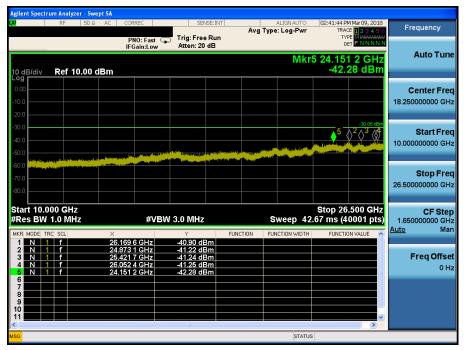

TM 5 & ANT 2 & 2472


Reference

Agilent Spectrum Analyzer -								
LXI RF 5	0 Ω 🧥 DC 🕴 CORR	EC	SENSE:INT		ALIGNAUTO Type: Log-Pwr		4 Mar 09, 2018 E 1 2 3 4 5 6	Frequency
	PN IFG		rig: Free Run tten: 20 dB	Avg	Type. Log-Pwr	TYP		
					Mkr	2 19.472	4 MHz 19 dBm	Auto Tune
10 dB/div Ref 10.0	UdBm					-70.	19 UDIII	
0.00								Center Fred
-10.0								15.004500 MH
-20.0								
-30.0							-30.06 dBm	
-40.0								Start Free
								9.000 kH:
-50.0								
-60.0					2			Stop Free
-70.0	finally interpretation of the second	فالمأذارين وتأذونا كالمعاأدون	and the second		فالمعادية والمريحة والمتحاد والم	na. si astaniananiana	Anthonianth	30.000000 MH
-80.0	A REAL PROPERTY AND A REAL	o, an Indian (all the second		and a start of a start of	allen alle and all all all all all all all all all al		CARLEND STREET	00.000000 1111
Start 9 kHz						Oton 2	0.00 MHz	
#Res BW 100 kHz		#VBW 30	0 kH7		Sweep 5.			CF Step 2.999100 MH
		<i>"</i> U <i>I</i> N U					<u> </u>	Auto Mar
MKR MODE TRC SCL	× 281.9	kHz -6	∀ 5.36 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	
2 N 1 f	19.472 4		0.19 dBm					Eron Office
3								Freq Offse
5							=	UH
6								
8								
10								
							~	
s I					CTATI	s 🚶 DC Cou		
					SIAIO		ipieu	

Agilent Spectrum Analyzer - S	wept SA				
LXI RF 50	Ω AC CORREC	SENSE:INT	ALIGNAUTO	02:41:01 PM Mar 09, 2018	Frequency
	PNO: Fast IFGain:Low	➡ Trig: Free Run Atten: 20 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWW DET PNNNNN	
10 dB/div Ref 10.00	dBm		Mkr	5 7.025 45 GHz -53.94 dBm	Auto Tune
-20.0	↓				Center Fred 5.015000000 GHz
-30.0		الفاقرية بهدان المعادين	3 <u>~~</u> 5?	-30.06 dBm	Start Free 30.000000 MH;
-60.0 -70.0 -80.0					Stop Fred 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MH
MKR MODE TRC SCL	× 2.469 41 GHz	-6.77 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f	7.129 39 GHz 6.389 61 GHz 6.944 20 GHz 7.025 45 GHz	-53.53 dBm -53.83 dBm -53.92 dBm -53.94 dBm			Freq Offse 0 H:
6 7 8 9 10					
11				>	
ISG			STATUS		

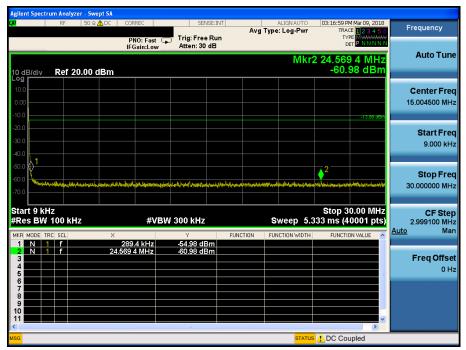
TM 6 & ANT 2 & 2412

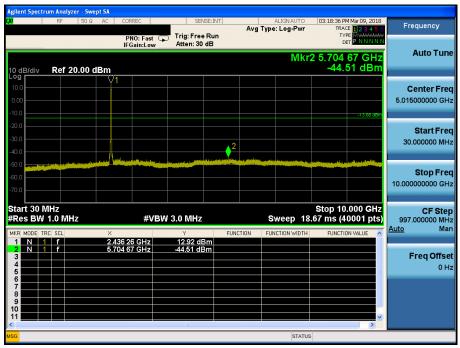
Reference



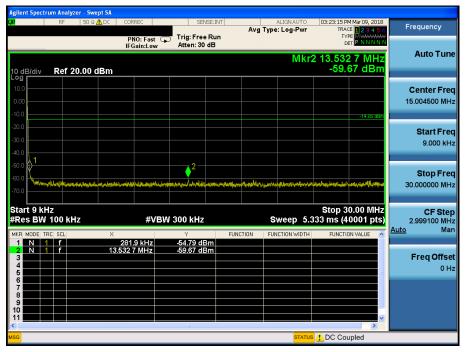
Low Band-edge

Agilent Spectrum Analyzer - Swe					
χί RF 50 Ω	DC CORREC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	03:11:32 PM Mar 09, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 d	IFGain:Low _	Atten: 30 dB	Mkr	2 28.783 1 MHz -59.78 dBm	Auto Tune
10.0 0.00 -10.0				-13.66 dBm	Center Fred 15.004500 MHz
-20.0					Start Fred 9.000 kHz
-50.0	ray a the state of	napp.p.pin.la.laustan.edustrianista.edus	here a station of the state of the	2- arithad open directed and	Stop Free 30.000000 MH;
Start 9 kHz ¢Res BW 100 kHz		W 300 kHz		Stop 30.00 MHz 333 ms (40001 pts)	CF Stej 2.999100 MH Auto Ma
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 - - 4 - - 5 - - 6 - -	× 296.2 kHz 28.783 1 MHz	Y FUI -55.03 dBm -59.78 dBm	VCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offse 0 H:
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				>	
ISG			STATUS	DC Coupled	


Agilent Spectrum Analyzer - Sw	wept SA				
RF 50 ۵	Ω AC CORREC	SENSE:INT	ALIGN AUTO	03:13:05 PM Mar 09, 2018	Frequency
	PNO: Fast IFGain:Lov	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWW DET PNNNN	
10 dB/div Ref 20.00	dBm		Mkr	3 9.402 05 GHz -45.30 dBm	Auto Tune
Log 10.0 0.00 -10.0				-13.66 dBm	Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0			2	3	Start Freq 30.000000 MHz
-60.0 -60.0 -70.0					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#V	BW 3.0 MHz	Sweep 18	Stop 10.000 GHz 67 ms (40001 pts).	CF Step 997.000000 MHz Auto Man
MKR MODE TRC SCL	× 2.413 08 GHz	Y FU 13.40 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man
2 N 1 f 3 N 1 f 4 5 6	5.764 00 GHz 9.402 05 GHz	-44.95 dBm -45.30 dBm			Freq Offset 0 Hz
7 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10					
11		iii		×	
MSG			STATU	3	

