TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

- 1. Report No : DRTFCC2005-0147(1)
- 2. Customer
- Name : LG Electronics USA, Inc.
- Address : 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632
- 3. Use of Report : FCC Original Grant
- Product Name / Model Name : Mobile Phone / LM-G910HMW
 FCC ID : ZNFG910HMW
- 5. Test Method Used : KDB971168 D01v03r01, ANSI C63.26-2015, ANSI/TIA-603-E-2016 Test Specification : §2, §90
- 6. Date of Test : 2020.04.09 ~ 2020.05.21
- 7. Testing Environment : Refer to appended test report.
- 8. Test Result : Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Affirmation	Tested by	64	Reviewed by	De	n l		
	Name : Inhee Bae	and the	Name : GeunKi Son	r	(Signature)		
		2020 06	08				
	2020.06.08.						
			1.4.4				
	UI	&C Co.	, μία.				
	Not abided by KS Q ISO / IEC 17025 and KOLAS accreditation.						
lf	this report is required to confirm	ation of authent	icity, please contact to repor	t@dtnc.r	net		

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2005-0147	May. 29, 2020	Initial issue	InHee Bae	GeunKi Son
DRTFCC2005-0147(1)	Jun. 08, 2020	Revised the section 5	InHee Bae	GeunKi Son

Table of Contents

1.	GENERAL INFORMATION	4
2.	INTRODUCTION	5
	2.1 EUT DESCRIPTION	.5
	2.2 EUT CAPABILITIES	.5
	2.3 TESTING ENVIRONMENT	.5
	2.4 MEASURING INSTRUMENT CALIBRATION	.5
	2.5 MEASUREMENT UNCERTAINTY	.5
	2.6 TEST FACILITY	
3.	DESCRIPTION OF TESTS	6
	3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)	.6
	3.2 OCCUPIED BANDWIDTH	
	3.3 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	
	3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	10
	3.5 EMISSION MASK	
	3.6 UNDESIRABLE EMISSIONS	
	3.7 FREQUENCY STABILITY	-
	LIST OF TEST EQUIPMENT1	
	SUMMARY OF TEST RESULTS1	
	SAMPLE CALCULATION1	
7.	TEST DATA1	7
	7.1 CONDUCTED OUTPUT POWER	17
	7.2 OCCUPIED BANDWIDTH	
	7.3 BAND EDEG EMISSIONS (Conducted)	
	7.4 SPURIOUS AND HARMONICS EMISSIONS (Conducted)	
	7.5 EMISSION MASK (Conducted)	
	7.6 ERP	
	7.7 UNDESIRABLE EMISSIONS (Radiated)	
	7.8 FREQUENCY STABILITY	
8.	TEST PLOTS2	
	8.1 OCCUPIED BANDWIDTH	
	8.2 BAND EDGE EMISSIONS(Conducted)	
	8.3 SPURIOUS AND HARMONICS EMISSIONS(Conducted)	
	8.4 EMISSION MASK (Conducted)	41

1. GENERAL INFORMATION

Applicant Name	:	LG Electronics USA, Inc.
Address	:	111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632
FCC ID	:	ZNFG910HMW
FCC Classification	:	PCS Licensed Transmitter held to ear (PCE)
ЕИТ Туре	:	Mobile Phone
Model Name	:	LM-G910HMW
Add Model Name	:	LMG910HMW, G910HMW, LM-G910HM, LMG910HM, G910HM
Supplying power	:	DC 3.87 V
Antenna Information	:	PIFA Antenna

		Emission Designator	Modulation	Conducted output power		ERP	
Mode	TX Frequency (MHz)			Max power (dBm)	Max power (W)	Max power (dBm)	Max power (W)
LTE Band 26	821.5	13M4G7D	QPSK	24.95	0.313	20.88	0.122
LTE Band 26	821.5	13M4W7D	16QAM	24.09	0.256	19.77	0.095
LTE Band 26	821.5	13M4W7D	64QAM	23.07	0.203	18.65	0.073
LTE Band 26	819.0	8M92G7D	QPSK	24.94	0.312	21.65	0.146
LTE Band 26	819.0	8M93W7D	16QAM	24.07	0.255	20.51	0.112
LTE Band 26	819.0	8M95W7D	64QAM	23.06	0.202	19.38	0.087
LTE Band 26	816.5 ~ 821.5	4M49G7D	QPSK	24.92	0.310	21.29	0.135
LTE Band 26	816.5 ~ 821.5	4M49W7D	16QAM	24.07	0.255	20.20	0.105
LTE Band 26	816.5 ~ 821.5	4M48W7D	64QAM	23.09	0.204	18.15	0.065
LTE Band 26	815.5 ~ 822.5	2M70G7D	QPSK	24.89	0.308	21.42	0.139
LTE Band 26	815.5 ~ 822.5	2M70W7D	16QAM	23.95	0.248	20.26	0.106
LTE Band 26	815.5 ~ 822.5	2M70W7D	64QAM	23.02	0.200	19.18	0.083
LTE Band 26	814.7 ~ 823.3	1M08G7D	QPSK	24.93	0.311	21.34	0.136
LTE Band 26	814.7 ~ 823.3	1M09W7D	16QAM	24.05	0.254	20.28	0.107
LTE Band 26	814.7 ~ 823.3	1M09W7D	64QAM	23.05	0.202	19.16	0.082

2. INTRODUCTION

2.1 EUT DESCRIPTION

The Equipment Under Test (EUT) supports GSM/WCDMA/LTE Phone with Bluetooth, WLAN, NFC.

2.2 EUT CAPABILITIES

This EUT contains the following capabilities: 850/1900 GSM/EDGE, 850/1700/1900 WCDMA/HSUPA, Multi-band LTE, 802.11b/g/n/ac WLAN(2.4GHz) 802.11a/n/ac WLAN(5GHz), Bluetooth(BDR, EDR, LE), NFC.

2.3 TESTING ENVIRONMENT

Ambient Condition				
• Temperature +20 °C ~ +25 °C				
Relative Humidity	38 % ~ 45 %			

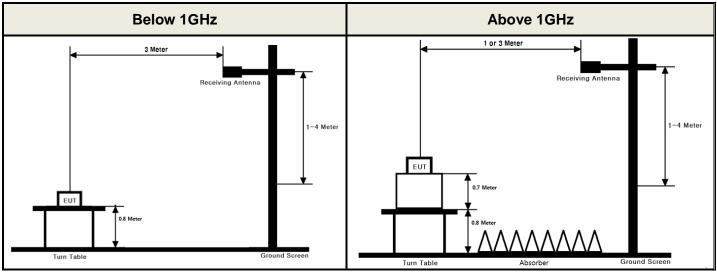
2.4 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty	
Radiated Disturbance (Below 1 GHz)	4.86 dB (The confidence level is about 95 %, k = 2)	
Radiated Disturbance (1 GHz ~ 18 GHz)	5.02 dB (The confidence level is about 95 %, k = 2)	
Radiated Disturbance (Above 18 GHz)	5.30 dB (The confidence level is about 95 %, k = 2)	


2.6 TEST FACILITY

DT&C Co., Li							
42, Yurim-ro, 1	54beon	conducted measurement facility used to collect the radiated data are located at the -gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. <i>r</i> ith the requirements of § 2.948 according to ANSI 63.4-2014.					
- FCC MRA Accredited Test Firm No. : KR0034							
www.dtnc.net							
	Telephone : + 82-31-321-2664						
Telephone	:	+ 82-31-321-2664					

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

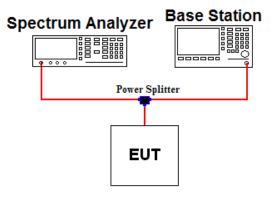
- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 D01v03 Section 5.2.2
- ANSI C63.26-2015 Section 5.2.4.4.1

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1% to 5% of the OBW.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep \geq 2 × span / RBW.
- 5. Sweep time:
 - 1) Set = auto-couple, or
 - 2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.
- 6. Detector = power averaging (rms).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-power transmissions).
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

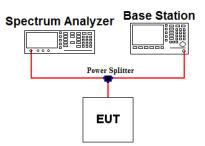
For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference Between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 OCCUPIED BANDWIDTH.

