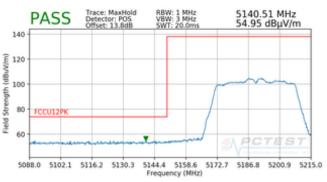
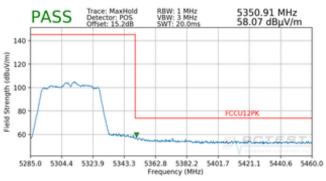



7.7.8 Antenna-2 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38

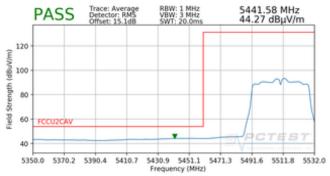


Plot 7-219. Radiated Lower Band Edge Plot (Average – UNII Band 1)



Plot 7-221. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

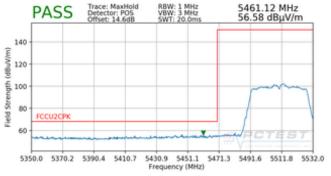
Plot 7-220. Radiated Lower Band Edge Plot (Peak – UNII Band 1)



Plot 7-222. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

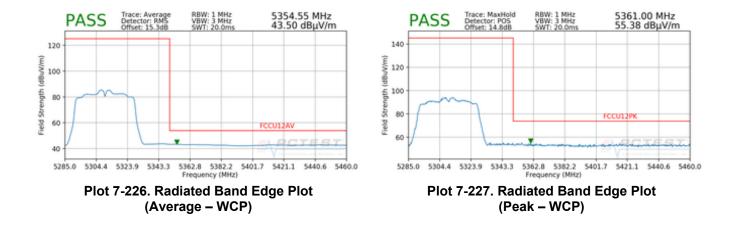
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 154 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 154 of 186
© 2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018

Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5510MHzChannel:102



802.11n
MCS0
3 Meters
5795MHz
159

Plot 7-225. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

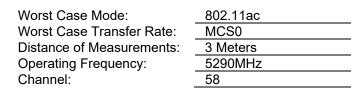


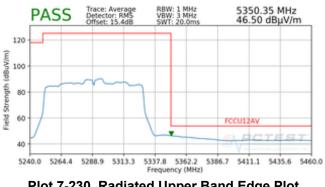
Plot 7-224. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 155 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 155 of 186
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

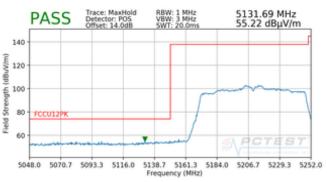
Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5310MHzChannel:62

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 156 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 156 of 186
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	

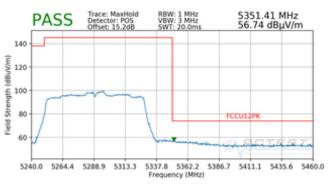



7.7.9 Antenna-2 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42

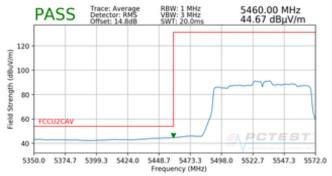


Plot 7-228. Radiated Lower Band Edge Plot (Average – UNII Band 1)



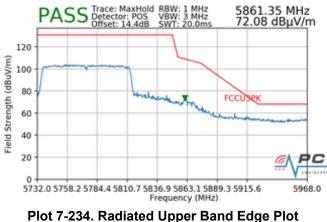
Plot 7-230. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

Plot 7-229. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

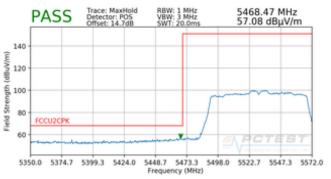


Plot 7-231. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 157 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 157 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

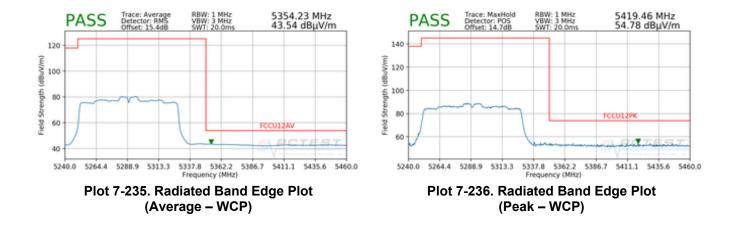


Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5530MHzChannel:106



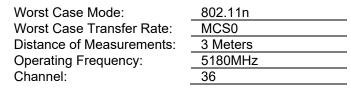
Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

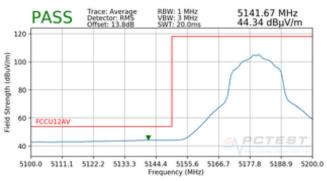
(Peak – UNII Band 3)



Plot 7-233. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 159 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 158 of 186
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	


Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5290MHzChannel:58

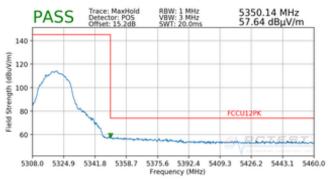


FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 150 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 159 of 186
© 2018 PCTEST Engineering Laboratory, Inc.			V 7.5 2/26/2018	



7.7.10 MIMO Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

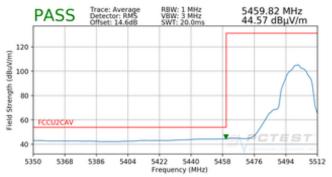
Plot 7-237. Radiated Lower Band Edge Plot (Average – UNII Band 1)