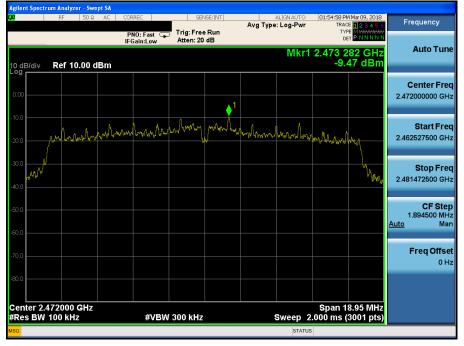

TM 6 & ANT 2 & 2437

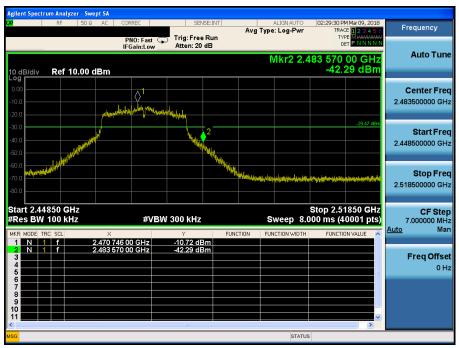
Reference


Agilent Spectrum A								
L XI F	RF 50 Ω	AC CORREC	SENS		ALIGN AUTO	TRA	M Mar 09, 2018 CE 123456	Frequency
		PNO: F: IFGain:L	ast 🖵 Trig: Free P ow Atten: 30 d	Run	.,,	TY	PE MWAAAAAAAA ET P N N N N N	
		IFGain:L	.ow Attent 50 a		Mice			Auto Tune
10 dB/div R	ef 20.00 di	Bm			IVINI		3 9 GHz 59 dBm	
Log								
10.0								Center Freq
0.00								18.250000000 GHz
-10.0							-13.88 dBm	
-20.0					. 4	۸ <u>3</u>	1_2	Start Freq
-30.0								10.00000000 GHz
-40.0	والمراجع ومحمد والمحمد والمحمد والم	and the second secon	Construction of the local distance of the second					
-50.0								Stop Freq
-60.0								26.50000000 GHz
-70.0								
Start 10.000						Stop 26	.500 GHz	CF Step
#Res BW 1.0	MHz	#	¥VBW 3.0 MHz		Sweep 42	2.67 ms (4	0001 pts)	1.650000000 GHz Auto Man
MKR MODE TRC S		× 24.796 0 GH	y -34.45 dBr	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Auto Man
2 N 1	7	25.283 1 GH	z -35.09 dBr	n				
3 N 1 1 4 N 1 1		23.296 5 GH 21.413 9 GH	z -35.36 dBr z -36.59 dBr	n n				Freq Offset 0 Hz
5							=	0 H2
7								
8								
10								
<			ш				>	
MSG					STATU	s		

TM 6 & ANT 2 & 2462

Reference




Agilent Spectrum Analyzer - S	wept SA				
LXI RF 50	Ω AC CORREC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	03:24:37 PM Mar 09, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🔾 IFGain:Low	Trig: Free Run Atten: 30 dB	• · · · •	TYPE MWWWWWW DET P N N N N N	
10 dB/div Ref 20.00	dBm		Mkr	5 6.266 98 GHz -45.19 dBm	Auto Tune
10.0 0.00 -10.0				-14.U5 dbm	Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0	$\diamond^2 \diamond^3$	\$ ⁴	5		Start Freq 30.000000 MHz
-50.0 -60.0 -70.0					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VBV	/ 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	× 2.460 94 GHz	Y FUN 12.75 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F 6	2.792 69 GHz 3.186 75 GHz 5.722 37 GHz 6.266 98 GHz	-44.24 dBm -44.53 dBm -44.81 dBm -45.19 dBm			Freq Offset 0 Hz
7 8 9 10					
11		ш		>	
MSG			STATUS	6	

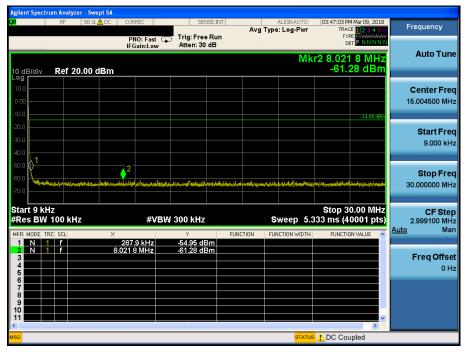
TM 6 & ANT 2 & 2472

Reference

Agilent Spectrum Analyzer - Sv						
LXI RF 50 \$	2 🚹 DC 🔋 CORREC 📄	SENSE:INT		ALIGNAUTO	02:36:30 PM Mar 09, 2018 TRACE 1 2 3 4 5	
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB		,,	DET P N N N N	
				Mkr	2 22.218 8 MHz	
10 dB/div Ref 10.00	dBm				-71.32 dBm	
0.00						Center Freq
-10.0						15.004500 MHz
-20.0						
-30.0					-29.47 dBr	
-40.0						Start Freq
-50.0						9.000 kHz
-60.0						
70.0						Stop Freq
-80.0	waterproperties	un and the state of the state o	nd replication of the	نيبيايا (الجرامي <mark>ة</mark> مندي	analest film and the interaction	30.000000 MHz
-00.0						
Start 9 kHz					Stop 30.00 MHz	CF Step
#Res BW 100 kHz	#VI	3W 300 kHz		Sweep 5.3	33 ms (40001 pts	
MKR MODE TRC SCL	× 281.9 kHz	۲ -65.70 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
2 N 1 f	281.9 KHZ 22.218 8 MHz	-71.32 dBm				-
3						Freq Offset
5						0 Hz
6 7						
8						
10						2
44					~	
11		10			>	

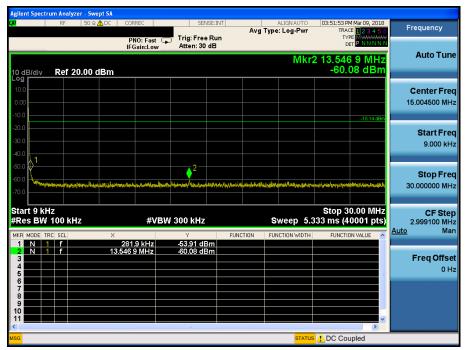
Agilent Spectrum Analyzer - Sv					
KF 50 S	2 AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:43:10 PM Mar 09, 2018 TRACE 123456	Frequency
	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 20 dB		DET P N N'N N N	
10 dB/div Ref 10.00	dBm		Mkr	5 5.790 67 GHz -53.82 dBm	Auto Tune
-10.0	¹				Center Freq 5.015000000 GHz
-30.0 -40.0 -50.0		•	5,2 A	-29.47 dBm	Start Freq 30.000000 MHz
-60.0 Here and the set of the se					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz		N 3.0 MHz		Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz Auto Man
MKR MODE TRC SCL 1 N 1 F 2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F 5 N 1 F	× 2.467 91 GHz 6.062 35 GHz 6.541 66 GHz 6.492 06 GHz 5.790 67 GHz	Y FUI -3.64 dBm -53.60 dBm -53.62 dBm -53.80 dBm -53.82 dBm	ICTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz
7 8 9 10 11		UP III		×	
MSG			STATUS	3	

Agilent Spectrum Analyzer - Sv	vept SA				
RF 50	2 AC CORREC	SENSE:INT	ALIGN AUTO	02:42:31 PM Mar 09, 2018	Frequency
	PNO: Fast ⊂ IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PNNNNN	
10 dB/div Ref 10.00	dBm		Mkr	5 26.332 5 GHz -41.77 dBm	Auto Tune
0.00 -10.0 -20.0					Center Freq 18.250000000 GHz
-30.0				-29.47 dBm	Start Freq 10.000000000 GHz
-60.0 -70.0 -80.0					Stop Frec 26.50000000 GHz
Start 10.000 GHz #Res BW 1.0 MHz	#VBI	W 3.0 MHz	Sweep 42	Stop 26.500 GHz .67 ms (40001 pts)	CF Step 1.65000000 GHz
MKR MODE TRC SCL	× 26.234 8 GHz	-39.97 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f	24.792 7 GHz 25.396 6 GHz 25.973 7 GHz 26.332 5 GHz	-41.52 dBm -41.57 dBm -41.68 dBm -41.77 dBm			Freq Offset 0 Hz
6 7 8 9 10					
11		11		>	
MSG .			STATUS		


TM 7 & ANT 2 & 2412

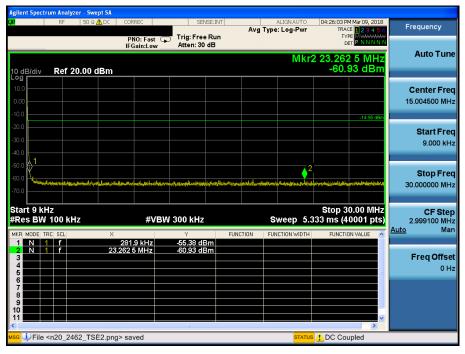
Reference

Low Band-edge


Agilent Spectrum Analyzer - Swept SA					
LXI RF 50 Ω AC	CORREC	SENSE:INT Ava	ALIGN AUTO Type: Log-Pwr	03:48:09 PM Mar 09, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast Trig: Fi IFGain:Low Atten:	ee Run		TYPE MWWWWWWW DET P N N N N N	
			Mkr	5 9.527 92 GHz	Auto Tune
10 dB/div Ref 20.00 dBm				-46.01 dBm	
10.0					Center Freq
0.00					5.015000000 GHz
-10.0				-14.58 dBm	
-20.0					Start Freq
-30.0					30.000000 MHz
-40.0	⊘ ²	_ <mark>04</mark> 03		\$ ⁵	
-50.0				and the state of the	
-60.0					Stop Freq 10.00000000 GHz
-70.0					10.00000000 GH2
Start 30 MHz				Stop 10.000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0 MH	z	Sweep 18.	67 ms (40001 pts)	997.000000 MHz
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
	11 33 GHz 11.30 87 25 GHz -45.04				
3 N 1 f 5.8	38 27 GHz -45.10 74 82 GHz -45.31	dBm			Freq Offset
5 N 1 f 9.5	27 92 GHz -46.01			_	0 Hz
6					
8					
10					
<				>	
MSG			STATUS		

