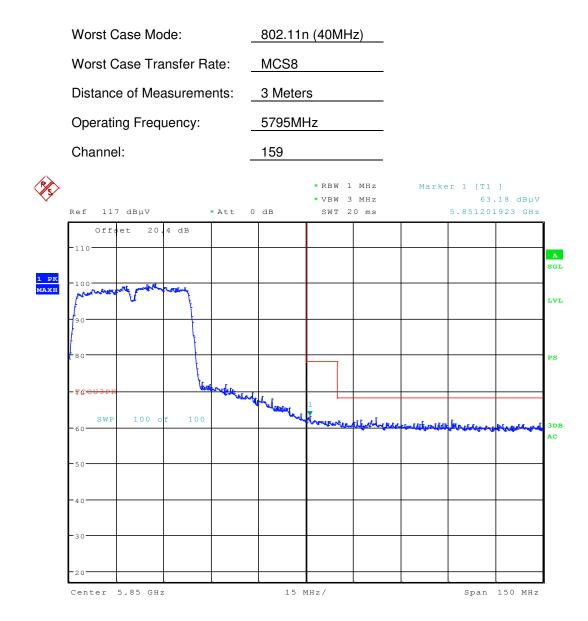
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 192 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:49:29

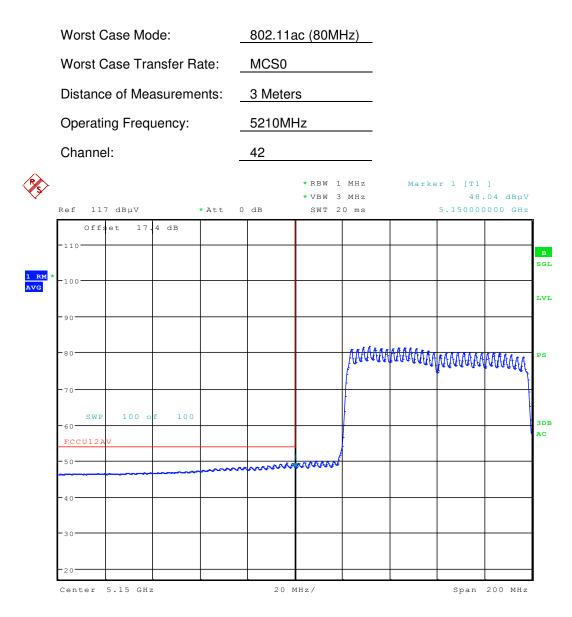
Plot 7-228. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 193 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 27.JAN.2016 20:49:07

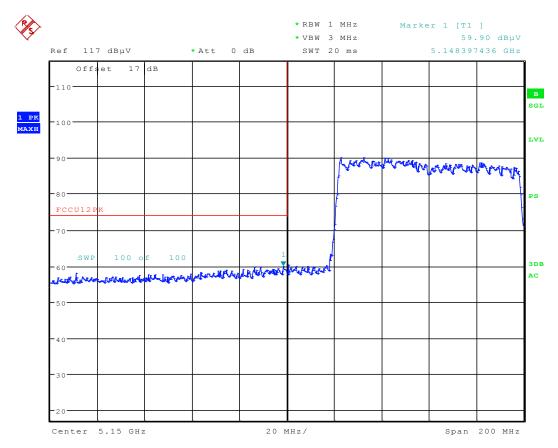
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 104 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 194 of 220
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			V 3.3



Date: 9.FEB.2016 17:41:01

Plot 7-230. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

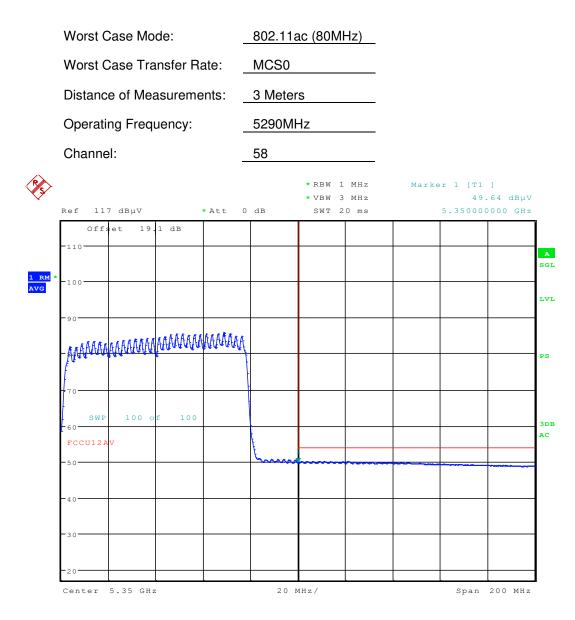
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 105 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 195 of 220
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.			