Test set-up

Test Procedure

- KDB971168 D01v03 Section 4.3
- ANSI C63.26-2015 Section 5.4.4


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 ~ 5 % of the expected OBW & VBW \ge 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 ~ 5 % of the 99 % occupied bandwidth observed in step 6.

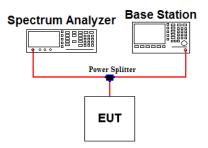
3.3 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Test Procedure

- KDB971168 D01v03 Section 6, KDB971168D02v02 Section 8
- ANSI C63.26-2015 Section 5.7

All out of band emissions are measured by means of a calibrated spectrum analyzer. Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The EUT was setup to maximum output power at its lowest and highest channel with all bandwidths, modulations and RB configurations.


For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

Section 90.691(a) compliance testing, use RBW = 300 Hz for offsets less than 37.5 kHz from a channel edge; RBW = 100 kHz for offsets greater than 37.5 kHz is allowed.

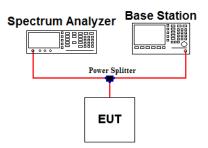
- 1. Span was set large enough so as to capture all out of band emissions near the band edge
- RBW = 300 Hz & VBW ≥ 3 X RBW (less than 37.5 kHz from a channel edge) RBW = 100 KHz & VBW ≥ 3 X RBW (greater than 37.5 kHz from a channel edge)
- 3. Detector = RMS & Trace mode = Average
- 4. Sweep time = Auto couple
- 5. The trace was allowed to stabilize

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test set-up

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7


The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths, modulations and RB configurations. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.

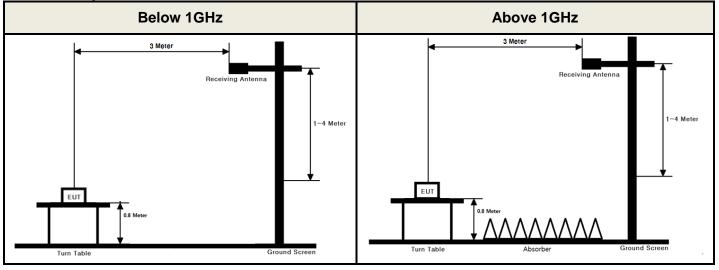
- 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize
- Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1GHz and 1MHz or greater for frequencies greater than 1GHz.

3.5 EMISSION MASK

Test set-up

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7


The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths, modulations and RB configurations.

Transmitters used in the radio services by Part 90 must comply with the emission masks.

- 6. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 7. Detector = RMS & Trace mode = Max hold
- 8. Sweep time = Auto couple
- 9. Number of sweep point \geq 2 X span / RBW
- 10. The trace was allowed to stabilize
- Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1GHz and 1MHz or greater for frequencies greater than 1GHz.

3.6 UNDESIRABLE EMISSIONS

Test Set-up

These measurements were performed at 3 test site. The equipment under test is placed on a non-conductive table 0.8meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

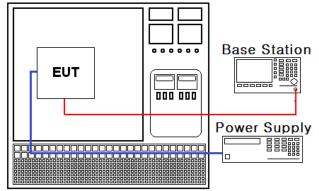
Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.12
- KDB971168 D01v03 Section 5.8
- ANSI C63.26-2015 Section 5.5

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW \ge 3 X RBW
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.


For radiated power measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.7 FREQUENCY STABILITY

Test Set-up

Constant Temp & Humidity Chamber

Test Procedure

- ANSI/TIA-603-E-2016
- KDB971168 D01v03 Section 9

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from -30 °C to +50 °C using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability of the transmitter shall be maintained within \pm 0.000 25 % (\pm 2.5 ppm) of the center frequency for Part 90.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
 A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

TDt&C

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	19/06/26	20/06/26	MY50410163
Spectrum Analyzer	Agilent Technologies	N9020A	19/06/26	20/06/26	US47360812
DC power supply	Agilent Technologies	66332A	19/06/25	20/06/25	MY43000394
Multimeter	FLUKE	17B+	19/12/17	20/12/17	36390701WS
Power Divider	Weinschel	WA1575	19/06/25	20/06/25	WA1575-1
Temp & Humi	SJ Science	SJ-TH-S50	19/06/25	20/06/25	U5542113
Radio Communication Analyzer	Anritus	MT8820C	19/06/26	20/06/26	6201127429
Thermohygrometer	BODYCOM	BJ5478	19/12/16	20/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/12/16	20/12/16	120612-1
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Loop Antenna	ETS-Lindgren	6502	19/09/18	21/09/18	00226186
Bilog Antenna	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Dipole Antenna	Schwarzbeck	VHA9103	19/02/28	21/02/28	2116
Dipole Antenna	Schwarzbeck	VHA9103	18/04/13 20/04/10	20/04/13 22/04/10	2117
Dipole Antenna	Schwarzbeck	UHA9105	19/02/28	21/02/28	2261
Dipole Antenna	Schwarzbeck	UHA9105	18/04/13 20/04/10	20/04/13 22/04/10	2262
HORN ANT	ETS	3117	18/05/10 20/04/24	20/05/10 22/04/24	00140394
HORN ANT	ETS	3117	20/03/26	22/03/26	00152145
Amplifier	EMPOWER	BBS3Q7ELU	19/06/24	20/06/24	1020
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
PreAmplifier	Agilent	8449B	19/06/27	20/06/27	3008A02108
High-pass filter	Wainwright	WHKX12-935- 1000-15000- 40SS	19/06/24	20/06/24	7
Cable	DTNC	Cable	20/01/13	21/01/13	M-01
Cable	DTNC	Cable	20/01/13	21/01/13	M-02
Cable	Junkosha	MWX315	20/01/13	21/01/13	M-05
Cable	Junkosha	MWX221	20/01/13	21/01/13	M-06
Cable	DTNC	Cable	20/01/13	21/01/13	RF-84

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Status Note 1
2.1046 90.635	Conducted Output Power	< 100 Watts		С
2.1049	Occupied Bandwidth	N/A		С
2.1051 90.691	Band Edge / Conducted Spurious Emissions	> 43 + $10\log_{10}(P)$ dB for all out-of-band emissions except > 50 + $10\log_{10}(P)$ dB at Band Edge and for all out-of-band emissions within 37.5kHz of Block Edge		С
90.210(n)	Emission Mask	Emission Mask B: (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB. (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.	Conducted	с
2.1055 90.213	Frequency Stability	< 2.5 ppm		С
-	Radiated Output Power	-		C ^{Note2}
2.1053 90.691	Undesirable Emissions	 > 43 + 10log₁₀ (P) dB for all out-of-band emissions except > 50 + 10log₁₀ (P) dB at Band Edge and for all out-of-band emissions within 37.5kHz of Block Edge 	Radiated	C ^{Note2}

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data was reported.

Note 3: This device supports wireless charging & Can use Dual Screen.

So per KDB648474 D03v01r04, the radiated test items were performed all not charging, charging and Dual Screen conditions. For wireless charging condition, the handset is placed on the representative charging pad under normal conditions and in a simulated call configuration. And the worst case data was reported.