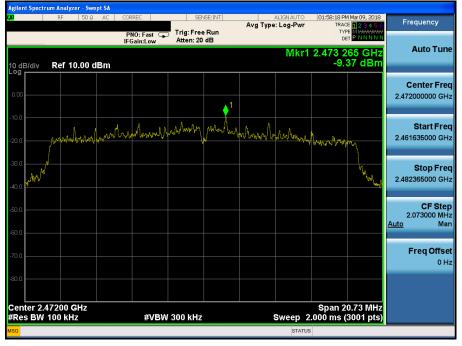
TM 7 & ANT 2 & 2437

Reference


Marcol RF 50 Ω AC CORREC SENSE:INT ALIGNAUTO OB34:23 PM Mar 09, 2018 PNO: Fast PNO: Fast IFree Run Avg Type: Log-Pwr Trig: Free Run Mkr5 16.468 4 GHz Auto Tu 10 dB/div. Ref 20.00 dBm
IFGain:Low Atten: 30 dB Det PRINKIT
Mkr5 16.468 4 GHz
100 Center Fr
0.00 18,25000000 G
-10.0
-20.0
300 300
-500 Stop Fr
-600 26.50000000 G
-70.0
Start 10.000 GHz CF St
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 42.67 ms (40001 pts)
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE
2 N 1 f 25.3310 GHz 35.12 dBm 3 N 1 f 21.418 8 GHz 35.14 dBm
4 N 1 f 22.874 1 GHz -37.68 dBm
5 N 1 f 16.468 4 GHz -40.86 dBm
MSG STATUS

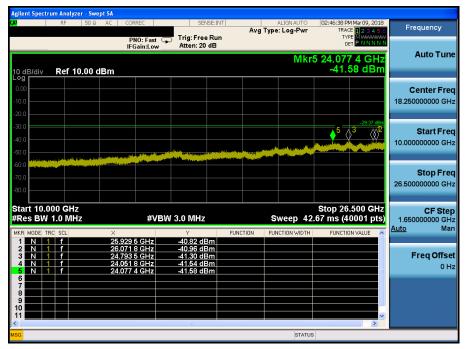
TM 7 & ANT 2 & 2462

Reference



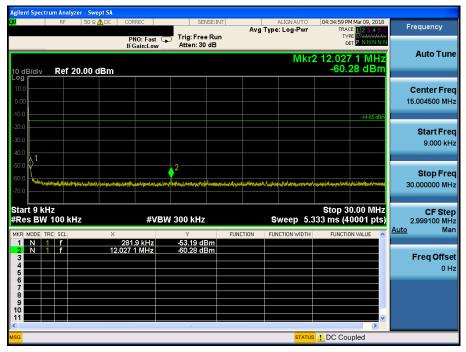
Agilent Spectrur		Swept SA									
L <mark>XI</mark>	RF !	50Ω AC	CORRE	EC	SEN	ISE:INT	Ανα Τι	ALIGN AUTO		M Mar 09, 2018 CE 123456	Frequency
):Fast 😱	Trig: Free		(i g in	pe. Logi wi	TY		
			IFGa	in:Low	Atten: 30	dB					Auto Tune
								Mkr		23 GHz	Auto Tulle
10 dB/div Log	Ref 20.0		.						-46.	14 dBm	
10.0			∕ 1								Center Freq
0.00											5.015000000 GHz
-10.0											0.01000000000112
-20.0										-14.95 dBm	
											Start Freq
-30.0								<u>ہ</u>	▲5	۸4	30.000000 MHz
-40.0			يرم ليسياف	A	بالدار .				• • · · · ·	Ŷ	
-50.0					Contraction of the second s						Stop Freq
-60.0											10.000000000 GHz
-70.0											
Start 30 MI	Hz								Stop 10	.000 GHz	CF Step
#Res BW 1				#VBW	3.0 MHz			Sweep 18	.67 ms (4	0001 pts)	997.000000 MHz
MKR MODE TRC	SCL	×			Y	FUNC	TION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
1 N 1	f		.462 43		11.27 dE						
2 N 1 3 N 1	f f	5	.994 29 .768 98	GHz	-45.30 dE -45.40 dE	3m					Freq Offset
4 N 1 5 N 1	f		.732 06		-46.02 dE -46.14 dE						0 Hz
6		0	.203 23 '	GHZ	-40.14 UE	5111					
7 8											
9											
10										~	
<					Ш					>	
MSG								STATUS			

TM 7 & ANT 2 & 2472

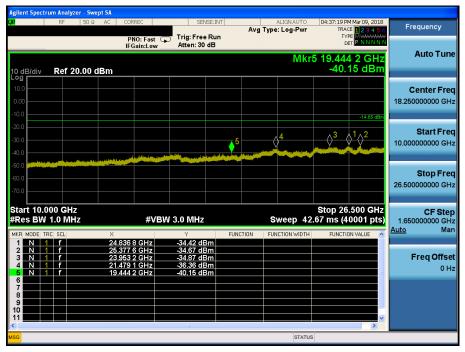

Reference

RF 50 ຊ 🦺 ເ		SENSE:IN	г	ALIGN AUTO	02:36:58 PM Mar 09, 20	0
	PNO: Fast C		Avg	Type: Log-Pwr	TRACE 12345 TYPE MWWWW DET P N N N	Frequency
0 dB/div Ref 10.00 dB				Mk	r2 4.461 9 MH -70.78 dBr	Z Auto Tun n
• 9 0.00 10.0						Center Fre 15.004500 MH
40.0 50.0					-29.37 of	Start Fre 9.000 kH
	หมู่ประเทศไขปรูปปรึกษา _ย างไปจะปัญหาย	พระในกันสมกุลระหูปการแก่ไปปการแก่	Differentievelle (ferentievelle)	utit an iteration		Stop Fre 30.000000 MH
start 9 kHz Res BW 100 kHz	#VB	W 300 kHz		Sweep 5.3	Stop 30.00 MH 33 ms (40001 pt	Z CF Ste s) 2.999100 MH Auto Ma
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 - - - 4 - - - 5 - - -	× 281.9 kHz 4.461 9 MHz	-64.937 dBm -70.78 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Freq Offs
6 7 8 9 9 10						
SG		110			DC Coupled	

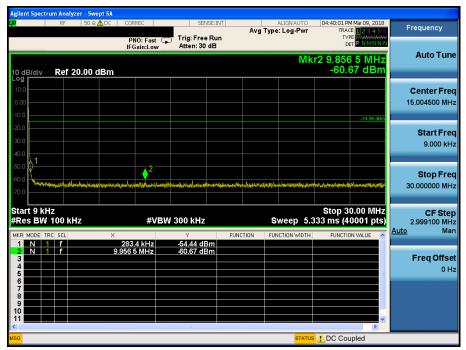
Agilent Spectrum Analyzer - Sw		SENSE:INT	ALIGNAUTO	02:45:26 PM Mar 09, 2018	
A KF 50 S	PNO: Fast		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
10 dB/div Ref 10.00		Atten. 20 dB	Mkr	5 5.634 39 GHz -53.30 dBm	Auto Tune
-10.0	¹				Center Fred 5.015000000 GH:
-30.0		5		-29.37 dBm	Start Free 30.000000 MH
-60.0 7000 100 100 100 100 100 100 100 100 100					Stop Fre 10.000000000 GH
Start 30 MHz Res BW 1.0 MHz	#VBV	V 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Ste 997.000000 MH <u>Auto</u> Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 6 N 1 f 7	2.470 91 GHz 6.728 34 GHz 6.957 16 GHz 6.911 29 GHz 5.634 39 GHz	4.28 dBm -52.64 dBm -53.24 dBm -53.24 dBm -53.30 dBm			Freq Offse 0 H
9 10 11				×	
MSG			STATUS		