Date: 10.FEB.2016 01:09:00

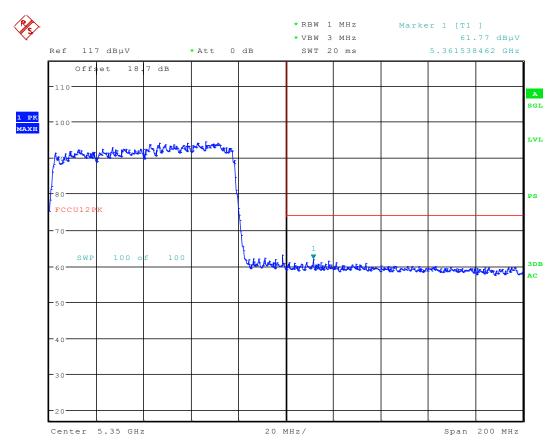
Plot 7-231. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 196 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 10.FEB.2016 01:07:17

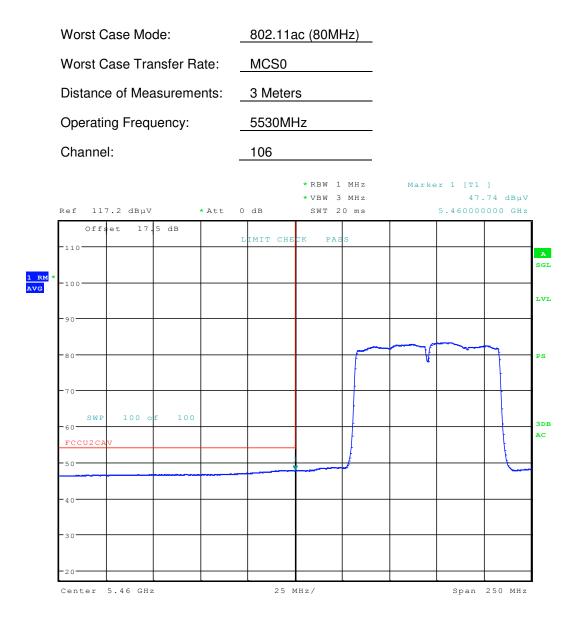
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 197 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Date: 9.FEB.2016 17:15:16

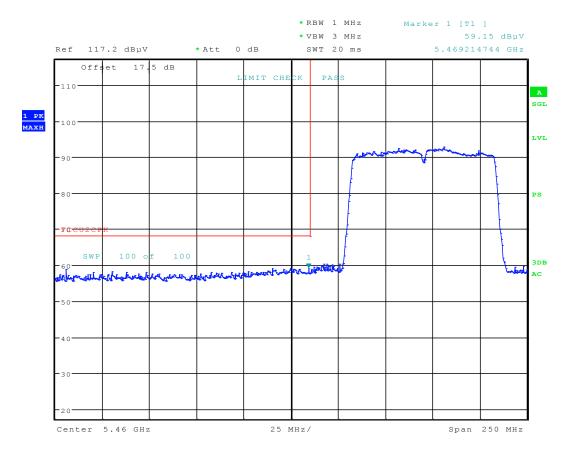
Plot 7-233. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Bogo 108 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 198 of 220
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.			



Date: 9.FEB.2016 17:19:36

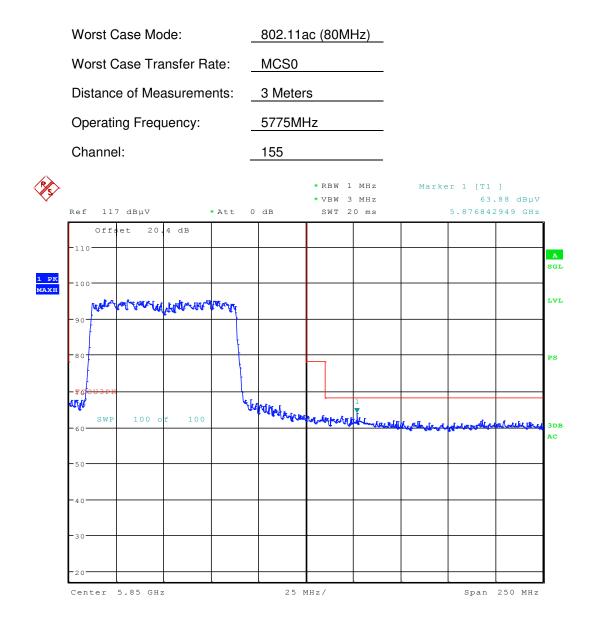
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 199 of 220
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:55:31