6. SAMPLE CALCULATION

A. Emission Designator

LTE Band 26(QPSK)

Emission Designator = 13M4G7D

- LTE OBW = 13.402 MHz
- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data Transmission

LTE Band 26(64QAM)

Emission Designator = 13M4W7D

LTE OBW = 13.383 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

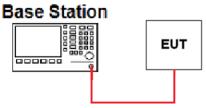
D = Data Transmission

B. For substitution method

LTE Band 26(16QAM)

Emission Designator = **13M4W7D** LTE OBW = 13.412 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data Transmission

- 1) The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1 GHz respectively above ground.
- 2) The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3) During the test, the turn table is rotated until the maximum signal is found.
- 4) Record the field strength meter's level. (ex. Spectrum reading level is -8.5 dBm)
- 5) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- Increase the signal generator output till the field strength meter's level is equal to the item (4). (ex. Signal generator level is -18.04 dBm)
- 7) The gain of the cable and amplifier between the signal generator and terminals of substituted antenna is 46.92 dB at test frequency.
- 8) Record the level at substituted antenna terminal. (ex. 28.88dBm)
- 9) The result is calculated as below;


<u>EIRP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBi)</u> <u>ERP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBd)</u> Where, TX Antenna Gain (dBd) = TX Antenna Gain (dBi) - 2.15 dB

7. TEST DATA

7.1 CONDUCTED OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

Channel Bandwidth (MHz)	Test Frequency (MHz)	Test Mode	Conducted Output power (dBm)	Conducted Output power (W)
		QPSK	24.95	0.313
15	821.5	16QAM	24.09	0.256
		64QAM	23.07	0.203
		QPSK	24.94	0.312
10	819	16QAM	24.07	0.255
		64QAM	23.06	0.202
		QPSK	24.91	0.310
	816.5	16QAM	24.07	0.255
F		64QAM	23.04	0.201
5		QPSK	24.92	0.310
	821.5	16QAM	23.99	0.251
		64QAM	23.09	0.204
	815.5	QPSK	24.88	0.308
		16QAM	23.95	0.248
		64QAM	22.97	0.198
	819	QPSK	24.82	0.303
3		16QAM	23.88	0.244
		64QAM	22.99	0.199
	822.5	QPSK	24.89	0.308
		16QAM	23.95	0.248
		64QAM	23.02	0.200
		QPSK	24.88	0.308
	814.7	16QAM	24.03	0.253
		64QAM	23.03	0.201
		QPSK	24.87	0.307
1.4	819	16QAM	23.98	0.250
		64QAM	22.98	0.199
		QPSK	24.93	0.311
	823.3	16QAM	24.05	0.254
		64QAM	23.05	0.202

7.2 OCCUPIED BANDWIDTH

- Plots of the EUT's Occupied Bandwidth are shown in Clause 8.1

7.3 BAND EDEG EMISSIONS (Conducted)

- Plots of the EUT's Band Edge Emissions are shown in Clause 8.2

7.4 SPURIOUS AND HARMONICS EMISSIONS (Conducted)

- Plots of the EUT's Spurious Emissions are shown in Clause 8.3

7.5 EMISSION MASK (Conducted)

Plots of the EUT's Spurious Emissions are shown in Clause 8.4

7.6 ERP

- Test Notes

This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

TX Ant **Channel Bandwidth Test Frequency** Test **RB Size**/ Ant Pol Level(dBm) ERP ERP Gain Note (MHz) (MHz) Mode Offset (H/V) @ Ant Terminal (dBm) (W) (dBd) QPSK 1/74 V 21.14 -0.60 20.54 0.113 _ 16QAM 1/74 V 19.61 -0.60 19.01 0.080 _ 15 821.5 64QAM 1/74 V 18.56 -0.60 0.063 17.96 -With Dual QPSK 1/74 V 19.03 -0.60 18.43 0.070 Display (180°) QPSK 1/25 V 20.34 -0.58 19.76 0.095 -10 819 16QAM 1/25 V 18.88 -0.58 18.30 0.068 -64QAM 1/25 V 17.80 -0.58 17.22 0.053 _ **QPSK** 1/24 V 19.28 -0.55 18.73 0.075 816.5 16QAM 1/24 V 18.03 -0.55 17.48 0.056 _ 64QAM 1/24 V 16.97 -0.55 0.044 16.42 -5 V QPSK 1/24 20.36 -0.60 19.76 0.095 -821.5 16QAM 1/24 V 18.87 -0.60 0.067 18.27 _ 64QAM 1/24 17.65 V -0.60 17.05 0.051 _ QPSK 1/7 V 19.01 -0.54 18.47 0.070 -V 815.5 16QAM 1/717.80 -0.54 17.26 0.053 _ 64QAM V 16.75 -0.54 1/716.21 0.042 -QPSK 1/7 V -0.58 19.02 18.44 0.070 _ 3 819 1/7V 17.82 -0.58 16QAM 17.24 0.053 _ V 16.64 -0.58 64QAM 1/716.06 0.040 _ QPSK 1/7 V 20.17 -0.61 19.56 0.090 _ 822.5 16QAM 1/7 V 18.71 0.065 -0.61 18.10 _ 64QAM V 17.52 0.049 1/7-0.61 16.91 _ V QPSK 1/2 19.08 -0.54 18.54 0.071 _ 814.7 16QAM 1/2 V 17.77 -0.54 17.23 0.053 _ 64QAM 1/2 V 16.72 -0.54 16.18 0.041 -V QPSK 1/2 19.01 -0.58 18.43 0.070 _ 1.4 819 16QAM 1/2 V 17.85 -0.58 17.27 0.053 -64QAM 1/2 V 16.73 -0.58 16.15 0.041 -1/2 V QPSK 19.93 -0.62 19.31 0.085 _ 823.3 16QAM 1/2 V 18.64 -0.62 18.02 0.063 -V 64QAM 1/2 17.61 -0.62 16.99 0.050 _

- Measurement data: Without wireless charging pad

- Measurement data: With wireless charging pad

Channel Bandwidth (MHz)	Test Frequency (MHz)	Test Mode	RB Size/ Offset	Ant Pol (H/V)	Level(dBm) @ Ant Terminal	TX Ant Gain (dBd)	ERP (dBm)	ERP (W)	Note
		QPSK	1/74	Н	21.48	-0.60	20.88	0.122	-
	821.5	16QAM	1/74	Н	20.37	-0.60	19.77	0.095	-
15		64QAM	1/74	Н	19.25	-0.60	18.65	0.073	-
		QPSK	1/74	Н	16.03	-0.60	15.43	0.035	With Dual Display (180°)
		QPSK	1/25	Н	22.23	-0.58	21.65	0.146	-
10	819	16QAM	1/25	Н	21.09	-0.58	20.51	0.112	-
		64QAM	1/25	Н	19.96	-0.58	19.38	0.087	-
		QPSK	1/24	Н	21.89	-0.60	21.29	0.135	-
5	821.5	16QAM	1/24	Н	20.80	-0.60	20.20	0.105	-
		64QAM	1/24	Н	18.75	-0.60	18.15	0.065	-
		QPSK	1/7	Н	22.03	-0.61	21.42	0.139	-
3	822.5	16QAM	1/7	Н	20.87	-0.61	20.26	0.106	-
		64QAM	1/7	Н	19.79	-0.61	19.18	0.083	-
		QPSK	1/2	Н	21.96	-0.62	21.34	0.136	-
1.4	823.3	16QAM	1/2	Н	20.90	-0.62	20.28	0.107	-
		64QAM	1/2	Н	19.78	-0.62	19.16	0.082	-

7.7 UNDESIRABLE EMISSIONS (Radiated)

- Test Notes

- 1. This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported.
- 2. Limit Calculation = 43 + 10log₁₀ (P[Watts])
- 3. This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.
- 4. The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions above table.

