FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR
GSM/WCDMA/LTE PHONE + BLUETOOTH, DTS/UNII a/b/g/n \& NFC MODEL NUMBER: LG-H443, H443, LGH443, LG-H445, LGH445, H445

FCC ID: ZNFH443
REPORT NUMBER: 15I19922-E6
ISSUE DATE: FEBRUARY 20, 2015

Prepared for

LG ELECTRONICS MOBILECOMM U.S.A., INC
1000 SYLVAN AVENUE
ENGLEWOOD CLIFFS,
NEW JERSEY, 07632, U.S.A
Prepared by
UL VERIFICATION SERVICES INC.
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
--	02/20/15	Initial Issue	D. Coronia

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS 4
2. TEST METHODOLOGY 5
3. FACILITIES AND ACCREDITATION 5
4. CALIBRATION AND UNCERTAINTY 5
4.1. MEASURING INSTRUMENT CALIBRATION 5
4.2. SAMPLE CALCULATION 5
4.3. MEASUREMENT UNCERTAINTY. 5
5. EQUIPMENT UNDER TEST 6
5.1. DESCRIPTION OF EUT 6
5.2. MAXIMUM OUTPUT POWER 6
5.3. WORST-CASE CONFIGURATION AND MODE 6
5.4. MODIFICATIONS 6
5.5. DESCRIPTION OF TEST SETUP 7
6. TEST AND MEASUREMENT EQUIPMENT 10
7. RADIATED EMISSION TEST RESULTS 11
7.1. LIMITS AND PROCEDURE 11
7.1.1. FUNDAMENTAL AND SPURIOUS EMISSIONS ($0.15-30 \mathrm{MHz}$) 13
7.2. TX SPURIOUS EMISSION 30 TO 1000 MHz 14
8. SETUP PHOTOS 16

1. ATTESTATION OF TEST RESULTS

```
COMPANY NAME:
EUT DESCRIPTION:
MODEL:
SERIAL NUMBER:
DATE TESTED:
```

LG ELECTRONICS MOBILECOMM U.S.A., INC.
GSM/WCDMA/LTE PHONE + BLUETOOTH, DTS/UNII a/b/g/n \& NFC
LG-H443, H443, LGH443, LG-H445, LGH445, H445
357494-06-000790 (Radiated)
FEBRUARY 13 \& 16, 2014
APPLICABLE STANDARDS
STANDARD
CFR 47 Part 15 Subpart C

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved \& Released For
UL Verification Services Inc. By:

DAN CORONIA
CONSUMER TECHNOLOGY DIVISION
WiSE PROJECT LEAD
UL VERIFICATION SERVICES INC

Tested By:

STEVEN TRAN
CONSUMER TECHNOLOGY DIVISION
WiSE LAB ENGINEER
UL VERIFICATION SERVICES INC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2 and FCC CFR 47 Part 15C.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
\square Chamber A(IC: 2324B-1)	\square Chamber D(IC: 2324B-4)
\square Chamber B(IC: 2324B-2)	\square Chamber E(IC: 2324B-5)
\square Chamber C(IC: 2324B-3)	\square Chamber F(IC: 2324B-6)
	$\boxed{ }$ Chamber G(IC: 2324B-7)
	\square
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:
Field Strength $(\mathrm{dBuV} / \mathrm{m})=$ Measured Voltage (dBuV) + Antenna Factor (dB / m) + Cable Loss (dB) - Preamp Gain (dB)
$36.5 \mathrm{dBuV}+18.7 \mathrm{~dB} / \mathrm{m}+0.6 \mathrm{~dB}-26.9 \mathrm{~dB}=28.9 \mathrm{dBuV} / \mathrm{m}$

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE PHONE + BLUETOOTH, DTS/UNII a/b/g/n \& NFC.

5.2. MAXIMUM OUTPUT POWER

The testing was performed at 1 meter. The transmitter maximum E-field at 30 m distance is 10.71 $\mathrm{dBuV} / \mathrm{m}$ which convert from the 1 meters data.

5.3. WORST-CASE CONFIGURATION AND MODE

The NFC function was tested at its' fundamental and only operational frequency of 13.56 MHz . The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z . It was determined that the Y-orientation with cover opened was the worst-case orientation; therefore all final radiated testing was performed with the EUT in the Y-orientation with cover opened while generating continuous emissions.