TM 8 & ANT 2 & 2412

Reference

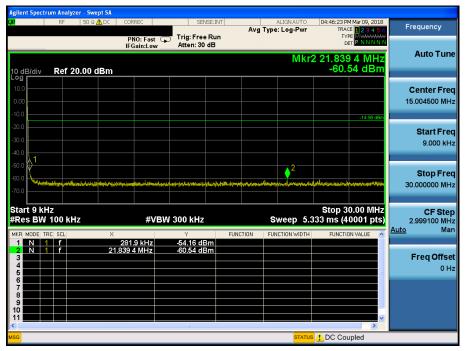


Low Band-edge

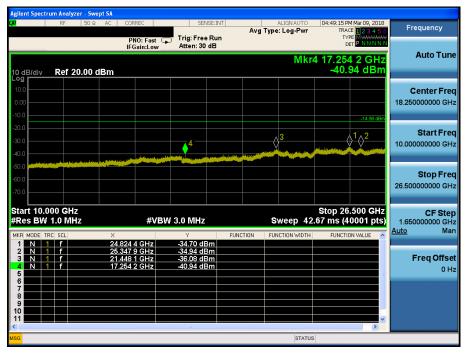

Agilent Spectrum	Analyzer - Swe	ept SA									
LXI	RF 50 Ω	AC	CORREC		SEN	SE:INT		ALIGN AUTO		M Mar 09, 2018	Frequency
			DNO: E	ast 😱	Trig: Free	Run	Avgiy	pe: Log-Pwr	TY	CE 123456 PE MWWWWW	
			IFGain:L	.ow	Atten: 30	dB			D	et P N N N N N	
								Mkr	3 9.670	24 GHz	Auto Tune
10 dB/div R	ef 20.00 (dBm							-46.	33 dBm	
Log 10.0											
											Center Freq
0.00											5.015000000 GHz
-10.0										-14.65 dBm	
-20.0											Start Freq
-30.0											30.000000 MHz
-40.0		<u> </u>				\$				<mark>_</mark> 3	
-50.0	and a set of the second	and the second	- ter andra	State Law	Call Contraction	- Larrenton Deleter		and allow a been strated		ALCOLOGICAL STREET,	
-60.0					and the second second						Stop Freq
-70.0											10.00000000 GHz
-70.0											
Start 30 MHz	2								Stop 10	.000 GHz	CF Step
#Res BW 1.0) MHz		\$	¢γB₩	3.0 MHz			Sweep 18	.67 ms (4	0001 pts)	997.000000 MHz
MKR MODE TRC S		×			Y	FUNC	TION F	UNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
1 N 1 1	f	2.41	0 84 GH 6 43 GH	z	11.47 dE						
		9.67	0 24 GH	z	-44.35 dE -46.33 dE	m					Freq Offset
4	_										0 Hz
6											
7				_							
9											
10										~	
<					Ш					>	
MSG	sg status										

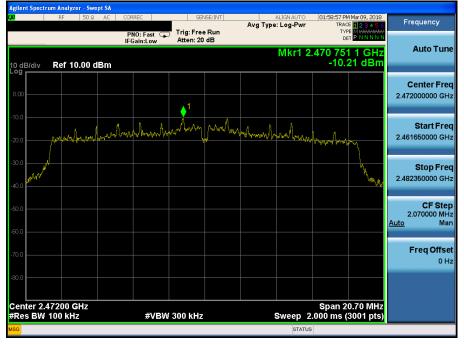
TM 8 & ANT 2 & 2437

Reference

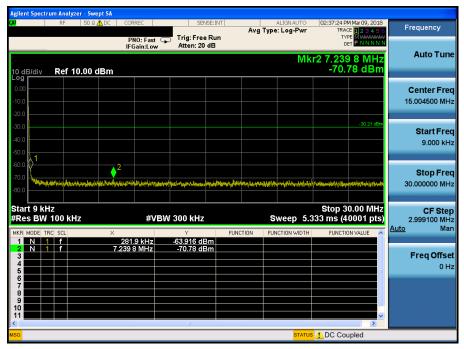

Agilent Spectrum										
L)XI	RF 50 Ω	AC CORI	REC	SENS		ALI a Type: L	IGN AUTO	TRA	M Mar 09, 2018 .CE 123456	Frequency
		PN	IO: Fast 🕞 ain:Low	Trig: Free F Atten: 30 d		•		T) [
		IFG	ain:Low	Atten. 30 u			Mice			Auto Tune
	IB/div Ref 20.00 dBm -36.36 dE									
Log 10.0										
0.00										Center Freq 18.25000000 GHz
-10.0										18.25000000 GH2
-20.0									-14.98 dBm	
-30.0						4		_ <mark>2</mark> /	3 1	Start Freq
-40.0							ales and address		the strength of the	10.00000000 GHz
-40.0							1			
-60.0										Stop Freq
-70.0										26.50000000 GHz
Start 10.000 #Res BW 1.0			-#3 (F) \A	(3.0 MHz			10		6.500 GHz 10001 pts)	CF Step
			#VDV					<u>`</u>		1.650000000 GHz Auto Man
MKR MODE TRC S	f	× 26.237 7	GHz	-34.68 dBr	FUNCTION	FUNCT	ION WIDTH	FUNCTI	ON VALUE	
2 N 1 3 N 1	f f	23.347 3	3 GHz	-34.73 dBr -35.19 dBr	n					Freq Offset
4 N 1	f	21.453 1	GHz	-36.36 dBr	n					0 Hz
5 6										
7										
9										
11									~	
				iii			0747		<u>></u>	
MSG	STATUS									

TM 8 & ANT 2 & 2462


Reference



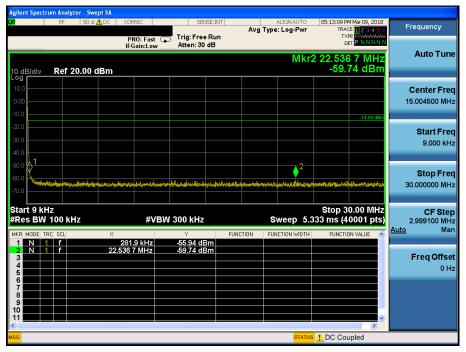

Agilent Spectrum Analyzer - Swe	ept SA				
<mark>(X)</mark> RF 50 Ω	AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:47:59 PM Mar 09, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast	Trig: Free Run	And the road w	TYPE MWAAAAAAAA DET P N N N N N	
	IFGain:Low	Atten: 30 dB			Auto Tune
			Mkr	4 3.167 56 GHz	Auto Fullo
10 dB/div Ref 20.00 c				-45.23 dBm	
10.0	Q1				Center Freq
0.00					5.015000000 GHz
-10.0					
-20.0				-14.98 dBm	
					Start Freq
-30.0	34	A 2			30.000000 MHz
-40.0			-		
-50.0					Stop Freq
-60.0					10.000000000 GHz
-70.0					10.000000000 GHZ
				Of	
Start 30 MHz #Res BW 1.0 MHz	#VB	W 3.0 MHz	Sween 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
			-		Auto Man
MKR MODE TRC SCL	× 2.461 18 GHz	Y FL 11.71 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f	5.108 22 GHz	-44.90 dBm			F O (f)
3 N 1 f	2.670 80 GHz 3.167 56 GHz	-45.06 dBm -45.23 dBm			Freq Offset 0 Hz
5					UHZ
6 7					
8					
10					
11				~	
MSG			STATUS	,	
			STATUS		



TM 8 & ANT 2 & 2472


Reference

Agilent Spectrum Analyzer - Sw					
LXI RF 50 Ω	AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:49:11 PM Mar 09, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast G	Trig: Free Run Atten: 20 dB	U ,	TYPE MWWWWW DET P N N N N N	
	IFGaIN:LOW	Atten: 20 GB	Mice	5 6.730 34 GHz	Auto Tune
10 dB/div Ref 10.00	dBm		IVIKI	-53.33 dBm	
Log 0.00	∆ ¹				Center Freq
-10.0	l ľ				5.015000000 GHz
-20.0					0.01000000000112
-30.0				-30.21 dBm	
-40.0					Start Freq
-50.0			<u></u> 5,2		30.000000 MHz
-60.0	and the second second second	a long and long and long and long	and a stand and a stand a particular	and the second state of th	
-70.0	an a			متعاقبته التقاور واختذاه ومصحبه ومعاداته	Stop Freq
-80.0					10.00000000 GHz
Start 30 MHz #Res BW 1.0 MHz		N 3.0 MHz	Current 40	Stop 10.000 GHz .67 ms (40001 pts)	CF Step
					997.000000 MHz Auto Man
MKR MODE TRC SCL	× 2.472 90 GHz	Y FU -3.48 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 3 N 1 f	6.950 18 GHz 6.941 95 GHz	-52.97 dBm -53.13 dBm			Freq Offset
4 N 1 f	6.730 34 GHz	-53.33 dBm			0 Hz
5 N 1 f	6.730 34 GHz	-53.33 dBm			0112
7					
9					
10				×	
		Ш		>	
MSG			STATUS		


