# **TEST REPORT**

| D | Dt&C |  |
|---|------|--|
|   |      |  |

# DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea,17042 Tel : 031-321-2664, Fax : 031-321-1664

| 1. Report N                                                                                   | lo: DRTFCC2005-0145(1)                                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| 2. Custome                                                                                    | r                                                                                    |  |  |  |  |  |
| • Name :                                                                                      | LG Electronics USA, Inc.                                                             |  |  |  |  |  |
| • Addres                                                                                      | s : 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632                     |  |  |  |  |  |
| 3. Use of Re                                                                                  | eport : FCC Original Grant                                                           |  |  |  |  |  |
|                                                                                               | Name / Model Name : Mobile Phone / LM-G910HMW<br>ZNFG910HMW                          |  |  |  |  |  |
| 5. Test Meth                                                                                  | nod Used : KDB558074 D01v05r02, ANSI C63.10-2013                                     |  |  |  |  |  |
| Test Spec                                                                                     | cification : FCC Part 15 Subpart C.247                                               |  |  |  |  |  |
| 6. Date of T                                                                                  | est : 2020.04.16 ~ 2020.05.19                                                        |  |  |  |  |  |
| 7. Location                                                                                   | of Test : X Permanent Testing Lab Cn Site Testing                                    |  |  |  |  |  |
| 8. Testing E                                                                                  | nvironment : Refer to appended test report.                                          |  |  |  |  |  |
| 9. Test Resu                                                                                  | ult : Refer to the attached test result.                                             |  |  |  |  |  |
| The results sl                                                                                | hown in this test report refer only to the sample(s) tested unless otherwise stated. |  |  |  |  |  |
| Affirmation                                                                                   | Tested by Reviewed by                                                                |  |  |  |  |  |
|                                                                                               | Name : InHee Bae                                                                     |  |  |  |  |  |
|                                                                                               |                                                                                      |  |  |  |  |  |
| 2020.06.08.                                                                                   |                                                                                      |  |  |  |  |  |
|                                                                                               |                                                                                      |  |  |  |  |  |
| DT&C Co., Ltd.                                                                                |                                                                                      |  |  |  |  |  |
| Not abided by KS Q ISO / IEC 17025 and KOLAS accreditation.                                   |                                                                                      |  |  |  |  |  |
| If this report is required to confirmation of authenticity, please contact to report@dtnc.net |                                                                                      |  |  |  |  |  |

# **Test Report Version**

| Test Report No.    | Date          | Description             | Revised by | Reviewed by |
|--------------------|---------------|-------------------------|------------|-------------|
| DRTFCC2005-0145    | May. 29, 2020 | Initial issue           | InHee Bae  | GeunKi Son  |
| DRTFCC2005-0145(1) | Jun. 08, 2020 | Revised the section 1.7 | InHee Bae  | GeunKi Son  |
|                    |               |                         |            |             |
|                    |               |                         |            |             |
|                    |               |                         |            |             |
|                    |               |                         |            |             |
|                    |               |                         |            |             |
|                    |               |                         |            |             |
|                    |               |                         |            |             |

# **Table of Contents**

| 1. General Information                          | 4    |
|-------------------------------------------------|------|
| 1.1 Testing Laboratory                          | 4    |
| 1.2 Test Environment                            | 4    |
| 1.3 Measurement Uncertainty                     | 4    |
| 1.4 Details of Applicant                        | 5    |
| 1.5 Description of EUT                          |      |
| 1.6 Declaration by the applicant / manufacturer |      |
| 1.7 Test Equipment List                         |      |
| 1.8 Summary of Test Results                     |      |
| -                                               |      |
| 2. Test Methodology                             |      |
| 2.1 EUT Configuration                           |      |
| 2.2 EUT Exercise                                |      |
| 2.3 General Test Procedures                     |      |
| 2.4 Description of Test Modes                   |      |
| 2.5 Instrument Calibration                      |      |
| 3. Test Result                                  | 9    |
| 3.1 Maximum Peak Conducted Output Power         | 9    |
| 3.1.1 Test Setup                                |      |
| 3.1.2 Test Procedures                           | 9    |
| 3.1.3 Test Results                              | 9    |
| 3.2 6 dB Bandwidth Measurement                  | . 14 |
| 3.2.1 Test Setup                                | . 14 |
| 3.2.2 Test Procedures                           | . 14 |
| 3.2.3 Test Results                              | . 14 |
| 3.3 Maximum Power Spectral Density              | . 19 |
| 3.3.1 Test Setup                                |      |
| 3.3.2 Test Procedures                           | . 19 |
| 3.3.3 Test Results                              | . 19 |
| 3.4 Unwanted Emissions (Conducted)              | . 24 |
| 3.4.1 Test Setup                                | . 24 |
| 3.4.2 Test Procedures                           | . 24 |
| 3.4.3 Test Results                              | . 25 |
| 3.5 Unwanted Emissions (Radiated)               | . 41 |
| 3.5.1 Test Setup                                |      |
| 3.5.2 Test Procedures                           | . 42 |
| 3.5.3 Test Results                              |      |
| 3.6 Power line Conducted Emissions              |      |
| 3.6.1 Test Setup                                |      |
| 3.6.2 Test Procedures                           | . 46 |
| 3.6.3 Test Results                              |      |
| 3.7 Occupied Bandwidth                          |      |
| 3.7.1 Test Setup                                |      |
| 3.7.2 Test Procedures                           |      |
| 3.7.3 Test Results                              | . 50 |
| 4. ANTENNA REQUIREMENTS                         | 51   |
| APPENDIX I                                      |      |
| APPENDIX I                                      |      |
|                                                 |      |
| APPENDIX III                                    | 55   |

# **1. General Information**

#### **1.1 Testing Laboratory**

#### DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

#### - FCC MRA Accredited Test Firm No. : KR0034

| www.dtnc.net |   |                  |
|--------------|---|------------------|
| Telephone    | : | + 82-31-321-2664 |
| FAX          | : | + 82-31-321-1664 |

### 1.2 Test Environment

| Ambient Condition                     |                 |  |  |
|---------------------------------------|-----------------|--|--|
| <ul> <li>Temperature</li> </ul>       | +20 °C ~ +25 °C |  |  |
| <ul> <li>Relative Humidity</li> </ul> | 35 % ~ 45 %     |  |  |

#### **1.3 Measurement Uncertainty**

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

| Test items                                     | Measurement uncertainty                               |
|------------------------------------------------|-------------------------------------------------------|
| Transmitter Output Power                       | 0.9 dB (The confidence level is about 95 %, $k = 2$ ) |
| Conducted spurious emission                    | 0.9 dB (The confidence level is about 95 %, $k = 2$ ) |
| AC conducted emission                          | 3.6 dB (The confidence level is about 95 %, k=2)      |
| Radiated spurious emission<br>(1 GHz Below)    | 4.9 dB (The confidence level is about 95 %, k = 2)    |
| Radiated spurious emission<br>(1 GHz ~ 18 GHz) | 5.0 dB (The confidence level is about 95 %, k = 2)    |
| Radiated spurious emission<br>(18 GHz Above)   | 5.3 dB (The confidence level is about 95 %, $k = 2$ ) |

# **1.4 Details of Applicant**

| Applicant      | : | LG Electronics USA, Inc.                                     |
|----------------|---|--------------------------------------------------------------|
| Address        | : | 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632 |
| Contact person | : | Kyung-Su Han                                                 |

## 1.5 Description of EUT

| EUT                   | Mobile Phone                                       |
|-----------------------|----------------------------------------------------|
| Model Name            | LM-G910HMW                                         |
| Add Model Name        | LMG910HMW, G910HMW, LM-G910HM, LMG910HM, G910HM    |
| Serial Number         | Identical prototype                                |
| Power Supply          | DC 3.87 V                                          |
| Frequency Range       | 2402 MHz ~ 2480 MHz                                |
| Max. RF Output Power  | 7.45 dBm                                           |
| Modulation Technique  | GFSK                                               |
| Antenna Specification | Antenna Type: PIFA Antenna<br>Gain: -2.43 dBi (PK) |

# 1.6 Declaration by the applicant / manufacturer

N/A

# **1.7 Test Equipment List**

| Туре                  | Manufacturer                       | Model                          | Cal.Date<br>(yy/mm/dd) | Next.Cal.Date<br>(yy/mm/dd) | S/N         |
|-----------------------|------------------------------------|--------------------------------|------------------------|-----------------------------|-------------|
| Spectrum Analyzer     | Agilent Technologies               | N9020A                         | 19/12/16               | 20/12/16                    | MY50410357  |
| Spectrum Analyzer     | Agilent Technologies               | N9020A                         | 19/12/16               | 20/12/16                    | MY48011700  |
| Spectrum Analyzer     | Agilent Technologies               | N9020A                         | 19/12/16               | 20/12/16                    | MY48010133  |
| DC Power Supply       | Agilent Technologies               | 66332A                         | 19/06/25               | 20/06/25                    | MY43000211  |
| Multimeter            | FLUKE                              | 17B                            | 19/12/16               | 20/12/16                    | 26030065WS  |
| Signal Generator      | Rohde Schwarz                      | SMBV100A                       | 19/12/16               | 20/12/16                    | 255571      |
| Signal Generator      | ANRITSU                            | MG3695C                        | 19/12/16               | 20/12/16                    | 173501      |
| Thermohygrometer      | BODYCOM                            | BJ5478                         | 19/12/18               | 20/12/18                    | 120612-1    |
| Thermohygrometer      | BODYCOM                            | BJ5478                         | 19/12/18               | 20/12/18                    | 120612-2    |
| Thermohygrometer      | BODYCOM                            | BJ5478                         | 19/09/18               | 20/09/18                    | N/A         |
| HYGROMETER            | TESTO                              | 608-H1                         | 20/01/21               | 21/01/21                    | 34862883    |
| Loop Antenna          | Schwarzbeck                        | FMZB1513                       | 20/02/19               | 22/02/19                    | 1513-128    |
| BILOG ANTENNA         | Schwarzbeck                        | VULB 9160                      | 19/04/23               | 21/04/23                    | 9160-3362   |
| Horn Antenna          | ETS-Lindgren                       | 3115                           | 20/01/30               | 22/01/30                    | 6419        |
| Horn Antenna          | A.H.Systems Inc.                   | SAS-574                        | 19/07/03               | 21/07/03                    | 155         |
| PreAmplifier          | tsj                                | MLA-0118-B01-40                | 19/12/16               | 20/12/16                    | 1852267     |
| PreAmplifier          | tsj                                | MLA-1840-J02-45                | 19/06/27               | 20/06/27                    | 16966-10728 |
| PreAmplifier          | H.P                                | 8447D                          | 19/12/16               | 20/12/16                    | 2944A07774  |
| High Pass Filter      | Wainwright Instruments             | WHKX12-935-1000-<br>15000-40SS | 19/06/26               | 20/06/26                    | 8           |
| High Pass Filter      | Pass Filter Wainwright Instruments |                                | 19/06/26               | 20/06/26                    | 1           |
| High Pass Filter      | Wainwright Instruments             | WHNX8.0/26.5-6SS               | 19/06/27               | 20/06/27                    | 3           |
| Attenuator            | Hefei Shunze                       | SS5T2.92-10-40                 | 19/06/27               | 20/06/27                    | 16012202    |
| Attenuator            | SRTechnology                       | F01-B0606-01                   | 19/06/27               | 20/06/27                    | 13092403    |
| Attenuator            | Aeroflex/Weinschel                 | 20515                          | 19/06/27               | 20/06/27                    | Y2370       |
| Attenuator            | SMAJK                              | SMAJK-2-3                      | 19/06/27               | 20/06/27                    | 2           |
| Power Meter &         | Apritou                            | ML2488B<br>MA2491A             | 20/01/02               | 21/01/02                    | 0846002     |
| Wide Bandwidth Sensor | Anritsu                            |                                | 20/01/02               | 21/01/02                    | 0845295     |
| EMI Receiver          | ROHDE&SCHWARZ                      | ESW44                          | 19/07/30               | 20/07/30                    | 101645      |
| HYGROMETER            | TESTO                              | 608-H1                         | 20/01/21               | 21/01/21                    | 34862883    |
| EMI Test Receiver     | Rohde Schwarz                      | ESCI7                          | 20/01/20               | 21/01/20                    | 100910      |
| PULSE LIMITER         | Rohde Schwarz                      | ESH3-Z2                        | 19/09/17               | 20/09/17                    | 101333      |
| LISN                  | SCHWARZBECK                        | NNLK 8121                      | 19/05/23               | 20/05/23                    | 6183        |
| Cable                 | Junkosha                           | MWX241                         | 20/01/13               | 21/01/13                    | G-04        |
| Cable                 | Junkosha                           | MWX241                         | 20/01/13               | 21/01/13                    | G-07        |
| Cable                 | DT&C                               | Cable                          | 20/01/13               | 21/01/13                    | G-13        |
| Cable                 | DT&C                               | Cable                          | 20/01/13               | 21/01/13                    | G-14        |
| Cable                 | HUBER+SUHNER                       | SUCOFLEX 104                   | 20/01/13               | 21/01/13                    | G-15        |
| Cable                 | Radiall                            | TESTPRO3                       | 20/01/16               | 21/01/16                    | M-01        |
| Cable                 | Junkosha                           | MWX315                         | 20/01/16               | 21/01/16                    | M-05        |
| Cable                 | Junkosha                           | MWX221                         | 20/01/16               | 21/01/16                    | M-06        |
| Cable                 | DT&C                               | Cable                          | 20/01/16               | 21/01/16                    | RF-82       |