5.4. MODIFICATIONS

No modifications were made during testing.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List				
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter	LG	MCS-01WR	RD4X0891946	N/A
Earphone	LG	LG-L33L	N/A	N/A

I/O CABLES

Radiated Emissions above $\mathbf{3 0} \mathbf{~ M H z , ~ A C ~ L i n e ~ C o n d u c t e d ~ E m i s s i o n s : ~}$

1/O Cable List							
Cable No	Port	\# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	DC Power	1	Micro-USB	Shielded	1 m	None	
2	Audio	1	Mini-Jack	Un-Shielded	1 m	None	

TEST SETUP

The EUT is a stand-alone device configured and tested in a worst-case setup.
Note: worst case is using worst case orientation with AC charger and headset attached to the EUT with NFC signal continuously transmitting.

SETUP DIAGRAM FOR TESTS

Radiated Emissions Below 30 MHz:

Page 8 of 18

Radiated Emissions above $\mathbf{3 0} \mathbf{~ M H z}$, AC Line Conducted Emissions:

Page 9 of 18

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List				
Description	Manufacturer	Model	Asset	Cal Due
ESA-E Spectrum Analyzer, $9 \mathrm{kHz}-26.5 \mathrm{GHz}$	Agilent / HP	E4407B	C01098	$04 / 04 / 15$
Antenna, Loop, 30 MHz	EMCO	6502	C00593	$02 / 20 / 15$
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	C01011	$03 / 23 / 15$
Preamplifier, 1300 MHz	Agilent / HP	8447 D	C00580	$04 / 03 / 15$
EMI Test Receiver, 30 MHz	R \& S	ESHS 20	N02396	$08 / 08 / 15$
LISN, 30 MHz	FCC	$50 / 250-25-2$	C00626	$01 / 16 / 16$
DMM	Fluke	$77-11$	N02303	$10 / 31 / 15$
Temperature Chamber	CSZ	2 PHS-8-3	T267	$03 / 04 / 15$

7. RADIATED EMISSION TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMIT

§15.225
(a) The field strength of any emissions within the band $13.553-13.567 \mathrm{MHz}$ shall not exceed 15,848 microvolts/ meter at 30 meters.
(b) Within the bands $13.410-13.553 \mathrm{MHz}$ and $13.567-13.710 \mathrm{MHz}$, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
(c) Within the bands $13.110-13.410 \mathrm{MHz}$ and $13.710-14.010 \mathrm{MHz}$ the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
(d) The field strength of any emissions appearing outside of the $13.110-14.010 \mathrm{MHz}$ and shall not exceed the general radiated emission limits in $\S 15.209$ as follows:
§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for radiated disturbance of an intentional radiator		
Frequency range (MHz)	Limits $(\mu \mathrm{V} / \mathrm{m})$	Measurement Distance (m)
$0.009-0.490$	$2400 / \mathrm{FHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	$100^{* *}$	3
$88-216$	$150^{* *}$	3
$216-960$	$200^{* *}$	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241 .
§15.209 (b) In the emission table above, the tighter limit applies at the band edges.
Formula for converting the filed strength from uV / m to $\mathrm{dBuV} / \mathrm{m}$ is:
Limit $(\mathrm{dBuV} / \mathrm{m})=20 \log$ limit (uV / m)

In addition:
§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands $9-90 \mathrm{kHz}, 110-490 \mathrm{kHz}$ and above 1000 MHz . Radiated emissions limits in these three bands are based on measurements employing an average detector.
§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

TEST PROCEDURE

ANSI C63.4-2009

The EUT is an intentional radiator that incorporates a digital device. The highest fundamental frequency generated or used in the device is 13.56 MHz . The frequency range was investigated from 0.15 MHz to the $10^{\text {th }}$ harmonic of the highest fundamental frequency, or 1000 MHz , whichever is greater (1000 MHz)

RESULTS

No non-compliance noted:

7.1.1. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 - $\mathbf{3 0} \mathbf{~ M H z) ~}$

