TEST REPORT

70			DT&C Co., Ltd.				
	Dt&C		42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664				
		l					
1. Report	No : DRTFCC2005-014	3(1)					
2. Custom	er						
• Name	: LG Electronics USA, In	С.					
• Addre	ss : 111 Sylvan Avenue,	North Building En	glewood Cliffs, NJ 07632				
3. Use of I	Report : FCC Original Gra	ant					
4. Product	Name / Model Name : M	obile Phone / LM	-G910HMW				
FCC ID	: ZNFG910HMW						
	thod Used : KDB789033						
	ecification : FCC Part 15.						
	Test : 2020.04.16 ~ 2020						
7. Location	n of Test : 🛛 Permanent	Testing Lab	On Site Testing				
8. Testing	Environment : See apper	nded test report.					
9. Test Re	sult : Refer to the attache	d Test Result					
The results	shown in this test report ref	er only to the samp	le(s) tested unless otherwise state	ed.			
Affirmation	Tested by	6.l	Reviewed by	Nor			
Affirmation	Name : InHee Bae	(Signiture)	Name : GeunKi Son	(Signature)			
2020.06.08.							
DT&C Co., Ltd.							
	Not abided by K	S Q ISO / IEC 1702	25 and KOLAS accreditation.				

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2005-0143	May. 29, 2020	Initial issue	InHee Bae	GeunKi Son
DRTFCC2005-0143(1)	Jun. 08, 2020	Revised the section 9	InHee Bae	GeunKi Son

CONTENTS

1. EUT DESCRIPTION
1.1 EUT Description4
1.2 Transmitting configuration of EUT
2. Information about test items
2.1 Test Mode
2.2 Tested Channel Information
2.4 EMI Suppression Device(s)/Modifications
2.5 Measurement Uncertainty7
3. SUMMARY OF TESTS
4. TEST METHODOLOGY9
4.1 EUT configuration9
4.2 EUT exercise
4.3 General test procedures
4.4 Description of test modes
6. FACILITIES AND ACCREDITATIONS
0. FACILITIES AND ACCREDITATIONS
6.1 Facilities
6.1 Facilities 10 6.2 Equipment 10 7. ANTENNA REQUIREMENTS 10
6.2 Equipment 10
6.2 Equipment
6.2 Equipment 10 7. ANTENNA REQUIREMENTS 10 8. TEST RESULT 11
6.2 Equipment 10 7. ANTENNA REQUIREMENTS 10 8. TEST RESULT 11 8.1 Emission Bandwidth (26 dB Bandwidth) 11
6.2 Equipment 10 7. ANTENNA REQUIREMENTS 10 8. TEST RESULT 11 8.1 Emission Bandwidth (26 dB Bandwidth) 11 8.2 Minimum Emission Bandwidth (6 dB Bandwidth) 47
6.2 Equipment107. ANTENNA REQUIREMENTS108. TEST RESULT118.1 Emission Bandwidth (26 dB Bandwidth)118.2 Minimum Emission Bandwidth (6 dB Bandwidth)478.3 Maximum Conducted Output Power60
6.2 Equipment107. ANTENNA REQUIREMENTS108. TEST RESULT118.1 Emission Bandwidth (26 dB Bandwidth)118.2 Minimum Emission Bandwidth (6 dB Bandwidth)478.3 Maximum Conducted Output Power608.4 Maximum Power Spectral Density70
6.2 Equipment107. ANTENNA REQUIREMENTS108. TEST RESULT118.1 Emission Bandwidth (26 dB Bandwidth)118.2 Minimum Emission Bandwidth (6 dB Bandwidth)478.3 Maximum Conducted Output Power608.4 Maximum Power Spectral Density708.5 Radiated Spurious Emission Measurements121
6.2 Equipment107. ANTENNA REQUIREMENTS108. TEST RESULT118.1 Emission Bandwidth (26 dB Bandwidth)118.2 Minimum Emission Bandwidth (6 dB Bandwidth)478.3 Maximum Conducted Output Power608.4 Maximum Power Spectral Density708.5 Radiated Spurious Emission Measurements1218.6 AC Conducted Emissions133
6.2 Equipment107. ANTENNA REQUIREMENTS108. TEST RESULT118.1 Emission Bandwidth (26 dB Bandwidth)118.2 Minimum Emission Bandwidth (6 dB Bandwidth)478.3 Maximum Conducted Output Power608.4 Maximum Power Spectral Density708.5 Radiated Spurious Emission Measurements1218.6 AC Conducted Emissions1339. LIST OF TEST EQUIPMENT142

1. EUT DESCRIPTION

1.1 EUT Description

FCC Equipment Class	Unlicensed National Information Infrastructure (UNII)
Product	Mobile Phone
Model Name	LM-G910HMW
Add Model Name	LMG910HMW, G910HMW, LM-G910HM, LMG910HM, G910HM
Power Supply	DC 3.87 V
Modulation type	OFDM
Antenna Specification	Antenna type: PIFA Antenna Antenna gain: Refer to the clause 7 in test report.

5GHz Band	Mode	Tx frequency (MHz)	Max power(dBm)
	802.11a	5180 ~ 5240	18.93
	802.11n(HT20)	5180 ~ 5240	17.73
U-NII 1	802.11ac(VHT20)	5180 ~ 5240	17.96
0-1111 1	802.11n(HT40)	5190 ~ 5230	17.91
	802.11ac(VHT40)	5190 ~ 5230	17.90
	802.11ac(VHT80)	5210	17.32
	802.11a	5260 ~ 5320	18.15
U-NII 2A	802.11n(HT20)	5260 ~ 5320	17.16
	802.11ac(VHT20)	5260 ~ 5320	17.18
U-INII ZA	802.11n(HT40)	5270 ~ 5310	17.34
	802.11ac(VHT40)	5270 ~ 5310	17.48
	802.11ac(VHT80)	5290	16.56
	802.11a	5500 ~ 5720	18.89
	802.11n(HT20)	5500 ~ 5720	17.79
U-NII 2C	802.11ac(VHT20)	5500 ~ 5720	17.80
0-INII 20	802.11n(HT40)	5510 ~ 5710	17.92
	802.11ac(VHT40)	5510 ~ 5710	17.95
	802.11ac(VHT80)	5530 ~ 5690	17.48
	802.11a	5745 ~ 5825	18.81
	802.11n(HT20)	5745 ~ 5825	17.80
U-NII 3	802.11ac(VHT20)	5745 ~ 5825	17.74
	802.11n(HT40)	5755 ~ 5795	17.61
	802.11ac(VHT40)	5755 ~ 5795	17.72
	802.11ac(VHT80)	5775	16.97

1.2 Transmitting configuration of EUT

	SIS	0	MIMO (CDD)	MIMO (SDM)	
Mode	Ant 1	Ant 2	Ant 1 & 2	Ant 1 & 2	
	Data rate				
802.11a	6~54Mbps	6~54Mbps	6~54Mbps	-	
802.11n(HT20)	MCS 0 ~ 7	MCS 0 ~ 7	MCS 0 ~ 7	MCS 8 ~ 15	
802.11ac(VHT20)	MCS 0 ~ 8(1SS)	MCS 0 ~ 8(1SS)	MCS 0 ~ 8(1SS)	MCS 0 ~ 8(2SS)	
802.11n(HT40)	MCS 0 ~ 7	MCS 0 ~ 7	MCS 0 ~ 7	MCS 8 ~ 15	
802.11ac(VHT40)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(2SS)	
802.11ac(VHT80)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(2SS)	

Note1: SDM = Spatial Diversity Multiplexing, CDD = Cycle Delay Diversity, SS = Spatial Streams

Note2: This device supports WiFi DBS(dual-band simultaneous) transmission operation, which allows for two SISO channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna. (Ant 1: 2.4GHz band transmitting & ANT 2: 5GHz band transmitting) And the test results for WiFi DBS were included in this test report.

2. Information about test items

2.1 Test Mode

Test Mode		ANT configuration	Worst data rate
TM 1	802.11a	CDD Multiple transmitting	6Mbps
TM 2	802.11ac(VHT20)	SDM Multiple transmitting	MCS0
TM 3	802.11ac(VHT40)	SDM Multiple transmitting	MCS0
TM 4	802.11ac(VHT80)	CDD Multiple transmitting	MCS0

Note 1: The worst case data rate is determined as above test mode according to the power measurements. Note 2: The power measurement results for all modes and data rate were reported.