Plot 7-238. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

802.11n
MCS0
3 Meters
5320MHz
64

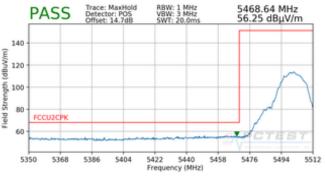
Plot 7-239. Radiated Upper Band Edge Plot (Average – UNII Band 2A)



Plot 7-240. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

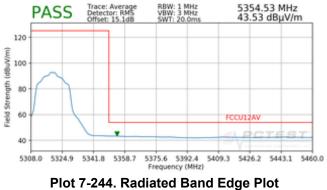
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 160 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 160 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

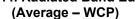
Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100

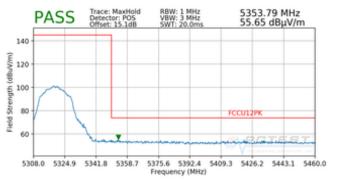


802.11n
MCS0
3 Meters
5825MHz
165

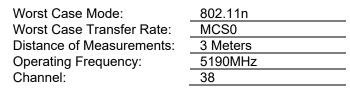
(Peak – UNII Band 3)




Plot 7-242. Radiated Upper Band Edge Plot (Peak – UNII Band 2C)

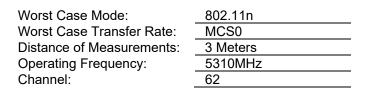

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 161 of 186
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 101 01 100
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

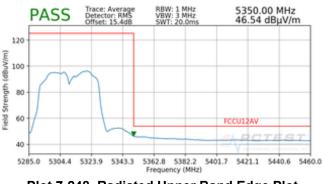
Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5320MHzChannel:64

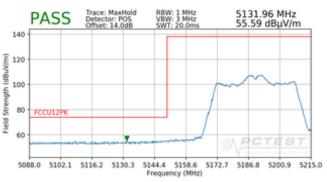


Plot 7-245. Radiated Band Edge Plot (Peak – WCP)

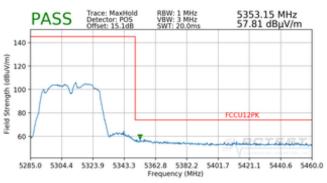
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 162 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 162 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018




7.7.11 MIMO Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

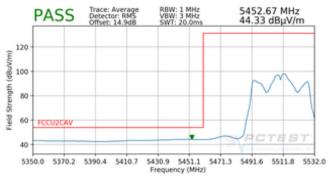


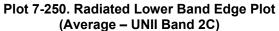
Plot 7-246. Radiated Lower Band Edge Plot (Average – UNII Band 1)



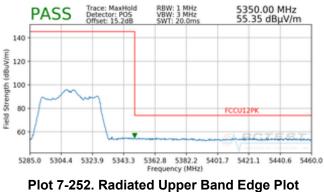
Plot 7-248. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

Plot 7-247. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

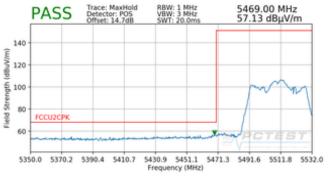



Plot 7-249. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 162 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 163 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018



Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5510MHzChannel:102

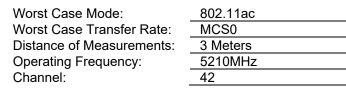


Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5795MHz
Channel:	159

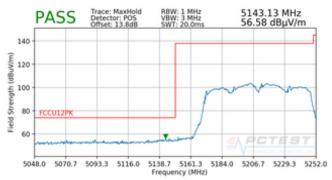
(Peak – UNII Band 3)

Plot 7-251. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

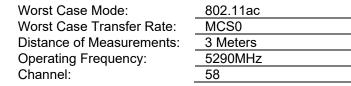
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 164 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 164 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

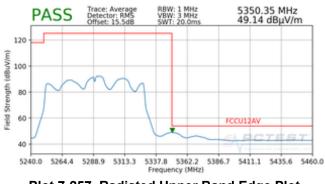

Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5310MHzChannel:62

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 165 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 165 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018



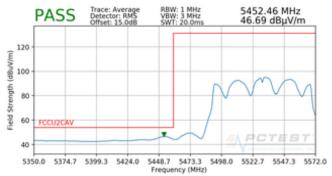
7.7.12 MIMO Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

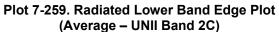


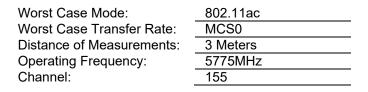


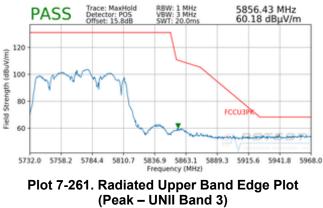
Plot 7-255. Radiated Lower Band Edge Plot (Average – UNII Band 1)

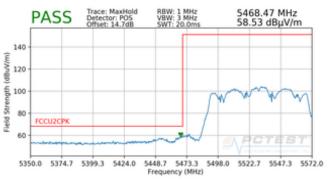
Plot 7-257. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

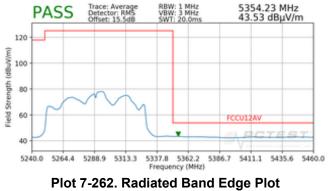


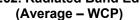



FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 166 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 166 of 186
© 2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018