TM 9 & ANT 2 & 2412

Reference

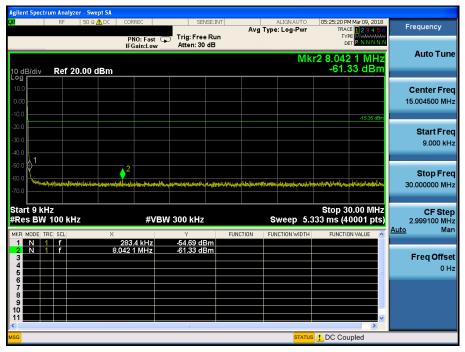
Low Band-edge


Agilent Spectrum Analyzer - Swe	ept SA				
LXI RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUTO	05:14:21 PM Mar 09, 2018	Frequency
	PNO: Fast (IFGain:Low	 Trig: Free Run Atten: 30 dB 	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PINNNNN	
10 dB/div Ref 20.00 d			Mkr	4 9.626 37 GHz -45.63 dBm	Auto Tune
Log 10.0 0.00 -10.0				-14.94 dBm	Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0	2		23		Start Freq 30.000000 MHz
-50.0 -60.0 -70.0					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	× 2.411 58 GHz	Y FI 11.33 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 F 3 N 1 F 4 N 1 F 5	2.661 83 GHz 5.813 60 GHz 9.626 37 GHz	-44.83 dBm -45.13 dBm -45.63 dBm			Freq Offset 0 Hz
6 7 8 9 10					
11		III.		>	
MSG			STATUS	3	

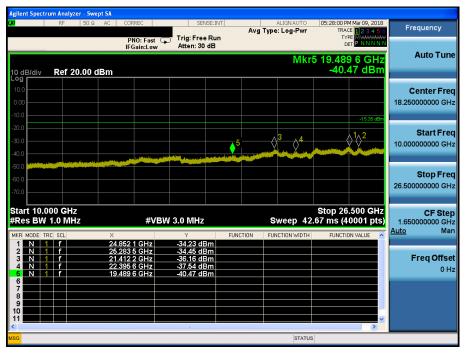
TM 9 & ANT 2 & 2437

Reference

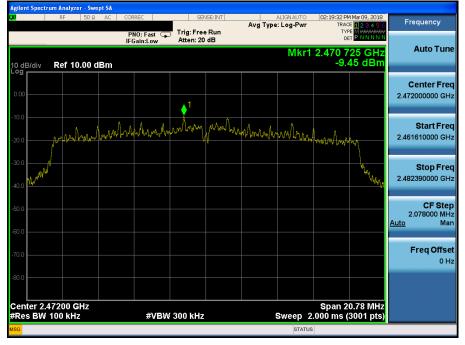
Agilent Spectrum Analyze							
L XI RF	50 Ω AC CORREC	SENSE:IN1		ALIGNAUTO e: Log-Pwr		4 Mar 09, 2018 E 1 2 3 4 5 6	Frequency
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB		•	TYE		
	IFGalit:Low	Atten: 00 ub		Mkr	5 21 / 26	9 GHz	Auto Tune
10 dB/div Ref 20	.00 dBm			IVINI		45 dBm	
Log							
10.0							Center Freq
0.00							18.250000000 GHz
-10.0						-15.12 dBm	
-30.0				5	<u>∧4</u> ∧	3 👌 2 1/	Start Freq
-30.0					Y y		10.00000000 GHz
-40.0							
-60.0							Stop Freq
-70.0							26.50000000 GHz
Start 10.000 GHz #Res BW 1.0 MHz		BW 3.0 MHz		Sweep 42	Stop 26	.500 GHz	CF Step
							1.65000000 GHz <u>Auto</u> Man
MKR MODE TRC SCL	× 26.482 3 GHz	-34.39 dBm	FUNCTION FU	INCTION WIDTH	FUNCTIO	IN VALUE	
2 N 1 f 3 N 1 f	25.380 5 GHz 24.761 3 GHz	-34.43 dBm -34.48 dBm					Freq Offset
4 N 1 f	23.416 2 GHz	-34.74 dBm					0 Hz
5 N 1 f	21.486 9 GHz	-36.45 dBm				=	
7 8							
9							
11						~	
KSG		iii		STATUS		>	
mod				STATUS			


TM 9 & ANT 2 & 2462

Reference



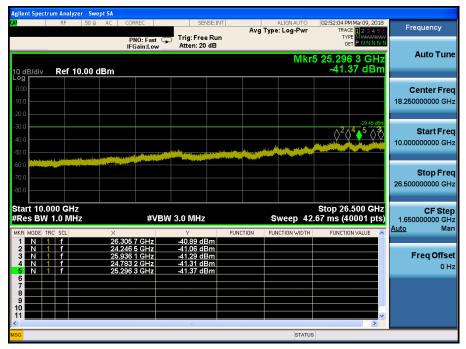
High Band-edge



Agilent Spectrum Analyzer - Swe	ept SA				
L <mark>XI</mark> RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:26:49 PM Mar 09, 2018	Frequency
	PNO: Fast 🕞 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PNNNNN	
10 dB/div Ref 20.00 d			Mkr	5 4.407 83 GHz -45.86 dBm	Auto Tune
Log 10.0 0.00 -10.0				.15.35 dBm	Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0			3 2	4	Start Freq 30.000000 MHz
-50.0 -60.0 -70.0					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VBN	/ 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	× 2.461 18 GHz	Y FUN 11.15 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6	6.416 28 GHz 5.794 16 GHz 9.492 53 GHz 4.407 83 GHz	-44.88 dBm -45.03 dBm -45.58 dBm -45.86 dBm		3	Freq Offset 0 Hz
7 8 9 10					
<		Ш		>	
MSG			STATUS		

TM 9 & ANT 2 & 2472

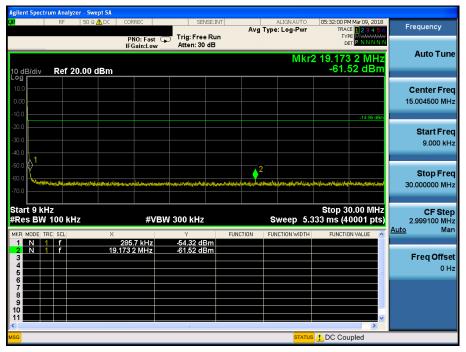
Reference



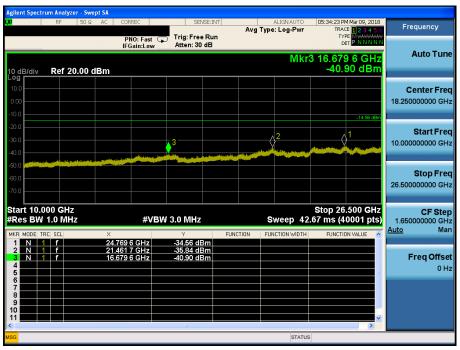
High Band-edge

	t Spec	ctrum		ılyzer - Sw												
L <mark>XI</mark>			RF	50 Ω	\Lambda DC 📗	CORREC		SEM	ISE:INT	Ava		LIGNAUTO		M Mar 09, 2018 E 1 2 3 4 5 6		Frequency
						PNO: Fast		Trig: Free Atten: 20					TY	PE MWWWWW		
						IFGain:Lov	/	Atten: 20	aв				-			Auto Tune
												WKr:		98 MHz 56 dBm		
10 di Log	3/div		Ref	10.00	dBm		_						-70	JO UBIII		
0.00																Center Freq
-10.0																15.004500 MHz
-20.0																
-30.0														-29.45 dBm		
-40.0																Start Freq
-50.0																9.000 kHz
-60.0	1															
-70.0	ľ															Stop Freq
-80.0	New Y	pierily.	who	uniterestry with	whether the	with the second second	hinatophi	Hallford and the	malining	un and a state of the state of	en MAN	instruction for the	hopened stations	alaan ah <mark>jaji</mark> nin hari h		30.000000 MHz
-00.0																
Star													Stop 3	0.00 MHz		CF Step
#Re	s B∖	N 1	00	kHz		#V	BW 3	300 kHz			S	weep 5.3	333 ms (4	0001 pts)		2.999100 MHz
MKR		TRC	SCL		×			Y		JNCTION	FUN	ICTION WIDTH	FUNCTIO	ON VALUE	<u>A</u> L	<u>ito</u> Man
1	NN	1	f		29.1	02.9 kHz 19 8 MHz		-64.98 dE			-					
3					20.1	0011112		10.00 41								Freq Offset
4														=		0 Hz
6																
8																
9 10											+					
11														~		
MSG			_								_	CTATIC	DC Cou		_	
mag											_	STATUS		upied		