2.2 Tested Channel Information

5GHz Band				802.11n(HT40) /802.11ac(VHT40)		802.11ac(VHT80)	
	Channel	Frequency [MHz]	Channel	Frequency [MHz]	Channel	Frequency [MHz]	
	36	5180	38	5190	42	5210	
U-NII 1	40	5200	-	-	-	-	
	48	5240	46	5230	-	-	
	52	5260	54	5270	58	5290	
U-NII 2A	60	5300	-	-	-	-	
	64	5320	62	5310	-	-	
	100	5500	102	5510	106	5530	
U-NII 2C	120	5600	118	5590	122	5610	
	144	5720	142	5710	138	5690	
	149	5745	151	5755	155	5775	
U-NII 3	157	5785	-	-	-	-	
	165	5825	159	5795	-	-	

2.3 Testing Environment

Temperature	: 20 °C ~ 26 °C
Relative humidity content	: 38 % ~ 45 %
Details of power supply	: DC 3.87 V

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014 and ANSI C 63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Transmitter Output Power	0.9 dB (The confidence level is about 95 %, $k = 2$)
Conducted spurious emission	0.9 dB (The confidence level is about 95 %, $k = 2$)
AC conducted emission	3.6 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz Below)	4.86 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.02 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (18 GHz Above)	5.30 dB (The confidence level is about 95 %, k = 2)

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1
15.407(a)	RSS-247(6.2)	Emission Bandwidth (26 dB Bandwidth)	N/A	C	С
15.407(e)	RSS-247(6.2)	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz in 5725 ~ 5850 MHz		С
15.407(a)	RSS-247(6.2)	Maximum Conducted Output Power	5150 ~ 5250 MHz : < 23.97 dBm 5250 ~ 5350 & 5470 ~ 5725 MHz : < 250 mW or < 11 + 10 log10(B) dBm, whichever power is less. (B is the 26dB BW.) 5725 ~ 5850 MHz : < 30 dBm		С
15.407(a)	RSS-247(6.2)	Peak Power Spectral Density	5150 ~ 5250 MHz : 11 dBm/MHz 5250 ~ 5350 MHz : 11 dBm/MHz 5470 ~ 5725 MHz : 11 dBm/MHz 5725 ~ 5850 MHz : 30 dBm/500kHz		С
15.407(h)	RSS-247(6.3)	Dynamic Frequency Selection	FCC 15.407(h)		C Note 3
15.407(b)	RSS-247(6.2)	Undesirable Emissions	5150 ~ 5725 MHz: < -27 dBm/MHz EIRP 5725 ~ 5850 MHz: < -27 dBm/MHz or < 10 dBm/MHz or 15.6 dBm/MHz < 27dBm/MHz EIRP		C Note 4,5
15.205 15.209 15.407(b)	RSS-GEN(8.9) RSS-GEN(8.10) RSS-247(6.2)	General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	C Note 4,5
15.207	RSS-GEN(8.8)	AC Conducted Emissions	FCC 15.207	AC Line Conducted	С
15.203	-	Antenna Requirements	FCC 15.203	-	С

Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: Refer to the DFS test report.

Note 4: In case of this test item, we have done all TX test cases. And we attached the result of MIMO mode since MIMO is the worst case.

Note 5: This device supports wireless charging & Dual Display.

So per KDB648474 D03v01r04, the radiated test items were performed all not charging, charging and Dual Display conditions. For wireless charging condition, the handset is placed on the representative charging pad under normal conditions and in a simulated call configuration. Note 6: The sample was tested according to the following specification:

KDB789033 D02v02r01, KDB662911 D01v02r01, KDB648474 D03v01r04

4. TEST METHODOLOGY

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB 7899033 D02v02r01 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB789033 D02v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02v02r01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02v02r01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02v02r01.

The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 1 or 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode with maximum fixed duty cycle.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No. : KR0034

www.dtnc.net			
Telephone	:	+ 82-31-321-2664	
FAX	:	+ 82-31-321-1664	

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, loop, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna is attached on the device by means of unique coupling method (Spring Tension). Therefore this E.U.T Complies with the requirement of §15.203

Directional antenna gain:

Bands	SISO		MIMO (CDD) Note 1.	MIMO (SDM) Note 2
	ANT 1 [dBi]	ANT 2 [dBi]	Directional Gain[dBi]	Directional Gain[dBi]
U-NII 1	-2.39	-4.76	-0.48	-3.42
U-NII 2A	-2.39	-4.76	-0.48	-3.42
U-NII 2C	-1.39	-1.10	1.77	-1.24
U-NII 3	-2.11	-2.10	0.91	-2.10

Note 1. Directional gain(correlated signal with unequal antenna gain and equal transmit power) 10 log [(10 G1/20 + 10 G2/20 + ... + 10 GN/20) 2 / NANT] dBi

Note 2. Directional gain(completely uncorrelated signal with unequal antenna gain and equal transmit power) 10 log [(10 G1/10 + 10 G2/10 + ... + 10 GN/10) / NANT] dBi

8. TEST RESULT

8.1 Emission Bandwidth (26 dB Bandwidth)

Test Requirements

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26 dB bandwidth is used to determine the conducted output power limit.

Test Configuration

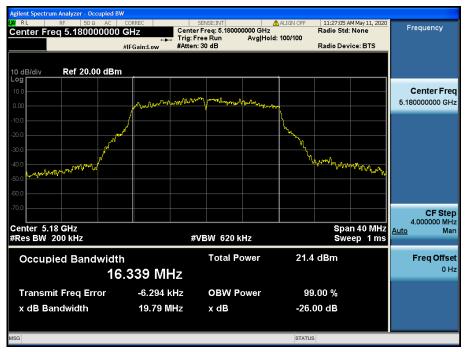
Refer to the APPENDIX I.

Test Procedure

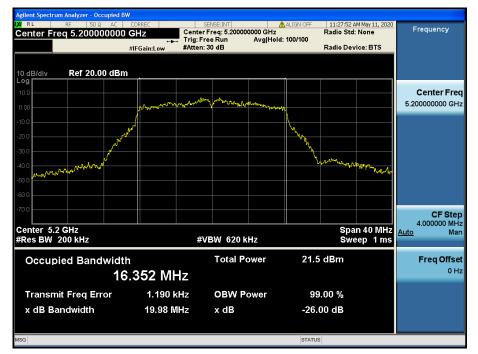
The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**.

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.


Test Results : Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]	
				ANT 1	ANT 2
TM 1	U-NII 1	36	5180	19.79	20.38
		40	5200	19.98	19.25
		48	5240	19.98	19.55
	U-NII 2A	52	5260	19.53	19.39
		60	5300	18.85	19.74
		64	5320	19.51	19.83
	U-NII 2C	100	5500	19.94	19.64
		120	5600	20.38	20.16
		144	5720	19.90	18.97
TM 2	U-NII 1	36	5180	19.75	20.46
		40	5200	19.80	20.20
		48	5240	19.90	20.19
	U-NII 2A	52	5260	19.65	19.57
		60	5300	19.77	19.64
		64	5320	19.97	19.50
	U-NII 2C	100	5500	19.86	19.59
		120	5600	19.85	19.38
		144	5720	19.48	19.74
ТМ 3	U-NII 1	38	5190	40.03	39.43
		46	5230	39.95	39.17
	U-NII 2A	54	5270	39.59	39.87
		62	5310	40.42	39.45
	U-NII 2C	102	5510	39.71	39.57
		118	5590	39.66	39.74
		142	5710	40.19	39.19
TM 4	U-NII 1	42	5210	80.87	81.53
	U-NII 2A	58	5290	81.88	80.91
	U-NII 2C	106	5530	81.00	80.85
		122	5610	81.15	81.25
		138	5690	81.41	81.03