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

## **1.8 Summary of Test Results**

| FCC Part                      | RSS Std.                                         | Parameter Limit                                                                                       |                             | Test<br>Condition    | Status<br>Note 1 |
|-------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|------------------|
| 15.247(a)                     | RSS-247 [5.2]                                    | 6 dB Bandwidth                                                                                        | > 500 kHz                   |                      | С                |
| 15.247(b)                     | RSS-247 [5.4]                                    | Transmitter Output Power < 1 Watt                                                                     |                             |                      | С                |
| 15.247(d)                     | RSS-247 [5.5]                                    | Out of Band Emissions /<br>Band Edge                                                                  | 20 dBc in any<br>100 kHz BW | Conducted            | с                |
| 15.247(e)                     | RSS-247 [5.2]                                    | Transmitter Power Spectral<br>Density                                                                 | < 8 dBm/3 kHz               |                      | с                |
| -                             | RSS-Gen [6.7]                                    | Occupied Bandwidth (99 %) NA                                                                          |                             |                      | NA               |
| 15.247(d)<br>15.205<br>15.209 | RSS-247 [5.5]<br>RSS-GEN [8.9]<br>RSS-GEN [8.10] | General Field Strength Limits<br>(Restricted Bands and Radiated FCC 15.209 limits<br>Emission Limits) |                             | Radiated             | C Note 3,4       |
| 15.207                        | RSS-Gen [8.8]                                    | AC Line Conducted Emissions FCC 15.207 limits                                                         |                             | AC Line<br>Conducted | С                |
| 15.203                        | -                                                | Antenna Requirements FCC 15.203                                                                       |                             | -                    | С                |

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in each axis and the worst case data was reported.

Note 4: This device supports wireless charging capability & Can use Dual Screen.

So per KDB648474 D03v01r04, the radiated test items were performed all not charging, charging and Dual Screen conditions, the handset is placed on the representative charging pad under normal conditions and in a simulated call configuration.

**Dt&C** 

# 2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

#### 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### 2.2 EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

#### 2.3 General Test Procedures

#### **Conducted Emissions**

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

#### **Radiated Emissions**

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

#### 2.4 Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Bluetooth low energy mode with below low, middle and high channels were tested and reported.

| Test Mode | _                                  | Frequency [MHz]     |                     |                      |  |
|-----------|------------------------------------|---------------------|---------------------|----------------------|--|
|           | Description                        | Lowest<br>Frequency | Middle<br>Frequency | Highest<br>Frequency |  |
| TM 1      | BT LE(1Mbps)                       | 2402                | 2440                | 2480                 |  |
| TM 2      | BT LE(2Mbps)                       | 2402                | 2440                | 2480                 |  |
| TM 3      | BT LE(1Mbps) with WPC              | 2402                | 2440                | 2480                 |  |
| TM 4      | BT LE(2Mbps) with WPC              | 2402                | 2440                | 2480                 |  |
| TM 5      | BT LE(2Mbps) with Dual Display     | 2402                | 2440                | 2480                 |  |
| TM 6      | BT LE(2Mbps) with Dual Display+WPC | 2402                | 2440                | 2480                 |  |

#### 2.5 Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.



# 3. Test Result

#### 3.1 Maximum Peak Conducted Output Power

#### Test Requirements and limit, §15.247(b) & RSS-247 [5.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

#### The maximum permissible conducted output power is 1 Watt.

#### 3.1.1 Test Setup

Refer to the APPENDIX I.

#### 3.1.2 Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.3
- ANSI C63.10-2013 Section 11.9.1.1

#### RBW ≥ DTS bandwidth

- 1. Set the RBW ≥ DTS bandwidth. Actual RBW = 2 MHz & 2.4 MHz
- 2. Set  $VBW \ge 3 \times RBW$ . Actual VBW = 6 MHz & 8 MHz
- 3. Set span ≥ 3 x RBW.
- 4. Sweep time = **auto couple**
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

#### 3.1.3 Test Results

| Test mode | Tested Channel | Burst Average<br>Output Power | Peak Output Power |
|-----------|----------------|-------------------------------|-------------------|
| Test mode | Testeu Chaimer | dBm                           | dBm               |
|           | Lowest         | 6.98                          | 7.37              |
| TM 1      | Middle         | 6.46                          | 6.56              |
|           | Highest        | 5.50                          | 5.63              |
|           | Lowest         | 6.97                          | 7.45              |
| TM 2      | Middle         | 6.46                          | 6.72              |
|           | Highest        | 5.45                          | 5.65              |

Note 1 : The Burst average output power was tested using an average power meter for reference only.

Note 2 : See next pages for actual measured spectrum plots.

٠



2.402000000 GHz

Start Freq 2.397000000 GHz

Stop Freq 2.407000000 GHz

CF Step 1.000000 MHz Man

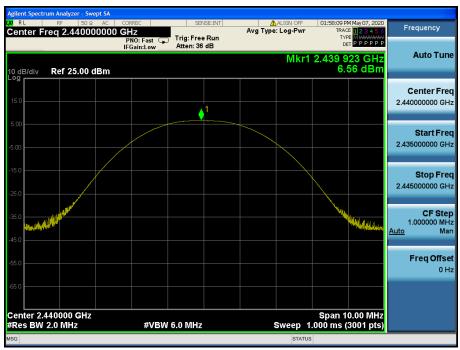
Freq Offset 0 Hz

<u>Auto</u>

#### **Peak Output Power**

RI

10 dB/div






#### **Peak Output Power**

TM 1 Test Channel : Middle

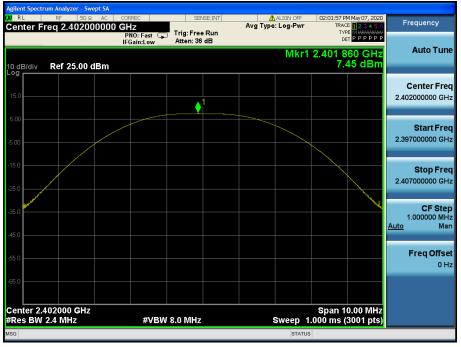
Span 10.00 MHz Sweep 1.000 ms (3001 pts)





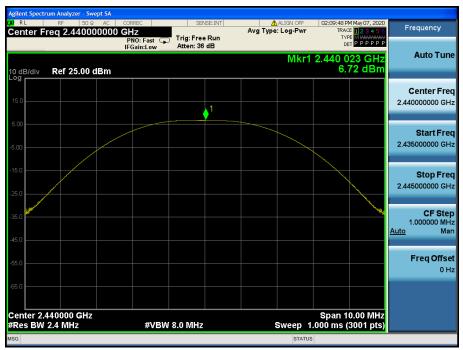



#### **Peak Output Power**


TM 1 Test Channel : Highest



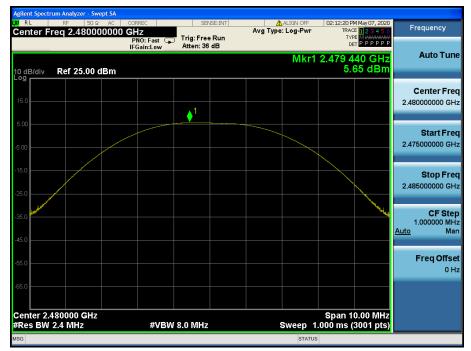
# **Dt&C**


#### **Peak Output Power**





#### **Peak Output Power**


TM 2 Test Channel : Middle





#### **Peak Output Power**

TM 2 Test Channel : Highest





#### 3.2 6 dB Bandwidth Measurement

#### Test Requirements and limit, §15.247(a) & RSS-247 [5.2]

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

#### 3.2.1 Test Setup

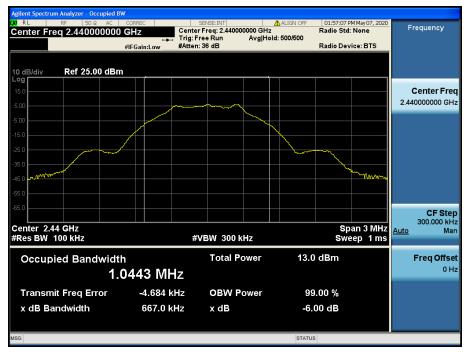
Refer to the APPENDIX I.

#### 3.2.2 Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW)  $\ge$  3 x RBW.
- (<u>RBW : 100 kHz / VBW : 300 kHz</u>)
- 3. Detector = **peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = **auto couple**.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW  $\ge$  3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be  $\ge$  6 dB.

#### 3.2.3 Test Results


| Test Mode | Tested Channel | Test Results [MHz] |
|-----------|----------------|--------------------|
|           | Lowest         | 0.671              |
| TM 1      | Middle         | 0.667              |
|           | Highest        | 0.668              |
|           | Lowest         | 1.138              |
| TM 2      | Middle         | 1.170              |
|           | Highest        | 1.147              |

TM 1 Test Channel : Lowest

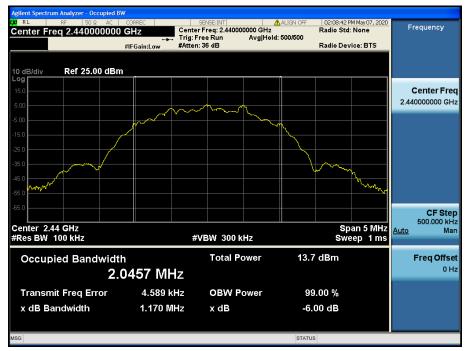


6 dB Bandwidth

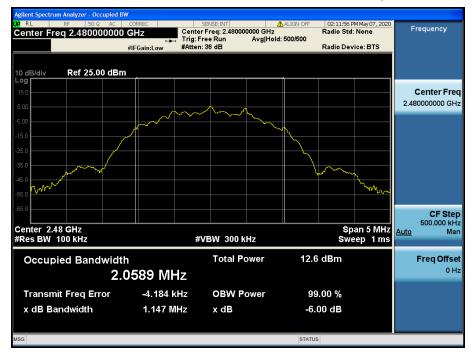

TM 1 Test Channel : Middle



#### TM 1 Test Channel : Highest






6 dB Bandwidth

TM 2 Test Channel : Middle



TM 2 Test Channel : Highest





#### 3.3 Maximum Power Spectral Density.

#### ■ Test requirements and limit, §15.247(e) & RSS-247 [5.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

#### **Minimum Standard**

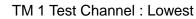
The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

#### 3.3.1 Test Setup

Refer to the APPENDIX I.

