

FCC/ IC_ GSM/WCDMA REPORT

Certification

Applicant Name:	
-----------------	--

LG Electronics MobileComm U.S.A., Inc.

Address:

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Issue: April 23, 2015 Test Site/Location: HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majangmyeon, Icheon-si, Gyeonggi-do, Korea Report No.: HCT-R-1504-F006-1 HCT FRN: 0005866421 IC Recognition No.: 5944A-3

FCC ID:	ZNFH815
IC:	2703C-H815
APPLICANT:	LG Electronics MobileComm U.S.A., Inc.

FCC/ IC Model(s):	LG-H815
Additional FCC/ IC Model(s):	LGH815, H815, LG-H815P, LGH815P, H815P, LG-H815p, LGH815p, H815p, LG-H815L, LGH815L, H815L, LG- H815I, LGH815I, H815I, LG-H815AR, LGH815AR, H815AR, LG-H815ar, LGH815ar, H815ar, LG-H815K, LGH815K, H815K, LG-H815k, LGH815k, H815k
EUT Type:	Cellular/PCS GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA/LTE Phone with Bluetooth, WLAN, NFC
FCC Classification:	Licensed Portable Transmitter Held to Ear (PCE)
FCC Rule Part(s):	§22, §24, §2
IC Rule:	RSS-Gen (Issue 4), RSS-132 (Issue 3) , RSS-133 (Issue 6)

Standalone with normal cover

	Tx Frequency	Rx Frequency	Emission	ERP	
Mode	(MHz)	(MHz)	Designator	Max. Power (W)	Max. Power (dBm)
GSM850			246 KGXW	0.261	24.16
GSM850 EDGE	824.2 - 848.8	869.2 – 893.8	252 KG7W	0.058	17.66
WCDMA850	826.4 - 846.6	871.4 – 891.6	4M13F9W	0.050	16.96
			_	-	
			Emissian	EIRP	
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)	Emission Designator	Max. Power (W)	Max. Power (dBm)
GSM1900			246 KGXW	1.325	31.22
GSM1900 EDGE	1850.2 – 1909.8	1930.2 – 1989.8	245 KG7W	0.467	26.69
WCDMA1900	1852.4 – 1907.6	1932.4 – 1987.6	4M16F9W	0.289	24.61

Standalone with wireless charging cover (close)

			ERP			
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)	Max. Power (W)	Max. Power (dBm)		
GSM850			0.309	24.90		
GSM850 EDGE	824.2 - 848.8	869.2 - 893.8	0.066	18.21		
WCDMA850	826.4 - 846.6	871.4 – 891.6	0.054	17.31		
			Ell	RP		
Mode	Tx Frequency	Rx Frequency	Ell Max. Power	RP Max. Power		
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)				
Mode GSM1900			Max. Power	Max. Power		
			Max. Power (W)	Max. Power (dBm)		

With wireless charging pad

			EF	۶P		
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)	Max. Power (W)	Max. Power (dBm)		
GSM850			0.280	24.48		
GSM850 EDGE	824.2 - 848.8	869.2 - 893.8	0.063	18.00		
WCDMA850	826.4 - 846.6	871.4 – 891.6	0.058	17.66		
1						
		By Frequency	El	RP		
Mode	Tx Frequency	Rx Frequency	Ell Max. Power	RP Max. Power		
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)				
Mode GSM1900	1 2		Max. Power	Max. Power		
	1 2		Max. Power (W)	Max. Power (dBm)		

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Ki Hyun Kim Test engineer of RF Team

Approved by : Sang Jun Lee Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION	
HCT-R-1504-F006	April 16, 2015	- First Approval Report	
HCT-R-1504-F006-1	April 23, 2015	 Added the Information for Emission Designator on page 16 Add Model name Revised the Test Mode for Radiated Emissions on Section 7.1 ~ 7.9 	

Table of Contents

1. GENERAL INFORMATION
2. INTRODUCTION
2.1. EUT DESCRIPTION
2.2. MEASURING INSTRUMENT CALIBRATION
2.3. TEST FACILITY
3. DESCRIPTION OF TESTS
3.1 ERP/EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS
3.2 PEAK- TO- AVERAGE RATIO
3.3 OCCUPIED BANDWIDTH11
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL
3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE
4. LIST OF TEST EQUIPMENT
5. SUMMARY OF TEST RESULTS
6. SAMPLE CALCULATION
7. TEST DATA
7.1 EFFECTIVE RADIATED POWER OUTPUT_ Standalone with normal cover
7.2 EQUIVALENT ISOTROPIC RADIATED POWER_ Standalone with normal cover
7.3 EFFECTIVE RADIATED POWER OUTPUT_Standalone with wireless charging cover (close). 19
7.4 EQUIVALENT ISOTROPIC RADIATED POWER_Standalone with wireless charging cover
7.4 EQUIVALENT ISOTROPIC RADIATED POWER_Standalone with wireless charging cover (close)
_ 00
(close)
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)25
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)257.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)26
(close) 20 7.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad 21 7.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad 22 7.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover 23 7.7.1 RADIATED SPURIOUS EMISSIONS (GSM850) 23 7.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900) 24 7.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850) 25 7.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900) 26 7.8 RADIATED SPURIOUS EMISSIONS_Standalone with wireless charging cover (close) 27
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)257.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)267.8 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)27
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad.217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad.227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)257.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)267.8 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.1 RADIATED SPURIOUS EMISSIONS (GSM1900)277.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)28
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)257.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA850)267.8 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)287.8.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)29
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)257.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)267.8 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)287.8.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)297.8.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)30
(close)207.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad217.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad227.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover237.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)237.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)247.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)257.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA850)267.8 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)277.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)287.8.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)297.8.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)307.9 RADIATED SPURIOUS EMISSIONS (WCDMA1900)307.9 RADIATED SPURIOUS EMISSIONS (WCDMA1900)307.9 RADIATED SPURIOUS EMISSIONS (WCDMA1900)30

8.

	7.9.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)	. 34
7.1	0 PEAK-TO-AVERAGE RATIO	35
7.1	1 OCCUPIED BANDWIDTH	36
7.1	2 CONDUCTED SPURIOUS EMISSIONS	37
	7.12.1 BAND EDGE	. 37
7.1	3 RECEIVER SPURIOUS EMISSIONS_Standalone with normal cover	38
7.1	4 RECEIVER SPURIOUS EMISSIONS_Standalone with wireless charging cover (close)	39
7.1	5 RECEIVER SPURIOUS EMISSIONS_With wireless charging pad	40
7.1	6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	41
	7.16.1 FREQUENCY STABILITY (GSM850)	. 41
	7.16.2 FREQUENCY STABILITY (GSM1900)	. 42
	7.16.3 FREQUENCY STABILITY (WCDMA850)	. 43
	7.16.4 FREQUENCY STABILITY (WCDMA1900)	. 44
TEST	PLOTS	45

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	LG Electronics MobileComm U.S.A., Inc.
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632
FCC ID:	ZNFH815
IC:	2703C-H815
Application Type:	Certification
FCC Classification:	Licensed Portable Transmitter Held to Ear (PCE)
FCC Rule Part(s):	§22, §24, §2
EUT Type:	Cellular/PCS GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA/LTE Phone with Bluetooth, WLAN, NFC
FCC/ IC Model(s):	
Additional FCC/ IC Model(s):	LGH815, H815, LG-H815P, LGH815P, H815P, LG-H815p, LGH815p, H815p, LG-H815L, LGH815L, H815L, LG-H815I, LGH815I, H815I, LG-H815AR, LGH815AR, H815AR, LG-H815ar, LGH815ar, H815ar, LG-H815K, LGH815K, H815K, LG-H815k, LGH815k, H815k
Tx Frequency:	824.20 - 848.80 MHz (GSM850) 826.40 - 846.60 MHz (WCDMA850) 1 850.20 - 1 909.80 MHz (GSM1900) 1 852.4 – 1 907.6 MHz (WCDMA1900)
Rx Frequency:	869.20 - 893.80 MHz (GSM850) 871.40 - 891.60 MHz (WCDMA850) 1 930.20 - 1 989.80 MHz (GSM1900) 1 932.4 – 1 987.6 MHz (WCDMA1900)
Max. RF Output Power:	Standalone with normal cover: 0.261 W GSM850 (24.16 dBm) / 1.325 W GSM1900 (31.22 dBm) 0.058 W GSM850 EDGE (17.66 dBm) / 0.467 W GSM1900 EDGE (26.69 dBm) 0.050 W WCDMA850 (16.96 dBm) / 0.289 W WCDMA1900 (24.61 dBm)
	Standalone with wireless charging cover (close) : 0.309 W GSM850 (24.90 dBm) / 1.192 W GSM1900 (30.76 dBm) 0.066 W GSM850 EDGE (18.21 dBm) / 0.457 W GSM1900 EDGE (26.60 dBm) 0.054 W WCDMA850 (17.31 dBm) / 0.222 W WCDMA1900 (23.46 dBm)
	With wireless charging pad : 0.280 W GSM850 (24.48 dBm) / 0.722 W GSM1900 (28.58 dBm) 0.063 W GSM850 EDGE (18.00 dBm) / 0.246 W GSM1900 EDGE (23.91 dBm) 0.058 W WCDMA850 (17.66 dBm) / 0.122 W WCDMA1900 (20.85 dBm)
Emission Designator(s):	246 KGXW (GSM850) 246 KGXW (GSM1900) 252 KG7W (GSM850 EDGE) 245 KG7W (GSM1900 EDGE) 4M13F9W (WCDMA850) 4M16F9W (WCDMA1900)
Date(s) of Tests:	March 21, 2015 ~ April 14, 2015
Antenna Specification	Manufacturer: Ace Technology Antenna type: PIFA Antenna (Planar Inverted F) Peak Gain: GSM850/ WCDMA850 : -2.58 dBi GSM1900/ WCDMA1900 : -3.33 dBi

2. INTRODUCTION

2.1. EUT DESCRIPTION

The LG Electronics MobileComm U.S.A., Inc. LG-H815 Cellular/PCS GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA/LTE Phone with Bluetooth, WLAN, NFC consists of GPRS Class33, EDGE33, GSM850, GSM1900, WCDMA850, WCDMA1900, HSDPA, HSUPA and HSPA Release 9.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **Korea**.

<u>3. DESCRIPTION OF TESTS</u>

3.1 ERP/EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS

Note: ERP(Effective Radiated Power), EIRP(Effective Isotropic Radiated Power)

Test Procedure

Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-C-2004 Clause 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using RMS detector.

A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: P_d is the dipole equivalent power and P_q is the generator output power into the substitution antenna.

The maximum EIRP is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration

Radiated spurious emissions

- 1. Frequency Range : 30 MHz ~ 10th Harmonics of highest channel fundamental frequency.
- The EUT was setup to maximum output power. The 100 kHz RBW was used to scan from 30 MHz to 1 GHz. Also, the 1 MHz RBW was used to scan from 1 GHz to 10 GHz(GSM850/WCDMA850) or 20 GHz(GSM1900/WCDMA1900). The high, low and a middle channel were tested for out of band measurements.

3.2 PEAK- TO- AVERAGE RATIO

Test Procedure

Peak to Average Power Ratio is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 5.7.

- Section 5.7.1 CCDF Procedure for PAPR

- a) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b) Set the number of counts to a value that stabilizes the measured CCDF curve;
- c) Set the measurement interval as follows:
 - 1) for continuous transmissions, set to 1 ms,
 - 2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- d) Record the maximum PAPR level associated with a probability of 0.1%.

- Section 5.7.2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.1 to measure the total peak power and record as P_{Pk} . Use one of the applicable procedures presented 5.2 to measure the total average power and record as P_{Avg} . Determine the P.A.R. from: P.A.R_(dB) = $P_{Pk (dBm)} - P_{Avg (dBm)}$ (P_{Avg} = Average Power + Duty cycle Factor)

5.1.1 Peak power measurements with a spectrum/signal analyzer or EMI receiver

The following procedure can be used to determine the total peak output power.

- a) Set the RBW \geq OBW.
- b) Set VBW \geq 3 × RBW.
- c) Set span $\ge 2 \times RBW$
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Ensure that the number of measurement points \geq span/RBW.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the peak amplitude level.

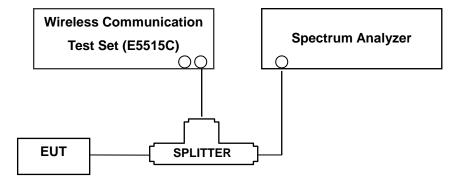
5.2.2 Procedures for use with a spectrum/signal analyzer when EUT cannot be configured to transmit continuously and sweep triggering/signal gating cannot be properly implemented

If the EUT cannot be configured to transmit continuously (burst duty cycle < 98%), then one of the following procedures can be used. The selection of the applicable procedure will depend on the characteristics of the measured burst duty cycle.

Measure the burst duty cycle with a spectrum/signal analyzer or EMC receiver can be used in zero-span mode if the response time and spacing between bins on the sweep are sufficient to permit accurate measurement of the burst on/off time of the transmitted signal.