Result Plots

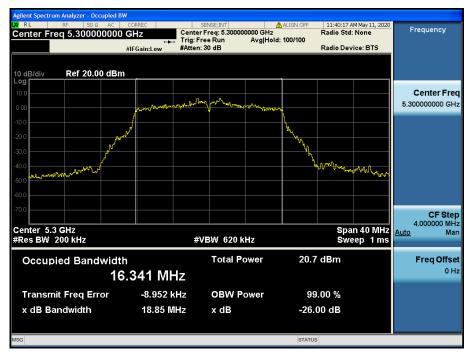
26 dB Bandwidth

Test Mode: TM 1 & ANT 1 & Ch.36

26 dB Bandwidth

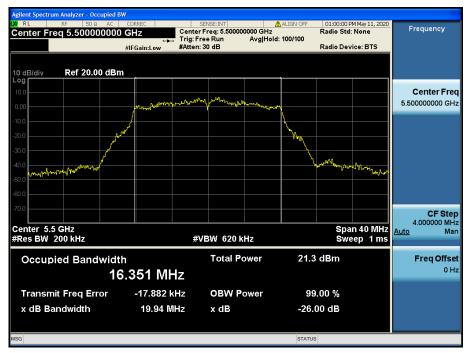
🛈 Dt&C

Test Mode: TM 1 & ANT 1 & Ch.48

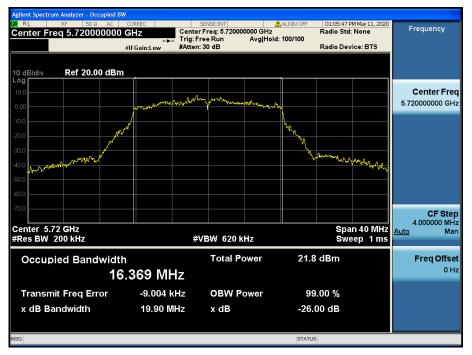


26 dB Bandwidth

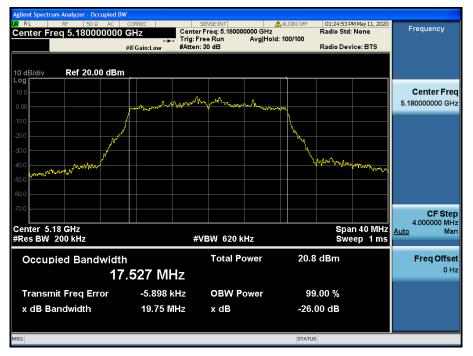
🛈 Dt&C


Test Mode: TM 1 & ANT 1 & Ch.60

26 dB Bandwidth

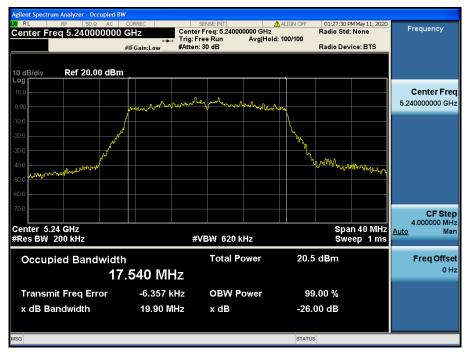

i SENSE:INT ALIGN OF Center Freq: 5.32000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 11:44:22 AM May 11, 202 Radio Std: None Frequency Center Freq 5.320000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 0 dB/c **Center Freq** 5.320000000 GHz Www Ser Con CF Step 4.000000 MHz Span 40 MHz Sweep 1 ms Center 5.32 GHz #Res BW 200 kHz Man <u>Auto</u> #VBW 620 kHz Total Power 20.8 dBm Freq Offset **Occupied Bandwidth** 0 Hz 16.378 MHz Transmit Freq Error -19.404 kHz **OBW Power** 99.00 % x dB Bandwidth 19.51 MHz x dB -26.00 dB STATUS

Test Mode: TM 1 & ANT 1 & Ch.100



26 dB Bandwidth

Test Mode: TM 2 & ANT 1 & Ch.36

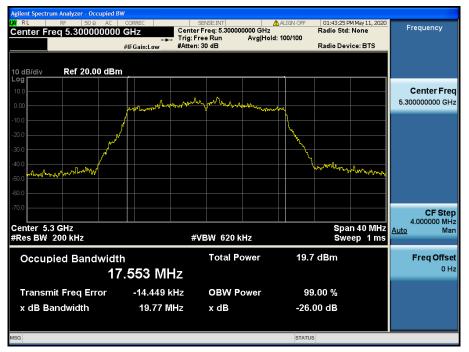


26 dB Bandwidth

SENSE:INT ▲ALIGN OFF Center Freq: 5.20000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 01:26:08 PM May 11, 20 Radio Std: None Frequency Center Freq 5.200000000 GHz #IFGain:Low Radio Device: BTS 10 dB/div Ref 20.00 dBm **Center Freq** 5.20000000 GHz "Try whow CF Step 4.000000 MHz Man Span 40 MHz Sweep 1 ms Center 5.2 GHz #Res BW 200 kHz <u>Auto</u> #VBW 620 kHz **Occupied Bandwidth** Total Power 20.2 dBm Freq Offset 0 Hz 17.542 MHz Transmit Freq Error -4.688 kHz **OBW Power** 99.00 % x dB Bandwidth 19.80 MHz x dB -26.00 dB STATUS

Test Mode: TM 2 & ANT 1 & Ch.48

Test Mode: TM 2 & ANT 1 & Ch.52


26 dB Bandwidth

SENSE:INT ▲ALIGN OFF Center Freq: 5.26000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 01:30:29 PM May 11, 20 Radio Std: None Frequency Center Freq 5.260000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div **Center Freq** 5.26000000 GHz w_n CF Step 4.000000 MHz Man Span 40 MHz Sweep 1 ms Center 5.26 GHz #Res BW 200 kHz <u>Auto</u> #VBW 620 kHz **Occupied Bandwidth** Total Power 20.0 dBm Freq Offset 0 Hz 17.550 MHz Transmit Freq Error -9.468 kHz **OBW Power** 99.00 % x dB Bandwidth 19.65 MHz x dB -26.00 dB STATUS

Test Mode: TM 2 & ANT 1 & Ch.60

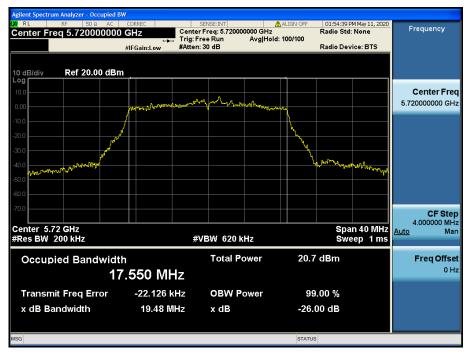
Test Mode: TM 2 & ANT 1 &

Ch.64

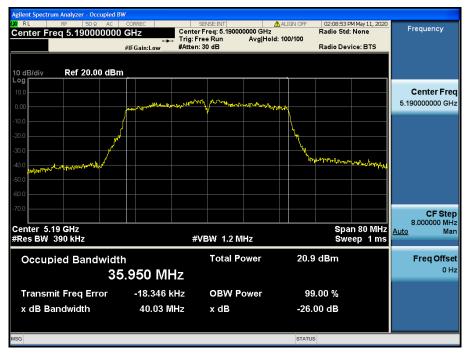


26 dB Bandwidth

SENSE:INT ALIGN OFF Center Freq: 5.32000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 01:44:11 PM May 11, 202 Radio Std: None Frequency Center Freg 5.320000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm 10 dB/div **Center Freq** 5.320000000 GHz 1.AL ... CF Step 4.000000 MHz Span 40 MHz Sweep 1 ms Center 5.32 GHz #Res BW 200 kHz Auto Man #VBW 620 kHz Total Power **Occupied Bandwidth** 20.0 dBm Freq Offset 0 Hz 17.556 MHz Transmit Freq Error -10.459 kHz **OBW Power** 99.00 % x dB Bandwidth 19.97 MHz x dB -26.00 dB STATUS


Test Mode: TM 2 & ANT 1 & Ch.100

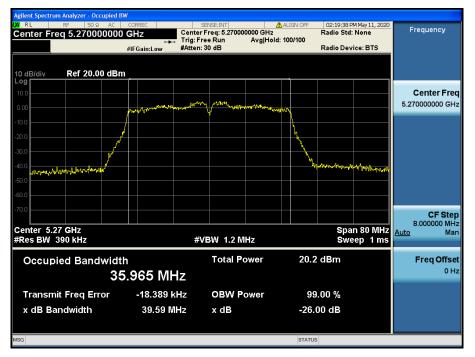
Test Mode: TM 2 & ANT 1 & Ch.120



26 dB Bandwidth

GHZ Center Freq: 5.60000000 GHz Trig: Free Run Avg|Hold: 100/100 #IFGain:Low #Atten: 30 dB 01:51:14 PM May 11, 202 Radio Std: None Frequency Center Freq 5.600000000 GHz Radio Device: BTS 0 dB/di Ref 20.00 dBm **Center Freq** 5.60000000 GHz CF Step 4.000000 MHz Center 5.6 GHz #Res BW 200 kHz Span 40 MHz Sweep 1 ms Mar <u>Auto</u> #VBW 620 kHz Occupied Bandwidth Total Power 20.6 dBm **Freq Offset** 0 Hz 17.540 MHz Transmit Freq Error -25.167 kHz **OBW Power** 99.00 % x dB Bandwidth 19.85 MHz x dB -26.00 dB STATUS

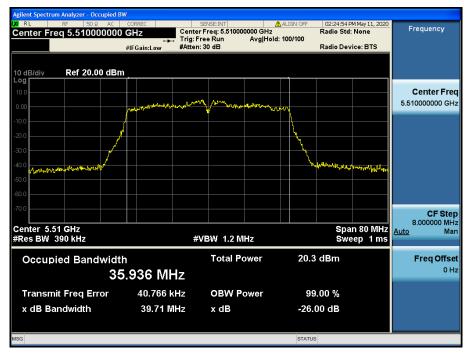
Test Mode: TM 3 & ANT 1 & Ch.38


26 dB Bandwidth

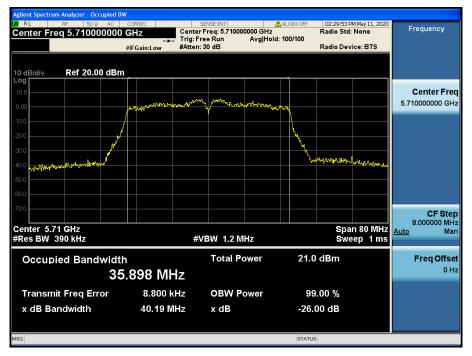
____SENSE:INT _____ALIGN OFF Center Freq: 5.23000000 GHz ___Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 02:10:21 PM May 11, 20: Radio Std: None Frequency Center Freq 5.230000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div **Center Freq** 5.230000000 GHz CF Step 8.000000 MHz Man Span 80 MHz Sweep 1 ms Center 5.23 GHz #Res BW 390 kHz <u>Auto</u> #VBW 1.2 MHz Total Power 20.6 dBm Freq Offset **Occupied Bandwidth** 0 Hz 35.903 MHz Transmit Freq Error 15.779 kHz **OBW Power** 99.00 % 39.95 MHz x dB Bandwidth x dB -26.00 dB STATUS