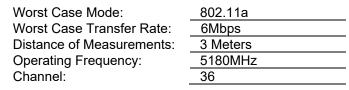

802.11ac Worst Case Mode: Worst Case Transfer Rate: MCS0 **Distance of Measurements:** 3 Meters **Operating Frequency:** 5530MHz Channel: 106




Plot 7-260. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 167 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 167 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

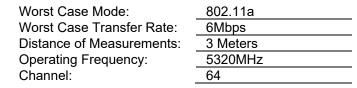
Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5290MHzChannel:58



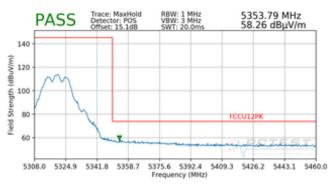
Plot 7-263. Radiated Band Edge Plot (Peak – WCP)

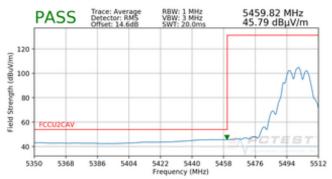
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 169 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 168 of 186
© 2018 PCTEST Engineering Laboratory, Inc.				V 7.5 2/26/2018

7.7.13 CDD Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

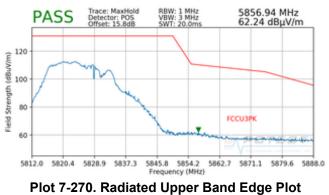


Plot 7-264. Radiated Lower Band Edge Plot (Average – UNII Band 1)

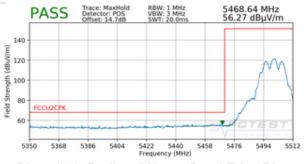




FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 160 of 186
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 169 of 186
© 2018 PCTEST Engineering Laboratory. Inc.				V 7.5 2/26/2018



Worst Case Mode:802.11aWorst Case Transfer Rate:6MbpsDistance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100



Plot 7-268. Radiated Upper Band Edge Plot (Average – UNII Band 2C)

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

(Peak – UNII Band 3)

Plot 7-269. Radiated Upper Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 196
1M1802260030-06.ZNF 2/27-3/27/2018		Portable Handset	Page 170 of 186	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-62 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-62. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 171 of 196	
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 171 of 186	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

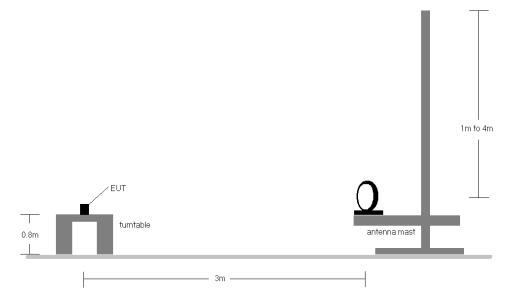
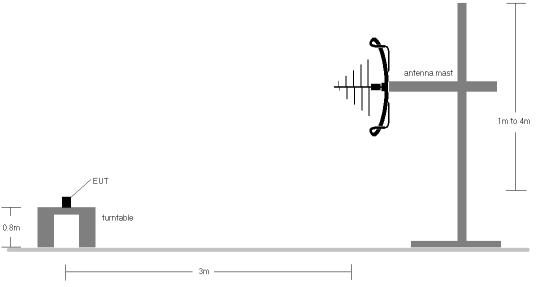
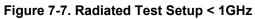
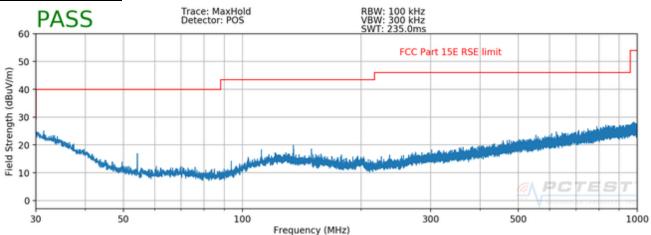
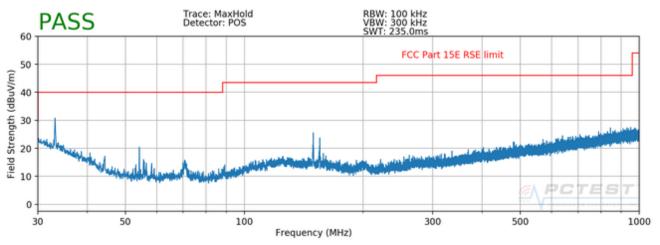




Figure 7-6. Radiated Test Setup < 30MHz

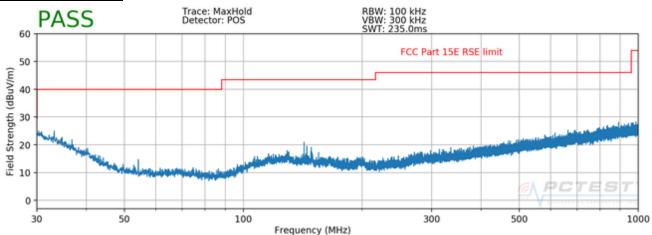
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 196	
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 172 of 186	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				



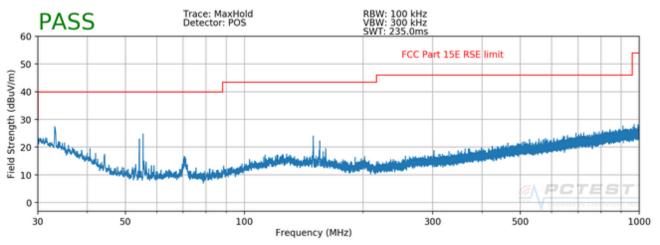
- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-62.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.


FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 172 of 196	
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 173 of 186	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

Antenna-1 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]



Plot 7-272. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157) - Pol. V


FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dama 474 af 400				
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset	Page 174 of 186				
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/26/2018							

Antenna-2 Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-274. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157) - Pol. V

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Daga 175 of 196				
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset	Page 175 of 186				
© 2018 PCTEST Engineering Laboratory, Inc. V 7.5 2/26/2018							

7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted Limit (dBµV)						
(MHz)	Quasi-peak	Average					
0.15 – 0.5	66 to 56*	56 to 46*					
0.5 – 5	56	46					
5 – 30	60	50					

Table 7-63. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

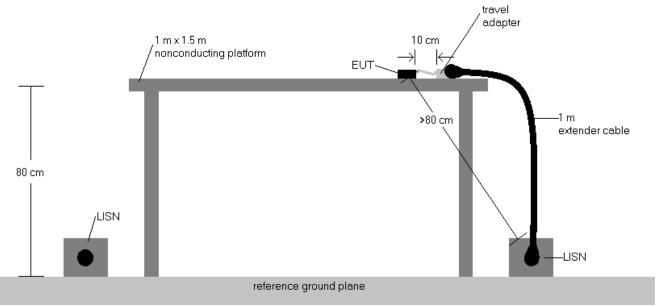
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

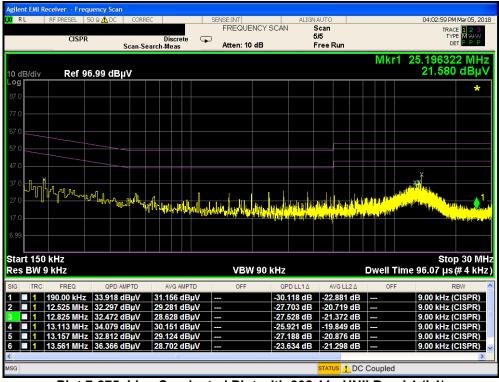
Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

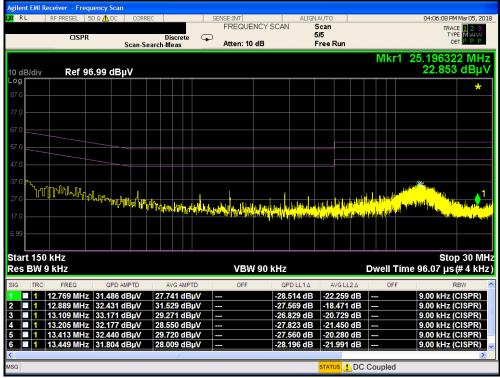
FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 176 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 176 of 186
© 2018 PCTEST Engineering La	V 7 5 2/26/2018			

The EUT and measurement equipment were set up as shown in the diagram below.



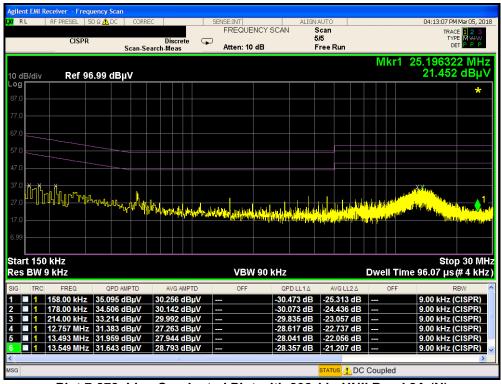

Figure 7-8. Test Instrument & Measurement Setup

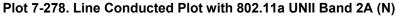
Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 177 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset	Page 177 of 186	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018			

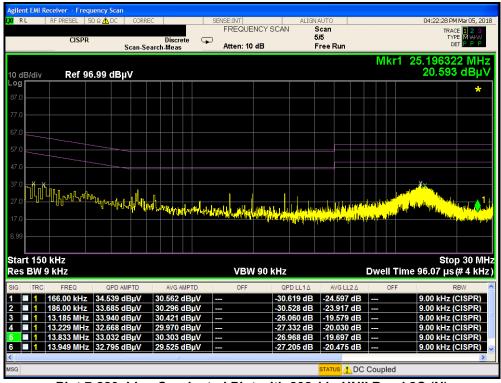
Plot 7-275. Line Conducted Plot with 802.11a UNII Band 1 (L1)


Plot 7-276. Line Conducted Plot with 802.11a UNII Band 1 (N)


FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 179 of 196	
1M1802260030-06.ZNF 2/27-3/27/2018		Portable Handset	Page 178 of 186		
© 2018 PCTEST Engineering La	aboratory. Inc.	-		V 7.5 2/26/2018	