FCC Part 15, Subpart Company: LG Electronics Project \#: 15119922 Model \#: LG-H443 Tester: R.Z Date: 2/16/2015			1 Meter Distance Measurement at Chamber G									
Frequency	PK	QP	AV	AF	Distance	PK Corrected	AV Corrected	QP Limit	AV Limit	PK Margin	AV Margin	Notes
(MHz)	(dBu/V)	(dBu/V)	(dBuV)	dB / m	Correction (dB)	Reading ($\mathrm{dBuV} / \mathrm{m}$)	Reading (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	
Loop Antenna Face on: Y position worst												
13.56	59.24		N/A	10.56	-59.08	10.71	N/A	84.00	N/A	-73.3	N/A	Fundamental @ 1m Dist
13.55	55.413		N/A	10.56	-59.08	6.88	N/A	50.48	N/A	-43.6	N/A	$13.41 \mathrm{MHz}-13.553 \mathrm{MHz}$
13.35	55.88		N/A	10.53	-59.08	7.33	N/A	50.48	N/A	-43.2	N/A	$13.567 \mathrm{MHz}-13.71 \mathrm{MHz}$
13.34	41.457		N/A	10.53	-59.08	-7.09	N/A	40.51	N/A	-47.6	N/A	$13.110-13.410 \mathrm{MHz}$
13.77	45.516		N/A	10.58	-59.08	-2.99	N/A	40.51	N/A	-43.5	N/A	$13.71-14.01 \mathrm{MHz}$
0.75	43.816		N/A	10.25	-59.08	-5.02	N/A	29.54	N/A	-34.6	N/A	$9 \mathrm{k}-13.11 \mathrm{MHz}$
14.20	30.834		N/A	10.62	-59.08	-17.63	N/A	29.54	N/A	-47.2	N/A	$14.01 \mathrm{MHz}-30 \mathrm{MHz}$
Loop Antenna Face off: Y position												
13.56	57.22		N/A	10.56	-59.08	8.69	N/A	84.00	N/A	-75.3	N/A	Fundamental @ 1m Dist
13.55	51.647		N/A	10.56	-59.08	3.12	N/A	50.48	N/A	-47.4	N/A	$13.41 \mathrm{MHz}-13.553 \mathrm{MHz}$
13.57	52.126		N/A	10.56	-59.08	3.60	N/A	50.48	N/A	-46.9	N/A	$13.567 \mathrm{MHz}-13.71 \mathrm{MHz}$
13.34	38.884		N/A	10.53	-59.08	-9.67	N/A	40.51	N/A	-50.2	N/A	$13.110-13.410 \mathrm{MHz}$
13.77	42.921		N/A	10.58	-59.08	-5.59	N/A	40.51	N/A	-46.1	N/A	$13.71-14.01 \mathrm{MHz}$
0.75	48.573		N/A	10.25	-59.08	-0.26	N/A	29.54	N/A	-29.8	N/A	$9 \mathrm{k}-13.11 \mathrm{MHz}$
14.20	28.862		N/A	10.62	-59.08	-19.60	N/A	29.54	N/A	-49.1	N/A	$14.01 \mathrm{MHz}-30 \mathrm{MHz}$
* No more emissions were found up to 30 MHz												
Note: The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands $9-90 \mathrm{kHz}, 110-490 \mathrm{kHz}$ and above 10000 Mhz . Radiated emission limits in these three bands are based on measurements employing an average detector.												
Q.P. = Quasi Peak Reading A.F. $=$ Antenna factor												
Rev. 10.23.09												

7.2. TX SPURIOUS EMISSION $\mathbf{3 0}$ TO $1000 \mathbf{M H z}$

Page 14 of 18

Trace Markers

Marker	Frequenc \mathbf{y} $(\mathbf{M H z})$	Meter Reading (dBuV)	Det	AF T243 $(\mathbf{d B} / \mathbf{m})$	Amp/Cbl (dB)	Correcte \mathbf{d} Reading $(\mathrm{dBu} / \mathbf{m})$	QPk Limit $(\mathrm{dBuV} / \mathbf{m})$	Margin (dB)	Azimuth $($ Degs)	Height $(\mathbf{c m})$	Polarity 3${ }^{*} 243.4$
42.5	PK	11.6	-26.5	27.6	46.02	-18.42	$0-360$	200	V		
1	47.9775	50.6	PK	9	-28.6	31	40	-9	$0-360$	101	V
4	92.3475	42.29	PK	8.2	-28.1	22.39	43.52	-21.13	$0-360$	200	H
2	92.39	45.07	PK	8.2	-28.1	25.17	43.52	-18.35	$0-360$	101	V
5	157.5	38.79	PK	12.3	-27.4	23.69	43.52	-19.83	$0-360$	100	H
6	186.145	40.59	PK	11.3	-27.1	24.79	43.52	-18.73	$0-360$	100	H

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band PK - Peak detector