#### **3.3.2 Test Procedures**

- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2


#### Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW : 3 kHz ≤ RBW ≤ 100 kHz.
- 4. Set the VBW  $\geq$  3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### 3.3.3 Test Results

| Test Mode | Tested Channel | PKPSD [dBm] |
|-----------|----------------|-------------|
|           | Lowest         | -8.81       |
| TM 1      | Middle         | -9.71       |
|           | Highest        | -10.77      |
|           | Lowest         | -11.32      |
| TM 2      | Middle         | -12.02      |
|           | Highest        | -13.25      |

TDt&C






#### Maximum PKPSD

TM 1 Test Channel : Middle

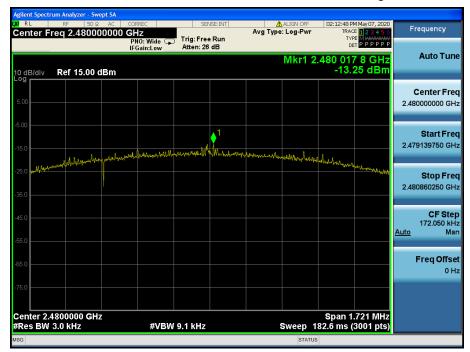


TM 1 Test Channel : Highest




🛈 Dt&C






#### Maximum PKPSD

TM 2 Test Channel : Middle



TM 2 Test Channel : Highest





#### 3.4 Unwanted Emissions (Conducted)

#### Test requirements and limit, §15.247(d) & RSS-247 [5.5]

**§15.247(d)** specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated **by at least 20 dB** relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

#### 3.4.1 Test Setup

Refer to the APPENDIX I including path loss

#### 3.4.2 Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

#### **Reference level measurement**

1. Set instrument center frequency to DTS channel center frequency.

- 2. Set the span to  $\geq$  1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW  $\geq$  3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

 Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

#### **Emission level measurement**

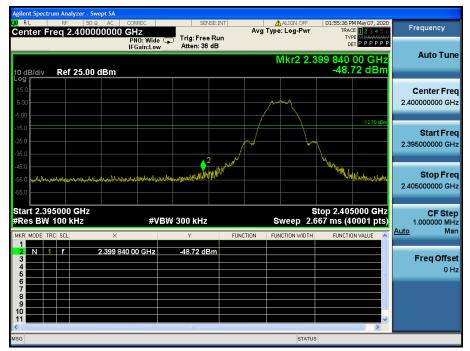
- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)
- 3. Set the VBW ≥ 3 x RBW.(Actual 3 MHz, See below note)
- 4. Detector = **peak**.
- 5. Ensure that the number of measurement points ≥ span / RBW
- 6. Sweep time = **auto couple.**
- 7. Trace mode = **max hold.**
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

**Note :** The conducted spurious emission was tested with below settings.

| Frequency range | RBW     | VBW     | Detector | Trace    | Sweep Point |
|-----------------|---------|---------|----------|----------|-------------|
| 9 kHz ~ 30 MHz  | 100 kHz | 300 kHz |          |          |             |
| 30 MHz ~ 10 GHz | 1 MHz   | 3 MHz   | Peak     | Max Hold | 40001       |
| 10 GHz ~ 25 GHz | 1 MHz   | 3 MHz   |          |          |             |

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

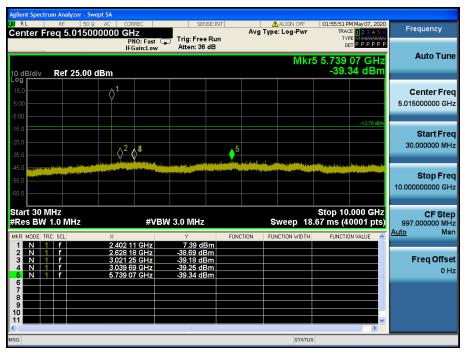
#### FCC ID: ZNFG910HMW


#### 3.4.3 Test Results

TDt&C



TM 1 Reference (Test Channel : Lowest)


TM 1 Low Band-edge (Test Channel : Lowest)

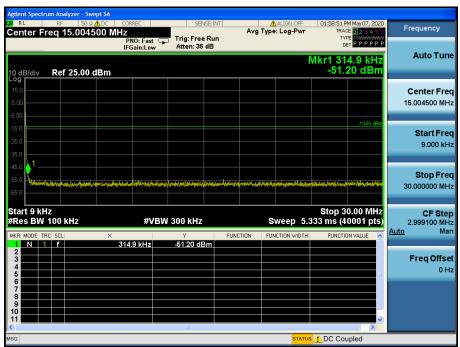


| RL RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alyzer - Swep<br>50 Ω 🖉                                     |                  | ORREC                | SEN                                                                                                            | ISE:INT        |                            | ALIGN OFF    | 01:55:43 P          | M May 07, 2020                                             | -                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------|----------------------------|--------------|---------------------|------------------------------------------------------------|------------------------------|
| enter Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | 00 MHz           | PNO: Fast (          |                                                                                                                | Run            |                            | e: Log-Pwr   | TRAC                | E 1 2 3 4 5 6<br>PE MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | Frequency                    |
| 0 dB/div Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f 25.00 d                                                   |                  | FGain:Low            | Atten: 36                                                                                                      | dВ             |                            | Γ            | /kr1 29             | 3.9 kHz<br>11 dBm                                          | Auto Tun                     |
| <b>6 g</b><br>15.0<br>5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                  |                      |                                                                                                                |                |                            |              |                     |                                                            | Center Fre<br>15.004500 M⊦   |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                  |                      |                                                                                                                |                |                            |              |                     | -12.78 dBm                                                 | <b>Start Fre</b><br>9.000 k⊦ |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | un andressi da an san gan gan gan gan gan gan gan gan gan g | bili alwanda ada | Hadron (Intelligence | pinantatan ang pangang | erny arrighter | u, der för store store som | ****         | Mallythered Million | ungeliseline av et som type                                | Stop Fre<br>30.000000 MH     |
| tart 9 kHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kHz                                                         |                  | #VB                  | W 300 kHz                                                                                                      |                |                            | weep 5.3     | Stop 3<br>33 ms (4  |                                                            | CF Ste<br>2.999100 MH        |
| KR MODE TRC SCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | ×<br>29          | 3.9 kHz              | ۲<br>-51.11 dE                                                                                                 |                | ICTION FL                  | NCTION WIDTH | FUNCTIO             |                                                            | <u>Auto</u> Ma               |
| 2 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                                                             |                  |                      |                                                                                                                |                |                            |              |                     |                                                            | Freq Offs<br>0 F             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |                  |                      |                                                                                                                |                |                            |              |                     |                                                            |                              |
| 7<br>B<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |                  |                      |                                                                                                                |                |                            |              |                     |                                                            |                              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |                  |                      |                                                                                                                |                |                            |              |                     | ×                                                          |                              |

#### TM 1 Conducted Spurious Emissions 1 (Test Channel : Lowest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Lowest)

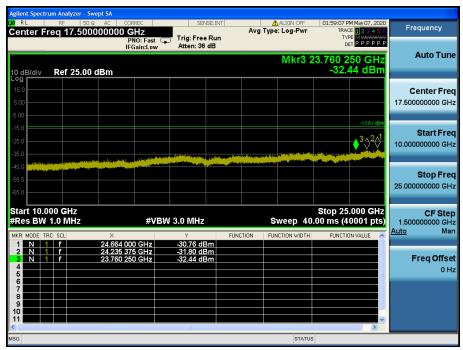



| RL RF 50<br>enter Freg 17.500                                                                                                                                                     | Ω AC CORREC                                             | SENSE:INT                                                                                     | ALIGN OFF<br>Avg Type: Log-Pwr | 01:55:59 PM May 07, 2020<br>TRACE 1 2 3 4 5 6 | Frequency                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|-------------------------------------|
|                                                                                                                                                                                   | PNO: Fast C<br>IFGain:Low                               | Trig: Free Run<br>Atten: 36 dB                                                                |                                |                                               |                                     |
| dB/div Ref 25.00                                                                                                                                                                  | dBm                                                     |                                                                                               | Mkr3 2                         | 4.746 500 GHz<br>-31.66 dBm                   | Auto Tur                            |
| <b>5</b> .0<br>.00<br>.00                                                                                                                                                         |                                                         |                                                                                               |                                |                                               | Center Fre<br>17.500000000 GH       |
| 5.0                                                                                                                                                                               |                                                         |                                                                                               |                                | -12.78 dBm                                    | <b>Start Fre</b><br>10.000000000 GF |
| 5.0                                                                                                                                                                               |                                                         |                                                                                               |                                |                                               | <b>Stop Fre</b><br>25.000000000 GH  |
| tart 10.000 GHz<br>Res BW 1.0 MHz                                                                                                                                                 | #VB                                                     | W 3.0 MHz                                                                                     | -                              | Stop 25.000 GHz<br>.00 ms (40001 pts)         | CF Ste<br>1.500000000 GF<br>Auto Ma |
| KR         MODE         TRC         SCL           1         N         1         f           2         N         1         f           3         N         1         f           4 | ×<br>24.845 875 GHz<br>24.245 875 GHz<br>24.746 500 GHz | Y         FUN           -31.23 dBm         -31.61 dBm           -31.66 dBm         -31.66 dBm | NCTION FUNCTION WIDTH          | FUNCTION VALUE                                | Freq Offs                           |
| 5<br>6<br>7<br>8<br>9<br>9                                                                                                                                                        |                                                         |                                                                                               |                                |                                               |                                     |
|                                                                                                                                                                                   |                                                         |                                                                                               |                                | ×                                             |                                     |

# TM 1 Conducted Spurious Emissions 3 (Test Channel : Lowest)

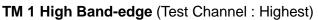


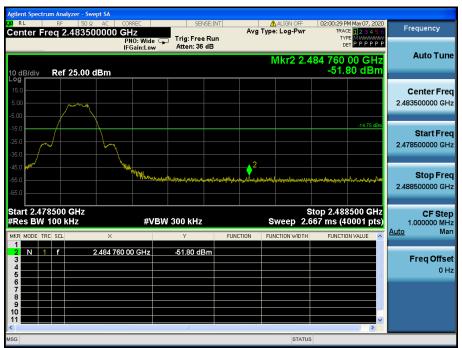
#### TM 1 Reference (Test Channel : Middle)


TM 1 Conducted Spurious Emissions 1 (Test Channel : Middle)






#### TM 1 Conducted Spurious Emissions 2 (Test Channel : Middle)


TM 1 Conducted Spurious Emissions 3 (Test Channel : Middle)





#### TM 1 Reference (Test Channel : Highest)






| X RL I                   | Analyzer - Swe          |           | CORREC                                   | SE            | NSE:INT               |                                           | ALIGN                       | DEE        | 02:00:36 0         | M May 07, 2020                               |              |
|--------------------------|-------------------------|-----------|------------------------------------------|---------------|-----------------------|-------------------------------------------|-----------------------------|------------|--------------------|----------------------------------------------|--------------|
| Center Freq              |                         |           | Z<br>PNO: Fast                           | Trig: Fre     | e Run                 | Avg                                       | Type: Log-                  |            | TRA                |                                              | Frequency    |
|                          |                         |           | IFGain:Low                               | Atten: 3      | 6 dB                  |                                           |                             | N          |                    | 1.9 kHz                                      | Auto Tup     |
| 0 dB/div R               | ef 25.00 (              | dBm       |                                          |               |                       |                                           |                             |            |                    | 51 dBm                                       |              |
| 15.0                     |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              | Center Fre   |
| 5.00                     |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              | 15.004500 MH |
| 5.00                     |                         |           |                                          |               |                       |                                           |                             |            |                    | -14.75 dBm                                   |              |
| 25.0                     |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              | Start Fre    |
| 35.0                     |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              | 9.000 kH     |
| 45.0                     |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              | Stop Fre     |
| 55.0                     | adjua, inny hard danage | ewernites | an a | dependence    | hitsforforme/vicineed | un an | ilatating the second second | anside say | and states in such | hender her her her her her her her her her h | 30.000000 MH |
|                          |                         |           |                                          |               |                       |                                           |                             |            | 04                 | 0.00 5411-                                   |              |
| Start 9 kHz<br>Res BW 10 | 0 kHz                   |           | #VB                                      | W 300 kHz     | 2                     |                                           | Sweep                       | 5.3        | 33 ms (4           | 0.00 MHz<br>0001 pts)                        | 2.999100 MH  |
| MKR MODE TRC S           |                         | X         | 281.9 kHz                                | ۲<br>-49.51 d |                       | NCTION                                    | FUNCTION V                  | /IDTH      | FUNCTI             | DN VALUE                                     | Auto Ma      |
| 2                        |                         |           | .01.3 RHZ                                |               |                       |                                           |                             |            |                    |                                              | Freq Offse   |
| 3 4                      |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              | 0 H          |
| 5                        |                         |           |                                          |               |                       |                                           |                             |            |                    | ======                                       |              |
| 7 8                      |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              |              |
| 9                        |                         |           |                                          |               |                       |                                           |                             |            |                    |                                              |              |
| 10                       |                         |           |                                          |               |                       |                                           |                             |            |                    | ~                                            |              |
|                          |                         |           |                                          | 111           |                       |                                           |                             | _          |                    | >                                            |              |
| SG                       |                         |           |                                          |               |                       |                                           | 5                           | TATUS      | DC Co              | upled                                        |              |