🛈 Dt&C

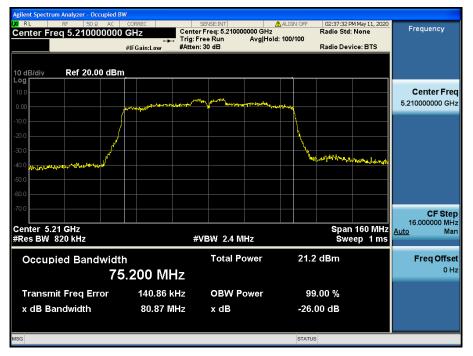
Test Mode: TM 3 & ANT 1 & Ch.54


Test Mode: TM 3 & ANT 1 & Ch.62

26 dB Bandwidth


____SENSE:INT _____ALIGN OFF Center Freq: 5.310000000 GHz ___Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 02:21:30 PM May 11, 20 Radio Std: None Frequency Center Freq 5.310000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div **Center Freq** 5.310000000 GHz CF Step 8.000000 MHz Man Span 80 MHz Sweep 1 ms Center 5.31 GHz #Res BW 390 kHz <u>Auto</u> #VBW 1.2 MHz Total Power 19.9 dBm Freq Offset **Occupied Bandwidth** 0 Hz 35.912 MHz Transmit Freq Error 3.102 kHz **OBW Power** 99.00 % 40.42 MHz x dB Bandwidth x dB -26.00 dB STATUS

Test Mode: TM 3 & ANT 1 & Ch.102


26 dB Bandwidth

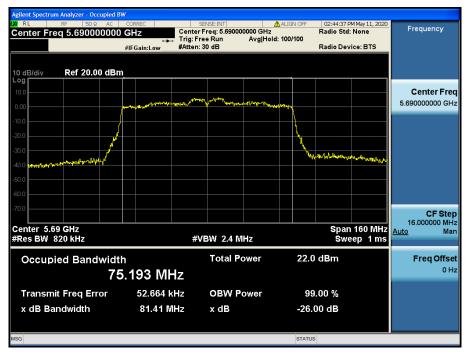
SENSE:INT ▲ALIGN OFF Center Freq: 5.59000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 02:25:14 PM May 11, 20: Radio Std: None Frequency Center Freq 5.590000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div **Center Freq** 5.59000000 GHz CF Step 8.000000 MHz Man Span 80 MHz Sweep 1 ms Center 5.59 GHz #Res BW 390 kHz <u>Auto</u> #VBW 1.2 MHz Total Power 20.7 dBm Freq Offset **Occupied Bandwidth** 0 Hz 35.945 MHz Transmit Freq Error 18.690 kHz **OBW Power** 99.00 % 39.66 MHz x dB Bandwidth x dB -26.00 dB STATUS

Test Mode: TM 4 & ANT 1 & Ch.42

Test Mode: TM 4 & ANT 1 & Ch.58

26 dB Bandwidth

____SENSE:INT _____ALIGN OFF Center Freq: 5.29000000 GHz ___Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 02:40:20 PM May 11, 20 Radio Std: None Frequency Center Freq 5.290000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div **Center Freq** 5.29000000 GHz CF Step 16.000000 MHz o Man Span 160 MHz Sweep 1 ms Center 5.29 GHz #Res BW 820 kHz Auto #VBW 2.4 MHz **Occupied Bandwidth** Total Power 20.3 dBm Freq Offset 0 Hz 75.345 MHz Transmit Freq Error 33.837 kHz **OBW Power** 99.00 % 81.88 MHz x dB Bandwidth x dB -26.00 dB STATUS


Test Mode: TM 4 & ANT 1 & Ch.106

Test Mode: TM 4 & ANT 1 & Ch.122

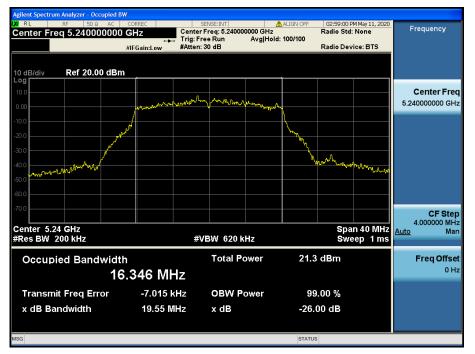


26 dB Bandwidth

SENSE:INT ALIGN OFF Center Freq: 5.610000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 02:43:03 PM May 11, 202 Radio Std: None Frequency Center Freq 5.610000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm 10 dB/div **Center Freq** 5.61000000 GHz CF Step 16.00000 MHz Span 160 MHz Sweep 1 ms Center 5.61 GHz #Res BW 820 kHz Auto Man #VBW 2.4 MHz Total Power **Occupied Bandwidth** 21.4 dBm Freq Offset 0 Hz 75.239 MHz Transmit Freq Error 27.280 kHz **OBW Power** 99.00 % x dB Bandwidth 81.15 MHz x dB -26.00 dB STATUS

Test Mode: TM 1 & ANT 2 & Ch.36

26 dB Bandwidth

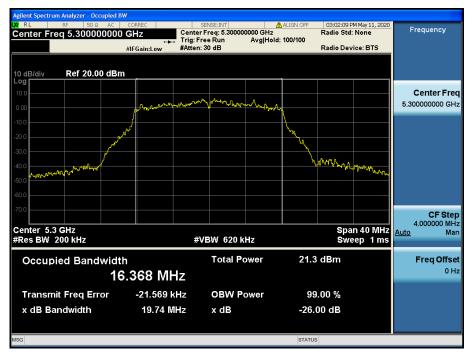

\rm ALIGN 02:56:58 PM May 11, 20 Radio Std: None Center Freq: 5.20000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Frequency Center Freq 5.200000000 GHz #IFGain:Low Radio Device: BTS 0 dB/di Ref 20.00 dBm **Center Freq** 5.200000000 GHz nî, CF Step 4.000000 MHz Center 5.2 GHz #Res BW 200 kHz Span 40 MHz Sweep 1 ms Mar <u>Auto</u> #VBW 620 kHz Occupied Bandwidth Total Power 21.6 dBm **Freq Offset** 0 Hz 16.375 MHz Transmit Freq Error -24.268 kHz **OBW Power** 99.00 % x dB Bandwidth 19.25 MHz x dB -26.00 dB STATUS

🛈 Dt&C

Test Mode: TM 1 & ANT 2 & Ch.48

Test Mode: TM 1 & ANT 2 &

Ch.52


26 dB Bandwidth

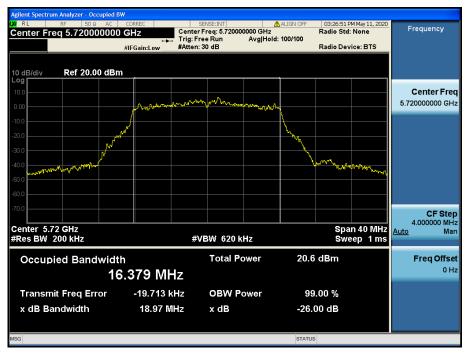
SENSE:INT ALIGN OFF Center Freq: 5.26000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 03:00:48 PM May 11, 202 Radio Std: None Frequency Center Freq 5.260000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm 0 dB/div Center Freq 5.26000000 GHz CF Step 4.000000 MHz Man Span 40 MHz Sweep 1 ms Center 5.26 GHz #Res BW 200 kHz Auto #VBW 620 kHz **Occupied Bandwidth** Total Power 21.0 dBm **Freq Offset** 0 Hz 16.352 MHz Transmit Freq Error -12.790 kHz **OBW Power** 99.00 % x dB Bandwidth 19.39 MHz x dB -26.00 dB STATUS

🛈 Dt&C

Test Mode: TM 1 & ANT 2 & Ch.60


Test Mode: TM 1 & ANT 2 & Ch.64


26 dB Bandwidth

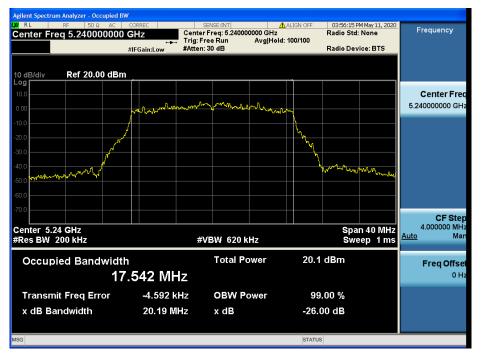

i SENSE:INT ALIGN OFF Center Freq: 5.32000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 03:02:40 PM May 11, 20 Radio Std: None Frequency Center Freq 5.320000000 GHz #IFGain:Low Radio Device: BTS 0 dB/di Ref 20.00 dBm **Center Freq** 5.320000000 GHz alunde CF Step 4.000000 MHz Span 40 MHz Sweep 1 ms Center 5.32 GHz #Res BW 200 kHz Mar <u>Auto</u> #VBW 620 kHz Occupied Bandwidth Total Power 21.2 dBm **Freq Offset** 0 Hz 16.386 MHz Transmit Freq Error -6.127 kHz **OBW Power** 99.00 % x dB Bandwidth 19.83 MHz x dB -26.00 dB STATUS