Plot 7-235. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

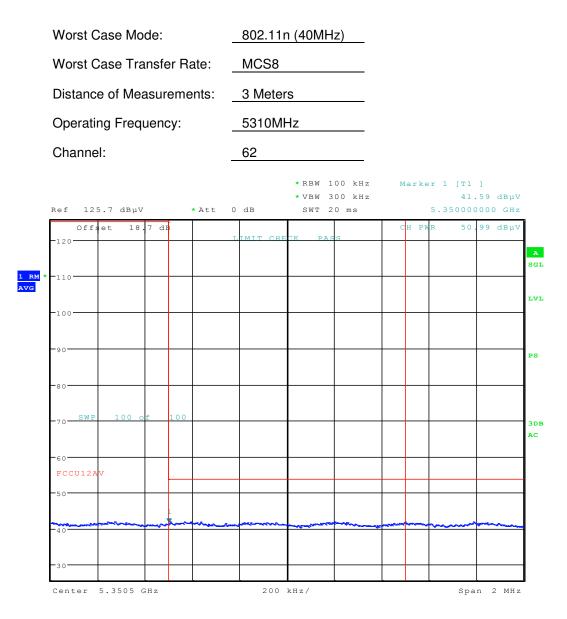
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 200 of 200
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 200 of 220
© 2016 PCTEST Engineering L	© 2016 PCTEST Engineering Laboratory, Inc.			



Date: 27.JAN.2016 20:54:55

Plot 7-236. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

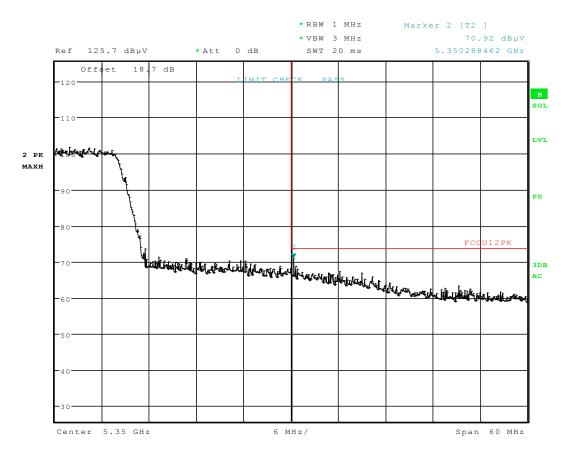
FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 001 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 201 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3


Date: 9.FEB.2016 17:42:28

Plot 7-237. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 200 of 200
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 202 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

MIMO Radiated Band Edge Measurements with CM Accessory (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 22.FEB.2016 20:47:28

Plot 7-238. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 203 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 203 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

MIMO Radiated Band Edge Measurements with CM Accessory (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

Date: 22.FEB.2016 20:46:15

Plot 7-239. Radiated Restricted Upper Band Edge Plot (Peak - UNII Band 2A)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 004 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 204 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-54 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