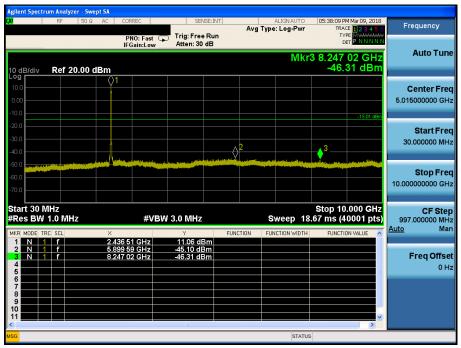
Agilent Spectrum Analyzer - Swe					
LXI RF 50 Ω	AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:51:10 PM Mar 09, 2018 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 20 dB		TYPE MWWWWW DET P N N N N N	
	IFGain:Low	Atten: 20 dB	Mice	5 5.639 62 GHz	Auto Tune
10 dB/div Ref 10.00 d	dBm		IVINI	-53.86 dBm	
Log 0.00	1				Center Freq
-10.0	<u> </u>				5.015000000 GHz
-20.0					
-30.0				-29.45 dBm	
-40.0					Start Freq 30.000000 MHz
-50.0		<mark>5</mark>	\∕ <mark>4 \}</mark> 3		30.000000 MH2
-60.0	and a first state of the state of the second	the set of the second	A DESCRIPTION OF A DESC	antitionen die bester die perstellen die state	
-70.0	فكتكف الكفار				Stop Freq
-80.0					10.00000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VBV	V 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	X		CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f	2.467 67 GHz 9.697 66 GHz	-4.82 dBm -53.72 dBm			
3 N 1 f 4 N 1 f	7.046 14 GHz 6.667 78 GHz	-53.79 dBm -53.83 dBm			Freq Offset
5 N 1 f	5.639 62 GHz	-53.86 dBm		=	0 Hz
6 7					
8					
10					
<		illi illi		>	
MSG			STATUS	5	


TM 10 & ANT 2 & 2412

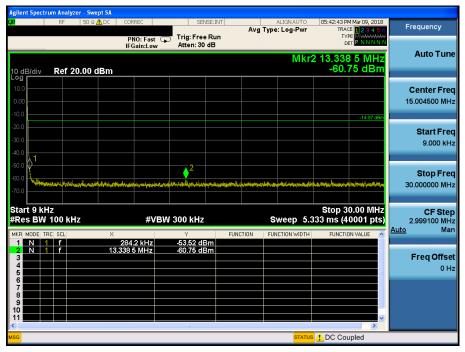
Reference


Low Band-edge

Agilent Spectrum Analyzer - Swep	pt SA				
L XI RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUTO	05:33:21 PM Mar 09, 2018	Frequency
	PNO: Fast ⊊ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWWW DET PNNNNN	
10 dB/div Ref 20.00 d	Bm		MI	(r4 242.86 MHz -49.20 dBm	Auto Tune
Log 10.0 0.00 -10.0					Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0		2 ²			Start Freq 30.000000 MHz
-60.0					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VBV	V 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz Auto Man
MKR MODE TRC SCL	× 2.412 33 GHz	Y FUN 12.28 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	Adto Mari
2 N 1 f 3 N 1 f 4 N 1 f	5.586 28 GHz 9.680 96 GHz 242.86 MHz	-44.44 dBm -45.78 dBm -49.20 dBm			Freq Offset 0 Hz
6 7 8 9 10					
11				>	
MSG			STATUS		

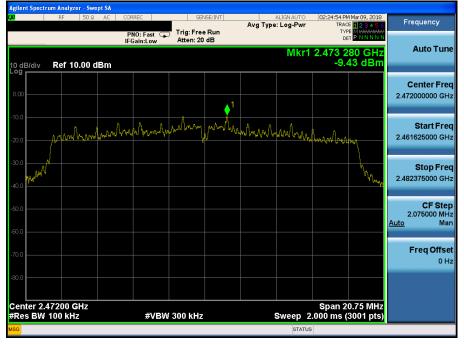

TM 10 & ANT 2 & 2437

Reference

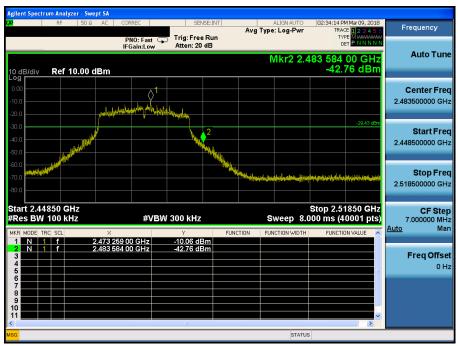

TM 10 & ANT 2 & 2462

Reference

High Band-edge

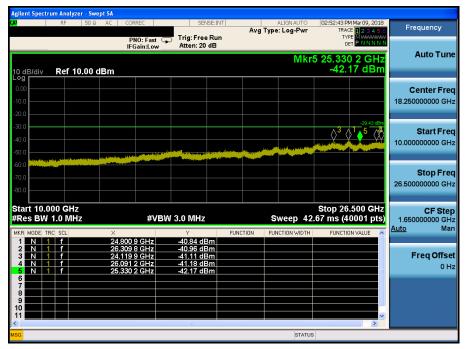


Agilent Spectrum Analyzer - Swe					
LXI RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:43:55 PM Mar 09, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB		DET P NNNN	Auto Tuno
10 dB/div Ref 20.00 c	1Bm		Mkr	5 3.213 67 GHz -45.38 dBm	Auto Tune
Log 10.0					Center Freq
-10.0				-14.97 dBm	5.015000000 GHz
-20.0					Start Freq
-40.0	5	$\langle \rangle^3 \langle \rangle$			30.000000 MHz
-50.0 -60.0					Stop Freq
-70.0					10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VBV	/ 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	× 2.463 68 GHz	Y FUN 11.30 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 F 3 N 1 F	5.829 80 GHz 5.198 45 GHz	-44.45 dBm -44.62 dBm			Freq Offset
4 N 1 f 5 N 1 f 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.234 58 GHz 3.213 67 GHz	-44.87 dBm -45.38 dBm		3	0 Hz
7					
10 11				~	
MSG			STATUS	,	



TM 10 & ANT 2 & 2472

Reference



High Band-edge

Agilent Spectrum Analyzer - Swe					
LXI RF 50 Ω 2	NC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:38:25 PM Mar 09, 2018 TRACE 1 2 3 4 5 6 TYPE MWAWAAA DET P N N N N N	Frequency
10 dB/div Ref 10.00 d	IFGain:Low	Atten: 20 dB	Mk	r2 1.328 6 MHz -70.30 dBm	Auto Tune
					Center Freq 15.004500 MHz
-30.0 -40.0 -50.0				-29.43 dBm	Start Freq 9.000 kHz
-60.0	ันสารรับหระบาทสารรับสี่องสะไขเราไรร่างจะรู	มสามสารสารสารสารสารสารสารสารสารสารสารสารสารส	troinis an bigairt at the Apotenticali	rinnurði, tagður úðurði skilanning	Stop Freq 30.000000 MHz
Start 9 kHz #Res BW 100 kHz	#VBV	V 300 kHz	Sweep 5.3	Stop 30.00 MHz 333 ms (40001 pts)	CF Step 2.999100 MHz Auto Man
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 1 f 4 5 5 6 5 5 7 5 5	× 328.4 kHz 1.328 6 MHz	Y -66.91 dBm -70.30 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man Freq Offset 0 Hz
8 9 10 11 11 S			STATUS	DC Coupled	