5.2.2.2 Constant burst duty cycle

If the measured burst duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then:


- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \ge 3 x RBW.
- Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (power averaging).
- g) Set sweep trigger to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- j) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission).

For example, add 10 log (1/0.25) = 6 dB if the duty cycle is a constant 25%.

3.3 OCCUPIED BANDWIDTH.

Test set-up

(Configuration of conducted Emission measurement)

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

Test Procedure

OBW is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 4.2.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels(low, middle and high operational range.)

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test Procedure

Spurious and harmonic emissions at antenna terminal is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 6.0.

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$. The RBW settings used in the testing are greater than 1 % of the occupied bw. The 1 MHz RBW was used to scan from 10 MHz to 10 GHz. (GSM1900 Mode: 10 MHz to 20 GHz). A display line was placed at – 13 dBm to show compliance. The high, lowest and a middle channel were tested for out of band measurements.

Measurements of all out of band are made on RBW = 1MHz and VBW \ge 3 MHz in the worst case despite RBW = 100 kHz and VBW \ge 300 kHz upon 1 GHz.

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Trace Mode = max hold
- Sweep time = auto
- Number of points in sweep \geq 2 * Span / RBW

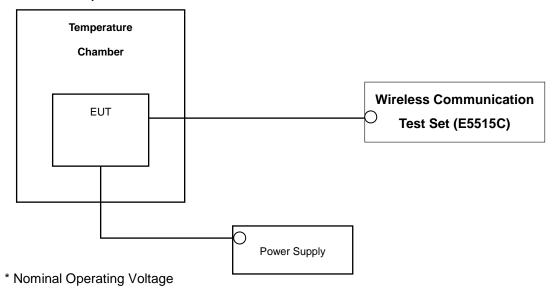
- Band Edge Requirement : According to FCC 22.917, 24.238 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)

The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

In GSM mode, the center frequency of spectrum set to the band edge frequency. The span is 1MHz

(RBW = at least 1 % of the EBW, VBW \ge 3*RBW, Detector = Average).


In WCDMA mode, the center frequency of spectrum set to the band edge frequency. The span is 7MHz (RBW = at least 1% of the EBW, \geq 3*RBW, Detector = Average).

NOTES: The analyzer plot offsets were determined by below conditions.

- For GSM850 and WCDMA850, total offset 26.8 dB = 20 dB attenuator + 6 dB Splitter + 0.8 dB RF cables.
- For GSM1900 and WCDMA1900, total offset 27.5 dB = 20 dB attenuator + 6 dB Splitter + 1.5 dB RF cables.

3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

Frequency stability is tested in accordance with ANSI/TIA-603-C-2004 section 2.2.2.

The frequency stability of the transmitter is measured by:

a.) **Temperature:** The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.

b.) **Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 100 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification — the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block(GSM1900/WCDMA1900). The frequency stability of the transmitter shall be maintained within \pm 0.000 25 %(\pm 2.5 ppm) of the center frequency(GSM850/WCDMA850).

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one halfhour is provided to allow stabilization of the equipment at each temperature level. **NOTE: The EUT is tested down to the battery endpoint.**

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Interval	Calibration Due
LG innotek CHINA	WCD-110/WCP	LF1NA625283010191(1.1)		
Agilent	N1921A/ Power Sensor	MY45241059	Annual	07/09/2015
Agilent	N1911A/ Power Meter	MY45100523	Annual	01/15/2016
MITEQ	AMF-6D-001180-35-20P/AMP	1081666	Annual	09/04/2015
Wainwright	WHK1.2/15G-10EF/H.P.F	4	Annual	06/17/2015
Wainwright	WRCJV2400/2483.5-2370/2520-60/12SS / B.R.F.	1	Annual	06/17/2015
Wainwright	WHK3.3/18G-10EF/H.P.F	2	Annual	06/17/2015
Hewlett Packard	11667B / Power Splitter	10545	Annual	02/22/2016
Hewlett Packard	11667B / Power Splitter	11275	Annual	05/19/2015
Digital	EP-3010/ Power Supply	3110117	Annual	10/29/2015
Schwarzbeck	UHAP/ Dipole Antenna	557	Biennial	03/23/2017
Schwarzbeck	UHAP/ Dipole Antenna	558	Biennial	03/23/2017
Korea Engineering	KR-1005L / Chamber	KRAC05063-3CH	Annual	10/29/2015
Schwarzbeck	BBHA 9120D/ Horn Antenna	147	Biennial	09/01/2016
Schwarzbeck	BBHA 9120D/ Horn Antenna	1151	Biennial	10/05/2015
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170541	Biennial	07/05/2015
Agilent	E4440A/Spectrum Analyzer	US45303008	Annual	03/18/2016
WEINSCHEL	ATTENUATOR	BR0592	Annual	10/22/2015
REOHDE&SCHWARZ	FSV40/Spectrum Analyzer	1307.9002K40-100931-NK	Annual	06/09/2015
Agilent	8960 (E5515C)/ Base Station	MY48360222	Annual	08/26/2015
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6200863156	Annual	03/24/2016

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result
2.1049	RSS-Gen(6.6) RSS-133(2.3)	Occupied Bandwidth	N/A		PASS
2.1051, 22.917(a), 24.238(a)	RSS-132(5.5) RSS-133(6.5)	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of- band emissions		PASS
* 2.1046	RSS-132(5.4) RSS-133(4.1)	Conducted Output Power	-	CONDUCTED	PASS
24.232(d)	RSS-133(6.4)	Peak- to- Average Ratio	< 13 dB		PASS
2.1055, 22.355	RSS-132(5.3)	Frequency stability / variation	< 2.5 ppm (Part22)		PASS
24.235	RSS-133(6.3)	of ambient temperature	Emission must remain in band (Part24)		PASS
22.913(a)(2)	RSS-132(5.4) SRSP-503(5.1.3)	Effective Radiated Power	< 7 Watts max. ERP < 11.5 Watts max. ERP		PASS
24.232(c)	RSS-133(6.4) SRSP-510(5.1.2)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS
2.1053, 22.917(a), 24.238(a)	RSS-132(5.5) RSS-133(6.5)	Radiated Spurious and Harmonic Emissions	< 43 + 10log10 (P[Watts]) for all out-of band emissions	RADIATED	PASS
	RSS-Gen(7)	Receiver Spurious Emissions	Cf.)Section 7.13~7.15		PASS

*: See SAR Report

6. SAMPLE CALCULATION

A. ERP Sample Calculation

Mada	Ch.	/ Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	EF	RP
Mode	channel	Freq.(MHz)	Level(dBm)	LEVEL(dBm)	(dBd)	U.L	P01.	w	dBm
GSM850	128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = SubstitudeLEVEL(dBm) + Ant. Gain – CL(Cable Loss)

1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.

- 2) During the test , the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).

6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power (**ERP**).

B. Emission Designator

GSM Emission Designator

EDGE Emission Designator

Emission Designator = 249KGXW GSM BW = 249 kHz G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

Emission Designator = 249KG7W GSM BW = 249 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W WCDMA BW = 4.17 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

7. TEST DATA

7.1 EFFECTIVE RADIATED POWER OUTPUT_ Standalone with normal cover

(GSM850 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain		Pol.	ERP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBd)	C.L	P0I.	W	dBm
128	824.20	-26.67	35.30	-10.59	0.88	V	0.241	23.83
190	836.60	-26.47	35.30	-10.54	0.89	V	0.244	23.87
251	848.80	-25.41	35.54	-10.49	0.89	V	0.261	24.16
EDGE 251	848.80	-31.91	35.54	-10.49	0.89	V	0.058	17.66

(WCDMA850 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	ER	Р
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBd)	U.L	FUI.	W	dBm
4132	826.40	-33.76	28.42	-10.58	0.88	V	0.050	16.96
4183	836.60	-33.66	28.11	-10.54	0.89	V	0.047	16.68
4233	846.60	-33.18	27.91	-10.50	0.89	V	0.045	16.52

Note: Standard batteries are the only options for this phone.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For WCDMA, GSM signals, a peak detector is used, with RBW \geq OBW, VBW \geq 3 x RBW. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in GSM850 and WCDMA850 mode. Also worst case of detecting Antenna is in vertical polarization in GSM850 and WCDMA850 mode.

worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

7.2 EQUIVALENT ISOTROPIC RADIATED POWER_ Standalone with normal cover

Ch./	Freq.	Measured	Substitude	Ant. Gain C.L		Pol.	EII	RP
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBi)	U.L	FUI.	W	dBm
512	1,850.20	-10.14	22.54	10.04	1.36	Н	1.325	31.22
661	1,880.00	-10.50	22.46	10.05	1.37	Н	1.301	31.14
810	1,909.80	-10.90	22.33	10.06	1.38	Н	1.260	31.01
EDGE 512	1,850.20	-14.67	22.54	10.04	1.36	Н	0.467	26.69

(GSM1900 Mode)

(WCDMA1900 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	EII	RP
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBi)			W	dBm
9262	1,852.40	-17.56	15.12	10.04	1.36	Н	0.240	23.80
9400	1,880.00	-17.88	15.08	10.05	1.37	Н	0.238	23.76
9538	1,907.60	-17.30	15.93	10.06	1.38	Н	0.289	24.61

Note: Standard batteries are the only options for this phone.

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For WCDMA, GSM signals, a peak detector is used, with RBW \geq OBW, VBW \geq 3 x RBW. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is x plane in GSM1900 and WCDMA1900 mode. Also worst case of detecting Antenna is in horizontal polarization in GSM1900 and WCDMA1900 mode.

worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

7.3 EFFECTIVE RADIATED POWER OUTPUT_Standalone with wireless charging cover (close)

(GSM850 Mode)

Ch./	Freq.	Measured	Measured Substitude		C.L	Pol.	ERP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBd)	U.L	P0I.	W	dBm
128	824.20	-26.28	35.69	-10.59	0.88	V	0.264	24.22
190	836.60	-25.76	36.01	-10.54	0.89	V	0.287	24.58
251	848.80	-24.67	36.28	-10.49	0.89	V	0.309	24.90
EDGE 251	848.80	-31.36	36.28	-10.49	0.89	V	0.066	18.21

(WCDMA850 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	ERP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBd)	U.L	FUI.	W	dBm
4132	826.40	-33.52	28.66	-10.58	0.88	V	0.052	17.20
4183	836.60	-33.03	28.74	-10.54	0.89	V	0.054	17.31
4233	846.60	-32.44	28.65	-10.50	0.89	V	0.053	17.26

Note: Standard batteries are the only options for this phone.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For WCDMA, GSM signals, a peak detector is used, with RBW \geq OBW, VBW \geq 3 x RBW. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in GSM850 and WCDMA850 mode. Also worst case of detecting Antenna is in vertical polarization in GSM850 and WCDMA850 mode.

worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

7.4 EQUIVALENT ISOTROPIC RADIATED POWER_Standalone with wireless charging cover (close)

(GSM1900 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	EIRP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBi)	U.L	P0I.	W	dBm
512	1,850.20	-10.60	22.08	10.04	1.36	Н	1.192	30.76
661	1,880.00	-11.51	21.45	10.05	1.37	Н	1.031	30.13
810	1,909.80	-12.08	21.15	10.06	1.38	Н	0.961	29.83
EDGE 512	1850.20	-14.76	22.08	10.04	1.36	Н	0.457	26.60

(WCDMA1900 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	EIRP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBi)	0.2	FUI.	W	dBm
9262	1,852.40	-18.56	14.12	10.04	1.36	н	0.191	22.80
9400	1,880.00	-19.18	13.78	10.05	1.37	Н	0.176	22.46
9538	1,907.60	-18.45	14.78	10.06	1.38	н	0.222	23.46

Note: Standard batteries are the only options for this phone.