	Agilent EMI Receiver - Frequency Scan												
(XI RL RF PRES	EL 50 Ω <u>Λ</u> Di	C CORREC			SENSE:INT		ALIGN	AUTO Scan					1 Mar 05, 2018
	ISPR		Discre	ete 🕞	ר		5	5/5				TY	CE 123 PE MWW
		Scan-Sea		-	Atten: 10	dB	F	ree Rur	1			D	et P P P
	Mkr1 25.196322 MHz												
10 dB/div R	ef 96.99 d	BμV										24.110) dBµV
Log													*
87.0													
77.0													
67.0													
57.0													
47.0													
47.0													
37.0	- 1			-			\vdash				<u> </u>	und William	
	mun h	M. A. I							1.110	6114	and little	Part of Shipp	
		Mundud	WW MAY	Matternet	attil <mark>igt</mark> anjayan	AND A DALLA			ad an an	գիրերը է «Ասեւլին»	اس ا	Section 19 and 19 and 19 and	the for the set
17.0						COLUMN STRUCTURE			يعلاق فله		ίπ Π	a name	india francia da la composición de la c
6.99													
Start 150 kHz													p 30 MHz
Res BW 9 kHz					VBV	/ 90 kHz				Dwe	ll Tin	ne 96.07 µs	(#4 kHz)
SIG TRC FRE		D AMPTD	AVG A	MPTD	OFF	QF	PD LL1 Δ	AVG	L2 Δ	1	OFF	F	RBW 🔼
1 1 194.00			30.770				170 dB	-23.09				9.00 kHz (
2 1 12.949			27.811				183 dB	-22.18				9.00 kHz (
3 1 13.065 4 1 13.125	MHz 29.99 MHz 33.26		25.922 30.387				003 dB 733 dB	-24.07				9.00 kHz (9.00 kHz (
5 1 13.337			26.790				751 dB	-23.21				9.00 kHz (
6 🔳 1 13.873	MHz 31.68	0 dBµV	28.215	dBµV		-28.	320 dB	-21.78	5 dB			9.00 kHz (
<										-			>
MSG								STATUS	L DC	Coup	led		

Plot 7-277. Line Conducted Plot with 802.11a UNII Band 2A (L1)



FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 170 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 179 of 186
© 2018 PCTEST Engineering La	boratory, Inc.			V 7.5 2/26/2018

		eceiver - Fred																							
L <mark>XI</mark> RL	-	RF PRESEL	50 Ω <u>Å</u> I	DC	CORR	EC				SEM	NSE:INT				ALIG	NAUTO Scan)								ar 05, 2018
		CISPR	ł	S	can-So	earch		crete as	C	₽	Atten					5/5 Free	Run								123 M##W PPP
																				Μk	r1				MHz
10 dE	3/div	Ref 9	6.99	dBµ\	/																		21.9	86 (dBµV
Log																									*
87.0																									
77.0																									
67.0																									
57.0							=	-	+								╞								
47.0									-																
37.0																						wXV			
	ſŊ				N																ر. العامر	an ^{an III}			. 1
27.0		្រើពុកព្រះ	ՄԿպե	ւեր	L Hit	1,4,	v	di han	the state	Li dia	la han	5. I	114	and.	he see all		1.1				a a la	bertiliti.	1. ¹ 1	'Heal	
17.0							, 1 10	110	- 19	W TI	in Mar			14N		بعطيم	i sala ni	julij _e ni	Uma.	ال اللہ			. In the	Magnet and	
6.99																									
6.99																									
Star	t 150	kH7																					s	ton	30 MHz
	BW 9										v	BW	90 I	кНz					D٧	/ell	Tin	ne 90			4 kHz)
SIG	TRC	FREQ	0	PD AMF	PTD	1	AV/	S AMP	TD	_	0	FF		OP	D LL1∆		AVG LI	2 ^	1	0	FF			RB	N A
1		12.305 MHz				27		8 dE			-				171 dB		2.472					9.	00 kH		SPR)
2	1	12.473 MHz	z 33.2	34 dE	βµV	27	7.87	9 dE	βµV		-			-26.7	766 dB	-22	2.121	dB				9.	00 kH	z (Cl	SPR)
3	_	12.721 MHz		39 dE				4 dE			-				161 dB		3.276						00 kH		
4		12.925 MHz 13.453 MHz						3 dE 1 dE			-				692 dB 735 dB).047).229						00 kH 00 kH		
6		13.501 MHz						6 dE							339 dB		7.684								SPR)
<							_	111																	>
MSG																STAT	us 🧕	DC	Co	uple	d				

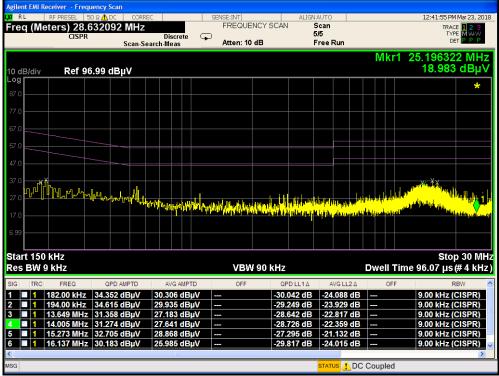
Plot 7-279. Line Conducted Plot with 802.11a UNII Band 2C (L1)



FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 190 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 180 of 186
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 7.5 2/26/2018