Test Mode: TM 1 & ANT 2 & Ch.100



26 dB Bandwidth

Test Mode: TM 2 & ANT 2 & Ch.36

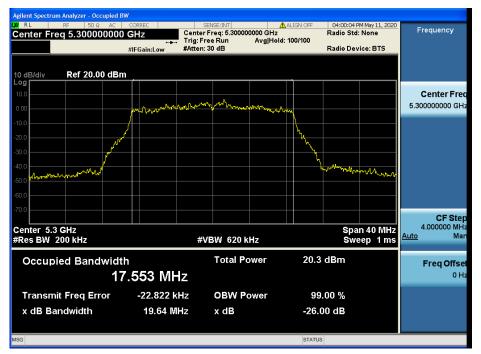


26 dB Bandwidth

SENSE:INT ▲ALIGN OFF Center Freq: 5.20000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 03:48:31 PM May 11, 20 Radio Std: None Frequency Center Freq 5.200000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div **Center Freq** 5.20000000 GHz Marth ww CF Step 4.000000 MHz Man Span 40 MHz Sweep 1 ms Center 5.2 GHz #Res BW 200 kHz <u>Auto</u> #VBW 620 kHz **Occupied Bandwidth** Total Power 20.4 dBm Freq Offset 0 Hz 17.558 MHz Transmit Freq Error -21.019 kHz **OBW Power** 99.00 % x dB Bandwidth 20.20 MHz x dB -26.00 dB STATUS

🛈 Dt&C

Test Mode: TM 2 & ANT 2 & Ch.48

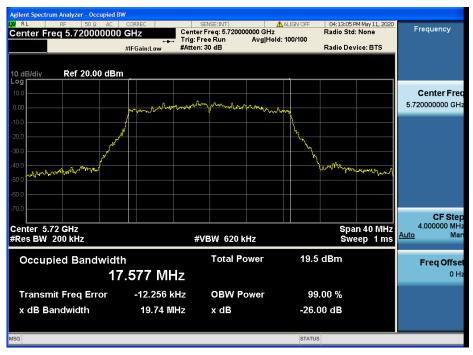


26 dB Bandwidth

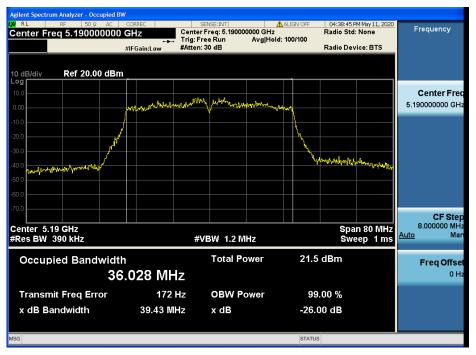
🛈 Dt&C

Test Mode: TM 2 & ANT 2 & Ch.60

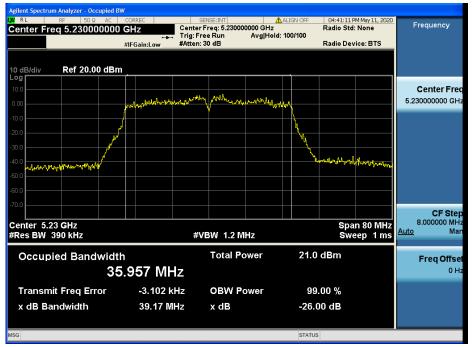
26 dB Bandwidth



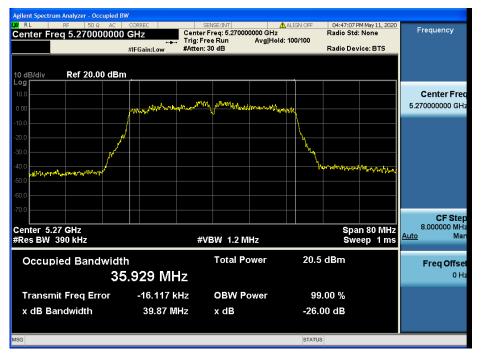
Test Mode: TM 2 & ANT 2 & Ch.100



26 dB Bandwidth


I SEMSE:INT ALIGN OFF Center Freq: 5.60000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 04:10:52 PM May 11, 202 Radio Std: None Frequency Center Freq 5.600000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm Center Fred 5.60000000 GHz CF Step 4.000000 MHz Span 40 MHz Sweep 1 ms Center 5.6 GHz #Res BW 200 kHz <u>Auto</u> Mar #VBW 620 kHz Total Power 21.2 dBm **Occupied Bandwidth** Freq Offse 17.551 MHz 0 H **Transmit Freq Error** -11.611 kHz **OBW Power** 99.00 % x dB Bandwidth 19.38 MHz x dB -26.00 dB

Test Mode: TM 3 & ANT 2 & Ch.38


26 dB Bandwidth

🛈 Dt&C

Test Mode: TM 3 & ANT 2 & Ch.54

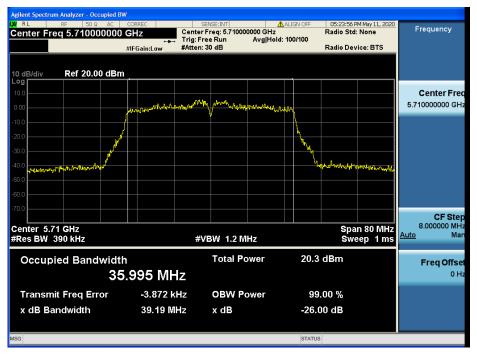
Test Mode: TM 3 & ANT 2 & Ch.62


26 dB Bandwidth

GHZ Center Freq: 6.31000000 GHz Trig: Free Run Avg|Hold: 100/100 #IFGain:Low #Atten: 30 dB 04:49:43 PM May 11, 202 Radio Std: None Frequency Center Freq 5.310000000 GHz Radio Device: BTS Ref 20.00 dBm Center Fred 5.310000000 GHz and the CF Step 8.000000 MHz Center 5.31 GHz #Res BW 390 kHz Span 80 MHz Sweep 1 ms <u>Auto</u> Mar #VBW 1.2 MHz Total Power 21.0 dBm **Occupied Bandwidth** Freq Offse 36.030 MHz 0 H **Transmit Freq Error** 10.578 kHz **OBW Power** 99.00 % x dB Bandwidth 39.45 MHz x dB -26.00 dB STATUS

Dt&C

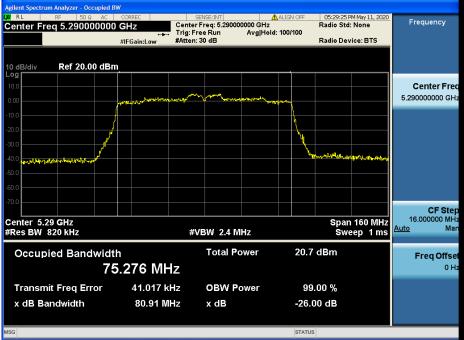
26 dB Bandwidth


Test Mode: TM 3 & ANT 2 & Ch.102

26 dB Bandwidth

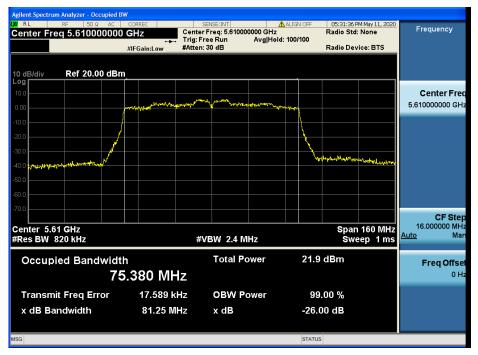
i SEMSE:INT ALIGN OFF Center Freq: 5.59000000 GHz - Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 05:23:37 PM May 11, 202 Radio Std: None Frequency Center Freq 5.590000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm Center Fred 5.590000000 GHz a IAA o CF Step 8.000000 MHz Center 5.59 GHz #Res BW 390 kHz Span 80 MHz Sweep 1 ms <u>Auto</u> Mar #VBW 1.2 MHz Total Power 21.5 dBm **Occupied Bandwidth** Freq Offse 36.019 MHz 0 H **Transmit Freq Error** -6.974 kHz **OBW Power** 99.00 % x dB Bandwidth 39.74 MHz x dB -26.00 dB

