PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 27

Applicant Name: LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: Sept. 24 - Oct. 09, 2012 **Test Site/Location:** PCTEST Lab., Columbia, MD, USA **Test Report Serial No.:** 0Y1209201377.ZNF

FCC ID: ZNFE971

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A

Application Type: Class II Permissive Change

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §27

EUT Type: Portable Handset

Model(s): E971, LGE971, LG-E971

Test Device Serial No.: identical prototype [S/N: 207KPWQ000225]

Class II Permissive Change: Please see FCC change document.

Original Grant Date: October 18, 2012

				ERP/	EIRP
Mode	Tx Frequency (MHz)	Emission Designator	Modulation I Max		Max. Power (dBm)
LTE Band 17	706.5 - 713.5	4M49G7D	QPSK	0.318	25.245
LTE Band 17	706.5 - 713.5	4M49W7D	16QAM	0.249	23.966
LTE Band 17	709 - 711	8M91G7D	QPSK	0.332	25.205
LTE Band 17	709 - 711	8M92W7D	16QAM	0.268	24.283
LTE Band 7	2502.5 - 2567.5	4M47G7D	QPSK	0.227	23.560
LTE Band 7	2502.5 - 2567.5	4M48W7D	16QAM	0.252	24.020
LTE Band 7	2505 - 2565	8M93G7D	QPSK	0.248	23.950
LTE Band 7	2505 - 2565	8M92W7D	16QAM	0.207	23.160
LTE Band 7	2507.5 - 2562.5	13M38G7D	QPSK	0.209	23.200
LTE Band 7	2507.5 - 2562.5	13M36W7D	16QAM	0.186	22.690
LTE Band 7	2510 - 2560	17M88G7D	QPSK	0.185	22.680
LTE Band 7	2510 - 2560	17M82W7D	16QAM	0.170	22.300

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: ZNFE971	PETEST VENERALISM LABORATERS, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 1 of 19
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Page 1 of 18

TABLE OF CONTENTS

FCC PA	ART 27	MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.4	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	
	3.2	BLOCK A FREQUENCY RANGE	6
	3.3	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	6
4.0	TEST	EQUIPMENT CALIBRATION DATA	7
5.0	SAM	PLE CALCULATIONS	8
6.0	TEST	RESULTS	9
	6.1	SUMMARY	9
	6.2	EFFECTIVE RADIATED POWER OUTPUT DATA	10
	6.3	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	11
	6.4	BAND 17 RADIATED MEASUREMENTS	12
	6.5	BAND 7 RADIATED MEASUREMENTS	_
7.0	CON	CLUSION	18

FCC ID: ZNFE971	THE INTERIOR LABORATERY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 19
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Page 2 of 18

MEASUREMENT REPORT FCC Part 27

APPLICANT: LG Electronics MobileComm U.S.A

APPLICANT ADDRESS: 1000 Sylvan Avenue

Englewood Cliffs, NJ 07632, United States

TEST SITE: PCTEST ENGINEERING LABORATORY, INC.

TEST SITE ADDRESS: 7185 Oakland Mills Road, Columbia, MD 21046 USA

 FCC RULE PART(S):
 §2; §27

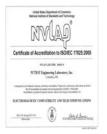
 BASE MODEL:
 E971

 FCC ID:
 ZNFE971

§2.1033 General Information

FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm) for Band within frequency block for Bands 7 and 17


DATE(S) OF TEST: Sept. 24 - Oct. 09, 2012 **TEST REPORT S/N:** 0Y1209201377.ZNF

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: ZNFE971	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset	Fage 3 of 16

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on January 10, 2012.