Agilent Spectrur															
L <mark>XI</mark>	RF	50 Ω A	ic co	RREC		S	ENSE:I	NT	Avg 1		ALIGNAUTO	TRA	PM Mar 09, 2018 ACE <mark>1 2 3 4 5 6</mark>	Fr	equency
				NO: Fas Gain:Lo		Trig: Fr Atten: 2		in		"		т	YPE MWAWAAA DET PINNNN		
			IF	Gain:Lo	w	Attent. 2	.0 uD			_	Mice	5 7 060			Auto Tune
10 dB/div	Ref 10.	00 dBi	m								IVINI	-53	84 GHz 61 dBm		
			\Diamond^1												Center Frea
-10.0			ľ												5000000 GHz
-20.0														0.01	000000000112
-30.0													-29.43 dBm		
-40.0															Start Freq
-40.0										6	5			30	.000000 MHz
co. o.			. June 1	- Intra agen		nas a la statut data	-	name to the second	way wheel	Ne-ter	Manufacture Longer	A WELL IN COMMENT	ويطفقون ويعرب		
-50.0 langetterst	a construction of the local sectors		a Balling	A ALLOND		and a stand of the state		والتكافيل أشوانه	and the second secon	1.0		and the second s	an an ann an tao an		Stop Freq
-80.0														10.00	0000000 GHz
-00.0															
Start 30 MI												Stop 1	0.000 GHz		CF Step
#Res BW 1	.0 MHz			#	VBW	3.0 MH	Z			S	weep 18	.67 ms (10001 pts)		.000000 MHz Man
MKR MODE TRC	SCL		X	0.011		Y		FUN	TION	FUN	ICTION WIDTH	FUNCT	ION VALUE	<u>Auto</u>	wan
1 N 1 2 N 1	f		2.471 9 6.999 7	8 GHz	-	-3.15 -53.02 (dΒm								
3 N 1 4 N 1	f		5.798 1 7.060 8	4 GHz	2	-53.60 c	dBm dBm								Freq Offset
5 N 1	f		7.060 8			-53.61							в		0 Hz
6 7															
8															
10															
11 <						111							×		
MSG											STATUS				

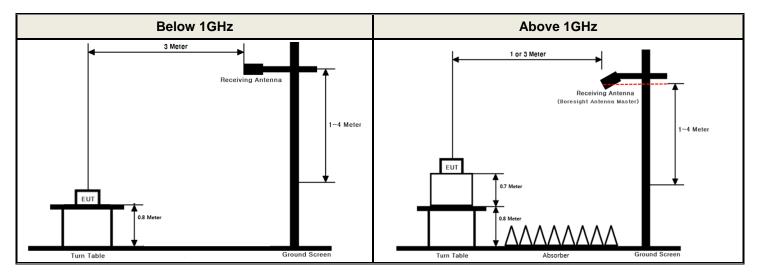
8.5 Radiated spurious emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)		
0.009 - 0.490	2400/F (kHz)	300		
0.490 – 1.705	24000/F (kHz)	30		
1.705 – 30.0	30	30		
30 ~ 88	100 **	3		
88 ~ 216	150 **	3		
216 ~ 960	200 **	3		
Above 960	500	3		


** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the 2462 emissions.
- 4. Maximum procedure was performed on the six 2462 emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Peak Measurement

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement:

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points \ge 2 x Span / RBW)
- 4. Averaging type = power. (i.e., RMS)
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	Date rate	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
TM 1	1 Mbps	-	-
TM 2	6 Mbps	-	-
TM 3	MCS 0	-	-
TM 4	NSS1 MCS 0	-	-
TM 5	1 Mbps	99.19	-
TM 6	6 Mbps	98.06	-
TM 7	MCS 0	98.13	-
TM 8	NSS1 MCS 0	97.93	0.10
TM 9	MCS 8	98.03	-
TM 10	NSS2 MCS 0	96.34	0.17

Duty Cycle Correction factor

Test Results: Comply

Please refer to next page for data table and the appendix I for worst data plots.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2383.31	V	Y	PK	50.08	2.12	N/A	N/A	52.20	74.00	21.80
2412	2383.20	V	Y	AV	38.48	2.12	N/A	N/A	40.60	54.00	13.40
2412	4824.09	Н	Х	PK	44.42	6.10	N/A	N/A	50.52	74.00	23.48
	4823.55	Н	Х	AV	33.96	6.10	N/A	N/A	40.06	54.00	13.94
0.407	4873.67	Н	Х	PK	44.65	6.42	N/A	N/A	51.07	74.00	22.93
2437	4874.49	Н	Х	AV	34.62	6.42	N/A	N/A	41.04	54.00	12.96
	2484.84	Н	Y	PK	49.16	2.38	N/A	N/A	51.54	74.00	22.46
0.400	2485.02	Н	Y	AV	38.95	2.38	N/A	N/A	41.33	54.00	12.67
2462	4924.45	Н	Х	PK	45.05	6.57	N/A	N/A	51.62	74.00	22.38
	4924.40	Н	Х	AV	34.31	6.57	N/A	N/A	40.88	54.00	13.12
	2486.37	Н	Y	PK	45.79	2.38	N/A	N/A	48.17	74.00	25.83
0.470	2486.74	Н	Y	AV	35.04	2.38	N/A	N/A	37.42	54.00	16.58
2472	4943.58	Н	Х	PK	44.36	6.79	N/A	N/A	51.15	74.00	22.85
	4943.55	Н	Х	AV	34.19	6.79	N/A	N/A	40.98	54.00	13.02

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 5(TM 5) _ Normal

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.84	V	Y	PK	53.72	2.14	N/A	N/A	55.86	74.00	18.14
0440	2389.79	V	Y	AV	43.72	2.14	N/A	N/A	45.86	54.00	8.14
	4824.43	Н	Х	PK	44.71	6.10	N/A	N/A	50.81	74.00	23.19
	4823.71	Н	Х	AV	33.77	6.10	N/A	N/A	39.87	54.00	14.13
2437	4874.16	Н	Х	PK	45.00	6.42	N/A	N/A	51.42	74.00	22.58
	4874.50	Н	Х	AV	34.44	6.42	N/A	N/A	40.86	54.00	13.14
	2484.95	Н	Y	PK	59.03	2.38	N/A	N/A	61.41	74.00	12.59
0400	2485.31	Н	Y	AV	45.95	2.38	N/A	N/A	48.33	54.00	5.67
2462	4823.07	Н	Х	PK	44.99	6.57	N/A	N/A	51.56	74.00	22.44
	4923.26	Н	Х	AV	34.22	6.57	N/A	N/A	40.79	54.00	13.21
	2483.52	Н	Y	PK	62.15	2.38	N/A	N/A	64.53	74.00	9.47
2472 -	2483.62	Н	Y	AV	47.64	2.38	N/A	N/A	50.02	54.00	3.98
	4942.91	Н	Х	PK	44.17	6.79	N/A	N/A	50.96	74.00	23.04
	4942.00	Н	Х	AV	33.75	6.79	N/A	N/A	40.54	54.00	13.46

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 6(TM 6) _ Normal

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2387.90	Н	Х	PK	53.44	2.14	N/A	N/A	55.58	74.00	18.42
0440	2388.11	Н	Х	AV	41.96	2.14	N/A	N/A	44.10	54.00	9.90
2412	4823.66	Н	Х	PK	44.54	6.10	N/A	N/A	50.64	74.00	23.36
	4824.02	Н	Х	AV	33.69	6.10	N/A	N/A	39.79	54.00	14.21
0.407	4873.91	Н	Х	PK	45.60	6.42	N/A	N/A	52.02	74.00	21.98
2437	4873.65	Н	Х	AV	34.05	6.42	N/A	N/A	40.47	54.00	13.53
	2483.69	Н	Y	PK	55.65	2.38	N/A	N/A	58.03	74.00	15.97
0.400	2483.75	Н	Y	AV	45.08	2.38	N/A	N/A	47.46	54.00	6.54
2462	4924.22	Н	Х	PK	45.26	6.57	N/A	N/A	51.83	74.00	22.17
	4924.41	Н	Х	AV	34.44	6.57	N/A	N/A	41.01	54.00	12.99
	2483.68	Н	Y	PK	60.96	2.38	N/A	N/A	63.34	74.00	10.66
2472	2483.52	Н	Y	AV	48.12	2.38	N/A	N/A	50.50	54.00	3.50
	4944.08	Н	Х	PK	43.95	6.79	N/A	N/A	50.74	74.00	23.26
	4943.93	Н	Х	AV	33.71	6.79	N/A	N/A	40.50	54.00	13.50

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 7(TM 7) _ Normal

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.76	Н	Х	PK	51.91	2.14	N/A	N/A	54.05	74.00	19.95
0440	2389.41	Н	Х	AV	41.87	2.14	0.10	N/A	44.11	54.00	9.89
2412	4824.18	Н	Х	PK	45.21	6.10	N/A	N/A	51.31	74.00	22.69
	4823.81	Н	Х	AV	33.89	6.10	0.10	N/A	40.09	54.00	13.91
2437	4874.44	Н	Х	PK	44.77	6.42	N/A	N/A	51.19	74.00	22.81
	4873.89	Н	Х	AV	34.50	6.42	0.10	N/A	41.02	54.00	12.98
	2483.68	Н	Y	PK	58.60	2.38	N/A	N/A	60.98	74.00	13.02
0.400	2483.63	Н	Y	AV	47.00	2.38	0.10	N/A	49.48	54.00	4.52
2462	4923.67	Н	Х	PK	44.46	6.57	N/A	N/A	51.03	74.00	22.97
	4924.20	Н	Х	AV	34.50	6.57	0.10	N/A	41.17	54.00	12.83
	2483.80	V	Z	PK	59.53	2.38	N/A	N/A	61.91	74.00	12.09
0.470	2483.58	V	Z	AV	47.76	2.38	0.10	N/A	50.24	54.00	3.76
2472 -	4945.86	Н	Х	PK	44.88	6.79	N/A	N/A	51.67	74.00	22.33
	4945.00	Н	Х	AV	33.48	6.79	0.10	N/A	40.37	54.00	13.63