### TM 1 Conducted Spurious Emissions 1 (Test Channel : Highest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Highest)




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ω AC CORREC                                             | SENSE:INT                                                                                                      | ALIGN OFF<br>Avg Type: Log-Pwr | 02:00:52 PM May 07, 2020<br>TRACE 1 2 3 4 5 6 | Frequency                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------|
| enter Freq 17.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PNO: Fast C<br>IFGain:Low                               | Trig: Free Run<br>Atten: 36 dB                                                                                 | Avg Type. Log-Fwi              | TYPE M WAAWAAA<br>DET P P P P P P             |                                    |
| dB/div Ref 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 dBm                                                   |                                                                                                                | Mkr3 2                         | 1.167 125 GHz<br>-31.81 dBm                   | Auto Tur                           |
| 99<br>5.0<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                |                                |                                               | Center Fre<br>17.500000000 GH      |
| 5.0<br>5.0<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | they take a second state of the second s |                                | -14.75 dBm                                    | <b>Start Fr</b><br>10.000000000 GI |
| 5.0 (addring for the different for the second |                                                         |                                                                                                                |                                |                                               | <b>Stop Fr</b><br>25.000000000 GI  |
| art 10.000 GHz<br>tes BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #VB                                                     | W 3.0 MHz                                                                                                      | -                              | Stop 25.000 GHz<br>00 ms (40001 pts)          | CF Ste<br>1.500000000 G<br>Auto M  |
| R         MODE         TRC         SCL           1         1         f         1         f           2         N         1         f         1           3         N         1         f         1           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×<br>24.731 875 GHz<br>24.304 000 GHz<br>21.167 125 GHz | -30.97 dBm<br>-31.78 dBm<br>-31.81 dBm                                                                         | NCTION FUNCTION WIDTH          | FUNCTION VALUE                                | Freq Offs                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                |                                |                                               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                |                                | ~                                             |                                    |

# TM 1 Conducted Spurious Emissions 3 (Test Channel : Highest)



#### TM 2 Reference (Test Channel : Lowest)

TM 2 Low Band-edge (Test Channel : Lowest)



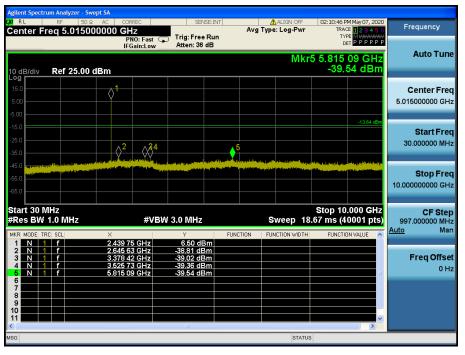
| RL                        |                                  |                          | ORREC                    | SEI                                           | NSE:INT               |              | ALIGN OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | M May 07, 2020        | Frequency                                                                                                      |
|---------------------------|----------------------------------|--------------------------|--------------------------|-----------------------------------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|
| nter Fr                   | eq 15.004                        |                          | PNO: Fast ⊂<br>FGain:Low | Trig: Free<br>Atten: 36                       |                       |              | ve. Log-r wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TYI                   |                       |                                                                                                                |
| dB/div                    | Ref 25.00                        | dBm                      |                          |                                               |                       |              | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 1.9 kHz<br>27 dBm     | Auto Tur                                                                                                       |
| <b>g</b><br>i.o<br>oo<br> |                                  |                          |                          |                                               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | <b>Center Fr</b><br>15.004500 MI                                                                               |
| i.0                       |                                  |                          |                          |                                               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -12.88 dBm            | <b>Start Fr</b><br>9.000 ki                                                                                    |
|                           |                                  |                          |                          |                                               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                                                                                                |
| .0                        | yaan hiyo dabil daba dabaa ya qo | affadiplutestfresterster |                          | Managan San San San San San San San San San S | ngdhatingi jadh ng/Al | henneddarann | Loosility of the state of the s | shadi Kabanga kalanti | danter and second     |                                                                                                                |
| art 9 kH<br>tes BW        | z<br>100 kHz                     |                          |                          | W 300 kHz                                     |                       |              | Sweep 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop 3<br>33 ms (4    | 0.00 MHz<br>0001 pts) | 30.000000 M<br>CF Sto<br>2.999100 M                                                                            |
| art 9 kH                  | z<br>100 kHz                     | ×                        |                          |                                               | FUN                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 3<br>33 ms (4    | 0.00 MHz<br>0001 pts) | 30.000000 M<br>CF Str<br>2.999100 M<br><u>Auto</u> M                                                           |
| art 9 kH<br>tes BW        | z<br>100 kHz                     | ×                        | #VB1                     | W 300 KHz<br>Y                                | FUN                   |              | Sweep 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop 3<br>33 ms (4    | 0.00 MHz<br>0001 pts) | 30.000000 M<br>CF Str<br>2.999100 M<br><u>Auto</u> M<br>Freq Offs                                              |
| art 9 kH<br>tes BW        | z<br>100 kHz                     | ×                        | #VB1                     | W 300 KHz<br>Y                                | FUN                   |              | Sweep 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop 3<br>33 ms (4    | 0.00 MHz<br>0001 pts) | Stop Fro           30.000000 M           2.999100 M           Auto         M           Freq Offs           0 1 |

# TM 2 Conducted Spurious Emissions 1 (Test Channel : Lowest)

TM 2 Conducted Spurious Emissions 2 (Test Channel : Lowest)

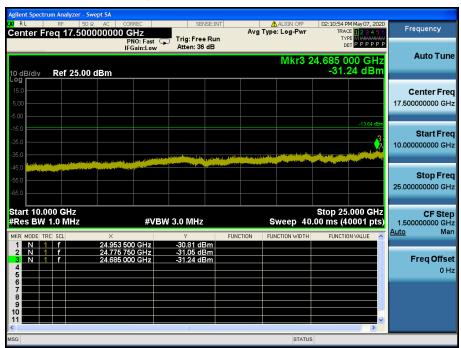
| Agilent Spectrum Analyzer - Swep         | ot SA                                                        |                                                      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| RL RF 50 Ω     Center Freq 5.015000      |                                                              | SENSE:INT                                            |          | ALIGN OFF      | 02:03:07 PM May 07, 202<br>TRACE 12345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
|                                          | PNO: Fast C<br>IFGain:Low                                    | Trig: Free Run<br>Atten: 36 dB                       |          | <i>// U</i>    | TYPE MUMMMM<br>DET PPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                     |
| 10 dB/div Ref 25.00 d                    | Bm                                                           |                                                      |          | Mkr            | 5 3.189 99 GH:<br>-39.47 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 15.0<br>5.00<br>-5.00                    | 1                                                            |                                                      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Center Freq<br>5.015000000 GHz        |
| -16.0<br>-25.0<br>-35.0                  | 425!                                                         |                                                      |          |                | -12.88 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Freq<br>30.000000 MHz           |
| -45.0<br>-65.0<br>-65.0                  |                                                              |                                                      |          |                | <sup>100</sup> State and State<br>State and State and State<br>State and State and<br>State and State | <b>Stop Freq</b><br>10.000000000 GHz  |
| Start 30 MHz<br>#Res BW 1.0 MHz          | #VB                                                          | N 3.0 MHz                                            |          | Sweep 18       | Stop 10.000 GHz<br>.67 ms (40001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF Step<br>997.000000 MHz<br>Auto Man |
| MKR MODE TRC SCL                         | ×<br>2.402 61 GHz                                            | Y<br>7.23 dBm                                        | FUNCTION | FUNCTION WIDTH | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 2 N 1 f<br>3 N 1 f<br>4 N 1 f<br>5 N 1 f | 3.283 46 GHz<br>3.071 60 GHz<br>2.974 89 GHz<br>3.189 99 GHz | -39.30 dBm<br>-39.41 dBm<br>-39.43 dBm<br>-39.47 dBm |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Freq Offset</b><br>0 Hz            |
| 6<br>7<br>8<br>9<br>9                    |                                                              |                                                      |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                          |                                                              |                                                      |          |                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| MSG                                      |                                                              |                                                      |          | STATUS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |

|                                                                                                                                                                                   | iO Ω AC CORREC                                          | SENSE:INT                                          | ALIGN OFF                                                                                                      | 02:03:15 PM May 07, 2020                 | Frequency                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|
| enter Freq 17.50                                                                                                                                                                  | 100000000 GHz<br>PNO: Fast<br>IFGain:Low                |                                                    | Avg Type: Log-Pwr                                                                                              | TRACE 123456<br>TYPE MWWWWW<br>DET PPPPP |                                     |
| dB/div Ref 25.0                                                                                                                                                                   | 0 dBm                                                   |                                                    | Mkr3 2                                                                                                         | 4.695 500 GHz<br>-31.79 dBm              | Auto Tur                            |
| <b>6</b><br>15.0<br>5.00<br>5.00                                                                                                                                                  |                                                         |                                                    |                                                                                                                |                                          | Center Fre<br>17.500000000 G⊦       |
| 5.0                                                                                                                                                                               |                                                         | gingu <sup>funduk</sup> i <sup>funduk</sup> i yang | مربع المراجع ا | -12.88 dBm                               | <b>Start Fre</b><br>10.000000000 GH |
| 5.0 <b>(1)</b><br>5.0 <b></b><br>5.0 <b></b>                                                                                                                                      |                                                         |                                                    |                                                                                                                |                                          | <b>Stop Fre</b><br>25.000000000 GR  |
| tart 10.000 GHz<br>Res BW 1.0 MHz                                                                                                                                                 |                                                         | BW 3.0 MHz                                         | -                                                                                                              | Stop 25.000 GHz<br>.00 ms (40001 pts)    | CF Ste<br>1.500000000 GF<br>Auto Ma |
| KR         MODE         TRC         SCL           1         N         1         f           2         N         1         f           3         N         1         f           4 | ×<br>24.931 375 GHz<br>24.213 625 GHz<br>24.695 500 GHz | Y F<br>-30.99 dBm<br>-31.76 dBm<br>-31.79 dBm      | UNCTION FUNCTION WIDTH                                                                                         | FUNCTION VALUE                           | Freq Offs                           |
| 6<br>7<br>8<br>9<br>0                                                                                                                                                             |                                                         |                                                    |                                                                                                                |                                          |                                     |
| 1                                                                                                                                                                                 |                                                         |                                                    |                                                                                                                | ~                                        |                                     |


# TM 2 Conducted Spurious Emissions 3 (Test Channel : Lowest)



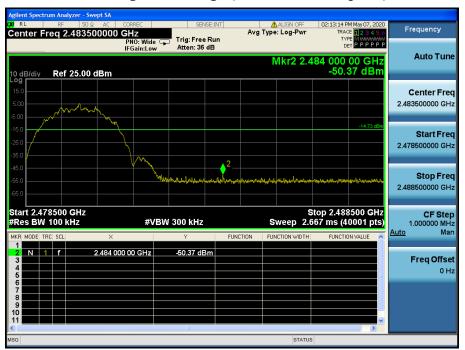
#### TM 2 Reference (Test Channel : Middle)