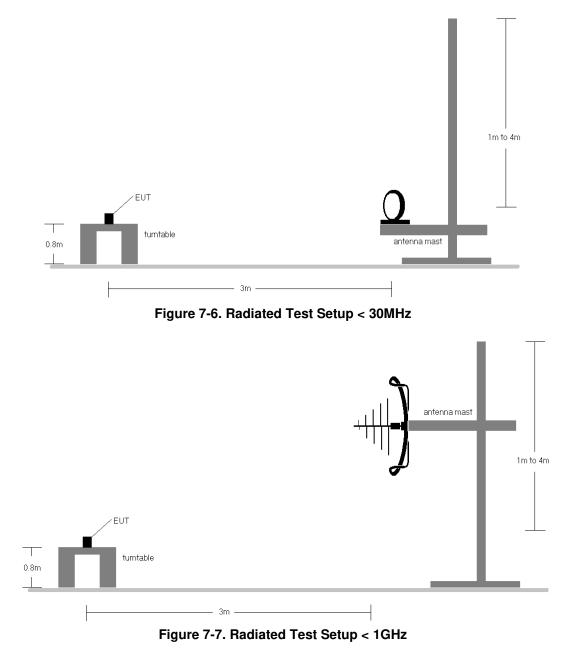
Table 7-54. Radiated Limits

Test Procedures Used

ANSI C63.4-2014

Test Settings

Quasi-Peak Field Strength Measurements

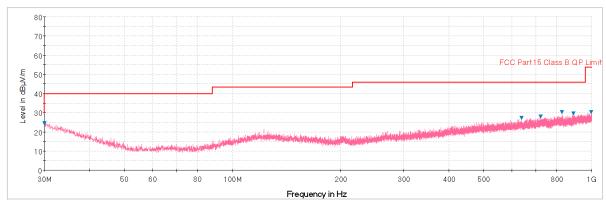

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 005 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 205 of 220
© 2016 PCTEST Engineering Laboratory, Inc.			V 3.3	

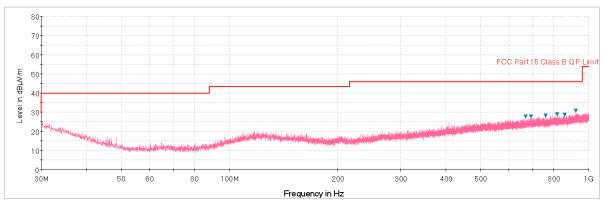
Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 200 of 200
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 206 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

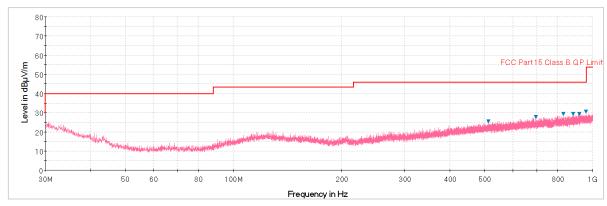


- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-27.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

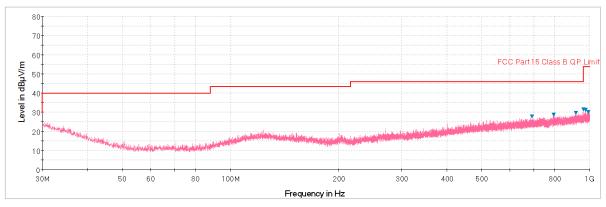

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 207 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 207 01 220
0 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Antenna-1 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-240. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



Plot 7-241. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)


FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 208 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 208 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Antenna-2 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-242. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

Plot 7-243. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 209 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Faye 209 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted	Limit (dBµV)
(10112)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-55. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

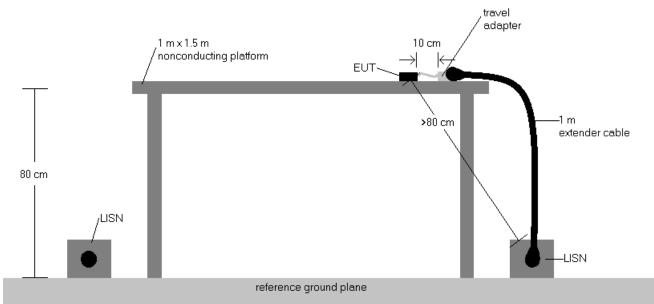
Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

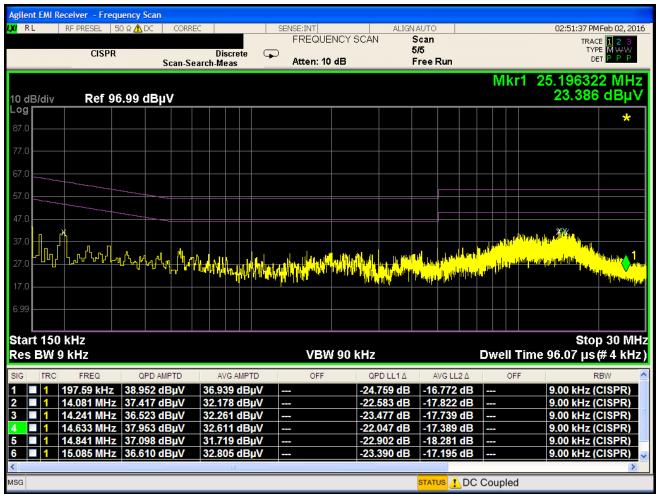
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 010 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 210 of 220
© 2016 PCTEST Engineering Laboratory Inc				

© 2016 PCTEST Engineering Laboratory, Inc.

