

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC GSM REPORT

FCC Certification

Applicant Name:

LG Electronics MobileComm U.S.A., Inc.

Date of Issue:

September 05, 2016

Location:

Address:

HCT CO., LTD.,

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

74, Seoicheon-ro 578beon-gil, Majang-myeon,

Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1609-F001

HCT FRN: 0005866421

249 KGXW

1.154

30.62

FCC ID:

ZNFG420

APPLICANT:

LG Electronics MobileComm U.S.A., Inc.

FCC Model(s):

LG-G420

EUT Type:

GSM Phone with Bluetooth

FCC Classification:

GSM1900

Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s):

§22, §24, §2

1850.2 - 1909.8

	Ty Fraguency	Dy Fraguanay	Emission	ERP			
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)	Designator	Max. Power (W)	Max. Power (dBm)		
GSM850	824.2 - 848.8	869.2 – 893.8	244 KGXW	0.724	28.60		
	Ty Fraguency	Dy Fraguanay	Emission	EIRP			
Mode	Tx Frequency (MHz)	Rx Frequency (MHz)	Designator	Max. Power (W)	Max. Power (dBm)		

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

1930.2 - 1989.8

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Ki Hyun Kim

Test engineer of RF Team

Approved by : Jong Seok Lee

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1609-F001	September 05, 2016	- First Approval Report

Table of Contents

1. GEN	ERAL INFORMATION	. 4
2. INTR	RODUCTION	. 5
2.1	. EUT DESCRIPTION	. 5
2.2	2. MEASURING INSTRUMENT CALIBRATION	. 5
2.3	3. TEST FACILITY	. 5
3. DES	CRIPTION OF TESTS	. 6
3.1	ERP/EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	. 6
3.2	PEAK- TO- AVERAGE RATIO	. 7
3.3	OCCUPIED BANDWIDTH	. 9
3.4	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	10
3.5	FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	11
4. LIST	OF TEST EQUIPMENT	12
5. MEA	SUREMENT UNCERTAINTY	13
6. SUM	MARY OF TEST RESULTS	14
7. SAM	PLE CALCULATION	15
8. TEST	T DATA	16
8.1	EFFECTIVE RADIATED POWER	16
8.2	PEQUIVALENT ISOTROPIC RADIATED POWER	17
8.3	RADIATED SPURIOUS EMISSIONS	18
	8.3.1 RADIATED SPURIOUS EMISSIONS (GSM850)	18
	8.3.2 RADIATED SPURIOUS EMISSIONS(GSM1900)	19
8.4	PEAK-TO-AVERAGE RATIO	20
8.5	OCCUPIED BANDWIDTH	21
8.6	CONDUCTED SPURIOUS EMISSIONS	22
	8.6.1 BAND EDGE	22
8.7	FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	23
	8.7.1 FREQUENCY STABILITY (GSM850)	23
	8.7.2 FREQUENCY STABILITY (GSM1900)	24
. TEO	T DI 070	

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name: LG Electronics MobileComm U.S.A., Inc.

Address: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632

FCC ID: ZNFG420

Application Type: Certification

FCC Classification: Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s): §22, §24, §2

EUT Type: GSM Phone with Bluetooth

FCC Model(s): LG-G420

Tx Frequency: 824.20 - 848.80 MHz (GSM850)

1 850.20 - 1 909.80 MHz (GSM1900)

Rx Frequency: 869.20 - 893.80 MHz (GSM850)

1 930.20 - 1 989.80 MHz (GSM1900)

Max. RF Output Power: 0.724 W GSM850 (28.60 dBm) / 1.154 W GSM1900 (30.62 dBm)

Emission Designator(s): 244 KGXW (GSM850) 249 KGXW (GSM1900)

Date(s) of Tests: August 30, 2016 ~ September 01, 2016

Antenna Specification: Manufacturer: LS Mtron Ltd.

Antenna type: SIMA Antenna (Single Insert Molding)

Peak Gain: GSM850 : 1.39 dBi

GSM1900 : 1.08 dBi

2. INTRODUCTION

2.1. EUT DESCRIPTION

The LG Electronics MobileComm U.S.A., Inc. LG-G420 GSM Phone with Bluetooth consists of GPRS Class12, GSM850, GSM1900.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

3. DESCRIPTION OF TESTS

3.1 ERP/EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS

Note: ERP(Effective Radiated Power), EIRP(Effective Isotropic Radiated Power)

Test Procedure

Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-D-2010 Clause 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using RMS detector.

A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

P_{d(dBm)} = Pg_(dBm) - cable loss _(dB) + antenna gain _(dB)

Where: Pdis the dipole equivalent power and Pgis the generator output power into the substitution antenna.