B.W	Test	RB	Test		Ant	Level(dBm)	TX Ant	Res	sult	Limit	
(MHz)	Freq. (MHz)	Size/ Offset	Mode	Freq.(MHz)	Pol (H/V)	@ Ant Terminal	Gain(dBd)	(dBm)	(dBc)	(dBc)	Note
			QPSK	1657.94	V	-55.87	3.98	-51.89	72.43	33.54	-
			16QAM	1657.39	V	-55.96	3.99	-51.97	70.98	32.01	-
15	821.5	1/74	64QAM	1657.21	V	-55.81	3.99	-51.82	69.78	30.96	-
			QPSK	1658.29	V	-56.32	3.97	-52.35	70.78	31.43	With Dual Display (180°)

- Measurement data: Without wireless charging pad

- Measurement data: With wireless charging pad

B.W	Test	RB	Test		Ant	Level(dBm)	TX Ant	Res	sult	Limit	
(MHz)	Freq. (MHz)	Size/ Offset	Mode	Freq.(MHz)	Pol (H/V)	@ Ant Terminal	@ Ant Gain(dBd)	(dBm)	(dBc)	(dBc)	Note
15	901 15	4/74	QPSK	1658.30	V	-55.73	3.97	-51.76	72.64	33.88	-
15	821.15	1/74	QPSK	1657.58	V	-55.94	3.98	-51.96	67.39	28.43	With Dual Display (180°)
10	819	1/25	QPSK	1636.73	V	-55.81	4.26	-51.55	73.20	34.65	-

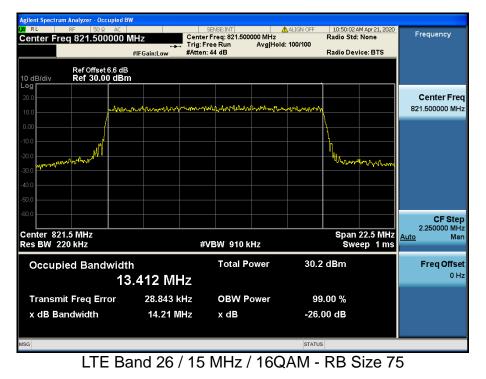
7.8 FREQUENCY STABILITY

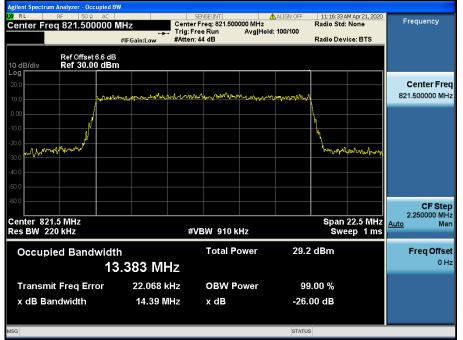
- Test Notes

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

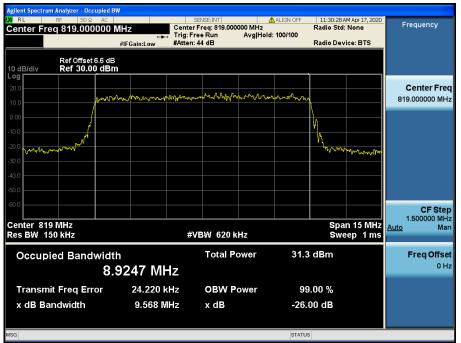
OPERATING FREQUENCY	:	<u>819 MHz</u>
REFERENCE VOLTAGE	:	<u>3.87 </u> VDC
LIMIT	:	<u>2.5 </u> ppm

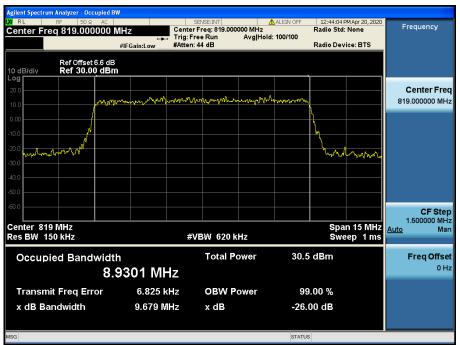
VOLTAGE	POWER	TEMP	FREQUENCY	FREQ.Dev	De	viation
(%)	(V DC)	(°C)	(Hz)	(Hz)	(ppm)	(%)
100%		+20(Ref)	819,000,007	7	0.0085	0.00000855
100%		-30	819,000,006	6	0.0073	0.00000733
100%		-20	819,000,008	8	0.0098	0.000000977
100%		-10	819,000,005	5	0.0061	0.000000611
100%	3.87	0	818,999,990	-10	-0.0122	-0.000001221
100%	3.07	+10	818,999,992	-8	-0.0098	-0.000000977
100%		+20	819,000,007	7	0.0085	0.00000855
100%		+30	818,999,993	-7	-0.0085	-0.00000855
100%		+40	819,000,006	6	0.0073	0.00000733
100%		+50	818,999,989	-11	-0.0134	-0.000001343
115%	4.45	+20	819,000,006	6	0.0073	0.00000733
BATT.ENDPOINT	3.10	+20	818,999,990	-10	-0.0122	-0.000001221


.

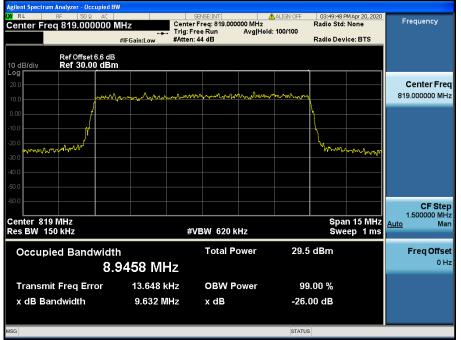

8. TEST PLOTS

8.1 OCCUPIED BANDWIDTH

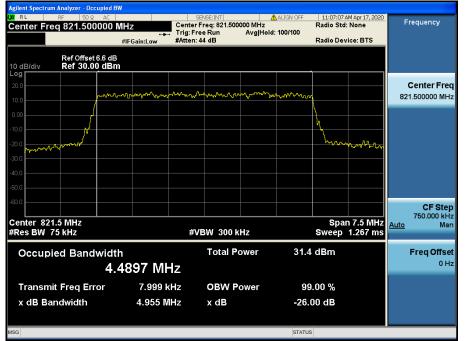

I SENSE:INT ▲ ALIGN OFF Center Freq: 821.500000 MHz Trig: Free Run Avg|Hold: 100/100 #Atten: 44 dB 10:23:29 AM Apr 21, 2020 Radio Std: None Frequency Center Fre eq 821.500000 MHz +++ #IFGain:Low Radio Device: BTS Ref Offset 6.6 dB Ref 30.00 dBm 10 dB/d **Center Freq** 821,500000 MHz CF Step 2.250000 MHz Span 22.5 MHz Sweep 1 ms Center 821.5 MHz Res BW 220 kHz Mar Auto #VBW 910 kHz **Occupied Bandwidth** Total Power 31.1 dBm Freq Offset 0 Hz 13.402 MHz Transmit Freq Error 17.078 kHz **OBW Power** 99.00 % x dB Bandwidth 14.42 MHz x dB -26.00 dB LTE Band 26 / 15 MHz / QPSK - RB Size 75