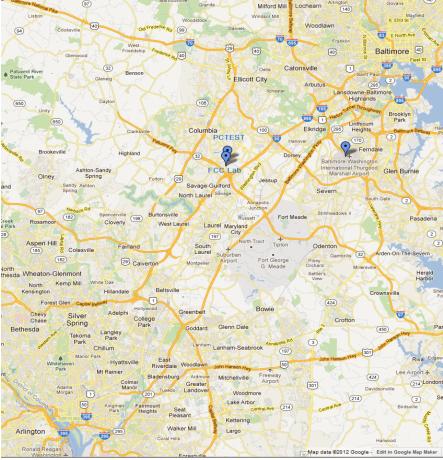


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: ZNFE971	PETEST*	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 4 of 19
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Page 4 of 18
@ COAC DOTE OT Facilities	. Labaratan Laa	·		DEV 4.74

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LGE Portable Handset FCC ID: ZNFE971**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
LGE / Model: E971	ZNFE971	Portable Handset

Table 2-1. EUT Equipment Description

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1900 WCDMA, Band 7, 17 LTE, 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x,EDR, LE), NFC

2.3 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.4 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

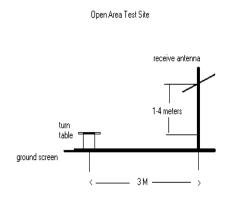
Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.


FCC ID: ZNFE971	INCIDENTE LABORATORY, INC.	(0)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Fage 5 01 16

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3-meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Deviation from Measurement Procedure.....None

Figure 3-1. Diagram of 3-meter outdoor test range

3.2 Block A Frequency Range §27.5(c)

698-746 MHz band. The following frequencies are available for licensing pursuant to this part in the 698-746 MHz band: (1) Three paired channel blocks of 12 megahertz each are available for assignment as follows:

Block A: 698-704 MHz and 728-734 MHz; Block B: 704-710 MHz and 734-740 MHz; and Block C: 710-716 MHz and 740-746 MHz.

3.3 Radiated Power and Radiated Spurious Emissions §2.1053, §27.53(q), §27.53(h); RSS-132(4.5.1.2), RSS-133 (6.5.1)

Radiated power and radiated spurious emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: ZNFE971	PETEST.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 6 of 19
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Page 6 of 18

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/25/2012	Annual	1/25/2013	N/A
_	RE1	Radiated Emissions Cable Set (UHF/EHF)	7/10/2012	Annual	7/10/2013	N/A
Agilent	8447D	Broadband Amplifier	5/8/2012	Annual	5/8/2013	1937A03348
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	2/15/2012	Annual	2/15/2013	US42510244
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/5/2012	Annual	4/5/2013	MY45470194
Agilent	N9020A	MXA Signal Analyzer	10/10/2011	Annual	10/10/2012	US46470561
Agilent	N9030A	PXA Signal Analyzer	2/23/2012	Annual	2/23/2013	MY49432391
Anritsu	MA2411B	Power Sensor	3/5/2012	Annual	3/5/2013	846215
Anritsu	ML2495A	Power Meter	10/13/2011	Annual	10/13/2012	1039008
Espec	ESX-2CA	Environmental Chamber	4/4/2012	Annual	4/4/2013	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	7/22/2011	Biennial	7/22/2013	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Annual	5/30/2013	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	10/1/2011	Biennial	10/1/2013	128337
Mini-Circuits	VHF-1200+	High Pass Filter	1/15/2012	Annual	1/15/2013	30923
Mini-Circuits	VHF-3100+	High Pass Filter	1/15/2012	Annual	1/15/2013	30841
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	N/A		N/A	100976
Rohde & Schwarz	RS-PR18	1-18 GHz Pre-Amplifier	6/26/2012	Annual	6/26/2013	100071
Rohde & Schwarz	RS-PR26	18-26.5 GHz Pre-Amplifier	5/30/2012	Annual	5/30/2013	100040
Rohde & Schwarz	ESU26	EMI Test Receiver	12/15/2011	Annual	12/15/2012	100342
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	11/14/2011	Biennial	11/14/2013	9105-2404
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	11/14/2011	Biennial	11/14/2013	9105-2403
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/26/2012	Biennial	1/26/2014	A051107

Table 4-1. Test Equipment

Note:

Rohde & Schwarz Model: CMW500 was used for signaling purposes only and not for calibrated measurements. Care was taken to ensure that testing occurred while test equipment was in calibration.