Test Setup

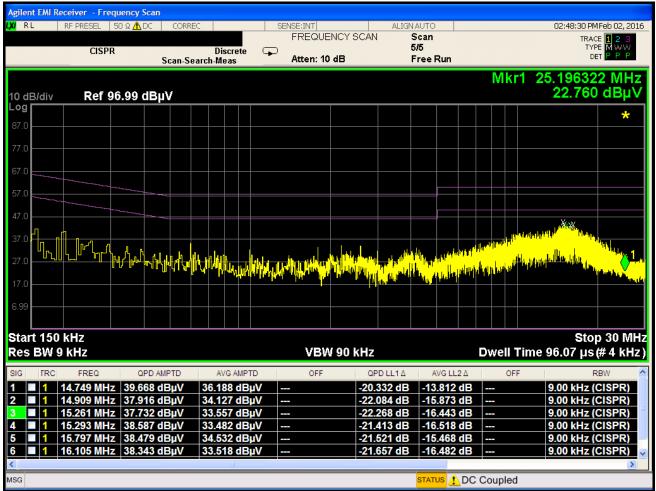
The EUT and measurement equipment were set up as shown in the diagram below.



Test Notes

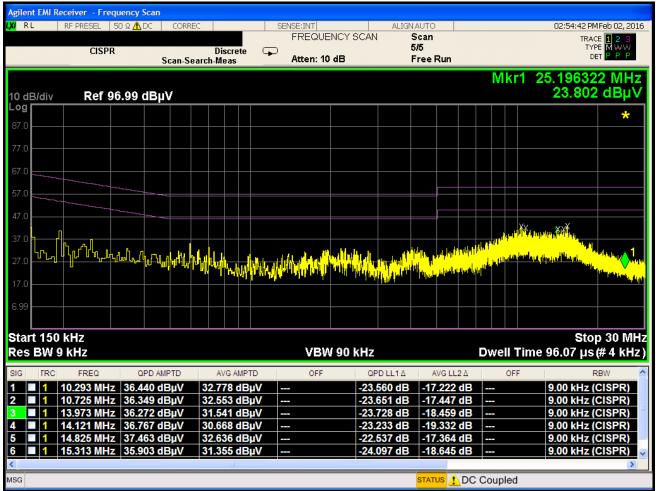
- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level $(dB\mu V) = QP/AV$ Analyzer/Receiver Level $(dB\mu V) + Corr. (dB)$
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 011 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 211 of 220
© 2016 PCTEST Engineering Laboratory, Inc.				



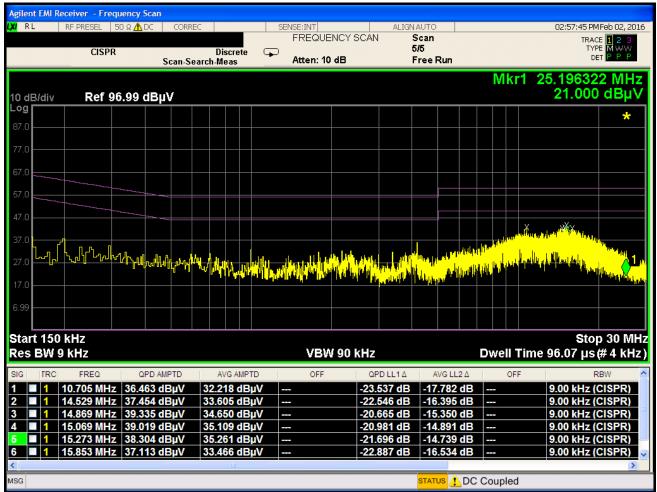
Plot 7-244. Line Conducted Plot with 802.11a UNII Band 1 (L1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 010 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 212 of 220
0 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



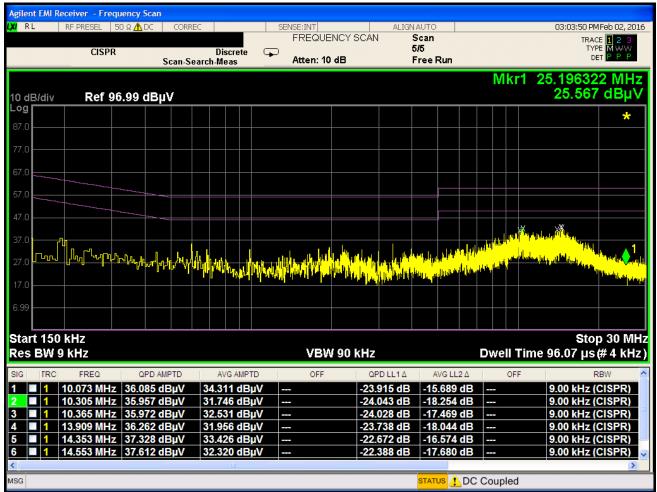
Plot 7-245. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 010 of 000
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 213 of 220
© 2016 PCTEST Engineering L	2016 PCTEST Engineering Laboratory, Inc.			



