SAR TEST REPORT # DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: 031-321-2664, Fax: 031-321-1664 Report No: DRRFCC1510-0094(1) Pages:(1) / (185) page #### 1. Customer • Name: LG Electronics MobileComm U.S.A., Inc. Address: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 2. Use of Report: FCC Original Grant 3. Product Name (Model): GSM/WCDMA/LTE Phone with Bluetooth, WLAN and NFC (LG-H635CX) 4. Date of Test: 2015-05-01 ~ 2015-05-12, 2015-10-12 5. Test Method Used: CFR §2.1093 6. Testing Environment: See appended test report 7. Test Result : ☐ Pass☐ Fail The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full. Affirmation Tested by Name : ChangWon Lee Technical Manager Name: Harvey Sung / 2015 .11. 02. DT&C Co., Ltd. # **Test Report Version** | Test Report No. | Date | Description | |--------------------|---------------|--------------------------| | DRRFCC1510-0094 | Oct. 22, 2015 | Initial issue | | DRRFCC1510-0094(1) | Nov. 2, 2015 | Revised for FCC ID typo. | # **Table of Contents** | 1. DESCRIPTION OF DEVICE | 5 | |--|--------| | 1.1 Guidance Applied | 6
7 | | 1.4 DUT Antenna Locations | | | 1.6 Power Reduction for SAR | | | 1.7 Device Serial Numbers | | | 1.8 LTE Information | | | 3. DESCRIPTION OF TEST EQUIPMENT | | | 3.1 SAR MEASUREMENT SETUP | | | 3.2 EX3DV4 / ES3DV3Probe Specification | | | 3.3 Probe Calibration Process | | | 3.3.1 E-Probe Calibration | | | 3.4 Data Extrapolation | | | 3.6 Device Holder for Transmitters | | | 3.7 Brain & Muscle Simulation Mixture Characterization | . 17 | | 3.8 SAR TEST EQUIPMENT | | | 4. TEST SYSTEM SPECIFICATIONS | | | | | | 5.1 Measurement Procedure | | | 6.1 Ear Reference Point | | | 6.2 Handset Reference Points | | | 7. TEST CONFIGURATION POSITIONS FOR HANDSETS | . 23 | | 7.1 Device Holder | | | 7.2 Positioning for Cheek/Touch | | | 7.3 Positioning for Ear / 15 ° Tilt | | | 7.5 Extremity Exposure Configurations | | | 7.6 Wireless Router Configurations | | | 8. RF EXPOSURE LIMITS | | | 9. FCC MEASUREMENT PROCEDURES | | | 9.1 Measured and Reported SAR | | | 9.2 Procedures Used to Establish RF Signal for SAR | | | 9.3.1 Output Power Verification | | | 9.3.2 Head SAR Measurements for Handsets | . 27 | | 9.3.3 Body SAR Measurements | . 28 | | 9.3.4 Release 5 HSDPA Data Devices | . 28 | | 9.3.5 Release 6 HSUPA Data Devices | . 28 | | 9.3.6 SAR Measurements Conditions for DC-HSDPA | . 29 | | 9.4 SAR Measurement Conditions for LTE | . 29 | | 9.4.1Spectrum Plots for RB Configurations | | | 9.4.2 MPR | . 29 | | 5.7.2 IVII 1 | . 23 | | 9.4.3 A-MPR | 30 | |---|-----| | 9.4.4 Required RB Size and RB Offsets for SAR Testing | 30 | | 9.5 SAR Testing with 802.11 Transmitters | 30 | | 9.5.1 General Device Setup | 30 | | 9.5.2 Frequency Channel Configurations | 30 | | 10. RF CONDUCTED POWERS | | | 10.1 GSM Conducted Powers | 31 | | 10.2 WCDMA Conducted Powers | | | 10.3 LTE Conducted Powers | 33 | | 10.4 WLAN Conducted Powers | 49 | | 10.5 Bluetooth Conducted Powers | | | 11. SYSTEM VERIFICATION | 51 | | 11.1 Tissue Verification | 51 | | 11.2 Test System Verification | 53 | | 12. SAR TEST RESULTS | 54 | | 12.1 Head SAR Results | 54 | | 12.2 Standalone Body-Worn SAR Results | | | 12.3 Standalone Wireless router SAR Results | | | 12.4 SAR Test Notes | | | 13. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS | 66 | | 13.1 Introduction. | 66 | | 13.2 Simultaneous Transmission Procedures | | | 13.3 Simultaneous Transmission Capabilities | 66 | | 13.4 Head SAR Simultaneous Transmission Analysis | | | 13.5 Body-Worn Simultaneous Transmission Analysis | | | 13.6 Hotspot SAR Simultaneous Transmission Analysis | | | 13.7 Simultaneous Transmission Conclusion | | | 14. SAR MEASUREMENT VARIABILITY | | | 14.1 Measurement Variability | | | 14.2 Measurement Uncertainty | | | 15. IEEE P1528 -MEASUREMENT UNCERTAINTIES | | | 16. CONCLUSION | 87 | | 17. REFERENCES | 88 | | Attachment 1. – Probe Calibration Data | 90 | | Attachment 2. – Dipole Calibration Data | 134 | | Attachment 2 CAR SYSTEM VALIDATION | 101 | # 1. DESCRIPTION OF DEVICE Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). # **General Information** | EUT type | GSM/WCDMA/LTE Phone with Bluetooth, WLAN and NFC | |--------------------------|--| | FCC ID | ZNFH635CX | | Equipment model name | LG-H635CX | | Equipment add model name | LGH635CX, H630CX, LG-H635cx, LGH635cx, H635cx 6 models are same mechanical, electrical and functional. The only difference is the model name, which are changed for marketing purpose. | | Equipment serial no. | Identical prototype | | Mode(s) of Operation | GSM 850, PCS 1900, WCDMA 850, WCDMA 1700, WCDMA 1900, LTE Band 2, 4, 7, 2.4 G W-LAN (802.11b/g/n HT20), | | TX Frequency Range | 824.2 ~ 848.8 MHz (Cellular Band) / 1850.2 ~ 1909.8 MHz (PCS Band)
826.4 ~ 846.6 MHz (WCDMA FDD V) / 1714.4 ~ 1752.6 MHz (WCDMA FDD IV)
1852.4 ~ 1907.6 MHz (WCDMA FDD II) / 1710.7 ~ 1754.3 MHz (LTE Band 4)
1850.7 ~ 1909.3 MHz (LTE Band 2) / 2502.5 ~ 2567.5 MHz (LTE Band 7)
2412 ~ 2462 MHz (802.11b/g/n HT20) | | RX Frequency Range | 869.2 ~ 893.8 MHz (Cellular Band) / 1930.2 ~ 1989.8 MHz (PCS Band)
871.4 ~ 891.6 MHz (WCDMA FDD V) / 2112.4 ~ 2152.6 MHz (WCDMA FDD IV)
1932.4 ~ 1987.6 MHz (WCDMA FDD II) / 2110.7 ~ 2154.3 MHz (LTE Band 4)
1930.7 ~ 1989.3 MHz (LTE Band 2) / 2622.5 ~ 2687.5 MHz (LTE Band 7)
2412 ~ 2462 MHz (802.11b/g/n HT20) | | | | Measured | | Reported SAR | | | | |---------------------|---|-----------------------|---------------|--------------|---------|--|--| | Equipment
Class | Band | Conducted Power | 1g SAR (W/kg) | | | | | | Olass | | [dBm] | Head | Body-worn | Hotspot | | | | PCE | GSM 850 | 33.60 | 0.35 | 0.46 | N/A | | | | PCE | GPRS 850 | 27.60 | 0.43 | 0.51 | 0.51 | | | | PCE | PCS 1900 | 30.60 | 0.46 | 0.34 | N/A | | | | PCE | GPRS 1900 | 26.00 | 0.51 | 0.48 | 0.48 | | | | PCE | WCDMA 850 | 24.10 | 0.34 | 0.62 | 0.62 | | | | PCE | WCDMA 1700 | 23.69 | 0.77 | 0.85 | 1.06 | | | | PCE | WCDMA 1900 | 23.70 | 0.53 | 0.64 | 0.64 | | | | PCE | LTE Band 4 (AWS) | 23.00 | 0.74 | 0.74 | 0.74 | | | | PCE | LTE Band 2 (PCS) | 23.10 | 0.51 | 0.62 | 0.62 | | | | PCE | LTE Band 7 | 23.05 | 0.16 | 1.09 | 1.09 | | | | DTS | 2.4 GHz W-LAN | 14.46 | 0.33 | 0.14 | 0.14 | | | | DSS/DTS | Bluetooth | 7.59 | N/A | 0.12 | N/A | | | | Simultaneous | SAR per KDB 690783 D01v01 | r03 | 1.09 | 1.22 | 1.22 | | | | FCC Equipment Class | Licensed Portable Transmitter
Part 15 Spread Spectrum Tran
Digital Transmission System(I | nsmitter(DSS)
DTS) | | | | | | | Date(s) of Tests | 2015-05-01 ~ 2015-05-12, 20 | 15-10-12 | | | | | | | Antenna Type | Internal Type Antenna | | | | | | | | Note | This test report data was reused ZNFH630 model for GSM 850, GPRS 850, PCS 1900, GPRS 1900, WCDMA 850, WCDMA 1900, LTE Band 4, LTE Band 2, LTE Band 7, 2.4 GHz W-LAN, Bluetooth. (Test report number: DRRFCC1505-0046, FCC ID: ZNFH630) WCDMA1700 band was enabled by software from ZNFH630. | | | | | | | | Functions | GSM/GPRS (GPRS Class: 33) / EDGE (EDGE Class: 33) supported. * DTM is not supported. BT (2.4GHz) / W-LAN(2.4GHz 802.11b/g/n(HT20)) supported. * No simultaneous transmission between BT & WLAN. Simultaneous transmission between GSM, WCDMA voice & WLAN / GPRS, WCDMA & WLAN / LTE & WLAN. VoIP supported. W-LAN 2.4GHz Mobile Hotspot supported. | | | | | | | # 1.1 Guidance Applied - IEEE 1528-2003 - FCC KDB Publication 941225 D01 3G SAR Procedures v03 - FCC KDB Publication 941225 D05 SAR for LTE Devices v02r03 - FCC KDB Publication 941225 D06 Hot Spot SAR v02 - FCC KDB Publication 248227 D01v02 (802.11 Wi-Fi SAR) - FCC KDB Publication 447498 D01v05r02 (General SAR Guidance) - FCC KDB Publication 648474 D04 Handset SAR v01r02 - FCC KDB Publication 690783 D01 SAR Listings on Grants v01r03 - FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB Publication 865664 D02 RF Exposure Reporting v01r01 - October 2013 TCB Workshop Notes (GPRS testing criteria) # 1.2 Device Overview | Band & Mode | Operating Modes | Tx Frequency | |--------------------|-----------------|---------------------| | GSM/GPRS/EDGE 850 | Voice/Data | 824.2 ~ 848.8 MHz | | GSM/GPRS/EDGE 1900 | Voice/Data | 1850.2 ~ 1909.8 MHz | | WCDMA 850 | Voice/Data | 826.4 ~ 846.6 MHz | | WCDMA 1700 | Voice/Data | 1712.4 ~ 1752.6 MHz | | WCDMA 1900 | Voice/Data | 1852.4 ~ 1907.6 MHz | | LTE Band 4 (AWS) | Data | 1710.7 ~ 1754.3 MHz | | LTE Band 2 (PCS) | Data | 1850.7 ~ 1909.3 MHz | | LTE Band 7 | Data | 2502.5 ~ 2567.5 MHz | | 2.4 GHz WLAN | Data | 2412 ~ 2462 MHz | | Bluetooth | Data | 2402 ~ 2480 MHz | | NFC | Data | 13.56 MHz | # 1.3 Nominal and Maximum Output Power Specifications
This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02. | Band & Mode | | Voice
[dBm] | Burst | Burst Average GMSK [dBm] | | | Burst Average 8-PSK [dBm] | | | | |-----------------------|---------|----------------|--------------|--------------------------|--------------|--------------|---------------------------|--------------|--------------|--------------| | | | 1 TX
Slot | 1 TX
Slot | 2 TX
Slot | 3 TX
Slot | 4 TX
Slot | 1 TX
Slot | 2 TX
Slot | 3 TX
Slot | 4 TX
Slot | | GSM/GPRS/EDGE | Maximum | 33.7 | 33.7 | 30.7 | 29.2 | 27.7 | 27.2 | 24.7 | 23.2 | 21.7 | | 850 | Nominal | 33.2 | 33.2 | 30.2 | 28.7 | 27.2 | 26.7 | 24.2 | 22.7 | 21.2 | | GSM/GPRS/EDGE
1900 | Maximum | 31.2 | 31.2 | 27.7 | 26.2 | 24.7 | 26.2 | 23.7 | 22.2 | 20.7 | | | Nominal | 30.7 | 30.7 | 27.2 | 25.7 | 24.2 | 25.7 | 23.2 | 21.7 | 20.2 | | Band & Mode | | 3GPP
WCDMA | | | | | | | |---------------|---------|---------------|---------------------------------|------|------|--------------|--|--| | Danu & IVI | ode | | | Re | l. 5 | | | | | | | Rel. 99 | 9 Subtest Subtest Subtest 1 2 3 | | | Subtest
4 | | | | WCDMA 850 | Maximum | 24.2 | 24.2 | 24.2 | 23.7 | 23.7 | | | | VVCDIVIA 650 | Nominal | 23.7 | 23.7 | 23.7 | 23.2 | 23.2 | | | | WCDMA 1700 | Maximum | 24.2 | 24.2 | 24.2 | 23.7 | 23.7 | | | | VVCDIVIA 1700 | Nominal | 23.7 | 23.7 | 23.7 | 23.2 | 23.2 | | | | WCDMA 1900 | Maximum | 23.7 | 23.7 | 23.7 | 23.2 | 23.2 | | | | VVCDIVIA 1900 | Nominal | 23.2 | 23.2 | 23.2 | 22.7 | 22.7 | | | Note: This device supports HSUPA, DC-HSDPA but the manufacturer only declares on the tune-up procedure that the HSUPA, DC-HSDPA transmitter's power will not exceed the R99 maximum transmit power in devices based on Qualcomm's HSPA chipset solution. | Band & Mode | Modulated Average[dBm] | | |------------------|------------------------|------| | LTE Bond 4 (AWS) | Maximum | 23.2 | | LTE Band 4 (AWS) | Nominal | 22.7 | | LTE Band 2 (DCC) | Maximum | 23.2 | | LTE Band 2 (PCS) | Nominal | 22.7 | | LTE Band 7 | Maximum | 23.2 | | LIE Ballu 7 | Nominal | 22.7 | | Band & Mode | Modulated Average[dBm] | | |-----------------------------|------------------------|------| | IEEE 903 445 (3.4 CHz) | Maximum | 15.0 | | IEEE 802.11b (2.4 GHz) | Nominal | 13.0 | | IEEE 902 11a (2.4 CHz) | Maximum | 12.0 | | IEEE 802.11g (2.4 GHz) | Nominal | 11.0 | | IEEE 802.11n HT20(2.4 GHz) | Maximum | 11.0 | | IEEE 802.1111 H120(2.4 GH2) | Nominal | 10.0 | | Bluetooth 1 Mbps | Maximum | 8.0 | | Bidetootii i Mbps | Nominal | 7.0 | | Divistanth 2 Mbns | Maximum | 6.0 | | Bluetooth 2 Mbps | Nominal | 5.0 | | Divistanth 2 Mbns | Maximum | 6.0 | | Bluetooth 3 Mbps | Nominal | 5.0 | | Divisto ath L.C. | Maximum | -1.0 | | Bluetooth LE | Nominal | -2.0 | # 1.4 DUT Antenna Locations Note 1: Exact antenna dimensions and separation distances are shown in the "Antenna Distance_ZNFH635CX" in the original FCC Filing. Note 2: Since the diagonal dimension of this device is > 160 mm, it is considered a "phablet". | Mode | Mobile Hotspot Sides for SAR Testing | | | | | | | | |-------------------------|--------------------------------------|--------|-------|------|-------|------|--|--| | Wode | Тор | Bottom | Front | Rear | Right | Left | | | | GPRS 850 | Х | 0 | 0 | 0 | 0 | 0 | | | | GPRS 1900 | X | 0 | 0 | 0 | 0 | 0 | | | | WCDMA 850 | X | 0 | 0 | 0 | 0 | 0 | | | | WCDMA 1700 | X | 0 | 0 | 0 | 0 | 0 | | | | WCDMA 1900 | X | 0 | 0 | 0 | 0 | 0 | | | | LTE Band 4 (AWS) | X | 0 | 0 | 0 | 0 | 0 | | | | LTE Band 2 (PCS) | X | 0 | 0 | 0 | 0 | 0 | | | | LTE Band 7 | Х | 0 | 0 | 0 | 0 | 0 | | | | 2.4G W-LAN(802.11b/g/n) | 0 | Х | 0 | 0 | 0 | Х | | | Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02 guidance, page 2. The antenna document shows the distances between the transmit antennas and the edges of the device. # 1.5 SAR Test Exclusions Applied #### (A) WIFI & BT Since Wireless Router operations of this device are only allowed using 2.4 GHz WIF, only 2.4 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02. Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances < 50 mm is defined by the following equation: $$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$ Based on the maximum conducted power of **Bluetooth** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth SAR was not required**; $[(6/10)^* \sqrt{2.480}] = 0.9 < 3.0$. Based on the maximum conducted power of **Bluetooth LE** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth LE SAR was not required**; $[(1/10)^* \sqrt{2.480}] = 0.1 < 3.0$. Based on the maximum conducted power of **2.4 GHz WIFI** (rounded to the nearest mW) and the antenna to user separation distance, **2.4 GHz WIFI SAR was required**; $[(28/10)^* \sqrt{2.462}] = 4.4 > 3.0$. Per KDB Publication 447498 D01v05r02, the maximum power of the channel was rounded to the nearest mW before calculation. #### (B) Licensed Transmitter(s) GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report donot transmit simultaneously with GPRS/EDGE Data. #### 1.6 Power Reduction for SAR There is no power reduction used for any band/mode implemented in this device for SAR purposes. #### 1.7 Device Serial Numbers | Band & Mode | Head Serial
Number | Body-Worn
Serial Number | Hotspot
Serial Number | |------------------|-----------------------|----------------------------|--------------------------| | GSM/GPRS 850 | FCC #1 | FCC #1 | FCC #1 | | GSM/GPRS 1900 | FCC #1 | FCC #1 | FCC #1 | | WCDMA 850 | FCC #1 | FCC #1 | FCC #1 | | WCDMA 1700 | FCC #1 | FCC #1 | FCC #1 | | WCDMA 1900 | FCC #1 | FCC #1 | FCC #1 | | LTE Band 4 (AWS) | FCC #1 | FCC #1 | FCC #1 | | LTE Band 2 (PCS) | FCC #1 | FCC #1 | FCC #1 | | LTE Band 7 | FCC #1 | FCC #1 | FCC #1 | | 2.4 GHz WLAN | FCC #1 | FCC #1 | FCC #1 | # 1.8 LTE Information | | LTE Inforr | mation | | |--|----------------------|-----------------------------|---------------------| | FCC ID | | ZNFH635CX | | | Form Factor | | Portable Handset | | | | LTE Ba | nd 4 (AWS) (1710.7 ~ 1754 | .3 MHz) | | | LTE Ba | nd 2 (PCS) (1850.7 ~ 1909 | .3 MHz) | | | LTE | Band 7 (2502.5 ~ 2567.5 N | лнz) | | | LTE Band 4 (AWS): 20 | 0 MHz, 15 MHz, 10 MHz, 5 | MHz, 3 MHz, 1.4 MHz | | | LTE Band 2 (PCS): 20 | MHz, 15 MHz, 10 MHz, 5 | MHz, 3 MHz, 1.4 MHz | | | LTE Band | 7: 20 MHz, 15 MHz, 10 MI | Hz, 5 MHz | | Channel Number and | Low | Mid | High | | Frequencies (MHz) | - | IVIIU | | | LTE Band 4 (AWS): 20 MHz | 1720(20050) Note1 | - | 1745(20300) Note1 | | LTE Band 4 (AWS): 15 MHz | 1717.5(20025) | 1732.5(20175) | 1747.5(20325) | | LTE Band 4 (AWS): 10 MHz | 1715(20000) | 1732.5(20175) | 1750(20350) | | LTE Band 4 (AWS): 5 MHz | 1712.5(19975) | 1732.5(20175) | 1752.5(20375) | | LTE Band 4 (AWS): 3 MHz | 1711.5(19965) | 1732.5(20175) | 1753.5(20385) | | LTE Band 4 (AWS): 1.4 MHz | 1710.7(19957) | 1732.5(20175) | 1754.3(20393) | | LTE Band 2 (PCS): 20 MHz | 1860(18700) | 1880(18900) | 1900(19100) | | LTE Band 2 (PCS): 15 MHz | 1857.5(18675) | 1880(18900) | 1902.5(19125) | | LTE Band 2 (PCS): 10 MHz | 1855(18650) | 1880(18900) | 1905(19150) | | LTE Band 2 (PCS): 5 MHz | 1852.5(18625) | 1880(18900) | 1907.5(19175) | | LTE Band 2 (PCS): 3 MHz | 1851.5(18615) | 1880(18900) | 1908.5(19185) | | LTE Band 2 (PCS): 1.4 MHz | 1850.7(18607) | 1880(18900) | 1909.3(19193) | | LTE Band 7: 20 MHz | 2510(20850) | 2535(21100) | 2560(21350) | | LTE Band 7: 15 MHz | 2507.5(20825) | 2535(21100) | 2562.5(21375) | | LTE Band 7: 10 MHz | 2505(20800) | 2535(21100) | 2565(21400) | | LTE Band 7: 5 MHz | 2502.5(20775) | 2535(21100) | 2567.5(21425) | | UE Category / Modulations | UF | E Category 4 / QPSK, 16QA | MA | | Supported | | | | | LTE MPR Permanently | | | | | implemented per 3GPP TS | | | | | 36.101 section 6.2.3~6.2.5? | | Yes | | | (manufacturer attestation to | | | | | be provided) | | | | | A-MPR (Additional MPR) disabled for SAR Testing? | | Yes | | | disabled for SAR Testing? | This dovice does | not supported LTE CA/Cor | rior Aggregation) | | LTE Carrier Aggregation | | not supported LTE CA(Car | | | | Piease r | efer to LTE Operational des | SCHPUOH. | Note 1: LTE Band 4 (AWS) at 20 MHz bandwidth does not support 3 non-overlapping channels. Per KDB 941225D05v02r03, when a device does not support at least 3 non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels. # 2. INTROCUCTION The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95*.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure
described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. ### **SAR Definition** Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1) $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ Fig. 2.1 SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. # 3. DESCRIPTION OF TEST EQUIPMENT #### 3.1 SAR MEASUREMENT SETUP Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1). A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 3.1 SAR Measurement System Setup The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail. # 3.2 EX3DV4 / ES3DV3Probe Specification Calibration In air from 10 MHz to 6 GHz / In air from 10 MHz to 3 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 600 MHz, 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2300 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz, 450 MHz, 600 MHz, 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2300 MHz, 2450 MHz Frequency 10 MHz to 6 GHz / 10 MHz to 3 GHz **Linearity** ± 0.2 dB(30 MHz to 6 GHz) / ± 0.2 dB (30 MHz to 3 GHz) **Dynamic** 10 μ W/g to > 100 mW/g **Range** Linearity: $\pm 0.2 \text{ dB}$ **Dimensions** Overall length: 337 mm Tip length 20 mm Body diameter 12 mm Tip diameter 3.9 mm Distance from probe tip to sensor center 1.0 mm **Application** SAR Dosimetry Testing Compliance tests of mobile phones Figure 3.2 Triangular Probe Configurations Figure 3.3 Probe Thick-Film Technique **DAE System** The SAR measurements were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. #### 3.3 Probe Calibration Process #### 3.3.1 E-Probe Calibration #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. #### Free Space Assessment The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees. #### Temperature Assessment * C E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ simulated tissue conductivity, Tissue density (1.25 g/cm³ for brain tissue) where: where: Δt exposure time (30 seconds), heat capacity of tissue (brain or muscle), ΔT temperature increase due to RF exposure. SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field; Figure 3.4E-Field and Temperature Measurements at 900MHz Figure 3.5 E-Field and Temperature Measurements at 1800MHz Pages: 15 /185 # 3.4 Data Extrapolation The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below; with $$V_i = \text{compensated signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i}$$ $(i=x,y,z)$ $$Cf = \text{crest factor of exciting field}$$ $(DASY parameter)$ $$CDASY parameter)$$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with $$V_i$$ = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with $SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³$ The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pwe} = \frac{E_{tot}^2}{3770}$$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### 3.5 SAM Twin PHANTOM The SAM Twin
Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6) Figure 3.6 SAM Twin Phantom # **SAM Twin Phantom Specification:** **Construction** The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure. Shell Thickness 2 ± 0.2 mm Filling Volume Approx. 25 liters Dimensions Length: 1000 mm Width: 500 mm Height: adjustable feet # **Specific Anthropomorphic Mannequin (SAM) Specifications:** The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. The state of s Figure 3.7 Sam Twin Phantom shell #### 3.6 Device Holder for Transmitters In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. Figure 3.8 Mounting Device #### 3.7 Brain & Muscle Simulation Mixture Characterization The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove. Figure 3.9 Simulated Tissue **Table3.1 Composition of the Tissue Equivalent Matter** | Ingredients | | | | Frequenc | cy (MHz) | | | | |--------------------------------|-------|-------|-------|----------|----------|-------|--------|--------| | (% by weight) | 83 | 5 | 19 | 00 | 24 | 50 | 5200 ~ | - 5800 | | Tissue Type | Head | Body | Head | Body | Head | Body | Head | Body | | Water | 40.19 | 50.75 | 55.24 | 70.23 | 71.88 | 73.40 | 65.52 | 80.00 | | Salt (NaCl) | 1.480 | 0.940 | 0.310 | 0.290 | 0.160 | 0.060 | - | - | | Sugar | 57.90 | 48.21 | - | - | - | - | - | - | | HEC | 0.250 | - | - | - | _ | _ | - | - | | Bactericide | 0.180 | 0.100 | - | - | _ | - | - | - | | Triton X-100 | - | - | - | - | 19.97 | _ | 17.24 | - | | DGBE | - | - | 44.45 | 29.48 | 7.990 | 26.54 | - | - | | Diethylene glycol hexyl ether | - | - | - | - | - | - | 17.24 | - | | Polysorbate (Tween) 80 | - | - | - | - | _ | - | | 20.00 | | Target for Dielectric Constant | 41.5 | 55.2 | 40.0 | 53.3 | 39.2 | 52.7 | - | - | | Target for Conductivity (S/m) | 0.90 | 0.97 | 1.40 | 1.52 | 1.80 | 1.95 | - | - | Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol] Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether # 3.8 SAR TEST EQUIPMENT **Table 3.2 Test Equipment Calibration** | | Table 3.2 Test Equipment Calibration | | | | | | | | | | |-------------|--|----------------|------------|------------|---------------|-----------------|--|--|--|--| | | Туре | Manufacturer | Model | Cal.Date | Next.Cal.Date | S/N | | | | | | \boxtimes | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | | | | | \boxtimes | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | | | | | \boxtimes | Robot | SCHMID | TX60L | N/A | N/A | F12/5LP5A1/A/01 | | | | | | | Robot | SCHMID | TX90XL | N/A | N/A | F13/5RR2A1/A/01 | | | | | | \boxtimes | Robot Controller | SCHMID | C58C | N/A | N/A | F12/5LP5A1/C/01 | | | | | | | Robot Controller | SCHMID | C58C | N/A | N/A | F13/5RR2A1/C/01 | | | | | | | Joystick | SCHMID | N/A | N/A | N/A | S-12030401 | | | | | | | Joystick | SCHMID | N/A | N/A | N/A | S-13200990 | | | | | | | Intel Core i7-2600 3.40 GHz | | | | | | | | | | | | Windows 7 Professional Intel Core i7-3770 3.40 GHz | N/A | N/A | N/A | N/A | N/A | | | | | | | Windows 7 Professional | N/A | N/A | N/A | N/A | N/A | | | | | | | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | SE UKS 030 AA | | | | | | \boxtimes | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | SE UKS 030 AA | | | | | | \boxtimes | Mounting Device | SCHMID | Holder | N/A | N/A | SD000H01KA | | | | | | \boxtimes | Mounting Device | SCHMID | Holder | N/A | N/A | SD000H01KA | | | | | | \boxtimes | Twin SAM Phantom | SCHMID | QD000P40CD | N/A | N/A | 1679 | | | | | | \boxtimes | Twin SAM Phantom | SCHMID | QD000P40CD | N/A | N/A | 1786 | | | | | | | Triple Modular Phantom | SCHMID | QD000P51CA | N/A | N/A | 1147 | | | | | | | Data Association Floring | OCUMID | DAE4 | 2014-07-22 | 2015-07-22 | 4004 | | | | | | \boxtimes | Data Acquisition Electronics | SCHMID | DAE4 | 2015-07-17 | 2016-07-17 | 1394 | | | | | | \boxtimes | Data Acquisition Electronics | SCHMID | DAE4V1 | 2015-08-27 | 2016-08-27 | 1396 | | | | | | \boxtimes | Dosimetric E-Field Probe | SCHMID | ES3DV3 | 2015-03-24 | 2016-03-24 | 3328 | | | | | | | | | | 2014-07-22 | 2015-07-22 | | | | | | | \boxtimes | Dosimetric E-Field Probe | SCHMID | EX3DV4 | 2015-07-22 | 2016-07-22 | 3930 | | | | | | \boxtimes | Dosimetric E-Field Probe | SCHMID | ES3DV3 | 2015-09-02 | 2016-09-02 | 3327 | | | | | | | Dummy Probe | N/A | N/A | N/A | N/A | N/A | | | | | | | 835MHz SAR Dipole | SCHMID | D835V2 | 2014-11-19 | 2016-11-19 | 4d159 | | | | | | | 033WHZ SAIN DIPOLE | 301 IIVIID | D03372 | 2014-07-18 | 2016-07-18 | 40109 | | | | | | \boxtimes | 1800MHz SAR Dipole | SCHMID | D1800V2 | 2015-07-16 | 2017-07-16 | 2d047 | | | | | | | 1900MHz SAR Dipole | SCHMID | D1900V2 | 2014-11-14 | 2016-11-14 | 5d176 | | | | | | | 2450MHz SAR Dipole | SCHMID | D2450V2 | 2014-11-19 | 2016-11-19 | 920 | | | | | | | 2600 MHz SAR Dipole | SCHMID | D2600V2 | 2015-03-02 | 2017-03-02 | 1103 | | | | | | | 2000 MHZ SAK DIPOIE | ЗСПИПО | D2000V2 | 2013-03-02 | 2015-10-21 | 1103 | | | | | | \boxtimes | Network Analyzer | Agilent | E5071C | | 2016-10-21 | MY46106970 | | | | | | | · | | | 2015-10-20 | | | | | | | | \boxtimes | Signal Generator | Agilent | ESG-3000A | 2014-06-26 | 2015-06-26 | US37230529 | | | | | | | | | | 2015-06-26 | 2016-06-26 | | | | | | | \boxtimes | Amplifier | EMPOWER | BBS3Q7ELU | 2014-09-12 | 2015-09-12 | 1020 | | | | | | N 7 | A 1*5° | DEDAY | MDA 40 40 | 2015-09-09 | 2016-09-09 | 04454004 | | | | | | \boxtimes | Amplifier | RFBAY Inc. | MPA-40-40 | 2015-05-08 | 2016-05-08 | 21151801 | | | | | | | High Power RF Amplifier | EMPOWER | BBS3Q8CCJ | 2014-10-20 | 2015-10-20 | 1005 | | | | | | | | | | 2015-10-20 | 2016-10-20 | | | | | | | \boxtimes | Power Meter | HP | EPM-442A | 2015-02-26 | 2016-02-26 | GB37170267 | | | | | | \boxtimes | Power Meter | Anritsu | ML2495A | 2014-10-07 | 2015-10-07 | 1435003 | | | | | | | 1 OWOI WICKOI | 7 1111130 | IVILETOON | 2015-09-23 | 2016-09-23 | 1 700000 | | | | | | | Wide Bandwidth Power Sensor | Anritsu | MA2490A | 2014-10-07 | 2015-10-07 | 1409034 | | | | | | | VVIGC Daliuwidii FUWEI SEIISUI | Allilou | | 2015-09-23 | 2016-09-23 | 1703007 | | | | | | \boxtimes | Power Sensor | HP | 8481A | 2015-02-26 | 2016-02-26 | 3318A96566 | | | | | | \boxtimes | Power Sensor | HP | 8481A | 2015-02-06 | 2016-02-06 | 2702A65976 | | | | | | \boxtimes | Dual Directional Coupler | Agilent | 778D-012 | 2015-01-06 | 2016-01-06 | 50228 | | | | | | | | | 772D | 2014-06-27 | 2015-06-27 | | | | | | | \square | Directional Coupler | HP | 773D | 2015-06-26 | 2016-06-26 | 2389A00640 | | | | | | | Law Dana Filton 4 5011 | Missa LAD | 1 A 45N | 2014-09-11 | 2015-09-11 | NI/A | | | | | | | Low Pass Filter 1.5GHz | Micro LAB | LA-15N | 2015-09-09 | 2016-09-09 | N/A | | | | | | K-7 | . B. E | | | 2014-09-11 | 2015-09-11 | N.//A | | | | | | | Low Pass Filter 3.0GHz | Micro LAB | LA-30N | 2015-09-09 | 2016-09-09 | N/A | | | | | | | | 1 | 1 | | _0.0000 | 1 | | | | | | | Type | Manufacturer | Model | Cal.Date | Next.Cal.Date | S/N |
-------------|--------------------------|----------------------|----------|------------|---------------|-------------| | \boxtimes | Attenuators(3 dB) | Agilent | 8491B | 2014-06-27 | 2015-06-27 | MY39260700 | | | Attenuators(3 db) | Agiletit | 04910 | 2015-06-26 | 2016-06-26 | W1 39200700 | | \boxtimes | Attenuators(10 dB) | WEINSCHEL | 23-10-34 | 2015-01-06 | 2016-01-06 | BP4387 | | | Step Attenuator | HP | 8494A | 2014-09-11 | 2015-09-11 | 3308A33341 | | | Step Attendator | 1 11 | 0+3+/\ | 2015-09-10 | 2016-09-10 | 3300A33341 | | \boxtimes | Dielectric Probe kit | SCHMID | DAK-3.5 | 2014-12-09 | 2015-12-09 | 1092 | | | 8960 Series 10 | Agilent | E5515C | 2014-09-12 | 2015-09-12 | GB41321164 | | | Wireless Comms. Test Set | Agiicit | 230100 | 2015-09-10 | 2016-09-10 | OB+1021104 | | | Wideband Radio | Videband Radio Rohde | | 2014-09-18 | 2015-09-18 | 101414 | | | Communication Tester | Schwarz | CMW500 | 2015-09-09 | 2016-09-09 | 101414 | | | Power Splitter | Anritsu | K241B | 2014-10-21 | 2015-10-21 | 1701102 | | | i owei opiittei | Allitou | ועבידוט | 2015-10-20 | 2016-10-20 | 1701102 | | | Bluetooth Tester | TESCOM | TC-3000B | 2014-06-26 | 2015-06-26 | 3000B640046 | | | Didelocii Iestei | ILOCOIVI | 10-3000B | 2015-06-26 | 2016-06-26 | JUUUDU4UU4U | **NOTE:** The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. Each equipment item was used solely within its respective calibration period. # 4. TEST SYSTEM SPECIFICATIONS #### **Automated TEST SYSTEM SPECIFICATIONS:** #### **Positioner** Robot StäubliUnimation Corp. Robot Model: TX60L Stäubli Unimation Corp. Robot Model: TX90XL Repeatability 0.02 mm No. of axis # **Data Acquisition Electronic (DAE) System** Cell Controller Processor Intel Core i7-2600 Intel Core i7-3770 Clock Speed 3.40 GHz Operating System Windows 7 Professional DASY5 PC-Board **Data Converter** Features Signal, multiplexer, A/D converter. & control logic Software DASY5 **Connecting Lines** Optical downlink for data and status info Optical uplink for commands and clock PC Interface Card **Function** 24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot **E-Field Probes** Model EX3DV4 S/N: 3930, ES3DV3 S/N: 3328, ES3DV3 S/N: 3327 **Construction** Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz, 10 MHz to 3 GHz **Linearity** \pm 0.2 dB (30 MHz to 6 GHz), \pm 0.2 dB (30 MHz to 3 GHz) **Phantom** **Phantom** SAM Twin Phantom (V5.0) Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$ Figure 2.2 DASY5 Test System # 5. SAR MEASUREMENT PROCEDURE #### 5.1 Measurement Procedure The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE1528-2013. - 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 5.1 Sample SAR Area Scan - 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. | | Maximum Area Scan Resolution (mm) Maximum Zoom Scan Resolution (mm) | | Max | kimum Zoom So
Resolution (| • | Minimum Zoom Scan | |-----------|--|--|--------------------------|-------------------------------|---------------------------------|-------------------| | Frequency | (Δx _{area} , Δy _{area}) | (Δx _{zoom} , Δy _{zoom}) | Uniform Grid Graded Grid | | Volume (mm)
(x,y,z) | | | | | , | $\Delta z_{zoom}(n)$ | Δz _{zoom} (1)* | Δz _{zoom} (n>1)* | | | ≤ 2 GHz | ≤15 | ≤8 | ≤5 | ≤4 | ≤1.5*∆z _{zoom} (n-1) | ≥ 30 | | 2-3 GHz | ≤12 | ≤5 | ≤5 | ≤4 | ≤1.5*∆z _{zoom} (n-1) | ≥ 30 | | 3-4 GHz | ≤12 | ≤5 | ≤ 4 | ≤3 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28 | | 4-5 GHz | ≤ 10 | ≤ 4 | ≤3 | ≤ 2.5 | ≤1.5*∆z _{zoom} (n-1) | ≥ 25 | | 5-6 GHz | ≤10 | ≤ 4 | ≤ 2 | ≤2 | ≤1.5*∆z _{zoom} (n-1) | ≥ 22 | Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04 *Also compliant to IEEE 1528-2013 Table 6 # 6. DEFINITION OF REFERENCE POINTS #### 6.1 Ear Reference Point Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning. Figure 6.1 Close-up side view of ERP #### 6.2 Handset Reference Points Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point. Figure 6.2 Front, back and side view SAM Twin Phantom Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points # 7. TEST CONFIGURATION POSITIONS FOR HANDSETS #### 7.1 Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon =$ 3 and loss tangent δ = 0.02. # 7.2 Positioning for Cheek/Touch 1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Figure 7.1Front, Side and Top View of Cheek/Touch Position - 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear. - 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane). - 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 7.2) # 7.3 Positioning for Ear / 15 ° Tilt With the test device aligned in the "Cheek/Touch Position": - 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree. - 2. The phone was then rotated around the horizontal line by 15 degree. - 3. While maintaining the
orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7.3). Figure 7.2 Side view w/relevant markings Figure 7.3 Front, Side and Top View of Ear/15°Position # 7.4 Body-Worn Accessory Configurations Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.7). Per FCC KDB Publication 648474 D04v01r02, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory, mode, when applicable. When the reported SAR for a body-worn accessory, Figure 6.7 Sample Body-Worn Diagram measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. # 7.5 Extremity Exposure Configurations Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498D01v05r02 should be applied to determine SAR test requirements. Per KDB Publication 447498 D01v05r02, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device. # 7.6 Wireless Router Configurations Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02 where SAR test considerations for handsets (L \times W \ge 9 cm \times 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. # 8. RF EXPOSURE LIMITS #### **Uncontrolled Environment:** UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### **Controlled Environment:** CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-2005 | | HUMAN EXPO | SURE LIMITS | |--|---|---| | | General Public Exposure
(W/kg) or (mW/g) | Occupational Exposure
(W/kg) or (mW/g) | | SPATIAL PEAK SAR * (Brain) | 1.60 | 8.00 | | SPATIAL AVERAGE SAR **
(Whole Body) | 0.08 | 0.40 | | SPATIAL PEAK SAR ***
(Hands / Feet / Ankle / Wrist) | 4.00 | 20.0 | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). # 9. FCC MEASUREMENT PROCEDURES Power measurements were performed using a base station simulator under digital average power. # 9.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v05r02, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. # 9.2 Procedures Used to Establish RF Signal for SAR The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures" v03, October 2014. The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR
evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated. # 9.3 SAR Measurement Conditions for WCDMA (UMTS) #### 9.3.1 Output Power Verification Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s". Maximum output power is verified on the High, Middle and Low channels according to the general, descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC,(transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified. #### 9.3.2 Head SAR Measurements for Handsets SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode. ### 9.3.3 Body SAR Measurements SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". #### 9.3.4 Release 5 HSDPA Data Devices The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. SAR is required for devices in body-worn accessory and other body exposure conditions, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA with HSDPA remain inactive, to establish a radio link between the test device and a communication test set using a 12.2 kbps RMC configured in Test Loop Mode 1. SAR for HSDPA is selectively measured using the highest reported SAR configuration in WCDMA, with an FRC in H-set 1 and a 12.2 kbps RMC. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCHn) according to exposure conditions, device operating capabilities and maximum output power specified for production units, including tune-up tolerance by applying the 3G SAR test reduction procedures. Maximum output power is verified according to the applicable versions of 3GPP TS 34.121. SAR must be measured based on these maximum output conditions and requirements in KDB Publication 447498, with respect to the UE Categories, and explained in the SAR report. When Maximum Power Reduction (MPR) applies, the implementations must be clearly identified in the SAR report to support test results according to Cubic Metric (CM) and, as appropriate, Enhanced MPR (E-MPR) requirements. | Sub-test | βς | β_d | β _d
(SF) | β_c/β_d | β_{hs} $^{(I)}$ | CM (dB) ⁽²⁾ | |----------|----------------------|----------------------|------------------------|----------------------|-----------------------|------------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | | 2 | 12/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 12/15 ⁽³⁾ | 24/15 | 1.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$ Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$. Figure 9.1 Table 1 #### 9.3.5 Release 6 HSUPA Data Devices The following procedures are applicable to HSPA (HSUPA/HSDPA) data devices operating under 3GPP Release 6. SAR is required for devices in body-worn accessory and other body exposure conditions, including handsets and data modems operating in various electronic devices. HSUPA operates in conjunction with WCDMA and HSDPA. SAR is initially measured in WCDMA test configurations with HSPA remain inactive. The default test configuration is to establish a radio link between the test device and a communication test set to configure a 12.2 kbps RMC in Test Loop Mode 1. SAR for HSPA is selectively measured with HS-DPCCH, E-DPCCH and E-DPDCH, all enabled, along with a 12.2 kbps RMC using the highest reported SAR configuration in WCDMA with 12.2 kbps RMC only. An FRC is configured according to HS-DPCCH Sub-test 1 using H-set 1 and QPSK. HSPA is configured according to E-DCH Sub-test 5 requirements. SAR for other HSPA sub-test configurations is confirmed selectively according to exposure conditions, E-DCH UE Category and maximum output power of production units, including tune-up tolerance by applying the 3G SAR test reduction procedure. Maximum output power is verified according to procedures in applicable versions of 3GPP TS 34.121. SAR must be measured based on these maximum output conditions and requirements in KDB Publication 447498, with respect to the UE Categories for HS-DPCCH and HSPA, and explained in the SAR report. When Maximum Power Reduction (MPR) applies, the implementations must be clearly identified in the SAR report to support test results according to Cubic Metric (CM) and, as appropriate, Enhanced MPR (E-MPR) requirements. | Sub-
test | β _c | β_d | β _d
(SF) | β_c/β_d | $\beta_{hs}^{(1)}$ | β_{ec} | β_{ed} | β _{ed}
(SF) | β _{ed}
(codes) | CM ⁽²⁾
(dB) | MPR
(dB) | AG ⁽⁴⁾
Index | E-
TFCI | |--------------|----------------------|----------------------|------------------------|----------------------|--------------------|--------------|---|-------------------------|----------------------------|---------------------------|-------------|----------------------------|------------| | 1 | 11/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 11/15 ⁽³⁾ | 22/15 | 209/225 | 1039/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β_{edl} : 47/15 β_{ed2} : 47/15 | | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 ⁽⁴⁾ | 15/15 ⁽⁴⁾ | 64 | 15/15 ⁽⁴⁾ | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$. Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$. Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value. Figure 9.2 Table 2 #### 9.3.6 SAR Measurements Conditions for DC-HSDPA This device supports DC-HSDPA Rx only and DC-HSDPA SAR was not required according to the following 3G SAR reduction procedure and HSPA, HSPA+ and DC-HSDPA SAR Guidance of KDB 941225 D01v02. In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode. SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable. #### 9.4 SAR Measurement Conditions for LTE LTE modes were tested according to FCC KDB
941225 D05v02 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR. The R&S CMW500 was used for LTE output power measurement and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI). #### 9.4.1Spectrum Plots for RB Configurations A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report. #### 9.4.2 MPR MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1. Pages: 30 /185 #### 9.4.3 A-MPR This device supports A-MPR. A-MPR is disabled for all SAR tests by setting NS=01 on the base station simulator. # 9.4.4 Required RB Size and RB Offsets for SAR Testing According to FCC KDB 941225 D05v02r03: - a. Per Section 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth - i. The required channel and offset combination with the highest maximum output power is required for SAR. - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channel is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel. - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel. - b. Per Section 4.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 4.2.1. - c. Per Section 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg. - d. Per Section 4.2.4 and 4.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 4.2.1 through 4.2.3 is less than or equal to 0.5 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.</p> # 9.5 SAR Testing with 802.11 Transmitters Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02 for more details. #### 9.5.1 General Device Setup Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements. #### 9.5.2 Frequency Channel Configurations For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode. If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band. # 10. RF CONDUCTED POWERS ### 10.1 GSM Conducted Powers | | | | | Maximu | ım Burst-A | veraged O | utput Pow | er(dBm) | | | | |----------|---------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--| | | | Voice | GF | RS/EDGE | Data (GMS | SK) | | EDGE Dat | ta (8-PSK) | | | | Band | Channel | GSM
CS
1 Slot | GPRS
1 TX
Slot | GPRS
2 TX
Slot | GPRS
3 TX
Slot | GPRS
4 TX
Slot | EDGE
1 TX
Slot | EDGE
2 TX
Slot | EDGE
3 TX
Slot | EDGE
4 TX
Slot | | | | 128 | 33.6 | 33.6 | 30.4 | 29.2 | 27.7 | 27.1 | 24.6 | 23.1 | 21.6 | | | GSM850 | 190 | 33.6 | 33.6 | 30.4 | 29.1 | 27.6 | 27.1 | 24.7 | 23.2 | 21.6 | | | | 251 | 33.7 | 33.7 | 30.5 | 29.2 | 27.7 | 27.2 | 24.7 | 23.2 | 21.7 | | | | 512 | 30.5 | 30.5 | 27.4 | 25.8 | 24.4 | 25.6 | 23.7 | 22.1 | 20.7 | | | PCS 1900 | 661 | 30.6 | 30.6 | 27.6 | 26.0 | 24.6 | 25.5 | 23.7 | 22.2 | 20.7 | | | | 810 | 30.5 | 30.5 | 27.3 | 25.8 | 24.5 | 25.4 | 23.7 | 22.0 | 20.6 | | | | | | Cal | culated Ma | aximum Fr | ame-Avera | ged Outpu | ıt Power(d | Bm) | | | | | | Voice | GF | RS/EDGE | Data (GMS | SK) | | EDGE Dat | ata (8-PSK) | | | | Band | Channel | GSM
CS
1 Slot | GPRS
1 TX
Slot | GPRS
2 TX
Slot | GPRS
3 TX
Slot | GPRS
4 TX
Slot | EDGE
1 TX
Slot | EDGE
2 TX
Slot | EDGE
3 TX
Slot | EDGE
4 TX
Slot | | | | 128 | 24.57 | 24.57 | 24.38 | 24.94 | 24.69 | 18.07 | 18.58 | 18.84 | 18.59 | | | GSM850 | 190 | 24.57 | 24.57 | 24.38 | 24.84 | 24.59 | 18.07 | 18.68 | 18.94 | 18.59 | | | | 251 | 24.67 | 24.67 | 24.48 | 24.94 | 24.69 | 18.17 | 18.68 | 18.94 | 18.69 | | | | 512 | 21.47 | 21.47 | 21.38 | 21.54 | 21.39 | 16.57 | 17.68 | 17.84 | 17.69 | | | PCS 1900 | 661 | 21.57 | 21.57 | 21.58 | 21.74 | 21.59 | 16.47 | 17.68 | 17.94 | 17.69 | | | | 810 | 21.47 | 21.47 | 21.28 | 21.54 | 21.49 | 16.37 | 17.68 | 17.74 | 17.59 | | | GSM850 | Frame | 24.67 | 24.67 | 24.68 | 24.94 | 24.69 | 18.17 | 18.68 | 18.94 | 18.69 | | | PCS 1900 | Avg. Targets: | 22.17 | 22.17 | 21.68 | 21.94 | 21.69 | 17.17 | 17.68 | 17.94 | 17.69 | | #### Table 10.1 The power was measured by E5515C #### Note: - 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots. - 2. The source-based frame-averaged output power was evaluated for all GPRS slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested. - 3. GPRS (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes. - 4. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power. GPRS Multislot class: 33 (max 4 TX Uplink slots) EDGE Multislot class: 33 (max 4 TX Uplink slots) DTM Multislot Class: N/A Figure 10.1 Power Measurement Setup # **10.2 WCDMA Conducted Powers** | 3GPP | | 3GPP
34.121 | Cellu | ılar Band (d | dBm) | WCD | MA Band 4 (| dBm) | PC | S Band (di | 3m) | 3GPP
MPR | |--------------------|---------|------------------|-------|--------------|-------|-------|-------------|-------|-------|------------|-------|-------------| | Release
Version | Mode | Subtest | 4132 | 4183 | 4233 | 1312 | 1412 | 1513 | 9262 | 9400 | 9538 | (dB) | | 99 | WCDMA | 12.2 kbps
RMC | 24.20 | 24.10 | 24.20 | 23.76 | 23.59 | 23.69 | 23.70 | 23.70 | 23.60 | - | | 99 | WCDIVIA | 12.2 kbps
AMR | 24.16 | 24.11 | 24.15 | 23.75 | 23.58 | 23.65 | 23.65 | 23.67 | 23.60 | - | | 5 | | Subtest 1 | 24.12 | 24.14 | 24.12 | 23.68 | 23.55 | 23.65 | 23.69 | 23.64 | 23.53 | 0 | | 5 | HSDPA | Subtest 2 | 24.14 | 24.09 | 24.13 | 23.72 | 23.51 | 23.66 | 23.68 | 23.66 | 23.55 | 0 | | 5 | ПЭПРА | Subtest 3 | 23.68 | 23.60 | 23.70 | 23.30 | 23.09 | 23.19 | 23.16 | 23.20 | 23.23 | 0.5 | | 5 | | Subtest 4 | 23.60 | 23.60 | 23.70 | 23.28 | 23.09 | 23.17 | 23.15 | 23.23 | 23.19 | 0.5 | | 6 | | Subtest 1 | 23.56 | 23.80 | 23.32 | 22.95 | 22.54 | 23.24 | 22.65 | 23.20 | 22.99 | 0 | | 6 | | Subtest 2 | 22.54 | 22.73 | 22.70 | 22.08 | 21.71 | 22.13 | 21.92 | 21.73 | 22.20 | 2 | | 6 | HSUPA | Subtest 3 | 22.79 | 23.16 | 22.73 | 22.30 | 22.53 | 22.19 | 22.61 | 22.38 | 22.40 | 1 | | 6 | | Subtest 4 | 22.50 | 22.94 | 22.55 | 22.07 | 21.84 | 22.35 | 22.23 | 22.10 | 22.16 | 2 | | 6 | | Subtest 5 | 23.41 | 23.72 | 23.23 | 22.90 | 23.46 | 23.20 | 23.59 | 23.36 | 22.90 | 0 | | 8 | | Subtest 1 | 24.00 | 23.90 | 24.00 | 23.66 | 23.50 | 23.61 | 23.80 | 23.70 | 23.60 | 0 | | 8 | DC- | Subtest 2 | 23.90 | 23.90 | 24.00 | 23.65 |
23.48 | 23.60 | 23.70 | 23.70 | 23.60 | 0 | | 8 | HSDPA | Subtest 3 | 23.50 | 23.40 | 23.50 | 23.05 | 22.99 | 23.01 | 23.10 | 23.20 | 23.10 | 0.5 | | 8 | | Subtest 4 | 23.40 | 23.40 | 23.50 | 22.96 | 22.97 | 22.98 | 23.20 | 23.20 | 23.20 | 0.5 | Table 10.2The power was measured by E5515C WCDMA SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg. The manufacturer declares that the HSUPA, DC-HSDPA transmitter's power will not exceed the R99 maximum transmit power in devices based on Qualcomm's HSPA chipset solutions. This device supported DC-HSDPA Rx only. Figure 10.2 Power Measurement Setup # **10.3 LTE Conducted Powers** # 1) LTE Band 4 | | | | | LTE Band 4 | (AWS) Co | onducted | Power– 20 MHz | Bandwidth | | |------|----------------|---------|--------------------|------------|------------|--------------|----------------------|-------------------------|-------------| | Mode | Freq.