TM 2 Conducted Spurious Emissions 1 (Test Channel : Middle)

| RL RF                              | 50 Ջ <u>∧</u> DC<br>15.004500 M    | CORREC                     | SENSE                                     | Avg                                | ALIGN OFF                                         | 02:10:38 PM May 07, 2020<br>TRACE 1 2 3 4 5 6   | Frequency                             |
|------------------------------------|------------------------------------|----------------------------|-------------------------------------------|------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------|
|                                    |                                    | PNO: Fast<br>IFGain:Low    |                                           |                                    |                                                   | DET PPPPP                                       |                                       |
| 0 dB/div Rel                       | f 25.00 dBm                        |                            |                                           |                                    |                                                   | 4 Wkr1 293.9 kHz<br>-50.25 dBm                  | Auto Tune                             |
| .og<br>15.0<br>5.00                |                                    |                            |                                           |                                    |                                                   |                                                 | <b>Center Fre</b><br>15.004500 MH     |
| 5.00<br>15.0<br>25.0<br>35.0       |                                    |                            |                                           |                                    |                                                   | -13.64 dBm                                      | Start Fre<br>9.000 kH                 |
| 45.0                               |                                    |                            |                                           |                                    |                                                   |                                                 | Stop Fre                              |
| TO CHEMICAL MARK                   | operious de la figlie freu transfi | eniel paris prostaternales | diregen, altaistiftelis ganzait spillanas | al fotbatter spatisfer blantsetage | anan a tha an | arantaattangalangkalangkalandangkaskattanantiky |                                       |
| 65.0<br>Start 9 kHz<br>#Res BW 100 | kHz                                |                            | BW 300 kHz                                |                                    | Sweep 5.3                                         | Stop 30.00 MHz<br>333 ms (40001 pts)            | 30.000000 MH                          |
| 65.0                               | kHz ×                              |                            |                                           | FUNCTION                           |                                                   | Stop 30.00 MHz                                  | 30.000000 Mi<br>CF Ste<br>2.999100 Mi |



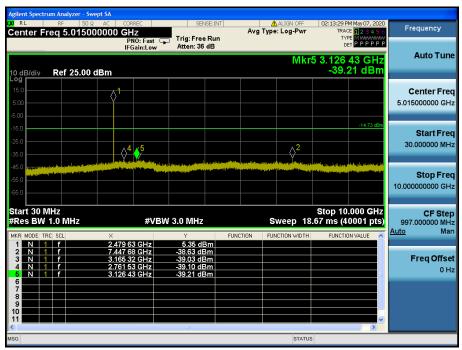
#### TM 2 Conducted Spurious Emissions 2 (Test Channel : Middle)


## TM 2 Conducted Spurious Emissions 3 (Test Channel : Middle)





#### TM 2 Reference (Test Channel : Highest)


TM 2 High Band-edge (Test Channel : Highest)



| K/RL                                   | RF 50               | Ω 🛕 DC 🛛 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ORREC                                  | SEN:                    | SE:INT       |                      | ALIGN OFF         | 02:13:21 P             | M May 07, 2020                            | -                           |
|----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|--------------|----------------------|-------------------|------------------------|-------------------------------------------|-----------------------------|
| enter Fr                               | eq 15.004           | 500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z<br>PNO:Fast ⊂<br>FGain:Low           | Trig: Free<br>Atten: 36 |              | Avg Type             |                   | TRAC                   | E 1 2 3 4 5 6<br>E MWWWWWW<br>P P P P P P | Frequency                   |
| 10 dB/div                              | Ref 25.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Call.Low                               |                         |              |                      | r                 |                        | 1.9 kHz<br>86 dBm                         | Auto Tune                   |
| .og<br>15.0<br>5.00                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                         |              |                      |                   |                        |                                           | Center Free<br>15.004500 MH |
| 15.0<br>25.0<br>35.0                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                         |              |                      |                   |                        | -14.73 dBm                                | Start Fre<br>9.000 kH       |
| 45.0 1                                 | MalainesMalaataasa/ | anglesson, the state of the sta | <u>المراجع ومواد المراجع وماما مام</u> | ورواري والمروارين       | later and an | hath bire down or fi | gh/qnanhaandaarah | U fakir Brury Afrikaan | narjalju ostablizanja dalj                | Stop Fre<br>30.000000 MH    |
| tart 9 kH<br>Res BW                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBV                                   | V 300 kHz               |              | s                    | weep 5.3          |                        |                                           | CF Ste<br>2.999100 M⊦       |
|                                        | C SCL               | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Y                       | FUNCT        | ION FUN              | CTION WIDTH       | FUNCTIO                | IN VALUE                                  | <u>Auto</u> Ma              |
| 1 N 1                                  | f                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.9 kHz                               | -50.86 dB               | m            |                      |                   |                        |                                           |                             |
| 1 N 1<br>2                             |                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.9 KHZ                               | -50.86 dB               | .m           |                      |                   |                        |                                           |                             |
| 2 3 4                                  | f                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.9 KHZ                               | -50.86 dB               |              |                      |                   |                        |                                           |                             |
| 1 N 1<br>2 3<br>4 4<br>5 5<br>6 7<br>8 |                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | -\$U.86 dB              |              |                      |                   |                        |                                           | Freq Offse<br>0 H           |

## TM 2 Conducted Spurious Emissions 1 (Test Channel : Highest)

TM 2 Conducted Spurious Emissions 2 (Test Channel : Highest)



| RL RF                                                                                                                                                                              | 50 Ω AC CORRI                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT                        | ALIGN OFF<br>Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02:13:37 PM May 07, 2020<br>TRACE 1 2 3 4 5 6 | Frequency                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|
| enter Freq 17                                                                                                                                                                      |                                             | ): Fast 😱 Trig:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free Run<br>n:36 dB              | Avg Type. Log-Fwi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPE MWWWWWW<br>DET PPPPP                     |                                     |
| 0 dB/div Ref 2                                                                                                                                                                     | 5.00 dBm                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Mkr3 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.517 000 GHz<br>-32.24 dBm                  | Auto Tur                            |
| og<br>15.0<br>5.00                                                                                                                                                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Center Fre<br>17.500000000 GF       |
| 5.0<br>5.0<br>5.0                                                                                                                                                                  |                                             | and a start of the particular distance of the start of th | مالعليم بمريا القدريس الكاهياتيا | and the system of the system o | -14.73 dBm                                    | <b>Start Fre</b><br>10.000000000 GH |
| 5.0 4499-1449-1449<br>5.0 5.0                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | <b>Stop Fre</b><br>25.000000000 GF  |
| tart 10.000 GH<br>Res BW 1.0 MH                                                                                                                                                    | lz                                          | #VBW 3.0 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stop 25.000 GHz<br>).00 ms (40001 pts)        | CF Ste<br>1.50000000 GF<br>Auto Ma  |
| IKR         MODE         TRC         SCL           1         N         1         f           2         N         1         f           3         N         1         f           4 | ×<br>24.746 125<br>24.181 000<br>24.517 000 | GHz -31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 dBm<br>3 dBm<br>4 dBm          | CTION FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FUNCTION VALUE                                | Freq Offs                           |
| 6<br>7<br>8<br>9<br>9                                                                                                                                                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                     |
| 1                                                                                                                                                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                             |                                     |

## TM 2 Conducted Spurious Emissions 3 (Test Channel : Highest)

## 3.5 Unwanted Emissions (Radiated)

#### **I** Test Requirements and limit,

#### §15.247(d), §15.205, §15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

#### • FCC Part 15.209(a) and (b)

| Frequency (MHz) | Limit (uV/m)  | Measurement Distance (meter) |
|-----------------|---------------|------------------------------|
| 0.009 ~ 0.490   | 2400/F (kHz)  | 300                          |
| 0.490 ~ 1.705   | 24000/F (kHz) | 30                           |
| 1.705 ~ 30.0    | 30            | 30                           |
| 30 ~ 88         | 100 **        | 3                            |
| 88 ~ 216        | 150 **        | 3                            |
| 216 ~ 960       | 200 **        | 3                            |
| Above 960       | 500           | 3                            |

\*\* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

| • FCC Part 15.205 (a) : Only spurious emissions are permitted in any of the frequency bands listed below | <b>v</b> : |
|----------------------------------------------------------------------------------------------------------|------------|
|----------------------------------------------------------------------------------------------------------|------------|

| MHz               | MHz                 | MHz                   | MHz             | GHz          | GHz           |
|-------------------|---------------------|-----------------------|-----------------|--------------|---------------|
| 0.009 ~ 0.110     | 8.41425 ~ 8.41475   | 108 ~ 121.94          | 1300 ~ 1427     | 4.5 ~ 5.15   | 14.47 ~ 14.5  |
| 0.495 ~ 0.505     | 12.29 ~ 12.293      | 123 ~ 138             | 1435 ~ 1626.5   | 5.35 ~ 5.46  | 15.35 ~ 16.2  |
| 2.1735 ~ 2.1905   | 12.51975 ~ 12.52025 | 149.9 ~ 150.05        | 1645.5 ~ 1646.5 | 7.25 ~ 7.75  | 17.7 ~ 21.4   |
| 4.125 ~ 4.128     | 12.57675 ~ 12.57725 | 156.52475 ~ 156.52525 | 1660 ~ 1710     | 8.025 ~ 8.5  | 22.01 ~ 23.12 |
| 4.17725 ~ 4.17775 | 13.36 ~ 13.41       | 156.7 ~ 156.9         | 1718.8 ~ 1722.2 | 9.0 ~ 9.2    | 23.6 ~ 24.0   |
| 4.20725 ~ 4.20775 | 16.42 ~ 16.423      | 162.0125 ~ 167.17     | 2200 ~ 2300     | 9.3 ~ 9.5    | 31.2 ~ 31.8   |
| 6.215 ~ 6.218     | 16.69475 ~ 16.69525 | 167.72 ~ 173.2        | 2310 ~ 2390     | 10.6 ~ 12.7  | 36.43 ~ 36.5  |
| 6.26775 ~ 6.26825 | 16.80425 ~ 16.80475 | 240 ~ 285             | 2483.5 ~ 2500   | 13.25 ~ 13.4 | Above 38.6    |
| 6.31175 ~ 6.31225 | 25.5 ~ 25.67        | 322 ~ 335.4           | 2690 ~ 2900     |              |               |
| 8.291 ~ 8.294     | 37.5 ~ 38.25        | 399.90 ~ 410          | 3260 ~ 3267     |              |               |
| 8.362 ~ 8.366     | 73 ~ 74.6           | 608 ~ 614             | 3332 ~ 3339     |              |               |
| 8.37625 ~ 8.38675 | 74.8 ~ 75.2         | 960 ~ 1240            | 3345.8 ~ 3358   |              |               |
|                   |                     |                       | 3600 ~ 4400     |              |               |

• FCC Part 15.205(b) : The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.



#### 3.5.1 Test Setup

Refer to the APPENDIX I.

#### 3.5.2 Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

#### Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12
- 1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

- 2. Frequency Range > 1 GHz
  - Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement> 1GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW ≥  $3 \times RBW$ .
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

| Test Mode | Duty Cycle (%) | T <sub>on</sub> (ms) | T <sub>on</sub> + T <sub>off</sub> (ms) | DCF = 10 log(1/Duty) (dB) |
|-----------|----------------|----------------------|-----------------------------------------|---------------------------|
| TM 1      | 85.63          | 2.145                | 2.505                                   | 0.67                      |
| TM 2      | 57.75          | 1.080                | 1.870                                   | 2.38                      |

Note : Refer to appendix II for duty cycle measurement procedure and plots

## 3.5.3 Test Results

- Test Notes
- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found below listed frequencies.
- 2. Information of Distance Factor
  - For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log( applied distance / required distance ) = 20 log( 1 m / 3 m ) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

#### 3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

 $\label{eq:Where, T.F = Total Factor, \quad AF = Antenna \ Factor, \quad CL = Cable \ Loss, \quad AG = Amplifier \ Gain,$ 

DCF = Duty Cycle Correction Factor.