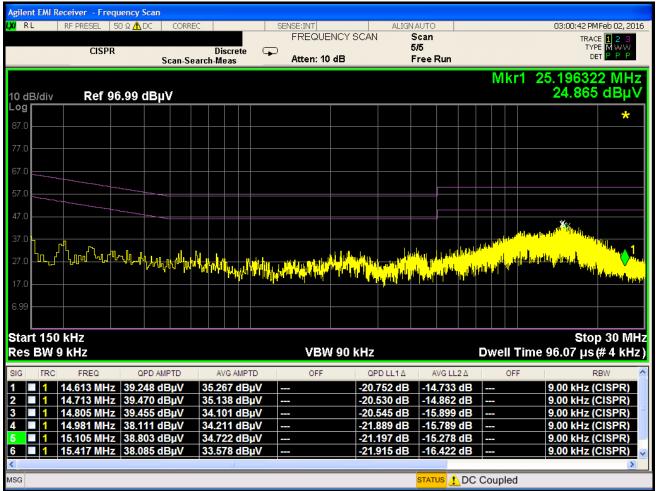
Plot 7-246. Line Conducted Plot with 802.11a UNII Band 2A (L1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 214 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 214 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



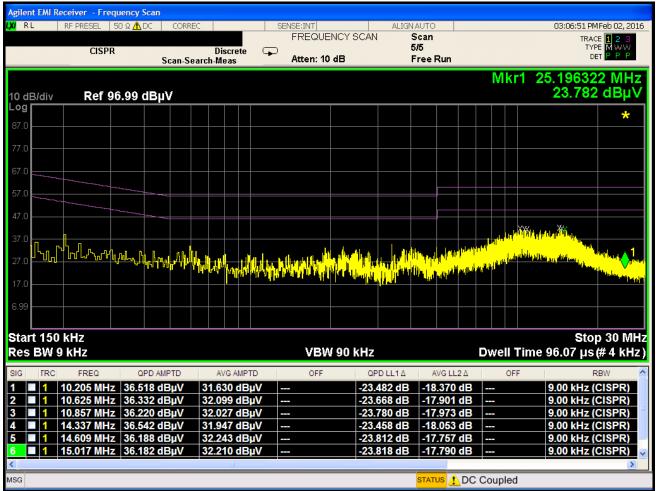
Plot 7-247. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 215 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 215 01 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



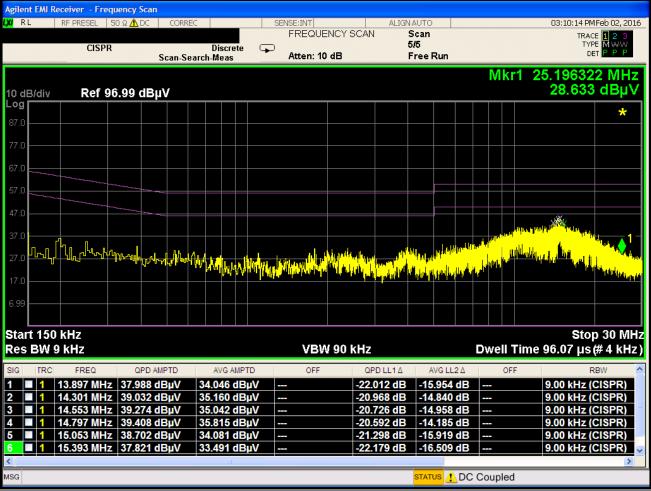
Plot 7-248. Line Conducted Plot with 802.11a UNII Band 2C (L1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 216 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 216 of 220
2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Plot 7-249. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 217 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 217 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3



Plot 7-250. Line Conducted Plot with 802.11a UNII Band 3 (L1)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 218 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 218 01 220
© 2016 PCTEST Engineering Laboratory, Inc. V 3				

<u>§15.407</u>

Plot 7-251. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 219 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Page 219 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFH830** is in compliance with Part 15E of the FCC Rules.

FCC ID: ZNFH830		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 220 of 220
0Y1601190141.ZNF	1/21 - 2/12/16	Portable Handset		Faye 220 01 220
© 2016 PCTEST Engineering Laboratory, Inc.				