

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383. Rep. of KOREA

TEL: +82-31-645-6300 FAX: +82-31-645-6401

SAR TEST REPORT

Applicant Name:

LG Electronics, MobileComm U.S.A., Inc.

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Issue: 09. 23, 2016

Test Report No.: HCT-A-1609-F001

Test Site: HCT CO., LTD.

FCC ID:

ZNFG420

Equipment Type:

GSM Phone with Bluetooth

Model Name:

LG-G420

Testing has been carried

out in accordance with:

47CFR §2.1093

ANSI/ IEEE C95.1 - 1992

IEEE 1528-2013

Date of Test:

08/30/2016

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

Yun-Jeang Heo

Test Engineer / SAR Team Certification Division Reviewed By

Dong-Sup Kim

Technical Manager / SAR Team

Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

F-TP22-03 (Rev.00) HCT CO., LTD.

DOCUMENT HISTORY

Version	DATE	DESCRIPTION
HCT-A-1609-F001	09. 23, 2016	First Approval Report

Report No: HCT-A-1609-F001

Table of Contents

1. Attestation of Test Result of Device Under Test		4
2. Device Under Test Description		5
3. INTRODUCTION	1	0
4. DESCRIPTION OF TEST EQUIPMENT	1	1
5. SAR MEASUREMENT PROCEDURE	1	2
6. DESCRIPTION OF TEST POSITION	1	4
7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	1	6
8. FCC SAR GENERAL MEASUREMENT PROCEDURES	1	7
9. Output Power Specifications	1	8
10. SYSTEM VERIFICATION	1	9
11. SAR TEST DATA SUMMARY	2	1
12. Simultaneous SAR Analysis	2	3
13. SAR Measurement Variability and Uncertainty	2	4
14. MEASUREMENT UNCERTAINTY	2	5
15. SAR TEST EQUIPMENT	2	6
16. CONCLUSION	2	7
17. REFERENCES	2	8
Attachment 1 SAR Test Plots	3	0
Attachment 2. – Dipole Verification Plots	3	5
Attachment 3. – Probe Calibration Data	4	0
Attachment 4. – Dipole Calibration Data	5	2
Attachment 5 SAR Tissue Characterization	6	9
Attachment 6 SAR SYSTEM VALIDATION	7	0

1. Attestation of Test Result of Device Under Test

Test Laboratory	
Company Name:	HCT Co., LTD
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of Korea
Telephone	+82 31 645 6300
Fax.	+82 31 645 6401

Attestation of SAR test result				
Trade Name:	LG Electronics, MobileComm U.S.A., Inc.			
FCC ID:	ZNFG420			
Model:	LG-G420			
EUT Type:	GSM Phone with Bluetooth			
Application Type:	Certification			

The Highest Reported SAR (W/Kg)

Band	Tx. Frequency	Equipment	Reported	1g SAR (W/kg)	
Dailu	(MHz)	Class	Head	Body-Worn	
GSM/GPRS 850	824.2 ~ 848.8	PCE	0.37	0.47	
GSM/GPRS 1900	1 850.2 ~ 1 909.8	PCE	0.44	0.30	
Bluetooth	2 402 ~ 2 480	DSS/DTS	N/A		
Simultaneous SAR per	3	N/A	0.53		
Date(s) of Tests:	08/30/2016				

2. Device Under Test Description

2.1 DUT specification

Device Wireless specification overview				
Band & Mode	Operating Mode	Tx Frequency		
GSM/GPRS 850	Voice/Data	824.2 – 848.8 MHz		
GSM/GPRS 1900	Voice/Data	1 850.2 – 1 909.8 MHz		
Bluetooth	Data	2 402.0 – 2 480.0 MHz		
Device Description				
Device Dimension	Overall (Length x Width): 117.23 mm x 59.95 mm			
Battery Options	Standard			
Hardware Version	1.0			
Software Version	V10a			
Device Serial Numbers	Mode	Serial Number		
Device Serial Numbers	GSM850, GSM1900	607CQMR000419		

2.2 DUT Wireless mode

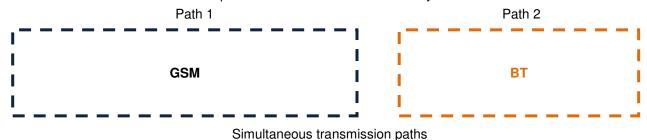
Wireless Modulation	Band		Operating Mode	
GSM	850 1900	Voice(GMSK) GPRS (GMSK) EGPRS (8PSK)	GPRS Multi-Slot Class: Class 12 – 4 Up, 4 Down Mode class B / EDGE Rx only	GSM Voice: 12.5% GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%
Bluetooth		Data 2.1		N/A
Others	GPRS VOIP Not supported This EUT support dual SIM cards. SIM path is using same RF path. This device was tested with SIM 1.			me RF path.

2.3 TEST METHODOLOGY and Procedures

The tests documented in this report were performed in accordance with IEEE Standard 1528-2013 & IEEE 1528-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 3G SAR Procedures v03r01
- FCC KDB Publication 447498 D01 General SAR Guidance v06
- FCC KDB Publication 648474 D04 Handset SAR v01r03
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)

2.4 Nominal and Maximum Output Power SpecificationsThis device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.


Mode / Band		Voice (dBm)	Burst Average GMSK GPRS (dBm)			
		1 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot
CSM/CDDS 950	Maximum	33.2	33.2	31.2	29.7	27.7
GSM/GPRS 850	Nominal	32.7	32.7	30.7	29.2	27.2
GSM/GPRS1900	Maximum	30.2	30.2	28.2	26.7	24.7
	Nominal	29.7	29.7	27.7	26.2	24.2

Mode / Band Mo		Mod	dulated Average (dBm)		
	DH5	Maximum	6		
	DHS	Nominal	5		
Bluetooth	2-DH5	Maximum	4		
	2-DH3	Nominal	3		
	3-DH5	Maximum	4		
	3-003	Nominal	3		

2.5 SAR Summation Scenario

According to FCC KDB 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

Simultaneous Transmission Scenarios					
Applicable Combination Head Body-Worn					
GSM Voice + 2.4 GHz Bluetooth	N/A	Yes			

- 1. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 2. The highest reported SAR for each exposure condition is used for SAR summation purpose.
- 3. GPRS VOIP are not supported.

2.6 SAR Test Exclusions Applied

(A) Bluetooth

Per FCC KDB 447498 D01v06, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

$$\frac{MaxPowerofChannel(mW)}{TestSeparationDistance(mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Mode	Frequency	Maximum Separation Distance Allowed Power		Frequency		≤ 3.0
	[MHz]	[mW]	[mm]			
Bluetooth	2 480	4	15	0.4		

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(4/15)^*\sqrt{2.480}] = 0.4 < 3.0$.