LTE Band 26 / 15 MHz / 64QAM - RB Size 75

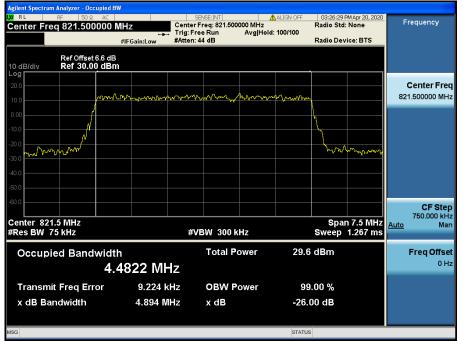


LTE Band 26 / 10 MHz / QPSK - RB Size 50

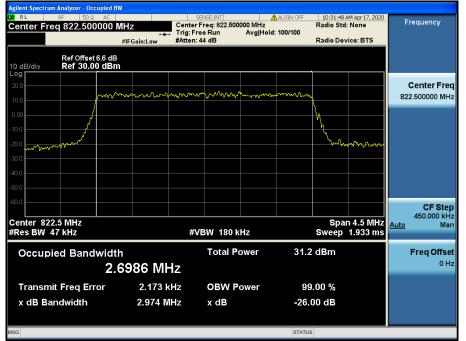


LTE Band 26 / 10 MHz / 16QAM - RB Size 50

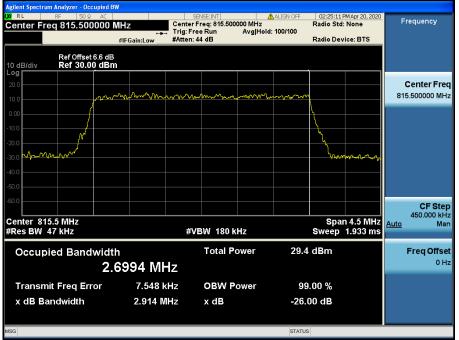
LTE Band 26 / 10 MHz / 64QAM - RB Size 50



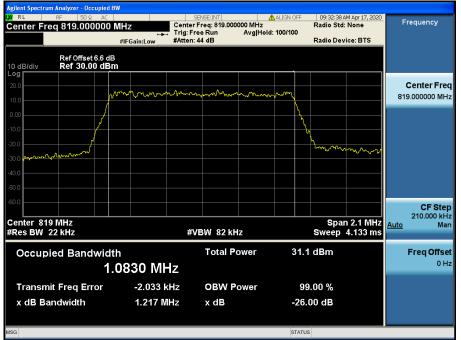
LTE Band 26 / 5 MHz / QPSK - RB Size 25


LTE Band 26 / 5 MHz / 16QAM - RB Size 25

LTE Band 26 / 5 MHz / 64QAM - RB Size 25



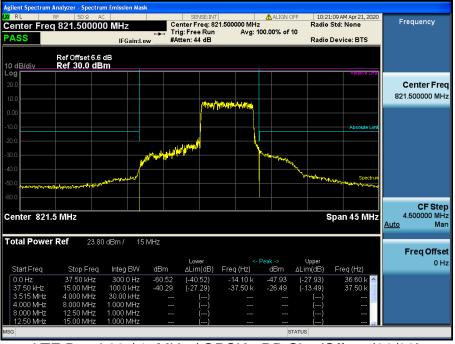
LTE Band 26 / 3 MHz / QPSK - RB Size 15


LTE Band 26 / 3 MHz / 16QAM - RB Size 15

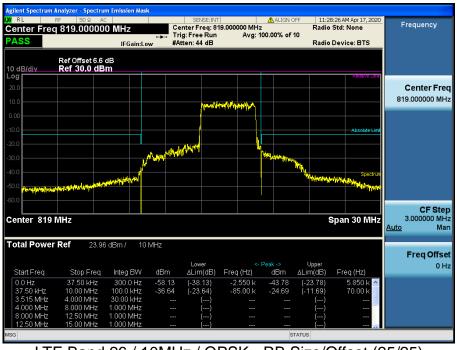
LTE Band 26 / 3 MHz / 64QAM - RB Size 15

LTE Band 26 / 1.4 MHz / QPSK - RB Size 6

LTE Band 26 / 1.4 MHz / 16QAM - RB Size 6

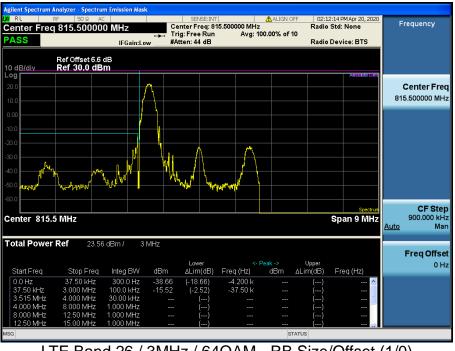


LTE Band 26 / 1.4 MHz / 64QAM - RB Size 6

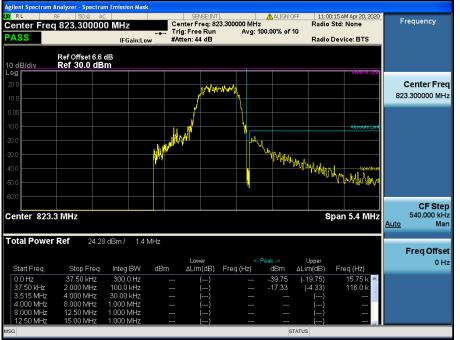


8.2 BAND EDGE EMISSIONS(Conducted)

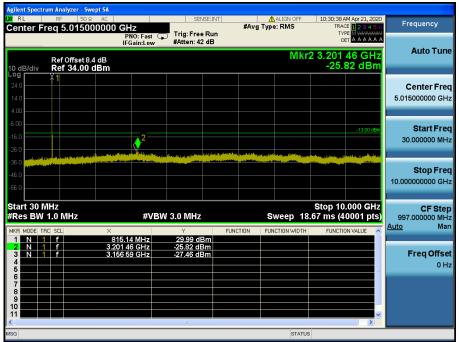
- Band Edge & Extended Band Edge

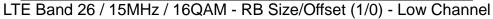

LTE Band 26 / 15MHz / QPSK - RB Size/Offset (36/39)

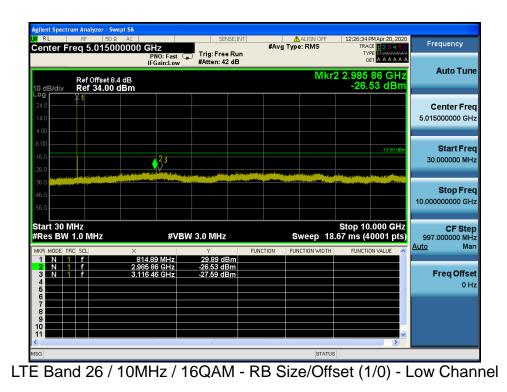
LTE Band 26 / 10MHz / QPSK - RB Size/Offset (25/25)

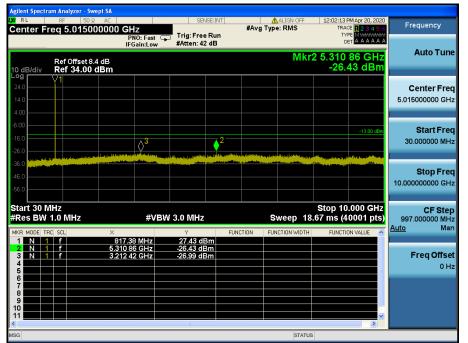


LTE Band 26 / 5MHz / QPSK - RB Size/Offset (12/13)

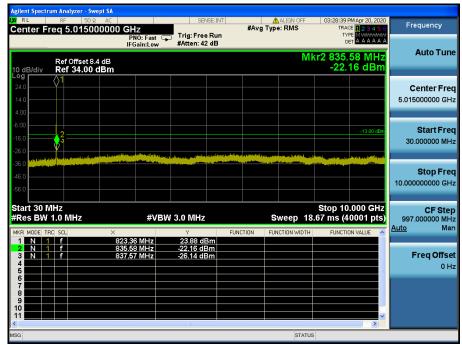

LTE Band 26 / 3MHz / 64QAM - RB Size/Offset (1/0)