The maximum EIRP is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration

Radiated spurious emissions

- 1. Frequency Range: 30 MHz ~ 10th Harmonics of highest channel fundamental frequency.
- 2. The EUT was setup to maximum output power. The 100 kHz RBW was used to scan from 30 MHz to 1 GHz. Also, the 1 MHz RBW was used to scan from 1 GHz to 10 GHz(GSM850) or 20 GHz(GSM1900). The high, low and a middle channel were tested for out of band measurements.

3.2 PEAK- TO- AVERAGE RATIO

Test Procedure

Peak to Average Power Ratio is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 5.7.

- Section 5.7.1 CCDF Procedure for PAPR

- a) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b) Set the number of counts to a value that stabilizes the measured CCDF curve;
- c) Set the measurement interval as follows:
 - 1) for continuous transmissions, set to 1 ms.
 - 2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- d) Record the maximum PAPR level associated with a probability of 0.1%.

- Section 5.7.2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.1 to measure the total peak power and record as P_{Pk} . Use one of the applicable procedures presented 5.2 to measure the total average power and record as P_{Avg} . Determine the P.A.R. from: P.A.R_(dB) = $P_{Pk (dBm)} - P_{Avg (dBm)}$ (P_{Avg} = Average Power + Duty cycle Factor)

5.1.1 Peak power measurements with a spectrum/signal analyzer or EMI receiver

The following procedure can be used to determine the total peak output power.

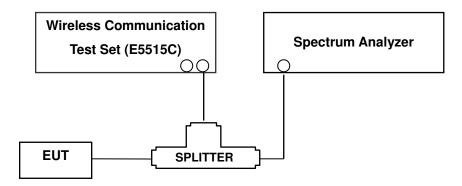
- a) Set the RBW ≥ OBW.
- b) Set VBW ≥ 3 × RBW.
- c) Set span ≥ 2 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Ensure that the number of measurement points ≥ span/RBW.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the peak amplitude level.

5.2.2 Procedures for use with a spectrum/signal analyzer when EUT cannot be configured to transmit continuously and sweep triggering/signal gating cannot be properly implemented

If the EUT cannot be configured to transmit continuously (burst duty cycle < 98%), then one of the following procedures can be used. The selection of the applicable procedure will depend on the characteristics of the measured burst duty cycle.

Measure the burst duty cycle with a spectrum/signal analyzer or EMC receiver can be used in zero-span mode if the response time and spacing between bins on the sweep are sufficient to permit accurate measurement of the burst on/off time of the transmitted signal.

5.2.2.2 Constant burst duty cycle


If the measured burst duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then:

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (power averaging).
- g) Set sweep trigger to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- j) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission).
 - For example, add 10 $\log (1/0.25) = 6$ dB if the duty cycle is a constant 25%.

3.3 OCCUPIED BANDWIDTH.

Test set-up

(Configuration of conducted Emission measurement)

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

Test Procedure

OBW is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 4.2.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels(low, middle and high operational range.)

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test Procedure

Spurious and harmonic emissions at antenna terminal is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 6.0.

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. The RBW settings used in the testing are greater than 1 % of the occupied bw. The 1 MHz RBW was used to scan from 10 MHz to 10 GHz. (GSM1900 Mode: 10 MHz to 20 GHz). A display line was placed at – 13 dBm to show compliance. The high, lowest and a middle channel were tested for out of band measurements.

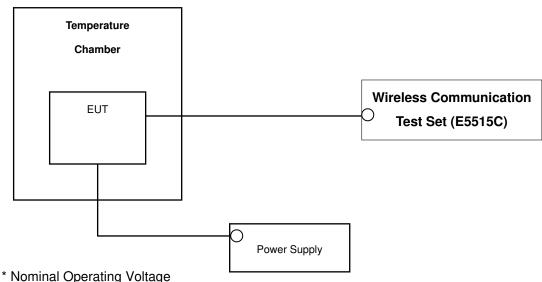
Measurements of all out of band are made on RBW = 1MHz and VBW \geq 3 MHz in the worst case despite RBW = 100 kHz and VBW \geq 300 kHz upon 1 GHz.

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Trace Mode = max hold
- Sweep time = auto
- Number of points in sweep ≥ 2 * Span / RBW
- Band Edge Requirement: According to FCC 22.917, 24.238 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)

The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

In GSM mode, the center frequency of spectrum set to the band edge frequency. The span is 1MHz (RBW = at least 1 % of the EBW, VBW ≥ 3*RBW, Detector = Average).


NOTES: The analyzer plot offsets were determined by below conditions.

- For GSM850, total offset 27.00 dB = 20 dB attenuator + 6 dB Splitter + 1.0 dB RF cables.
- For GSM1900, total offset 27.40 dB = 20 dB attenuator + 6 dB Splitter + 1.4 dB RF cables.