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v06 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter.

$$Estimated \ SAR = \frac{\sqrt{f(GHZ)}}{7.5} * \frac{(Max \ Power \ of \ channel \ mW)}{Min \ Seperation \ Distance}.$$

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)	
	[MHz]	[mW]	[mm]	[W/kg]	
Bluetooth	2 480	4	15	0.056	

F-TP22-03 (Rev.00) 9 / 70 HCT CO., LTD

3. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., , New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

 σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m²) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

F-TP22-03 (Rev.00) 1 0 / 70 HCT CO., LTD

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 & DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

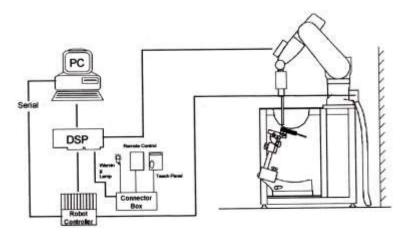


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

F-TP22-03 (Rev.00) 1 1 / 70 HCT CO., LTD

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

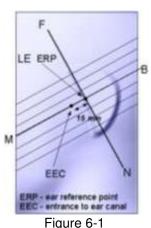
- The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)
 - **a.** The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - **b.** The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points $(10 \times 10 \times 10)$ were interpolated to calculate the average.
 - **c.** All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

F-TP22-03 (Rev.00) 1 2 / 70 HCT CO., LTD

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.

			≤3 GHz	> 3 GHz	
Maximum distance from closes (geometric center of probe sen		-	5±1 mm	$^{1}/_{2}\cdot\delta\cdot\ln(2)\pm0.5 \text{ mm}$	
Maximum probe angle from pr normal at the measurement loc		phantom surface	30°±1°	20°±1°	
			≤ 2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm	
Maximum area scan Spatial res	solution : Δ	XArea, ΔyArea	When the x or y dimension of measurement plane orientation measurement resolution must be dimension of the test device w point on the test device.	i, is smaller than the above, the be \leq the corresponding x or y	
Maximum zoom scan Spatial r	esolution:	$\Delta x_{zoom}, \Delta y_{zoom}$	≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 GHz: ≤5 mm* 4-6 GHz: ≤4 mm*	
	uniforr	n grid : Δz _{zoom} (n)	≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm	
Maximum zoom scan Spatial resolution normal to phantom surface	graded	Δz _{zoom} (1): between 1 st two Points closest to phantom surface	≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm	
	grid	Δz _{zoom} (n>1): between subsequent Points	$\leq 1.5 \cdot \Delta z_{zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	,	≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.


^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 EAR REFERENCE POINT

Figure 6-2 shows the front, back and side views of the SAM phantom. The center-of-mouth reference point is labeled "M", the left ear reference point (ERP) is marked "LE", and the right ERP is marked "RE." Each ERP is on the B-M (back-mouth) line located 15 mm behind the entrance-to-ear-canal (EEC) point, as shown in Figure6-1.The Reference Plane is defined as passing through the two ear reference point and point M. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (See Figure 5-1), Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

6.2 HEAD POSITION Close-up side view of ERP

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The device under test was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Figure 6-3). The acoustic output was than located at the same level as the center of the ear reference point. The device under test was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6-2
Front, back and side views of SAM Twin Phantom

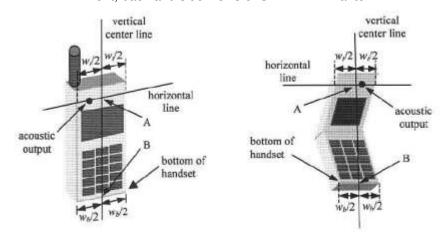


Figure 6-3. Handset vertical and horizontal reference lines

6.3 Body-Worn Accessory Configurations

Body-Worn operating configurations are tested with the belt-dips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03 Body-Worn accessory exposure is typically related to voice mode operations when handsets are carried in body-Worn accessories. The body-Worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-Worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-Worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body- Worn accessory, measured without a headset connected to the handset, Sample Body-Worn Diagram is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body- Worn accessory with a headset attached to the handset.

Accessories for Body-Worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-dip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-Worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-Worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-Worn transmitters. SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

8. FCC SAR GENERAL MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as Reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB 941225 D01v03r01 - 3G SAR Measurement Procedures The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more than 5 % occurred, the tests were repeated.

F-TP22-03 (Rev.00) 1 7 / 70 HCT CO., LTD

9. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

9.1 **GSM**

GSM Conducted output powers (Burst-Average)

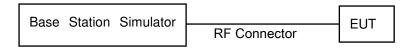
		Voice	G	PRS(GMSK) Data – CS	1
			GPRS	GPRS	GPRS	GPRS
Band	Channel	GSM	1 TX	2 TX	3 TX	4 TX
		(dBm)	Slot	Slot	Slot	Slot
			(dBm)	(dBm)	(dBm)	(dBm)
Maximu	m Tune-up	33.20	33.20	31.20	29.70	27.70
0014	128	33.01	33.02	30.95	29.65	27.53
GSM 850	190	33.02	33.01	30.95	29.63	27.52
650	251	32.98	32.98	30.93	29.57	27.52
Maximu	m Tune-up	30.20	30.20	28.20	26.70	24.70
CCM	512	29.94	29.93	27.96	26.52	24.51
GSM 1900	661	29.95	29.94	27.97	26.53	24.54
1900	810	30.05	30.05	28.08	26.66	24.68

GSM Conducted output powers (Frame-Average)

		Voice	GP	RS(GMSK	() Data – C	S 1
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)
Maximu	m Tune-up	24.17	24.17	25.18	25.44	24.69
CCM	128	23.98	23.99	24.93	25.39	24.52
GSM 850	190	23.99	23.98	24.93	25.37	24.51
650	251	23.95	23.95	24.91	25.31	24.51
Maximu	m Tune-up	21.17	21.17	22.18	22.44	21.69
0014	512	20.91	20.90	21.94	22.26	21.50
GSM 1900	661	20.92	20.91	21.95	22.27	21.53
1900	810	21.02	21.02	22.06	22.40	21.67

Note:

Time slot average factor is as follows:


1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power -9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power - 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power - 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power – 3.01 dB

GSM Class : B GSM voice: Head SAR , Body worn SAR Multi-slot Class 12 with CS 1 (GMSK) /EDGE Rx only

10. SYSTEM VERIFICATION

10.1 Tissue Verification

The Head /body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

	Table for Head Tissue Verification											
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε			
			820	0.907	40.537	0.899	41.578	0.89%	-2.50%			
08/30/2016	20.3	835H	835	0.920	40.380	0.900	41.500	2.22%	-2.70%			
			850	0.936	40.176	0.916	41.500	2.18%	-3.19%			
			1850	1.375	40.095	1.400	40.000	-1.79%	0.24%			
08/30/2016	20.3	1900H	1900	1.424	39.919	1.400	40.000	1.71%	-0.20%			
			1910	1.431	39.961	1.400	40.000	2.21%	-0.10%			

	Table for Body Tissue Verification											
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε			
			820	0.939	56.678	0.969	55.258	-3.10%	2.57%			
08/30/2016	20.3	835B	835	0.950	56.527	0.970	55.200	-2.06%	2.40%			
			850	0.968	56.351	0.988	55.154	-2.02%	2.17%			
			1850	1.518	50.859	1.520	53.300	-0.13%	-4.58%			
08/30/2016	20.3	1900B	1900	1.568	50.763	1.520	53.300	3.16%	-4.76%			
			1910	1.575	50.763	1.520	53.300	3.62%	-4.76%			