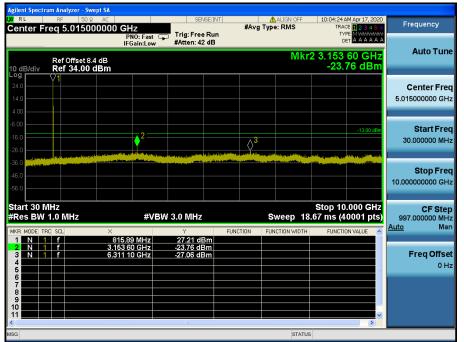


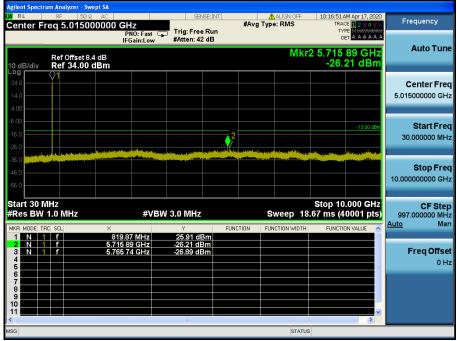


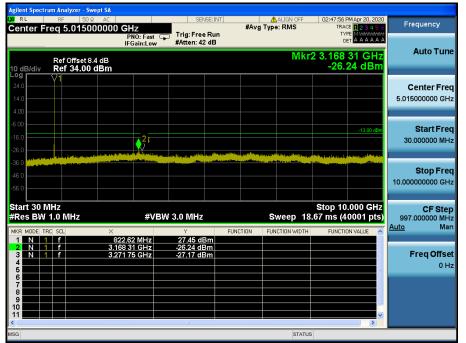

LTE Band 26 / 1.4MHz / 16QAM - RB Size/Offset (3/3)

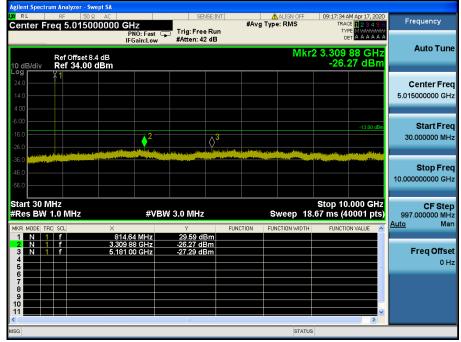
8.3 SPURIOUS AND HARMONICS EMISSIONS(Conducted)

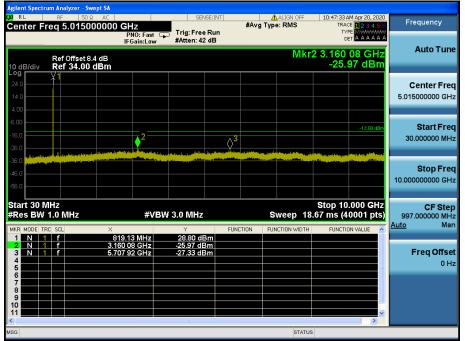


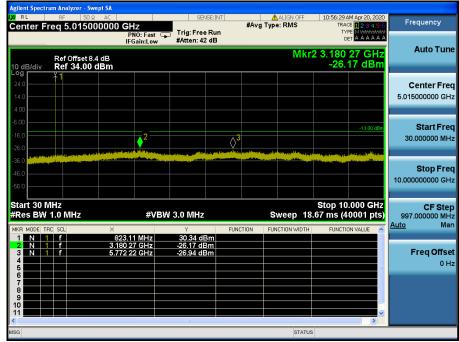



LTE Band 26 / 5MHz / 16QAM - RB Size/Offset (12/13) - Low Channel


LTE Band 26 / 5MHz / 64QAM - RB Size/Offset (25/0) - High Channel

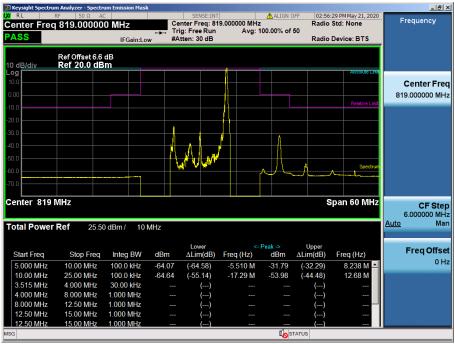

LTE Band 26 / 3MHz / QPSK - RB Size/Offset (8/7) - Low Channel


LTE Band 26 / 3MHz / QPSK - RB Size/Offset (15/0) - Mid Channel


LTE Band 26 / 3MHz / 64QAM - RB Size/Offset (8/4) - High Channel

LTE Band 26 / 1.4MHz / QPSK - RB Size/Offset (3/0) - Low Channel

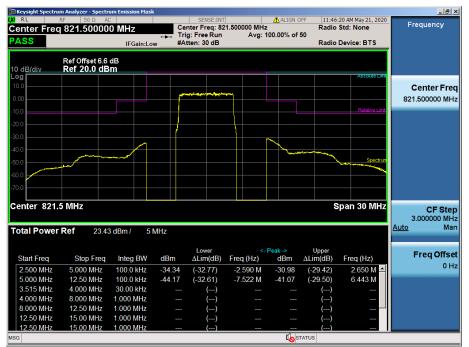
LTE Band 26 / 1.4MHz / 16QAM - RB Size/Offset (6/0) – Mid Channel



LTE Band 26 / 1.4MHz / 16QAM - RB Size/Offset (3/0) - High Channel

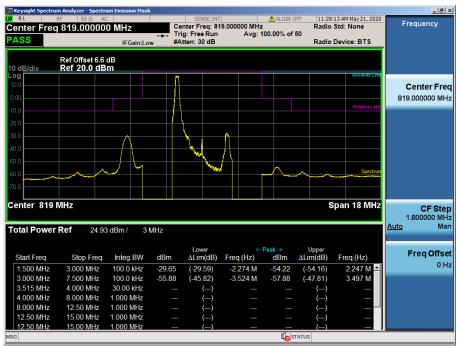
8.4 EMISSION MASK (Conducted)

- 8 × 01:39:00 PM May 21, 2020 Radio Std: None ALIGN OFF Center Free Run Avg: 100.00% of 50 #Atten: 30 dB Frequency Center Freq 821.500000 MHz PASS Radio Device: BTS IFGain:Low Ref Offset 6.6 dB Ref 20.0 dBm **Center Freq** . 821.500000 MHz Center 821.5 MHz Span 90 MHz CF Step 9.000000 MHz Man Auto Total Power Ref 25.09 dBm / 15 MHz Upper ∆Lim(dB) ak-> dBm Freq Offset ΔLim(dB) Freq (Hz) Start Freq Stop Freq Integ BW dBm Freq (Hz) 0 Hz 15.00 MHz 37.50 MHz (-65.12) (-55.19) -7.590 M -15.69 M 12.49 M 19.15 M 7.500 MHz 100.0 kHz -65.03 -32.32 (-32.41) 15.00 MHz 100.0 kHz -65.11 -54.67 (-44.76) 3.515 MHz 4.000 MHz 30.00 kHz 4.000 MHz 8.000 MHz 1.000 MHz 8.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 15.00 MHz 1.000 MHz 50 MHz