3.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

Frequency stability is tested in accordance with ANSI/TIA-603-D-2010 section 2.2.2.

The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from battery end point to 100 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification - the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block(GSM1900). The frequency stability of the transmitter shall be maintained within ± 0.000 25 %(± 2.5 ppm) of the center frequency(GSM850).

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

- 1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one halfhour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Interval	Calibration Due
MITEQ	AMF-6D-001180-35-20P/AMP	1081666	Annual	09/03/2016
Wainwright	WHK1.2/15G-10EF/H.P.F	4	Annual	04/11/2017
Wainwright	WHK3.3/18G-10EF/H.P.F	2	Annual	04/11/2017
Hewlett Packard	11667B / Power Splitter	10545	Annual	02/15/2017
Hewlett Packard	11667B / Power Splitter	11275	Annual	04/29/2017
Agilent	E3632A/DC Power Supply	KR75303243	Annual	07/12/2017
Schwarzbeck	UHAP/ Dipole Antenna	557	Biennial	03/23/2017
Schwarzbeck	UHAP/ Dipole Antenna	558	Biennial	03/23/2017
EXP	EX-TH400/ Chamber	None	Annual	05/31/2017
Schwarzbeck	BBHA 9120D/ Horn Antenna	147	Biennial	09/01/2016
Schwarzbeck	BBHA 9120D/ Horn Antenna	1299	Biennial	05/15/2017
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170342	Biennial	04/30/2017
Schwarzbeck	BBHA 9170/ Horn Antenna(15~35GHz)	BBHA9170124	Biennial	04/30/2017
Agilent	N9020A/Signal Analyzer	MY52090906	Annual	05/13/2017
Hewlett Packard	8493C/ATTENUATOR	17280	Annual	06/22/2017
REOHDE&SCHWARZ	FSV40/Spectrum Analyzer	1307.9002K40-100931-NK	Annual	06/15/2017
Agilent	8960 (E5515C)/ Base Station	MY48360800	Annual	10/30/2016
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6200863156	Annual	02/26/2017
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6201026545	Annual	02/16/2017
Schwarzbeck	VULB9160/ Bilog Antenna	3150	Biennial	11/17/2016
Schwarzbeck	VULB9160/ Bilog Antenna	3368	Biennial	10/10/2016

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	6.07

6. SUMMARY OF TEST RESULTS

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Bandwidth	N/A		PASS
2.1051, 22.917(a), 24.238(a)	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions		PASS
2.1046	* Conducted Output Power	-	CONDUCTED	PASS
24.232(d)	Peak- to- Average Ratio	< 13 dB		PASS
2.1055, 22.355	Frequency stability / variation of	< 2.5 ppm (Part22)		PASS
24.235	ambient temperature	Emission must remain in band (Part24)		PASS
22.913(a)(2)	Effective Radiated Power	< 7 Watts max. ERP		PASS
24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS
2.1053, 22.917(a), 24.238(a)	Radiated Spurious and Harmonic Emissions	< 43 + 10log10 (P[Watts]) for all out-of band emissions		PASS

^{*:} See SAR Report

7. SAMPLE CALCULATION

A. ERP Sample Calculation

Mada	Ch.	/ Freq.	Measured	Substitute	Ant. Gain	C.L	Pol.	Limit	EF	RP
Mode	channel	Freq.(MHz)	Level(dBm)	LEVEL(dBm)	(dBd)	U.L	Poi.	w	w	dBm
GSM850	128	824.20	-21.37	38.40	-10.61	0.95	Н	< 7.00	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power (**ERP**).

B. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

8. TEST DATA

8.1 EFFECTIVE RADIATED POWER

(GSM850 Mode)

Mode	Ch./ Freq.		Measured	Substitute	Ant. Gain			Limit	El	RP
	channel	Freq.(MHz)	Level (dBm)	LEVEL (dBm)	(dBd)	C.L	Pol.	W	W	dBm
	128	824.2	-24.29	38.23	-10.59	1.67	V		0.396	25.97
GSM850	190	836.6	-23.19	40.41	-10.54	1.68	٧	< 7.00	0.659	28.19
-	251	848.8	-22.24	40.77	-10.48	1.69	٧		0.724	28.60

Note: Standard batteries are the only options for this phone.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For GSM signals, RBW = 1-5% of the OBW, not to exceed 1MHz, VBW \geq 3 x RBW, Detector = RMS. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the highest power is reported in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in GSM850 mode. Also worst case of detecting Antenna is in vertical polarization in GSM850 mode.