## Frequency Range : 9 kHz ~ 25 GHz \_TM 1\_Nomal

#### Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2389.92            | V          | Z                      | PK               | 49.36             | 4.80          | N/A           | N/A                    | 54.16              | 74.00             | 19.84          |
| 2389.92            | V          | Z                      | AV               | 38.62             | 4.80          | 0.67          | N/A                    | 44.09              | 54.00             | 9.91           |
| 4803.94            | V          | Y                      | PK               | 50.12             | 0.78          | N/A           | N/A                    | 50.90              | 74.00             | 23.10          |
| 4803.71            | V          | Y                      | AV               | 38.64             | 0.78          | 0.67          | N/A                    | 40.09              | 54.00             | 13.91          |

#### Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 4879.97            | V          | Y                      | PK               | 50.39             | 1.31          | N/A           | N/A                    | 51.70              | 74.00             | 22.30          |
| 4879.67            | V          | Y                      | AV               | 39.40             | 1.31          | 0.67          | N/A                    | 41.38              | 54.00             | 12.62          |

## Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2483.72            | V          | Z                      | PK               | 48.87             | 5.25          | N/A           | N/A                    | 54.12              | 74.00             | 19.88          |
| 2483.63            | V          | Z                      | AV               | 39.16             | 5.25          | 0.67          | N/A                    | 45.08              | 54.00             | 8.92           |
| 4959.90            | V          | Y                      | PK               | 49.54             | 1.61          | N/A           | N/A                    | 51.15              | 74.00             | 22.85          |
| 4959.96            | V          | Y                      | AV               | 38.99             | 1.61          | 0.67          | N/A                    | 41.27              | 54.00             | 12.73          |

## Frequency Range : 9 kHz ~ 25 GHz \_TM 2\_Nomal

## Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2389.78            | V          | Y                      | PK               | 48.82             | 4.80          | N/A           | N/A                    | 53.62              | 74.00             | 20.38          |
| 2389.86            | V          | Y                      | AV               | 38.32             | 4.80          | 2.38          | N/A                    | 45.50              | 54.00             | 8.50           |
| 4803.64            | V          | Y                      | PK               | 48.98             | 0.78          | N/A           | N/A                    | 49.76              | 74.00             | 24.24          |
| 4803.92            | V          | Y                      | AV               | 38.81             | 0.78          | 2.38          | N/A                    | 41.97              | 54.00             | 12.03          |

## Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 4879.60            | V          | Y                      | PK               | 50.07             | 1.31          | N/A           | N/A                    | 51.38              | 74.00             | 22.62          |
| 4879.95            | V          | Y                      | AV               | 39.38             | 1.31          | 2.38          | N/A                    | 43.07              | 54.00             | 10.93          |

## Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2483.71            | V          | Y                      | PK               | 49.82             | 5.25          | N/A           | N/A                    | 55.07              | 74.00             | 18.93          |
| 2483.68            | V          | Y                      | AV               | 38.75             | 5.25          | 2.38          | N/A                    | 46.38              | 54.00             | 7.62           |
| 4959.95            | V          | Y                      | PK               | 49.01             | 1.61          | N/A           | N/A                    | 50.62              | 74.00             | 23.38          |
| 4959.65            | V          | Y                      | AV               | 38.81             | 1.61          | 2.38          | N/A                    | 42.80              | 54.00             | 11.20          |



## Frequency Range : 9 kHz ~ 25 GHz \_TM 3\_Wireless Charging

## Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2483.81            | Н          | Х                      | PK               | 48.94             | 5.26          | N/A           | N/A                    | 54.20              | 74.00             | 19.80          |
| 2483.73            | Н          | Х                      | AV               | 38.78             | 5.25          | 0.67          | N/A                    | 44.70              | 54.00             | 9.30           |
| 4959.63            | Н          | Х                      | PK               | 49.23             | 1.61          | N/A           | N/A                    | 50.84              | 74.00             | 23.16          |
| 4959.87            | Н          | Х                      | AV               | 39.02             | 1.61          | 0.67          | N/A                    | 41.30              | 54.00             | 12.70          |

## Frequency Range : 9 kHz ~ 25 GHz \_TM 4\_Wireless Charging

## Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2483.86            | V          | Х                      | PK               | 49.43             | 5.26          | N/A           | N/A                    | 54.69              | 74.00             | 19.31          |
| 2483.79            | V          | Х                      | AV               | 38.84             | 5.26          | 2.38          | N/A                    | 46.48              | 54.00             | 7.52           |
| 4959.95            | V          | Х                      | PK               | 50.16             | 1.61          | N/A           | N/A                    | 51.77              | 74.00             | 22.23          |
| 4959.61            | V          | Х                      | AV               | 38.83             | 1.61          | 2.38          | N/A                    | 42.82              | 54.00             | 11.18          |

## Frequency Range : 9 kHz ~ 25 GHz \_TM 5\_ With Dual Display

## Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2484.10            | V          | Y                      | PK               | 49.92             | 5.26          | N/A           | N/A                    | 55.18              | 74.00             | 18.82          |
| 2484.07            | V          | Y                      | AV               | 39.18             | 5.26          | 2.37          | N/A                    | 46.81              | 54.00             | 7.19           |
| 4960.32            | V          | Y                      | PK               | 49.96             | 1.61          | N/A           | N/A                    | 51.57              | 74.00             | 22.43          |
| 4960.02            | V          | Y                      | AV               | 38.89             | 1.61          | 2.37          | N/A                    | 42.87              | 54.00             | 11.13          |
| 7439.93            | V          | Y                      | PK               | 46.96             | 9.18          | N/A           | N/A                    | 56.14              | 74.00             | 17.86          |
| 7439.87            | V          | Y                      | AV               | 36.16             | 9.18          | 2.37          | N/A                    | 47.71              | 54.00             | 6.29           |

## Frequency Range : 9 kHz ~ 25 GHz \_TM 6\_ With Dual Display + WPC

## Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|------------------------|------------------|-------------------|---------------|---------------|------------------------|--------------------|-------------------|----------------|
| 2483.90            | V          | Х                      | PK               | 49.59             | 5.26          | N/A           | N/A                    | 54.85              | 74.00             | 19.15          |
| 2483.97            | V          | Х                      | AV               | 39.24             | 5.26          | 2.37          | N/A                    | 46.87              | 54.00             | 7.13           |
| 4959.54            | V          | Х                      | PK               | 49.23             | 1.61          | N/A           | N/A                    | 50.84              | 74.00             | 23.16          |
| 4959.97            | V          | Х                      | AV               | 38.95             | 1.61          | 2.37          | N/A                    | 42.93              | 54.00             | 11.07          |
| 7440.16            | V          | Х                      | PK               | 47.04             | 9.18          | N/A           | N/A                    | 56.22              | 74.00             | 17.78          |
| 7440.05            | V          | Х                      | AV               | 36.33             | 9.18          | 2.37          | N/A                    | 47.88              | 54.00             | 6.12           |



#### 3.6 Power line Conducted Emissions

#### Test Requirements and limit, §15.207 & RSS-Gen [8.8]

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN).

|                       | Conducted Limit (dBuV) |            |  |  |  |  |
|-----------------------|------------------------|------------|--|--|--|--|
| Frequency Range (MHz) | Quasi-Peak             | Average    |  |  |  |  |
| 0.15 ~ 0.5            | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5 ~ 5               | 56                     | 46         |  |  |  |  |
| 5 ~ 30                | 60                     | 50         |  |  |  |  |

\* Decreases with the logarithm of the frequency

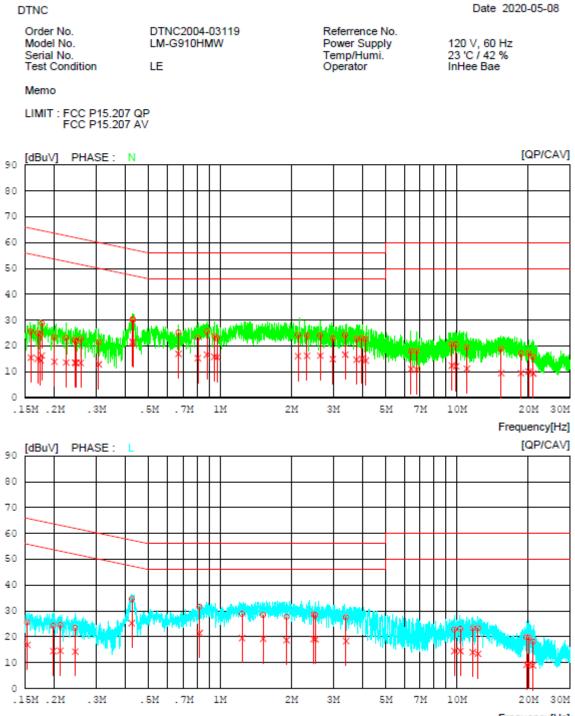
Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

#### 3.6.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

#### 3.6.2 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.


- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

#### 3.6.3 Test Results

Refer to the next page. (The worst case data was reported. The worst data is TM 1 & Middle)

## AC Line Conducted Emissions (Graph)

# Results of Conducted Emission



Frequency[Hz]

## AC Line Conducted Emissions (List)

# Results of Conducted Emission

| DTNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           | Date 2020-05-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order No.<br>Model No.<br>Serial No.<br>Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DTNC2004-03119<br>LM-G910HMW<br>LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Referrence No.<br>Power Supply<br>Temp/Humi.<br>Operator  | 120 V, 60 Hz<br>23 'C / 42 %<br>InHee Bae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Memo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LIMIT : FCC P15<br>FCC P15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NO FREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | READING C.FACTOR<br>QP CAV<br>[dBuV][dBuV] [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RESULT LIMIT<br>QP CAV QP CAV<br>[dBuV][dBuV][dBuV][dBuV] | MARGIN PHASE<br>QP CAV<br>[dBuV][dBuV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 0.15894<br>2 0.16998<br>3 0.17465<br>4 0.17694<br>5 0.1994<br>5 0.22391<br>7 0.24386<br>8 0.24717<br>9 0.25816<br>10 0.30742<br>11 0.42675<br>12 0.42984<br>13 0.66703<br>14 0.80607<br>15 0.88050<br>16 0.94589<br>17 0.97205<br>18 2.13555<br>19 2.32864<br>20 2.64881<br>21 2.99294<br>22 3.37865<br>23 3.76741<br>24 3.97367<br>25 4.12237<br>26 6.40490<br>27 6.76358<br>28 9.51794<br>29 9.93158<br>30 11.02023<br>31 15.38763<br>32 18.65245<br>33 20.10087<br>34 21.00926<br>35 0.15356<br>36 0.19764<br>37 0.21172<br>38 0.15356<br>36 0.19764<br>37 0.21172<br>38 0.15356<br>36 0.19764<br>37 0.21172<br>38 0.42387<br>40 0.81850<br>41 1.23789<br>42 1.52132<br>43 1.91039<br>44 2.4822 | 15.68         5.50         10.00           14.98         5.01         10.02           14.53         4.45         10.02           14.53         4.45         10.02           18.72         6.35         10.02           13.42         3.90         10.02           13.42         3.90         10.02           12.24         3.56         10.03           11.67         3.42         10.03           12.65         3.48         10.03           12.65         3.48         10.03           14.92         90         10.03           20.16         11.63         10.06           20.05         13.16         5.21         10.06           15.17         6.97         10.05         13.83         5.82         10.05           13.02         5.54         10.06         14.11         5.95         10.11           13.94         6.01         10.13         13.96         6.11         10.14           12.74         4.76         10.15         14.00         6.50         10.17           12.60         4.49         10.19         12.47         4.18         10.19           12.47 </td <td>25.6815.50 65.52 55.52</td> <td>39.84 40.02 N<br/>39.96 39.93 N<br/>40.19 40.27 N<br/>35.89 38.26 N<br/>40.18 39.70 N<br/>39.55 39.03 N<br/>39.69 38.37 N<br/>40.15 38.40 N<br/>38.81 37.98 N<br/>38.52 37.11 N<br/>27.10 25.63 N<br/>27.15 26.03 N<br/>30.78 28.98 N<br/>32.78 30.73 N<br/>30.46 29.40 N<br/>32.12 30.13 N<br/>31.93 29.86 N<br/>31.90 29.75 N<br/>33.11 31.09 N<br/>31.93 29.86 N<br/>31.90 29.75 N<br/>33.11 31.09 N<br/>31.83 29.33 N<br/>32.96 30.95 N<br/>33.21 31.32 N<br/>32.96 30.95 N<br/>33.34 31.63 N<br/>42.01 38.93 N<br/>41.96 39.17 N<br/>39.46 37.85 N<br/>40.47 38.74 N<br/>41.10 40.49 N<br/>42.97 40.49 N<br/>42.97 39.88 N<br/>44.20 40.67 N<br/>40.32 38.98 L<br/>39.57 39.31 L<br/>38.67 38.59 L<br/>38.67 38.59 L<br/>38.67 38.59 L<br/>38.67 38.59 L<br/>38.67 38.59 L<br/>27.58 26.75 L<br/>28.30 27.33 L<br/>27.36 26.94 L</td> | 25.6815.50 65.52 55.52                                    | 39.84 40.02 N<br>39.96 39.93 N<br>40.19 40.27 N<br>35.89 38.26 N<br>40.18 39.70 N<br>39.55 39.03 N<br>39.69 38.37 N<br>40.15 38.40 N<br>38.81 37.98 N<br>38.52 37.11 N<br>27.10 25.63 N<br>27.15 26.03 N<br>30.78 28.98 N<br>32.78 30.73 N<br>30.46 29.40 N<br>32.12 30.13 N<br>31.93 29.86 N<br>31.90 29.75 N<br>33.11 31.09 N<br>31.93 29.86 N<br>31.90 29.75 N<br>33.11 31.09 N<br>31.83 29.33 N<br>32.96 30.95 N<br>33.21 31.32 N<br>32.96 30.95 N<br>33.34 31.63 N<br>42.01 38.93 N<br>41.96 39.17 N<br>39.46 37.85 N<br>40.47 38.74 N<br>41.10 40.49 N<br>42.97 40.49 N<br>42.97 39.88 N<br>44.20 40.67 N<br>40.32 38.98 L<br>39.57 39.31 L<br>38.67 38.59 L<br>38.67 38.59 L<br>38.67 38.59 L<br>38.67 38.59 L<br>38.67 38.59 L<br>27.58 26.75 L<br>28.30 27.33 L<br>27.36 26.94 L |
| 47 9.76487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.37 4.10 10.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.7114.44 60.00 50.00<br>22.9814.48 60.00 50.00          | 37.2935.56 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## AC Line Conducted Emissions (List)