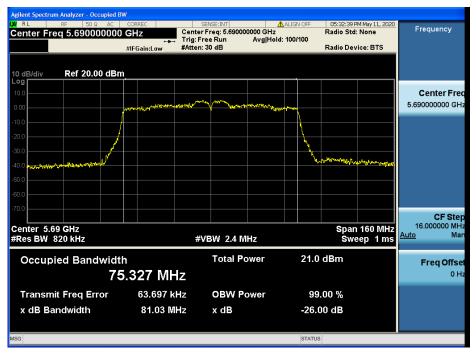
STATUS


🛈 Dt&C

26 dB Bandwidth


Test Mode: TM 4 & ANT 2 & Ch.42


26 dB Bandwidth



Test Mode: TM 4 & ANT 2 & Ch.106

26 dB Bandwidth

8.2 Minimum Emission Bandwidth (6 dB Bandwidth)

Test Requirements

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Configuration

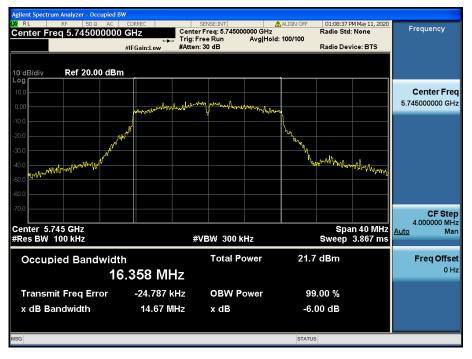
Refer to the APPENDIX I.

Test Procedure

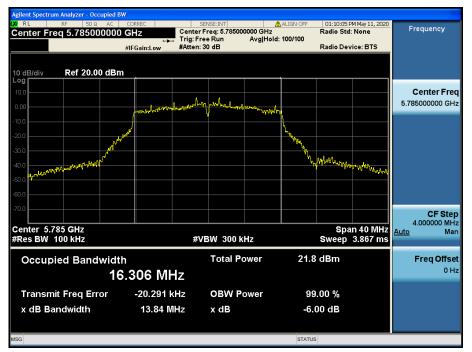
The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**.

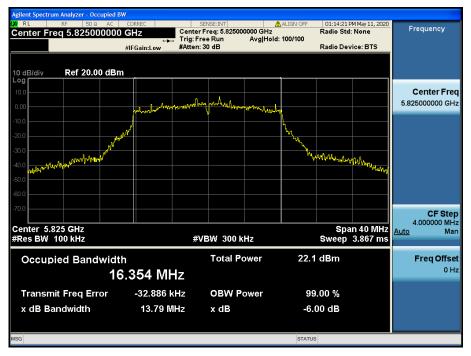
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth \geq 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


Test Results: Comply

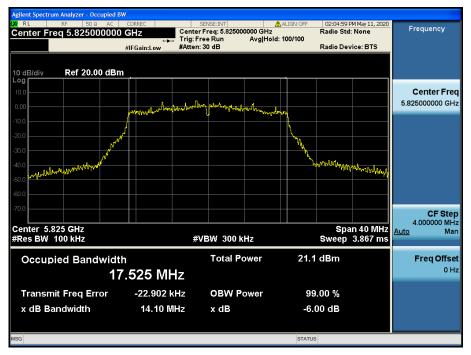
Mode	Band	Channel	Frequency	Test Result [MHz]	
WOUE	Band	Gnanner	[MHz]	ANT 1	ANT 2
		149	5745	14.67	11.67
TM 1		157	5785	13.84	12.60
	TM 2 U-NII 3	165	5825	13.79	14.71
		149	5745	10.16	13.41
TM 2		157	5785	12.63	11.39
		165	5825	14.10	16.30
TM 3		151	5755	32.52	30.14
1 141 5		159	5795	33.80	33.82
TM 4		155	5775	73.78	61.46


Result Plots


6 dB Bandwidth

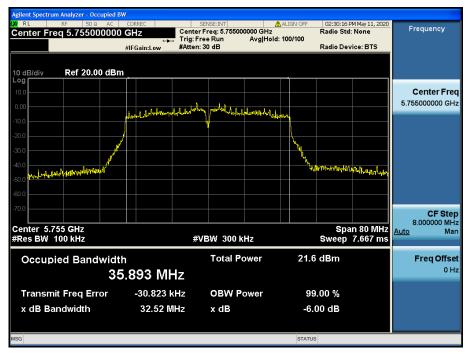
Test Mode: TM 1 & ANT 1 & Ch.149

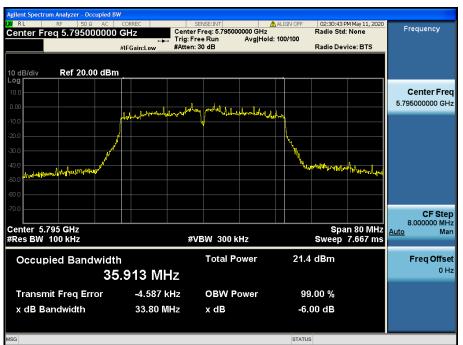
6 dB Bandwidth

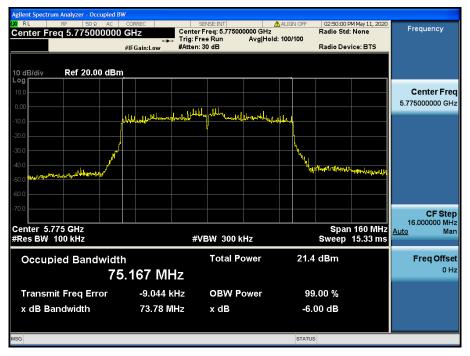


Test Mode: TM 2 & ANT 1 & Ch.149

6 dB Bandwidth


🛕 ALIGN 02:02:38 PM May 11, 20 Radio Std: None Center Freq: 5.78500000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Frequency Center Freq 5.785000000 GHz #IFGain:Low Radio Device: BTS 0 dB/di Ref 20.00 dBm **Center Freq** 5.785000000 GHz whit CF Step 4.000000 MHz Man Span 40 MHz Sweep 3.867 ms Center 5.785 GHz #Res BW 100 kHz <u>Auto</u> #VBW 300 kHz Total Power 20.8 dBm **Freq Offset Occupied Bandwidth** 0 Hz 17.540 MHz Transmit Freq Error -27.304 kHz **OBW Power** 99.00 % x dB Bandwidth 12.63 MHz x dB -6.00 dB STATUS

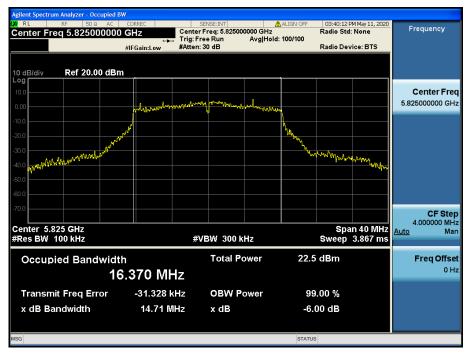

🛈 Dt&C


Test Mode: TM 3 & ANT 1 & Ch.151

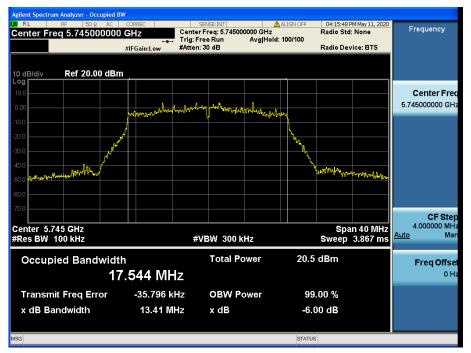
Test Mode: TM 3 & ANT 1 & Ch.159

6 dB Bandwidth

🛈 Dt&C

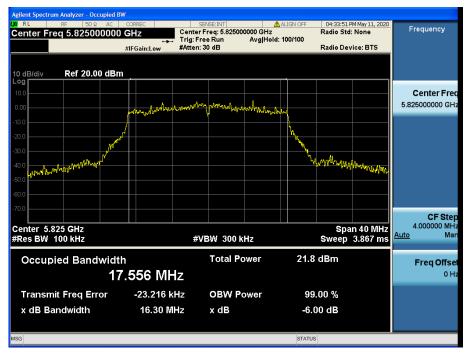

Test Mode: TM 1 & ANT 2 & Ch.149

Test Mode: TM 1 & ANT 2 & Ch.157

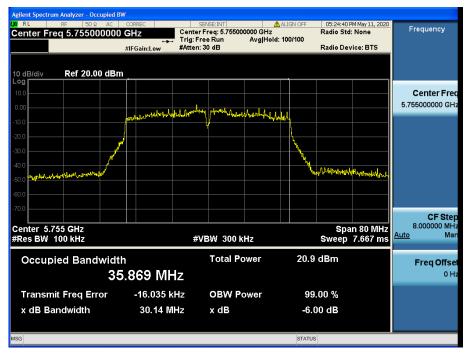


6 dB Bandwidth

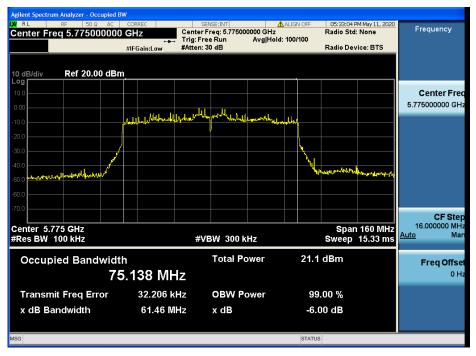
🛕 ALIGN OF 03:34:14 PM May 11, 2020 Radio Std: None Center Freq: 5.78500000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Frequency Center Freq 5.785000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm 0 dB/ **Center Freq** man 5 785000000 GHz man แม่งกำหน่าง MANN CF Step 4.000000 MHz Center 5.785 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.867 ms Man <u>Auto</u> #VBW 300 kHz Total Power 22.0 dBm Occupied Bandwidth Freq Offset 0 Hz 16.349 MHz -29.665 kHz **OBW Power** 99.00 % Transmit Freq Error 12.60 MHz x dB Bandwidth x dB -6.00 dB STATUS