8.2 EQUIVALENT ISOTROPIC RADIATED POWER

(GSM1900 Mode)

Mode	Ch	./ Freq.	Measured	Measured Substitute				Limit	EII	RP
	channel	Freq.(MHz)	Level (dBm)	LEVEL (dBm)	(dBi)	C.L	Pol.	W	W	dBm
	512	512 1850.2 -10.27 2	23.34	9.82	2.54	Н		1.154	30.62	
GSM1900	661	1880.0	-10.79	23.09	9.91	2.57	Н	< 2.00	1.103	30.43
	810	1909.8	-11.92	22.32	10.00	2.60	Н		0.937	29.72

Note: Standard batteries are the only options for this phone.

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For GSM signals, RBW = 1-5% of the OBW, not to exceed 1MHz, VBW \geq 3 x RBW, Detector = RMS. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

This device was tested under all configurations and the highest power is reported in GSM mode using a Power Control Level of "0" in the PCS Band and "5" in the Cellular Band. This unit was tested with its standard battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is x plane in GSM1900 mode. Also worst case of detecting Antenna is in horizontal polarization in GSM1900 mode.

8.3 RADIATED SPURIOUS EMISSIONS

8.3.1 RADIATED SPURIOUS EMISSIONS (GSM850)

■ MEASURED OUTPUT POWER: 28.60 dBm = 0.724 W

■ MODULATION SIGNAL: <u>GSM850</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 41.60 \text{ dBc}$

Ch.	Freq.(MHz)	Measured Level [dBm]	Ant. Gain (dBd)	Substitute Level [dBm]	C.L	Pol.	ERP (dBm)	dBc
	1,648.40	-34.02	9.16	-36.12	2.40	Н	-29.36	57.96
	2,472.60	-52.75	10.92	-51.55	2.99	V	-43.62	72.22
128 (824.2)	3,296.80	-42.92	11.92	-42.36	3.41	Н	-33.85	62.45
	4,121.00	-43.65	12.73	-41.45	4.02	Н	-32.74	61.34
	4,945.20	-52.11	12.59	-46.25	4.42	V	-38.08	66.68
	1,673.20	-32.06	9.23	-34.17	2.42	Н	-27.36	55.96
	2,509.80	-54.42	10.96	-53.38	2.89	Н	-45.31	73.91
190 (836.6)	3,346.40	-49.04	12.02	-48.93	3.44	Н	-40.35	68.95
	4,183.00	-44.93	12.74	-42.19	3.93	Н	-33.38	61.98
	5,019.60	-54.69	12.60	-48.46	4.47	V	-40.33	68.93
	1,697.60	-30.22	9.34	-32.39	2.44	Н	-25.49	54.09
	2,546.40	-56.21	10.98	-55.29	2.96	Н	-47.27	75.87
251 (848.8)	3,395.20	-57.53	12.13	-57.55	3.58	V	-49.00	77.60
	4,244.00	-54.71	12.74	-51.62	4.00	Н	-42.88	71.48
	5,092.80	-55.22	12.70	-48.09	4.57	V	-39.96	68.56

NOTES: 1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.3.2 RADIATED SPURIOUS EMISSIONS(GSM1900)

■ MEASURED OUTPUT POWER: 30.62 dBm = 1.154 W

■ MODULATION SIGNAL: <u>GSM1900</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = \frac{43.62 \text{ dBc}}{}$

Ch.	Freq.(MHz)	Measured Level	Ant. Gain (dBi)	Substitute Level [dBm]	C.L	Pol.	EIRP (dBm)	dBc
	3,700.40	-48.24	12.52	-46.43	3.74	Н	-37.65	68.27
512 (1850.2)	5,550.60	-46.65	13.29	-38.95	4.82	Н	-30.48	61.10
(1000.2)	7,400.80	-55.00	11.72	-38.14	5.69	Н	-32.11	62.73
	3,760.00	-47.91	12.56	-46.28	3.71	Н	-37.43	68.05
661 (1880.0)	5,640.00	-47.67	13.30	-40.18	4.96	Н	-31.84	62.46
(1000.0)	7,520.00	-53.23	11.70	-37.04	5.70	V	-31.04	61.66
	3,819.60	-49.21	12.60	-46.63	3.89	Н	-37.92	68.54
810 (1909.8)	5,729.40	-48.56	13.31	-40.46	5.12	Н	-32.27	62.89
(1000.0)	7,639.20	-53.16	11.61	-36.62	5.60	Н	-30.61	61.23

NOTES: 1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.4 PEAK-TO-AVERAGE RATIO

		Measured	Measured	Pav	g (Duty Cyc	cle)	P.A.R.	Limit	Pass
Band	Ch.	P _{Pk} (dBm)	P _{Avg} (dBm)	Tx _{Total}	Tx _{On}	Factor	$= P_{Pk} - P_{Avg}$ (dB)	(dB)	/ Fail
				(ms)	(ms)	(dB)	(db)		
GSM1900	661	30.127	20.82	4.616	0.5475	9.26	0.05	13	Pass

- Plots of the EUT's Peak- to- Average Ratio are shown Page 29 ~ 30.

NOTES:

Peak to Average Power Ratio was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 5.7.

GSM Mode was tested by Section 5.7.2 Alternate Procedure $P.A.R_{(dB)} = P_{Pk(dBm)} - P_{Avg(dBm)} \; (P_{Avg} = Average \; Power + Duty \; cycle \; Factor)$ Duty cycle Factor = 10 log (1/x), $x = Tx_{On} / Tx_{Total}$

8.5 OCCUPIED BANDWIDTH

Band	Channel	Frequency(MHz)	Data (GSM: kHz)	
GSM850	128	824.20	239.17	
	190	836.60	244.09	
	251	848.80	240.87	
GSM1900	512	1,850.20	240.13	
	661	1,880.00	240.16	
	810	1,909.80	248.62	

⁻ Plots of the EUT's Occupied Bandwidth are shown Page 26 $^{\sim}$ 28.

8.6 CONDUCTED SPURIOUS EMISSIONS

■ FACTORS FOR FREQUENCY

Frequency Range (GHz)	Factor [dB]
0.03 – 1	27.145
1 – 5	26.960
5 – 10	27.542
10 – 15	28.439
15 – 20	29.144
Above 20	30.148

NOTES:

Factor(dB) = Cable Loss + Attenuator + Power Splitter

Band	Channel	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
GSM850	128	6.5803	27.542	-59.933	-32.391	-13.00
	190	8.1446	27.542	-60.193	-32.651	
	251	2.7927	26.960	-59.980	-33.020	
GSM1900	512	18.85972	29.144	-54.753	-25.609	
	1900 661	18.70972	29.144	-54.683	-25.539	
	810	18.58971	29.144	-54.498	-25.354	

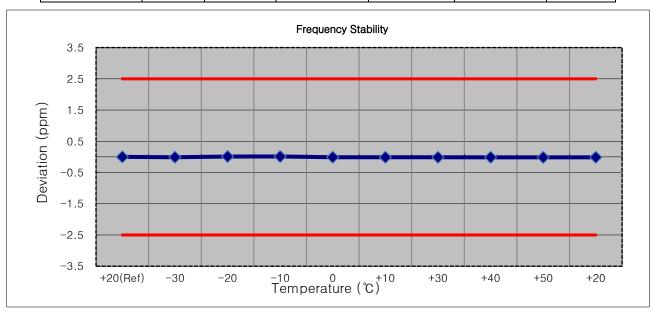
NOTES:

- 1. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- Plots of the EUT's Conducted Spurious Emissions are shown Page 36 \sim 40.

8.6.1 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 30 ~ 36.

8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 8.7.1 FREQUENCY STABILITY (GSM850)


■ OPERATING FREQUENCY: 836,600,000 Hz

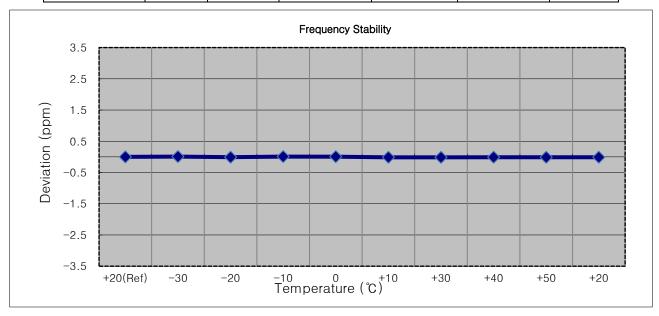
■ CHANNEL: <u>190</u>

■ REFERENCE VOLTAGE: 3.80 VDC

■ DEVIATION LIMIT: <u>± 0.000 25 % or 2.5 ppm</u>

Voltage	Power	Temp.	Frequency	Frequency	Deviation	ppm
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	
100%	3.80	+20(Ref)	836 599 987	0.0	0.000 000	0.0000
100%		-30	836 599 978	-9.5	-0.000 001	-0.0113
100%		-20	836 599 997	10.1	0.000 001	0.0120
100%		-10	836 599 998	10.9	0.000 001	0.0131
100%		0	836 599 978	-9.6	-0.000 001	-0.0115
100%		+10	836 599 977	-10.8	-0.000 001	-0.0129
100%		+30	836 599 977	-9.9	-0.000 001	-0.0119
100%		+40	836 599 976	-11.3	-0.000 001	-0.0135
100%		+50	836 599 975	-12.5	-0.000 001	-0.0149
Batt. Endpoint	3.40	+20	836 599 976	-11.3	-0.000 001	-0.0135

8.7.2 FREQUENCY STABILITY (GSM1900)

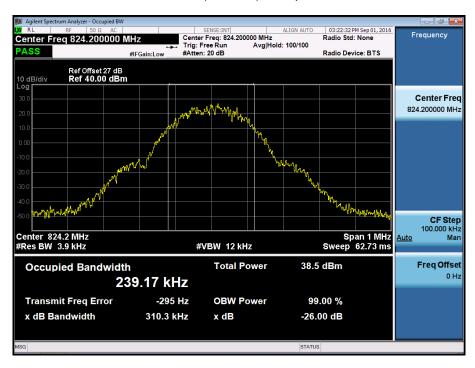

■ OPERATING FREQUENCY: <u>1880,000,000 Hz</u>

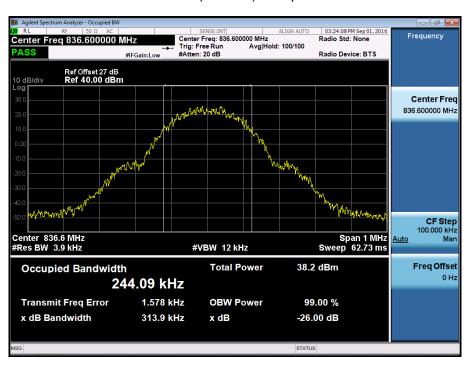
■ CHANNEL: <u>661</u>

■ REFERENCE VOLTAGE: 3.80 VDC

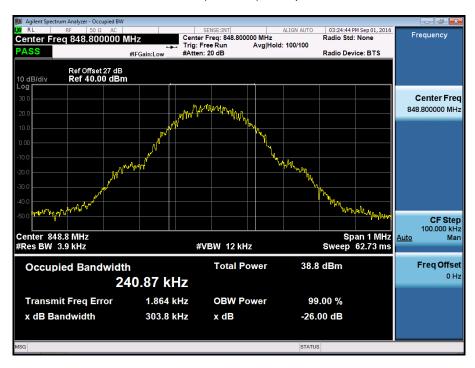
■ DEVIATION LIMIT: <u>Emission must remain in band</u>

Voltage	Power	Temp.	Frequency	Frequency	Deviation	ppm
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	
100%		+20(Ref)	1880 000 018	0.0	0.000 000	0.0000
100%		-30	1880 000 035	17.2	0.000 001	0.0092
100%	3.80	-20	1880 000 001	-17.3	-0.000 001	-0.0092
100%		-10	1880 000 035	16.6	0.000 001	0.0088
100%		0	1880 000 032	13.8	0.000 001	0.0073
100%		+10	1879 999 992	-26.1	-0.000 001	-0.0139
100%		+30	1879 999 991	-27.1	-0.000 001	-0.0144
100%		+40	1879 999 997	-21.2	-0.000 001	-0.0113
100%		+50	1879 999 995	-23.3	-0.000 001	-0.0124
Batt. Endpoint	3.40	+20	1879 999 997	-21.4	-0.000 001	-0.0114

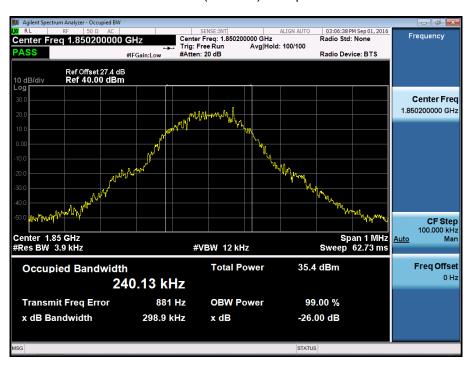



9. TEST PLOTS

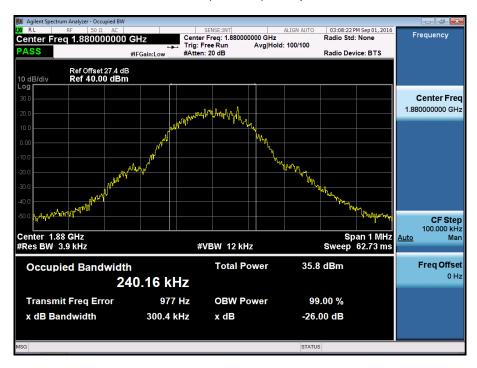
■ GSM850 MODE (128 CH.) Occupied Bandwidth



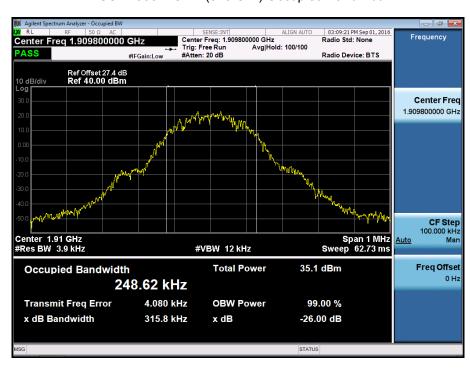
■ GSM850 MODE (190 CH.) Occupied Bandwidth



■ GSM850 MODE (251 CH.) Occupied Bandwidth



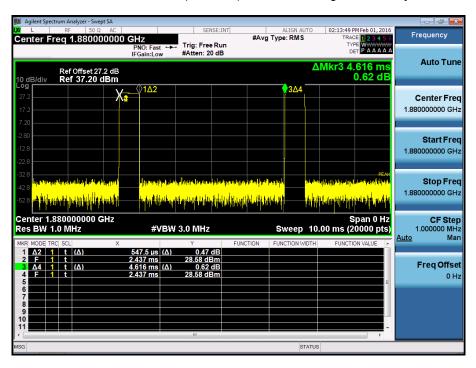
■ GSM1900 MODE (512 CH.) Occupied Bandwidth



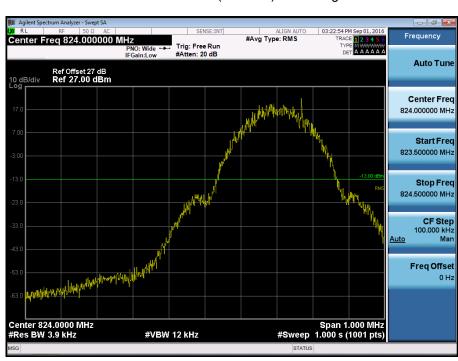
■ GSM1900 MODE (661 CH.) Occupied Bandwidth

■ GSM1900 MODE (810 CH.) Occupied Bandwidth

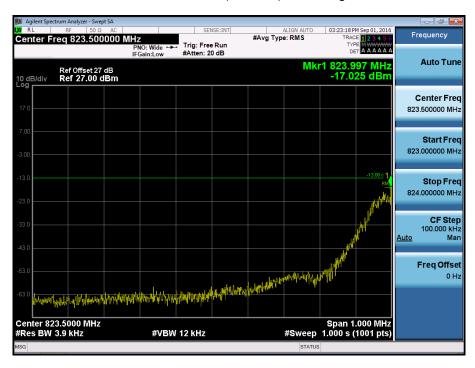
■ GSM1900 MODE (661 CH.) Peak-to-Average Ratio Ppk



■ GSM1900 MODE (661 CH.) Peak-to-Average Ratio PAvg



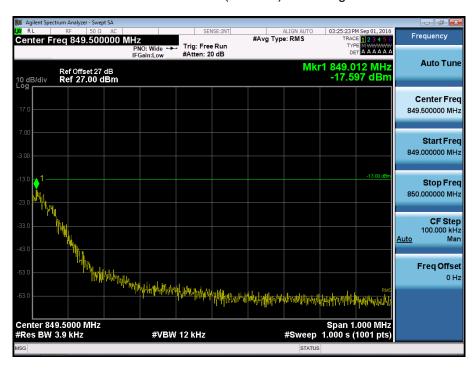
■ GSM1900 MODE (661 CH.) Peak-to-Average Ratio Duty