(MHz) | Channel | Bandwidth
(MHz) | Modulation | RB
Size | RB
Offset | Conducted Power(dBm) | MPRAllowed Per 3GPP(dB) | MPR
(dB) | | | 1720 | 20050 | 20 | QPSK | 1 | 0 | 22.92 | 0 | 0 | | | 1720 | 20050 | 20 | QPSK | 1 | 50 | 23.00 | 0 | 0 | | | 1720 | 20050 | 20 | QPSK | 1 | 99 | 22.58 | 0 | 0 | | | 1720 | 20050 | 20 | QPSK | 50 | 0 | 21.92 | 0-1 | 1 | | | 1720 | 20050 | 20 | QPSK | 50 | 25 | 21.87 | 0-1 | 1 | | | 1720 | 20050 | 20 | QPSK | 50 | 50 | 21.73 | 0-1 | 1 | | _ | 1720 | 20050 | 20 | QPSK | 100 | 0 | 21.89 | 0-1 | 1 | | Low | 1720 | 20050 | 20 | 16QAM | 1 | 0 | 22.42 | 0-1 | 1 | | | 1720 | 20050 | 20 | 16QAM | 1 | 50 | 22.35 | 0-1 | 1 | | | 1720 | 20050 | 20 | 16QAM | 1 | 99 | 22.11 | 0-1 | 1 | | | 1720 | 20050 | 20 | 16QAM | 50 | 0 | 20.98 | 0-2 | 2 | | | 1720 | 20050 | 20 | 16QAM | 50 | 25 | 20.94 | 0-2 | 2 | | | 1720 | 20050 | 20 | 16QAM | 50 | 50 | 20.69 | 0-2 | 2 | | | 1720 | 20050 | 20 | 16QAM | 100 | 0 | 20.85 | 0-2 | 2 | | | 1745 | 20300 | 20 | QPSK | 1 | 0 | 23.00 | 0 | 0 | | | 1745 | 20300 | 20 | QPSK | 1 | 50 | 22.83 | 0 | 0 | | | 1745 | 20300 | 20 | QPSK | 1 | 99 | 22.72 | 0 | 0 | | | 1745 | 20300 | 20 | QPSK | 50 | 0 | 21.52 | 0-1 | 1 | | | 1745 | 20300 | 20 | QPSK | 50 | 25 | 21.51 | 0-1 | 1 | | | 1745 | 20300 | 20 | QPSK | 50 | 50 | 21.31 | 0-1 | 1 | | | 1745 | 20300 | 20 | QPSK | 100 | 0 | 21.44 | 0-1 | 1 | | High | 1745 | 20300 | 20 | 16QAM | 1 | 0 | 22.17 | 0-1 | 1 | | | 1745 | 20300 | 20 | 16QAM | 1 | 50 | 22.26 | 0-1 | 1 | | | 1745 | 20300 | 20 | 16QAM | 1 | 99 | 21.83 | 0-1 | 1 | | | 1745 | 20300 | 20 | 16QAM | 50 | 0 | 20.55 | 0-2 | 2 | | | 1745 | 20300 | 20 | 16QAM | 50 | 25 | 20.47 | 0-2 | 2 | | | 1745 | 20300 | 20 | 16QAM | 50 | 50 | 20.30 | 0-2 | 2 | | | 1745 | 20300 | 20 | 16QAM | 100 | 0 | 20.40 | 0-2 | 2 | Table 10.3.7The power was measured by CMW500 | | | | | LTE Band 4 | (AWS) Co | onducted l | Power– 15 MHz | Bandwidth | | |------------|--------|---------|-----------|------------|----------|------------|---------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1717.5 | 20025 | 15 | QPSK | 1 | 0 | 22.90 | 0 | 0 | | | 1717.5 | 20025 | 15 | QPSK | 1 | 36 | 22.79 | 0 | 0 | | | 1717.5 | 20025 | 15 | QPSK | 1 | 74 | 23.05 | 0 | 0 | | | 1717.5 | 20025 | 15 | QPSK | 36 | 0 | 21.81 | 0-1 | 1 | | | 1717.5 | 20025 | 15 | QPSK | 36 | 18 | 21.62 | 0-1 | 1 | | | 1717.5 | 20025 | 15 | QPSK | 36 | 37 | 21.57 | 0-1 | 1 | | | 1717.5 | 20025 | 15 | QPSK | 75 | 0 | 21.68 | 0-1 | 1 | | Low | 1717.5 | 20025 | 15 | 16QAM | 1 | 0 | 22.31 | 0-1 | 1 | | | 1717.5 | 20025 | 15 | 16QAM | 1 | 36 | 22.14 | 0-1 | 1 | | | 1717.5 | 20025 | 15 | 16QAM | 1 | 74 | 22.09 | 0-1 | 1 | | | 1717.5 | 20025 | 15 | 16QAM | 36 | 0 | 20.78 | 0-2 | 2 | | | 1717.5 | 20025 | 15 | 16QAM | 36 | 18 | 20.68 | 0-2 | 2 | | | 1717.5 | 20025 | 15 | 16QAM | 36 | 37 | 20.66 | 0-2 | 2 | | | 1717.5 | 20025 | 15 | 16QAM | 75 | 0 | 20.73 | 0-2 | 2 | | | 1732.5 | 20175 | 15 | QPSK | 1 | 0 | 23.10 | 0 | 0 | | | 1732.5 | 20175 | 15 | QPSK | 1 | 36 | 22.74 | 0 | 0 | | | 1732.5 | 20175 | 15 | QPSK | 1 | 74 | 22.66 | 0 | 0 | | | 1732.5 | 20175 | 15 | QPSK | 36 | 0 | 21.67 | 0-1 | 1 | | | 1732.5 | 20175 | 15 | QPSK | 36 | 18 | 21.56 | 0-1 | 1 | | | 1732.5 | 20175 | 15 | QPSK | 36 | 37 | 21.52 | 0-1 | 1 | | | 1732.5 | 20175 | 15 | QPSK | 75 | 0 | 21.57 | 0-1 | 1 | | Mid | 1732.5 | 20175 | 15 | 16QAM | 1 | 0 | 22.45 | 0-1 | 1 | | | 1732.5 | 20175 | 15 | 16QAM | 1 | 36 | 21.99 | 0-1 | 1 | | | 1732.5 | 20175 | 15 | 16QAM | 1 | 74 | 22.03 | 0-1 | 1 | | | 1732.5 | 20175 | 15 | 16QAM | 36 | 0 | 20.73 | 0-2 | 2 | | | 1732.5 | 20175 | 15 | 16QAM | 36 | 18 | 20.64 | 0-2 | 2 | | | 1732.5 | 20175 | 15 | 16QAM | 36 | 37 | 20.59 | 0-2 | 2 | | | 1732.5 | 20175 | 15 | 16QAM | 75 | 0 | 20.51 | 0-2 | 2 | | | 1747.5 | 20325 | 15 | QPSK | 1 | 0 | 22.86 | 0 | 0 | | | 1747.5 | 20325 | 15 | QPSK | 1 | 36 | 22.70 | 0 | 0 | | | 1747.5 | 20325 | 15 | QPSK | 1 | 74 | 22.46 | 0 | 0 | | | 1747.5 | 20325 | 15 | QPSK | 36 | 0 | 21.64 | 0-1 | 1 | | | 1747.5 | 20325 | 15 | QPSK | 36 | 18 | 21.60 | 0-1 | 1 | | | 1747.5 | 20325 | 15 | QPSK | 36 | 37 | 21.51 | 0-1 | 1 | | , . | 1747.5 | 20325 | 15 | QPSK | 75 | 0 | 21.49 | 0-1 | 1 | | High | 1747.5 | 20325 | 15 | 16QAM | 1 | 0 | 22.32 | 0-1 | 1 | | | 1747.5 | 20325 | 15 | 16QAM | 1 | 36 | 22.07 | 0-1 | 1 | | | 1747.5 | 20325 | 15 | 16QAM | 1 | 74 | 21.98 | 0-1 | 1 | | | 1747.5 | 20325 | 15 | 16QAM | 36 | 0 | 20.52 | 0-2 | 2 | | | 1747.5 | 20325 | 15 | 16QAM | 36 | 18 | 20.46 | 0-2 | 2 | | | 1747.5 | 20325 | 15 | 16QAM | 36 | 37 | 20.30 | 0-2 | 2 | | | 1747.5 | 20325 | 15 | 16QAM | 75 | 0 | 20.44 | 0-2 | 2 | Table 10.3.8The power was measured by CMW500 | Mode | | Channel | LTE Band 4 (AWS) Conducted Power– 10 MHz Bandwidth | | | | | | | | |------|--------|---------|--|------------|------|--------|------------|--------------|------|--| | | Freq. | | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | Low | 1715 | 20000 | 10 | QPSK | 1 | 0 | 23.01 | 0 | 0 | | | | 1715 | 20000 | 10 | QPSK | 1 | 25 | 22.76 | 0 | 0 | | | | 1715 | 20000 | 10 | QPSK | 1 | 49 | 23.00 | 0 | 0 | | | | 1715 | 20000 | 10 | QPSK | 25 | 0 | 21.67 | 0-1 | 1 | | | | 1715 | 20000 | 10 | QPSK | 25 | 12 | 21.65 | 0-1 | 1 | | | | 1715 | 20000 | 10 | QPSK | 25 | 25 | 21.56 | 0-1 | 1 | | | | 1715 | 20000 | 10 | QPSK | 50 | 0 | 21.67 | 0-1 | 1 | | | | 1715 | 20000 | 10 | 16QAM | 1 | 0 | 22.24 | 0-1 | 1 | | | | 1715 | 20000 | 10 | 16QAM | 1 | 25 | 22.18 | 0-1 | 1 | | | | 1715 | 20000 | 10 | 16QAM | 1 | 49 | 22.20 | 0-1 | 1 | | | | 1715 | 20000 | 10 | 16QAM | 25 | 0 | 20.95 | 0-2 | 2 | | | | 1715 | 20000 | 10 | 16QAM | 25 | 12 | 20.92 | 0-2 | 2 | | | | 1715 | 20000 | 10 | 16QAM | 25 | 25 | 20.98 | 0-2 | 2 | | | | 1715 | 20000 | 10 | 16QAM | 50 | 0 | 20.77 | 0-2 | 2 | | | | 1732.5 | 20175 | 10 | QPSK | 1 | 0 | 23.05 | 0 | 0 | | | | 1732.5 | 20175 | 10 | QPSK | 1 | 25 | 22.82 | 0 | 0 | | | | 1732.5 | 20175 | 10 | QPSK | 1 | 49 | 22.84 | 0 | 0 | | | | 1732.5 | 20175 | 10 | QPSK | 25 | 0 | 21.56 | 0-1 | 1 | | | | 1732.5 | 20175 | 10 | QPSK | 25 | 12 | 21.51 | 0-1 | 1 | | | | 1732.5 | 20175 | 10 | QPSK | 25 | 25 | 21.47 | 0-1 | 1 | | | | 1732.5 | 20175 | 10 | QPSK | 50 | 0 | 21.57 | 0-1 | 1 | | | Mid | 1732.5 | 20175 | 10 | 16QAM | 1 | 0 | 22.24 | 0-1 | 1 | | | | 1732.5 | 20175 | 10 | 16QAM | 1 | 25 | 22.04 | 0-1 | 1 | | | | 1732.5 | 20175 | 10 | 16QAM | 1 | 49 | 21.94 | 0-1 | 1 | | | | 1732.5 | 20175 | 10 | 16QAM | 25 | 0 | 20.77 | 0-2 | 2 | | | | 1732.5 | 20175 | 10 | 16QAM | 25 | 12 | 20.68 | 0-2 | 2 | | | | 1732.5 | 20175 | 10 | 16QAM | 25 | 25 | 20.61 | 0-2 | 2 | | | | 1732.5 | 20175 | 10 | 16QAM | 50 | 0 | 20.61 | 0-2 | 2 | | | | 1750 | 20350 | 10 | QPSK | 1 | 0 | 22.98 | 0 | 0 | | | High | 1750 | 20350 | 10 | QPSK | 1 | 25 | 22.71 | 0 | 0 | | | | 1750 | 20350 | 10 | QPSK | 1 | 49 | 22.76 | 0 | 0 | | | | 1750 | 20350 | 10 | QPSK | 25 | 0 | 21.64 | 0-1 | 1 | | | | 1750 | 20350 | 10 | QPSK | 25 | 12 | 21.58 | 0-1 | 1 | | | | 1750 | 20350 | 10 | QPSK | 25 | 25 | 21.47 | 0-1 | 1 | | | | 1750 | 20350 | 10 | QPSK | 50 | 0 | 21.51 | 0-1 | 1 | | | | 1750 | 20350 | 10 | 16QAM | 1 | 0 | 22.22 | 0-1 | 1 | | | | 1750 | 20350 | 10 | 16QAM | 1 | 25 | 22.22 | 0-1 | 1 | | | | 1750 | 20350 | 10 | 16QAM | 1 | 49 | 22.06 | 0-1 | 1 | | | | 1750 | 20350 | 10 | 16QAM | 25 | 0 | 20.93 | 0-2 | 2 | | | | 1750 | 20350 | 10 | 16QAM | 25 | 12 | 20.59 | 0-2 | 2 | | | | 1750 | 20350 | 10 | 16QAM | 25 | 25 | 20.76 | 0-2 | 2 | | | | 1750 | 20350 | 10 | 16QAM | 50 | 0 | 20.59 | 0-2 | 2 | | Table 10.3.9 The power was measured by CMW500 | Mode | Freq. | Channel | LTE Band 4 (AWS) Conducted Power– 5 MHz Bandwidth | | | | | | | | |------|--------|---------|---|------------|------|--------|------------|--------------|------|--| | | | | Bandwidth | Modulation | RB | RB | Conducted | MPRAllowed | MPR | | | | | | (MHz) | | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | Low | 1712.5 | 19975 | 5 | QPSK | 1 | 0 | 22.81 | 0 | 0 | | | | 1712.5 | 19975 | 5 | QPSK | 1 | 12 | 22.85 | 0 | 0 | | | | 1712.5 | 19975 | 5 | QPSK | 1 | 24 | 22.88 | 0 | 0 | | | | 1712.5 | 19975 | 5 | QPSK | 12 | 0 | 21.67 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | QPSK | 12 | 6 | 21.59 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | QPSK | 12 | 13 | 21.62 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | QPSK | 25 | 0 | 21.63 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | 16QAM | 1 | 0 | 22.46 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | 16QAM | 1 | 12 | 22.07 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | 16QAM | 1 | 24 | 22.08 | 0-1 | 1 | | | | 1712.5 | 19975 | 5 | 16QAM | 12 | 0 | 20.75 | 0-2 | 2 | | | | 1712.5 | 19975 | 5 | 16QAM | 12
| 6 | 20.76 | 0-2 | 2 | | | | 1712.5 | 19975 | 5 | 16QAM | 12 | 13 | 20.70 | 0-2 | 2 | | | | 1712.5 | 19975 | 5 | 16QAM | 25 | 0 | 20.93 | 0-2 | 2 | | | | 1732.5 | 20175 | 5 | QPSK | 1 | 0 | 22.82 | 0 | 0 | | | | 1732.5 | 20175 | 5 | QPSK | 1 | 12 | 22.64 | 0 | 0 | | | Mid | 1732.5 | 20175 | 5 | QPSK | 1 | 24 | 22.62 | 0 | 0 | | | | 1732.5 | 20175 | 5 | QPSK | 12 | 0 | 21.60 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | QPSK | 12 | 6 | 21.53 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | QPSK | 12 | 13 | 21.49 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | QPSK | 25 | 0 | 21.59 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | 16QAM | 1 | 0 | 22.02 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | 16QAM | 1 | 12 | 22.07 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | 16QAM | 1 | 24 | 22.05 | 0-1 | 1 | | | | 1732.5 | 20175 | 5 | 16QAM | 12 | 0 | 20.58 | 0-2 | 2 | | | | 1732.5 | 20175 | 5 | 16QAM | 12 | 6 | 20.48 | 0-2 | 2 | | | | 1732.5 | 20175 | 5 | 16QAM | 12 | 13 | 20.55 | 0-2 | 2 | | | | 1732.5 | 20175 | 5 | 16QAM | 25 | 0 | 20.75 | 0-2 | 2 | | | | 1752.5 | 20375 | 5 | QPSK | 1 | 0 | 22.92 | 0 | 0 | | | High | 1752.5 | 20375 | 5 | QPSK | 1 | 12 | 22.67 | 0 | 0 | | | | 1752.5 | 20375 | 5 | QPSK | 1 | 24 | 22.71 | 0 | 0 | | | | 1752.5 | 20375 | 5 | QPSK | 12 | 0 | 21.55 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | QPSK | 12 | 6 | 21.55 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | QPSK | 12 | 13 | 21.52 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | QPSK | 25 | 0 | 21.53 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | 16QAM | 1 | 0 | 22.14 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | 16QAM | 1 | 12 | 21.00 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | 16QAM | 1 | 24 | 21.95 | 0-1 | 1 | | | | 1752.5 | 20375 | 5 | 16QAM | 12 | 0 | 20.51 | 0-2 | 2 | | | | 1752.5 | 20375 | 5 | 16QAM | 12 | 6 | 20.55 | 0-2 | 2 | | | | 1752.5 | 20375 | 5 | 16QAM | 12 | 13 | 20.51 | 0-2 | 2 | | | | 1752.5 | 20375 | 5 | 16QAM | 25 | 0 | 20.53 | 0-2 | 2 | | Table 10.3.10The power was measured by CMW500 | | | | | LTE Band | 4 (AWS) C | onducted | Power- 3 MHz | Bandwidth | | |------|----------------|---------|--------------------|------------|------------|--------------|----------------------|-------------------------|-------------| | Mode | Freq.
(MHz) | Channel | Bandwidth
(MHz) | Modulation | RB
Size | RB
Offset | Conducted Power(dBm) | MPRAllowed Per 3GPP(dB) | MPR
(dB) | | | 1711.5 | 19965 | 3 | QPSK | 1 | 0 | 22.37 | 0 | 0 | | | 1711.5 | 19965 | 3 | QPSK | 1 | 7 | 22.86 | 0 | 0 | | | 1711.5 | 19965 | 3 | QPSK | 1 | 14 | 22.96 | 0 | 0 | | | 1711.5 | 19965 | 3 | QPSK | 8 | 0 | 21.66 | 0-1 | 1 | | | 1711.5 | 19965 | 3 | QPSK | 8 | 4 | 21.66 | 0-1 | 1 | | | 1711.5 | 19965 | 3 | QPSK | 8 | 7 | 21.65 | 0-1 | 1 | | | 1711.5 | 19965 | 3 | QPSK | 15 | 0 | 21.67 | 0-1 | 1 | | Low | 1711.5 | 19965 | 3 | 16QAM | 1 | 0 | 22.18 | 0-1 | 1 | | | 1711.5 | 19965 | 3 | 16QAM | 1 | 7 | 22.10 | 0-1 | 1 | | | 1711.5 | 19965 | 3 | 16QAM | 1 | 14 | 22.17 | 0-1 | 1 | | | 1711.5 | 19965 | 3 | 16QAM | 8 | 0 | 20.88 | 0-2 | 2 | | | 1711.5 | 19965 | 3 | 16QAM | 8 | 4 | 20.98 | 0-2 | 2 | | | 1711.5 | 19965 | 3 | 16QAM | 8 | 7 | 20.85 | 0-2 | 2 | | | 1711.5 | 19965 | 3 | 16QAM | 15 | 0 | 20.86 | 0-2 | 2 | | | 1732.5 | 20175 | 3 | QPSK | 1 | 0 | 22.75 | 0 | 0 | | | 1732.5 | 20175 | 3 | QPSK | 1 | 7 | 22.66 | 0 | 0 | | | 1732.5 | 20175 | 3 | QPSK | 1 | 14 | 22.58 | 0 | 0 | | | 1732.5 | 20175 | 3 | QPSK | 8 | 0 | 21.61 | 0-1 | 1 | | | 1732.5 | 20175 | 3 | QPSK | 8 | 4 | 21.61 | 0-1 | 1 | | | 1732.5 | 20175 | 3 | QPSK | 8 | 7 | 21.51 | 0-1 | 1 | | | 1732.5 | 20175 | 3 | QPSK | 15 | 0 | 21.52 | 0-1 | 1 | | Mid | 1732.5 | 20175 | 3 | 16QAM | 1 | 0 | 22.15 | 0-1 | 1 | | | 1732.5 | 20175 | 3 | 16QAM | 1 | 7 | 21.92 | 0-1 | 1 | | | 1732.5 | 20175 | 3 | 16QAM | 1 | 14 | 22.08 | 0-1 | 1 | | | 1732.5 | 20175 | 3 | 16QAM | 8 | 0 | 20.78 | 0-2 | 2 | | | 1732.5 | 20175 | 3 | 16QAM | 8 | 4 | 20.44 | 0-2 | 2 | | | 1732.5 | 20175 | 3 | 16QAM | 8 | 7 | 20.74 | 0-2 | 2 | | | 1732.5 | 20175 | 3 | 16QAM | 15 | 0 | 20.76 | 0-2 | 2 | | | 1753.5 | 20385 | 3 | QPSK | 1 | 0 | 22.70 | 0 | 0 | | | 1753.5 | 20385 | 3 | QPSK | 1 | 7 | 22.59 | 0 | 0 | | | 1753.5 | 20385 | 3 | QPSK | 1 | 14 | 22.66 | 0 | 0 | | | 1753.5 | 20385 | 3 | QPSK | 8 | 0 | 21.63 | 0-1 | 1 | | | 1753.5 | 20385 | 3 | QPSK | 8 | 4 | 21.59 | 0-1 | 1 | | | 1753.5 | 20385 | 3 | QPSK | 8 | 7 | 21.54 | 0-1 | 1 | | | 1753.5 | 20385 | 3 | QPSK | 15 | 0 | 21.47 | 0-1 | 1 | | High | 1753.5 | 20385 | 3 | 16QAM | 1 | 0 | 22.12 | 0-1 | 1 | | | 1753.5 | 20385 | 3 | 16QAM | 1 | 7 | 22.04 | 0-1 | 1 | | | 1753.5 | 20385 | 3 | 16QAM | 1 | 14 | 22.06 | 0-1 | 1 | | | 1753.5 | 20385 | 3 | 16QAM | 8 | 0 | 20.78 | 0-2 | 2 | | | 1753.5 | 20385 | 3 | 16QAM | 8 | 4 | 20.74 | 0-2 | 2 | | | 1753.5 | 20385 | 3 | 16QAM | 8 | 7 | 20.69 | 0-2 | 2 | | | 1753.5 | 20385 | 3 | 16QAM | 15 | 0 | 20.73 | 0-2 | 2 | Table 10.3.11The power was measured by CMW500 | | | | | LTE Band 4 | (AWS) Co | nducted I | Power– 1.4 MHz | Bandwidth | | |------|--------|---------|-----------|------------|----------|-----------|----------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1710.7 | 19957 | 1.4 | QPSK | 1 | 0 | 22.47 | 0 | 0 | | | 1710.7 | 19957 | 1.4 | QPSK | 1 | 2 | 22.54 | 0 | 0 | | | 1710.7 | 19957 | 1.4 | QPSK | 1 | 5 | 22.41 | 0 | 0 | | | 1710.7 | 19957 | 1.4 | QPSK | 3 | 0 | 22.48 | 0-1 | 1 | | | 1710.7 | 19957 | 1.4 | QPSK | 3 | 2 | 22.52 | 0-1 | 1 | | | 1710.7 | 19957 | 1.4 | QPSK | 3 | 3 | 22.54 | 0-1 | 1 | | | 1710.7 | 19957 | 1.4 | QPSK | 6 | 0 | 21.56 | 0-1 | 1 | | Low | 1710.7 | 19957 | 1.4 | 16QAM | 1 | 0 | 22.11 | 0-1 | 1 | | | 1710.7 | 19957 | 1.4 | 16QAM | 1 | 2 | 22.13 | 0-1 | 1 | | | 1710.7 | 19957 | 1.4 | 16QAM | 1 | 5 | 22.13 | 0-1 | 1 | | | 1710.7 | 19957 | 1.4 | 16QAM | 3 | 0 | 21.69 | 0-2 | 2 | | | 1710.7 | 19957 | 1.4 | 16QAM | 3 | 2 | 21.75 | 0-2 | 2 | | | 1710.7 | 19957 | 1.4 | 16QAM | 3 | 3 | 21.69 | 0-2 | 2 | | | 1710.7 | 19957 | 1.4 | 16QAM | 6 | 0 | 20.75 | 0-2 | 2 | | | 1732.5 | 20175 | 1.4 | QPSK | 1 | 0 | 22.68 | 0 | 0 | | | 1732.5 | 20175 | 1.4 | QPSK | 1 | 2 | 22.71 | 0 | 0 | | | 1732.5 | 20175 | 1.4 | QPSK | 1 | 5 | 22.66 | 0 | 0 | | | 1732.5 | 20175 | 1.4 | QPSK | 3 | 0 | 22.60 | 0-1 | 1 | | | 1732.5 | 20175 | 1.4 | QPSK | 3 | 2 | 22.54 | 0-1 | 1 | | | 1732.5 | 20175 | 1.4 | QPSK | 3 | 3 | 22.48 | 0-1 | 1 | | | 1732.5 | 20175 | 1.4 | QPSK | 6 | 0 | 21.48 | 0-1 | 1 | | Mid | 1732.5 | 20175 | 1.4 | 16QAM | 1 | 0 | 22.08 | 0-1 | 1 | | | 1732.5 | 20175 | 1.4 | 16QAM | 1 | 2 | 22.10 | 0-1 | 1 | | | 1732.5 | 20175 | 1.4 | 16QAM | 1 | 5 | 22.08 | 0-1 | 1 | | | 1732.5 | 20175 | 1.4 | 16QAM | 3 | 0 | 21.69 | 0-2 | 2 | | | 1732.5 | 20175 | 1.4 | 16QAM | 3 | 2 | 21.62 | 0-2 | 2 | | | 1732.5 | 20175 | 1.4 | 16QAM | 3 | 3 | 21.57 | 0-2 | 2 | | | 1732.5 | 20175 | 1.4 | 16QAM | 6 | 0 | 20.53 | 0-2 | 2 | | | 1754.3 | 20393 | 1.4 | QPSK | 1 | 0 | 22.63 | 0 | 0 | | | 1754.3 | 20393 | 1.4 | QPSK | 1 | 2 | 22.81 | 0 | 0 | | | 1754.3 | 20393 | 1.4 | QPSK | 1 | 5 | 22.64 | 0 | 0 | | | 1754.3 | 20393 | 1.4 | QPSK | 3 | 0 | 22.55 | 0-1 | 1 | | | 1754.3 | 20393 | 1.4 | QPSK | 3 | 2 | 22.55 | 0-1 | 1 | | | 1754.3 | 20393 | 1.4 | QPSK | 3 | 3 | 22.48 | 0-1 | 1 | | , | 1754.3 | 20393 | 1.4 | QPSK | 6 | 0 | 21.51 | 0-1 | 1 | | High | 1754.3 | 20393 | 1.4 | 16QAM | 1 | 0 | 21.87 | 0-1 | 1 | | | 1754.3 | 20393 | 1.4 | 16QAM | 1 | 2 | 22.04 | 0-1 | 1 | | | 1754.3 | 20393 | 1.4 | 16QAM | 1 | 5 | 22.10 | 0-1 | 1 | | | 1754.3 | 20393 | 1.4 | 16QAM | 3 | 0 | 21.67 | 0-2 | 2 | | | 1754.3 | 20393 | 1.4 | 16QAM | 3 | 2 | 21.39 | 0-2 | 2 | | | 1754.3 | 20393 | 1.4 | 16QAM | 3 | 3 | 21.64 | 0-2 | 2 | | | 1754.3 | 20393 | 1.4 | 16QAM | 6 | 0 | 20.65 | 0-2 | 2 | Table 10.3.12The power was measured by CMW500 # 2) LTE Band 2 | | | | | LTE Band 2 | (PCS) Co | nducted F | Power- 20 MHz | Bandwidth | | |-----------|-------|---------|-----------|------------|----------|-----------|---------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAIlowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1860 | 18700 | 20 | QPSK | 1 | 0 | 23.10 | 0 | 0 | | | 1860 | 18700 | 20 | QPSK | 1 | 50 | 22.95 | 0 | 0 | | | 1860 | 18700 | 20 | QPSK | 1 | 99 | 22.89 | 0 | 0 | | | 1860 | 18700 | 20 | QPSK | 50 | 0 | 21.87 | 0-1 | 1 | | | 1860 | 18700 | 20 | QPSK | 50 | 25 | 21.85 | 0-1 | 1 | | | 1860 | 18700 | 20 | QPSK | 50 | 50 | 21.86 | 0-1 | 1 | | _ | 1860 | 18700 | 20 | QPSK | 100 | 0 | 21.79 | 0-1 | 1 | | Low | 1860 | 18700 | 20 | 16QAM | 1 | 0 | 22.49 | 0-1 | 1 | | | 1860 | 18700 | 20 | 16QAM | 1 | 50 | 22.71 | 0-1 | 1 | | | 1860 | 18700 | 20 | 16QAM | 1 | 99 | 22.32 | 0-1 | 1 | | | 1860 | 18700 | 20 | 16QAM | 50 | 0 | 20.86 | 0-2 | 2 | | | 1860 | 18700 | 20 | 16QAM | 50 | 25 | 20.86 | 0-2 | 2 | | | 1860 | 18700 | 20 | 16QAM | 50 | 50 | 20.80 | 0-2 | 2 | | | 1860 | 18700 | 20 | 16QAM | 100 | 0 | 20.97 | 0-2 | 2 | | | 1880 | 18900 | 20 | QPSK | 1 | 0 | 23.05 | 0 | 0 | | | 1880 | 18900 | 20 | QPSK | 1 | 50 | 23.02 | 0 | 0 | | | 1880 | 18900 | 20 | QPSK | 1 | 99 | 22.84 | 0 | 0 | | | 1880 | 18900 | 20 | QPSK | 50 | 0 | 22.00 | 0-1 | 1 | | | 1880 | 18900 | 20 | QPSK | 50 | 25 | 21.91 | 0-1 | 1 | | | 1880 | 18900 | 20 | QPSK | 50 | 50 | 21.81 | 0-1 | 1 | | | 1880 | 18900 | 20 | QPSK | 100 | 0 | 21.90 | 0-1 | 1 | | Mid | 1880 | 18900 | 20 | 16QAM | 1 | 0 | 22.50 | 0-1 | 1 | | | 1880 | 18900 | 20 | 16QAM | 1 | 50 | 22.49 | 0-1 | 1 | | | 1880 | 18900 | 20 | 16QAM | 1 | 99 | 22.36 | 0-1 | 1 | | | 1880 | 18900 | 20 | 16QAM | 50 | 0 | 21.15 | 0-2 | 2 | | | 1880 | 18900 | 20 | 16QAM | 50 | 25 | 20.90 | 0-2 | 2 | | | 1880 | 18900 | 20 | 16QAM | 50 | 50 | 20.96 | 0-2 | 2 | | | 1880 | 18900 | 20 | 16QAM | 100 | 0 | 20.96 | 0-2 | 2 | | | 1900 | 19100 | 20 | QPSK | 1 | 0 | 22.70 | 0 | 0 | | | 1900 | 19100 | 20 | QPSK | 1 | 50 | 22.66 | 0 | 0 | | | 1900 | 19100 | 20 | QPSK | 1 | 99 | 22.63 | 0 | 0 | | | 1900 | 19100 | 20 | QPSK | 50 | 0 | 21.63
| 0-1 | 1 | | | 1900 | 19100 | 20 | QPSK | 50 | 25 | 21.58 | 0-1 | 1 | | | 1900 | 19100 | 20 | QPSK | 50 | 50 | 21.43 | 0-1 | 1 | | . | 1900 | 19100 | 20 | QPSK | 100 | 0 | 21.61 | 0-1 | 1 | | High | 1900 | 19100 | 20 | 16QAM | 1 | 0 | 22.32 | 0-1 | 1 | | | 1900 | 19100 | 20 | 16QAM | 1 | 50 | 22.13 | 0-1 | 1 | | | 1900 | 19100 | 20 | 16QAM | 1 | 99 | 21.90 | 0-1 | 1 | | | 1900 | 19100 | 20 | 16QAM | 50 | 0 | 20.74 | 0-2 | 2 | | | 1900 | 19100 | 20 | 16QAM | 50 | 25 | 20.64 | 0-2 | 2 | | | 1900 | 19100 | 20 | 16QAM | 50 | 50 | 20.59 | 0-2 | 2 | | | 1900 | 19100 | 20 | 16QAM | 100 | 0 | 20.73 | 0-2 | 2 | Table 10.3.13The power was measured by CMW500 | | | | | LTE Band 2 | (PCS) Co | nducted F | Power– 15 MHz | Bandwidth | | |-------|--------|---------|-----------|------------|----------|-----------|---------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1857.5 | 18675 | 15 | QPSK | 1 | 0 | 22.97 | 0 | 0 | | | 1857.5 | 18675 | 15 | QPSK | 1 | 36 | 22.45 | 0 | 0 | | | 1857.5 | 18675 | 15 | QPSK | 1 | 74 | 22.54 | 0 | 0 | | | 1857.5 | 18675 | 15 | QPSK | 36 | 0 | 21.69 | 0-1 | 1 | | | 1857.5 | 18675 | 15 | QPSK | 36 | 18 | 21.73 | 0-1 | 1 | | | 1857.5 | 18675 | 15 | QPSK | 36 | 37 | 21.75 | 0-1 | 1 | | | 1857.5 | 18675 | 15 | QPSK | 75 | 0 | 21.72 | 0-1 | 1 | | Low | 1857.5 | 18675 | 15 | 16QAM | 1 | 0 | 21.95 | 0-1 | 1 | | | 1857.5 | 18675 | 15 | 16QAM | 1 | 36 | 21.86 | 0-1 | 1 | | | 1857.5 | 18675 | 15 | 16QAM | 1 | 74 | 22.11 | 0-1 | 1 | | | 1857.5 | 18675 | 15 | 16QAM | 36 | 0 | 20.87 | 0-2 | 2 | | | 1857.5 | 18675 | 15 | 16QAM | 36 | 18 | 20.78 | 0-2 | 2 | | | 1857.5 | 18675 | 15 | 16QAM | 36 | 37 | 20.83 | 0-2 | 2 | | | 1857.5 | 18675 | 15 | 16QAM | 75 | 0 | 20.80 | 0-2 | 2 | | | 1880 | 18900 | 15 | QPSK | 1 | 0 | 22.82 | 0 | 0 | | | 1880 | 18900 | 15 | QPSK | 1 | 36 | 22.73 | 0 | 0 | | | 1880 | 18900 | 15 | QPSK | 1 | 74 | 22.64 | 0 | 0 | | | 1880 | 18900 | 15 | QPSK | 36 | 0 | 21.84 | 0-1 | 1 | | | 1880 | 18900 | 15 | QPSK | 36 | 18 | 21.73 | 0-1 | 1 | | | 1880 | 18900 | 15 | QPSK | 36 | 37 | 21.63 | 0-1 | 1 | | | 1880 | 18900 | 15 | QPSK | 75 | 0 | 21.78 | 0-1 | 1 | | Mid | 1880 | 18900 | 15 | 16QAM | 1 | 0 | 22.42 | 0-1 | 1 | | | 1880 | 18900 | 15 | 16QAM | 1 | 36 | 22.26 | 0-1 | 1 | | | 1880 | 18900 | 15 | 16QAM | 1 | 74 | 22.19 | 0-1 | 1 | | | 1880 | 18900 | 15 | 16QAM | 36 | 0 | 20.91 | 0-2 | 2 | | | 1880 | 18900 | 15 | 16QAM | 36 | 18 | 20.96 | 0-2 | 2 | | | 1880 | 18900 | 15 | 16QAM | 36 | 37 | 20.75 | 0-2 | 2 | | | 1880 | 18900 | 15 | 16QAM | 75 | 0 | 20.93 | 0-2 | 2 | | | 1902.5 | 19125 | 15 | QPSK | 1 | 0 | 22.92 | 0 | 0 | | | 1902.5 | 19125 | 15 | QPSK | 1 | 36 | 22.79 | 0 | 0 | | | 1902.5 | 19125 | 15 | QPSK | 1 | 74 | 22.71 | 0 | 0 | | | 1902.5 | 19125 | 15 | QPSK | 36 | 0 | 21.81 | 0-1 | 1 | | | 1902.5 | 19125 | 15 | QPSK | 36 | 18 | 21.70 | 0-1 | 1 | | | 1902.5 | 19125 | 15 | QPSK | 36 | 37 | 21.66 | 0-1 | 1 | | 111:1 | 1902.5 | 19125 | 15 | QPSK | 75 | 0 | 21.61 | 0-1 | 1 | | High | 1902.5 | 19125 | 15 | 16QAM | 1 | 0 | 22.39 | 0-1 | 1 | | | 1902.5 | 19125 | 15 | 16QAM | 1 | 36 | 22.22 | 0-1 | 1 | | | 1902.5 | 19125 | 15 | 16QAM | 1 | 74 | 22.14 | 0-1 | 1 | | | 1902.5 | 19125 | 15 | 16QAM | 36 | 0 | 20.81 | 0-2 | 2 | | | 1902.5 | 19125 | 15 | 16QAM | 36 | 18 | 20.72 | 0-2 | 2 | | | 1902.5 | 19125 | 15 | 16QAM | 36 | 37 | 20.70 | 0-2 | 2 | | | 1902.5 | 19125 | 15 | 16QAM | 75 | 0 | 20.70 | 0-2 | 2 | Table 10.3.14 The power was measured by CMW500 | | | | | LTE Band 2 | (PCS) Co | nducted F | Power– 10 MHz | Bandwidth | | |------|-------|---------|-----------|------------|----------|-----------|---------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1855 | 18650 | 10 | QPSK | 1 | 0 | 22.57 | 0 | 0 | | | 1855 | 18650 | 10 | QPSK | 1 | 25 | 22.68 | 0 | 0 | | | 1855 | 18650 | 10 | QPSK | 1 | 49 | 22.71 | 0 | 0 | | | 1855 | 18650 | 10 | QPSK | 25 | 0 | 21.66 | 0-1 | 1 | | | 1855 | 18650 | 10 | QPSK | 25 | 12 | 21.64 | 0-1 | 1 | | | 1855 | 18650 | 10 | QPSK | 25 | 25 | 21.72 | 0-1 | 1 | | | 1855 | 18650 | 10 | QPSK | 50 | 0 | 21.69 | 0-1 | 1 | | Low | 1855 | 18650 | 10 | 16QAM | 1 | 0 | 22.23 | 0-1 | 1 | | | 1855 | 18650 | 10 | 16QAM | 1 | 25 | 22.17 | 0-1 | 1 | | | 1855 | 18650 | 10 | 16QAM | 1 | 49 | 22.18 | 0-1 | 1 | | | 1855 | 18650 | 10 | 16QAM | 25 | 0 | 20.90 | 0-2 | 2 | | | 1855 | 18650 | 10 | 16QAM | 25 | 12 | 20.90 | 0-2 | 2 | | | 1855 | 18650 | 10 | 16QAM | 25 | 25 | 20.98 | 0-2 | 2 | | | 1855 | 18650 | 10 | 16QAM | 50 | 0 | 20.75 | 0-2 | 2 | | | 1880 | 18900 | 10 | QPSK | 1 | 0 | 22.95 | 0 | 0 | | | 1880 | 18900 | 10 | QPSK | 1 | 25 | 22.82 | 0 | 0 | | | 1880 | 18900 | 10 | QPSK | 1 | 49 | 22.73 | 0 | 0 | | | 1880 | 18900 | 10 | QPSK | 25 | 0 | 21.76 | 0-1 | 1 | | | 1880 | 18900 | 10 | QPSK | 25 | 12 | 21.80 | 0-1 | 1 | | | 1880 | 18900 | 10 | QPSK | 25 | 25 | 21.72 | 0-1 | 1 | | | 1880 | 18900 | 10 | QPSK | 50 | 0 | 21.82 | 0-1 | 1 | | Mid | 1880 | 18900 | 10 | 16QAM | 1 | 0 | 22.33 | 0-1 | 1 | | | 1880 | 18900 | 10 | 16QAM | 1 | 25 | 22.34 | 0-1 | 1 | | | 1880 | 18900 | 10 | 16QAM | 1 | 49 | 22.21 | 0-1 | 1 | | | 1880 | 18900 | 10 | 16QAM | 25 | 0 | 20.96 | 0-2 | 2 | | | 1880 | 18900 | 10 | 16QAM | 25 | 12 | 20.88 | 0-2 | 2 | | | 1880 | 18900 | 10 | 16QAM | 25 | 25 | 21.09 | 0-2 | 2 | | | 1880 | 18900 | 10 | 16QAM | 50 | 0 | 20.88 | 0-2 | 2 | | | 1905 | 19150 | 10 | QPSK | 1 | 0 | 22.93 | 0 | 0 | | | 1905 | 19150 | 10 | QPSK | 1 | 25 | 22.56 | 0 | 0 | | | 1905 | 19150 | 10 | QPSK | 1 | 49 | 22.58 | 0 | 0 | | | 1905 | 19150 | 10 | QPSK | 25 | 0 | 21.75 | 0-1 | 1 | | | 1905 | 19150 | 10 | QPSK | 25 | 12 | 21.58 | 0-1 | 1 | | | 1905 | 19150 | 10 | QPSK | 25 | 25 | 21.58 | 0-1 | 1 | | Uint | 1905 | 19150 | 10 | QPSK | 50 | 0 | 21.60 | 0-1 | 1 | | High | 1905 | 19150 | 10 | 16QAM | 1 | 0 | 22.43 | 0-1 | 1 | | | 1905 | 19150 | 10 | 16QAM | 1 | 25 | 22.33 | 0-1 | 1 | | | 1905 | 19150 | 10 | 16QAM | 1 | 49 | 22.17 | 0-1 | 1 | | | 1905 | 19150 | 10 | 16QAM | 25 | 0 | 20.89 | 0-2 | 2 | | | 1905 | 19150 | 10 | 16QAM | 25 | 12 | 20.71 | 0-2 | 2 | | | 1905 | 19150 | 10 | 16QAM | 25 | 25 | 20.72 | 0-2 | 2 | | | 1905 | 19150 | 10 | 16QAM | 50 | 0 | 20.70 | 0-2 | 2 | Table 10.3.15The power was measured by CMW500 | | | | | LTE Band | 2 (PCS) C | onducted | Power– 5 MHz I | Bandwidth | | |-------|--------|---------|-----------|------------|-----------|----------|----------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1852.5 | 18625 | 5 | QPSK | 1 | 0 | 22.59 | 0 | 0 | | | 1852.5 | 18625 | 5 | QPSK | 1 | 12 | 22.93 | 0 | 0 | | | 1852.5 | 18625 | 5 | QPSK | 1 | 24 | 22.81 | 0 | 0 | | | 1852.5 | 18625 | 5 | QPSK | 12 | 0 | 21.73 | 0-1 | 1 | | | 1852.5 | 18625 | 5 | QPSK | 12 | 6 | 21.75 | 0-1 | 1 | | | 1852.5 | 18625 | 5 | QPSK | 12 | 13 | 21.72 | 0-1 | 1 | | | 1852.5 | 18625 | 5 | QPSK | 25 | 0 | 21.69 | 0-1 | 1 | | Low | 1852.5 | 18625 | 5 | 16QAM | 1 | 0 | 22.26 | 0-1 | 1 | | | 1852.5 | 18625 | 5 | 16QAM | 1 | 12 | 22.21 | 0-1 | 1 | | | 1852.5 | 18625 | 5 | 16QAM | 1 | 24 | 22.27 | 0-1 | 1 | | | 1852.5 | 18625 | 5 | 16QAM | 12 | 0 | 20.86 | 0-2 | 2 | | | 1852.5 | 18625 | 5 | 16QAM | 12 | 6 | 20.87 | 0-2 | 2 | | | 1852.5 | 18625 | 5 | 16QAM | 12 | 13 | 20.81 | 0-2 | 2 | | | 1852.5 | 18625 | 5 | 16QAM | 25 | 0 | 20.83 | 0-2 | 2 | | | 1880 | 18900 | 5 | QPSK | 1 | 0 | 22.82 | 0 | 0 | | | 1880 | 18900 | 5 | QPSK | 1 | 12 | 22.77 | 0 | 0 | | | 1880 | 18900 | 5 | QPSK | 1 | 24 | 22.85 | 0 | 0 | | | 1880 | 18900 | 5 | QPSK | 12 | 0 | 21.85 | 0-1 | 1 | | | 1880 | 18900 | 5 | QPSK | 12 | 6 | 21.84 | 0-1 | 1 | | | 1880 | 18900 | 5 | QPSK | 12 | 13 | 21.86 | 0-1 | 1 | | N. 41 | 1880 | 18900 | 5 | QPSK | 25 | 0 | 21.88 | 0-1 | 1 | | Mid | 1880 | 18900 | 5 | 16QAM | 1 | 0 | 22.46 | 0-1 | 1 | | | 1880 | 18900 | 5 | 16QAM | 1 | 12 | 22.43 | 0-1 | 1 | | | 1880 | 18900 | 5 | 16QAM | 1 | 24 | 22.32 | 0-1 | 1 | | | 1880 | 18900 | 5 | 16QAM | 12 | 0 | 20.99 | 0-2 | 2 | | | 1880 | 18900 | 5 | 16QAM | 12 | 6 | 20.98 | 0-2 | 2 | | | 1880 | 18900 | 5 | 16QAM | 12 | 13 | 20.91 | 0-2 | 2 | | | 1880 | 18900 | 5 | 16QAM | 25 | 0 | 21.02 | 0-2 | 2 | | | 1907.5 | 19175 | 5 | QPSK | 1 | 0 | 22.91 | 0 | 0 | | | 1907.5 | 19175 | 5 | QPSK | 1 | 12 | 22.72 | 0 | 0 | | | 1907.5 | 19175 | 5 | QPSK | 1 | 24 | 22.77 | 0 | 0 | | | 1907.5 | 19175 | 5 | QPSK | 12 | 0 | 21.73 | 0-1 | 1 | | | 1907.5 | 19175 | 5 | QPSK | 12 | 6 | 21.68 | 0-1 | 1 | | | 1907.5 | 19175 | 5 | QPSK | 12 | 13 | 21.68 | 0-1 | 1 | | U:~L | 1907.5 | 19175 | 5 | QPSK | 25 | 0 | 21.73 | 0-1 | 1 | | High | 1907.5 | 19175 | 5 | 16QAM | 1 | 0 | 22.36 | 0-1 | 1 | | | 1907.5 | 19175 | 5 | 16QAM | 1 | 12 | 22.21 | 0-1 | 1 | | | 1907.5 | 19175 | 5 | 16QAM | 1 | 24 | 22.18 | 0-1 | 1 | | | 1907.5 | 19175 | 5 | 16QAM | 12 | 0 | 20.80 | 0-2 | 2 | | | 1907.5 | 19175 | 5 | 16QAM | 12 | 6 | 20.78 | 0-2 | 2 | | | 1907.5 | 19175 | 5 | 16QAM | 12 | 13 | 20.75 | 0-2 | 2 | | | 1907.5 | 19175 | 5 | 16QAM | 25 | 0 | 20.91 | 0-2 | 2 | Table 10.3.16The power was measured by CMW500 | | | | | LTE Band | 2 (PCS) C | onducted | Power– 3 MHz I | Bandwidth | | |--------|--------|---------|-----------|------------|-----------|----------|----------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 1851.5 | 18615 | 3 | QPSK | 1 | 0 | 22.76 | 0 | 0 | | | 1851.5 | 18615 | 3 | QPSK | 1 | 7 | 22.77 | 0 | 0 | | | 1851.5 | 18615 | 3 | QPSK | 1 | 14 | 22.83 | 0 | 0 | | | 1851.5 | 18615 | 3 | QPSK | 8 | 0 | 21.51 | 0-1 | 1 | | | 1851.5 | 18615 | 3 | QPSK | 8 | 4 | 21.55 | 0-1 | 1 | | | 1851.5 |
18615 | 3 | QPSK | 8 | 7 | 21.58 | 0-1 | 1 | | | 1851.5 | 18615 | 3 | QPSK | 15 | 0 | 21.51 | 0-1 | 1 | | Low | 1851.5 | 18615 | 3 | 16QAM | 1 | 0 | 22.30 | 0-1 | 1 | | | 1851.5 | 18615 | 3 | 16QAM | 1 | 7 | 22.18 | 0-1 | 1 | | | 1851.5 | 18615 | 3 | 16QAM | 1 | 14 | 22.07 | 0-1 | 1 | | | 1851.5 | 18615 | 3 | 16QAM | 8 | 0 | 21.11 | 0-2 | 2 | | | 1851.5 | 18615 | 3 | 16QAM | 8 | 4 | 21.18 | 0-2 | 2 | | | 1851.5 | 18615 | 3 | 16QAM | 8 | 7 | 21.01 | 0-2 | 2 | | | 1851.5 | 18615 | 3 | 16QAM | 15 | 0 | 20.74 | 0-2 | 2 | | | 1880 | 18900 | 3 | QPSK | 1 | 0 | 22.85 | 0 | 0 | | | 1880 | 18900 | 3 | QPSK | 1 | 7 | 22.87 | 0 | 0 | | | 1880 | 18900 | 3 | QPSK | 1 | 14 | 22.73 | 0 | 0 | | | 1880 | 18900 | 3 | QPSK | 8 | 0 | 21.76 | 0-1 | 1 | | | 1880 | 18900 | 3 | QPSK | 8 | 4 | 21.73 | 0-1 | 1 | | | 1880 | 18900 | 3 | QPSK | 8 | 7 | 21.71 | 0-1 | 1 | | NA: -I | 1880 | 18900 | 3 | QPSK | 15 | 0 | 21.72 | 0-1 | 1 | | Mid | 1880 | 18900 | 3 | 16QAM | 1 | 0 | 22.49 | 0-1 | 1 | | | 1880 | 18900 | 3 | 16QAM | 1 | 7 | 22.39 | 0-1 | 1 | | | 1880 | 18900 | 3 | 16QAM | 1 | 14 | 21.82 | 0-1 | 1 | | | 1880 | 18900 | 3 | 16QAM | 8 | 0 | 21.15 | 0-2 | 2 | | | 1880 | 18900 | 3 | 16QAM | 8 | 4 | 21.15 | 0-2 | 2 | | | 1880 | 18900 | 3 | 16QAM | 8 | 7 | 21.11 | 0-2 | 2 | | | 1880 | 18900 | 3 | 16QAM | 15 | 0 | 21.13 | 0-2 | 2 | | | 1908.5 | 19185 | 3 | QPSK | 1 | 0 | 22.65 | 0 | 0 | | | 1908.5 | 19185 | 3 | QPSK | 1 | 7 | 22.64 | 0 | 0 | | | 1908.5 | 19185 | 3 | QPSK | 1 | 14 | 22.72 | 0 | 0 | | | 1908.5 | 19185 | 3 | QPSK | 8 | 0 | 21.78 | 0-1 | 0-1 | | | 1908.5 | 19185 | 3 | QPSK | 8 | 4 | 21.56 | 0-1 | 0-1 | | | 1908.5 | 19185 | 3 | QPSK | 8 | 7 | 21.67 | 0-1 | 0-1 | | U:~L | 1908.5 | 19185 | 3 | QPSK | 15 | 0 | 21.66 | 0-1 | 0-1 | | High | 1908.5 | 19185 | 3 | 16QAM | 1 | 0 | 22.32 | 0-1 | 0-1 | | | 1908.5 | 19185 | 3 | 16QAM | 1 | 7 | 22.21 | 0-1 | 0-1 | | | 1908.5 | 19185 | 3 | 16QAM | 1 | 14 | 22.35 | 0-1 | 0-1 | | | 1908.5 | 19185 | 3 | 16QAM | 8 | 0 | 21.09 | 0-2 | 0-2 | | | 1908.5 | 19185 | 3 | 16QAM | 8 | 4 | 21.03 | 0-2 | 0-2 | | | 1908.5 | 19185 | 3 | 16QAM | 8 | 7 | 21.10 | 0-2 | 0-2 | | | 1908.5 | 19185 | 3 | 16QAM | 15 | 0 | 21.03 | 0-2 | 0-2 | Table 10.3.17The power was measured by CMW500 | | | | | LTE Band 2 | (PCS) Co | nducted F | Power– 1.4 MHz | Bandwidth | | |------|----------------|---------|--------------------|------------|------------|--------------|----------------------|-------------------------|-------------| | Mode | Freq.
(MHz) | Channel | Bandwidth
(MHz) | Modulation | RB
Size | RB
Offset | Conducted Power(dBm) | MPRAllowed Per 3GPP(dB) | MPR
(dB) | | | 1850.7 | 18607 | 1.4 | QPSK | 1 | 0 | 22.64 | 0 | 0 | | | 1850.7 | 18607 | 1.4 | QPSK | 1 | 2 | 22.79 | 0 | 0 | | | 1850.7 | 18607 | 1.4 | QPSK | 1 | 5 | 22.61 | 0 | 0 | | | 1850.7 | 18607 | 1.4 | QPSK | 3 | 0 | 22.60 | 0-1 | 0-1 | | | 1850.7 | 18607 | 1.4 | QPSK | 3 | 2 | 22.68 | 0-1 | 0-1 | | | 1850.7 | 18607 | 1.4 | QPSK | 3 | 3 | 22.65 | 0-1 | 0-1 | | | 1850.7 | 18607 | 1.4 | QPSK | 6 | 0 | 21.54 | 0-1 | 0-1 | | Low | 1850.7 | 18607 | 1.4 | 16QAM | 1 | 0 | 22.04 | 0-1 | 0-1 | | | 1850.7 | 18607 | 1.4 | 16QAM | 1 | 2 | 22.23 | 0-1 | 0-1 | | | 1850.7 | 18607 | 1.4 | 16QAM | 1 | 5 | 21.82 | 0-1 | 0-1 | | | 1850.7 | 18607 | 1.4 | 16QAM | 3 | 0 | 21.72 | 0-2 | 0-2 | | | 1850.7 | 18607 | 1.4 | 16QAM | 3 | 2 | 21.56 | 0-2 | 0-2 | | | 1850.7 | 18607 | 1.4 | 16QAM | 3 | 3 | 22.04 | 0-2 | 0-2 | | | 1850.7 | 18607 | 1.4 | 16QAM | 6 | 0 | 20.64 | 0-2 | 0-2 | | | 1880 | 18900 | 1.4 | QPSK | 1 | 0 | 22.77 | 0 | 0 | | | 1880 | 18900 | 1.4 | QPSK | 1 | 2 | 22.82 | 0 | 0 | | | 1880 | 18900 | 1.4 | QPSK | 1 | 5 | 22.75 | 0 | 0 | | | 1880 | 18900 | 1.4 | QPSK | 3 | 0 | 22.85 | 0-1 | 0-1 | | | 1880 | 18900 | 1.4 | QPSK | 3 | 2 | 22.89 | 0-1 | 0-1 | | | 1880 | 18900 | 1.4 | QPSK | 3 | 3 | 22.85 | 0-1 | 0-1 | | | 1880 | 18900 | 1.4 | QPSK | 6 | 0 | 21.72 | 0-1 | 0-1 | | Mid | 1880 | 18900 | 1.4 | 16QAM | 1 | 0 | 22.44 | 0-1 | 0-1 | | | 1880 | 18900 | 1.4 | 16QAM | 1 | 2 | 22.37 | 0-1 | 0-1 | | | 1880 | 18900 | 1.4 | 16QAM | 1 | 5 | 22.44 | 0-1 | 0-1 | | | 1880 | 18900 | 1.4 | 16QAM | 3 | 0 | 21.94 | 0-2 | 0-2 | | | 1880 | 18900 | 1.4 | 16QAM | 3 | 2 | 21.97 | 0-2 | 0-2 | | | 1880 | 18900 | 1.4 | 16QAM | 3 | 3 | 22.12 | 0-2 | 0-2 | | | 1880 | 18900 | 1.4 | 16QAM | 6 | 0 | 20.82 | 0-2 | 0-2 | | | 1909.3 | 19193 | 1.4 | QPSK | 1 | 0 | 22.57 | 0 | 0 | | | 1909.3 | 19193 | 1.4 | QPSK | 1 | 2 | 22.72 | 0 | 0 | | | 1909.3 | 19193 | 1.4 | QPSK | 1 | 5 | 22.78 | 0 | 0 | | | 1909.3 | 19193 | 1.4 | QPSK | 3 | 0 | 22.78 | 0-1 | 0-1 | | | 1909.3 | 19193 | 1.4 | QPSK | 3 | 2 | 22.82 | 0-1 | 0-1 | | | 1909.3 | 19193 | 1.4 | QPSK | 3 | 3 | 22.77 | 0-1 | 0-1 | | | 1909.3 | 19193 | 1.4 | QPSK | 6 | 0 | 21.67 | 0-1 | 0-1 | | High | 1909.3 | 19193 | 1.4 | 16QAM | 1 | 0 | 22.31 | 0-1 | 0-1 | | | 1909.3 | 19193 | 1.4 | 16QAM | 1 | 2 | 22.34 | 0-1 | 0-1 | | | 1909.3 | 19193 | 1.4 | 16QAM | 1 | 5 | 22.40 | 0-1 | 0-1 | | | 1909.3 | 19193 | 1.4 | 16QAM | 3 | 0 | 22.10 | 0-2 | 0-2 | | | 1909.3 | 19193 | 1.4 | 16QAM | 3 | 2 | 22.06 | 0-2 | 0-2 | | | 1909.3 | 19193 | 1.4 | 16QAM | 3 | 3 | 22.00 | 0-2 | 0-2 | | | 1909.3 | 19193 | 1.4 | 16QAM | 6 | 0 | 20.84 | 0-2 | 0-2 | Table 10.3.18The power was measured by CMW500 # 3) LTE Band 7 | | | | | LTE Ban | ıd 7 Condı | ucted Pow | ver– 20 MHz Ba | ndwidth | | |--------|----------------|---------|--------------------|------------|------------|--------------|----------------------|-------------------------|-------------| | Mode | Freq.
(MHz) | Channel | Bandwidth
(MHz) | Modulation | RB
Size | RB
Offset | Conducted Power(dBm) | MPRAIlowed Per 3GPP(dB) | MPR
(dB) | | | 2540 | 20050 | | ODCK | | | , , | ` , | | | | 2510 | 20850 | 20 | QPSK | 1 | 0
50 | 23.05 | 0 | 0 | | | 2510 | 20850 | - | QPSK | | 99 | 22.58 | 0 | | | | 2510 | 20850 | 20 | QPSK | 1 | 0 | 22.39 | 0-1 | 0 | | | 2510 | 20850 | | QPSK | 50 | | 21.30 | - | | | | 2510 | 20850 | 20 | QPSK | 50 | 25 | 21.23 | 0-1 | 1 | | | 2510 | 20850 | 20 | QPSK | 50 | 50 | 21.12 | 0-1 | 1 | | Low | 2510 | 20850 | 20 | QPSK | 100 | 0 | 21.23 | 0-1 | 1 | | | 2510 | 20850 | 20 | 16QAM | 1 | 0 | 21.83 | 0-1 | 1 | | | 2510 | 20850 | 20 | 16QAM | 1 | 50 | 21.76 | 0-1 | 1 | | | 2510 | 20850 | 20 | 16QAM | 1 | 99 | 21.66 | 0-1 | 1 | | | 2510 | 20850 | 20 | 16QAM | 50 | 0 | 20.28 | 0-2 | 2 | | | 2510 | 20850 | 20 | 16QAM | 50 | 25 | 20.18 | 0-2 | 2 | | | 2510 | 20850 | 20 | 16QAM | 50 | 50 | 20.11 | 0-2 | 2 | | | 2510 | 20850 | 20 | 16QAM | 100 | 0 | 20.20 | 0-2 | 2 | | | 2535 | 21100 | 20 | QPSK | 1 | 0 | 22.99 | 0 | 0 | | | 2535 | 21100 | 20 | QPSK | 1 | 50 | 23.00 | 0 | 0 | | | 2535 | 21100 | 20 | QPSK | 1 | 99 | 22.87 | 0 | 0 | | | 2535 | 21100 | 20 | QPSK | 50 | 0 | 21.66 | 0-1 | 1 | | | 2535 | 21100 | 20 | QPSK | 50 | 25 | 21.60 | 0-1 | 1 | | | 2535 | 21100 | 20 | QPSK | 50 | 50 | 21.56 | 0-1 | 1 | | NA: al | 2535 | 21100 | 20 | QPSK | 100 | 0 | 21.65 | 0-1 | 1 | | Mid | 2535 | 21100 | 20 | 16QAM | 1 | 0 | 22.32 | 0-1 | 1 | | | 2535 | 21100 | 20 | 16QAM | 1 | 50 | 22.32 | 0-1 | 1 | | | 2535 | 21100 | 20 | 16QAM | 1 | 99 | 22.14 | 0-1 | 1 | | | 2535 | 21100 | 20 | 16QAM | 50 | 0 | 20.65 | 0-2 | 2 | | | 2535 | 21100 | 20 | 16QAM | 50 | 25 | 20.70 | 0-2 | 2 | | | 2535 | 21100 | 20 | 16QAM | 50 | 50 | 20.45 | 0-2 | 2 | | | 2535 | 21100 | 20 | 16QAM | 100 | 0 | 20.52 | 0-2 | 2 | | | 2560 | 21350 | 20 | QPSK | 1 | 0 | 23.00 | 0 | 0 | | | 2560 | 21350 | 20 | QPSK | 1 | 50 | 22.82 | 0 | 0 | | | 2560 | 21350 | 20 | QPSK | 1 | 99 | 22.78 | 0 | 0 | | | 2560 | 21350 | 20 | QPSK | 50 | 0 | 21.68 | 0-1 | 1 | | | 2560 | 21350 | 20 | QPSK | 50 | 25 | 21.60 | 0-1 | 1 | | | 2560 | 21350 | 20 | QPSK | 50 | 50 | 21.45 | 0-1 | 1 | | | 2560 | 21350 | 20 | QPSK | 100 | 0 | 21.58 | 0-1 | 1 | | High | 2560 | 21350 | 20 | 16QAM | 1 | 0 | 22.45 | 0-1 | 1 | | | 2560 | 21350 | 20 | 16QAM | 1 | 50 | 22.23 | 0-1 | 1 | | | 2560 | 21350 | 20 | 16QAM | 1 | 99 | 21.47 | 0-1 | 1 | | | 2560 | 21350 | 20 | 16QAM | 50 | 0 | 20.66 | 0-2 | 2 | | | 2560 | 21350 | 20 | 16QAM | 50 | 25 | 20.60 | 0-2 | 2 | | | 2560 | 21350 | 20 | 16QAM | 50 | 50 | 20.46 | 0-2 | 2 | | | 2560 | 21350 | 20 | 16QAM | 100 | 0 | 20.54 | 0-2 | 2 | | | 2000 | 21000 | | 10QAW | | oured by Cl | | U-Z | | Table 10.3.19The power was measured by CMW500 | | | | | LTE Bar | nd 7 Cond | ucted Pov | ver– 15 MHz Ba | ndwidth | | |------|----------------|---------|--------------------|------------|------------|--------------|----------------------|-------------------------|----------| | Mode | Freq.
(MHz) | Channel | Bandwidth
(MHz) | Modulation | RB
Size | RB
Offset | Conducted Power(dBm) | MPRAllowed Per 3GPP(dB) | MPR (dB) | | | 2507.5 | 20825 | 15 | QPSK | 1 | 0 | 22.97 | 0 | 0 | | | 2507.5 | 20825 | 15 | QPSK | 1 | 36 | 22.61 | 0 | 0 | | | 2507.5 | 20825 | 15 | QPSK | 1 | 74 | 22.63 | 0 | 0 | | | 2507.5 | 20825 | 15 | QPSK | 36 | 0 | 21.54 | 0-1 | 1 | | | 2507.5 | 20825 | 15 | QPSK | 36 | 18 | 21.38 | 0-1 | 1 | | | 2507.5 | 20825 | 15 | QPSK | 36 | 37 | 21.32 | 0-1 | 1 | | 1 | 2507.5 | 20825 | 15 | QPSK | 75 | 0 | 21.40 | 0-1 | 1 | | Low | 2507.5 | 20825 | 15 | 16QAM | 1 | 0 | 22.20 | 0-1 | 1 | | | 2507.5 | 20825 | 15 | 16QAM | 1 | 36 | 21.88 | 0-1 | 1 | | | 2507.5 | 20825 | 15 | 16QAM | 1 | 74 | 21.95 | 0-1 | 1 | | | 2507.5 | 20825 | 15 | 16QAM | 36 | 0 | 20.41 | 0-2 | 2 | | | 2507.5 | 20825 | 15 | 16QAM | 36 | 18 | 20.42 | 0-2 | 2 | | | 2507.5 | 20825 | 15 | 16QAM | 36 | 37 | 20.49 | 0-2 | 2 | | | 2507.5 | 20825 | 15 | 16QAM | 75 | 0 | 20.37 | 0-2 | 2 | | | 2535 | 21100 | 15 | QPSK | 1 | 0 | 22.55 | 0 | 0 | | | 2535 | 21100 | 15 | QPSK | 1 | 36 | 22.43 | 0 | 0 | | | 2535 | 21100 | 15 | QPSK | 1 | 74 | 22.71 | 0 | 0 | | | 2535 | 21100 | 15 | QPSK | 36 | 0 | 21.48 | 0-1 | 1 | | | 2535 | 21100 | 15 | QPSK | 36 | 18 | 21.33 | 0-1 | 1 | | | 2535 | 21100 | 15 | QPSK | 36 | 37 | 21.38 | 0-1 | 1 | | | 2535 | 21100 | 15 | QPSK | 75 | 0 | 21.38 | 0-1 | 1 | | Mid | 2535 | 21100 | 15 | 16QAM | 1 | 0 | 22.04 | 0-1 | 1 | | | 2535 | 21100 | 15 | 16QAM | 1 |
36 | 21.93 | 0-1 | 1 | | | 2535 | 21100 | 15 | 16QAM | 1 | 74 | 21.94 | 0-1 | 1 | | | 2535 | 21100 | 15 | 16QAM | 36 | 0 | 20.47 | 0-2 | 2 | | | 2535 | 21100 | 15 | 16QAM | 36 | 18 | 20.32 | 0-2 | 2 | | | 2535 | 21100 | 15 | 16QAM | 36 | 37 | 20.40 | 0-2 | 2 | | | 2535 | 21100 | 15 | 16QAM | 75 | 0 | 20.48 | 0-2 | 2 | | | 2562.5 | 21375 | 15 | QPSK | 1 | 0 | 23.01 | 0 | 0 | | | 2562.5 | 21375 | 15 | QPSK | 1 | 36 | 22.73 | 0 | 0 | | | 2562.5 | 21375 | 15 | QPSK | 1 | 74 | 22.79 | 0 | 0 | | | 2562.5 | 21375 | 15 | QPSK | 36 | 0 | 21.54 | 0-1 | 1 | | | 2562.5 | 21375 | 15 | QPSK | 36 | 18 | 21.44 | 0-1 | 1 | | | 2562.5 | 21375 | 15 | QPSK | 36 | 37 | 21.39 | 0-1 | 1 | | 111 | 2562.5 | 21375 | 15 | QPSK | 75 | 0 | 21.52 | 0-1 | 1 | | High | 2562.5 | 21375 | 15 | 16QAM | 1 | 0 | 22.35 | 0-1 | 1 | | | 2562.5 | 21375 | 15 | 16QAM | 1 | 36 | 22.23 | 0-1 | 1 | | | 2562.5 | 21375 | 15 | 16QAM | 1 | 74 | 22.17 | 0-1 | 1 | | | 2562.5 | 21375 | 15 | 16QAM | 36 | 0 | 20.65 | 0-2 | 2 | | | 2562.5 | 21375 | 15 | 16QAM | 36 | 18 | 20.54 | 0-2 | 2 | | | 2562.5 | 21375 | 15 | 16QAM | 36 | 37 | 20.50 | 0-2 | 2 | | | 2562.5 | 21375 | 15 | 16QAM | 75 | 0 | 20.60 | 0-2 | 2 | Table 10.3.20The power was measured by CMW500 | | | | | LTE Bar | nd 7 Cond | ucted Pow | ver– 10 MHz Ba | ndwidth | | |--------------|--------|---------|-----------|------------|-----------|-----------|----------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 2505 | 20800 | 10 | QPSK | 1 | 0 | 23.06 | 0 | 0 | | | 2505 | 20800 | 10 | QPSK | 1 | 25 | 22.93 | 0 | 0 | | | 2505 | 20800 | 10 | QPSK | 1 | 49 | 22.62 | 0 | 0 | | | 2505 | 20800 | 10 | QPSK | 25 | 0 | 21.50 | 0-1 | 1 | | | 2505 | 20800 | 10 | QPSK | 25 | 12 | 21.43 | 0-1 | 1 | | | 2505 | 20800 | 10 | QPSK | 25 | 25 | 21.46 | 0-1 | 1 | | | 2505 | 20800 | 10 | QPSK | 50 | 0 | 21.50 | 0-1 | 1 | | Low | 2505 | 20800 | 10 | 16QAM | 1 | 0 | 22.06 | 0-1 | 1 | | | 2505 | 20800 | 10 | 16QAM | 1 | 25 | 22.03 | 0-1 | 1 | | | 2505 | 20800 | 10 | 16QAM | 1 | 49 | 21.89 | 0-1 | 1 | | | 2505 | 20800 | 10 | 16QAM | 25 | 0 | 20.79 | 0-2 | 2 | | | 2505 | 20800 | 10 | 16QAM | 25 | 12 | 20.72 | 0-2 | 2 | | | 2505 | 20800 | 10 | 16QAM | 25 | 25 | 20.69 | 0-2 | 2 | | | 2505 | 20800 | 10 | 16QAM | 50 | 0 | 20.46 | 0-2 | 2 | | | 2535 | 21100 | 10 | QPSK | 1 | 0 | 22.96 | 0 | 0 | | | 2535 | 21100 | 10 | QPSK | 1 | 25 | 22.74 | 0 | 0 | | | 2535 | 21100 | 10 | QPSK | 1 | 49 | 22.77 | 0 | 0 | | | 2535 | 21100 | 10 | QPSK | 25 | 0 | 21.46 | 0-1 | 1 | | | 2535 | 21100 | 10 | QPSK | 25 | 12 | 21.43 | 0-1 | 1 | | | 2535 | 21100 | 10 | QPSK | 25 | 25 | 21.36 | 0-1 | 1 | | | 2535 | 21100 | 10 | QPSK | 50 | 0 | 21.34 | 0-1 | 1 | | Mid | 2535 | 21100 | 10 | 16QAM | 1 | 0 | 22.01 | 0-1 | 1 | | | 2535 | 21100 | 10 | 16QAM | 1 | 25 | 21.98 | 0-1 | 1 | | | 2535 | 21100 | 10 | 16QAM | 1 | 49 | 22.02 | 0-1 | 1 | | | 2535 | 21100 | 10 | 16QAM | 25 | 0 | 20.60 | 0-2 | 2 | | | 2535 | 21100 | 10 | 16QAM | 25 | 12 | 20.46 | 0-2 | 2 | | | 2535 | 21100 | 10 | 16QAM | 25 | 25 | 20.29 | 0-2 | 2 | | | 2535 | 21100 | 10 | 16QAM | 50 | 0 | 20.42 | 0-2 | 2 | | | 2567.5 | 21400 | 10 | QPSK | 1 | 0 | 22.98 | 0 | 0 | | | 2567.5 | 21400 | 10 | QPSK | 1 | 25 | 22.74 | 0 | 0 | | | 2567.5 | 21400 | 10 | QPSK | 1 | 49 | 22.70 | 0 | 0 | | | 2567.5 | 21400 | 10 | QPSK | 25 | 0 | 21.51 | 0-1 | 1 | | | 2567.5 | 21400 | 10 | QPSK | 25 | 12 | 21.41 | 0-1 | 1 | | | 2567.5 | 21400 | 10 | QPSK | 25 | 25 | 21.37 | 0-1 | 1 | | _. | 2567.5 | 21400 | 10 | QPSK | 50 | 0 | 21.46 | 0-1 | 1 | | High | 2567.5 | 21400 | 10 | 16QAM | 1 | 0 | 22.01 | 0-1 | 1 | | | 2567.5 | 21400 | 10 | 16QAM | 1 | 25 | 22.10 | 0-1 | 1 | | | 2567.5 | 21400 | 10 | 16QAM | 1 | 49 | 21.91 | 0-1 | 1 | | | 2567.5 | 21400 | 10 | 16QAM | 25 | 0 | 20.65 | 0-2 | 2 | | | 2567.5 | 21400 | 10 | 16QAM | 25 | 12 | 20.43 | 0-2 | 2 | | | 2567.5 | 21400 | 10 | 16QAM | 25 | 25 | 20.52 | 0-2 | 2 | | | 2567.5 | 21400 | 10 | 16QAM | 50 | 0 | 20.48 | 0-2 | 2 | Table 10.3.21The power was measured by CMW500 | | | | | LTE Ba | nd 7 Cond | lucted Pov | wer– 5 MHz Bar | ndwidth | | |------------|--------|---------|-----------|------------|-----------|------------|----------------|--------------|------| | Mode | Freq. | Channel | Bandwidth | | RB | RB | Conducted | MPRAllowed | MPR | | | (MHz) | | (MHz) | Modulation | Size | Offset | Power(dBm) | Per 3GPP(dB) | (dB) | | | 2502.5 | 20775 | 5 | QPSK | 1 | 0 | 22.65 | 0 | 0 | | | 2502.5 | 20775 | 5 | QPSK | 1 | 12 | 22.40 | 0 | 0 | | | 2502.5 | 20775 | 5 | QPSK | 1 | 24 | 22.60 | 0 | 0 | | | 2502.5 | 20775 | 5 | QPSK | 12 | 0 | 21.44 | 0-1 | 1 | | | 2502.5 | 20775 | 5 | QPSK | 12 | 6 | 21.41 | 0-1 | 1 | | | 2502.5 | 20775 | 5 | QPSK | 12 | 13 | 21.42 | 0-1 | 1 | | | 2502.5 | 20775 | 5 | QPSK | 25 | 0 | 21.39 | 0-1 | 1 | | Low | 2502.5 | 20775 | 5 | 16QAM | 1 | 0 | 22.04 | 0-1 | 1 | | | 2502.5 | 20775 | 5 | 16QAM | 1 | 12 | 21.87 | 0-1 | 1 | | | 2502.5 | 20775 | 5 | 16QAM | 1 | 24 | 21.87 | 0-1 | 1 | | | 2502.5 | 20775 | 5 | 16QAM | 12 | 0 | 20.48 | 0-2 | 2 | | | 2502.5 | 20775 | 5 | 16QAM | 12 | 6 | 20.43 | 0-2 | 2 | | | 2502.5 | 20775 | 5 | 16QAM | 12 | 13 | 20.62 | 0-2 | 2 | | | 2502.5 | 20775 | 5 | 16QAM | 25 | 0 | 20.49 | 0-2 | 2 | | | 2535 | 21100 | 5 | QPSK | 1 | 0 | 22.55 | 0 | 0 | | | 2535 | 21100 | 5 | QPSK | 1 | 12 | 22.74 | 0 | 0 | | | 2535 | 21100 | 5 | QPSK | 1 | 24 | 22.68 | 0 | 0 | | | 2535 | 21100 | 5 | QPSK | 12 | 0 | 21.38 | 0-1 | 1 | | | 2535 | 21100 | 5 | QPSK | 12 | 6 | 21.32 | 0-1 | 1 | | | 2535 | 21100 | 5 | QPSK | 12 | 13 | 21.37 | 0-1 | 1 | | | 2535 | 21100 | 5 | QPSK | 25 | 0 | 21.27 | 0-1 | 1 | | Mid | 2535 | 21100 | 5 | 16QAM | 1 | 0 | 21.93 | 0-1 | 1 | | | 2535 | 21100 | 5 | 16QAM | 1 | 12 | 21.89 | 0-1 | 1 | | | 2535 | 21100 | 5 | 16QAM | 1 | 24 | 21.87 | 0-1 | 1 | | | 2535 | 21100 | 5 | 16QAM | 12 | 0 | 20.41 | 0-2 | 2 | | | 2535 | 21100 | 5 | 16QAM | 12 | 6 | 20.33 | 0-2 | 2 | | | 2535 | 21100 | 5 | 16QAM | 12 | 13 | 20.32 | 0-2 | 2 | | | 2535 | 21100 | 5 | 16QAM | 25 | 0 | 20.37 | 0-2 | 2 | | | 2567.5 | 21425 | 5 | QPSK | 1 | 0 | 22.72 | 0 | 0 | | | 2567.5 | 21425 | 5 | QPSK | 1 | 12 | 22.62 | 0 | 0 | | | 2567.5 | 21425 | 5 | QPSK | 1 | 24 | 22.63 | 0 | 0 | | | 2567.5 | 21425 | 5 | QPSK | 12 | 0 | 21.39 | 0-1 | 1 | | | 2567.5 | 21425 | 5 | QPSK | 12 | 6 | 21.44 | 0-1 | 1 | | | 2567.5 | 21425 | 5 | QPSK | 12 | 13 | 21.41 | 0-1 | 1 | | , . | 2567.5 | 21425 | 5 | QPSK | 25 | 0 | 21.37 | 0-1 | 1 | | High | 2567.5 | 21425 | 5 | 16QAM | 1 | 0 | 21.89 | 0-1 | 1 | | | 2567.5 | 21425 | 5 | 16QAM | 1 | 12 | 21.84 | 0-1 | 1 | | | 2567.5 | 21425 | 5 | 16QAM | 1 | 24 | 21.86 | 0-1 | 1 | | | 2567.5 | 21425 | 5 | 16QAM | 12 | 0 | 20.44 | 0-2 | 2 | | | 2567.5 | 21425 | 5 | 16QAM | 12 | 6 | 20.47 | 0-2 | 2 | | | 2567.5 | 21425 | 5 | 16QAM | 12 | 13 | 20.45 | 0-2 | 2 | | | 2567.5 | 21425 | 5 | 16QAM | 25 | 0 | 20.74 | 0-2 | 2 | Table 10.3.22The power was measured by CMW500 ### 10.4 WLAN Conducted Powers | | F | | | 802.11b (2.4 GHz) C | onducted Power (dBn | n) | |---------|-------|---------|-------|---------------------|---------------------|-------| | Mode | Freq. | Channel | | Data R | ate (Mbps) | | | | (MHz) | | 1 | 2 | 5.5 | 11 | | | 2412 | 1 | 13.98 | 13.92 | 13.85 | 13.88 | | 802.11b | 2437 | 6 | 14.46 | 14.41 | 14.38 | 14.42 | | | 2462 | 11 | 13.94 | 13.85 | 13.87 | 13.91 | Table 10.4.1 IEEE 802.11b Average RF Power | | _ | | | | 802.11g (2 | .4 GHz) Co | nducted Po | wer (dBm) | | | |---------|-------|---------|-------|-------|------------|------------|------------|-----------|-------|-------| | Mode | Freq. | Channel | | | | Data Rat | e (Mbps) | | | | | | (MHz) | | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | | | 2412 | 1 | 10.94 | 10.85 | 10.91 | 10.84 | 10.81 | 10.91 | 10.88 | 10.87 | | 802.11g | 2437 | 6 | 11.14 | 11.08 | 11.04 | 11.11 | 11.01 | 11.02 | 11.04 | 10.98 | | | 2462 | 11 | 10.56 | 10.55 | 10.51 | 10.49 | 10.45 | 10.47 | 10.52 | 10.46 | Table 10.4.2 IEEE 802.11g Average RF Power | | Eran. | | | 802 | 2.11n HT20 | (2.4 GHz) | Conducted | Power (dB | Bm) | | |---------|-------|---------|-------|-------|------------|-----------|-----------|-----------|-------|-------| | Mode | Freq. | Channel | | | | Data Rat | e (Mbps) | | | | | | (MHz) | | 6.5 | 13 | 19.5 | 26 | 39 | 52 | 58.5 | 65 | | | 2412 | 1 | 10.03 | 9.98 | 9.95 | 10.01 | 9.91 | 9.89 | 9.85 | 9.97 | | 802.11n | 2437 | 6 | 10.23 | 10.11 | 10.21 | 10.14 | 10.16 | 10.07 | 10.13 | 10.15 | | (HT-20) | 2462 | 11 | 9.62 | 9.55 | 9.42 | 9.48 | 9.46 | 9.51 | 9.47 | 9.57 | Table 10.4.3 IEEE 802.11n HT20 Average RF Power Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02and October 2012 / April 2013 FCC/TCB Meeting Notes: - For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode. - When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate. - The underlined data rate and channel above were tested for SAR. Figure 10.3Average Power Measurement Setup ### 10.5 Bluetooth Conducted Powers | Channel | Frequency | Pov | G Output
wer
bps) | Pov | G Output
wer
bps) | Pov | /G Output
wer
bps) | |---------|-----------|-------|-------------------------|-------|-------------------------|-------|--------------------------| | | (MHz) | (dBm) | (mW) | (dBm) | (mW) | (dBm) | (mW) | | Low | 2402 | 7.45 | 5.559 | 4.96 | 3.133 | 4.97 | 3.141 | |
Mid | 2441 | 7.59 | 5.741 | 5.12 | 3.251 | 5.14 | 3.266 | | High | 2480 | 6.80 | 4.786 | 4.32 | 2.704 | 4.33 | 2.710 | Table 10.5.1 Bluetooth Frame Average RF Power | Channel | Frequency | | Dutput Power
E) | |---------|-----------|-------|--------------------| | | (MHz) | (dBm) | (mW) | | Low | 2402 | -2.21 | 0.601 | | Mid | 2440 | -1.99 | 0.632 | | High | 2480 | -2.92 | 0.511 | Table 10.5.2 Bluetooth LE Frame Average RF Power ### Bluetooth Conducted Powers procedures - 1. Bluetooth (BDR, EDR) - 1) Enter DUT mode in EUT and operate it. When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 10.4(A). - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester. - 4) Power levels were measured by a Power Meter. - 2. Bluetooth (LE) - 1) Enter LE mode in EUT and operate it. When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 10.4(B). - 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT. - 4) Power levels were measured by a Power Meter. Figure 10.4Average Power Measurement Setup The average conducted output powers of Bluetooth were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level. # 11. SYSTEM VERIFICATION # 11.1 Tissue Verification | Date(s) | Tissue
Type
835
Head | Ambient
Temp.[°C] | Liquid
Temp.[°C] | Measured
Frequency | Target
Dielectric | Target | Measured | Measured | | σ | |---------------|-------------------------------|----------------------|---------------------|-----------------------|----------------------|--------------------------|-------------------------------|--------------------------|--------------------|------------------| | May. 04. 2015 | | | | [MHz] | Constant,
εr | Conductivity,
σ (S/m) | Dielectric
Constant,
εr | Conductivity,
σ (S/m) | ErDeviation
[%] | Deviation
[%] | | May. 04. 2015 | | | | 824.2 | 41.552 | 0.899 | 40.424 | 0.880 | -2.71 | -2.11 | | May. 04. 2010 | Head | 21.3 | 21.7 | 835.0 | 41.500 | 0.900 | 40.308 | 0.890 | -2.87 | -1.11 | | 1 | | 21.0 | 21.7 | 836.6 | 41.500 | 0.901 | 40.293 | 0.891 | -2.91 | -1.11 | | | | | | 848.8 | 41.500 | 0.914 | 40.161 | 0.902 | -3.23 | -1.31 | | | | | | 824.2 | 55.243 | 0.969 | 55.264 | 0.985 | 0.04 | 1.65 | | May. 04. 2015 | 835 | 21.3 | 21.7 | 835.0 | 55.200 | 0.970 | 55.177 | 0.994 | -0.04 | 2.47 | | Way. 04. 2010 | Body | 21.0 | 21.7 | 836.6 | 55.197 | 0.971 | 55.160 | 0.996 | -0.07 | 2.57 | | | | | | 848.8 | 55.160 | 0.986 | 55.048 | 1.006 | -0.20 | 2.03 | | | | | | 826.4 | 41.542 | 0.899 | 41.933 | 0.905 | 0.94 | 0.67 | | May. 09. 2015 | 835 | 22.0 | 22.6 | 835.0 | 41.500 | 0.900 | 41.835 | 0.913 | 0.81 | 1.44 | | Way. 00. 2010 | Head | 22.0 | 22.0 | 836.6 | 41.500 | 0.901 | 41.814 | 0.915 | 0.76 | 1.55 | | | | | | 846.6 | 41.500 | 0.912 | 41.690 | 0.923 | 0.46 | 1.21 | | | | | | 826.4 | 55.235 | 0.969 | 55.518 | 0.989 | 0.51 | 2.06 | | May. 09. 2015 | 835 | 22.0 | 22.6 | 835.0 | 55.200 | 0.970 | 55.445 | 0.997 | 0.44 | 2.78 | | May. 09. 2013 | Body | 22.0 | 22.0 | 836.6 | 55.197 | 0.971 | 55.430 | 0.998 | 0.42 | 2.78 | | | | | | 846.6 | 55.166 | 0.984 | 55.348 | 1.007 | 0.33 | 2.34 | | | | | | 1712.4 | 40.130 | 1.350 | 39.576 | 1.306 | -1.38 | -3.26 | | Oct. 12. 2015 | 1800 | 21.4 | 21.8 | 1732.4 | 40.100 | 1.361 | 39.524 | 1.325 | -1.44 | -2.65 | | Oct. 12. 2015 | Head | 21.4 | 21.8 | 1752.6 | 40.070 | 1.373 | 39.453 | 1.343 | -1.54 | -2.18 | | | | | | 1800.0 | 40.000 | 1.400 | 39.258 | 1.386 | -1.85 | -1.00 | | | | | | 1712.4 | 53.600 | 1.464 | 53.508 | 1.476 | -0.17 | 0.82 | | 0-4 40 2045 | 1800 | 04.4 | 22.0 | 1732.4 | 53.560 | 1.477 | 53.485 | 1.496 | -0.14 | 1.29 | | Oct. 12. 2015 | Body | 21.4 | 22.0 | 1752.6 | 53.520 | 1.489 | 53.434 | 1.514 | -0.16 | 1.68 | | | - | | | 1800.0 | 53.300 | 1.520 | 53.282 | 1.557 | -0.03 | 2.43 | | | | | | 1720.0 | 40.114 | 1.354 | 40.982 | 1.307 | 2.16 | -3.47 | | May 07 2045 | 1800 | 20.4 | 22.5 | 1732.5 | 40.097 | 1.361 | 40.923 | 1.317 | 2.06 | -3.23 | | May. 07. 2015 | Head | 22.1 | 22.5 | 1745.0 | 40.079 | 1.369 | 40.877 | 1.329 | 1.99 | -2.92 | | | | | | 1800.0 | 40.000 | 1.400 | 40.693 | 1.384 | 1.73 | -1.14 | | | | | | 1720.0 | 53.580 | 1.469 | 52.982 | 1.468 | -1.12 | -0.07 | | M 07 0045 | 1800 | 00.4 | 00.5 | 1732.5 | 53.556 | 1.477 | 52.951 | 1.477 | -1.13 | 0.00 | | May. 07. 2015 | Body | 22.1 | 22.5 | 1745.0 | 53.530 | 1.485 | 52.927 | 1.487 | -1.13 | 0.13 | | | , | | | 1800.0 | 53.300 | 1.520 | 52.836 | 1.537 | -0.87 | 1.12 | | | | | | 1850.2 | 40.000 | 1.400 | 40.711 | 1.371 | 1.78 | -2.07 | | M 04 0045 | 1900 | 04.7 | 00.4 | 1880.0 | 40.000 | 1.400 | 40.695 | 1.398 | 1.74 | -0.14 | | May. 01. 2015 | Head | 21.7 | 22.1 | 1900.0 | 40.000 | 1.400 | 40.650 | 1.416 | 1.63 | 1.14 | | | | | | 1909.8 | 40.000 | 1.400 | 40.626 | 1.426 | 1.56 | 1.86 | | | | | | 1850.2 | 53.300 | 1.520 | 52.342 | 1.504 | -1.80 | -1.05 | | | 1900 | a | | 1880.0 | 53.300 | 1.520 | 52.316 | 1.528 | -1.85 | 0.53 | | May. 01. 2015 | Body | 21.7 | 22.1 | 1900.0 | 53.300 | 1.520 | 52.271 | 1.544 | -1.93 | 1.58 | | | | | | 1909.8 | 53.300 | 1.520 | 52.256 | 1.552 | -1.96 | 2.11 | | | | | | MEASU | IRED TISSUE | PARAMETERS | | | | | |-----------------|----------------|----------------------|---------------------|--------------------------------|---|------------------------------------|---|--------------------------------------|--------------------|-----------------------| | Date(s) | Tissue
Type | Ambient
Temp.[°C] | Liquid
Temp.[°C] | Measured
Frequency
[MHz] | Target
Dielectric
Constant,
εr | Target
Conductivity,
σ (S/m) | Measured
Dielectric
Constant,
εr | Measured
Conductivity,
σ (S/m) | ErDeviation
[%] | σ
Deviation
[%] | | | | | | 1852.4 | 40.000 | 1.400 | 40.384 | 1.365 | 0.96 | -2.50 | | May. 02. 2015 | 1900 | 21.9 | 22.3 | 1880.0 | 40.000 | 1.400 | 40.362 | 1.392 | 0.91 | -0.57 | | Iviay. 02. 2013 | Head | 21.9 | 22.3 | 1900.0 | 40.000 | 1.400 | 40.316 | 1.411 | 0.79 | 0.79 | | | | | | 1907.6 | 40.000 | 1.400 | 40.296 | 1.419 | 0.74 | 1.36 | | | | | | 1852.4 | 53.300 | 1.520 | 52.325 | 1.482 | -1.83 | -2.50 | | May. 02. 2015 | 1900 | 21.9 | 22.3 | 1880.0 | 53.300 | 1.520 | 52.311 | 1.504 | -1.86 | -1.05 | | May. 02. 2015 | Body | 21.9 | 22.3 | 1900.0 | 53.300 | 1.520 | 52.278 | 1.520 | -1.92 | 0.00 | | | | | | 1907.6 | 53.300 | 1.520 | 52.264 | 1.527 | -1.94 | 0.46 | | | 4000 | | | 1860.0 | 40.000 | 1.400 | 40.126 | 1.382 | 0.31 | -1.29 | | May. 06. 2015 | 1900 | 21.6 | 22.0 | 1880.0 | 40.000 | 1.400 | 40.052 | 1.401 | 0.13 | 0.07 | | | Head | | | 1900.0 | 40.000 | 1.400 | 39.986 | 1.420 | -0.04 | 1.43 | | | 1000 | | | 1860.0 | 53.300 | 1.520 | 52.371 | 1.511 | -1.74 | -0.59 | | May. 06. 2015 | 1900 | 21.6 | 22.0 | 1880.0 | 53.300 | 1.520 | 52.345 | 1.527 | -1.79 | 0.46 | | , | Body | | | 1900.0 | 53.300 | 1.520 | 52.305 | 1.543 | -1.87 | 1.51 | | | | | | 2412.0 | 39.265 | 1.766 | 40.226 | 1.790 | 2.45 | 1.36 | | May 10 0015 | 2450 | 21.9 | 22.5 | 2437.0 | 39.222 | 1.788 | 40.352 | 1.817 | 2.88 | 1.62 | | May. 12. 2015 | Head | 21.9 | 22.5 | 2450.0 | 39.200 | 1.800 | 40.313 | 1.832 | 2.84 | 1.78 | | | | | | 2462.0 | 39.184 | 1.813 | 40.290 | 1.845 | 2.82 | 1.77 | | | | | | 2412.0 | 52.751 | 1.914 | 51.139 | 1.935 | -3.06 | 1.10 | | May. 12. 2015 | 2450 | 21.9 | 22.5 | 2437.0 | 52.717 | 1.938 | 51.073 | 1.964 | -3.12 | 1.34 | | May. 12. 2015 | Body | 21.9 | 22.5 | 2450.0 | 52.700 | 1.950 | 51.033 | 1.980 | -3.16 | 1.54 | | | | | | 2462.0 | 52.685 | 1.967 | 51.005 | 1.993 | -3.19 | 1.32 | | | | | | 2510.0 | 39.120 | 1.864 | 38.769 | 1.903 | -0.90 | 2.09 | | May. 11. 2015 | 2600 | 21.6 | 22.1 | 2535.0 | 39.087 | 1.891 | 38.679 | 1.929 | -1.04 | 2.01 | | Iviay. 11. 2015 | Head | 21.0 | 22.1 | 2560.0 | 39.053 | 1.917 | 38.591 | 1.958 | -1.18 | 2.14 | | | | | | 2600.0 | 39.000 | 1.960 | 38.457 | 2.004 | -1.39 | 2.24 | | | | | | 2510.0 | 52.624 | 2.035 | 52.031 | 2.008 | -1.13 | -1.33 | | May. 11. 2015 | 2600 | 21.6 | 22.1 | 2535.0 | 52.592 | 2.071 | 51.995 | 2.037 | -1.14 | -1.64 | | Iviay. 11. 2015 | Body | 21.0 | 22.1 | 2560.0 | 52.560 | 2.106 | 51.954 | 2.066 | -1.15 | -1.90 | | | | | | 2600.0 | 52.509 | 2.163 | 51.878 | 2.113 | -1.20 | -2.31 | The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. ### **Measurement Procedure for Tissue verification:** - 1) The network analyzer and probe system was configured and calibrated. - The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. - The complex admittance with respect to the probe aperture was measured The complex relative permittivity , for example from the below equation (Pournaropoulos and $$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{a}^{\sigma} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$. # 11.2 Test System Verification Prior to assessment, the system is verified to the± 10 % of the
specifications at 750 MHz, 835 MHz, 1800 MHz, 1900 MHz, 2450 MHz and 2600 MHzby using the SAR Dipole kit(s). (Graphic Plots Attached) | | | | SYS | STEM DIP | OLE VERIFIC | ATION TARG | ET & ME | ASURED | | | | | |--------------------|----------------|-----------------------|---------------|----------------|----------------------|---------------------|--------------|------------------------|--|---|--|------------------| | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.[°C] | Liquid
Temp.[°C] | Probe
S/N | Input
Power
(mW) | 1 W
Target
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | 1 W
Normalized
SAR _{1g}
(W/kg) | Deviation
[%] | | В | 835 | D835V2,
SN:4d159 | May. 04. 2015 | Head | 21.3 | 21.7 | 3328 | 250 | 9.19 | 2.34 | 9.36 | 1.85 | | В | 835 | D835V2,
SN: 4d159 | May. 04. 2015 | Body | 21.3 | 21.7 | 3328 | 250 | 9.64 | 2.58 | 10.32 | 7.05 | | В | 835 | D835V2,
SN:4d159 | May. 09. 2015 | Head | 22.0 | 22.6 | 3328 | 250 | 9.19 | 2.42 | 9.68 | 5.33 | | В | 835 | D835V2,
SN:4d159 | May. 09. 2015 | Body | 22.0 | 22.6 | 3328 | 250 | 9.64 | 2.49 | 9.96 | 3.32 | | D | 1800 | D1800V2,
SN: 2d047 | Oct. 12. 2015 | Head | 21.4 | 21.8 | 3327 | 250 | 38.50 | 9.36 | 37.44 | -2.75 | | D | 1800 | D1800V2,
SN: 2d047 | Oct. 12. 2015 | Body | 21.4 | 22.0 | 3327 | 250 | 37.20 | 9.80 | 39.20 | 5.38 | | В | 1800 | D1800V2,
SN:2d047 | May. 07. 2015 | Head | 22.1 | 22.5 | 3328 | 250 | 38.80 | 9.84 | 39.36 | 1.44 | | В | 1800 | D1800V2,
SN:2d047 | May. 07. 2015 | Body | 22.1 | 22.5 | 3328 | 250 | 38.10 | 9.46 | 37.84 | -0.68 | | В | 1900 | D1900V2,
SN:5d176 | May. 01. 2015 | Head | 21.7 | 22.1 | 3328 | 250 | 40.10 | 10.10 | 40.40 | 0.75 | | В | 1900 | D1900V2,
SN: 5d176 | May. 01. 2015 | Body | 21.7 | 22.1 | 3328 | 250 | 40.00 | 10.20 | 40.80 | 2.00 | | В | 1900 | D1900V2,
SN:5d176 | May. 02. 2015 | Head | 21.9 | 22.3 | 3328 | 250 | 40.10 | 10.30 | 41.20 | 2.74 | | В | 1900 | D1900V2,
SN: 5d176 | May. 02. 2015 | Body | 21.9 | 22.3 | 3328 | 250 | 40.00 | 10.50 | 42.00 | 5.00 | | В | 1900 | D1900V2,
SN:5d176 | May. 06. 2015 | Head | 21.6 | 22.0 | 3328 | 250 | 40.10 | 9.80 | 39.20 | -2.24 | | В | 1900 | D1900V2,
SN:5d176 | May. 06. 2015 | Body | 21.6 | 22.0 | 3328 | 250 | 40.00 | 10.10 | 40.40 | 1.00 | | В | 2450 | D2450V2,
SN:920 | May. 12. 2015 | Head | 21.9 | 22.5 | 3328 | 250 | 52.70 | 12.00 | 48.00 | -8.92 | | В | 2450 | D2450V2,
SN: 920 | May. 12. 2015 | Body | 21.9 | 22.5 | 3328 | 250 | 51.40 | 12.90 | 51.60 | 0.39 | | В | 2600 | D2600V2,
SN:1103 | May. 11. 2015 | Head | 21.6 | 22.1 | 3930 | 250 | 56.50 | 14.80 | 59.20 | 4.78 | | В | 2600 | D2600V2,
SN:11103 | May. 11. 2015 | Body | 21.6 | 22.1 | 3930 | 250 | 56.20 | 13.90 | 55.60 | -1.07 | Note1: System Verification was measured with input 250 mWand normalized to 1W. Note2 : To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period. Note3: Full system validation status and results can be found in Attachment 3. Figure 11.1 Dipole Verification Test Setup Diagram & Photo Pages: 54 /185 # **12. SAR TEST RESULTS** # 12.1 Head SAR Results # Table 12.1 GSM/GPRS 850 Head SAR | | | | | | | MEASU | JREMENT RES | ULTS | | | | | | | | |-------|---|--------|---------|--------------------|--------------------|----------------|-------------|---|---|---------|-----------|---------|---------------|-------|--| | FREQU | ENCY | Mode/ | Service | Maximum
Allowed | Conducted
Power | Drift
Power | Phantom | Device
Serial | # of
Time | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | | MHz | Ch | Band | Service | Power
[dBm] | [dBm] | [dB] | Position | Number | Slots | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.60 | 0.170 | Left Touch | FCC #1 | 1 | 1:8.3 | 0.340 | 1.023 | 0.348 | | | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.60 | 0.070 | Right Touch | FCC #1 | 1 | 1:8.3 | 0.331 | 1.023 | 0.339 | | | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.60 | -0.040 | Left Tilt | FCC #1 | 1 | 1:8.3 | 0.218 | 1.023 | 0.223 | | | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.60 | -0.040 | Right Tilt | FCC #1 | 1 | 1:8.3 | 0.187 | 1.023 | 0.191 | | | | 836.6 | 190 | GSM850 | GPRS | 33.70 | 33.60 | 0.040 | Left Touch | FCC #1 | 1 | 1:8.3 | 0.351 | 1.023 | 0.359 | | | | 836.6 | 190 | GSM850 | GPRS | 30.70 | 30.40 | 0.180 | Left Touch | FCC #1 | 2 | 1:4.15 | 0.295 | 1.072 | 0.316 | | | | 836.6 | 190 | GSM850 | GPRS | 29.20 | 29.10 | 0.020 | Left Touch | FCC #1 | 3 | 1:2.77 | 0.326 | 1.023 | 0.333 | | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.110 | Left Touch | FCC #1 | 4 | 1:2.075 | 0.419 | 1.023 | 0.429 | A1 | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.140 | Right Touch | FCC #1 | 4 | 1:2.075 | 0.345 | 1.023 | 0.353 | | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | -0.000 | Left Tilt | FCC #1 | 4 | 1:2.075 | 0.218 | 1.023 | 0.223 | | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | -0.180 | Right Tilt | t Tilt FCC #1 4 1:2.075 0.197 1.023 0.202 | | | | | | | | | | ANSI / IEEE C95.1-2005– SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure | | | | | | | | Head 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | | ### Table 12.2 PCS/GPRS 1900 Head SAR | | | | | | | MEASU | REMENT RESU | ILTS | | | | | | | |--------|---|---------------|---------|-----------------------------|-----------------------------|------------------------|---------------------|----------------------------|-----------------------|---------------|---------------------|-------------------|---------------------|------------| | FREQUI | ENCY | Mode/
Band | Service | Maximum
Allowed
Power | Conducted
Power
[dBm] | Drift
Power
[dB] | Phantom
Position | Device
Serial
Number | # of
Time
Slots | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR | Plots
| | | 0 | | | [dBm] | [dBiii] | [ub] | | Number | 31013 | | (VV/Kg) | | (W/kg) | | | 1880.0 | 661 | PCS1900 | PCS | 31.20 | 30.60 | -0.150 | Left Touch | FCC #1 | 1 | 1:8.3 | 0.397 | 1.148 | 0.456 | | | 1880.0 | 661 | PCS1900 | PCS | 31.20 | 30.60 | 0.180 | Right Touch | FCC #1 | 1 | 1:8.3 | 0.218 | 1.148 | 0.250 | | | 1880.0 | 661 | PCS1900 | PCS | 31.20 | 30.60 | 0.070 | Left Tilt | FCC #1 | 1 | 1:8.3 | 0.182 | 1.148 | 0.209 | | | 1880.0 | 661 | PCS1900 | PCS | 31.20 | 30.60 | -0.190 | Right Tilt | FCC #1 | 1 | 1:8.3 | 0.177 | 1.148 | 0.203 | | | 1880.0 | 661 | PCS1900 | GPRS | 31.20 | 30.60 | 0.090 | Left Touch | FCC #1 | 1 | 1:8.3 | 0.403 | 1.148 | 0.463 | | | 1880.0 | 661 | PCS1900 | GPRS | 27.70 | 27.60 | 0.040 | Left Touch | FCC #1 | 2 | 1:4.15 | 0.377 | 1.023 | 0.386 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.130 | Left Touch | FCC #1 | 3 | 1:2.77 | 0.489 | 1.047 | 0.512 | A2 | | 1880.0 | 661 | PCS1900 | GPRS | 24.70 | 24.60 | 0.070 | Left Touch | FCC #1 | 4 | 1:2.075 | 0.357 | 1.023 | 0.365 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.170 | Right Touch | FCC #1 | 3 | 1:2.77 | 0.229 | 1.047 | 0.240 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.040 | Left Tilt | FCC #1 | 3 | 1:2.77 | 0.181 | 1.047 | 0.190 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | -0.180 | Right Tilt | FCC #1 | 3 | 1:2.77 | 0.187 | 1.047 | 0.196 | | | | ANSI / IEEE C95.1-2005– SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure | | | | | | | | - | | Head
W/kg (mV | | | | ### Table 12.3 WCDMA 850 Head SAR | | | | | | М | EASUREM | IENT RESULTS | | | | | | | |-------|--|-----------|---------|--------------------|----------------|---------------|--------------|------------------|-------|---------------|--------------------|---------------|-------| | FREQU | JENCY | Mode/ | | Maximum
Allowed | Conducted | Drift | Phantom | Device | Duty | 1g | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | Service | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Cycle | SAR
(W/kg) | Factor | SAR
(W/kg) | # | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.140 | Left Touch | FCC #1 | 1:1 | 0.322 | 1.023 | 0.329 | | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.080 | Right Touch | FCC #1 | 1:1 | 0.333 | 1.023 | 0.341 | A3 | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.010 | Left Tilt | FCC #1 | 1:1 | 0.252 | 1.023 | 0.258 | | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.000 | Right Tilt | FCC #1 | 1:1 | 0.206 | 1.023 | 0.211 | | | - | ANSI / IEEE C95.1-2005— SAFETY LIMIT
Spatial Peak | | | | | | | | _ | 1.6 V | Head
V/kg (mW/g |) | | Uncontrolled Exposure/General Population Exposure averaged over 1 gram Pages: 55 /185 # Table 12.4 WCDMA 1700 Head SAR | | | | | | | 1700 Houd | 0, | | | | | | | |---|------|------------|---------|--------------------|----------------|---------------|---|------------------|-------|---------------|-------------------------------------|---------------|-------| | | | | | | MEA | SUREME | NT RESULTS | | | | | | | | FREQU | ENCY | Mode/ | | Maximum
Allowed | Conducted | Drift | Phantom | Device | Duty | 1g | Scaling | 1g
Scaled | Plots | | MHz | Ch |
Band | Service | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Cycle | SAR
(W/kg) | Factor | SAR
(W/kg) | # | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.070 | Left Touch | FCC #1 | 1:1 | 0.665 | 1.151 | 0.765 | A4 | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.070 | Right Touch | FCC #1 | 1:1 | 0.391 | 1.151 | 0.450 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.010 | Left Tilt | FCC #1 | 1:1 | 0.377 | 1.151 | 0.434 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | -0.040 | Right Tilt | FCC #1 | 1:1 | 0.334 | 1.151 | 0.384 | | | ANSI / IEEE C95.1-2005– SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure | | | | | | | | | | 1.6 W | Head
/kg (mW/g)
d over 1 gram | | | # Table 12.5 WCDMA 1900 Head SAR | | | | | | MEA | SUREME | NT RESULTS | | | | | | | |--------|------|------------|---------|---|----------------|---------------|-------------|------------------|-------|-------------------------------------|---------|---------------|-------| | FREQU | ENCY | Mode/ | Service | Maximum
Allowed | Conducted | Drift | Phantom | Device | Duty | 1g | Scaling | 1g
Scaled | Plots | | MHz | | | | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Cycle | SAR
(W/kg) | Factor | SAR
(W/kg) | # | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.010 | Left Touch | FCC #1 | 1:1 | 0.528 | 1.000 | 0.528 | A5 | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.050 | Right Touch | FCC #1 | 1:1 | 0.332 | 1.000 | 0.332 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.080 | Left Tilt | FCC #1 | 1:1 | 0.251 | 1.000 | 0.251 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | -0.140 | Right Tilt | FCC #1 | 1:1 | 0.240 | 1.000 | 0.240 | | | | | | Sı | 5.1-2005– SAF
patial Peak
e/General Pop | ETY LIMIT | | | | 1.6 W | Head
/kg (mW/g)
d over 1 gram | - | | | # Table 12.6 LTE Band 4 (AWS) Head SAR | | | | | | | | MEAS | SUREMEN | T RESULT | S | | | | | | | | |--------|-------|-----------|-------|----------------|--------------|----------------|------|----------------|------------------|------|------|-------|-------|-----------|---------|---------------|-------| | FREQU | JENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | | Number | | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | 0.080 | 0 | Left
Touch | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.702 | 1.047 | 0.735 | A6 | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.140 | 1 | Left
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.537 | 1.067 | 0.573 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | 0.050 | 0 | Right
Touch | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.345 | 1.047 | 0.361 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.090 | 1 | Right
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.276 | 1.067 | 0.294 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | -0.120 | 0 | Left
Tilt | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.429 | 1.047 | 0.449 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.070 | 1 | Left
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.331 | 1.067 | 0.353 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | 0.060 | 0 | Right
Tilt | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.264 | 1.047 | 0.276 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | -0.060 | 1 | Right
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.236 | 1.067 | 0.252 | | ANSI / IEEE C95.1-2005- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram # Table 12.7 LTE Band 2 (PCS) Head SAR | | | | | | | | MEAS | SUREMEN | T RESULT | s | | | | | | | | |--------|-------|-----------|-------|----------------|--------------|----------------|------|----------------|------------------|------|------|-------|-------|-----------|---------|---------------|-------| | FREQU | UENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | | Number | | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.040 | 0 | Left
Touch | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.495 | 1.023 | 0.506 | A7 | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.050 | 1 | Left
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.401 | 1.079 | 0.433 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.100 | 0 | Right
Touch | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.280 | 1.023 | 0.286 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.140 | 1 | Right
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.220 | 1.079 | 0.237 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.160 | 0 | Left
Tilt | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.302 | 1.023 | 0.309 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.180 | 1 | Left
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.233 | 1.079 | 0.251 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.130 | 0 | Right
Tilt | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.195 | 1.023 | 0.199 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.050 | 1 | Right
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.154 | 1.079 | 0.166 | | | | | | | | | | | - | | | - | | | _ | | - | | ANSI / IEEE C95.1-2005- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram ### Table 12.8 LTE Band 7 Head SAR | | | | | | | | MEAS | SUREMEN | T RESULT | 'S | | | | | | | | |--------|-------|-----------|-------|----------------|--------------|----------------|------|----------------|------------------|--------|------|-------|-------|-----------|---------|---------------|-------| | FREQU | JENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | 1 00.0.0.1 | Number | illou. | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.000 | 0 | Left
Touch | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.083 | 1.035 | 0.086 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | -0.150 | 1 | Left
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.074 | 1.230 | 0.091 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | 0.120 | 0 | Right
Touch | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.157 | 1.035 | 0.162 | A8 | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | 0.040 | 1 | Right
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.122 | 1.230 | 0.150 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | 0.060 | 0 | Left
Tilt | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.057 | 1.035 | 0.059 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | 0.080 | 1 | Left
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.039 | 1.230 | 0.048 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.070 | 0 | Right
Tilt | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.029 | 1.035 | 0.030 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | -0.050 | 1 | Right
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.026 | 1.230 | 0.032 | | ANSI / IEEE C95.1-2005- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram ### Table 12.9 DTS Head SAR | | | | | | | Table 12.3 | D 10 11cau | OAIL | | | | | | | | |--------|------|---------|-----------------------------|---------------------------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|--------------------|-------------------|----------------------------|---------------------|-------| | | | | | | | MEASUREM | MENT RESU | LTS | | | | | | | | | FREQUI | ENCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | FOSITION | Number | Alea Scall | [Mbps] | Cycle | (W/kg) | 1 actor | Cycle) | (W/kg) | " | | 2437 | 6 | 802.11b | 15.00 | 14.46 | 0.080 | Left Touch | FCC #1 | 0.265 | 1 | 99.2 | 0.288 | 1.132 | 1.008 | 0.329 | A9 | | 2437 | 6 | 802.11b | 15.00 | 14.46 | 0.180 | Right Touch | FCC #1 | 0.0792 | 1 | 99.2 | 0.084 | 1.132 | 1.008 | 0.096 | | | 2437 | 6 | 802.11b | 15.00 | 14.46 | - | Left Tilt | FCC #1 | 0.157 | 1 | 99.2 | - | 1.132 | - | | | | 2437 | 6 | 802.11b | 15.00 | 14.46 | - | FCC #1 | 0.0612 | 1 | 99.2 | 1 | 1.132 | - | | | | | | _ | - | | 95.1-2005– SAFE
Spatial Peak | TY LIMIT | - | - | | - | - | Head
1.6 W/kg (| | - | - | | | | | Uncont | rolled Exposu | re/General Popu | ulation Exp | oosure | | | | av | eraged over | er 1 gram | | | | ### Note(s): - 1. Blue entries Additional required in order satisfying FCC simultaneous transmission limit criteria. - 2. Highest <u>reported</u> SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. Pages: 58 /185 # 12.2 Standalone Body-Worn SAR Results Table 12.10 GSM/PCS/GPRS/WCDMA Body-Worn SAR | | | | | | ME | ASUREM | ENT RESUL | .TS | | | | | | | |--------|------------|----------------------------|---------|--|-----------------------------|------------------------|-------------------|----------------------------|---------------------------|--------------------------------|---------------------|-------------------
-------------------------------|------------| | FREQU | ENCY
Ch | Mode/
Band | Service | Maximum
Allowed
Power
[dBm] | Conducted
Power
[dBm] | Drift
Power
[dB] | Spacing
[Side] | Device
Serial
Number | # of
Time
Slot
s | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR
(W/kg) | Plots
| | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.60 | 0.010 | 10 mm
[Rear] | FCC #1 | 1 | 1:8.3 | 0.452 | 1.023 | 0.462 | A10 | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.090 | 10 mm
[Front] | FCC #1 | 4 | 1:2.075 | 0.299 | 1.023 | 0.306 | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.050 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.500 | 1.023 | 0.512 | A11 | | 1880.0 | 661 | PCS1900 | PCS | 31.20 | 30.60 | 0.120 | 10 mm
[Rear] | FCC #1 | 1 | 1:8.3 | 0.298 | 1.148 | 0.342 | A12 | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.080 | 10 mm
[Front] | FCC #1 | 3 | 1:2.77 | 0.332 | 1.047 | 0.348 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.020 | 10 mm
[Rear] | FCC #1 | 3 | 1:2.77 | 0.459 | 1.047 | 0.481 | A13 | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | -0.020 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.365 | 1.023 | 0.373 | | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.060 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.605 | 1.023 | 0.619 | A14 | | 1712.4 | 1312 | WCDMA 1700 | RMC | 24.2 | 23.76 | -0.040 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.702 | 1.107 | 0.777 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.050 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.739 | 1.151 | 0.851 | A15 | | 1752.6 | 1513 | WCDMA 1700 | RMC | 24.2 | 23.69 | -0.060 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.712 | 1.125 | 0.801 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | -0.000 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.613 | 1.151 | 0.706 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.010 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.568 | 1.000 | 0.568 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.639 | 1.000 | 0.639 | A16 | | | | | ANSI / I
Uncontrolled E | Spat | -2005– SAFE
ial Peak
seneral Popul | | | | | | Body
W/kg (mW
ged over 1 | Ο, | | | | Pages: 59 /185 # Table 12.11 LTE Body-Worn SAR | | | | | | | | MEAS | SUREMEN | | s | | | | | | | | |--|-------|-----------|-------|--|--------------|--------------------|------|------------------|------------------|------|------|-------|-------------------------------|-----------|---------|---------------|-------| | FREQU | JENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | | Number | | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | -0.000 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.628 | 1.047 | 0.658 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | -0.000 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.478 | 1.067 | 0.510 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | 0.080 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.705 | 1.047 | 0.738 | A17 | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.547 | 1.067 | 0.584 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.030 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.568 | 1.023 | 0.581 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.040 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.441 | 1.079 | 0.476 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.030 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.607 | 1.023 | 0.621 | A18 | | 1860.0 18700 LTE 20 22.20 21.87 0.010 1 | | | | | | | | | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.469 | 1.079 | 0.506 | | | 2510.0 20850 LTE
B7 20 23.20 23.05 -0.080 0 | | | | | | | | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.581 | 1.035 | 0.601 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | 0.020 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.454 | 1.230 | 0.558 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.030 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 1.050 | 1.035 | 1.087 | A19 | | 2535.0 | 21100 | LTE
B7 | 20 | 23.20 | 22.99 | 0.180 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.995 | 1.050 | 1.045 | | | 2560.0 | 21350 | LTE
B7 | 20 | 23.20 | 23.00 | -0.000 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.919 | 1.047 | 0.962 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | -0.060 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.802 | 1.230 | 0.986 | | | 2535.0 21100 LTE 87 20 22.20 21.66 -0.020 1 | | | | | | | | | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.732 | 1.132 | 0.829 | | | 2560.0 | 21350 | LTE
B7 | 20 | 22.20 | 21.68 | -0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.728 | 1.127 | 0.820 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.23 | -0.080 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 100 | 0 | 1:1 | 0.702 | 1.250 | 0.878 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.120 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.997 | 1.035 | 1.032 | | | | Unco | | ; | 95.1-2005-
Spatial Pe
ire/Genera | ak | LIMIT
on Exposu | ıre | | | | | | Body
6 W/kg (
aged over | | | | | Note: Blue entries represent variability measurements # Table 12.12 DTS Body-Worn SAR | | | | | | | MEASURE | MENT RES | ULTS | | | | | | | | |--------------|------|---------|--------------------------------------|--|------------------------|---------------------|--|--------------------------|------------------------|---------------|---------------------------------|-------------------|--------------------------------------|---------------|------------| | FREQU
MHz | ENCY | Mode | Maximum
Allowed
Power
[dBm] | Conducted
Power
[dBm] | Drift
Power
[dB] | Phantom
Position | Device
Serial
Number | Peak SAR of
Area Scan | Data
Rate
[Mbps] | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | Scaling
Factor
(Duty
Cycle) | SAR
(W/kg) | Plots
| | 2437 | 6 | 802.11b | 15.00 | 14.46 | - | 10 mm
[Front] | FCC #1 | 0.045 | 1 | 99.2 | i | 1.132 | 1.008 | - | | | 2437 | 6 | 802.11b | 15.00 | 14.46 | -0.050 | 10 mm
[Rear] | FCC #1 | 0.129 | 1 | 99.2 | 0.120 | 1.132 | 1.008 | 0.137 | A20 | | | _ | | S | 5.1-2005– SAFE
patial Peak
e/General Popul | | osure | <u>- </u> | | | | Body
.6 W/kg (r
raged ove | nW/g) | <u>-</u> | | | Note: Highest <u>reported</u> SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. # 12.3 Standalone Wireless router SAR Results Table 12.13 GPRS Hotspot SAR | | | | | | | MEAS | UREMENT RE | SULTS | | | | | | | |---------------|------------|---------------|---------|---|-----------------------------|------------------------|-------------------|----------------------------|-----------------------|---------------|--------------------------------------|-------------------|-------------------------------|------------| | FREQUI
MHz | ENCY
Ch | Mode/
Band | Service | Maximum
Allowed
Power
[dBm] | Conducted
Power
[dBm] | Drift
Power
[dB] | Spacing
[Side] | Device
Serial
Number | # of
Time
Slots | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR
(W/kg) | Plots
| | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.100 | 10 mm
[Bottom] | FCC #1 | 4 | 1:2.075 | 0.268 | 1.023 | 0.274 | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.090 | 10 mm
[Front] | FCC #1 | 4 | 1:2.075 | 0.299 | 1.023 | 0.306 | | | 836.6 | 190 | GSM850 | GPRS | 33.70 | 33.60 | -0.130 | 10 mm
[Rear] | FCC #1 | 1 | 1:8.3 | 0.457 | 1.023 | 0.468 | | | 836.6 | 190 | GSM850 | GPRS | 30.70 | 30.40 | -0.070 | 10 mm
[Rear] | FCC #1 | 2 | 1:4.15 | 0.449 | 1.072 | 0.481 | | | 836.6 | 190 | GSM850 | GPRS | 29.20 | 29.10 | -0.030 | 10 mm
[Rear] | FCC #1 | 3 | 1:2.77 | 0.435 | 1.023 | 0.445 | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.050 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.500 | 1.023 | 0.512 | A11 | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | 0.060 | 10 mm
[Right] | FCC #1 | 4 | 1:2.075 | 0.359 | 1.023 | 0.367 | | | 836.6 | 190 | GSM850 | GPRS | 27.70 | 27.60 | -0.050 | 10 mm
[Left] | FCC #1 | 4 | 1:2.075 | 0.236 | 1.023 | 0.241 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.120 | 10 mm
[Bottom] | FCC #1 | 3 | 1:2.77 | 0.207 | 1.047 | 0.217 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.080 | 10 mm
[Front] | FCC #1 | 3 | 1:2.77 | 0.332 | 1.047 | 0.348 | | | 1880.0 | 661 | PCS1900 | GPRS | 31.20 | 30.60 | 0.170 | 10 mm
[Rear] | FCC #1 | 1 | 1:8.3 | 0.353 | 1.148 | 0.405 | | | 1880.0 | 661 | PCS1900 | GPRS | 27.70 | 27.60 | 0.120 | 10 mm
[Rear] | FCC #1 | 2 | 1:4.15 | 0.325 | 1.023 | 0.332 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.020 | 10 mm
[Rear] | FCC #1 | 3 | 1:2.77 | 0.459 | 1.047 | 0.481 | A13 | | 1880.0 | 661 | PCS1900 | GPRS | 24.70 | 24.60 | -0.140 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.297 | 1.023 | 0.304 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.150 | 10 mm
[Right] | FCC #1 | 3 | 1:2.77 | 0.117 | 1.047 | 0.122 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.20 | 26.00 | 0.060 | 10 mm
[Left] | FCC #1 | 3 | 1:2.77 | 0.329 | 1.047 | 0.344 | | | | | | Sp | 5.1-2005– SAF
patial Peak
e/General Pop | ETY LIMIT | ure | | | |
 Body
6 W/kg (mW/
aged over 1 g | | | | **Table 12.14 WCDMA Hotspot SAR** | | | | | | MEAS | | IT RESULTS | | | | | | | | |--------|------|--------------|------------|---------------------------|--------------------|----------------|-------------------|------------------|--------------|-----------|------------------|---------|---------------|-------| | FREQU | ENCY | Mode/ | Service | Maximum
Allowed | Conducted
Power | Drift
Power | Spacing | Device
Serial | # of
Time | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | Service | Power
[dBm] | [dBm] | [dB] | [Side] | Number | Slots | Cycl
e | (W/kg) | Factor | SAR
(W/kg) | # | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.120 | 10 mm
[Bottom] | FCC #1 | N/A | 1:1 | 0.312 | 1.023 | 0.319 | | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | -0.020 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.365 | 1.023 | 0.373 | | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.060 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.605 | 1.023 | 0.619 | A14 | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | 0.030 | 10 mm
[Right] | FCC #1 | N/A | 1:1 | 0.424 | 1.023 | 0.434 | | | 836.6 | 4183 | WCDMA 850 | RMC | 24.20 | 24.10 | -0.020 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.294 | 1.023 | 0.301 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.030 | 10 mm
[Bottom] | FCC #1 | N/A | 1:1 | 0.345 | 1.151 | 0.397 | | | 1712.4 | 1312 | WCDMA 1700 | RMC | 24.2 | 23.76 | -0.040 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.702 | 1.107 | 0.777 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.050 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.739 | 1.151 | 0.851 | A15 | | 1752.6 | 1513 | WCDMA 1700 | RMC | 24.2 | 23.69 | -0.060 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.712 | 1.125 | 0.801 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | -0.000 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.613 | 1.151 | 0.706 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.180 | 10 mm
[Right] | FCC #1 | N/A | 1:1 | 0.268 | 1.151 | 0.308 | | | 1712.4 | 1312 | WCDMA 1700 | RMC | 24.2 | 23.76 | -0.010 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.819 | 1.107 | 0.907 | | | 1732.4 | 1412 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.020 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.797 | 1.151 | 0.917 | | | 1752.6 | 1513 | WCDMA 1700 | RMC | 24.2 | 23.69 | 0.150 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.943 | 1.125 | 1.061 | A21 | | 1752.6 | 1513 | WCDMA 1700 | RMC | 24.2 | 23.59 | 0.060 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.918 | 1.151 | 1.057 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.170 | 10 mm
[Bottom] | FCC #1 | N/A | 1:1 | 0.325 | 1.000 | 0.325 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.010 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.568 | 1.000 | 0.568 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.060 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.639 | 1.000 | 0.639 | A16 | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.100 | 10 mm
[Right] | FCC #1 | N/A | 1:1 | 0.177 | 1.000 | 0.177 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 23.70 | 23.70 | 0.120 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.464 | 1.000 | 0.464 | | | | | ANSI / | | -2005– SAFET
tial Peak | Y LIMIT | | | | | 1.6 | Body
W/kg (m\ | N/g) | | | | | | Uncontrolled | Exposure/0 | General Popula | ation Exposure | | | | | | aged over | | | | Note: Blue entries represent variability measurements. # Table 12.15 LTE Band 4(AWS) Hotspot SAR | | | | | | | | MEAS | SUREMEN | T RESULT | S | | | | | | | | |--------|-------|---------------|-------------|------------------------------------|--------------|--------------------|------|------------------|------------------|------|------------|-------------|-------------------------------|-----------|-------------------|---------------------|------------| | FREQ | UENCY | Mode/
Band | BW
[MHz] | Max
Allowed
Power | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB
Size | RB
Offs. | Duty
Cycle | 1g
SAR | Scaling
Factor | 1g
Scaled
SAR | Plots
| | MHz | Ch | Ballu | [IVII IZ] | [dBm] | [dBm] | [dB] | | | Number | | Size | Olis. | Cycle | (W/kg) | 1 actor | (W/kg) | # | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | 0.120 | 0 | 10 mm
[Bot.] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.456 | 1.047 | 0.477 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | -0.030 | 1 | 10 mm
[Bot.] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.322 | 1.067 | 0.344 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | -0.000 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.628 | 1.047 | 0.658 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | -0.000 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.478 | 1.067 | 0.510 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | 0.080 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.705 | 1.047 | 0.738 | A17 | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.547 | 1.067 | 0.584 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | -0.010 | 0 | 10 mm
[Right] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.238 | 1.047 | 0.249 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.040 | 1 | 10 mm
[Right] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.184 | 1.067 | 0.196 | | | 1720.0 | 20050 | LTE
B4 | 20 | 23.20 | 23.00 | -0.020 | 0 | 10 mm
[Left] | FCC
#1 | QPSK | 1 | 50 | 1:1 | 0.622 | 1.047 | 0.651 | | | 1720.0 | 20050 | LTE
B4 | 20 | 22.20 | 21.92 | 0.000 | 1 | 10 mm
[Left] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.451 | 1.067 | 0.481 | | | | Unco | | , | 95.1-2005-
Spatial Peare/Genera | ak | LIMIT
on Exposi | ıre | | | | | | Body
6 W/kg (
aged over | | | | | Table 12.16 LTE Band 2 (PCS) Hotspot SAR | | | | | | | | MEAS | SUREMEN | T RESULT | S | | | | | | | | |--------|-------|---------------|-------------|-------------------------|-----------------------|------------------------|------|------------------|----------------------------|------|------------|-------------|---------------|---------------------|-------------------|---------------------|------------| | FREQU | UENCY | Mode/
Band | BW
[MHz] | Max
Allowed
Power | Cond.
PWR
[dBm] | Drift
Power
[dB] | MPR | Position | Device
Serial
Number | Mod. | RB
Size | RB
Offs. | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR | Plots
| | IVITIZ | CII | | | [dBm] | [ubiii] | [ub] | | | | | | | | (W/Kg) | | (W/kg) | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.040 | 0 | 10 mm
[Bot.] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.236 | 1.023 | 0.241 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | -0.060 | 1 | 10 mm
[Bot.] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.202 | 1.079 | 0.218 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.030 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.568 | 1.023 | 0.581 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.040 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.441 | 1.079 | 0.476 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.030 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.607 | 1.023 | 0.621 | A18 | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.469 | 1.079 | 0.506 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.130 | 0 | 10 mm
[Right] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.183 | 1.023 | 0.187 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.120 | 1 | 10 mm
[Right] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.136 | 1.079 | 0.147 | | | 1860.0 | 18700 | LTE
B2 | 20 | 23.20 | 23.10 | 0.090 | 0 | 10 mm
[Left] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.505 | 1.023 | 0.517 | | | 1860.0 | 18700 | LTE
B2 | 20 | 22.20 | 21.87 | 0.030 | 1 | 10 mm
[Left] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.385 | 1.079 | 0.415 | | ANSI / IEEE C95.1-2005- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Body 1.6 W/kg (mW/g) averaged over 1 gram Pages: 63 /185 # Table 12.17 LTE Band 7 Hotspot SAR | | | | | | | T RESULT | • | | | | | | | | | | | |--------|---|---------------|-------------|-------------------------|-----------------------|------------------------|-----|------------------|----------------------------|------|------------|-------------------------------|---------------|---------------------|-------------------|---------------------|------------| | FREQU | JENCY
Ch | Mode/
Band | BW
[MHz] | Max
Allowed
Power | Cond.
PWR
[dBm] | Drift
Power
[dB] | MPR | Position | Device
Serial
Number | Mod. | RB
Size | RB
Offs. | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR | Plots
| | 2510.0 | 20850 | LTE | 20 | [dBm]
23.20 | 23.05 | 0.020 | 0 | 10 mm | FCC | QPSK | 1 | 0 | 1:1 | 0.982 | 1.035 | (W/kg)
1.016 | | | | | B7
LTE | | | | | _ | [Bot.]
10 mm | #1
FCC | | | - | | | | | | | 2535.0 | 21100 | B7
LTE | 20 | 23.20 | 22.99 | -0.070 | 0 | [Bot.]
10 mm | #1
FCC | QPSK | 1 | 0 | 1:1 | 0.894 | 1.050 | 0.939 | | | 2560.0 | 21350 | B7
LTE | 20 | 23.20 | 23.00 | 0.020 | 0 | [Bot.] | #1
FCC | QPSK | 1 | 0 | 1:1 | 0.972 | 1.047 | 1.018 | | | 2510.0 | 20850 | B7 | 20 | 22.20 | 21.30 | 0.010 | 1 | [Bot.] | #1 | QPSK | 50 | 0 | 1:1 | 0.768 | 1.230 | 0.945 | | | 2535.0 | 21100 | LTE
B7 | 20 | 22.20 | 21.66 | 0.030 | 1 | 10 mm
[Bot.] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.711 | 1.132 | 0.805 | | | 2560.0 | 21350 | LTE
B7 | 20 | 22.20 | 21.68 | -0.060 | 1 | 10 mm
[Bot.] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.696 | 1.127 | 0.784 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.23 | -0.050 | 1 | 10 mm
[Bot.] | FCC
#1 |
QPSK | 100 | 0 | 1:1 | 0.591 | 1.250 | 0.739 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.080 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.581 | 1.035 | 0.601 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | 0.020 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.454 | 1.230 | 0.558 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.030 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 1.050 | 1.035 | 1.087 | A19 | | 2535.0 | 21100 | LTE
B7 | 20 | 23.20 | 22.99 | 0.180 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.995 | 1.050 | 1.045 | | | 2560.0 | 21350 | LTE
B7 | 20 | 23.20 | 23.00 | -0.000 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.919 | 1.047 | 0.962 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | -0.060 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.802 | 1.230 | 0.986 | | | 2535.0 | 21100 | LTE
B7 | 20 | 22.20 | 21.66 | -0.020 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.732 | 1.132 | 0.829 | | | 2560.0 | 21350 | LTE
B7 | 20 | 22.20 | 21.68 | -0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.728 | 1.127 | 0.820 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.23 | -0.080 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 100 | 0 | 1:1 | 0.702 | 1.250 | 0.878 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.160 | 0 | 10 mm
[Right] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.308 | 1.035 | 0.319 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | -0.020 | 1 | 10 mm
[Right] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.243 | 1.230 | 0.299 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.100 | 0 | 10 mm
[Left] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.039 | 1.035 | 0.040 | | | 2510.0 | 20850 | LTE
B7 | 20 | 22.20 | 21.30 | -0.010 | 1 | 10 mm
[Left] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.026 | 1.230 | 0.032 | | | 2510.0 | 20850 | LTE
B7 | 20 | 23.20 | 23.05 | -0.120 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 0 | 1:1 | 0.997 | 1.035 | 1.032 | | | | ANSI / IEEE C95.1-2005— SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure | | | | | | | | | | | Body
6 W/kg (
aged over | | | | | | Note: Blue entries represent variability measurements. ### Table 12.18 W-LAN Hotspot SAR | | MEASUREMENT RESULTS | | | | | | | | | | | | | | | |--------|---|---------|-----------------------------|--------------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|------------------------------------|-------------------|----------------------------|---------------|-------| | FREQUI | FREQUENCY Mode | | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | SAR
(W/kg) | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | | Number | | [Mbps] | -, | (W/kg) | | Cycle) | (5) | | | 2437 | 6 | 802.11b | 15.00 | 14.46 | - | 10 mm
[Top] | FCC #1 | 0.039 | 1 | 99.2 | - | 1.132 | 1.008 | - | | | 2437 | 6 | 802.11b | 15.00 | 14.46 | - | 10 mm
[Front] | FCC #1 | 0.045 | 1 | 99.2 | - | 1.132 | 1.008 | - | | | 2437 | 6 | 802.11b | 15.00 | 14.46 | -0.050 | 10 mm
[Rear] | FCC #1 | 0.129 | 1 | 99.2 | 0.120 | 1.132 | 1.008 | 0.137 | A20 | | 2437 | 10 mm | | | | | | FCC #1 | 0.038 | 1 | 99.2 | - | 1.132 | 1.008 | - | | | | ANSI / IEEE C95.1-2005– SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure | | | | | | | | | | Body
I.6 W/kg (re
eraged ove | n W /g) | | <u>-</u> | | averaged over 1 gram Note: Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. ### 12.4 SAR Test Notes #### General Notes: - 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, and FCC KDB Publication447498 D01v05r02. - 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02 - 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance. - 7. Per FCC KDB Publication 648474 D04v01r02, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was not > 1.2 W/kg, no additional SAR evaluations using a headset cable were performed. - 8. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 7.6 for more details). - 9. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 14 for variability analysis. ### **GSM Notes:** - Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for bodyworn SAR. - 2. This device supports GSM VOIP in the head and body-worn configurations; therefore GPRS was additionally evaluated for head and body-worn compliance. - 3. Justification for reduced test configurations per KDB Publication 941225 D01v03 and October2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested - 4. Per FCC KDB Publication 447498 D01v05r02, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). Since the maximum output power variation across the required test channels is not > ½ dB, the middle channel was used for testing. ### WCDMA (UMTS) Notes: - WCDMA (UMTS) mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg. - 2. Per FCC KDB Publication 447498 D01v05r02, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used. #### LTE Notes: - 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r03. The general test procedures used for testing can be found in Section 4.1. - 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 6.2.5 under Table 6.2.3-1. - 3. Per FCC Guidance, LTE CA SAR was not needed for testing since the data sent by uplink on uplink physical channels does not change between Rel 8 and Rel 10. #### BT/WLAN Notes: - 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. - 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information. - 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 8.6.6 for more information. - 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured. - 5. The device was configured to transmit continuously at the required data
rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. - 6. The channel and data rate with the highest average output power were evaluated for Bluetooth. ### 13. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS ### 13.1 Introduction The following procedures adopted from FCC KDB Publication 447498 D01v05r02 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter. ### 13.2 Simultaneous Transmission Procedures This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter. Estimated SAR= $$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$ Table 13.1 Estimated SAR | Mode | Frequency | Allo | mum
wed
wer | Separation
Distance
(Body) | Estimated
SAR
(Body) | | |-----------|-----------|-------|-------------------|----------------------------------|----------------------------|--| | | [MHz] | [dBm] | [mW] | [mm] | [W/kg] | | | Bluetooth | 2441 | 7.59 | 6 | 10 | 0.120 | | Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation. ### 13.3 Simultaneous Transmission Capabilities According to FCC KDB Publication 447498 D01v05r02, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 13.1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another. Path 1 GSM/GPRS/EDGE/WCDMA/LTE Path 2 Bluetooth, WIFI Figure 13.1 Simultaneous Transmission Paths This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05r02. #### **Table 13.2 Simultaneous Transmission Scenarios** | No. | Capable TX
Configuration | GSM850/1900
Voice | GPRS/EDGE
850/1900 | WCDMA
850/1700/1900
Voice | WCDMA
850/1700/1900
data | LTE
B2, B4, B7 | WIFI 2.4 GHz
802.11b/g/n | Bluetooth
2.4GHz | NFC | |-----|---------------------------------|----------------------|-----------------------|---------------------------------|--------------------------------|-------------------|-----------------------------|---------------------|-----| | 1 | GSM850/1900
Voice | | No | No | No | No | Yes | Yes | Yes | | 2 | GPRS/EDGE
850/1900
data | No | | No | No | No | Yes | Yes | Yes | | 3 | WCDMA
850/1700/1900
Voice | No | No | | No | No | Yes | Yes | Yes | | 4 | WCDMA
850/1700/1900
data | No | No | No | | No | Yes | Yes | Yes | | 5 | LTE
B2, B4, B7 | No | No | No | No | | Yes | Yes | Yes | | 6 | WIFI 2.4 GHz
802.11b/g/n | Yes | Yes | Yes | Yes | Yes | | No | Yes | | 7 | Bluetooth
2.4GHz | Yes | Yes | Yes | Yes | Yes | No | | Yes | | 8 | NFC | Yes | #### **Table 13.3 Simultaneous SAR Cases** | No. | Capable Transmit Configuration | Head | Body-Worn
Accessory | Wireless
Router | Note | |-----|--------------------------------|-------|------------------------|--------------------|-------------------------------------| | 1 | GSM Voice + 2.4 GHz WIFI | Yes | Yes | N/A | | | 2 | GSM Voice + 2.4 GHz Bluetooth | N/A | Yes | N/A | | | 3 | GPRS/EDGE + 2.4 GHz WIFI | Yes * | Yes * | Yes | * VOIP applications are considered. | | 4 | GPRS/EDGE + 2.4 GHz Bluetooth | N/A | Yes * | N/A | * VOIP applications are considered. | | 5 | WCDMA + 2.4 GHz WIFI | Yes | Yes | Yes | | | 6 | WCDMA + 2.4 GHz Bluetooth | N/A | Yes | N/A | | | 7 | LTE + 2.4 GHz WIFI | Yes | Yes | Yes | | | 8 | LTE + 2.4 GHz Bluetooth | N/A | Yes | N/A | | ### Notes: - 1. WIFI 2.4 GHz is supported Hotspot and WIFI-Direct (GC/GO). - 2. LTE, WCDMA, GPRS/EDGE is supported Hotspot. - 3. VoIP is supported in LTE, WCDMA, GSM (e.g. 3rd part VoIP) - 4. Bluetooth and WIFI cannot transmit simultaneously since they share the same chip. - 5. GSM, WCDMA and LTE cannot transmit simultaneously since they share they share the same chip. ### Note: - When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario. - Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table. # 13.4 Head SAR Simultaneous Transmission Analysis Table 13.4 Simultaneous Transmission Scenario for GSM with 2.4 GHz W-LAN (Held to Ear) | Simult
TX | Configuration | GSM850
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | Simult
TX | Configuration | PCS1900
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ΣSAR
(W/kg) | |--------------|---------------|-------------------------|---|----------------|--------------|---------------|--------------------------|---|----------------| | | Left Touch | 0.348 | 0.329 | 0.677 | | Left Touch | 0.456 | 0.329 | 0.785 | | Head | Right Touch | 0.339 | 0.096 | 0.435 | Head
SAR | Right Touch | 0.250 | 0.096 | 0.346 | | SAR | Left Tilt | 0.223 | - | 0.223 | | Left Tilt | 0.209 | - | 0.209 | | | Right Tilt | 0.191 | - | 0.191 | | Right Tilt | 0.203 | - | 0.203 | Table 13.5 Simultaneous Transmission Scenario for GPRS with 2.4 GHz W-LAN (Held to Ear) | Simult
TX | Configuration | GPRS
850
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | Simult
TX | Configuration | GPRS
1900
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ΣSAR
(W/kg) | |--------------|---------------|------------------------------|---|----------------|--------------|---------------|-------------------------------|---|----------------| | | Left Touch | 0.429 | 0.329 | 0.758 | | Left Touch | 0.512 | 0.329 | 0.841 | | Head | Right Touch | 0.353 | 0.096 | 0.449 | Head
SAR | Right Touch | 0.240 | 0.096 | 0.336 | | SAR | Left Tilt | 0.223 | - | 0.223 | | Left Tilt | 0.190 | - | 0.190 | | | Right Tilt | 0.202 | - | 0.202 | | Right Tilt | 0.196 | - | 0.196 | Table 13.6 Simultaneous Transmission Scenario for WCDMA with 2.4 GHz W-LAN (Held to Ear) | | Tuble I | o.o omnantano | ous mansinissi | on occitatio | IOI WODINA | WILL 2.4 GIIZ W-LAN | (Hela to Ear | , | | |--------------|---------------|--------------------------------|---|----------------|--------------|---------------------|--------------------------------|---|----------------| | Simult
TX | Configuration | WCDMA
850
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | Simult
TX | Configuration | WCDMA
1700
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | | | Left Touch | 0.329 | 0.329 | 0.658 | | Left Touch | 0.765 | 0.329 | 1.094 | | Head | Right Touch | 0.341 | 0.096 | 0.437 | Head | Right Touch | 0.450 | 0.096 | 0.546 | | SAR | Left Tilt | 0.258 | - | 0.258 | SAR | Left Tilt | 0.434 | - | 0.434 | | | Right Tilt | 0.211 | - | 0.211 | | Right Tilt | 0.384 | - | 0.384 | | Simult
TX | Configuration | WCDMA
1900
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | | | | | | | | Left Touch | 0.528 | 0.329 | 0.857 | | | | | | | Head | Right Touch | 0.332 | 0.096 | 0.428 | | | | | | | SAR | Left Tilt | 0.251 | - | 0.251 | | | | | | | | Right Tilt | 0.240 | _ | 0.240 | | | | | | Table 13.7 Simultaneous Transmission Scenario for LTE with 2.4 GHz W-LAN (Held to Ear) | Simult
TX | Configuration | LTE
Band 4
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | Simult
TX | Configuration | LTE
Band 2
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | |--------------|---------------|--------------------------------|---|----------------|--------------|---------------|--------------------------------|---|----------------| | | Left Touch | 0.735 | 0.329 | 1.064 | | Left Touch | 0.506 | 0.329 | 0.835 | | Head | Right Touch | 0.361 | 0.096 | 0.457 | Head | Right Touch | 0.286 | 0.096 | 0.382 | | SAR | Left Tilt | 0.449 | - | 0.449 | SAR | Left Tilt | 0.309 | - | 0.309 | | | Right Tilt | 0.276 | - | 0.276 | | Right Tilt | 0.199 | - | 0.199 | | Simult
TX | Configuration | LTE
Band 7
SAR
(W/kg) |
2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | | | | | | | | Left Touch | 0.086 | 0.329 | 0.415 | | | | | | | Head | Right Touch | 0.162 | 0.096 | 0.258 | | | | | | | 11000 | J | | | | 41 | | | | | | SAR | Left Tilt | 0.059 | - | 0.059 | | | | | | # 13.5 Body-Worn Simultaneous Transmission Analysis Table 13.8 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Body-Worn at 10 mm) | Configuration | Mode | 2G/3G
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ΣSAR
(W/kg) | |---------------|------------|------------------------|---|----------------| | Rear Side | GSM 850 | 0.462 | 0.137 | 0.599 | | Front Side | GPRS 850 | 0.306 | 0.137 | 0.443 | | Rear Side | GPRS 850 | 0.512 | 0.137 | 0.649 | | Rear Side | PCS 1900 | 0.342 | 0.137 | 0.479 | | Front Side | GPRS 1900 | 0.348 | 0.137 | 0.485 | | Rear Side | GPRS 1900 | 0.481 | 0.137 | 0.618 | | Front Side | WCDMA 850 | 0.373 | 0.137 | 0.51 | | Rear Side | WCDMA 850 | 0.619 | 0.137 | 0.756 | | Front Side | WCDMA 1700 | 0.851 | 0.137 | 0.988 | | Rear Side | WCDMA 1700 | 0.706 | 0.137 | 0.843 | | Front Side | WCDMA 1900 | 0.568 | 0.137 | 0.705 | | Rear Side | WCDMA 1900 | 0.639 | 0.137 | 0.776 | | Front Side | LTE Band 4 | 0.658 | 0.137 | 0.795 | | Rear Side | LTE Band 4 | 0.738 | 0.137 | 0.875 | | Front Side | LTE Band 2 | 0.581 | 0.137 | 0.718 | | Rear Side | LTE Band 2 | 0.621 | 0.137 | 0.758 | | Front Side | LTE Band 7 | 0.601 | 0.137 | 0.738 | | Rear Side | LTE Band 7 | 1.087 | 0.137 | 1.224 | Table 13.9 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 10 mm) | Configuration | Mode | 2G/3G
SAR
(W/kg) | Bluetooth
SAR
(W/kg) | ΣSAR
(W/kg) | |---------------|------------|------------------------|----------------------------|----------------| | Rear Side | GSM 850 | 0.462 | 0.120 | 0.582 | | Front Side | GPRS 850 | 0.306 | 0.120 | 0.426 | | Rear Side | GPRS 850 | 0.512 | 0.120 | 0.632 | | Rear Side | PCS 1900 | 0.342 | 0.120 | 0.462 | | Front Side | GPRS 1900 | 0.348 | 0.120 | 0.468 | | Rear Side | GPRS 1900 | 0.481 | 0.120 | 0.601 | | Front Side | WCDMA 850 | 0.373 | 0.120 | 0.493 | | Rear Side | WCDMA 850 | 0.619 | 0.120 | 0.739 | | Front Side | WCDMA 1700 | 0.851 | 0.120 | 0.971 | | Rear Side | WCDMA 1700 | 0.706 | 0.120 | 0.826 | | Front Side | WCDMA 1900 | 0.568 | 0.120 | 0.688 | | Rear Side | WCDMA 1900 | 0.639 | 0.120 | 0.759 | | Front Side | LTE Band 4 | 0.658 | 0.120 | 0.778 | | Rear Side | LTE Band 4 | 0.738 | 0.120 | 0.858 | | Front Side | LTE Band 2 | 0.581 | 0.120 | 0.701 | | Rear Side | LTE Band 2 | 0.621 | 0.120 | 0.741 | | Front Side | LTE Band 7 | 0.601 | 0.120 | 0.721 | | Rear Side | LTE Band 7 | 1.087 | 0.120 | 1.207 | Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v05r02. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion. # 13.6 Hotspot SAR Simultaneous Transmission Analysis Per FCC KDB Publication 941225 D06v02, the device edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-"). Table 13.10 Simultaneous Transmission Scenario for GPRS with 2.4GHz W-LAN (Hotspot at 10 mm) | Simult
TX | Configuration | GPRS
850
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ΣSAR
(W/kg) | Simult
TX | Configuration | GPRS
1900
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ΣSAR
(W/kg) | |--------------|---------------|------------------------------|---|----------------|--------------|---------------|-------------------------------|---|----------------| | | Тор | - | - | - | | Тор | - | - | - | | | Bottom | 0.274 | - | 0.274 | Body
SAR | Bottom | 0.217 | - | 0.217 | | Body | Front | 0.306 | - | 0.306 | | Front | 0.348 | - | 0.348 | | SAR | Rear | 0.512 | 0.137 | 0.649 | | Rear | 0.481 | 0.137 | 0.618 | | | Right | 0.367 | - | 0.367 | | Right | 0.122 | - | 0.122 | | | Left | 0.241 | - | 0.241 | | Left | 0.344 | - | 0.344 | | Table 13.11 Simultaneous Transmission Scenario for WCDMA with 2.4GHz W-LAN (Hotspot at 10 mm) | | | | | | | | | | |---|---------------|--------------------------------|---|----------------|--------------|---------------|--------------------------------|---|----------------| | Simult
TX | Configuration | WCDMA
850
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | Simult
TX | Configuration | WCDMA
1700
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ΣSAR
(W/kg) | | Body
SAR | Тор | - | - | - | Body
SAR | Тор | - | - | 1 | | | Bottom | 0.319 | - | 0.319 | | Bottom | 0.397 | - | 0.397 | | | Front | 0.373 | - | 0.373 | | Front | 0.851 | - | 0.851 | | | Rear | 0.619 | 0.137 | 0.756 | | Rear | 0.706 | 0.137 | 0.843 | | | Right | 0.434 | - | 0.434 | | Right | 0.308 | - | 0.308 | | | Left | 0.301 | - | 0.301 | | Left | 1.061 | - | 1.061 | | Simult
TX | Configuration | WCDMA
1900
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | | | | | | | Body
SAR | Тор | - | - | - | | | | | | | | Bottom | 0.325 | | 0.325 | | | | | | | | Front | 0.568 | | 0.568 | | | | | | | | Rear | 0.639 | 0.137 | 0.776 | | | | | | 0.177 0.464 Right Left 0.177 0.464 Pages: 73 /185 Table 13.12 Simultaneous Transmission Scenario for LTE with 2.4GHz W-LAN (Hotspot at 10 mm) | | | | | | | Z.4GIIZ W-LAN (IIOL | operation. | , | | |--------------|---------------|--------------------------------|---|----------------|--------------|---------------------|--------------------------------|---|----------------| | Simult
TX | Configuration | LTE
Band 4
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | Simult
TX | Configuration | LTE
Band 2
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | | | Тор | - | - | - | | Тор | 1 | - | - | | | Bottom | 0.477 | - | 0.477 | | Bottom | 0.241 | - | 0.241 | | Body | Front | 0.658 | - | 0.658 | Body | Front | 0.581 | - | 0.581 | | SAŔ | Rear | 0.738 | 0.137 | 0.875 | SAR | Rear | 0.621 | 0.137 | 0.758 | | | Right | 0.249 | - | 0.249 | | Right | 0.187 | - | 0.187 | | | Left | 0.651 | - | 0.651 | | Left | 0.517 | - | 0.517 | | Simult
TX | Configuration | LTE
Band 7
SAR
(W/kg) | 2.4G
W-LAN
(802.11b)
SAR
(W/kg) | ∑SAR
(W/kg) | | | | | | | | Тор | - | - | - | | | | | | | | Bottom | 1.018 | ı | 1.018 | | | | | | | Body | Front | 0.601 | - | 0.601 | | | | | | | SAR | Rear | 1.087 | 0.137 | 1.224 | | | | | | | | Right | 0.319 | - | 0.319 | | | | | | | 11 | · | | | | 11 | | | | | #### 13.7 Simultaneous Transmission Conclusion 0.040 Left The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05r02 and IEEE 1528-2013 Section6.3.4.1.2. 0.040 #### 14. SAR MEASUREMENT VARIABILITY #### 14.1 Measurement Variability Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. SAR Measurement Variability was assessed using the following procedures for each frequency band: - 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once. - 2. A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg **Table 14.1 Body SAR Measurement Variability Results** | Frequ | uency | Mode | Service | # of Spacing [Side] | | Measured
SAR (1g) | 1st
Repeated
SAR(1g) | Ratio | 2nd
Repeated
SAR(1g) | Ratio | 3rd
Repeated
SAR(1g) | Ratio | |--------|---|---------------|--------------------------|---------------------|-----------------|----------------------|---|-------|----------------------------|-------|----------------------------|-------| | MHz | Ch. | | | Giots | | (W/kg) | (W/kg) | | (W/kg) | | (W/kg) | | | 1752.6 | 1513 | WCDMA
1700 | RMC | N/A | 10 mm
[Left] | 0.943 | 0.918 | 1.03 | N/A | N/A | N/A | N/A | | 2510.0
| 20850 | LTE B7 | QPSK,1RB,
0 RB Offset | N/A | 10 mm
[Rear] | 1.050 | 0.997 | 1.05 | N/A | N/A | N/A | N/A | | | ANSI / IEEE C95.1-2005- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | Body
1.6 W/kg (mW/g)
averaged over 1 gram | | | | | | #### 14.2 Measurement Uncertainty The measured SAR was < 1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664D01v01r03, the standard measurement uncertainty analysis per IEEE 1528-2003 was not required. # 15. IEEE P1528 -MEASUREMENT UNCERTAINTIES #### 835 MHz Head (ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.3 | Normal | 1 | 0.6 | ± 4.3 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.1 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.2 % | | # 835 MHz Body (ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOR | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | 8 | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | 8 | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid conductivity (Meas.) | ± 4.0 | Normal | 1 | 0.64 | ± 4.0 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.4 | Normal | 1 | 0.6 | ± 4.4 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.1 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.2 % | | # 1800 MHz Head (ES3DV3-SN: 3328) | Eman Decembries | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | • | • | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | 8 | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | 80 | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | 8 | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | 8 | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | 8 | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | 8 | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | 8 | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | ∞ | | Liquid conductivity (Meas.) | ± 4.6 | Normal | 1 | 0.64 | ± 4.6 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | 8 | | Liquid permittivity (Meas.) | ±4.8 | Normal | 1 | 0.6 | ± 4.8 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.2 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.4 % | | #### 1800 MHz Body (ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | 8 | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | 8 | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid conductivity (Meas.) | ± 4.7 | Normal | 1 | 0.64 | ± 4.7 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | 8 | | Liquid permittivity (Meas.) | ± 4.8 | Normal | 1 | 0.6 | ± 4.8 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.3 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.6 % | | # 1800 MHz Head (ES3DV3-SN: 3327) | Francisco | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |----------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | • | • | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.145 % | 8 | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | 8 | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | 8 | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1
 ± 2.31 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid conductivity (Meas.) | ± 4.5 | Normal | 1 | 0.64 | ± 4.5 % | 8 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.3 | Normal | 1 | 0.6 | ± 4.3 % | ∞ | | Combined Standard
Uncertainty | | | | | ± 12.2 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.4 % | | # 1800 MHz Body (ES3DV3-SN: 3327) | Eman Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | • | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.145 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.31 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.2 | Normal | 1 | 0.6 | ± 4.2 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12.1 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.2 % | | # 1900 MHz Head(ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | ∞ | | Liquid conductivity (Meas.) | ± 4.0 | Normal | 1 | 0.64 | ± 4.0 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.5 | Normal | 1 | 0.6 | ± 4.5 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.1 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.2 % | | #### 1900 MHz Body(ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | 8 | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | 8 | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | 8 | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | 8 | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid conductivity (Meas.) | ± 4.2 | Normal | 1 | 0.64 | ± 4.2 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.8 | Normal | 1 | 0.6 | ± 4.8 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.2 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.4 % | | # 2450 MHz Head (ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOR | 1g | (1g) | Veff | | Measurement System | | | | • | • | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | 8 | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | 8 | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | 8 | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid conductivity (Meas.) | ± 4.7 | Normal | 1 | 0.64 | ± 4.7 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | 8 | | Liquid permittivity (Meas.) | ± 4.8 | Normal | 1 | 0.6 | ± 4.8 % | 8 | | CombinedStandard
Uncertainty | | | | | ± 12.3 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.6% | | #### 2450 MHz Body (ES3DV3-SN: 3328) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | 8 | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | 8 | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | 8 | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | 8 | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid
conductivity (Meas.) | ± 4.7 | Normal | 1 | 0.64 | ± 4.7 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | 8 | | Liquid permittivity (Meas.) | ± 4.8 | Normal | 1 | 0.6 | ± 4.8 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.3 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.6 % | | # 2600 MHz Head (EX3DV4-SN: 3930) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | 8 | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | 8 | | Liquid conductivity (Meas.) | ± 4.2 | Normal | 1 | 0.64 | ± 4.2 % | 8 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | 8 | | Liquid permittivity (Meas.) | ± 4.6 | Normal | 1 | 0.6 | ± 4.6 % | 8 | | CombinedStandard
Uncertainty | | | | | ± 12.2 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.4% | | #### 2600 MHz Body (EX3DV4-SN: 3930) | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|-------------|--------------|---------|------|-----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.543 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.714 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.144 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.462 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.501 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.732 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.231 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.674 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.577 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.887 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.309 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.887 % | ∞ | | Liquid conductivity (Meas.) | ± 4.6 | Normal | 1 | 0.64 | ± 4.6 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.887 % | ∞ | | Liquid permittivity (Meas.) | ± 4.8 | Normal | 1 | 0.6 | ± 4.8 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 12.2 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24.4 % | | #### 16. CONCLUSION #### **Measurement Conclusion** The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. #### 17. REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005. - [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 4, March 2010. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009 - [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07 - [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02 - [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB
Publications 648474D02-D04 - [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009 - [30] Anexo à Resolução No. 533, de 10 de September de 2009. - [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010. Pages: 90 /185 # Attachment 1. - Probe Calibration Data Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: ES3-3328_Mar15 # CALIBRATION CERTIFICATE Object ES3DV3 - SN:3328 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: March 24, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | |----------------|----------------|-----------------------|------------------------| | Calibrated by: | Jeton Kastrati | Laboratory Technician | 10- | | Approved by: | Katja Pokovic | Technical Manager | Joh My | | | | | Issued: March 24, 2015 | Certificate No: ES3-3328_Mar15 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3328_Mar15 Page 2 of 11 ES3DV3 - SN:3328 March 24, 2015 # Probe ES3DV3 SN:3328 Manufactured: January 24, 2012 Calibrated: March 24, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3328_Mar15 Page 3 of 11 ES3DV3-SN:3328 March 24, 2015 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y Sensor Z | | Unc (k=2) | | |--|----------|-------------------|-------|-----------|--| | Norm (µV/(V/m) ²) ^A | 1.05 | 1.08 | 1.11 | ± 10.1 % | | | DCP (mV) ⁸ | 106.5 | 103.7 | 102.4 | | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|---------------------------|------|---------|------------|-----|---------|----------|---------------------------| | 0 CW | CW | CW X | 0.0 | 0.0 | 1.0 | 0.00 | 197.7 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 197.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 175.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ES3-3328_Mar15 A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3- SN:3328 March 24, 2015 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 43.5 | 0.87 | 6.94 | 6.94 | 6.94 | 0.21 | 1.88 | ± 13.3 % | | 600 | 42.7 | 0.88 | 6.81 | 6.81 | 6.81 | 0.15 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 6.38 | 6.38 | 6.38 | 0.35 | 1.74 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.14 | 6.14 | 6.14 | 0.28 | 1.93 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.43 | 6.43 | 6.43 | 0.31 | 2.08 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.24 | 5.24 | 5.24 | 0.42 | 1.64 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.09 | 5.09 | 5.09 | 0.80 | 1.18 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 4.81 | 4.81 | 4.81 | 0.75 | 1.21 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.58 | 4.58 | 4.58 | 0.80 | 1.22 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.42 | 4.42 | 4.42 | 0.80 | 1.26 | ± 12.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz
only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to Certificate No: ES3-3328_Mar15 Page 5 of 11 F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ES3DV3-SN:3328 March 24, 2015 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 56.7 | 0.94 | 7.30 | 7.30 | 7.30 | 0.15 | 1.60 | ± 13.3 % | | 600 | 56.1 | 0.95 | 6.74 | 6.74 | 6.74 | 0.03 | 1.15 | ± 13.3 % | | 750 | 55.5 | 0.96 | 6.16 | 6.16 | 6.16 | 0.40 | 1.62 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.10 | 6.10 | 6.10 | 0.41 | 1.60 | ± 12.0 % | | 900 | 55.0 | 1.05 | 5.97 | 5.97 | 5.97 | 0.41 | 1.71 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.96 | 4.96 | 4.96 | 0.42 | 1.91 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.73 | 4.73 | 4.73 | 0.52 | 1.55 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 4.45 | 4.45 | 4.45 | 0.90 | 1.19 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.24 | 4.24 | 4.24 | 0.80 | 1.20 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 3.99 | 3.99 | 3.99 | 0.80 | 1.20 | ± 12.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency Certificate No: ES3-3328_Mar15 below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CONVH assessments at 30, 64, 128, 150 and 220 MHz respectively. Additionally validity can be extended to ± 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (\$\epsilon\$ and \$\sigma\$) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (\$\epsilon\$ and \$\sigma\$) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. diameter from the boundary. ES3DV3- SN:3328 March 24, 2015 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ES3-3328_Mar15 Page 7 of 11 ES3DV3- SN:3328 March 24, 2015 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ES3-3328_Mar15 ES3DV3- SN:3328 March 24, 2015 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ES3-3328_Mar15 Page 9 of 11 ES3DV3- SN:3328 March 24, 2015 #### Conversion Factor Assessment Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: ES3-3328_Mar15 Page 10 of 11 ES3DV3- SN:3328 March 24, 2015 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -24.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Certificate No: ES3-3328_Mar15