LTE Band 26 / 15MHz / QPSK - RB Size/Offset (1/74) - Low Channel

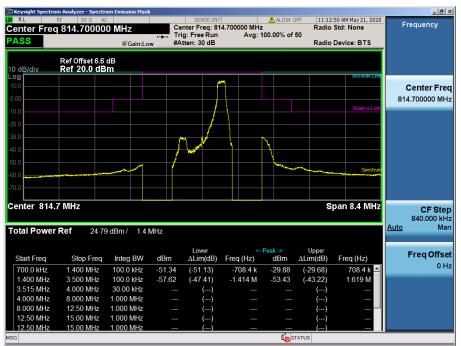
LTE Band 26 / 10MHz / QPSK - RB Size/Offset (1/49) - Low Channel

	m Analyzer - Spectr	um Emission Masl	¢.						_ 5
	RF 50Ω A			SENSE:INT		🛕 ALIGN (:56 AM May 21, 2020	Frequency
Center Freq	816.50000	0 MHz		nter Freq: 81 g: Free Run	6.500000 MHz	: 100.00% of		Std: None	requeitcy
ASS		IFGain:Lo		tten: 30 dB	Avg.	100.00 % 01		Device: BTS	
	Ref Offset 6.6								
0 dB/div	Ref 20.0 dE	m						Aksolute Limit	
0.0								Absolute Ellin	0
					l.				Center Fre
.00									816.500000 MH
0.0					<u></u>			Relative Limit	
0.0									
					J T I				
0.0			<u>t</u>			Δ			
0.0			<u> </u>	/		-A-			
io.o			(W	h Av					
io.o		~		Sec. 1		~ \	A	Spectrum	
	^								
0.0									
enter 816.	SIVINZ							6pan 30 MHz	CF Ste
									3.000000 Mi
otal Power	Ref 24.73	3 dBm / 5	MHz						<u>Auto</u> Ma
				Lower		Peak ->	Upper		Freq Offs
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	01
2.500 MHz	5.000 MHz	100.0 kHz	-56.74	(-56.47)	-3.984 M	-31.32	(-31.05)	3.969 M 📤	01
5.000 MHz	12.50 MHz	100.0 kHz	-62.49	(-52.21)	-6.173 M	-54.69	(-44.42)	6.173 M	
3.515 MHz	4.000 MHz	30.00 kHz		()			()		
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
3						ц s	TATUS		


LTE Band 26 / 5MHz / QPSK - RB Size/Offset (1/24) - Low Channel

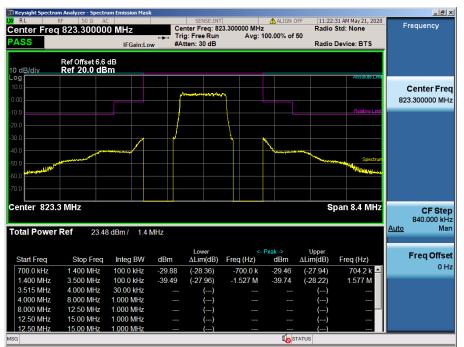
LTE Band 26 / 5MHz / QPSK - RB Size/Offset (25/0) - High Channel

		um Emission Masl							_ 8
enter Fre	RF 50 Ω A0 q 815.50000	0 MHz	Tri	g: Free Run	5.500000 MHz	ALIGN 0	Radio 50	59 AM May 21, 2020 Std: None	Frequency
155		IFGain:Lo	w #A	tten: 30 dB			Radio	Device: BTS	
dB/div	Ref Offset 6.6 Ref 20.0 dB								
g					۸			Absolute Limit	
).0									Center Fre
00									815.500000 MH
1.0					\square			Relative Limit	
).0									
1.0			<u>n</u>			\wedge			
).0			\rightarrow	. 1					
1.0						$\rightarrow \vdash \leftarrow$			
		\sim		The state		~ \	~ ~	Spectrum	
.0								opeen an	
).0									
).0	^								
.0	5.5 MHz						5	pan 18 MHz	
enter 815		4 dBm / 3	MHz				S S		1.800000 M
enter 815		4 dBm / 3	MHz	Lower	~	Peak ->	Upper		1.800000 M <u>Auto</u> M
onter 815		4 dBm / 3 Integ BW	MHz	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm			1.800000 M <u>Auto</u> M Freq Offs
enter 815 otal Power Start Freq 1.500 MHz	r Ref 25.04 Stop Freq 3.000 MHz	Integ BW 100.0 kHz	dBm -53.84		Freq (Hz) -2.301 M	dBm -29.69	Upper	Epan 18 MHz Freq (Hz) 2.310 M ▲	1.800000 M <u>Auto</u> M Freq Offs
enter 815 Dtal Power Start Freq 1.500 MHz 3.000 MHz	r Ref 25.04 Stop Freq 3.000 MHz 7.500 MHz	Integ BW 100.0 kHz 100.0 kHz	dBm	∆Lim(dB)	Freq (Hz)	dBm	Upper ∆Lim(dB)	ipan 18 MHz Freq (Hz)	1.800000 M <u>Auto</u> M Freq Offs
enter 815 Dtal Power Start Freq 1.500 MHz 3.000 MHz 3.515 MHz	r Ref 25.04 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz	dBm -53.84	ΔLim(dB) (-53.89) (-50.13) ()	Freq (Hz) -2.301 M	dBm -29.69	Upper ∆Lim(dB) (-29.73)	Epan 18 MHz Freq (Hz) 2.310 M ▲	1.800000 M <u>Auto</u> M Freq Offs
enter 815 otal Power Start Freq 1.500 MHz 3.000 MHz 3.515 MHz 4.000 MHz	r Ref 25.04 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz 8.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz	dBm -53.84	ΔLim(dB) (-53.89) (-50.13) () ()	Freq (Hz) -2.301 M	dBm -29.69	Upper ΔLim(dB) (-29.73) (-44.69)	Epan 18 MHz Freq (Hz) 2.310 M ▲	1.800000 M <u>Auto</u> M Freq Offs
enter 815 Start Freq 1.500 MHz 3.000 MHz 3.515 MHz 4.000 MHz 8.000 MHz	r Ref 25.04 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz 8.000 MHz 12.50 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz 1.000 MHz	dBm -53.84 -60.08 	ΔLim(dB) (-53.89) (-50.13) () () ()	Freq (Hz) -2.301 M	dBm -29.69	Upper ΔLim(dB) (-29.73) (-44.69) () () ()	Epan 18 MHz Freq (Hz) 2.310 M ▲	1.800000 M <u>Auto</u> M Freq Offs
enter 815 otal Power Start Freq 1.500 MHz 3.000 MHz 4.000 MHz	r Ref 25.04 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz 8.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz	dBm -53.84 -60.08 	ΔLim(dB) (-53.89) (-50.13) () ()	Freq (Hz) -2.301 M	dBm -29.69	Upper ΔLim(dB) (-29.73) (-44.69) () ()	Epan 18 MHz Freq (Hz) 2.310 M ▲	CF Ste 1.80000 Mi <u>Auto</u> M Freq Offs 0 I