■ GSM850 MODE (128 CH.) Block Edge 1

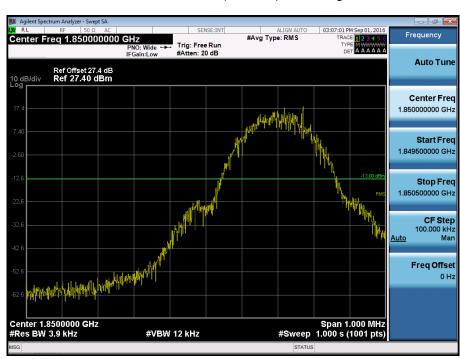
■ GSM850 MODE (128 CH.) Block Edge 2

■ GSM850 MODE (128 CH.) Block Edge 3

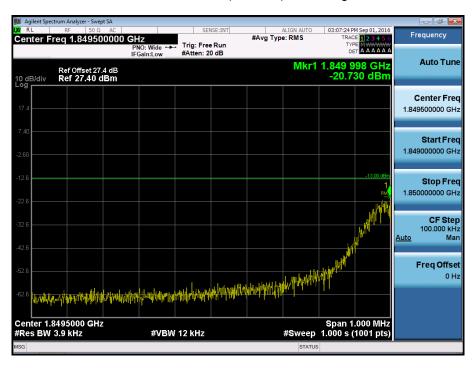


■ GSM850 MODE (251 CH.) Block Edge 1

■ GSM850 MODE (251 CH.) Block Edge 2



■ GSM850 MODE (251 CH.) Block Edge 3



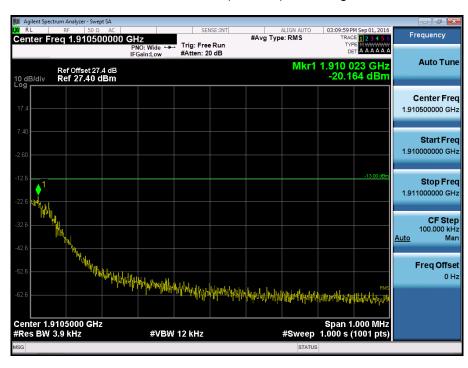
■ GSM1900 MODE (512 CH.) Block Edge 1

■ GSM1900 MODE (512 CH.) Block Edge 2

■ GSM1900 MODE (512 CH.) Block Edge 3



Note: We used a narrower RBW in order to increase accuracy.


Calculation = Reading Value + $10*\log(1 \text{ MHz}/100 \text{ kHz}) \text{ dB} = -51.258 \text{ dBm} + 10 \text{ dB} = -41.258 \text{ dBm}$

■ GSM1900 MODE (810 CH.) Block Edge 1



■ GSM1900 MODE (810 CH.) Block Edge 2

■ GSM1900 MODE (810 CH.) Block Edge 3

Note: We used a narrower RBW in order to increase accuracy.

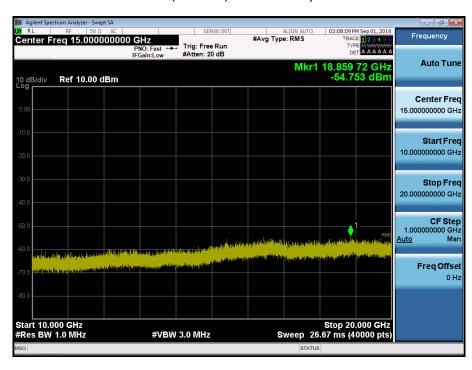
Calculation = Reading Value + $10*\log(1 \text{ MHz}/100 \text{ kHz}) dB = -50.925 dBm + 10 dB = -40.925 dBm$

■ GSM850 MODE (128 CH.) Conducted Spurious Emissions



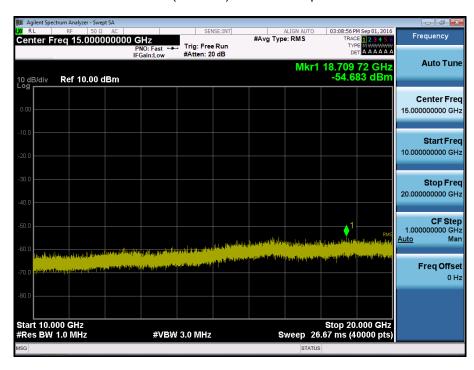
■ GSM850 MODE (190 CH.) Conducted Spurious Emissions

■ GSM850 MODE (251 CH.) Conducted Spurious Emissions

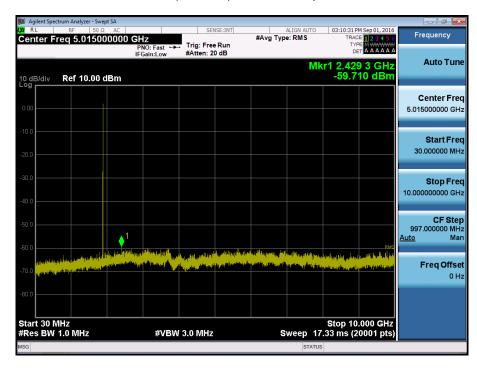


■ GSM1900 MODE (512 CH.) Conducted Spurious Emissions1

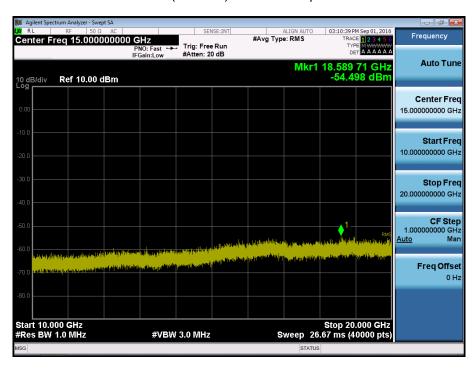
■ GSM1900 MODE (512 CH.) Conducted Spurious Emissions2



■ GSM1900 MODE (661 CH) Conducted Spurious Emissions1



■ GSM1900 MODE (661 CH.) Conducted Spurious Emissions2



■ GSM1900 MODE (810 CH.) Conducted Spurious Emissions1

■ GSM1900 MODE (810 CH.) Conducted Spurious Emissions2