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For WCDMA, GSM signals, a peak detector is used, with RBW \geq OBW, VBW \geq 3 x RBW. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is x plane in GSM1900 and WCDMA1900 mode. Also worst case of detecting Antenna is in horizontal polarization in GSM1900 and WCDMA1900 mode.

worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

7.5 EFFECTIVE RADIATED POWER OUTPUT_With wireless charging pad

Ch./	Freq.	Measured	Substitude	Ant. Gain		Pol.	ER	Р
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBd)	C.L Pol.		W	dBm
128	824.20	-26.02	35.95	-10.59	0.88	V	0.280	24.48
190	836.60	-26.27	35.50	-10.54	0.89	V	0.255	24.07
251	848.80	-25.41	35.54	-10.49	0.89	V	0.261	24.16
EDGE 128	824.20	-32.50	35.95	-10.59	0.88	V	0.063	18.00

(GSM850 Mode)

(WCDMA850 Mode)

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	ERP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBd)	U.L	FUI.	W	dBm
4132	826.40	-33.06	29.12	-10.58	0.88	V	0.058	17.66
4183	836.60	-33.14	28.63	-10.54	0.89	V	0.052	17.20
4233	846.60	-32.72	28.37	-10.50	0.89	V	0.050	16.98

Note: Standard batteries are the only options for this phone.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For WCDMA, GSM signals, a peak detector is used, with RBW \geq OBW, VBW \geq 3 x RBW. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in GSM850 and WCDMA850 mode. Also worst case of detecting Antenna is in vertical polarization in GSM850 and WCDMA850 mode.

worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

7.6 EQUIVALENT ISOTROPIC RADIATED POWER_With wireless charging pad

Ch./	Freq.	Measured	Substitude	Ant. Gain	C.L	Pol.	EIRP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBi)	U.L	FUI.	W	dBm
512	1,850.20	-12.78	19.90	10.04	1.36	V	0.722	28.58
661	1,880.00	-14.46	18.50	10.05	1.37	V	0.523	27.18
810	1,909.80	-15.51	17.72	10.06	1.38	V	0.436	26.40
EDGE 512	1850.20	-17.45	19.90	10.04	1.36	V	0.246	23.91

(GSM1900 Mode)

(WCDMA1900 Mode)

Ch./	Ch./ Freq.		Substitude	Ant. Gain		Del	EIRP	
channel	Freq.(MHz)	Level(dBm)	LEVEL (dBm)	(dBi)	C.L	Pol.	W	dBm
9262	1,852.40	-20.51	12.17	10.04	1.36	V	0.122	20.85
9400	1,880.00	-21.69	11.27	10.05	1.37	V	0.099	19.95
9538	1,907.60	-21.80	11.43	10.06	1.38	V	0.102	20.11

Note: Standard batteries are the only options for this phone.

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For WCDMA, GSM signals, a peak detector is used, with RBW \geq OBW, VBW \geq 3 x RBW. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in GSM1900 and WCDMA1900 mode. Also worst case of detecting Antenna is in vertical polarization in GSM1900 and WCDMA1900 mode.

worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

37.16 dBc

7.7 RADIATED SPURIOUS EMISSIONS_ Standalone with normal cover

7.7.1 RADIATED SPURIOUS EMISSIONS (GSM850)

- MEASURED OUTPUT POWER: 24.16 dBm = 0.261 W
- MODULATION SIGNAL:
 GSM850
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) =

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBd)	<u>Substitute</u> <u>Level</u> [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,648.40	-50.49	9.71	-58.52	1.29	Н	-50.10	74.26
128 (824.2)	2,472.60	-50.23	10.54	-55.41	1.60	Н	-46.47	70.63
	3,296.80	-56.07	12.21	-61.14	1.85	Н	-50.78	74.94
	1,673.20	-50.25	9.77	-58.43	1.28	V	-49.94	74.10
190 (836.6)	2,509.80	-50.69	10.65	-55.67	1.61	Н	-46.63	70.79
	3,346.40	-56.72	12.41	-62.20	1.86	Н	-51.65	75.81
	1,697.60	-48.01	9.85	-56.20	1.30	V	-47.65	71.81
251 (848.8)	2,546.40	-45.48	10.72	-50.36	1.64	Н	-41.28	65.44
	3,395.20	-56.41	12.39	-61.73	1.88	V	-51.22	75.38

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- <u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.7.2 RADIATED SPURIOUS EMISSIONS (GSM1900)

- MEASURED OUTPUT POWER: <u>31.22 dBm = 1.325 W</u>
- MODULATION SIGNAL: GSM1900
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = 44.22 dBc

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	<u>Substitute</u> Level [dBm]	C.L	Pol.	EIRP (dBm)	dBc
	3,700.40	-42.99	12.32	-46.65	2.03	Н	-36.36	67.58
512 (1850.2)	5,550.60	-28.45	13.02	-27.34	2.52	V	-16.84	48.06
	7,400.80	-37.53	11.06	-28.20	2.91	V	-20.05	51.27
	3,760.00	-43.80	12.29	-47.40	1.93	Н	-37.04	68.26
661 (1880.0)	5,640.00	-29.20	13.12	-28.26	2.57	V	-17.71	48.93
	7,520.00	-38.44	11.09	-29.60	3.03	V	-21.54	52.76
	3,819.60	-45.84	12.28	-48.81	2.04	н	-38.57	69.79
810 (1909.8)	5,729.40	-31.30	13.06	-30.11	2.55	V	-19.60	50.82
	7,639.20	-41.18	11.38	-31.76	3.11	V	-23.49	54.71

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- <u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.7.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)

- MEASURED OUTPUT POWER: <u>16.96 dBm = 0.050 W</u>
- MODULATION SIGNAL: WCDMA850
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = 29.96 dBc

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBd)	<u>Substitute</u> Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,652.80	-55.51	9.71	-63.55	1.29	V	-55.13	72.09
4,132 (826.4)	2,479.20	-57.21	10.54	-62.23	1.61	V	-53.30	70.26
	3,305.60	-56.75	12.26	-61.93	1.86	Н	-51.53	68.49
	1,673.20	-56.43	9.77	-64.61	1.28	V	-56.12	73.08
4,183 (836.6)	2,509.80	-57.34	10.65	-62.33	1.61	Н	-53.29	70.25
	3,346.40	-57.21	12.41	-62.69	1.86	Н	-52.14	69.10
	1,693.20	-55.09	9.83	-63.34	1.30	Н	-54.81	71.77
4,233 (846.6)	2,539.80	-58.18	10.71	-63.00	1.63	V	-53.92	70.88
	3,386.40	-55.58	12.40	-61.03	1.84	Н	-50.47	67.43

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

<u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.7.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)

- MEASURED OUTPUT POWER: 24.61 dBm = 0.289 W
- MODULATION SIGNAL: WCDMA1900
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = <u>37.61 dBc</u>

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	<u>Substitute</u> Level [dBm]	C.L	Pol.	EIRP (dBm)	dBc
	3,704.80	-40.87	12.32	-44.49	2.01	Н	-34.18	58.79
9262 (1852.4)	5,557.20	-55.02	13.03	-53.89	2.53	V	-43.39	68.00
	7,409.60	-56.42	11.05	-46.92	2.92	V	-38.79	63.40
	3,760.00	-46.55	12.29	-50.16	1.93	Н	-39.79	64.40
9400 (1880.0)	5,640.00	-53.65	13.12	-52.72	2.57	V	-42.17	66.78
	7,520.00	-56.03	11.09	-47.19	3.03	V	-39.13	63.74
	3,815.20	-46.12	12.28	-49.32	2.04	Н	-39.08	63.69
9538 (1907.6)	5,722.80	-53.96	13.80	-53.48	2.57	н	-42.25	66.86
	7,630.40	-56.07	11.36	-46.60	3.19	V	-38.43	63.04

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

<u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.8 RADIATED SPURIOUS EMISSIONS_Standalone with wireless charging cover (close)

3 meters

7.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)

- MEASURED OUTPUT POWER: 24.90 dBm = 0.309 W
- MODULATION SIGNAL: GSM850
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = <u>37.90 dBc</u>

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBd)	<u>Substitute</u> Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,648.40	-48.80	9.71	-56.84	1.29	Н	-48.42	73.32
128 (824.2)	2,472.60	-47.79	10.54	-52.97	1.60	Н	-44.03	68.93
	3,296.80	-57.45	12.21	-62.52	1.85	V	-52.16	77.06
	1,673.20	-52.14	9.77	-60.32	1.28	Н	-51.83	76.73
190 (836.6)	2,509.80	-49.23	10.65	-54.21	1.61	Н	-45.17	70.07
	3,346.40	-57.75	12.41	-63.24	1.86	н	-52.69	77.59
	1,697.60	-50.30	9.85	-58.50	1.30	н	-49.95	74.85
251 (848.8)	2,546.40	-46.54	10.72	-51.42	1.64	V	-42.34	67.24
	3,395.20	-56.75	12.39	-62.07	1.88	Н	-51.56	76.46

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

- <u>2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3</u> maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- <u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)

- MEASURED OUTPUT POWER: <u>30.76 dBm = 1.192 W</u>
- MODULATION SIGNAL: GSM1900
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) =

43.76 dBc

3 meters

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	<u>Substitute</u> Level [dBm]	C.L	Pol.	EIRP (dBm)	dBc
	3,700.40	-43.91	12.32	-47.57	2.03	V	-37.28	68.04
512 (1850.2)	5,550.60	-31.48	13.02	-30.37	2.52	V	-19.87	50.63
	7,400.80	-39.94	11.06	-30.62	2.91	V	-22.47	53.23
	3,760.00	-45.13	12.29	-48.73	1.93	Н	-38.37	69.13
661 (1880.0)	5,640.00	-31.92	13.12	-30.99	2.57	V	-20.44	51.20
	7,520.00	-40.41	11.09	-31.57	3.03	V	-23.51	54.27
	3,819.60	-45.95	12.28	-48.91	2.04	Н	-38.67	69.43
810 (1909.8)	5,729.40	-33.74	13.06	-32.55	2.55	V	-22.04	52.80
	7,639.20	-42.46	11.38	-33.03	3.11	V	-24.76	55.52

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. We were attached the results of standalone with wireless charging cover (close). Because the

results of close condition is higher than open condition.

7.8.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)

- MEASURED OUTPUT POWER: <u>17.31 dBm = 0.054 W</u>
- MODULATION SIGNAL: WCDMA850
- DISTANCE: <u>3 meters</u>
- LIMIT: 43 + 10 log10 (W) = <u>30.31 dBc</u>

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBd)	<u>Substitute</u> Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,652.80	-54.39	9.71	-62.43	1.29	V	-54.01	71.32
4,132 (826.4)	2,479.20	-55.17	10.54	-60.19	1.61	Н	-51.26	68.57
	3,305.60	-56.89	12.26	-62.07	1.86	Н	-51.67	68.98
	1,673.20	-54.12	9.77	-62.30	1.28	н	-53.81	71.12
4,183 (836.6)	2,509.80	-54.01	10.65	-58.99	1.61	Н	-49.95	67.26
	3,346.40	-56.83	12.41	-62.32	1.86	V	-51.77	69.08
	1,693.20	-52.26	9.83	-60.51	1.30	V	-51.98	69.29
4,233 (846.6)	2,539.80	-54.83	10.71	-59.65	1.63	Н	-50.57	67.88
	3,386.40	-56.40	12.40	-61.85	1.84	V	-51.29	68.60

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. We were attached the results of standalone with wireless charging cover (close). Because the

results of close condition is higher than open condition.

7.8.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)

- MEASURED OUTPUT POWER: 23.46 dBm = 0.222 W
- MODULATION SIGNAL: WCDMA1900
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = <u>36.46 dBc</u>

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	<u>Substitute</u> <u>Level</u> [dBm]	C.L	Pol.	EIRP (dBm)	dBc
	3,704.80	-42.30	12.32	-45.92	2.01	Н	-35.62	59.08
9262 (1852.4)	5,557.20	-53.40	13.03	-52.28	2.53	V	-41.78	65.24
	7,409.60	-56.70	11.05	-47.20	2.92	V	-39.07	62.53
	3,760.00	-45.32	12.29	-48.93	1.93	Н	-38.56	62.02
9400 (1880.0)	5,640.00	-52.87	13.12	-51.94	2.57	V	-41.39	64.85
	7,520.00	-56.12	11.09	-47.28	3.03	Н	-39.22	62.68
	3,815.20	-44.05	12.28	-47.25	2.04	Н	-37.01	60.47
9538 (1907.6)	5,722.80	-51.43	13.80	-50.96	2.57	V	-39.73	63.19
	7,630.40	-56.98	11.36	-47.50	3.19	Н	-39.33	62.79

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

<u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

37.48 dBc

7.9 RADIATED SPURIOUS EMISSIONS_With wireless charging pad 7.9.1 RADIATED SPURIOUS EMISSIONS (GSM850)

- MEASURED OUTPUT POWER: 24.48 dBm = 0.280 W
- MODULATION SIGNAL:
 GSM850
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) =

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBd)	<u>Substitute</u> <u>Level</u> [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,648.40	-53.69	9.71	-61.73	1.29	V	-53.31	77.79
128 (824.2)	2,472.60	-52.56	10.54	-57.74	1.60	V	-48.80	73.28
	3,296.80	-56.96	12.21	-62.02	1.85	Н	-51.66	76.14
	1,673.20	-51.57	9.77	-59.75	1.28	V	-51.26	75.74
190 (836.6)	2,509.80	-53.26	10.65	-58.24	1.61	V	-49.20	73.68
	3,346.40	-56.40	12.41	-61.88	1.86	V	-51.33	75.81
	1,697.60	-50.18	9.85	-58.38	1.30	Н	-49.83	74.31
251 (848.8)	2,546.40	-48.81	10.72	-53.69	1.64	V	-44.61	69.09
	3,395.20	-56.01	12.39	-61.32	1.88	V	-50.81	75.29

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- <u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.9.2 RADIATED SPURIOUS EMISSIONS (GSM1900)

- MEASURED OUTPUT POWER: 28.58 dBm = 0.722 W
- MODULATION SIGNAL: GSM1900
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = 41.58 dBc