| NO   | FREQ     | READING<br>QP AV | C.FACTOR | RESULT<br>QP AV | LIMIT<br>QP AV | MARGIN<br>QP AV | PHASE |
|------|----------|------------------|----------|-----------------|----------------|-----------------|-------|
|      | [MHz]    | [dBuV] [dBuV     | ] [dB]   | [dBuV] [dBu     | V] [dBuV][dBuV | ] [dBuV][dBuV   | 'I    |
| 49   | 11.67256 | 12.91 3.58       | 10.37    | 23.28 13.95     | 60.00 50.00    | 36.7236.05      | L     |
| 50 3 | 12.29301 | 12.86 2.97       | 10.38    | 23.2413.35      | 60.00 50.00    | 36.7636.65      | L     |
| 51 3 | 19.66773 | 9.19-1.36        | 10.50    | 19.69 9.14      | 60.00 50.00    | 40.31 40.86     | L     |
| 52 3 | 20.19936 | 9.22-1.16        | 10.50    | 19.72 9.34      | 60.00 50.00    | 40.28 40.66     | L     |
| 53 3 | 20.96213 | 7.55-1.62        | 10.51    | 18.06 8.89      | 60.00 50.00    | 41.94 41.11     | L     |



#### 3.7 Occupied Bandwidth

#### **Test Requirements, RSS-Gen [6.7]**

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

#### 3.7.1 Test Setup

-NA

#### 3.7.2 Test Procedures

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

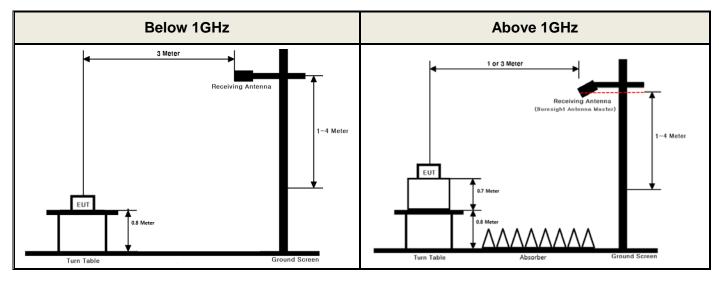
Spectrum analyzer plots are included on the following pages.

3.7.3 Test Results

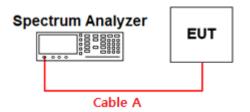
-NA

## 4. ANTENNA REQUIREMENTS

#### According to FCC 47 CFR §15.203


"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is attached on the device by means of unique coupling method (Spring Tension). Therefore this E.U.T Complies with the requirement of §15.203


## **APPENDIX I**

## Test set up diagrams

#### Radiated Measurement



#### Conducted Measurement



#### Path loss information

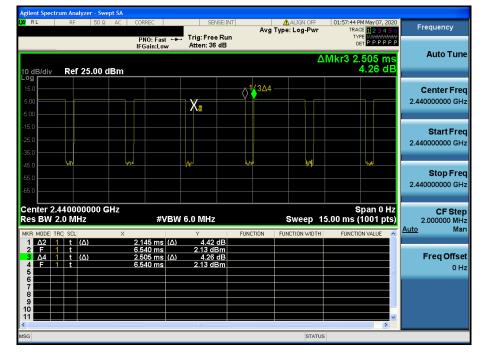
| Frequency (GHz)       | Path Loss (dB) | Frequency (GHz) | Path Loss (dB) |
|-----------------------|----------------|-----------------|----------------|
| 0.03                  | 0.34           | 15              | 2.87           |
| 1                     | 0.69           | 20              | 3.25           |
| 2.402 & 2.440 & 2.480 | 1.10           | 25              | 3.76           |
| 5                     | 1.80           | -               | -              |
| 10                    | 2.15           | -               | -              |

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A

## **APPENDIX II**

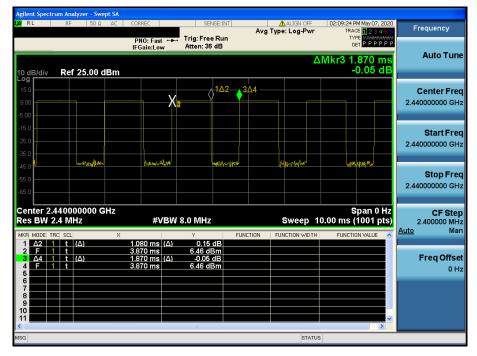
#### **Duty cycle plots**

#### Test Procedure


#### Duty Cycle was measured using Section 6.0 b) of KDB558074 D01v05r02 :

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW  $\geq$  OBW if possible; otherwise, set RBW to the largest available value. Set VBW  $\geq$  RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T  $\leq$  16.7 microseconds.)


#### **Duty Cycle**

#### TM 1 Test Channel : Middle



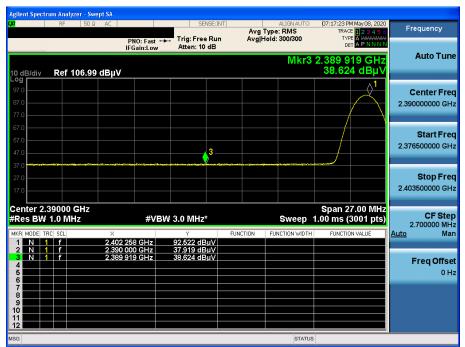


#### TM 2 Test Channel : Middle




#### **Duty Cycle**

## **APPENDIX III**


## **Unwanted Emissions (Radiated) Test Plot**

## TM1 & Lowest & Z & Ver





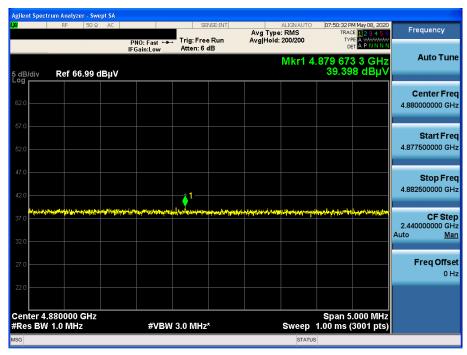
#### TM1 & Lowest & Z & Ver





#### TM1 & Highest & Z & Ver

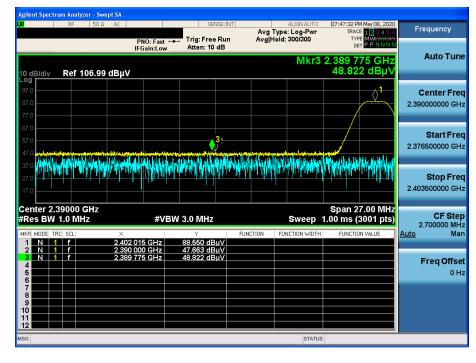
#### **Detector Mode : PK**




#### TM1 & Highest & Z & Ver

#### Analyzer - Swept SA Frequency Avg Type: RMS Avg|Hold: 300/300 Trig: Free Run Atten: 10 dB APNN PNO: Fast ↔→→ IFGain:Low Auto Tune Mkr3 2.483 632 GHz 39.155 dBµ\ Ref 106.99 dBµV 10 dB/div Center Freq 2.489000000 GHz Start Freq 2.478000000 GHz **3** Stop Freq 2.50000000 GHz Start 2.47800 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (3001 pts) CF Step 2.200000 MHz #VBW 3.0 MHz\* Sweep Man Auto 38.546 dBµ\ 39.155 dBµ\ .483 500 GHz .483 632 GHz Freq Offset 0 Hz STATUS




#### TM1 & Middle & Y & Ver

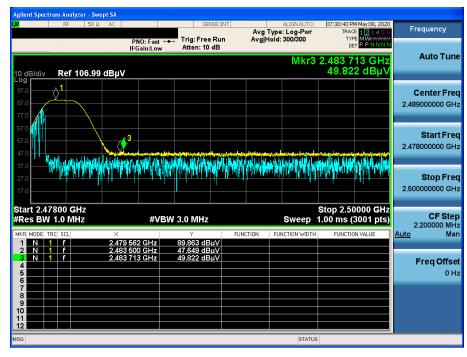




#### TM2 & Lowest & Y & Ver

#### **Detector Mode : PK**




### TM2 & Lowest & Y & Ver

#### t Spectrum Analyzer -Frequency Avg Type: RMS Avg|Hold: 300/300 Trig: Free Run Atten: 10 dB TYPE DE1 PNO: Fast IFGain:Low APNN Auto Tune Mkr3 2.389 856 GH: 38.319 dBµ\ Ref 106.99 dBµV dBidis **Center Freq** $\Diamond^1$ 2.39000000 GHz Start Freq 2.376500000 GHz Stop Freq 2.403500000 GHz Center 2.39000 GHz #Res BW 1.0 MHz Span 27.00 MHz Sweep 1.00 ms (3001 pts) CF Step 2.700000 MHz Man #VBW 3.0 MHz\* Auto FUNCTION 84.229 dBμV 37.810 dBμV 38.319 dBμV Freq Offset 0 Hz STATUS

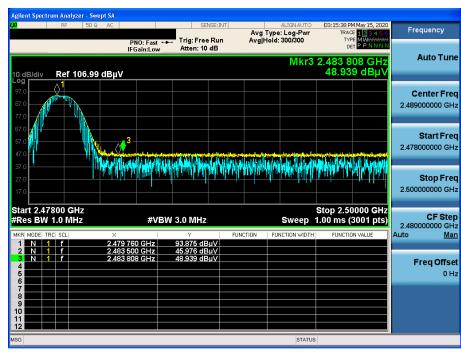


#### TM2 & Highest & Y & Ver

#### **Detector Mode : PK**



#### TM2 & Highest & Y & Ver


#### Analyzer - Swept SA Frequency Avg Type: RMS Avg|Hold: 300/300 Trig: Free Run Atten: 10 dB APNN PNO: Fast +++ IFGain:Low Auto Tune Mkr3 2.483 683 GHz 38.750 dBµ\ Ref 106.99 dBµV dB/div Center Freq 2.489000000 GHz Start Freq 2.478000000 GHz \_∢∮3 Stop Freq 2.50000000 GHz Start 2.47800 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (3001 pts) CF Step 2.200000 MHz #VBW 3.0 MHz\* Sweep Man <u>Auto</u> 38.352 dBµ\ 38.750 dBµ\ .483 500 GHz .483 683 GHz Freq Offset 0 Hz STATUS