Test Mode: TM 2 & ANT 2 & Ch.149


6 dB Bandwidth

L SEMSE:INT ▲ ALIGN OFF Center Freq: 5.785000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 04:20:02 PM May 11, 2020 Radio Std: None Frequency Center Freq 5.785000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 0 dB/di Center Free www. april m Monton 5.785000000 GH Mula www CF Step 4.000000 MHz Mar Span 40 MHz Sweep 3.867 ms Center 5.785 GHz #Res BW 100 kHz <u>Auto</u> #VBW 300 kHz Total Power 21.4 dBm Occupied Bandwidth Freq Offse 17.537 MHz 0 H Transmit Freq Error -35.625 kHz **OBW Power** 99.00 % x dB Bandwidth 11.39 MHz x dB -6.00 dB STATUS


Test Mode: TM 3 & ANT 2 & Ch.151

Test Mode: TM 3 & ANT 2 & Ch.159

6 dB Bandwidth

\rm ALIGN OF 05:25:35 PM May 11, 2020 Radio Std: None Frequency Center Freq: 5.795000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Center Freq 5.795000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 0 dB/di Center Fre 5.795000000 GH mound he and had have CF Step 8.000000 MHz Mar Span 80 MHz Sweep 7.667 ms Center 5.795 GHz #Res BW 100 kHz <u>Auto</u> #VBW 300 kHz Total Power 21.9 dBm Occupied Bandwidth Freq Offse 35.920 MHz 0 H Transmit Freq Error 23.668 kHz **OBW Power** 99.00 % x dB Bandwidth 33.82 MHz x dB -6.00 dB STATUS

8.3 Maximum Conducted Output Power

Test Requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

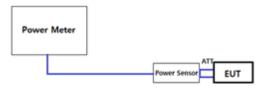
(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25 5.35 GHz
- (3) and 5.47 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (4) For the band 5.725 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.


- Output power Limit Calculation

Band	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain (Worst case) [dBi]	Determined Limit [dBm]
U-NII 1	250	23.97	-0.48	23.97

Band	Power Limit [mW] Least 26 dBc BW [MHz]	Calculated Limit [dBm]	Antenna Gain (Worst case) [dBi]	Determined Limit [dBm]	
U-NII 2A	250	23.97	-0.48	23.75	
U-INII ZA	18.85	23.75	-0.40	23.75	
U-NII 2C	250	23.97	1.77	23.78	
	18.97	23.78	1.77	23.10	

Band	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain [dBi]	Determined Limit [dBm]
U-NII 3	250	23.97	0.91	23.97

Test Configuration

Method PM-G

Test Procedure

Method PM-G of KDB789033 D02

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Test Results: Comply

- Output Power: Single

	011		Test Result [dBm]	
Mode	СН	Freq.[MHz]	ANT 1	ANT 2
	36	5180	15.99	15.85
	40	5200	15.43	15.70
	48	5240	15.47	14.89
	52	5260	14.98	14.70
	60	5300	14.63	15.60
802.11a	64	5320	14.93	15.24
002.11d	100	5500	14.89	15.12
	120	5600	15.82	15.94
	144	5720	15.51	14.44
	149	5745	15.41	15.43
	157	5785	15.10	15.47
	165	5825	15.61	15.98

Mode	СН	Freq.[MHz]	Test Result [dBm]	
mode		Freq.[MIT2]	ANT 1	ANT 2
	36	5180	14.54	14.66
	40	5200	14.38	14.28
	48	5240	14.32	14.15
	52	5260	13.70	13.45
	60	5300	13.84	14.44
802.11n	64	5320	13.77	14.22
(HT20)	100	5500	13.94	14.01
	120	5600	14.55	14.79
	144	5720	14.52	13.59
	149	5745	14.36	14.02
	157	5785	14.31	14.22
	165	5825	14.41	14.79

Φ	Dt&C	

Mode	СН	Freq.[MHz]	Test Res	ult[dBm]
	CII		ANT 1	ANT 2
	38	5190	14.88	14.86
	46	5230	14.48	14.37
	54	5270	13.56	13.59
	62	5310	14.11	14.54
802.11n (HT40)	102	5510	14.26	14.35
(11110)	118	5590	14.82	14.99
	142	5710	14.76	13.51
	151	5755	14.67	13.87
	159	5795	14.51	14.64

Mode	СН	Freq.[MHz]	Test Result[dBm]	
Mode			ANT 1	ANT 2
	36	5180	14.72	15.00
	40	5200	14.30	14.50
	48	5240	14.29	14.16
	52	5260	13.68	13.82
	60	5300	13.88	14.12
802.11ac	64	5320	13.76	14.27
(VHT20)	100	5500	13.87	14.02
	120	5600	14.54	14.72
	144	5720	14.47	13.36
	149	5745	14.32	13.83
	157	5785	14.21	14.26
	165	5825	14.42	14.80

Mode	<u>cu</u>		Test Res	ult[dBm]
MODE	СН	Freq.[MHz]	ANT 1	ANT 2
	38	5190	14.78	14.99
	46	5230	14.59	14.32
	54	5270	13.57	13.56
	62	5310	14.09	14.72
802.11ac (VHT40)	102	5510	14.21	14.33
((()))	118	5590	14.87	14.99
	142	5710	14.64	13.60
	151	5755	14.48	14.19
	159	5795	14.55	14.75

Mode	СН	Freq.[MHz]	Test Res	ult[dBm]
	CII	1164.[10112]	ANT 1	ANT 2
	42	5210	14.02	14.06
	58	5290	13.31	13.71
802.11ac	106	5530	13.55	13.39
(VHT80)	122	5610	14.38	14.56
	138	5690	14.48	13.30
	155	5775	14.01	13.61

Dt&C

- Summed Output Power: CDD

			Т	est Result [dBn	n]
Mode	CH Freq.[N	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (CDD)
	36	5180	15.99	15.85	18.93
	40	5200	15.43	15.70	18.58
	48	5240	15.47	14.89	18.20
	52	5260	14.98	14.70	17.85
	60	5300	14.63	15.60	18.15
802.11a	64	5320	14.93	15.24	18.10
002.11a	100	5500	14.89	15.12	18.02
	120	5600	15.82	15.94	18.89
	144	5720	15.51	14.44	18.02
	149	5745	15.41	15.43	18.43
	157	5785	15.10	15.47	18.30
	165	5825	15.61	15.98	18.81

			Test Result [dBm]			
Mode	СН	Freq.[MHZ]	Freq.[MHz] ANT 1 ANT		ANT1+ANT2 (CDD)	
	36	5180	14.54	14.66	17.61	
	40	5200	14.38	14.28	17.34	
	48	5240	14.32	14.15	17.25	
	52	5260	13.70	13.45	16.59	
	60	5300	13.84	14.44	17.16	
802.11n(HT20)	64	5320	13.77	14.22	17.01	
002.111(1120)	100	5500	13.94	14.01	16.99	
	120	5600	14.55	14.79	17.68	
	144	5720	14.52	13.59	17.09	
	149	5745	14.36	14.02	17.20	
	157	5785	14.31	14.22	17.28	
	165	5825	14.41	14.79	17.61	

Mada			Test Result[dBm]		
Mode	CH Freq.[MHz	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (CDD)
	38	5190	14.88	14.86	17.88
	46	5230	14.48	14.37	17.44
	54	5270	13.56	13.59	16.59
000.44	62	5310	14.11	14.54	17.34
802.11n (HT40)	102	5510	14.26	14.35	17.32
(111-0)	118	5590	14.82	14.99	17.92
	142	5710	14.76	13.51	17.19
	151	5755	14.67	13.87	17.30
	159	5795	14.51	14.64	17.59