LTE Band 26 / 3MHz / QPSK - RB Size/Offset (1/14) - Low Channel

LTE Band 26 / 3MHz / QPSK - RB Size/Offset (1/0) - Mid Channel

		um Emission Masl							_ 5
	RF 50 Ω A0			SENSE:INT		ALIGN (:10 PM May 21, 2020 Std: None	Frequency
	822.50000	0 MHZ		nter Freq: 822 ig: Free Run		: 100.00% of		Sta: None	
ASS		IFGain:Lo		tten: 30 dB				Device: BTS	
dB/div	Ref Offset 6.6 Ref 20.0 dB								
	Ker 20.0 dB							Absolute Limi	
0.0									Center Fre
00				est and a second se	•••				822,500000 MI
								Relative Limit	822.300000 Wil
.0								Relative Limt	
.0									
1.0									
).0									
							Care and a second day of the s	Spectrum	
0.0								and a start of the sector designed	
).0									
.0	5 MHz							Span 18 MHz	CF Ste
).0	5 MHz						s	Span 18 MHz	
enter 822.		3 dBm / 3	MHz				2 2 2	Span 18 MHz	CF Ste 1.800000 Mi <u>Auto</u> Mi
enter 822.		3 dBm / 3	MHz				S	Span 18 MHz	1.800000 Mi
enter 822.		3 dBm / 3	MHz	Lower		Peak ->	Upper	Span 18 MHz	1.800000 Mł <u>Auto</u> Ma
enter 822.4		3 dBm / 3 Integ BW	MHz	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm		Span 18 MHz Freq (Hz)	1.800000 Mi <u>Auto</u> Mi Freq Offs
enter 822.4	Ref 22.53						Upper		1.800000 MI <u>Auto</u> Mi
enter 822.4 otal Power Start Freq 1.500 MHz 3.000 MHz	Ref 22.53 Stop Freq 3.000 MHz 7.500 MHz	Integ BW 100.0 kHz 100.0 kHz	dBm	∆Lim(dB)	Freq (Hz)	dBm	Upper ∆Lim(dB)	Freq (Hz)	1.800000 Mi <u>Auto</u> Mi Freq Offs
enter 822.3 otal Power Start Freq 1.500 MHz 3.000 MHz 3.515 MHz	Ref 22.53 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz	dBm -32.01	ΔLim(dB) (-29.55) (-29.61) ()	Freq (Hz) -1.536 M	dBm -30.09	Upper ΔLim(dB) (-27.62)	Freq (Hz)	1.800000 Mi <u>Auto</u> Mi Freq Offs
enter 822.4 otal Power Start Freq 1.500 MHz 3.000 MHz 3.515 MHz 4.000 MHz	Ref 22.53 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz 8.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz	dBm -32.01	ΔLim(dB) (-29.55) (-29.61) () ()	Freq (Hz) -1.536 M -3.083 M	dBm -30.09	Upper ΔLim(dB) (-27.62) (-29.52)	Freq (Hz)	1.800000 Mi <u>Auto</u> Mi Freq Offs
enter 822.4 otal Power Start Freq 1.500 MHz 3.515 MHz 4.000 MHz 8.000 MHz	Ref 22.53 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz 8.000 MHz 12.50 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz 1.000 MHz	dBm -32.01	ΔLim(dB) (-29.55) (-29.61) () () ()	Freq (Hz) -1.536 M -3.083 M	dBm -30.09	Upper ∆Lim(dB) (-27.62) (-29.52) () ()	Freq (Hz)	1.800000 Mi <u>Auto</u> Mi Freq Offs
enter 822.4 otal Power Start Freq 1.500 MHz 3.000 MHz 3.000 MHz 4.000 MHz	Ref 22.53 Stop Freq 3.000 MHz 7.500 MHz 4.000 MHz 8.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz	dBm -32.01	ΔLim(dB) (-29.55) (-29.61) () ()	Freq (Hz) -1.536 M -3.083 M	dBm -30.09	Upper ∆Lim(dB) (-27.62) (-29.52) () ()	Freq (Hz)	1.800000 Mi <u>Auto</u> Mi Freq Offs


LTE Band 26 / 3MHz / 16QAM - RB Size/Offset (15/0) - High Channel

LTE Band 26 / 1.4MHz / QPSK - RB Size/Offset (1/5) - Low Channel

	m Analyzer - Spectr								_ 5
	RF 50 Ω A			SENSE:INT		🛕 ALIGN (:58 PM May 21, 2020	Frequency
enter Freq	819.00000	0 MHz		nter Freq: 81 ig: Free Run	19.000000 MH	z 100.00% of		Std: None	ricqueriey
ASS		IFGain:Lo		tten: 30 dB	Avg.	100.00 % 01		Device: BTS	
	Ref Offset 6.6								
) dB/div og	Ref 20.0 dB	m						Aksolute Limit	
								Abootato Citta	O a materia E ma
				*******	(na				Center Fre
.00									819.000000 MH
0.0								Relative Limit	
0.0									
0.0									
					4	Manual			
D.O		ANAL AND				a de la complete de l	and the second sec		
D.O	and the state of t							And Statistiches La	
0.0								a second	
0.0	MH ₇							nan 8.4 MHz	
	MHz						S	pan 8.4 MHz	
enter 819 I							s	pan 8.4 MHz	840.000 kł
0.0) dBm / 1.4	MHz				S	pan 8.4 MHz	840.000 kł
enter 819 I) dBm / 1.4	MHz					pan 8.4 MHz	CF Ste 840.000 kH <u>Auto</u> Ma
enter 819 I	Ref 22.49			Lower		·Peak ->	Upper		840.000 kł
enter 819 I otal Power Start Freq	Ref 22.49 Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	Upper ∆Lim(dB)	Freq (Hz)	840.000 kł <u>Auto</u> Ma
enter 819 I otal Power Start Freq 700.0 kHz	Ref 22.49 Stop Freq 1.400 MHz	Integ BW 100.0 kHz	dBm -33.88	ΔLim(dB) (-31.37)	Freq (Hz) -704.2 k	dBm -31.37	Upper ΔLim(dB) (-28.86)	Freq (Hz) 700.0 k	840.000 kł <u>Auto</u> Ma Freq Offs
enter 819 I otal Power Start Freq 700.0 kHz 1.400 MHz	Ref 22.49 Stop Freq 1.400 MHz 3.500 MHz	Integ BW 100.0 kHz 100.0 kHz	dBm -33.88 -38.89	∆Lim(dB) (-31.37) (-26.39)	Freq (Hz) -704.2 k -1.418 M	dBm	Upper ∆Lim(dB) (-28.86) (-26.08)	Freq (Hz)	840.000 ki <u>Auto</u> M Freq Offs
enter 819 I otal Power Start Freq 700.0 kHz 1.400 MHz 3.515 MHz	Ref 22.49 Stop Freq 1.400 MHz 3.500 MHz 4.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz	dBm -33.88	ΔLim(dB) (-31.37) (-26.39) ()	Freq (Hz) -704.2 k	dBm -31.37	Upper ∆Lim(dB) (-28.86) (-26.08) ()	Freq (Hz) 700.0 k	840.000 kł <u>Auto</u> Ma Freq Offs
enter 819 I otal Power Start Freq 700.0 kHz 1.400 MHz 3.515 MHz 4.000 MHz	Ref 22.49 Stop Freq 1.400 MHz 3.500 MHz 4.000 MHz 8.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz	dBm -33.88 -38.89	ΔLim(dB) (-31.37) (-26.39) () ()	Freq (Hz) -704.2 k -1.418 M	dBm -31.37	Upper ∆Lim(dB) (-28.86) (-26.08) () ()	Freq (Hz) 700.0 k	840.000 ki <u>Auto</u> M Freq Offs
enter 819 I otal Power Start Freq 700.0 kHz 1.400 MHz 8.000 MHz 8.000 MHz	Ref 22.49 Stop Freq 1.400 MHz 3.500 MHz 4.000 MHz 8.000 MHz 12.50 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz 1.000 MHz	dBm -33.88 -38.89	ΔLim(dB) (-31.37) (-26.39) () () ()	Freq (Hz) -704.2 k -1.418 M	dBm -31.37	Upper ∆Lim(dB) (-28.86) (-26.08) () () ()	Freq (Hz) 700.0 k	840.000 kł <u>Auto</u> Ma Freq Offs
enter 819 I otal Power Start Freq 700.0 kHz 1.400 MHz 3.515 MHz 4.000 MHz	Ref 22.49 Stop Freq 1.400 MHz 3.500 MHz 4.000 MHz 8.000 MHz	Integ BW 100.0 kHz 100.0 kHz 30.00 kHz 1.000 MHz	dBm -33.88 -38.89	ΔLim(dB) (-31.37) (-26.39) () ()	Freq (Hz) -704.2 k -1.418 M	dBm -31.37	Upper ∆Lim(dB) (-28.86) (-26.08) () ()	Freq (Hz) 700.0 k	840.000 kł <u>Auto</u> Ma Freq Offs

LTE Band 26 / 1.4MHz / 16QAM - RB Size/Offset (6/0) - Mid Channel

LTE Band 26 / 1.4MHz / QPSK - RB Size/Offset (6/0) - High Channel