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	<u>Substitute</u> Level [dBm]	C.L	Pol.	EIRP (dBm)	dBc
	3,700.40	-46.74	12.32	-50.40	2.03	н	-40.11	68.69
512 (1850.2)	5,550.60	-41.32	13.02	-40.20	2.52	V	-29.70	58.28
	7,400.80	-47.29	11.06	-37.97	2.91	Н	-29.82	58.40
	3,760.00	-46.40	12.29	-50.01	1.93	Н	-39.65	68.23
661 (1880.0)	5,640.00	-40.83	13.12	-39.89	2.57	Н	-29.34	57.92
	7,520.00	-47.87	11.09	-39.03	3.03	Н	-30.97	59.55
	3,819.60	-47.31	12.28	-50.28	2.04	V	-40.04	68.62
810 (1909.8)	5,729.40	-40.46	13.06	-39.27	2.55	н	-28.76	57.34
	7,639.20	-48.52	11.38	-39.10	3.11	Н	-30.83	59.41

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- <u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.9.3 RADIATED SPURIOUS EMISSIONS (WCDMA850)

- MEASURED OUTPUT POWER: <u>17.66 dBm = 0.058 W</u>
- MODULATION SIGNAL: WCDMA850
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = <u>30.66 dBc</u>

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBd)	<u>Substitute</u> Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,652.80	-56.03	9.71	-64.07	1.29	V	-55.65	73.31
4,132 (826.4)	2,479.20	-56.89	10.54	-61.91	1.61	Н	-52.98	70.64
	3,305.60	-57.06	12.26	-62.24	1.86	Н	-51.84	69.50
	1,673.20	-53.87	9.77	-62.06	1.28	V	-53.57	71.23
4,183 (836.6)	2,509.80	-56.50	10.65	-61.49	1.61	V	-52.45	70.11
	3,346.40	-57.27	12.41	-62.76	1.86	Н	-52.21	69.87
	1,693.20	-51.77	9.83	-60.02	1.30	V	-51.49	69.15
4,233 (846.6)	2,539.80	-57.27	10.71	-62.09	1.63	н	-53.01	70.67
	3,386.40	-56.99	12.40	-62.44	1.84	Н	-51.88	69.54

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

<u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.9.4 RADIATED SPURIOUS EMISSIONS (WCDMA1900)

- MEASURED OUTPUT POWER: 20.85 dBm = 0.122 W
- MODULATION SIGNAL: WCDMA1900
- DISTANCE:
- LIMIT: 43 + 10 log10 (W) = <u>33.85 dBc</u>

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	<u>Substitute</u> Level [dBm]	C.L	Pol.	EIRP (dBm)	dBc
9262 (1852.4)	3,704.80	-46.61	12.32	-50.23	2.01	Н	-39.93	60.78
	5,557.20	-54.07	13.03	-52.95	2.53	V	-42.45	63.30
	7,409.60	-57.22	11.05	-47.72	2.92	V	-39.59	60.44
9400 (1880.0)	3,760.00	-48.41	12.29	-52.02	1.93	Н	-41.66	62.51
	5,640.00	-54.34	13.12	-53.40	2.57	V	-42.85	63.70
	7,520.00	-56.99	11.09	-48.15	3.03	Н	-40.09	60.94
9538 (1907.6)	3,815.20	-46.68	12.28	-49.88	2.04	V	-39.64	60.49
	5,722.80	-52.35	13.80	-51.88	2.57	н	-40.65	61.50
	7,630.40	-57.28	11.36	-47.81	3.19	Н	-39.64	60.49

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

<u>4. We were attached the results of standalone with wireless charging cover (close). Because the results of close condition is higher than open condition.</u>

7.10 PEAK-TO-AVERAGE RATIO

	Ch.	Measured P _{Pk} (dBm)	Measured P _{Avg} (dBm)	P _{Avg} (Duty Cycle)			P.A.R.	Limit	Pass
Band				Tx _{Total} (ms)	Tx _{On} (ms)	Factor (dB)	$= P_{Pk} - P_{Avg}$ (dB)	(dB)	/ Fail
GSM1900	661	30.70	21.05				0.41		
GSM1900 EDGE	661	29.13	16.26	4.6232	0.5507	9.24	3.63	13	Pass
WCDMA1900	9400	CCDF Procedure					3.07		

- Plots of the EUT's Peak- to- Average Ratio are shown Page 50 ~ 52, 55.

NOTES:

Peak to Average Power Ratio was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 5.7.

Only GSM(include EDGE) Mode was tested by Section 5.7.2 Alternate Procedure P.A.R_(dB) = $P_{Pk (dBm)} - P_{Avg (dBm)}$ (P_{Avg} = Average Power + Duty cycle Factor)

Duty cycle Factor = 10 log (1/x), x = Tx_{On} / Tx_{Total}

7.11 OCCUPIED BANDWIDTH

Band	Channel	Frequency(MHz)	Data (GSM: kHz / WCDMA : MHz)	
	128	824.20	244.5214	
GSM850	190	836.60	240.9381	
	251	848.80	246.3425	
GSM850 EDGE	251	848.80	251.7085	
	512	1,850.20	246.2609	
GSM1900	661	1,880.00	243.2361	
	810	1,909.80	242.8366	
GSM1900 EDGE	512	1,850.20	244.7074	
	4132	826.40	4.1185	
WCDMA850	4183	836.60	4.1335	
	4233	846.60	4.1228	
	9262	1852.40	4.1620	
WCDMA1900	9400	1880.00	4.1304	
	9538	1907.60	4.1500	

- Plots of the EUT's Occupied Bandwidth are shown Page 46 ~ 49, 52 ~ 55.

7.12 CONDUCTED SPURIOUS EMISSIONS

Band	Channel	Frequency of Maximum Harmonic (GHz)	Maximum Data (dBm)
	128	4.826800	-31.06
GSM850	190	4.976390	-31.09
	251	4.951050	-30.71
	512	6.990800	-28.95
GSM1900	661	6.982330	-29.04
	810	6.985320	-28.52
	4132	4.614080	-30.32
WCDMA850	4183	4.603150	-29.22
	4233	4.927190	-30.33
	9262	6.581540	-28.95
WCDMA1900	9400	6.967870	-28.88
	9538	6.985820	-28.25

- Plots of the EUT's Conducted Spurious Emissions are shown Page 72 ~ 83.

7.12.1 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 56 ~ 71.

7.13 RECEIVER SPURIOUS EMISSIONS_Standalone with normal cover

FCC Rule(s)	RSS-Gen
Test Requirements:	Emission Level shall not exceed RSS-Gen 6(a) limits
Operating conditions:	Under normal test conditions
Method of testing:	Radiated
S/A Sottinger	F < 1 GHz: RBW: 100 kHz, VBW: 300 kHz (Peak)
S/A. Settings:	F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)
Mode of operation:	Receive

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30 – 88	100 (40 dBuV)	3
88 - 216	150 (43.5 dBuV))	3
216 – 960	200 (46 dBuV)	3
Above 960	500 (54 dBuV)	3

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Factor	ANT POL	Total	Limit	Margin
MHz	dBuV	(dB)	(H/V)	dBuV/m	dBuV/m	dB
			No Critical peaks for	und		

Above 1 GHz

Frequency	Reading	Factor	ANT POL	Total	Limit	Margin
MHz	dBuV	(dB)	(H/V)	dBuV/m	dBuV/m	dB
			No Critical peaks for	und		

7.14 RECEIVER SPURIOUS EMISSIONS_Standalone with wireless charging cover (close)

FCC Rule(s)	RSS-Gen
Test Requirements:	Emission Level shall not exceed RSS-Gen 6(a) limits
Operating conditions:	Under normal test conditions
Method of testing:	Radiated
S/A Sottingo:	F < 1 GHz: RBW: 100 kHz, VBW: 300 kHz (Peak)
S/A. Settings:	F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)
Mode of operation:	Receive

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30 – 88	100 (40 dBuV)	3
88 - 216	150 (43.5 dBuV))	3
216 – 960	200 (46 dBuV)	3
Above 960	500 (54 dBuV)	3

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Factor	ANT POL	Total	Limit	Margin
MHz	dBuV	(dB)	(H/V)	dBuV/m	dBuV/m	dB
	No Critical peaks found					

Above 1 GHz

Frequency	Reading	Factor	ANT POL	Total	Limit	Margin
MHz	dBuV	(dB)	(H/V)	dBuV/m	dBuV/m	dB
			No Critical peaks for	und	-	_

7.15 RECEIVER SPURIOUS EMISSIONS_With wireless charging pad

FCC Rule(s)	RSS-Gen
Test Requirements:	Emission Level shall not exceed RSS-Gen 6(a) limits
Operating conditions:	Under normal test conditions
Method of testing:	Radiated
S/A. Settings:	F < 1 GHz: RBW: 100 kHz, VBW: 300 kHz (Peak)
S/A. Settings.	F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)
Mode of operation:	Receive

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30 – 88	100 (40 dBuV)	3
88 - 216	150 (43.5 dBuV))	3
216 – 960	200 (46 dBuV)	3
Above 960	500 (54 dBuV)	3

Operation Mode: Receive:

30 MHz ~ 1 GHz

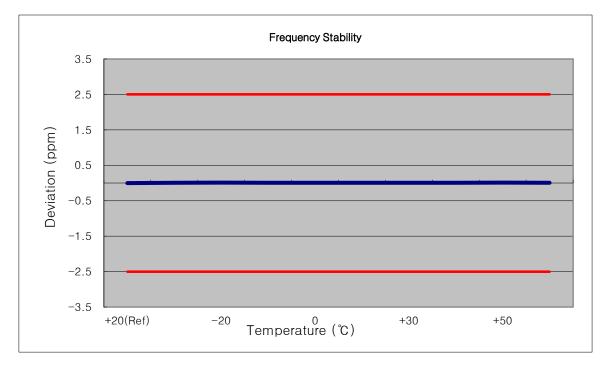
Frequency	Reading	Factor	ANT POL	Total	Limit	Margin
MHz	dBuV	(dB)	(H/V)	dBuV/m	dBuV/m	dB
			No Critical peaks for	und		

Above 1 GHz

Frequency	Reading	Factor	ANT POL	Total	Limit	Margin				
MHz	dBuV	(dB)	(H/V)	dBuV/m	dBuV/m	dB				
No Critical peaks found										

190

7.16 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 7.16.1 FREQUENCY STABILITY (GSM850)

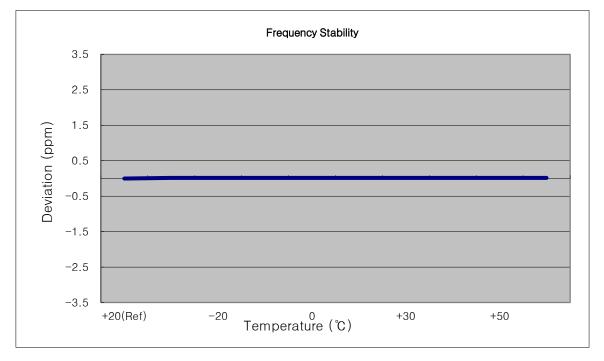

CHANNEL:

REFERENCE VOLTAGE: <u>3.85 VDC</u>

DEVIATION LIMIT:

<u>± 0.000 25 % or 2.5 ppm</u>

Voltage	Power	Temp.	Frequency	Frequency	equency Deviation		
(%)	(°C) (°C)		(Hz)	Error (Hz)	(%)	ppm	
100%		+20(Ref)	836 599 993	0	0.000 000	0.000	
100%		-30	836 600 000	6.45	0.000 001	0.008	
100%		-20	836 600 002	9.34	0.000 001	0.011	
100%		-10	836 600 001	7.53	0.000 001	0.009	
100%	3.85	0	836 600 000	6.73	0.000 001	0.008	
100%		+10	836 600 000	6.76	0.000 001	0.008	
100%		+30	836 599 999	5.83	0.000 001	0.007	
100%		+40	836 600 000	6.79	0.000 001	0.008	
100%		+50	836 600 001	7.82	0.000 001	0.009	
Batt. Endpoint	3.27	+20	836 600 000	6.60	0.000 001	0.008	

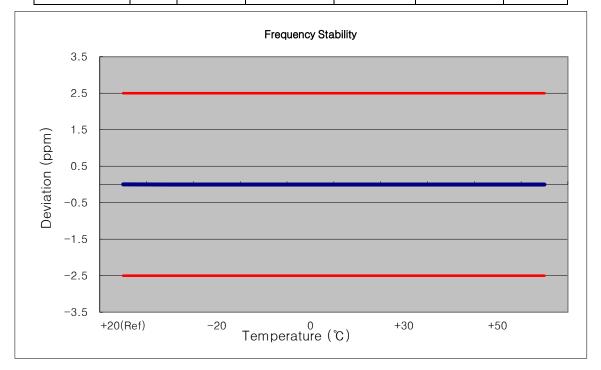

661

-

7.16.2 FREQUENCY STABILITY (GSM1900)

- OPERATING FREQUENCY: 1880,000,000 Hz
- CHANNEL:
- REFERENCE VOLTAGE: 3.85 VDC
- DEVIATION LIMIT:

Voltage	Power	Temp.			Deviation	ppm	
(%)	(VDC)	(°C)			(%)		
100%		+20(Ref)	1879 999 966	0	0.000 000	0.000	
100%		-30	1879 999 996	30.30	0.000 002	0.016	
100%		-20	1879 999 995	29.11	0.000 002	0.015	
100%		-10	1879 999 996	30.07	0.000 002	0.016	
100%	3.85	0	1879 999 999	33.12	0.000 002	0.018	
100%		+10	1879 999 997	30.46	0.000 002	0.016	
100%		+30	1879 999 998	32.40	0.000 002	0.017	
100%		+40	1879 999 995	28.59	0.000 002	0.015	
100%		+50 1879 999 996 29.60		29.60	0.000 002	0.016	
Batt. Endpoint	3.27	+20	1879 999 997	30.51	0.000 002	0.016	

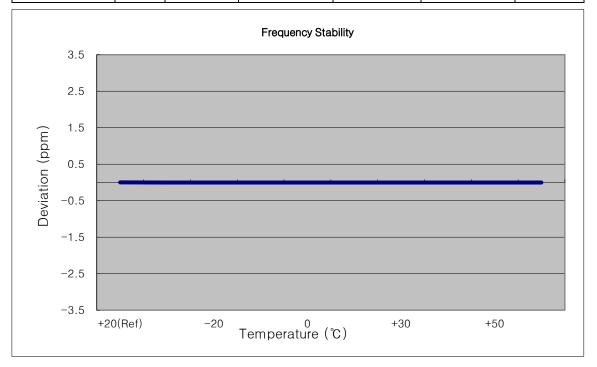


4183

7.16.3 FREQUENCY STABILITY (WCDMA850)

- OPERATING FREQUENCY: 836,600,000 Hz
- CHANNEL:
- REFERENCE VOLTAGE: <u>3.85 VDC</u>
- DEVIATION LIMIT: ± 0.000 25 % or 2.5 ppm

Voltage	Power	Temp.	Frequency	Frequency	Frequency Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	836 600 003	0	0.000 000	0.000
100%		-30 836 599 997 -2.56		0.000 000	-0.003	
100%		-20	836 599 997	-3.03	0.000 000	-0.004
100%		-10	836 599 997	-3.04	0.000 000	-0.004
100%	3.85	0	836 599 997	-3.41	0.000 000	-0.004
100%		+10	836 599 996	-3.74	0.000 000	-0.004
100%		+30	836 599 997	-3.01	0.000 000	-0.004
100%		+40	836 599 997	-2.51	0.000 000	-0.003
100%		+50	836 599 997	-3.35	0.000 000	-0.004
Batt. Endpoint	3.27	+20	836 599 997	-2.93	0.000 000	-0.004



-

7.16.4 FREQUENCY STABILITY (WCDMA1900)

- OPERATING FREQUENCY: 1,880,000,000 Hz
- CHANNEL: 9400
- REFERENCE VOLTAGE: 3.85 VDC
- DEVIATION LIMIT:

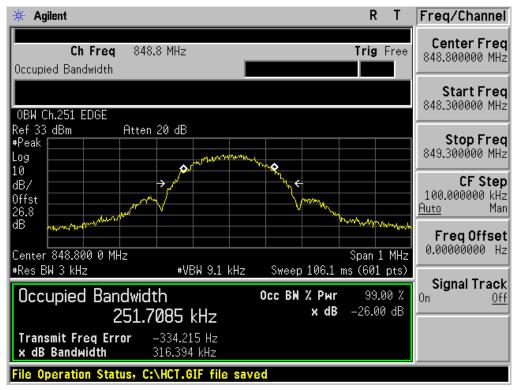
Voltage	Power	Temp.	Frequency	Frequency	Deviation	ppm	
(%)	(VDC)	(°°)	(Hz)	Error (Hz)	(%)		
100%		+20(Ref)	1880 000 004	0	0.000 000	0.000	
100%		-30	1879 999 996	-4.00	0.000 000	-0.002	
100%		-20	1879 999 994	-5.54	0.000 000	-0.003	
100%		-10	1879 999 995	-4.91	0.000 000	-0.003	
100%	3.85	0	1879 999 996	-3.86	0.000 000	-0.002	
100%		+10	1879 999 996	-3.99	0.000 000	-0.002	
100%		+30	1879 999 996	-4.01	0.000 000	-0.002	
100%		+40	1879 999 996	-4.46	0.000 000	-0.002	
100%		+50	1879 999 996	-4.02	0.000 000	-0.002	
Batt. Endpoint	3.27	+20	1879 999 995	-5.07	0.000 000	-0.003	

Model: LG-H815


8. TEST PLOTS

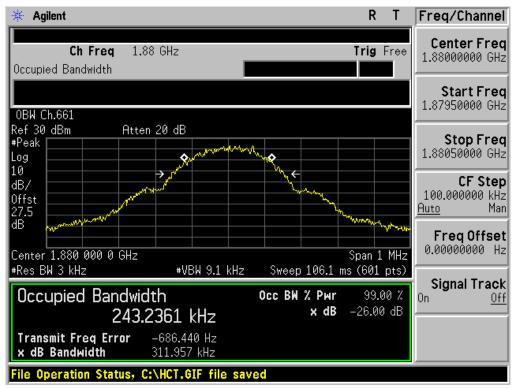
■ GSM850 MODE (128 CH.) Occupied Bandwidth

■ GSM850 MODE (190 CH.) Occupied Bandwidth



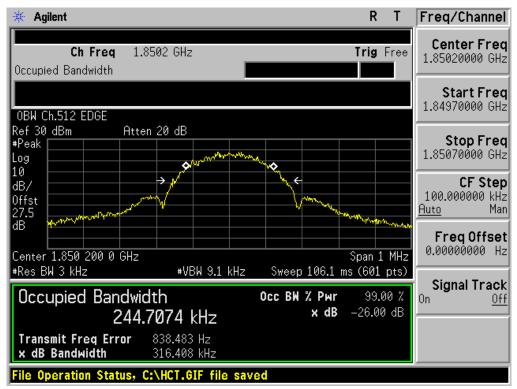
■ GSM850 MODE (251 CH.) Occupied Bandwidth

■ GSM850 EDGE (251 CH.) Occupied Bandwidth

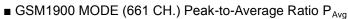


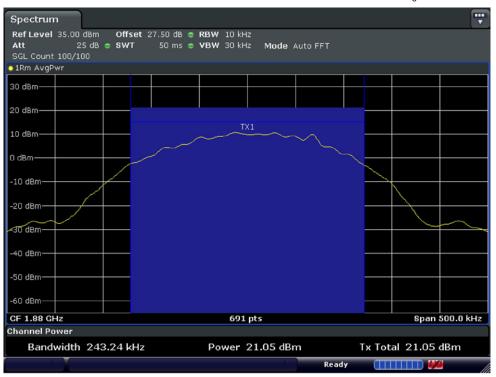
■ GSM1900 MODE (512 CH.) Occupied Bandwidth

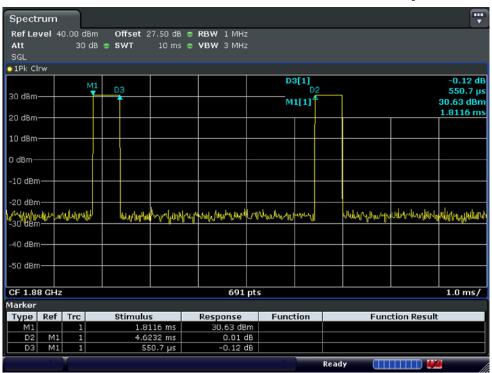
■ GSM1900 MODE (661 CH.) Occupied Bandwidth



■ GSM1900 MODE (810 CH.) Occupied Bandwidth


■ GSM1900 EDGE (512 CH.) Occupied Bandwidth

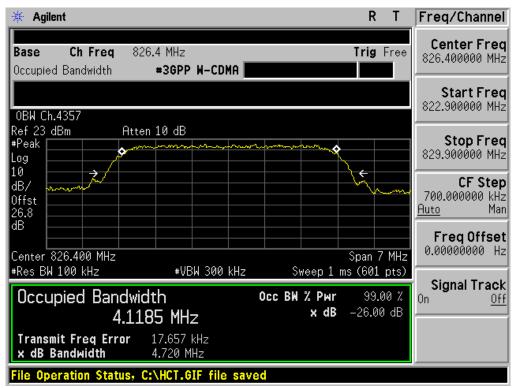



Spectrum								
RefLevel 40.00 dBm Att 30 dB SGL	Offset 2 SWT	7.50 dB 😑 RI 1.9 µs 😑 VI		Mode Aut	o FFT			
⊙1Pk Max	1							30.70 dBm
			M1	M1	[1]			93920 GHz
30 dBm-								
20 dBm								
10 dBm								
0 dBm		\vdash						
10.10								
-10 dBm								
-20 dBm								
-30 dBm								
-50 ubiii								
-40 dBm								
-50 dBm								
CF 1.88 GHz			691	pts			Spa	n 2.0 MHz
					Read	y 💷		

■ GSM1900 MODE (661 CH.) Peak-to-Average Ratio P_{Pk}

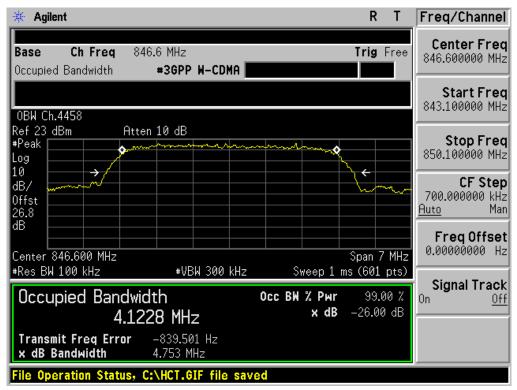
■ GSM1900 MODE (661 CH.) Peak-to-Average Ratio P_{Avg}

■ GSM1900 EDGE (661 CH.) Peak-to-Average Ratio P_{Pk}

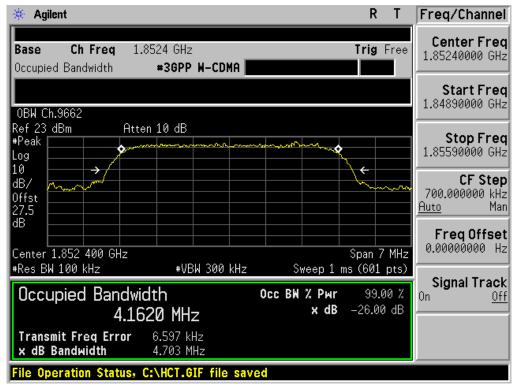


■ GSM1900 EDGE (661 CH.) Peak-to-Average Ratio P_{Avg}

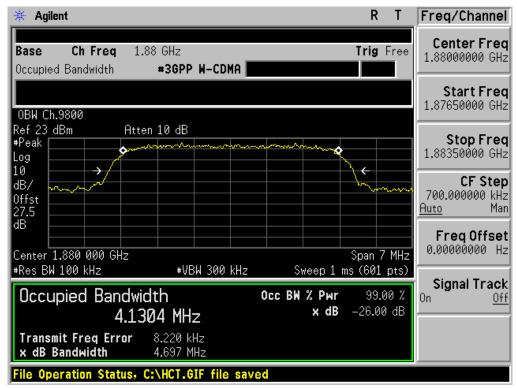
■ WCDMA850 MODE (4132 CH.) Occupied Bandwidth



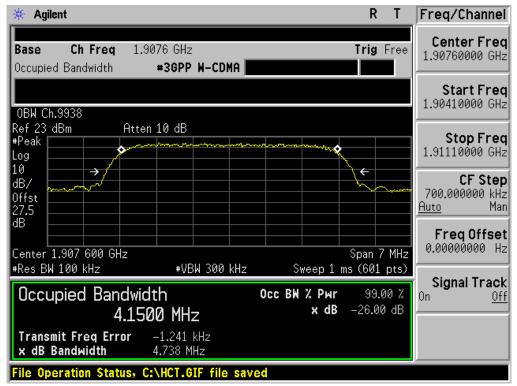
R Freq/Channel Agilent Т ¥. **Center Freq** Ch Freq 836.6 MHz Trig Free Base 836.600000 MHz **#3GPP W-CDMA** Occupied Bandwidth Start Freq 833.100000 MHz 0BW Ch.4408 Ref 23 dBm Atten 10 dB Stop Freq #Peak 840.100000 MHz Log 10 \rightarrow ÷ CF Step dB/ 700.000000 kHz Offst Man Auto 26.8 dB Freq Offset 0.0000000 Hz Span 7 MHz Center 836.600 MHz #Res BW 100 kHz Sweep 1 ms (601 pts) #VBW 300 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n <u>Off</u> x dB -26.00 dB 4.1335 MHz **Transmit Freq Error** 2.862 kHz x dB Bandwidth 4.722 MHz File Operation Status, C:\HCT.GIF file saved


■ WCDMA850 MODE (4183 CH.) Occupied Bandwidth

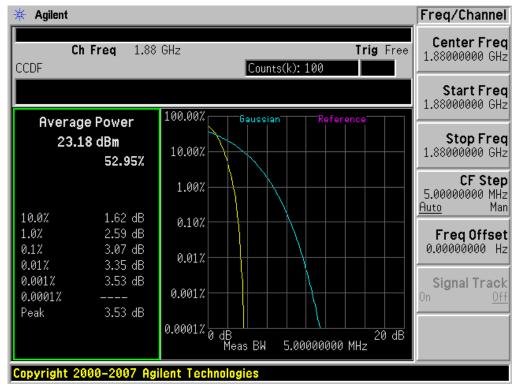
■ WCDMA850MODE (4233 CH.) Occupied Bandwidth

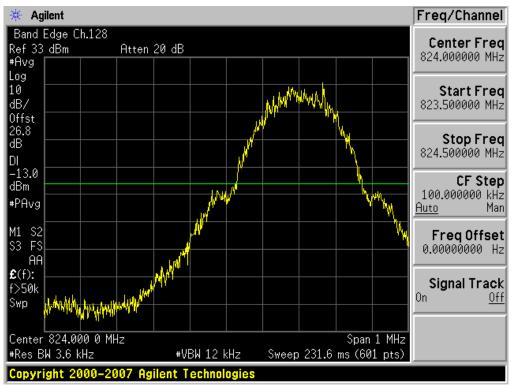


■ WCDMA1900 MODE (9262 CH.) Occupied Bandwidth

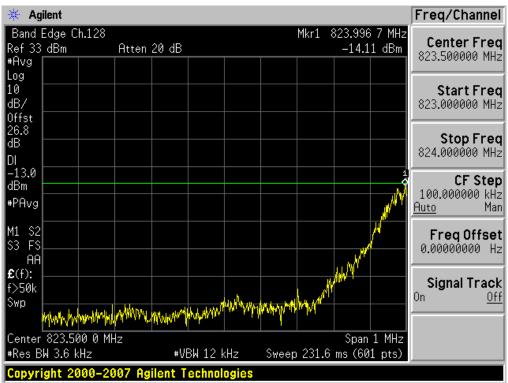


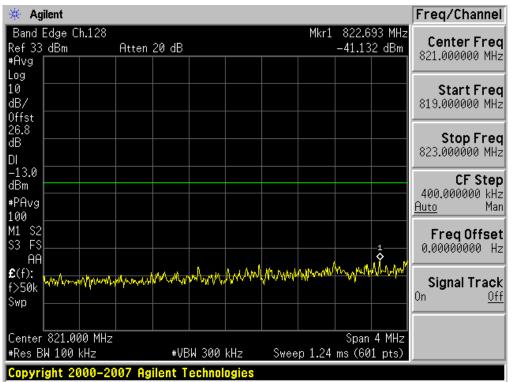
■ WCDMA1900 MODE (9400 CH.) Occupied Bandwidth



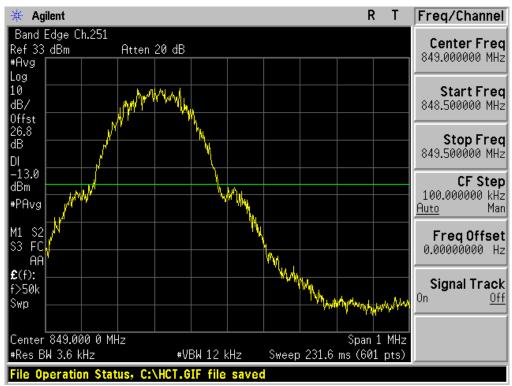

■ WCDMA1900 MODE (9538 CH.) Occupied Bandwidth

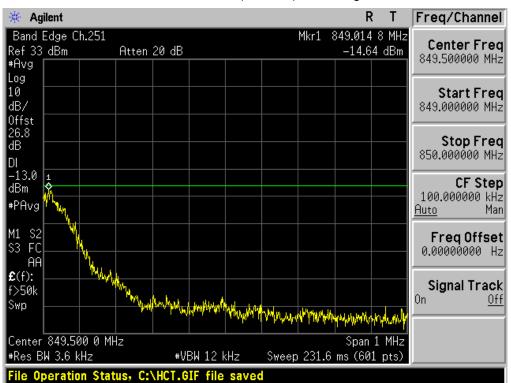
■ WCDMA1900 MODE (9400 CH.) Peak-to-Average Ratio



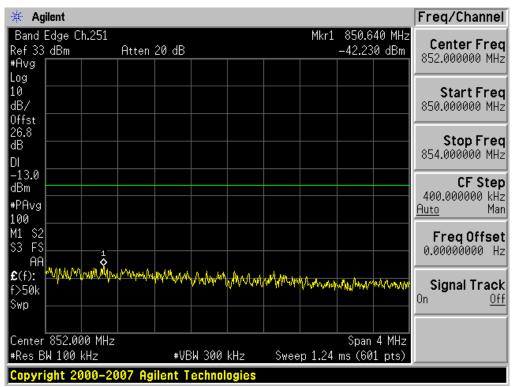

■ GSM850 MODE (128 CH.) Block Edge 1

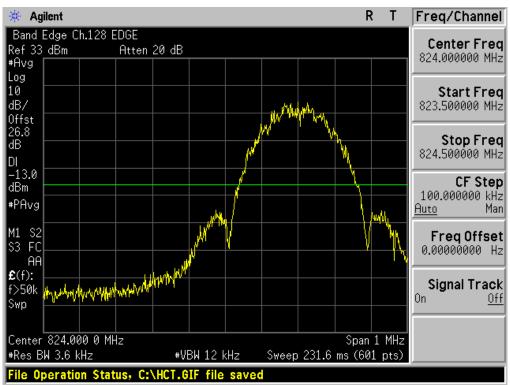
■ GSM850 MODE (128 CH.) Block Edge 2





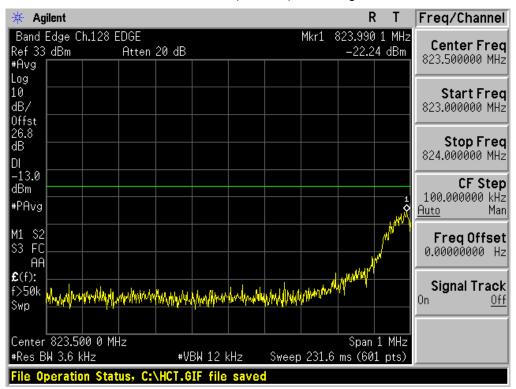
■ GSM850 MODE (128 CH.) Block Edge 3

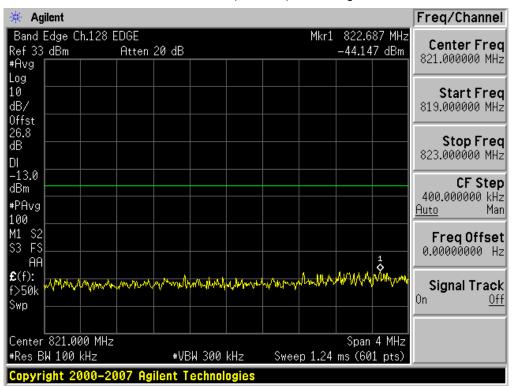

■ GSM850 MODE (251 CH.) Block Edge 1



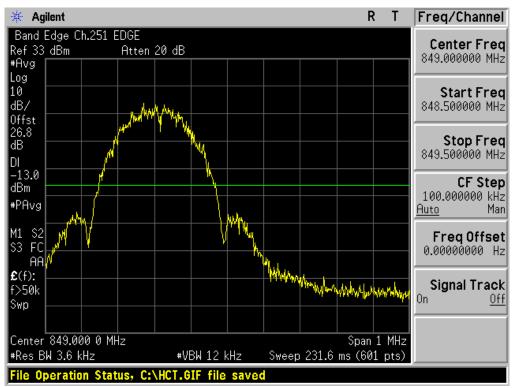
■ GSM850 MODE (251 CH.) Block Edge 2

■ GSM850 MODE (251 CH.) Block Edge 3

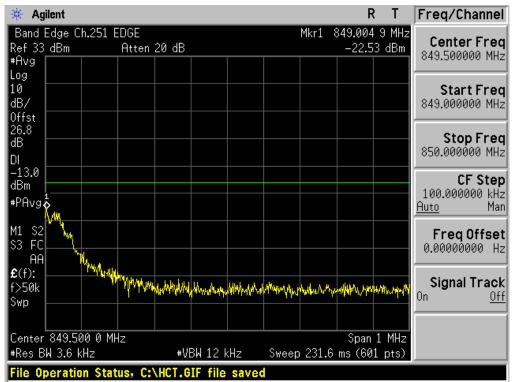



■ EDGE MODE (128 CH.) Block Edge 1

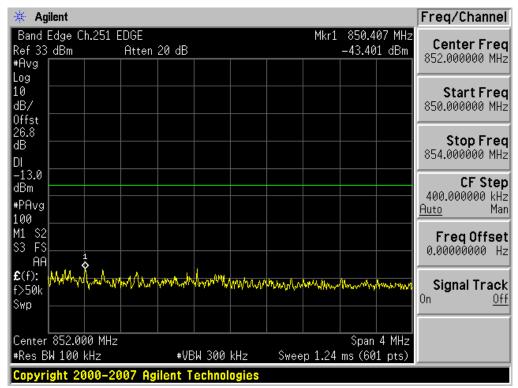
■ EDGE MODE (128 CH.) Block Edge 2

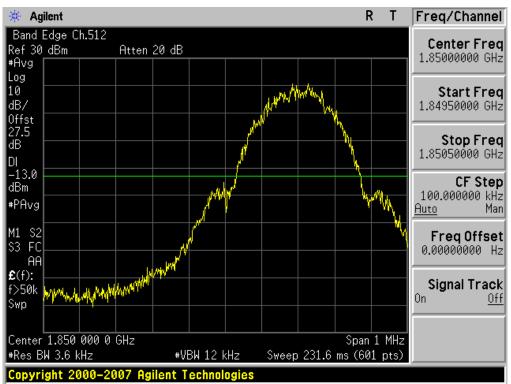


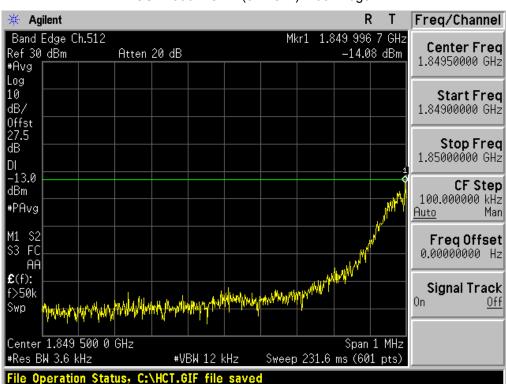
■ EDGE MODE (128 CH.) Block Edge 3



■ EDGE MODE (251 CH.) Block Edge 1




■ EDGE MODE (251 CH.) Block Edge 2


■ EDGE MODE (251 CH.) Block Edge 3

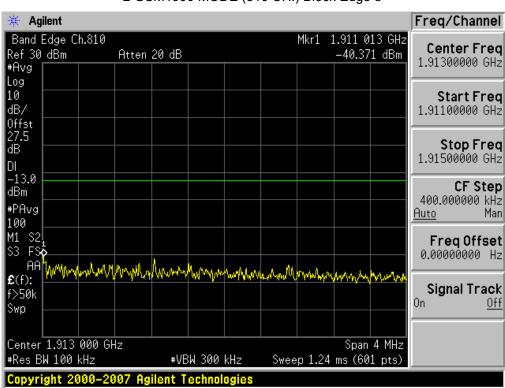
■ GSM1900 MODE (512 CH.) Block Edge 1

■ GSM1900 MODE (512 CH.) Block Edge 2

🔆 Ag	ilent										Freq/Channel
	Edge C	h.512						Mkr1		00 GHz	Center Freq
Ref 30	dBm		Atten	20 dB					-41.11	0 dBm	1.84700000 GHz
#Avg Log											
10											Start Freq
dB/											1.84500000 GHz
Offst											
27.5 dB											Stop Freq
DI											1.84900000 GHz
-13.0											CF Step
dBm											400.000000 kHz
#PAvg											<u>Auto</u> Man
100 M1 S2											
S3 FS										<u>.</u>	Freq Offset 0.00000000 Hz
ÂĂ						habete and	as where	A.	A day	Inder	0.00000000 HZ
£ (f):	mmy	han Marinton (1	endered with	N YYYNHIN	nan halanan	haladada ara	wyry vy	www.m	1. MAA M.	₩ <i>₩</i> .Υ.	Signal Track
f>50k											On Off
Swp											<u> </u>
_											
		000 GF	z				~	4.04		4 MHz	
#Res B					W 300		Swee	p 1.24	ms (60	1 pts)	
Copyri	ight 20	000-20	107 Agi	ilent T	echnol	ogies					

■ GSM1900 MODE (512 CH.) Block Edge 3

Note : We used a narrower RBW in order to increase accuracy.


Calculation = Reading Value + 10*log(1 MHz/100 kHz) dB = -41.110 dBm + 10 dB = -31.110 dBm

■ GSM1900 MODE (810 CH.) Block Edge 1

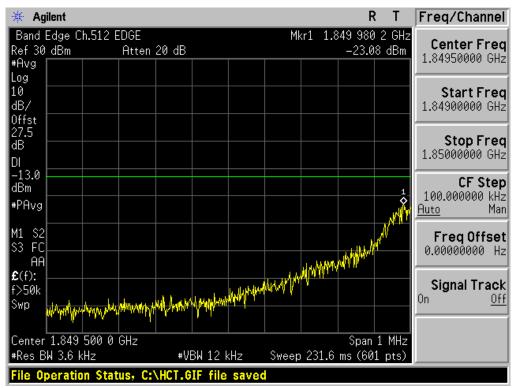
Agilent R Т Freg/Channel <u> 260</u> Band Edge Ch.810 Mkr1 1.910 019 4 GHz **Center Freq** Ref 30 dBm -15.53 dBm Atten 20 dB 1.91050000 GHz #Avg Log 10 Start Freq dB/ 1.91000000 GHz Offst 27.5 Stop Freq dB 1.91100000 GHz DI -13.0 Ŷ **CF** Step dBm 100.000000 kHz #PAvg Man Auto M1 S2 S3 FC Freq Offset 0.00000000 Hz AΑ **£**(f): and the second Signal Track f>50k 0n <u>Off</u> White A Swp Center 1.910 500 0 GHz Span 1 MHz #Res BW 3.6 kHz **#VBW** 12 kHz Sweep 231.6 ms (601 pts) File Operation Status, C:\HCT.GIF file saved

■ GSM1900 MODE (810 CH.) Block Edge 2

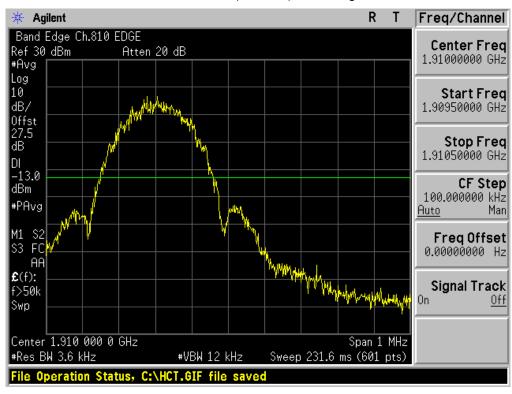



■ GSM1900 MODE (810 CH.) Block Edge 3

Note : We used a narrower RBW in order to increase accuracy.


Calculation = Reading Value + $10*\log(1 \text{ MHz}/100 \text{ kHz}) \text{ dB} = -40.371 \text{ dBm} + 10 \text{ dB} = -30.371 \text{ dBm}$

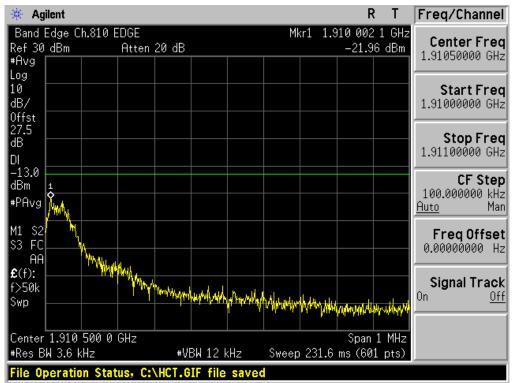
■ EDGE MODE (512 CH.) Block Edge 2

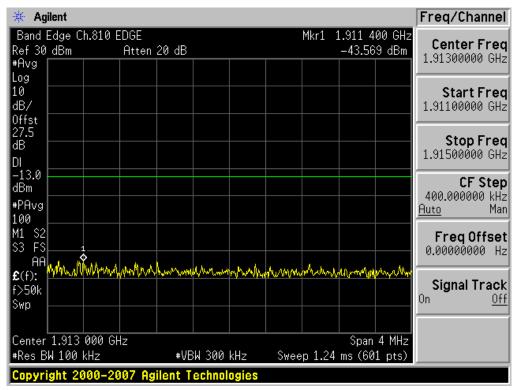


						•			-		
🔆 Ag	ilent										Freq/Channel
Band	Edge C	h.512 E	DGE					Mkr1	1.848 5	13 GHz	C
Ref 30	dBm		Atten	20 dB					-41.36	1 dBm	Center Fred
#Avg											1.84700000 GHz
Log											
10											Start Fred
dB/											1.84500000 GHz
0ffst 27.5											
dB											Stop Fred
DI											1.84900000 GHz
-13.0											
dBm											CF Step
#PAvg											400.000000 kHz
100											<u>Auto</u> Mar
M1 S2											Freq Offset
S3 FS											0.00000000 Hz
AA		A		a selected	Acres 10 Acres	(hourse	MA and	mulan	Marine M	Mound	
£ (f):	V-mar and	AND MARCHAN	(mproverse)	Line where	anih Ashered	*** WEAK 17 9 11 91	· · · · · ·	or production of the			Cignal Tread
f>50k											Signal Track
Swp											0n <u>0f</u>
Center	1.847	000 GH	17						Snan	4 MHz	
#Res B			_	#VB	W 300	kHz	Swee	p 1.24	1 ms (60		
)07 Agi								
Copyri	igint 20	200-20	ier ng	nent i	CCHIIUI	ugres					

■ EDGE MODE (512 CH.) Block Edge 3

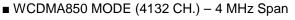
Note : We used a narrower RBW in order to increase accuracy.


Calculation = Reading Value + $10*\log(1 \text{ MHz}/100 \text{ kHz}) \text{ dB} = -41.361 \text{ dBm} + 10 \text{ dB} = -31.361 \text{ dBm}$

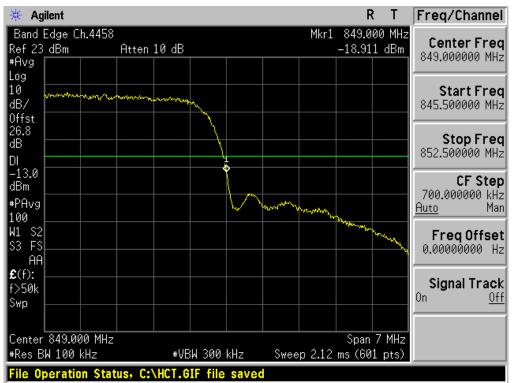

■ EDGE MODE (810 CH.) Block Edge 1

■ EDGE MODE (810 CH.) Block Edge 2

■ EDGE MODE (810 CH.) Block Edge 3

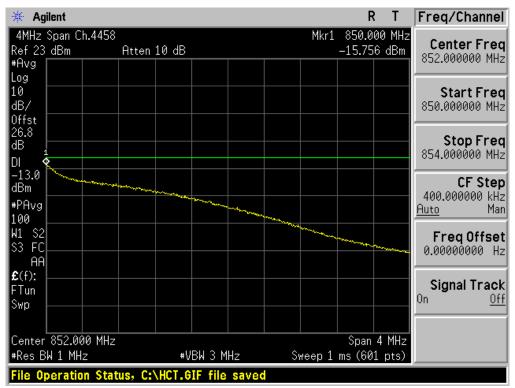



Note : We used a narrower RBW in order to increase accuracy.

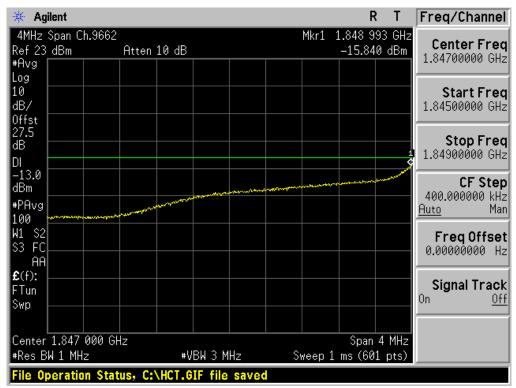

Calculation = Reading Value + $10*\log(1 \text{ MHz}/100 \text{ kHz}) \text{ dB} = -43.569 \text{ dBm} + 10 \text{ dB} = -33.569 \text{ dBm}$

Freq/Channel Agilent R Т ¥. 4MHz Span Ch.4357 Mkr1 823.000 MHz **Center Freq** Ref 23 dBm -15.365 dBm Atten 10 dB 821.000000 MHz #Avg Log 10 Start Freq dB/ 819.000000 MHz Offst 26.8 Stop Freq dB 823.000000 MHz DI -13.0 CF Step dBm 400.000000 kHz Almahan #PAvg Auto 1000 100 ----W1 S2 Freq Offset 0.0000000 Hz \$3 FC AΑ **£**(f): Signal Track FTun 0n <u> 0ff</u> Swp Center 821.000 MHz Span 4 MHz Sweep 1 ms (601 pts) #Res BW 1 MHz #VBW 3 MHz File Operation Status, C:\HCT.GIF file save

■ WCDMA850 MODE (4132 CH.) Block Edge



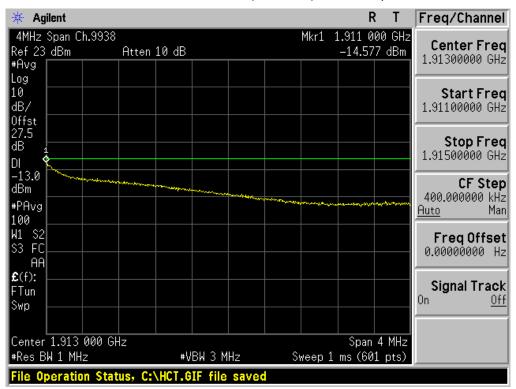
■ WCDMA850MODE (4233 CH.) Block Edge

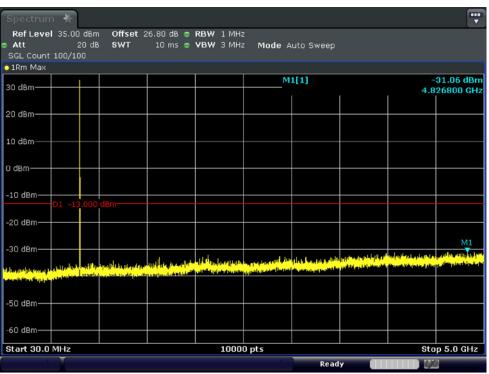

■ WCDMA850MODE (4233 CH.) – 4 MHz Span



■ WCDMA1900 MODE (9262 CH.) Block Edge

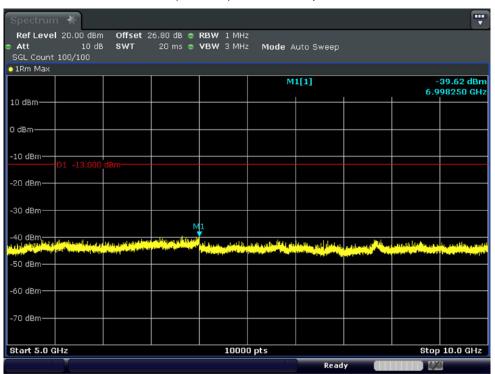
■ WCDMA1900 MODE (9262 CH.) – 4 MHz Span

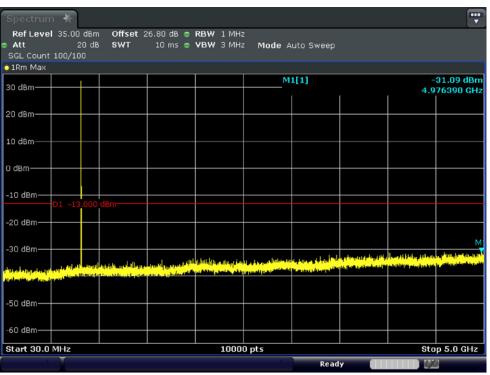




■ WCDMA1900 MODE (9538 CH.) Block Edge

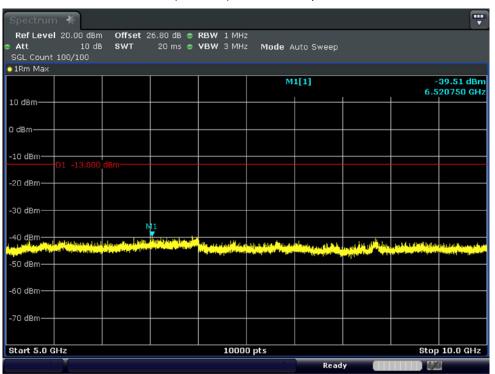
■ WCDMA1900 MODE (9538 CH.) – 4 MHz Span

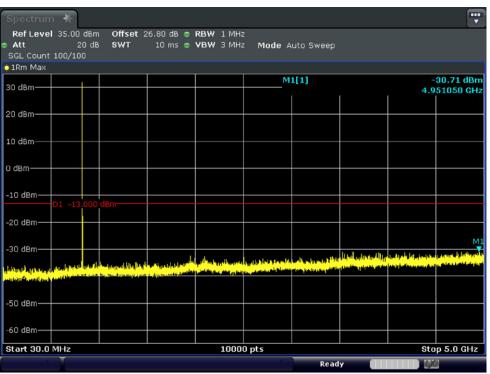




■ GSM850 MODE (128 CH.) Conducted Spurious Emissions1

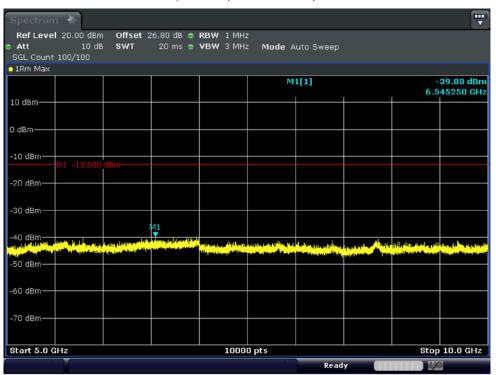
■ GSM850 MODE (128 CH.) Conducted Spurious Emissions2

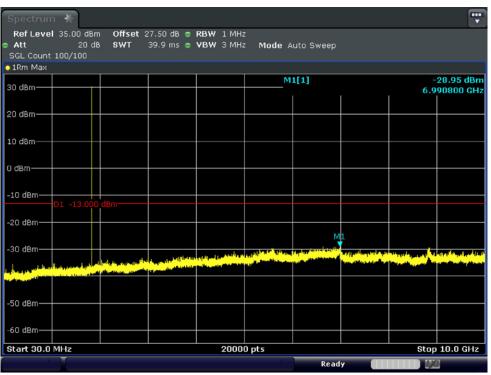




■ GSM850 MODE (190 CH.) Conducted Spurious Emissions1

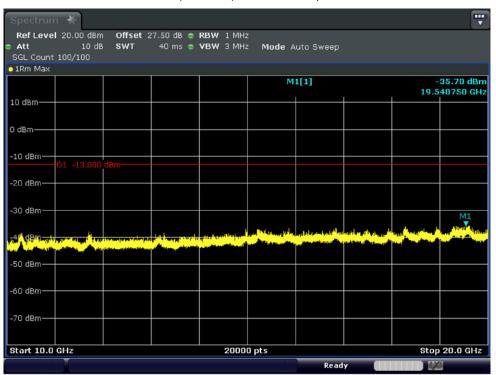
■ GSM850 MODE (190 CH.) Conducted Spurious Emissions2

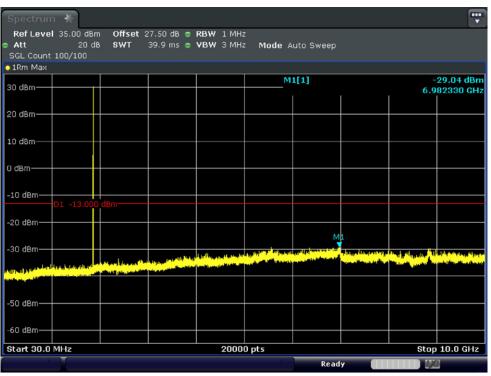




■ GSM850 MODE (251 CH.) Conducted Spurious Emissions1

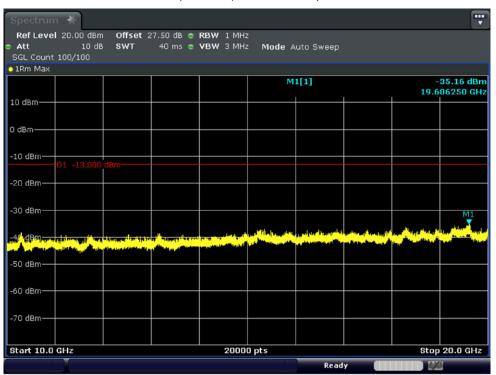
■ GSM850 MODE (251 CH.) Conducted Spurious Emissions2

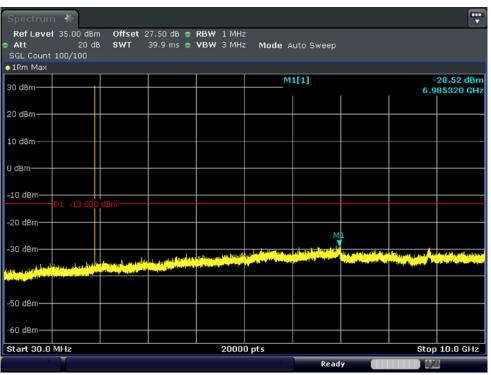




■ GSM1900 MODE (512 CH.) Conducted Spurious Emissions1

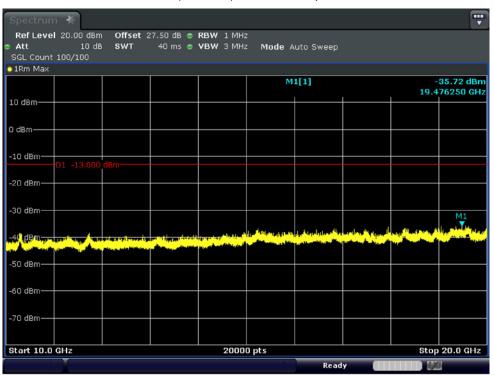
■ GSM1900 MODE (512 CH.) Conducted Spurious Emissions2

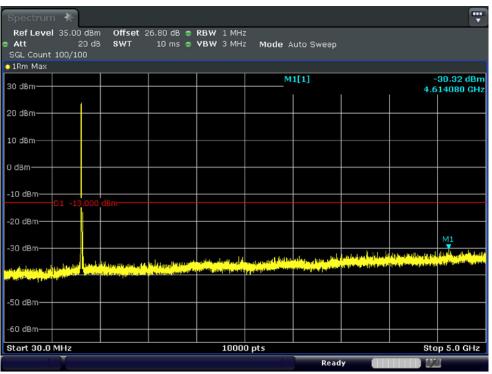




■ GSM1900 MODE (661 CH) Conducted Spurious Emissions1

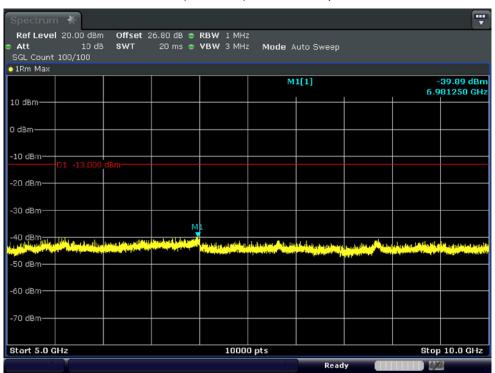
■ GSM1900 MODE (661 CH.) Conducted Spurious Emissions2

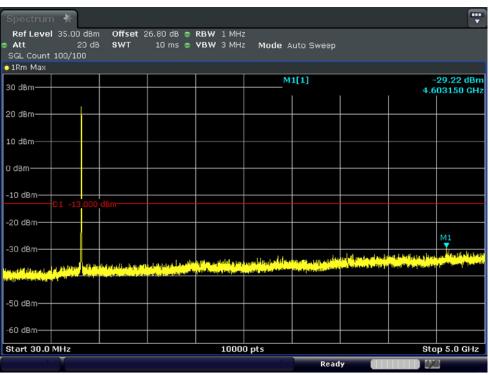




■ GSM1900 MODE (810 CH.) Conducted Spurious Emissions1

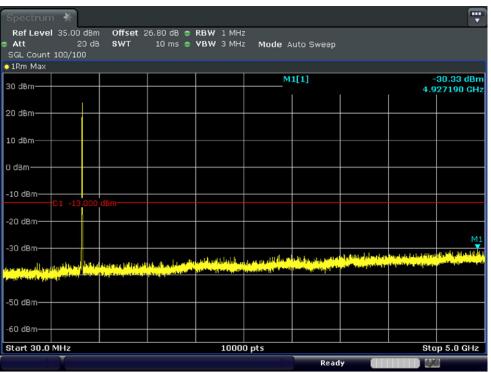
■ GSM1900 MODE (810 CH.) Conducted Spurious Emissions2





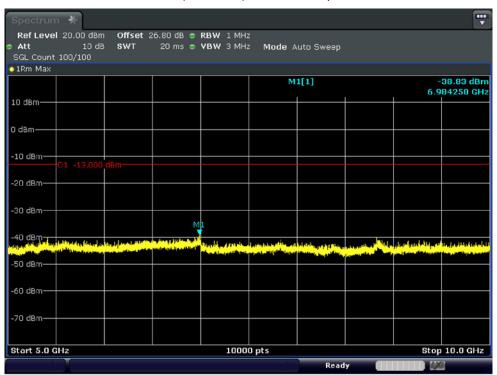
WCDMA850 MODE (4132 CH.) Conducted Spurious Emissions1

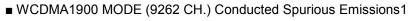
■ WCDMA850 MODE (4132 CH.) Conducted Spurious Emissions2

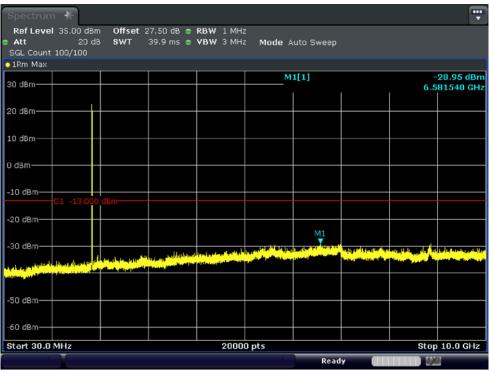


■ WCDMA850 MODE (4183 CH.) Conducted Spurious Emissions1

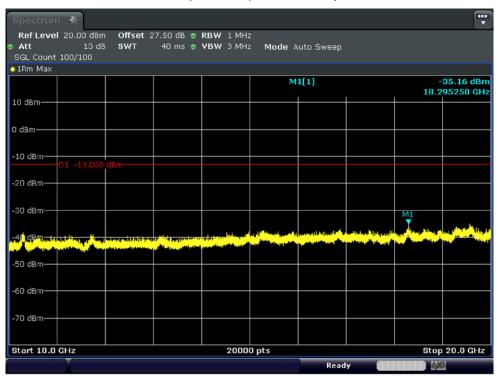
■ WCDMA850 MODE (4183 CH.) Conducted Spurious Emissions2

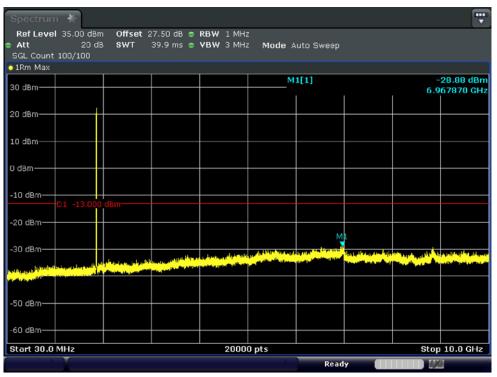



■ WCDMA850MODE (4233 CH.) Conducted Spurious Emissions1

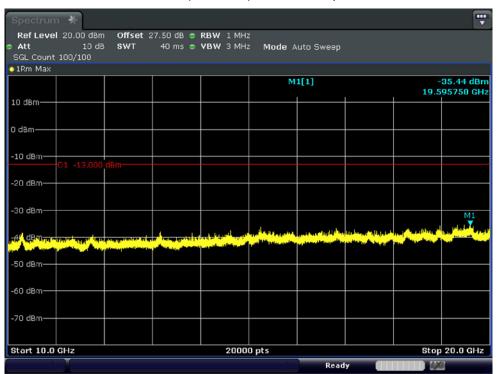

Model: LG-H815

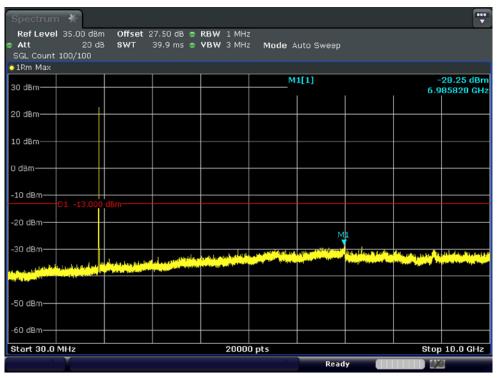
■ WCDMA850MODE (4233 CH.) Conducted Spurious Emissions2





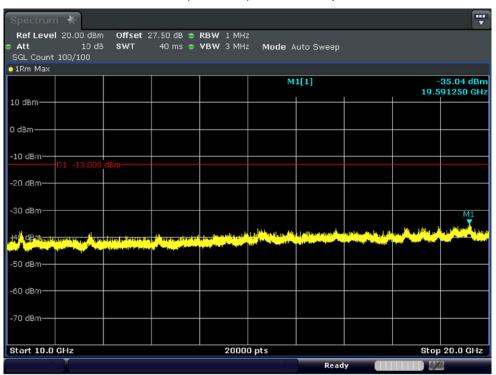
■ WCDMA1900 MODE (9262 CH.) Conducted Spurious Emissions2





WCDMA1900 MODE (9400 CH.) Conducted Spurious Emissions1

■ WCDMA1900 MODE (9400 CH.) Conducted Spurious Emissions2



WCDMA1900 MODE (9538 CH.) Conducted Spurious Emissions1

■ WCDMA1900 MODE (9538 CH.) Conducted Spurious Emissions2