			Test Result[dBm]		
Mode	СН	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (CDD)
	36	5180	14.72	15.00	17.87
	40	5200	14.30	14.50	17.41
	48	5240	14.29	14.16	17.24
	52	5260	13.68	13.82	16.76
	60	5300	13.88	14.12	17.01
802.11ac	64	5320	13.76	14.27	17.03
(VHT20)	100	5500	13.87	14.02	16.96
	120	5600	14.54	14.72	17.64
	144	5720	14.47	13.36	16.96
	149	5745	14.32	13.83	17.09
	157	5785	14.21	14.26	17.25
	165	5825	14.42	14.80	17.62

Mada	011		Test Result[dBm]			
Mode	СН	CH Freq.[MHz]		ANT 2	ANT1+ANT2 (CDD)	
	38	5190	14.78	14.99	17.90	
	46	5230	14.59	14.32	17.47	
	54	5270	13.57	13.56	16.58	
000.44	62	5310	14.09	14.72	17.43	
802.11ac (VHT40)	102	5510	14.21	14.33	17.28	
(((((((((((((((((((((((((((((((((((((((118	5590	14.87	14.99	17.94	
	142	5710	14.64	13.60	17.16	
	151	5755	14.48	14.19	17.35	
	159	5795	14.55	14.75	17.66	

Mode	CH		Test Result[dBm]		
Mode	СН	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (CDD)
	42	5210	14.02	14.06	17.05
	58	5290	13.31	13.71	16.52
802.11ac	106	5530	13.55	13.39	16.48
(VHT80)	122	5610	14.38	14.56	17.48
	138	5690	14.48	13.30	16.94
	155	5775	14.01	13.61	16.82

- Summed Output Power: SDM

Mode	CH.		Test Result [dBm]		
Mode	CH Freq. [MHz]		ANT 1	ANT 2	ANT1+ANT2 (SDM)
	36	5180	14.71	14.72	17.73
	40	5200	14.58	14.55	17.58
	48	5240	14.22	14.30	17.27
	52	5260	13.88	13.98	16.94
	60	5300	13.60	14.42	17.04
802.11n	64	5320	13.97	14.31	17.15
(HT20)	100	5500	13.88	14.16	17.03
	120	5600	14.61	14.95	17.79
	144	5720	14.65	13.58	17.16
	149	5745	14.02	13.68	16.86
	157	5785	14.30	14.41	17.37
	165	5825	14.63	14.95	17.80

Mode	СН		Test Result[dBm]		
Mode	Сп	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (SDM)
	38	5190	14.81	14.98	17.91
	46	5230	14.37	14.31	17.35
	54	5270	13.86	14.02	16.95
000.44	62	5310	13.77	14.60	17.22
802.11n (HT40)	102	5510	13.97	13.80	16.90
(111-0)	118	5590	14.65	14.98	17.83
	142	5710	14.63	13.74	17.22
	151	5755	14.32	13.81	17.08
	159	5795	14.29	14.88	17.61

	011			Test Result[dBm]		
Mode	СН	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (SDM)	
	36	5180	14.91	14.99	17.96	
	40	5200	14.52	14.55	17.55	
	48	5240	14.49	14.19	17.35	
	52	5260	13.58	13.55	16.58	
	60	5300	13.71	14.58	17.18	
802.11ac	64	5320	13.95	14.02	17.00	
(VHT20)	100	5500	13.99	14.15	17.08	
	120	5600	14.59	14.98	17.80	
	144	5720	14.60	13.58	17.13	
	149	5745	14.36	13.62	17.02	
	157	5785	14.37	14.40	17.40	
	165	5825	14.58	14.87	17.74	

Mada	CH		Test Result[dBm]		
Mode	CH Fro	Freq.[MHz]	ANT 1	ANT 2	ANT1+ANT2 (SDM)
	38	5190	14.74	14.99	17.88
	46	5230	14.49	14.55	17.53
	54	5270	14.16	14.13	17.16
000.44	62	5310	14.17	14.75	17.48
802.11ac (VHT40)	102	5510	14.29	14.45	17.38
(((((((((((((((((((((((((((((((((((((((118	5590	14.90	14.98	17.95
	142	5710	14.81	13.94	17.41
	151	5755	14.52	14.23	17.39
	159	5795	14.64	14.78	17.72

Mode	СН		Test Result[dBm]		
Mode	Сп	Freq.[MHz]	ANT 1 ANT 2		ANT1+ANT2 (SDM)
	42	5210	14.47	14.15	17.32
	58	5290	13.33	13.75	16.56
802.11ac	106	5530	13.65	13.90	16.79
(VHT80)	122	5610	14.35	14.48	17.43
	138	5690	14.48	13.51	17.03
	155	5775	14.15	13.77	16.97

8.4 Maximum Power Spectral Density

Test requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. ^{note1}

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. ^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band.^{note1}
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.^{note1,note2}
- **Note1**: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- **Note2**: Fixed point to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Band	Limit [dBm]	Antenna Gain (Worst case) [dBi]	Determined Limit [dBm]
U-NII 1	11	-0.48	11
U-NII 2A	11	-0.48	11
U-NII 2C	11	1.77	11
U-NII 3	30	0.91	30

- Peak Power Spectral Density Limit Calculation

Test Configuration

Refer to the APPENDIX I.

Test Procedure

Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02v02r01

- Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA - 1, SA - 2, SA - 3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3) Make the following adjustments to the peak value of the spectrum, if applicable:

 a) If Method SA 2 or SA 2 Alternative was used, add 10 log(1 / x), where x is the duty cycle, to the peak of the spectrum.
 - b) If Method SA 3 Alternative was used and the linear mode was used in step II.E.2.g (viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 4) The result is the Maximum PSD over 1 MHz reference bandwidth.
- 5) For devices operating in the bands 5.15 5.25 GHz, 5.25 5.35 GHz, and 5.47 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a)(5). For devices operating in the band 5.725 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
 - a) Set RBW ≥ 1 / T, where T is defined in section II.B.1.a). (Refer to Appendix II)
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log(500 kHz / RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log(1 MHz / RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

Test Results: Comply

- Summed Power spectral density:

Mode	Channel	Frequency		Result Sm]	Test Result [dBm]
		[MHz]	ANT 1	ANT 2	ANT1+ANT2 (CDD)
	36	5180	6.72	6.93	9.84
	40	5200	6.64	7.16	9.92
	48	5240	6.56	6.49	9.54
	52	5260	5.90	6.46	9.20
	60	5300	5.65	6.49	9.10
TN 4	64	5320	6.01	6.57	9.31
TM 1	100	5500	6.44	6.38	9.42
	120	5600	6.83	7.34	10.10
	144	5720	6.78	5.89	9.37
	149	5745	5.12	4.37	7.77
	157	5785	4.60	4.45	7.54
	165	5825	4.66	5.85	8.31
	36	5180	5.59	5.76	8.69
	40	5200	5.15	5.48	8.33
	48	5240	5.24	5.32	8.29
	52	5260	4.80	4.84	7.83
	60	5300	4.68	5.27	8.00
TM 2	64	5320	4.77	5.23	8.02
TIVI Z	100	5500	4.97	5.14	8.07
	120	5600	5.43	5.85	8.66
	144	5720	5.54	4.57	8.09
	149	5745	3.32	2.93	6.14
	157	5785	3.57	3.46	6.53
	165	5825	3.78	4.37	7.10
	38	5190	3.16	3.19	6.19
	46	5230	2.53	3.08	5.82
	54	5270	2.23	2.12	5.19
	62	5310	2.02	2.99	5.54
TM 3	102	5510	2.94	2.55	5.76
	118	5590	2.95	3.38	6.18
	142	5710	3.25	1.91	5.64
	151	5755	1.05	0.73	3.90
	159	5795	0.82	1.20	4.02
	42	5210	-0.45	-0.56	2.51
	58	5290	-1.54	-0.74	1.89
TM 4	106	5530	-1.04	-0.79	2.10
	122	5610	-0.62	0.20	2.82
	138	5690	0.04	-1.03	2.55
	155	5775	-2.52	-3.19	0.17

Note 1: "U-NII 3 [T.F] = 10*LOG(500kHz/100kHz) + DCCF" = 6.99dB + DCCF For DCCF(Duty Cycle Correction Factor) please refer to appendix II. Note 2: Test Result = Measurement Data + T.F ΓĽ

RESULT PLOTS

- Power spectral density: Antenna 1
- Maximum Power Spectral Density

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 1 & Ch.40

Dt&C

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 1 & Ch.52

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 1 & Ch.100

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 1 & Ch.149

Maximum Power Spectral Density

Test Mode: TM 2 & ANT 1 & Ch.36

Test Mode: TM 2 & ANT 1 & Ch.52

Maximum Power Spectral Density

Dt&C

Maximum Power Spectral Density

Test Mode: TM 2 & ANT 1 & Ch.100

Maximum Power Spectral Density

Test Mode: TM 2 & ANT 1 & Ch.149

Maximum Power Spectral Density

Test Mode: TM 3 & ANT 1 & Ch.38

Maximum Power Spectral Density

Dt&C

Maximum Power Spectral Density

Test Mode: TM 3 & ANT 1 & Ch.54

Maximum Power Spectral Density