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz / 1 900 MHz by using the system Verification kit. (Graphic Plots Attached)

System Verification Results

Freq.	req. Date Pro		Dipole (S/N)	Liquid	Amb. Temp.	Liquid Temp.	1 W Target SAR _{1g} (SPEAG)	Measured SAR _{1g}	1 W Normalized SAR _{1g}	Deviation	Limit [%]
[MHz]		·			[°C]	[°C]	[W/kg]	[W/kg]	[W/kg]	[%]	[%]
835	08/30/2016	3076	4-14-05	Head	20.4	20.3	9.06	0.931	9.31	+ 2.76	± 10
835	08/30/2016	3076	4d165	Body	20.4	20.3	9.47	0.936	9.36	- 1.16	± 10
1 900	08/30/2016	3076	E4004	Head	20.4	20.3	38.6	3.87	38.7	+ 0.26	± 10
1 900	08/30/2016	3076	5d061	Body	20.4	20.3	39.7	3.97	39.7	+ 0.00	± 10

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the ± 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

NOTE

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

11. SAR TEST DATA SUMMARY

11.1 HEAD SAR Measurement Results

	GSM 850 Head SAR											
Frequ	uency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty	Meas. SAR	Scaling	Scaled SAR	Plot	
MHz	Ch.		(dB)	(dB)	(dB)		Cycle	(W/kg)	Factor	(W/kg)	No.	
836.6	190	GSM	33.2	33.02	0.08	Left Cheek	1:8.3	0.345	1.042	0.359	-	
836.6	190	GSM	33.2	33.02	0.04	Left Tilt	1:8.3	0.189	1.042	0.197	-	
836.6	190	GSM	33.2	33.02	0.14	Right Cheek	1:8.3	0.355	1.042	0.370	1	
836.6	190	GSM	33.2	33.02	0.01	Right Tilt	1:8.3	0.220	1.042	0.229	-	
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						Avera	Head 1.6 W/kg aged over 1	gram			

				GSM	1900 H	ead SAR					
Frequ	Frequency		Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)	1 6 01	Cycle	(W/kg)	Factor	(W/kg)	INO.
1 880.0	661	GSM	30.2	29.95	0.06	Left Cheek	1:8.3	0.412	1.059	0.436	2
1 880.0	661	GSM	30.2	29.95	0.09	Left Tilt	1:8.3	0.227	1.059	0.240	-
1 880.0	661	GSM	30.2	29.95	0.08	Right Cheek	1:8.3	0.311	1.059	0.329	-
1 880.0	661	GSM	30.2	29.95	0.04	Right Tilt	1:8.3	0.258	1.059	0.273	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						Avera	Head 1.6 W/kg aged over 1			

11.2 Body-worn SAR Measurement Results

11.4	DUC	4 y - W O I I I	SALL	vicas	ui Cii	iciit i	icsuii	.5					
	GSM/UMTS Body-Worn SAR												
Frequency		Mode		Tune- Up Limit	Meas. Power	Power Drift	Test	Duty	Distance	Meas. SAR		Scaled SAR	Plot
MHz	Ch.			(dB)	(dB)	(dB)	Position	Cycle	(mm)	(W/kg)	Factor	(W/kg)	No.
836.6	190	GSM 850	GSM	33.2	33.02	0.01	Rear	1:8.3	15	0.452	1.042	0.471	3
1 880.0	661	GSM 1900	GSM	30.2	29.95	-0.12	Rear	1:8.3	15	0.282	1.059	0.299	4
		SI/ IEEE C95. Spa ntrolled Expos	tial Peak	,					Aver	Body 1.6 W/kg aged over 1	gram		

11.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 648474 D04v01r03, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were not performed since the measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis information.

GSM/GPRS Test Notes:

- 1. This EUT'S GSM and GPRS device class is B.
- 2. This device doesn't support GPRS VOIP in the head and the body-worn configurations therefore GPRS were not evaluated for head and body-worn compliance.
- 3. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 4. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.
- 5. When the maximum output power variation across the required test channels are over than 1/2 dB, instead of the middle channel, the highest output power channel was selected for SAR test according to Per FCC KDB 447498 D01v06.

12. Simultaneous SAR Analysis

12.1 Simultaneous Transmission Summation for Body-Worn

Exposure	Distance	Dond	WWAN SAR	Bluetooth SAR	∑ 1-g SAR
condition	(mm)	Band	(W/kg)	(W/kg)	(W/kg)
Pody worn	15	GSM 850	0.471	0.056	0.527
Body-worn	13	GSM 1900	0.299	0.056	0.355

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v06. Estimated SAR results were used for SAR summation for body-worn back side at 15 mm to determine simultaneous transmission SAR test exclusion.

12.2 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013.

F-TP22-03 (Rev.00) 2 3 / 70 HCT CO., LTD

13. SAR Measurement Variability and Uncertainty

In accordance with KDB procedure 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz, SAR additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement variability was assessed using the following procedures for each frequency band:

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR; steps 2) through 4) do not apply.
- 2) When the original highest measured 1g SAR is \geq 0.80 W/kg or 10g SAR \geq 2.0W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg for 1g SAR or \geq 3.625 W/kg for 10g SAR (\sim 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg for 1g SAR or ≥ 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

F-TP22-03 (Rev.00) 2 4 / 70 HCT CO., LTD

14. MEASUREMENT UNCERTAINTY

Unce	ertainty (7	00 MHz	· ~ 500	00 MH:	z)	
	Tol	Prob.			Standard Uncertainty	
Error Description	(± %)	dist.	Div.	Ci	(± %)	V eff
1. Measurement System	·					
Probe Calibration	6.55	N	1	1	6.55	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related						
Device Positioning	2.25	N	1.00	1	2.25	9
Device Holder	3.60	N	1.00	1	3.60	00
Power Drift	5.00	R	1.73	1	2.89	_∞
3.Phantom and Setup	·					
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	3.00	N	1	0.64	1.73	∞
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	2.30	N	1	0.6	1.14	∞
Combind Standard Uncertainty	•				10.99	
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					21.98	

15. SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	TX90 XIspeag	F13/5R4XF1/A/01	N/A	N/A	N/A
Staubli	CS8Cspeag-TX90	F13/5R4XF1/C/01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D21142605	N/A	N/A	N/A
SPEAG	DAE4	1417	01/27/2016	Annual	01/27/2017
SPEAG	E-Field Probe ES3DV3	3076	07/29/2016	Annual	07/29/2017
SPEAG	Dipole D835V2	4d165	11/24/2015	Annual	11/24/2016
SPEAG	Dipole D1900V2	5d061	04/25/2016	Annual	04/25/2017
Agilent	Power Meter N1991A	MY45101406	10/03/2015	Annual	10/03/2016
Agilent	Power Sensor 8481A	2702A72055	05/27/2016	Annual	05/27/2017
SPEAG	DAKS 3.5	1038	05/31/2016	Annual	05/31/2017
HP	Directional Bridge	86205A	05/18/2016	Annual	05/18/2017
Agilent	Base Station E5515C	GB44400269	02/05/2016	Annual	02/05/2017
HP	Signal Generator N5182A	MY47070230	05/13/2016	Annual	05/13/2017
Hewlett Packard	11636B/Power Divider	58698	02/27/2016	Annual	02/27/2017
TESTO	175-H1/Thermometer	40332651310	02/12/2016	Annual	02/12/2017
Agilent	Attenuator(3dB)	52744	10/20/2015	Annual	10/20/2016
Agilent	Attenuator(20dB)	52664	10/20/2015	Annual	10/20/2016
HP	Notebook(DAKS)	-	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	10/20/2015	Annual	10/20/2016

F-TP22-03 (Rev.00) 26/70 **HCT CO., LTD**

NOTE:
1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

17. REFERENCES

- [1] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [3] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [4] ANSI/IEEE C 95.1 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006.
- [5] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zörich, Dosimetric Evaluation of the Cellular Phone.

- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation and procedures Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.
- [22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Band) Issue 5, March 2015.
- [23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz 300 GHz, 2009
- [24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.
- [25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01.
- [26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.
- [27] SAR Evaluation for Laptop, Notebook, Notebook and Tablet computers KDB 616217 D04.
- [28] SAR Measurement and Reporting Requirements for 100 MHz 6 GHz, KDB 865664 D01, D02.
- [29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01, D02.

Attachment 1.- SAR Test Plots

Test Laboratory: HCT CO., LTD

EUT Type: GSM Phone with Bluetooth

Plot No.:

DUT: LG-G420; Type: Bar

Communication System: UID 0, GSM 850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.921 S/m; ϵ_r = 40.347; ρ = 1000 kg/m³

Phantom section: Right Section

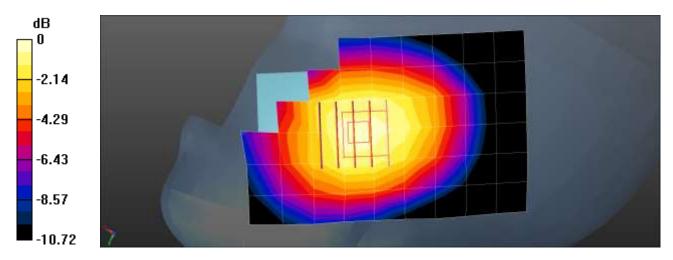
DASY Configuration:

• Probe: ES3DV3 - SN3076; ConvF(6.29, 6.29, 6.29); Calibrated: 2016-07-29;

Sensor-Surface: 3mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1417; Calibrated: 2016-01-27

Phantom: SAM

Measurement SW: DASY52, Version 52.8 (8);


LG-G420/GSM850 Head Right Touch 190ch/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.379 W/kg

LG-G420/GSM850 Head Right Touch 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.556 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.444 W/kg

SAR(1 g) = 0.355 W/kg; SAR(10 g) = 0.269 W/kg Maximum value of SAR (measured) = 0.395 W/kg

0 dB = 0.395 W/kg = -4.03 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: GSM Phone with Bluetooth

Plot No.: 2

DUT: LG-G420; Type: Bar

Communication System: UID 0, GSM 1900 (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.409 S/m; ϵ_r = 39.991; ρ = 1000 kg/m³

Phantom section: Left Section

DASY Configuration:

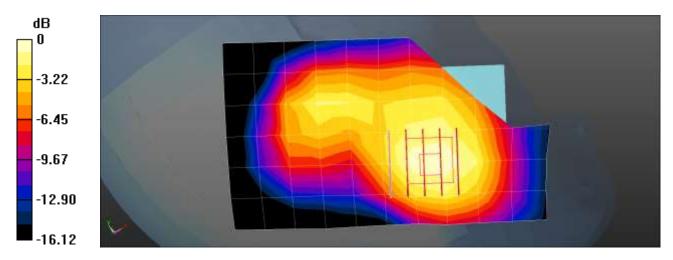
• Probe: ES3DV3 - SN3076; ConvF(5.24, 5.24, 5.24); Calibrated: 2016-07-29;

Sensor-Surface: 3mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1417; Calibrated: 2016-01-27

Phantom: SAM

Measurement SW: DASY52, Version 52.8 (8);

LG-G420/GSM1900 Head Left Touch 661/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.463 W/kg


LG-G420/GSM1900 Head Left Touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 10.23 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.611 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.262 W/kg Maximum value of SAR (measured) = 0.480 W/kg

0 dB = 0.480 W/kg = -3.19 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: GSM Phone with Bluetooth

Plot No.: 3

DUT: LG-G420; Type: Bar

Communication System: UID 0, GSM 850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.952 S/m; ϵ_r = 56.507; ρ = 1000 kg/m³

Phantom section: Center Section

DASY Configuration:

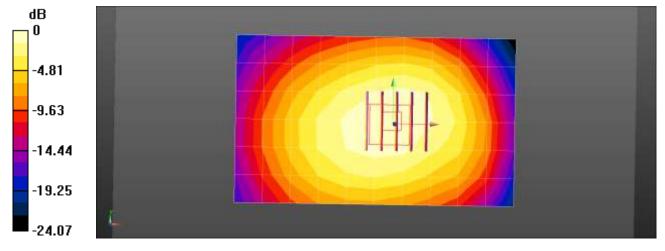
• Probe: ES3DV3 - SN3076; ConvF(5.83, 5.83, 5.83); Calibrated: 2016-07-29;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1417; Calibrated: 2016-01-27

• Phantom: Triple Flat Phantom

• Measurement SW: DASY52, Version 52.8 (8);


LG-G420/GSM850 Body Rear 190/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.494 W/kg

LG-G420/GSM850 Body Rear 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.599 W/kg

SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.326 W/kg Maximum value of SAR (measured) = 0.503 W/kg

0 dB = 0.494 W/kg = -3.06 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: GSM Phone with Bluetooth

Plot No.: 4

DUT: LG-G420; Type: Bar

Communication System: UID 0, GSM 1900 (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.555 S/m; ϵ_r = 50.765; ρ = 1000 kg/m³

Phantom section: Center Section

DASY Configuration:

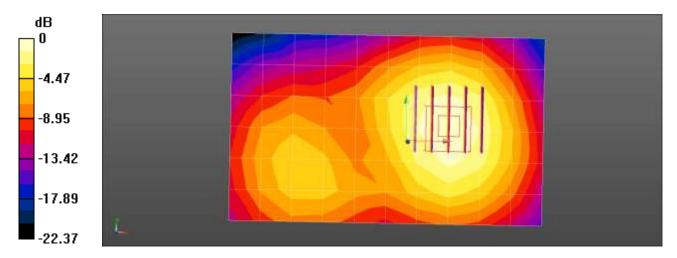
Probe: ES3DV3 - SN3076; ConvF(4.81, 4.81, 4.81); Calibrated: 2016-07-29;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1417; Calibrated: 2016-01-27

• Phantom: Triple Flat Phantom

Measurement SW: DASY52, Version 52.8 (8);


LG-G420/GSM1900 Body Rear 661/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.330 W/kg

LG-G420/GSM1900 Body Rear 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.176 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.437 W/kg

SAR(1 g) = 0.282 W/kg; SAR(10 g) = 0.175 W/kg Maximum value of SAR (measured) = 0.329 W/kg

0 dB = 0.330 W/kg = -4.81 dBW/kg

Attachment 2. – Dipole Verification Plots

■ Verification Data (835 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.3 $^{\circ}$ C Test Date: 08/30/2016

DUT: Dipole 835 MHz; Type: D835V2

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; σ = 0.92 S/m; ϵ_r = 40.38; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

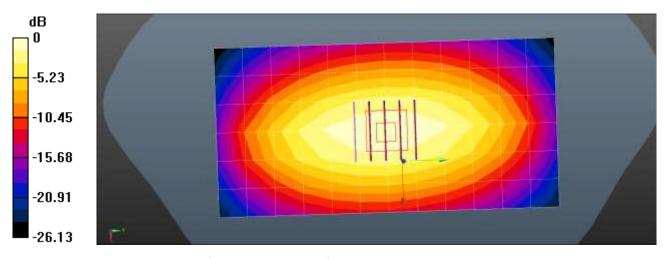
• Probe: ES3DV3 - SN3076; ConvF(6.29, 6.29, 6.29); Calibrated: 2016-07-29;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1417; Calibrated: 2016-01-27

Phantom: SAM

Measurement SW: DASY52, Version 52.8 (8);


835MHz Head Verification/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.06 W/kg

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.08 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.931 W/kg; SAR(10 g) = 0.614 W/kg Maximum value of SAR (measured) = 1.09 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

■ Verification Data (835 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.3 $^{\circ}$ C Test Date: 08/30/2016

DUT: Dipole 835 MHz; Type: D835V2

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

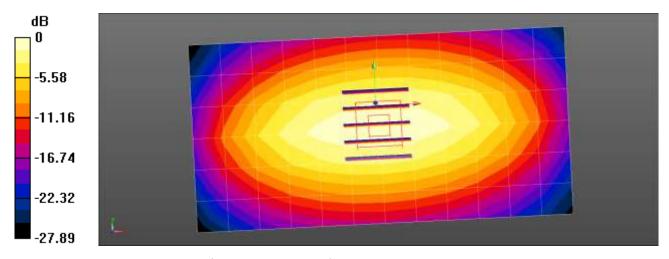
Medium parameters used (interpolated): f = 835 MHz; σ = 0.95 S/m; ϵ_r = 56.527; ρ = 1000 kg/m³

Phantom section: Center Section

DASY Configuration:

• Probe: ES3DV3 - SN3076; ConvF(5.83, 5.83, 5.83); Calibrated: 2016-07-29;

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: Triple Flat Phantom
- Measurement SW: DASY52, Version 52.8 (8);


835MHz Body Verification/Area Scan (13x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 W/kg

835MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.69 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.936 W/kg; SAR(10 g) = 0.616 W/kgMaximum value of SAR (measured) = 1.09 W/kg

0 dB = 1.08 W/kg = 0.33 dBW/kg

■ Verification Data (1900 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.3 $^{\circ}$ C Test Date: 08/30/2016

DUT: Dipole 1900 MHz; Type: D1900V2

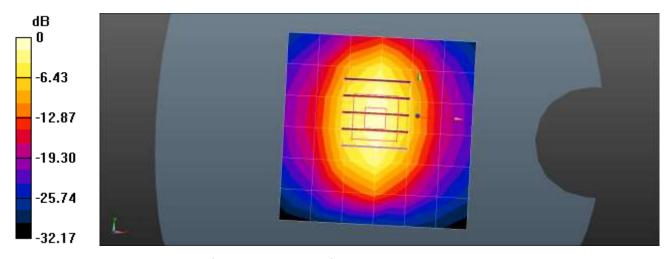
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.424 S/m; ε_r = 39.919; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: ES3DV3 SN3076; ConvF(5.24, 5.24, 5.24); Calibrated: 2016-07-29;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2016-01-27
- Phantom: SAM
- Measurement SW: DASY52, Version 52.8 (8);


1900MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.44 W/kg

1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.72 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 6.78 W/kg

SAR(1 g) = 3.87 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 4.88 W/kg

0 dB = 4.44 W/kg = 6.47 dBW/kg

■ Verification Data (1900 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.3 $^{\circ}$ C Test Date: 08/30/2016

DUT: Dipole 1900 MHz; Type: D1900V2

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.568$ S/m; $\epsilon_r = 50.763$; $\rho = 1000$ kg/m³

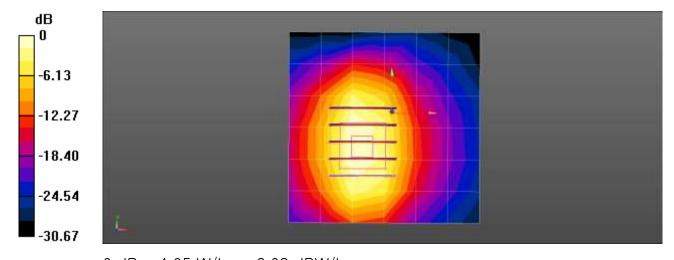
Phantom section: Center Section

DASY Configuration:

Probe: ES3DV3 - SN3076; ConvF(4.81, 4.81, 4.81); Calibrated: 2016-07-29;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1417; Calibrated: 2016-01-27


• Phantom: Triple Flat Phantom

• Measurement SW: DASY52, Version 52.8 (8);

1900MHz Body Verification/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.05 W/kg

1900MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 37.16 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 7.05 W/kg

SAR(1 g) = 3.97 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 5.02 W/kg

0 dB = 4.05 W/kg = 6.08 dBW/kg

Attachment 3. - Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client HCT (Dymstec)

Certificate No: ES3-3076_Jul16

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3076

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

July 29, 2016

This calibration cartificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Celibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	(D	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	05-Apr-15 (in house check Jun-15)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	05-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Michael Weber
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: July 29, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3076_Jul16

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausetrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization o φ rotation around probe axis

8 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 3

i.e., 9 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- WORMX,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Certificate No: ES3-3076_Jul16 Page 2 of 11

ES3DV3 - SN:3076 July 29, 2016

Probe ES3DV3

SN:3076

Manufactured: June 29, 2005 Calibrated:

July 29, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No. ES3-3076_Jul16

Page 3 of 11

ES3DV3-- SN:3076 July 29, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3076

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.22	1.25	1,17	± 10.1 %
DCP (mV) ⁸	104.5	102.5	101.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	X	0.0	0.0	1.0	0.00	222.3	#3.3 %
		Y	0.0	0.0	1.0		212.1	
		Z	0.0	0.0	1.0		204.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3076_Jul16 Page 4 of 11

A The uncertainties of Norm X,Y,Z do not affect the E^e-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

July 29, 2016 ES3DV3-SN:3076

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3076

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁰ (mm)	Unc (k=2)
750	41.9	0.89	6.49	6.49	6.49	0.80	1.17	± 12.0 %
835	41.5	0.90	6.29	6.29	6.29	0.68	1.28	± 12.0 %
900	41.5	0.97	6.13	6.13	6,13	0.70	1.24	± 12.0 %
1450	40.5	1,20	5.54	5.54	5.54	0.80	1.08	± 12.0 %
1750	40.1	1.37	5.40	5.40	5.40	0.59	1.36	± 12.0 %
1900	40.0	1,40	5.24	5.24	5.24	0.75	1.25	± 12.0 %
1950	40.0	1.40	5.08	5.08	5.08	0.80	1.17	± 12.0 %
2300	39.5	1.67	4.94	4.94	4.94	0.80	1.20	± 12.0 %
2450	39.2	1.80	4.62	4.62	4.62	0,79	1.26	± 12.0 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (x and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: E83-3076_Jul16 Page 5 of 11

An requences below 3 GHz, the valency of issue parameters (it and it) can be resized to ± 10% if riquit compensation formula is applied to measured SAR values. All frequencies above 3 GHz, the validity of tissue parameters (it and it) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target lissue parameters.

ApharDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

July 29, 2016

ES3DV3-- SN:3076

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3076

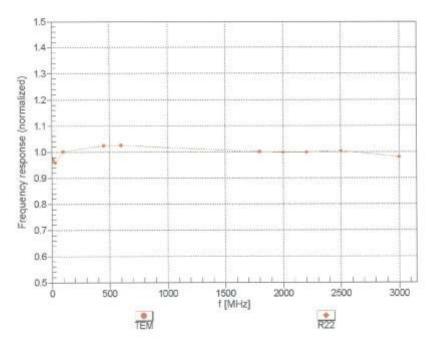
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^P	ConvF X	ConvF Y	ConvF Z	Alpha ⁰	Depth ⁰ (mm)	Unc (k=2)
750	55.5	0.96	5.87	5.87	5,87	0.80	1.16	± 12.0 %
835	55.2	0.97	5.83	5.83	5,83	0.80	1.16	± 12.0 %
1750	53.4	1.49	5.01	5.01	5.01	0.43	1.68	± 12.0 %
1900	53,3	1.52	4.B1	4.81	4.81	0.55	1.51	± 12.0 %
2450	52.7	1.95	4.30	4.30	4.30	0.70	1.21	± 12.0 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 10 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (r. and o) can be relaxed to ± 10% if Equid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s. and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies belowen 3-6 GHz at any distance target than half the probe to diameter from the boundary.

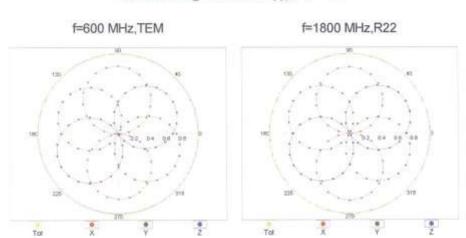

Certificate No: ES3-3076_Jul16

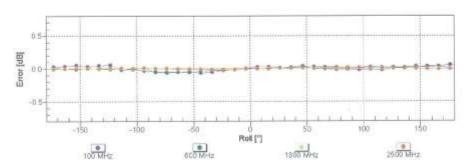
Page 6 of 11

ES3DV3-- SN:3076 July 29, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

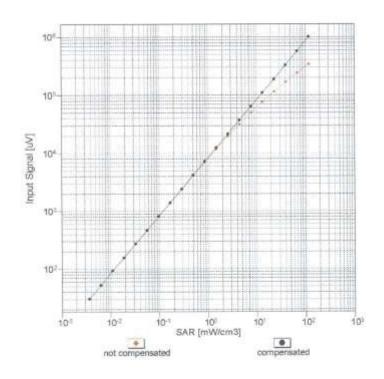
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

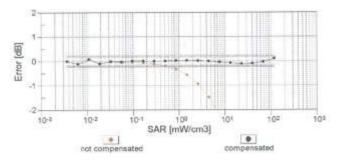

Certificate No: ES3-3076_Jul16


Page 7 of 11

ES3DV3-SN:3076 July 29, 2016

Receiving Pattern (\$\phi\$), 9 = 0°

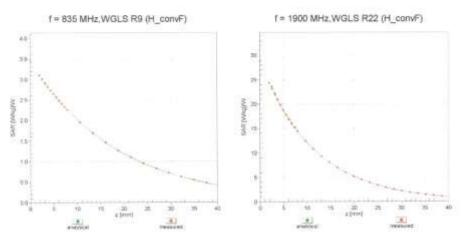

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3076_Jul16 Page 8 of 11

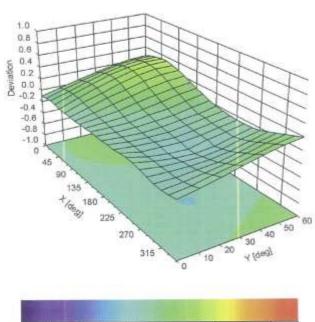
ES3DV3- SN:3076 July 29, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ES3-3076_Jul16

Page 9 of 11



ES3DV3-SN:3076 July 28, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

-1.0 -0.8 -0.5 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.
Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: E83-3076_Jul16

Page 10 of 11

ES3DV3-- SN:3076 July 29, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3076

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-33.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3076_Jul16 Page 11 of 11

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

HCT (Dymstec)

Certificate No: D835V2-4d165 Nov15

CALIBRATION CERTIFICATE D835V2 - SN: 4d165 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz November 24, 2015 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cai Date (Certificate No.) ID# Primary Standards 07-Oct-15 (No. 217-02222) Oct-16 GB374B0704 Power meter EPM-442A Oct-16 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 Oct-16 Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Reference 20 dB Attenuator SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Type-N mismatch combination Dec-15 30-Dec-14 (No. EX3-7349_Dec14) SN: 7349 Reference Probe EX3DV4 17-Aug-15 (No. DAE4-601_Aug15) Aug-16 DAE4 SN: 601 Scheduled Check ID # Check Date (in house) Secondary Standards In house check: Jun-18 15-Jun-15 (in house check Jun-15) RF generator R&S SMT-06 100972 18-Oct-01 (in house check Ocf-15) In house check: Oct-16 US37390585 S4206 Network Analyzer HP 8753E **Eunction** Michael Weber Laboratory Technician Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: November 24, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d165_Nov15

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d165_Nov15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW Input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.06 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1_49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.90 W/kg ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.25 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d165_Nov15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 4.7 jΩ	
Return Loss	- 26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω - 6.8 jΩ	
Return Loss	- 22.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.440 ns
	NI N

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole, The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 28, 2012

Certificate No: D835V2-4d165_Nov15 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d165

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

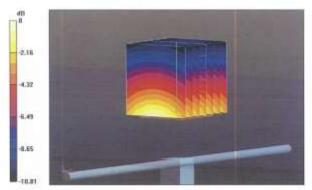
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.77, 9.77, 9.77); Calibrated: 30.12.2014;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015


Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

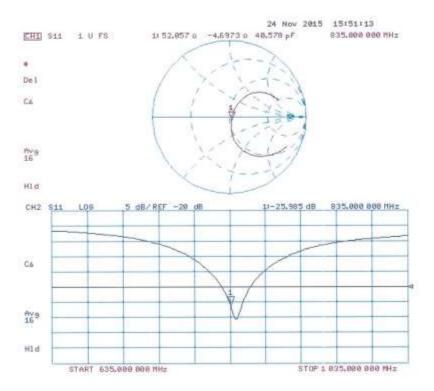
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.39 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.40 W/kg

SAR(1 g) = 2.29 W/kg; SAR(10 g) = 1.49 W/kgMaximum value of SAR (measured) = 3.03 W/kg

0 dB = 3.03 W/kg = 4.81 dBW/kg

Certificate No: DB35V2-4d165_Nov15


Page 5 of 8

FCC ID: ZNFG420

Report No: HCT-A-1609-F001

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d165_Nov15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d165

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

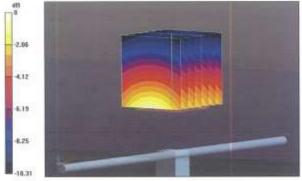
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 30.12.2014;

· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015


Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

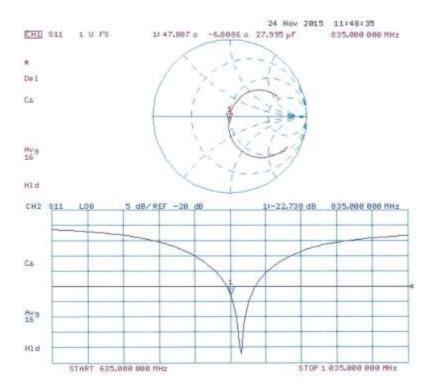
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.95 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kgMaximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Certificate No: D835V2-4d165_Nov15


Page 7 of 8

FCC ID: ZNFG420

Report No: HCT-A-1609-F001

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d165_Nov15

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration procedure for dipole validation kits above 700 MHz Calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), he measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Frimary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower sensor NRP-Z91 SN: 103244 D6-Apr-16 (No. 217-02288) Apr-17 Prower sensor NRP-Z91 SN: 103244 D6-Apr-16 (No. 217-02289) Apr-17 Prower sensor NRP-Z91 SN: 103244 D6-Apr-16 (No. 217-02289) Apr-17 Prower sensor NRP-Z91 SN: 103245 D6-Apr-16 (No. 217-0228) Apr-17 Calibration Combination SN: 5058 (20k) D6-Apr-16 (No. 217-0229) Apr-17 Calibration Combination SN: 5047 27 D6327 D6-Apr-16 (No. 217-0229) Apr-17 Calibration Combination SN: 5047 27 D6327 D6-Apr-16 (No. 217-0229) Apr-17 Calibration Combination SN: 5047 27 D6327 D6-Apr-16 (No. 217-0229) Apr-17 Calibration Combination SN: 5047 27 D6327 D6-Apr-16 (No. 217-0229) Apr-17 Calibration Combination SN: 5047 27 D6327 D6-Apr-16 (No. 217-0229) Apr-17 Calibration Combination SN: 5047 27 D6329 D6-D6-D6-D6-D6-D6-D6-D6-D6-D6-D6-D6-D6-D	ALIBRATION C	ERTIFICATE		
Calibration procedure for dipole validation kits above 700 MHz Calibration procedure for dipole validation kits above 700 MHz April 25, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z01 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Power sensor NRP-Z01 SN: 103245 06-Apr-16 (No. 217-02299) Apr-17 Power sensor NRP-Z01 SN: 103245 06-Apr-16 (No. 217-02291) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Pope-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02293) Apr-17 Reference Probe EX3DV4 SN: 7349 31-Dac-15 (No. EX3-7349, Dec-15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE-601, Dec15) Dec-16 Secondary Standards ID # Check Date (In house) Scheduled Check Power reserve IP 8481A SN: US37282783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-16 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-16 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-16 (No. 217-02222) In house check: Oct-16 Power sensor IP 8481A SN: US37282783 07-Oct-16 Power sensor IP 8481A SN: US37	Object	D1900V2 - SN: 5	d061	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02289) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Type-N mismatch combination SN: 5058 (20k) 05-Apr-16 (No. 217-02289) Apr-17 Type-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Paference Probe EX3DV4 SN: 7349 31-Dec-15 (No. EX3-7349_Dec-15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec-15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: WY41092317 07-Oct-15 (No. 217-02222) In house check: Oct-16 Name Function Signature Calibrated by: Michael Weber Laboratory Technician	Calibration procedure(s)	Seek 1 Seek 1 Seek 1 Seek 1 Seek 1	dure for dipole validation kits abo	ve 700 MHz
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-291 SN: 103244 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) SS: 407-70 (No. 217-02292) Apr-17 Type-N mismatch combination SN: 5047.2 / 06327 SN: 105247 SN: 5047.2 / 06327 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secoridary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 Off-Oct-15 (No. 217-02222) In house check: Oct-16 RP generator RRS SMT-08 SN: US37292783 Off-Oct-15 (No. 217-02222) In house check: Oct-16 RP generator RRS SMT-08 SN: US37390585 SN: US37390585 SN: US37390585 IB-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature All Calibrated by: All Calibrated Smith of the cartificate No.) Scheduled Check Apr-17 Calibrated by: Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Name Function Signature All Calibrated Smith of the calibration of the calibr	Calibration date:	April 25, 2016		
All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Calibration (Calibration) Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02299) Apr-17 Type-N mismatch combination SN: 5047 2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 31-Dec-15 (No. EX3-7349 Dec-15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-801_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 RF generator R&S SMT-08 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Name Function Signature All Date (Calibrated by Technician Michael Weber Laboratory Technician Michael Weber Laboratory Technician Michael Weber Laboratory Technician Michael Weber		and the second state of the second state of the second second	그리 사람들은 살아보다 아내가 되었다면 하셨다면 하는데 얼마나 얼마나 얼마나 살아 먹었다.	
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration		(W.C.) (1804) 1814 (1904) 1821 (1844) 1821 (186		
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02289) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Type-N mismatch combination SN: 5047 2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 31-Dec-15 (No. EX3-7349_Dec-15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-642A SN: GB37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02222) In house check: Oct-16 RF generator R&S SMT-08 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) Name Function Signature Calibrated by: Michael Weber Laboratory Technician	All calibrations have been conduc	ted in the closed laborato	ry facility; environment temperature (22 ± 3)°C	3 and humidity < 70%.
Power meter NRP Power sensor NRP-Z91 SN: 103244 O6-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103245 O6-Apr-16 (No. 217-02288) Apr-17 Reference 20 dB Attenuator Type-N mismatch combination SN: 5058 (20k) SN: 5047 2 / 06327 SN: 7349 S1-Dec-15 (No. 217-02292) Apr-17 Reference Probe EX3DV4 SN: 7349 S1-Dec-15 (No. EX3-7349_Dec15) Dec-16 DAE4 SR: 601 S0-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 O7-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 O7-Oct-15 (No. 217-02222) In house check: Oct-16 RF generator R&S SMT-06 SN: 100972 I5-Jun-15 (in house check Jun-15) Network Analyzer HP 8753E SN: US37390585 I8-Oct-01 (in house check Oct-15) Name Function Signature Michael Weber Laboratory Technician	Calibration Equipment used (M&)	E critical for calibration)		
Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Type-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02292) Apr-17 Reference Probe EX3DV4 SN: 7349 31-Dec-15 (No. 217-02295) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601 Dec15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601 Dec15) Dec-16 Power meter EPM-642A SN: GB37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: WS37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Notwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (In house check Oct-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (In house check Oct-15) In house check: Oct-16 Name Function Signature Michael Weber Laboratory Technician	Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Type-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 31-Dec-15 (No. EX3-7349_Dec15) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID // Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) Name Function Signature Michael Weber Laboratory Technician	Account Commence of the Commen	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Reference 20 dB Attenuator	Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Secondary Standards	Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Secondary Standards	Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16		CAL CO47 9 / 002997		
Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-642A SN: GB37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02222) In house check: Oct-16 RF generator R&S SMT-08 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature Calibrated by: Michael Weber Laboratory Technician	Type-N mismatch combination	DIN 2041/61 (1006)	05-Apr-16 (No. 217-02295)	Apr-17
Power meter EPM-442A		The state of the s		21 T 1 C C C C C C C C C C C C C C C C C
Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 In house check: Oct-16 SN: 100972 15-Jun-15 (In house check Jun-15) In house check: Oct-16 In house che	Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E SN: US37390585 SN: US373	Reference Probe EX3DV4 DAE4	SN: 7349 SN: 601	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	Dec-16 Dec-16
RF generator R&S SMT-08 SN: 100972 15-Jun-15 (In house check Jun-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (In house check Oct-15) In house check: Oct-16 In house check: Oct-16 Name Function Signature Calibrated by: Michael Weber Laboratory Technician	Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 7349 SN: 601	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Dec-16 Dec-16 Scheduled Check
Network Analyzer HP 8753E SN: US37990585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature Michael Weber Laboratory Technician	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 7349 SN: 601 ID # SN: GB37480704	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Name Function Signature Calibrated by: Michael Weber Laboratory Technician 4.Webs	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Calibrated by: Michael Weber Laboratory Technician M.Neles	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
M.116/25	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Approved by: Kallja Pokovic Technical Manager	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 97-Oct-15 (No. 217-02222) 97-Oct-15 (No. 217-02222) 97-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Dec-16 Dec-16 Scheduled Check In house check: Oct-16
	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-642A Power sensor HP 8481A Power sensor HP 8481A RF generator H&S SMT-08 Network Analyzer HP 8753E	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Dec-16 Dec-16 Scheduled Check In house check: Oct-16 Signature
Issued: April 26, 2016	Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer HP 8753E Calibrated by:	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Michael Weber	31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Dec-16 Dec-16 Scheduled Check In house check: Oct-16 Signature