#### TM2 & Middle & Y & Ver

| KI              | RF                                                                                                               | 50 Ω       | AC         |                                                                                                                 | SE                         | NSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | ALIGN AUTO                                | 08:12:34 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 May 08, 2020                           |                            |
|-----------------|------------------------------------------------------------------------------------------------------------------|------------|------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|
|                 |                                                                                                                  |            |            | PNO: Fast ↔                                                                                                     | Trig: Fre                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ype: RMS<br>old: 200/200                  | TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E A 23456<br>E A WWWWWW<br>T A P N N N N | Frequency                  |
| dB/div          | Ref 6                                                                                                            | 6.99 d     | Βμν        | II Gameow                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Mkr1 4                                    | .879 945<br>39.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 0 GHz<br>5 dBµV                        | Auto Tui                   |
| . <sup>og</sup> |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | <b>0</b>                   |
| 52.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Center Fr<br>4.880000000 G |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 4.88000000 G               |
| 57.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Start Fr                   |
| 52.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 4.877500000 G              |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |
| 47.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Stop Fr                    |
| 42.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 4.882500000 G              |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            | ) <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |
| 37.0            | and the second | ayar yayar | (ipalwith) | and the second secon | entry and the state of the | and a state of the | nterneting why | and all constructions and a second second | and the participation of the p | enter fillen veret                       | CF St                      |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 2.440000000 G<br>Auto M    |
| 32.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Auto <u>M</u>              |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | _                          |
| 27.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Freq Offs<br>0             |
| ~               |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0                          |
| 22.0            |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |
|                 |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |
|                 | .880000<br>1.0 MH                                                                                                |            |            | #VB                                                                                                             | V 3.0 MHz                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Sweep                                     | Span 5.<br>1.00 m <u>s (</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000 MHz<br>3001 pts)                    |                            |
| SG              |                                                                                                                  |            |            |                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | STATUS                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |

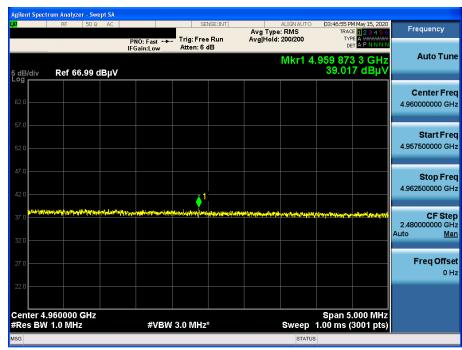
# Unwanted Emissions (Radiated) Test Plot\_Wireless Charging



#### TM3 & Highest & X & Hor

🛈 Dt&C

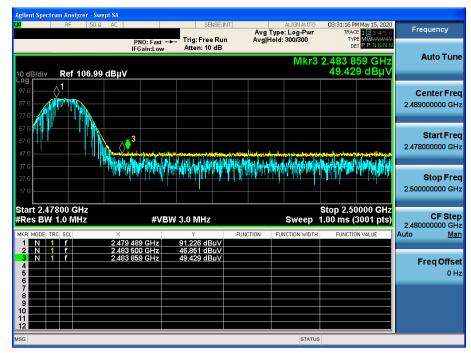
#### **Detector Mode : PK**


**Detector Mode : AV** 

### TM3 & Highest & X & Hor






#### TM3 & Highest & X & Hor





#### TM4 & Highest & X & Hor

# Detector Mode : PK



#### TM4 & Highest & X & Hor





#### TM4 & Highest & X & Hor

| Avg Type: RMS<br>Avg Hold: 200/200         TRACE 12 3 4 5 0<br>TYPE & P NNHH         Freque           Mkr1 4.959 611 7 GHz<br>38.830 dBµV         Auto<br>4.9600000 | o Tui                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 38.830 dBµV                                                                                                                                                         |                                             |
|                                                                                                                                                                     | er Fr                                       |
| 4.960000                                                                                                                                                            |                                             |
|                                                                                                                                                                     | 100 G                                       |
|                                                                                                                                                                     |                                             |
| 4.9575000                                                                                                                                                           | 00 6                                        |
|                                                                                                                                                                     |                                             |
|                                                                                                                                                                     |                                             |
|                                                                                                                                                                     | F St<br>000 C                               |
|                                                                                                                                                                     |                                             |
| Freq                                                                                                                                                                | Off<br>0                                    |
|                                                                                                                                                                     |                                             |
| Span 5.000 MHz<br>Sweep 1.00 ms (3001 pts)                                                                                                                          |                                             |
|                                                                                                                                                                     | 2.4800000<br>Auto<br>Freq<br>Span 5.000 MHz |

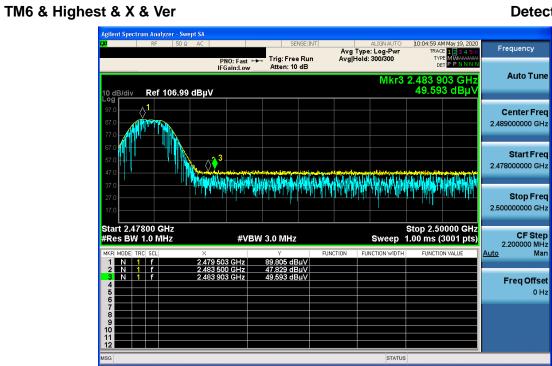
## Unwanted Emissions (Radiated) Test Plot\_With Dual Display



#### **Detector Mode : PK**

#### **Detector Mode : AV**

#### TM5 & Highest & Y & Ver






#### TM5 & Highest & Y & Ver

| XI                         | RF 50Ω AC                                                                    | PNO: Fast 🕶                                | SENSE:INT<br>Trig: Free Run<br>Atten: 6 dB | ALIGNAUTO<br>Avg Type: RMS<br>Avg Hold: 200/200                  | 04:22:40 PM May 15, 2020<br>TRACE 1 2 3 4 5 6<br>TYPE A WWWWW<br>DET A P N N N N | Frequency                               |
|----------------------------|------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| 5 dB/div                   | Ref 66.99 dBµ\                                                               | IFGain:Low                                 | Atten: 0 dB                                | Mkr1 7                                                           | .439 865 0 GHz<br>36.158 dBµV                                                    | Auto Tui                                |
| 62.0                       |                                                                              |                                            |                                            |                                                                  |                                                                                  | <b>Center Fr</b><br>7.440000000 G       |
| 57.0                       |                                                                              |                                            |                                            |                                                                  |                                                                                  | <b>Start Fr</b><br>7.437500000 G        |
| 47.0                       |                                                                              |                                            |                                            |                                                                  |                                                                                  | <b>Stop Fr</b><br>7.442500000 G         |
| 37.0<br><mark>519 %</mark> | i <u>ry</u> an <sup>tar</sup> o <sup>t</sup> atus (1997-1997)<br>Iryantarota | uthadetsist <sub>e</sub> nthasperingsonage | €<br>มาประ/พ⊒โมระสารฎรสมร <sub>า</sub> ณ   | the entry in a transference of the ball is the only a company of | hinterintinterinterinterinterint                                                 | CF St<br>2.480000000 G<br>Auto <u>N</u> |
| 27.0                       |                                                                              |                                            |                                            |                                                                  |                                                                                  | Freq Off<br>0                           |
| Center 7.                  | 440000 GHz<br>1.0 MHz                                                        | #VBW                                       | / 3.0 MHz*                                 | Sweep                                                            | Span 5.000 MHz<br>1.00 ms (3001 pts)                                             |                                         |

## Unwanted Emissions (Radiated) Test Plot\_With Dual Display+WPC



#### **Detector Mode : PK**

#### **Detector Mode : AV**

### TM6 & Highest & X & Ver

|                                    | 50Ω AC                  |                          | SENSE:I                                             |          | ALIGN AUTO<br>ype: RMS | 10:08:02 AM May 19, 20<br>TRACE 1 2 3 4 5    |                                  |
|------------------------------------|-------------------------|--------------------------|-----------------------------------------------------|----------|------------------------|----------------------------------------------|----------------------------------|
|                                    |                         | PNO: Fast ←<br>FGain:Low | <ul> <li>Trig: Free Run<br/>Atten: 10 dB</li> </ul> | n Avg H  | old: 300/300           | TRACE 12349<br>TYPE A WANNA<br>DET A P N N N |                                  |
| dB/div Ref 106                     | .99 dBµV                |                          |                                                     |          | Mkr3                   | 2.483 969 GH<br>39.239 dBµ                   | Z                                |
| <b>Pg</b><br>7.0<br>7.0<br>7.0     |                         |                          |                                                     |          |                        |                                              | Center Fre<br>2.489000000 GF     |
| 7.0                                |                         | 3                        |                                                     |          |                        |                                              | <b>Start Fr</b><br>2.478000000 G |
| 7.0                                |                         |                          |                                                     |          |                        |                                              | <b>Stop Fr</b><br>2.500000000 G  |
| tart 2.47800 GHz<br>Res BW 1.0 MHz |                         | #VB                      | ₩ 3.0 MHz*                                          |          | Sweep                  | Stop 2.50000 GH<br>1.00 ms (3001 pts         | s) CF Sto<br>2.200000 M          |
| KR MODE TRC SCL                    | ×<br>2.479 5<br>2.483 5 | 03 GHz<br>00 GHz         | γ<br>84.111 dBμV<br>38.327 dBμV                     | FUNCTION | FUNCTION WIDTH         | FUNCTION VALUE                               | Auto M                           |
| <mark>3 N 1 f</mark><br>4          | 2.483 9                 | 69 GHz                   | 39.239 dBµV                                         |          |                        |                                              | Freq Offs<br>0                   |
| 5 6                                |                         |                          |                                                     |          |                        |                                              |                                  |
|                                    |                         |                          |                                                     |          |                        |                                              |                                  |



#### TM6 & Highest & X & Ver

| xI             | RF                | 50Ω A       | c                      |                      | SENSE:INT                                                                                                               |                        | ALIGN AUTO           | 04:53:25 PM May 15, 2020                                             |                                                |
|----------------|-------------------|-------------|------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------------------------------------------------------|------------------------------------------------|
|                | _                 |             | PNO: Fa<br>IFGain:L    |                      | ree Run<br>: 6 dB                                                                                                       | Avg Type<br>Avg Hold:  |                      | TRACE 12345<br>TYPE A WWWWW<br>DET A P N N N                         |                                                |
| og             | Ref 66.           | .99 dBµ     | v                      |                      |                                                                                                                         |                        | Mkr1 7.              | 440 045 0 GHz<br>36.332 dBμ√                                         | Auto Tu                                        |
| 62.0           |                   |             |                        |                      |                                                                                                                         |                        |                      |                                                                      | <b>Center Fr</b><br>7.440000000 G              |
| 57.0<br>52.0   |                   |             |                        |                      |                                                                                                                         |                        |                      |                                                                      | <b>Start Fr</b><br>7.437500000 G               |
| 47.0           |                   |             |                        |                      |                                                                                                                         |                        |                      |                                                                      | <b>Stop Fr</b><br>7.442500000 G                |
| 37.0<br>****** | na and the states | upuluduland | ngfanilletetenisertete | dafatar jegeçetenter | n 1<br>Server and the second | the false that we have | allioghinan Ireidhof | โรงใหล่จะๆๆๆๆๆสัญ <sup>18</sup> ลุ่งงๆๆระไม่เ <sup>1</sup> ต่างหล่าง | <b>CF St</b><br>2.480000000 G<br>Auto <u>M</u> |
| 27.0           |                   |             |                        |                      |                                                                                                                         |                        |                      |                                                                      | Freq Offs<br>0                                 |
|                | .440000 (         |             |                        |                      |                                                                                                                         |                        |                      | Span 5.000 MHz                                                       |                                                |
| Res BW 1.0 MHz |                   |             |                        | VBW 3.0 M            | Hz*                                                                                                                     |                        | Sweep                |                                                                      |                                                |