Agilent EMI Receiver - Frequencies						
K RL RF PRESEL 5	ið Ω 🧥 DC 📔 CORREG		SENSE:INT FREQUENCY SCA	ALIGNAUTO		04:28:20 PM Mar 05, 2018
CISPR	Scan-Sea	Discrete 🔾		5/5 Free Run		TRACE 1 2 3 TYPE MWW DET P P P
					Mkr1_2	5.196322 MHz
	δ.99 dBμV					21.758 dBµV
Log						*
87.0						
77.0						
67.0						
57.0						
47.0						
37.0 Xa X						264
ենինի նենը թանո	A	1 1			A LA LA LA	
27.0	աներությունը գեղել	Margan	المستأ بالعالة الالعديد المالاتان	a wa manina kanana akawa k	The second s	The state of the second s
17.0			and the second	فأحرق ويعتقد والإيطاطين الأ	te dia dia dia mini	the second state of the se
6.99						
Start 150 kHz			·			Stop 30 MHz
Res BW 9 kHz			VBW 90 kHz		Dwell Time	96.07 µs(#4 kHz)
SIG TRC FREQ	QPD AMPTD	AVG AMPTD	OFF Q	PD LL1 AVG LL2	Δ OFF	RBW 🛆
1 🔳 1 166.00 kHz	34.264 dBµV	29.965 dBµV		.894 dB -25.193 c		9.00 kHz (CISPR)
	33.440 dBµV 31.719 dBµV	28.650 dBµV 28.349 dBµV		.424 dB -25.214 c		9.00 kHz (CISPR) 9.00 kHz (CISPR)
	31.401 dBµV	26.634 dBµV		.599 dB -23.366 c		9.00 kHz (CISPR)
	32.840 dBµV	30.175 dBµV		.160 dB -19.825 c		9.00 kHz (CISPR)
6 1 13.653 MHz	33.625 dBµV	30.558 dBµV	26	.375 dB -19.442 c	IB	9.00 kHz (CISPR)
MSG		4.447		STATUS 🕕	DC Coupled	
				_	o o o o o o o o o o o o o o o o o o o	

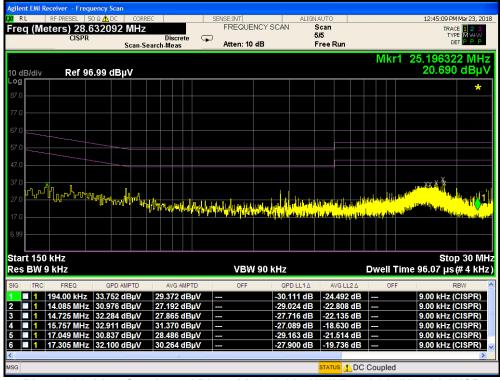
Plot 7-281. Line Conducted Plot with 802.11a UNII Band 3 (L1)

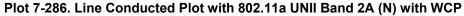


FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 191 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 181 of 186
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 7.5 2/26/2018

	ceiver - Freq			ORREC				SENSE	- TR ITE			4110	VAUTO						10-2	0.55 0	M Mar 23, 2	010
	cispr	63209	92 M			crete as	Ģ	FI D	REQUE		6CAN	ALIG	Scan 5/5 Free						12.0	TRA TY	CE 1 2 3 PE M +++ ET P P F	
0 dB/div	Ref 9	6.99 d	BμV													N	lkr	12			22 MH I dBµ	
og 37.0																					*	
7.0																						
57.0																						
17.0		******																	×			
27.0 <mark>-ไป (</mark>	Աղ(խղ	տղկվել	lo <mark>le lo l</mark>	hall	l Mirsy				1 de la com								kan Nah) (alata) National (alata) National (alata)	e dege <mark>en lug</mark>	Val. ^{Ma} ng		1
5.99						10 9				0,404,	<u>ik, j 119</u> .	alahin, da jula d		l de let public	ار تنظل _{مر} ا			1.1		4 A	a stalig a tak	.
tart 150 I	kHz																				p 30 №	
es BW 9	kHz								VBV	V 90 I	٢Hz					Dwe	ell T	ime	96.0	7 µs	(# 4 kl	Īz
G TRC	FREQ		D AMPTI	_		g amp			OFF			D LL1∆	_	AVG LL:			OFF				RBW	
	98.00 kHz 57.99 kHz				29.93 28.45							79 dB		3.761 3.039							(CISPR) (CISPR)	
	2.693 MHz				26.18							45 dB		3.820							CISPR)	
	3.725 MHz				27.81							11 dB		2.183							CISPR)	
	5.241 MHz				26.42							88 dB		3.580							CISPR)	
	7.045 MHz	30.28	5 dBµ	V I	22.73	4 dE	βµV				-29.7	'15 dB	-27	.266	dB				9:00	KHZ ((CISPR)	
1 1									_													
G						Ш							07.07	us 👖	DC	0.00	de d	_		_		>

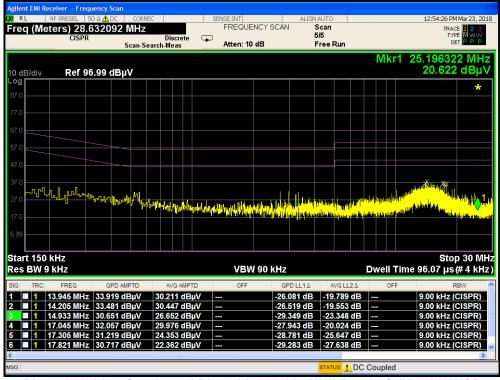
Plot 7-283. Line Conducted Plot with 802.11a UNII Band 1 (L1) with WCP


Plot 7-284. Line Conducted Plot with 802.11a UNII Band 1 (N) with WCP


FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 400 of 400
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 182 of 186
© 2018 PCTEST Engineering La	aboratory. Inc.	÷		V 7.5 2/26/2018