Certificate No: D1900V2-5d061_Apr16

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d061_Apr16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16,5 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ¹ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d061_Apr16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.7 jΩ	
Return Loss	- 22.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω + 8.5 jΩ				
Return Loss	- 21.0 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				
Manufactured on	December 10, 2004				

Certificate No: D1900V2-5d061_Apr16 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d061

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

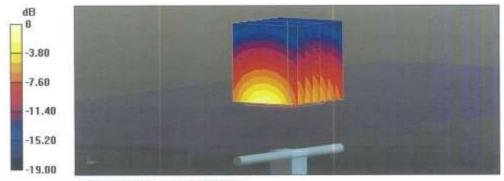
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.12.2015;

· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015


Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

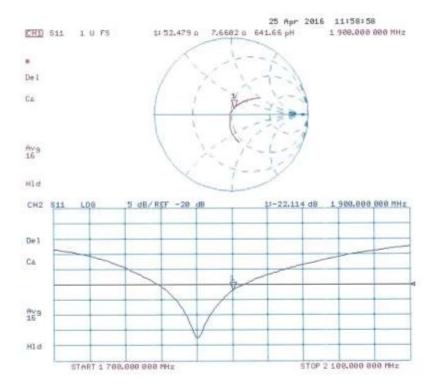
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.4 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.53 W/kg; SAR(10 g) = 5.01 W/kgMaximum value of SAR (measured) = 14.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg

Certificate No: D1900V2-5d061_Apr16


Page 5 of 8

FCC ID: ZNFG420

Report No: HCT-A-1609-F001

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d061_Apr16

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 25.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d061

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_c = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

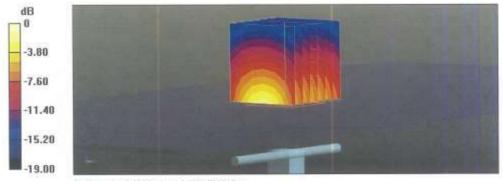
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated; 31.12.2015;

· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated; 30.12.2015


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

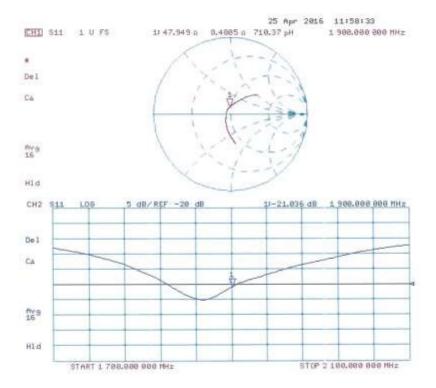
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg

Certificate No: D1900V2-5d061_Apr16


Page 7 of 8

FCC ID: ZNFG420

Report No: HCT-A-1609-F001

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d061_Apr16

Page 8 of 8

Attachment 5.- SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)								
(% by weight)	83	35	1 900						
Tissue Type	Head	Body	Head	Body					
Water	40.45	53.06	54.9	70.17					
Salt (NaCl)	1.45	0.94	0.18	0.39					
Sugar	57.0	44.9	0.0	0					
HEC	1.0	1.0	0.0	0					
Bactericide	0.1	0.1	0.0	0					
Triton X-100	0.0	0.0	0.0	0.0					
DGBE	0.0	0.0	44.92	29.44					
Diethylene glycol hexyl ether	-	-	-	-					

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Composition of the Tissue Equivalent Matter

Attachment 6.- SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR	Probe			Dielectric Parameters		CW Validation			Modulation Validation					
System No.	Probe	Probe Type		ration int	Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity		Probe Isotropy		Duty Factor	PAR
11	3076	ES3DV3	Head	835	4d165	2016.08.08	41.7	0.91	PASS	PASS	PASS	GMSK	PASS	N/A
11	3076	ES3DV3	Body	835	4d165	2016.08.09	55.3	0.99	PASS	PASS	PASS	GMSK	PASS	N/A
11	3076	ES3DV3	Head	1900	5d061	2016.08.08	40.3	1.43	PASS	PASS	PASS	GMSK	PASS	N/A
11	3076	ES3DV3	Body	1900	5d061	2016.08.09	53.5	1.49	PASS	PASS	PASS	GMSK	PASS	N/A

SAR System Validation Summary 1g

Note:

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.