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 8(TM 8) _ Normal

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2388.61	Н	Y	PK	52.20	2.14	N/A	N/A	54.34	74.00	19.66
0440	2388.93	Н	Y	AV	41.32	2.14	N/A	N/A	43.46	54.00	10.54
	4824.02	Н	Х	PK	44.66	6.58	N/A	N/A	51.24	74.00	22.76
	4823.63	Н	Х	AV	34.07	6.58	N/A	N/A	40.65	54.00	13.35
2437	4873.78	Н	Х	PK	45.37	6.57	N/A	N/A	51.94	74.00	22.06
	4873.76	Н	Х	AV	34.31	6.57	N/A	N/A	40.88	54.00	13.12
	2484.17	Н	Y	PK	55.22	2.37	N/A	N/A	57.59	74.00	16.41
0.400	2484.12	Н	Y	AV	44.49	2.37	N/A	N/A	46.86	54.00	7.14
2462	4924.24	Н	Х	PK	44.45	6.74	N/A	N/A	51.19	74.00	22.81
	4923.85	Н	Х	AV	34.28	6.74	N/A	N/A	41.02	54.00	12.98
	2484.06	Н	Y	PK	63.92	2.37	N/A	N/A	66.29	74.00	7.71
2472 -	2483.53	Н	Y	AV	48.51	2.37	N/A	N/A	50.88	54.00	3.12
	4944.78	Н	Х	PK	43.85	6.79	N/A	N/A	50.64	74.00	23.36
	4944.00	Н	Х	AV	33.73	6.79	N/A	N/A	40.52	54.00	13.48

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 9(TM 9) _ Normal

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.99	Н	Y	PK	54.72	2.14	N/A	N/A	56.86	74.00	17.14
0440	2389.92	Н	Y	AV	43.89	2.14	0.17	N/A	46.20	54.00	7.80
2412 -	4824.30	Н	Х	PK	45.24	6.58	N/A	N/A	51.82	74.00	22.18
	4823.90	Н	Х	AV	33.76	6.58	0.17	N/A	40.51	54.00	13.49
2437	4873.95	Н	Х	PK	44.62	6.57	N/A	N/A	51.19	74.00	22.81
	4874.00	Н	Х	AV	34.57	6.57	0.17	N/A	41.31	54.00	12.69
	2483.82	Н	Y	PK	56.68	2.37	N/A	N/A	59.05	74.00	14.95
0.400	2483.88	Н	Y	AV	45.62	2.37	0.17	N/A	48.16	54.00	5.84
2462	4924.54	Н	Х	PK	45.42	6.74	N/A	N/A	52.16	74.00	21.84
	4924.45	Н	Х	AV	34.48	6.74	0.17	N/A	41.39	54.00	12.61
	2483.53	V	Z	PK	59.98	2.37	N/A	N/A	62.35	74.00	11.65
2472 -	2483.54	V	Z	AV	47.94	2.37	0.17	N/A	50.48	54.00	3.52
	4942.53	Н	Х	PK	44.39	6.79	N/A	N/A	51.18	74.00	22.82
	4942.53	Н	Х	AV	33.39	6.79	0.17	N/A	40.35	54.00	13.65

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 10(TM 10) _ Normal

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>Test Mode 5(TM 5)</u> _ Wireless Charging

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2385.91	Н	Х	PK	49.08	2.13	N/A	N/A	51.21	74.00	22.79
2412	2386.07	Н	Х	AV	38.59	2.13	N/A	N/A	40.72	54.00	13.28
2412	4823.80	Н	Х	PK	45.02	6.10	N/A	N/A	51.12	74.00	22.88
	4824.03	Н	Х	AV	34.05	6.10	N/A	N/A	40.15	54.00	13.85
2437	4873.92	Н	Х	PK	45.25	6.42	N/A	N/A	51.67	74.00	22.33
2437	4873.84	Н	Х	AV	34.44	6.42	N/A	N/A	40.86	54.00	13.14
	2485.71	Н	Х	PK	49.85	2.38	N/A	N/A	52.23	74.00	21.77
2462	2485.57	Н	Х	AV	39.02	2.38	N/A	N/A	41.40	54.00	12.60
2402	4923.52	Н	Х	PK	45.30	6.57	N/A	N/A	51.87	74.00	22.13
	4923.86	Н	Х	AV	34.35	6.57	N/A	N/A	40.92	54.00	13.08
	2485.02	Н	Х	PK	45.62	2.38	N/A	N/A	48.00	74.00	26.00
0470	2485.01	Н	Х	AV	34.71	2.38	N/A	N/A	37.09	54.00	16.91
2472	4944.26	Н	Х	PK	44.36	6.79	N/A	N/A	51.15	74.00	22.85
	4944.24	Н	Х	AV	33.71	6.79	N/A	N/A	40.50	54.00	13.50

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2388.98	Н	Х	PK	56.51	2.14	N/A	N/A	58.65	74.00	15.35
2412	2389.14	Н	Х	AV	44.86	2.14	N/A	N/A	47.00	54.00	7.00
2412	4823.84	Н	Х	PK	45.40	6.10	N/A	N/A	51.50	74.00	22.50
	4824.03	Н	Х	AV	34.13	6.10	N/A	N/A	40.23	54.00	13.77
0407	4874.14	Н	Х	PK	46.10	6.42	N/A	N/A	52.52	74.00	21.48
2437	4873.85	Н	Х	AV	34.33	6.42	N/A	N/A	40.75	54.00	13.25
	2485.33	Н	Х	PK	54.48	2.38	N/A	N/A	56.86	74.00	17.14
0400	2485.99	Н	Х	AV	43.39	2.38	N/A	N/A	45.77	54.00	8.23
2462	4923.97	Н	Х	PK	45.28	6.57	N/A	N/A	51.85	74.00	22.15
	4923.91	Н	Х	AV	34.52	6.57	N/A	N/A	41.09	54.00	12.91
	2485.33	Н	Х	PK	55.44	2.38	N/A	N/A	57.82	74.00	16.18
0.470	2485.35	Н	Х	AV	43.60	2.38	N/A	N/A	45.98	54.00	8.02
2472	4944.82	Н	Х	PK	44.25	6.79	N/A	N/A	51.04	74.00	22.96
	4944.82	Н	Х	AV	33.77	6.79	N/A	N/A	40.56	54.00	13.44

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 6(TM 6) _ Wireless Charging

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.65	Н	Х	PK	51.63	2.14	N/A	N/A	53.77	74.00	20.23
0440	2389.60	Н	Х	AV	41.10	2.14	N/A	N/A	43.24	54.00	10.76
2412	4823.97	Н	Х	PK	44.92	6.10	N/A	N/A	51.02	74.00	22.98
	4823.62	Н	Х	AV	33.97	6.10	N/A	N/A	40.07	54.00	13.93
0407	4874.47	Н	Х	PK	44.82	6.42	N/A	N/A	51.24	74.00	22.76
2437	4874.47	Н	Х	AV	34.47	6.42	N/A	N/A	40.89	54.00	13.11
	2483.56	Н	Х	PK	54.39	2.38	N/A	N/A	56.77	74.00	17.23
0400	2483.69	Н	Х	AV	43.42	2.38	N/A	N/A	45.80	54.00	8.20
2462	4923.65	Н	Х	PK	45.23	6.57	N/A	N/A	51.80	74.00	22.20
	4924.50	Н	Х	AV	34.16	6.57	N/A	N/A	40.73	54.00	13.27
	2483.61	Н	Х	PK	60.45	2.38	N/A	N/A	62.83	74.00	11.17
0.470	2483.97	Н	Х	AV	47.85	2.38	N/A	N/A	50.23	54.00	3.77
2472	4944.49	Н	Х	PK	44.85	6.79	N/A	N/A	51.64	74.00	22.36
	4944.42	Н	Х	AV	33.68	6.79	N/A	N/A	40.47	54.00	13.53

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 7(TM 7) _ Wireless Charging

Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. This device was tested under MIMO Multiple transmitting (Ant 1, 2) and the worst case data are reported in the table above.
- 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB