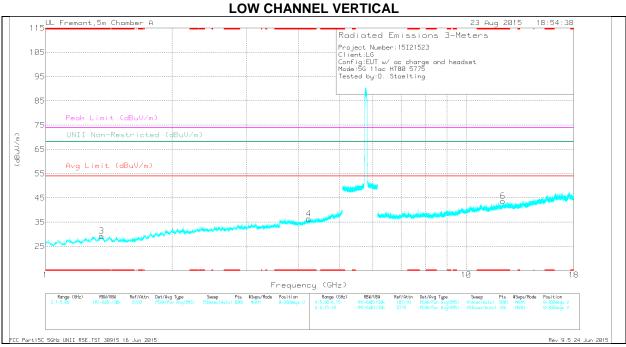

HIGHER EDGE, VERTICAL PEAK AND AVERAGE PLOT

VERTICAL DATA

					-							
Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T119 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Conversion Factor (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-67.49	РК	34.9	-20.6	11.8	-41.39	-17	-24.39	199	294	V
2	5.884	-64.41	РК	35	-20.4	11.8	-38.01	-27	-11.01	199	294	V

Page 249 of 296


HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL HORIZONTAL

Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 250 of 296

Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 251 of 296

LOW CHANNEL DATA

TRACE MARKERS

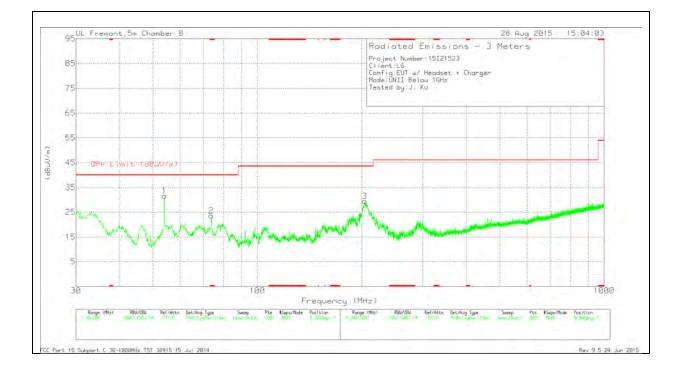
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbi/ Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.292	36.92	Pk	28.8	-35.7	0	30.02	-	-	74	-43.98	-	-	0-360	201	н
2	* 3.68	35.62	Pk	33.2	-32.6	0	36.22	-	-	74	-37.78	-	-	0-360	201	н
3	* 1.359	35.78	Pk	28.7	-35.2	0	29.28	-	-	74	-44.72	-	-	0-360	200	V
4	* 4.225	33.82	Pk	33.4	-30.8	0	36.42	-	-	74	-37.58	-	-	0-360	200	V
5	* 8.201	27.91	Pk	35.6	-25.4	0	38.11	-	-	74	-35.89	-	-	0-360	100	н
6	* 12.226	27.29	Pk	38.9	-22.4	0	43.79	-	-	74	-30.21	-	-	0-360	200	V

PK - Peak detector

RADIATED EMISSIONS

Frequency (GHz)	Meter Reading	Det	AF T136 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(dBuV)					(dBuV/m)					(dBuV/m)				
* 1.294	44.14	PK-U	28.8	-35.7	0	37.24	-	-	74	-36.76	-	-	360	202	н
* 1.294	32.6	ADR	28.8	-35.7	.09	25.79	54	-28.21	-	-	-	-	360	202	н
* 3.682	42.21	PK-U	33.2	-32.6	0	42.81	-	-	74	-31.19	-	-	360	202	н
* 3.681	31.14	ADR	33.2	-32.6	.09	31.83	54	-22.17	-	-	-	-	360	202	н
* 1.36	44.08	PK-U	28.7	-35.2	0	37.58	-	-	74	-36.42	-	-	360	202	V
* 1.358	32.66	ADR	28.7	-35.2	.09	26.25	54	-27.75	-	-	-	-	360	202	V
* 4.225	41.41	PK-U	33.4	-30.8	0	44.01	-	-	74	-29.99	-	-	360	202	V
* 4.223	29.91	ADR	33.4	-30.8	.09	32.6	54	-21.4	-	-	-	-	360	202	V
* 8.201	36.18	PK-U	35.6	-25.4	0	46.38	-	-	74	-27.62	-	-	360	100	н
* 8.201	24.87	ADR	35.6	-25.4	.09	35.16	54	-18.84	-	-	-	-	360	100	н
* 12.226	34.1	PK-U	38.9	-22.4	0	50.6	-	-	74	-23.4	-	-	304	267	V
* 12.224	22.13	ADR	38.9	-22.4	.09	38.72	54	-15.28	-	-	-	-	304	267	V

Page 252 of 296


12. WORST-CASE BELOW 1 GHz (in the 5.3 GHz Band)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 253 of 296

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Below 1G Data

Marker	Frequency (MHz)	Meter Reading	Det	AF T243 (dB/m)	Amp/Cbl (dB)	Corrected Reading	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)					
2	* 73.7325	43.91	Pk	8	-28.3	23.61	40	-16.39	0-360	101	V
6	* 330.3	38.58	Pk	14.1	-26	26.68	46.02	-19.34	0-360	101	Н
1	54.0125	52.69	Pk	7.4	-28.5	31.59	40	-8.41	0-360	101	V
4	154.5675	39.75	Pk	12.4	-27.5	24.65	43.52	-18.87	0-360	199	Н
3	203.8	45.1	Pk	11.3	-27	29.4	43.52	-14.12	0-360	101	V
5	208	50.53	Pk	10.6	-27	34.13	43.52	-9.39	0-360	101	н

Page 254 of 296

13. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

Refer to original report 15I21235-E5.

Page 255 of 296

14. DYNAMIC FREQUENCY SELECTION

14.1. OVERVIEW

14.1.1. LIMITS

INDUSTRY CANADA

IC RSS-247 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-247 Issue 1

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600– 5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

<u>FCC</u>

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

Page 256 of 296

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode					
	Mastar	Client (without radar	Client (with radar			
	Master	detection)	detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Operational Mode						
	Master	Client (without DFS)	Client (with DFS)					
DFS Detection Threshold	Yes	Not required	Yes					
Channel Closing Transmission Time	Yes	Yes	Yes					
Channel Move Time	Yes	Yes	Yes					
U-NII Detection Bandwidth	Yes	Not required	Yes					

	Master Davias an Client with	Client					
Additional requirements for devices	Master Device or Client with	Client					
with multiple bandwidth modes	Radar DFS	(without DFS)					
U-NII Detection Bandwidth and	All BW modes must be tested	Not required					
Statistical Performance Check							
Channel Move Time and Channel	Test using widest BW mode	Test using the widest					
Closing Transmission Time	available	BW mode available					
		for the link					
All other tests	Any single BW mode	Not required					
Note: Frequencies selected for statistical	performance check (Section 7.8.4) sh	nould include several					
frequencies within the radar detection ba	andwidth and frequencies near the eq	dge of the radar					
detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel							
blocks and a null frequency between the	bonded 20 MHz channel blocks.						

Page 257 of 296

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

· · · · ·							
Maximum Transmit Power	Value						
	(see notes)						
E.I.R.P. ≥ 200 mill watt	-64 dBm						
E.I.R.P. < 200 mill watt and	-62 dBm						
power spectral density < 10 dBm/MHz							
E.I.R.P. < 200 mill watt that do not meet power spectral density	-64 dBm						
requirement							
Note 1: This is the level at the input of the receiver assuming a 0 dB	receive antenna						
Note 2: Throughout these test procedures an additional 1 dB has be	en added to the amplitude of the						
test transmission waveforms to account for variations in measurement equipment. This will ensure that							
the test signal is at or above the detection threshold level to trigger a DFS response.							
Note 2: ELP D is based on the highest antenna gain. For MIMO devices refer to KDP publication							

Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB publication 662911 D01.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx.
	60 milliseconds over
	remaining 10 second period.
	(See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U-NII
	99% transmission power
	bandwidth.
	(See Note 3)

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page 258 of 296

Table 5					
Radar	Pulse	PRI	Pulses	Minimum	Minimum
Туре	Width	(usec)		Percentage of	Trials
	(usec)			Successful	
				Detection	
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI		60%	30
		values randomly			
		selected from the list	Roundup:		
		of 23 PRI values in	{(1/360) x (19 x 10 ⁶ PRI _{usec})}		
		table 5a			
		Test B: 15 unique PRI			
		values randomly			
		selected within the			
		range of 518-3066			
		usec. With a minimum			
		increment of 1 usec,			
		excluding PRI values			
		selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar Ty	vpes 1-4)	80%	120
Note 1:	Short Puls	se Radar Type 0 should be	used for the Detection Bandwidth	test, Channel Mo	ve Time,
and Cha	nnel Closii	ng Time tests.			
r					

Table 5 – Short Pulse Radar Test Waveforms

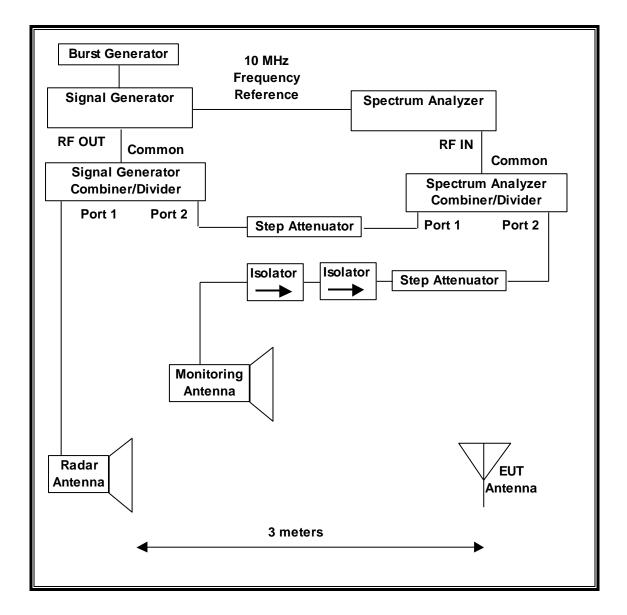
Table 6 – Long Pulse Radar Test Signal

Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage of	Trials
Туре	(µsec)	(MHz)		Burst	Bursts	Successful	
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials
Туре	(µsec)		Нор	(kHz)	Length (msec)	Successful Detection	
6	1	333	9	0.333	300	70%	30

Page 259 of 296


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA

TEL: (510) 771-1000

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

14.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 260 of 296

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP4701H

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

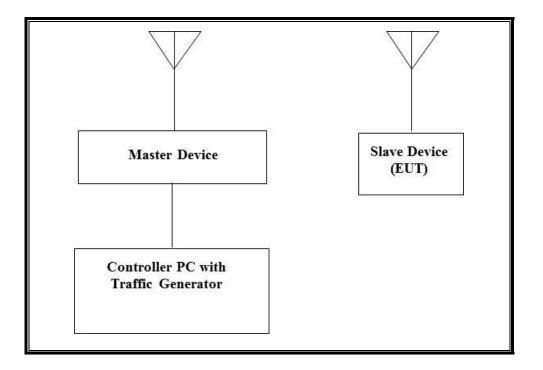
 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 FORM NO: CCSUP4701H

Page 261 of 296

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset Number	Cal Due				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	US51350187	06/01/16				
Signal Generator, MXG X-Series RF Vector	Agilent	N5172B	MY51350337	02/17/18				

Page 262 of 296

14.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	FCC ID					
802.11ac Dual Band	Cisco	AIR-CAP3702E-A-	FTX181570A6	LDK102087					
Wireless Access Point		K9							
P.O.E. Injector	Phihong	POE30U-560(G)	PHI170102N2	DoC					
Notebook PC	Lenovo	Type 4236-B92	PB-HEX04 12/05	DoC					
(Controller/Server)									
AC Adapter	Lenovo	42T4418	11S42T4418Z1ZGWG08	DoC					
(Controller/Server PC)			R90M						

Page 263 of 296

14.1.4. DESCRIPTION OF EUT

For FCC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

For IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding the 5600-5650 MHz range.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 18.32dBm EIRP in the 5250-5350 MHz band and 18.38dBm EIRP in the 5470-5725 MHz band.

The two antenna assembly utilized with the EUT has a gain of 0.18dBi and 0.03dBi.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to -64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the controller/server PC to the EUT using iPerf version 2.0.5 software package.

The effective Channel Loading for 20MHz Bandwidth is 16.808%.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11ac architecture. Three nominal channel bandwidths are implemented: 20 MHz, 40 MHz and 80 MHz.

The software installed in the EUT is Android Version M, Build number PP1_150623.

UNIFORM CHANNEL SPREADING

This function is not required per KDB 905462.

This requirement is not applicable to Slave Devices.

Page 264 of 296

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102087. The minimum antenna gain for the Master Device is 6 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

Page 265 of 296


14.2. RESULTS FOR 20 MHz BANDWIDTH

14.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.

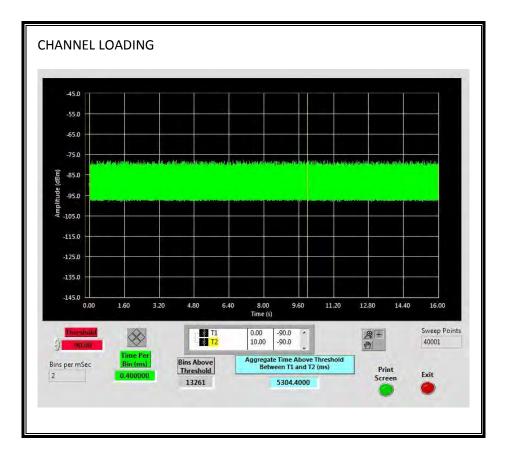
14.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 266 of 296

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP4701H

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888


 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 FORM NO: CCSUP4701H

TRAFFIC

	trum Analyzer - Swep						
N RL	HF- 50 D	DC 1	-	1 sever mi	Avg Type: Log-Pwr	D1:45:04 //M Aug 22, 2015 TRACE 10:3 + 5 6 TVPE WALLAND OFT P WALLAND OFT P WALLAND OFT P WALLAND OFT P WALLAND	Frequency
10 dEl/div	Ref Offset -21. Ref -45.00 d	IFG 5 dB	IO: Fast 🔸	≓ Trig:Free Run #Atten:0 dB			Auto Tune
-65.0							Center Fred 5,50000000 GHz
-85 0	Number	● ¹			ale other and a second and		Start Free 5.50000000 GH:
-995-01 -315-02							Stop Free 5.50000000 GH:
-105							CF Step 3.000000 MH: Auto Mar
195							Freq Offse 0 Hi
135							

Page 267 of 296

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 53.044%

Page 268 of 296

14.2.3. OVERLAPPING CHANNEL TESTS

<u>RESULTS</u>

These tests are not applicable.

14.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

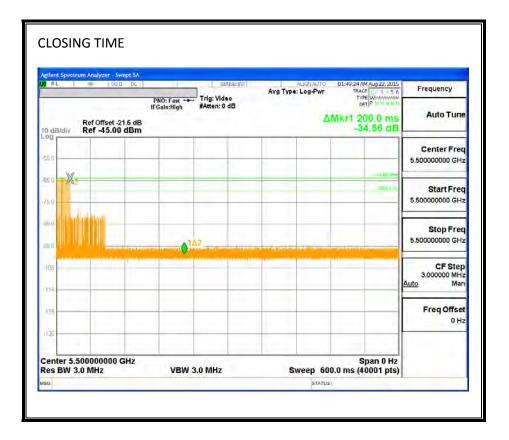
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.067	10

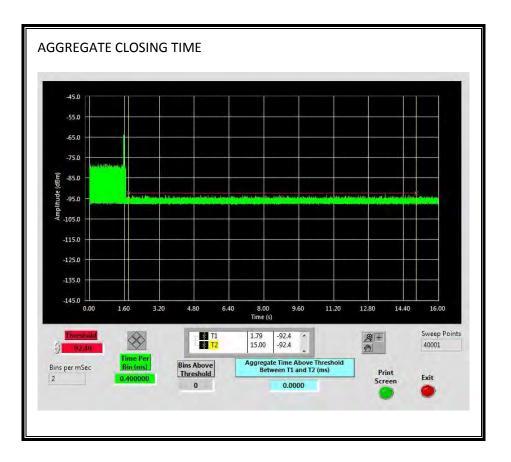
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60


Page 269 of 296

MOVE TIME

RL	RF 1.50 B. DC		SEASE WIT	Avg Type: Log-Pwr	01:44:53 AM Aug 22, 2015 TRACE 1 3 5 6	Frequency
		PNO: Fast	#Atten: 0 dB	Contraction of the	DET P MMNN1	in a la la
10 dB/dlv	Auto Tune					
-# 0 -850	102				-105 dim	Center Fred 5,50000000 GH
-05-0 -95-0					_	Start Free 5.50000000 GH:
-115						Stop Free 5.50000000 GH:
Center 5. Res BW 3		VBW	3.0 MHz	Sweep 1	Span 0 Hz 6.00 s (40001 pts)	CF Step 3.000000 MH: Auto Mar
1 Δ2 2 F 3 4 5 6 7 8 9 10 11	t (Δ) t	67.20 ms (Δ) 1.586 s				Freq Offse 0 Hi

Page 270 of 296

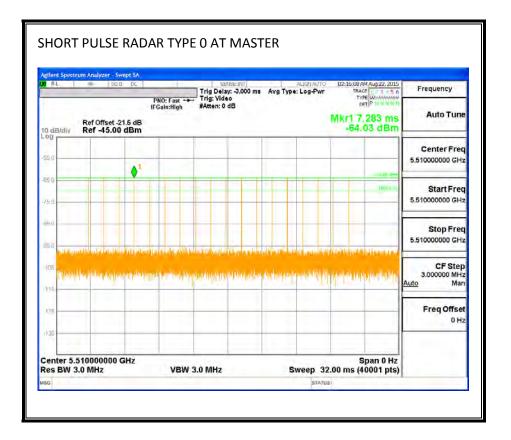

CHANNEL CLOSING TIME

Page 271 of 296

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 272 of 296


14.3. RESULTS FOR 40 MHz BANDWIDTH

14.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.

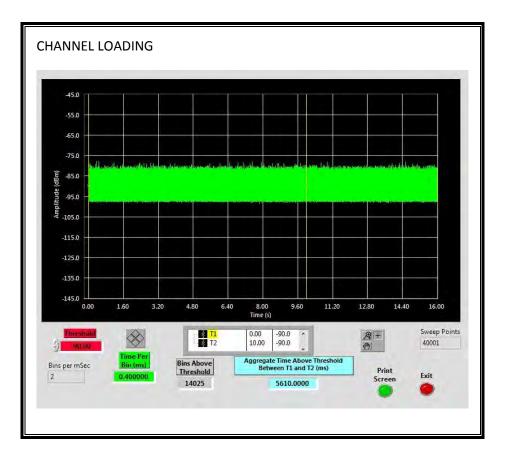
14.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 273 of 296

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP4701H

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888


 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 FORM NO: CCSUP4701H

TRAFFIC

	trum Analyzer – Swept 5A					
RL	RF 50.0. DC		Trig: Free Run	Avg Type: Log-Pwr	01:55:35 AM Aug 22, 2015 TRACE	Frequency
10 del/div	Ref Offset -21.5 dB Ref -45.00 dBm	PNO: Fast +++ IFGain:High	#Atten:0 dB		MKr1 374.8 ms -77.75 dBm	Auto Tum
-55,0						Center Fred 5,51000000 GHz
-75.0						Start Free 5.510000000 GH:
the second	واوار ووارقا الطبو ويتركون والمت	A start of the second star	and the second			
-99-41 -95-0						Stop Fred 5.510000000 GH2
opean						5.510000000 GH2 CF Step 3.000000 MH2
-55 U -55 U -105						5.510000000 GH2 CF Step 3.000000 MH2
-105 -115						5.51000000 GH2 CF Step 3.000000 MH2 <u>Auto</u> Mar Freq Offset

Page 274 of 296

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 56.1%

Page 275 of 296

14.3.3. OVERLAPPING CHANNEL TESTS

<u>RESULTS</u>

These tests are not applicable.

14.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

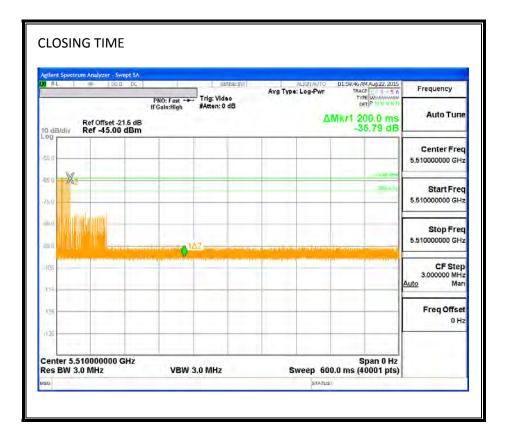
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.031	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60


Page 276 of 296

MOVE TIME

RL	nalyzer - Swept 5A		SEASEINT	ALIGN AUTO	01:57:14 AM Aug 22, 2015		
		PNO: Fast		Avg Type: Log-Pwr	TYPE WULLING	Frequency Auto Tune	
10 dB/dlv R							
-#0 -650	162				÷1.05 dim	Center Fred 5,510000000 GHz	
-05 0 -05 0 -05						Start Free 5.510000000 GH:	
110						Stop Fred 5.510000000 GH2	
Center 5.510 Res BW 3.0	ИНz	VBW :	3.0 MHz	Sweep 1	Span 0 Hz 6.00 s (40001 pts)	CF Step 3.000000 MHz Auto Mar	
	(A)	30.80 ms (Δ) 1.612 s	-16,53 dB -54.15 dBm		TOTICE FOR VALUE	Freq Offse 0 Ha	

Page 277 of 296


CHANNEL CLOSING TIME

Page 278 of 296

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 279 of 296

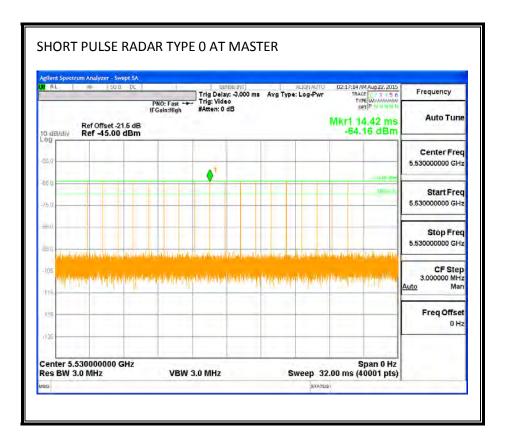
14.3.5. 10-MINUTE BEACON MONITORING PERIOD

<u>RESULTS</u>

No EUT transmissions were observed on the test channel during the 10-minute observation time.

glient Spectrum Analyzer RL RF	Swept 5A		1 sever NU	Augnauto Avg Type: Log-Pwr	02;15:08 AM Aug 22, 2015 TRACE	Frequency
0 del/div Ref -45	Pt IFG et -21.5 dB .00 dBm	IO: Fast 🔸	Trig:Free Run ≇Atten:0 dB		ΔMkr1 600.0 s -30.79 dB	Auto Tune
5.0						Center Fred 5,51000000 GH
58 0 X2 75 0						Start Free 5.510000000 GH:
80 60					142	Stop Free 5.510000000 GH:
105						CF Step 3.000000 MH Auto Mar
135						Freq Offse 0 H:
enter 5.5100000 es BW 3.0 MHz	00 GHz	VBW 3	3.0 MHz	Sweep	Span 0 Hz 720.0 s (40001 pts)	

Page 280 of 296


14.4. RESULTS FOR 80 MHz BANDWIDTH

14.4.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5530 MHz.

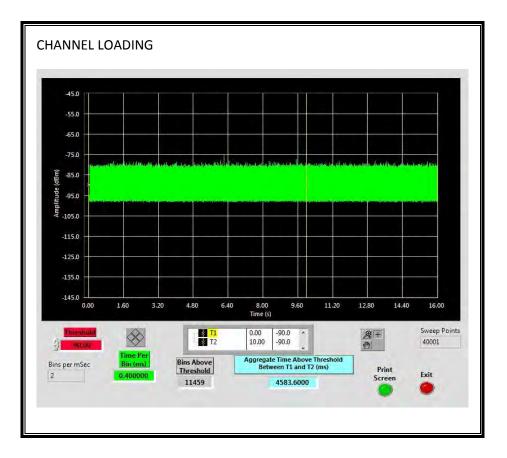
14.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 281 of 296

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP4701H

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888


 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 FORM NO: CCSUP4701H

TRAFFIC

UN RL					Aug Type: Log-Pwr	02:20:33 AM Aug 22, 2015 TRACE 11 7 3 1 5 6	Frequency		
10 del/div	Ref Offset -21 Ref -45.00	IFG	iO: Fast 🔸 ain:High	Trig: Free F #Atten: 0 di	Run B		Mkr1 6.222 s -75.17 dBm		Auto Tune
-65.0									Center Fred 5.530000000 GHz
-75.0			-	1					Start Freq 5.53000000 GHz
-15.0	adorning:ma				- Annoration				Stop Fred 5.530000000 GHz
-105									CF Step 3.000000 MHz Auto Man
	-								Freq Offset 0 Hi
1)35									

Page 282 of 296

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 45.836%

Page 283 of 296

14.4.3. OVERLAPPING CHANNEL TESTS

<u>RESULTS</u>

These tests are not applicable.

14.4.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.069	10

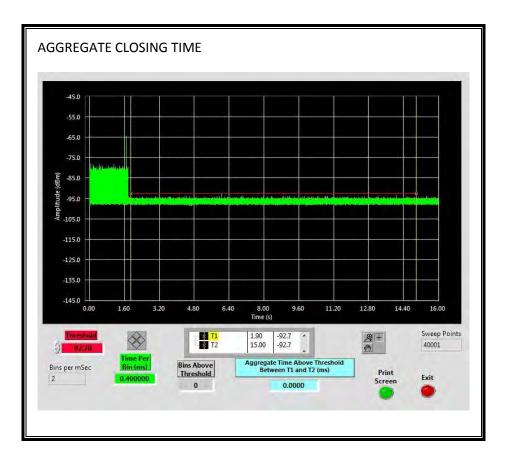
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

Page 284 of 296

MOVE TIME

	rum Analyzer - Swept		EPASEINT	OLD NOT ALLON AUTO	02:22:33 AM Aug 22, 2015		
RL.	an Lynn r	PNO: Fast -+ IFGain:High		Avg Type: Log-Pwr	TRACE	Frequency Auto Turne	
Ref Offset -21.5 dB ΔMkr1 68.80 ms 10 dB/div Ref -45.00 dBm -17.77 dB							
-50 -550 -550	- AAA				54.00 cms	Center Freq 5,530000000 GHz	
-05 0 -95 0 105						Start Freq 5.530000000 GHz	
-119 -125 116						Stop Freq 5.53000000 GHz	
Center 5.530000000 GHz Span 0 Hz Res BW 3.0 MHz VBW 3.0 MHz Sweep 16.00 s (40001 pts) MM2 M000 170 Set X FUNCTION MUST 1 Δ2 t (Δ) 68.80 ms (Δ) 17.77 dB							
2 F 3 4 6 6 7 8 9 10 11	t	1.696 s	-64.57 dBm			Freq Offset 0 Hz	

Page 285 of 296


CHANNEL CLOSING TIME

Frequency	02:27:33 AM Aug 22, 2015 TRACE 3 5 6 TYPE Westmann DET P	Avg Type: Log-Pwr	Trig: Video	PNO: Fas	glient Spectrum Analyzer - S RL RH- 50
Auto Tun	Mkr1 200.0 ms -35.36 dB	۵	h SAtten: 0 dB		Ref Offset - 0. dEl/div Ref -45.00
Center Fre 5.53000000 GH					99 8.0
Start Fre 5.53000000 GH	initia din				95 0 1 X 2 75 0
Stop Fre 5.53000000 GH	eren dir uni	and with the second second	103		mo () ()))))))))
CF Ste 3.000000 MH Auto Ma					105
Freq Offse					05
	Span 0 Hz	Sweep 60		GHz	enter 5.530000000

Page 286 of 296

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 287 of 296

14.4.5. 10-MINUTE BEACON MONITORING PERIOD

<u>RESULTS</u>

No EUT transmissions were observed on the test channel during the 10-minute observation time.

	PNO: Fas IFGain:Hig Ref Offset -21.5 dB E/div Ref -45.00 dBm		ALIONA Avg Type: Log-P			Frequency
0 dEl/div Ref -4			Trig: Free Run #Atten: 0 dB	AND THE EVEN	ΔMkr1 600.0 s -31.39 dB	Auto Tune
og s.0						Center Fred 5,53000000 GH
55 0 - <mark>Ж2</mark> 75 0						Start Free 5.530000000 GH:
60 60					1∆2	Stop Free 5.530000000 GH:
105					_	CF Step 3.000000 MH Auto Mar
135						Freq Offse 0 H:
enter 5.530000 es BW 3.0 MHz		VBW :	3.0 MHz	Sweep	Span 0 Hz 720.0 s (40001 pts)	

Page 288 of 296