RL	ceiver - Frequ RF PRESEL 5 ters) 28.6	i0 Ω <u>Λ</u> DC	CORR	.EC			SENSE:INT	NCY SCAN	ALIGN	AUTO Scan				12:48	:05 PM Mar 23, : TRACE 1 2
eq (Met	CISPR	15/205/2	Scan-S		iscrete leas	Ŧ			e	5/5 Free Ru	n				
0 dB/div	Ref 96	6.99 dBj	μV									Μ	kr1		6322 MI 915 dBj
og															*
7.0			<u>کا ا</u>												
7.0															
7.0															
7.0										F					
7.0														<u> </u>	
_{᠉᠐} ᡰᡀ᠆ᠾᡟ	ալ	Նոնու	AIN.					1.	u tu			لمليها	أدناه إدرا		^{ful} la i sul cola
		սունել		1°h M	wy y fir	White	et te star in the start of the st	in a state		भूत त्यान् प्रम विकास		ta sala sala Periodo da	datara	of a little state	Section of the sectio
7.0			کی				. A longe	and a solute		11.11.124	يلالي والله.	120,000			غ _{ير ال} فاع المت <mark>ر الثالث</mark>
.99															
tart 150 l															
es BW 9	kHz						VBW	90 kHz				Dwel	l Tin		Stop 30 N ′µs(#4 k
G TRC	FREQ	QPD A			.VG AMF		VBW	QP	D LL1 Δ		LL2 Δ		li Tin Off	ne 96.07	μs (#4 k _{RBW}
G TRC	FREQ 1.365 MHz	30.544	dBµV	29.0	93 dE	βµV		QP - 29 .4	456 dB	-20.9	07 dB			ne 96.07 9.00 k	rBW RBW REST
	FREQ 1.365 MHz 3.173 MHz	30.544 d 32.362 d	dBµV dBµV	29.0 29.7	93 dE 13 dE	βµV βµV		QP -29.4 -27.	456 dB 638 dB	-20.9 -20.2	07 dB 87 dB			ne 96.07 9.00 k 9.00 k	rBW (Hz (CISPR (Hz (CISPR
G TRC 1 1 1 1 1 1 1	FREQ 1.365 MHz	30.544 d 32.362 d 32.744 d	dBµV dBµV dBµV	29.0 29.7 29.5	93 dE	βµV βµV βµV	OFF 	QP -29.4 -27.1 -27.1	456 dB	-20.9 -20.2 -20.4	07 dB			ne 96.07 9.00 k 9.00 k 9.00 k	rBW RBW REST
G TRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ 1.365 MHz 13.173 MHz 13.945 MHz 14.989 MHz 15.009 MHz	30.544 (32.362 (32.744 (29.433 (29.268 (dBµV dBµV dBµV dBµV dBµV	29.0 29.7 29.5 25.5 25.1	93 dE 13 dE 24 dE 01 dE 86 dE	8µV 8µV 8µV 8µV	OFF 	-29.4 -27.0 -27.1 -27.1 -30.4 -30.1	456 dB 538 dB 256 dB 567 dB 732 dB	-20.9 -20.2 -20.4 -24.4 -24.8	07 dB 87 dB 76 dB 99 dB 14 dB			9.00 k 9.00 k 9.00 k 9.00 k 9.00 k 9.00 k	Y µS (# 4 k RBW (Hz (CISPR (Hz (CISPR (Hz (CISPR (Hz (CISPR (Hz (CISPR
G TRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ 1.365 MHz 3.173 MHz 3.945 MHz 4.989 MHz	30.544 (32.362 (32.744 (29.433 (29.268 (dBµV dBµV dBµV dBµV dBµV	29.0 29.7 29.5 25.5 25.1	93 dE 13 dE 24 dE 01 dE	8µV 8µV 8µV 8µV	OFF	-29.4 -27.0 -27.1 -27.1 -30.4 -30.1	456 dB 538 dB 256 dB 567 dB	-20.9 -20.2 -20.4 -24.4 -24.8	07 dB 87 dB 76 dB 99 dB			9.00 k 9.00 k 9.00 k 9.00 k 9.00 k 9.00 k	Y µS (# 4 K RBW (Hz (CISPR (Hz (CISPR (Hz (CISPR (Hz (CISPR
G TRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ 1.365 MHz 13.173 MHz 13.945 MHz 14.989 MHz 15.009 MHz	30.544 (32.362 (32.744 (29.433 (29.268 (dBµV dBµV dBµV dBµV dBµV	29.0 29.7 29.5 25.5 25.1	93 dE 13 dE 24 dE 01 dE 86 dE	8µV 8µV 8µV 8µV	OFF	-29.4 -27.0 -27.1 -27.1 -30.4 -30.1	456 dB 538 dB 256 dB 567 dB 732 dB	-20.9 -20.2 -20.4 -24.4 -24.8 -20.2	07 dB 87 dB 76 dB 99 dB 14 dB 00 dB		OFF	9.00 k 9.00 k 9.00 k 9.00 k 9.00 k 9.00 k	Y µS (# 4 k RBW (Hz (CISPR (Hz (CISPR (Hz (CISPR (Hz (CISPR (Hz (CISPR

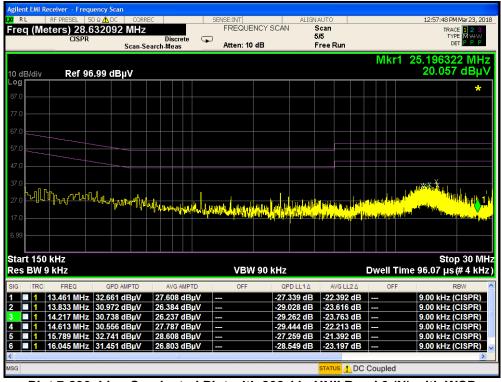
Plot 7-285. Line Conducted Plot with 802.11a UNII Band 2A (L1) with WCP



FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 192 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset	Page 183 of 186
© 2018 PCTEST Engineering La	boratory, Inc.	·	V 7.5 2/26/2018

Agilent EMI Rece KI RL RF		Jency So 0 Ω <mark>Λ</mark> D0		ORREC				SENSE:INT		ALIG	OTUAN				12:51:20 P	M Mar 23, 201
req (Mete)2 M	Hz m-Sea		screte eas	G	FREQU			Scan 5/5 Free F	Run			TRA TY	ACE 123 (PE M ##W DET P P P
10 dB/div	Ref 96	6.99 d	ΒμV										N	lkr1	25.1963 20.19	22 MHz 0 dBµ∖
- og 87.0																*
77.0																
67.0																
57.0													\vdash	+		
\$7.0																
37.0															X	
	_Վ ԼՄ ^{ԺՆ} ՍԼԼ	Ասեսի	, d	اليلي	N			du d undur	in the local		Minteller	a.] 1	<mark>H.</mark> a.p.			
7.0					1	whiar	an a	and Manual		ملجر والثلول والتربية	(f)line	Alling day or bill	لنازستري	harpen,	iter and the second	hand and public to
i.99																
tart 150 k es BW 9 k								VBI	N 90 k	Hz			Dwe	ell Ti	Sto ime 96.07 µs	op 30 Mi s(#4 kH:
G TRC	FREQ	QPI	D AMPT	D	A۱	G AMF	TD	OFF		QPD LL1 A	A	/G LL2 Δ		OFF		RBW
	.429 MHz				29.9					-27.025 dB		072 dB			9.00 kHz	
	.689 MHz .821 MHz				31.2					-26.859 dB -29.634 dB		761 dB			9.00 kHz 9.00 kHz	
	.821 MHZ				30.2					-29.634 dB -27.865 dB		704 dB			9.00 kHz	
1 14	.981 MHz	32.39	5 dBj	V	30.0	52 dE	βµV			-27.605 dB	-19	948 dB			9.00 kHz	(CISPR)
1 16	.009 MHz	30.39	2 dBp	V	26.4	99 dE	βµV			-29.608 dB	-23	501 dB			9.00 kHz	(CISPR)
G		_		_		111	_				STAT	JS 🚺 DO	Cour	blod		>

Plot 7-287. Line Conducted Plot with 802.11a UNII Band 2C (L1) with WCP



FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 194 of 196
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 184 of 186
© 2018 PCTEST Engineering La	boratory, Inc.			V 7.5 2/26/2018

A <mark>gilent EMI Rec</mark> X <mark>/</mark> RL F		<mark>រuency </mark>		CORRE	EC			SENSE:I				ALIGN.	AUTO						01:01:	45 PM	Mar 23, 201
Freq (Met	ers) 28. CISPR				D earch-N	liscre leas	te (Ð	EQUE en: 10	NCY SO	AN	5	Scan 15 Free F	Run							123 M₩W PPP
10 dB/div	Ref 9	6.99 (dΒµ\	1												Μ	kr'	2			2 MHz dBµ∖
Log 87.0																					*
77.0																					
67.0																					
57.0						+	-					-					\square				
47.0											_				-	+					
37.0																		,)	ŵ		
_{27.0} – ₇ . / 1	լիսուսի	հրություն	مىللە	hl.	h						ىل يا	ا باهي	. و و د و ا		امار با	ا مىرما	a lu	J. A. C.	With all		1.1
17.0			. v- l- l	սուրի	I Yw	W har		hallman ha						uter for the second	ne pr _{De} andeller	Jalatte	Jan la	h felt and	and the state of t	iline.	
															- 11						
5.99						\square															
tart 150 k	(Hz																		9	Ston	30 MI
les BW 9									VBW	/ 90 ki	z					Dwe	II TI	ime			# 4 kH
IG TRC	FREQ	QI	PD AMF	TD	A	AVG AI	IPTD		OFF		QPD LL	.1A	A	VG LL2	Δ		OFF			R	3W
	0.373 MHz						IBμV				34.837			.877 ((ISPR)
	2.721 MHz						Buv				29.854			.918					9.00 k		
	2.973 MHz 3.017 MHz						IBμV IBμV				29.629 29.699			. <u>159</u> .216 ((ISPR) (ISPR)
	3.461 MHz						ΙΒμν				29.669			.188					9.00 k		
	3.749 MHz						BuV				29.694			234							ISPR)
						Ш															>
G													STATI	JS 🚺	DC (Coup	led				
	7 000	-	_			_	-	N = 4 +	-		-	-		<u>`</u>	_	<u> </u>	_			-	

Plot 7-289. Line Conducted Plot with 802.11a UNII Band 3 (L1) with WCP

Plot 7-290. Line Conducted Plot with 802.11a UNII Band 3 (N) with WCP

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 195 of 196	
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset		Page 185 of 186	
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFG710TM** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: ZNFG710TM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 186 of 186	
1M1802260030-06.ZNF	2/27-3/27/2018	Portable Handset			
© 2018 PCTEST Engineering La	V 7.5 2/26/2018				