FCC ID: ZNFE971	POTEST LEGISLATER, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Page / 01 16

5.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz
G = Phase Modulation
7 = Quantized/Digital Info
D = Amplitude/Angle Modulated

16QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Combination (Audio/Data)

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: ZNFE971	TENSINEERING LABORATION, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		rage out to

TEST RESULTS

6.1 **Summary**

Company Name: LG Electronics MobileComm U.S.A

FCC ID: **ZNFE971**

PCS Licensed Transmitter Held to Ear (PCE) FCC Classification:

Mode(s): **LTE**

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MOD						
27.50(c)(10)	RSS-199	Effective Radiated Power (Band 17)	< 3 Watts max. ERP		PASS	Section 6.2
27.50(h)	RSS-199	Equivalent Isotropic Radiated Power (Band 7)	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.3
2.1053, 22.917(a), 27.53(g), 27.53(m)	RSS-132 (4.5.1) RSS-133 (6.5.1) RSS-199	Undesirable Emissions	< 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 6.4, 6.5, 6.6, 6.7
2.1055, 27.54	RSS-132 (4.3) RSS-133 (6.3) RSS-199	Frequency Stability	< 2.5 ppm		PASS	Section 6.8, 6.9, 6.10, 6.11

Table 6-1. Summary of Test Results

Notes:

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

FCC ID: ZNFE971	PCTEST (SECRETARY, SEC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset	Page 9 01 16

6.2 Effective Radiated Power Output Data §22.913(a)(2), §27.50(c)(10),

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Margin [dB]
706.50	5	QPSK	Standard	1/0	22.91	2.12	Н	25.03	0.318	-9.75
710.00	5	QPSK	Standard	1/0	23.04	2.20	Н	25.24	0.335	-9.53
713.50	5	QPSK	Standard	1/0	21.57	2.29	Н	23.86	0.243	-10.91
706.50	5	16-QAM	Standard	1 / 24	21.85	2.12	Н	23.97	0.249	-10.81
710.00	5	16-QAM	Standard	1/0	21.63	2.20	Н	23.83	0.242	-10.94
713.50	5	16-QAM	Standard	1/0	20.17	2.29	Н	22.46	0.176	-12.31
709.00	10	QPSK	Standard	1/0	22.71	2.12	Н	24.83	0.304	-9.95
710.00	10	QPSK	Standard	1/0	23.00	2.20	Н	25.20	0.332	-9.57
711.00	10	QPSK	Standard	1/0	21.28	2.29	Н	23.57	0.228	-11.20
709.00	10	16-QAM	Standard	1/0	21.67	2.12	Н	23.79	0.239	-10.99
710.00	10	16-QAM	Standard	1/0	21.53	2.20	Н	23.73	0.236	-11.04
711.00	10	16-QAM	Standard	1/0	21.99	2.29	Н	24.28	0.268	-10.49

Table 6-2. Effective Radiated Power Output Data (Band 17)

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

The EUT was tested in three orthogonal planes and in all possible test configurations and modulations. The worst case test configuration was found in the horizontal polarity for all setups. All possible modulations, configurations, RB sizes and offsets were tested and the worst case settings are described in the table above. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	POTEST LEGISLATER, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	G Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset	Fage 10 01 16

6.3 Equivalent Isotropic Radiated Power Output Data §24.232(c); §27.50(h)(2)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Margin [dB]
2502.50	5	QPSK	Standard	1/0	16.25	8.51	Н	24.76	0.299	-8.25
2535.00	5	QPSK	Standard	1/0	15.68	8.53	Н	24.21	0.264	-8.80
2567.50	5	QPSK	Standard	1/0	13.69	8.61	Н	22.30	0.170	-10.71
2502.50	5	16-QAM	Standard	1/0	15.51	8.51	Н	24.02	0.252	-8.99
2535.00	5	16-QAM	Standard	1/0	15.25	8.53	Н	23.78	0.239	-9.23
2567.50	5	16-QAM	Standard	1/0	12.62	8.61	Н	21.23	0.133	-11.78
2505.00	10	QPSK	Standard	1/0	14.78	8.51	Н	23.29	0.213	-9.72
2535.00	10	QPSK	Standard	1/0	13.87	8.53	Н	22.40	0.174	-10.61
2565.00	10	QPSK	Standard	1/0	16.46	8.60	Н	25.06	0.321	-7.95
2505.00	10	16-QAM	Standard	1/0	16.20	8.51	Н	24.71	0.296	-8.30
2535.00	10	16-QAM	Standard	1/0	12.52	8.53	Н	21.05	0.127	-11.96
2565.00	10	16-QAM	Standard	1/0	15.68	8.60	Н	24.28	0.268	-8.73
2507.50	15	QPSK	Standard	1/0	15.13	8.51	Н	23.64	0.231	-9.37
2535.00	15	QPSK	Standard	1/0	12.17	8.53	Н	20.70	0.117	-12.31
2562.50	15	QPSK	Standard	1/0	15.25	8.60	Н	23.85	0.243	-9.16
2507.50	15	16-QAM	Standard	1/0	14.57	8.51	Н	23.08	0.203	-9.93
2535.00	15	16-QAM	Standard	1/0	11.51	8.53	Н	20.04	0.101	-12.97
2562.50	15	16-QAM	Standard	1/0	15.23	8.60	Н	23.83	0.242	-9.18
2510.00	20	QPSK	Standard	1/0	15.15	8.51	Н	23.66	0.232	-9.35
2535.00	20	QPSK	Standard	1/0	11.30	8.53	Н	19.83	0.096	-13.18
2560.00	20	QPSK	Standard	1/0	14.89	8.59	Н	23.48	0.223	-9.53
2510.00	20	16-QAM	Standard	1/0	13.97	8.51	Н	22.48	0.177	-10.53
2535.00	20	16-QAM	Standard	1/0	10.81	8.53	Н	19.34	0.086	-13.67
2560.00	20	16-QAM	Standard	1/0	14.27	8.59	Н	22.86	0.193	-10.15

Table 6-3. Equivalent Isotropic Radiated Power Output Data (Band 7)

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

The EUT was tested in three orthogonal planes and in all possible test configurations and modulations. The worst case test configuration was found in the horizontal polarity for all setups. All possible modulations, configurations, RB sizes and offsets were tested and the worst case settings are described in the table above. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	PCTEST*	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset	raye 11 01 10

Band 17 Radiated Measurements §2.1053, §27.53(q)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 706.50 MHz

> CHANNEL: 23755

MEASURED OUTPUT POWER: 25.03 dBm 0.318 W

MODULATION SIGNAL: **QPSK**

> **BANDWIDTH:** 5 MHz

DISTANCE: 3 meters

> LIMIT: $43 + 10 \log_{10} (W) =$ 38.03 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1413.00	-51.55	3.63	-47.92	Н	72.95
2119.50	-34.44	3.90	-30.55	Н	55.57
2826.00	-88.80	5.01	-83.79	Н	108.82
3532.50	-91.63	6.25	-85.38	Н	110.41
4239.00	-90.66	7.23	-83.43	Н	108.46
4945.50	-90.41	7.86	-82.54	Н	107.57

Table 6-4. Radiated Spurious Data (Ch. 23755)

NOTES:

Emission Measurements by Substitution Method according to Radiated Spurious ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations and channel bandwidth configurations and the worst case emissions are reported at the maximum channel BW and respective settings for QPSK for all bands. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations, modulations, RB sizes and offsets and positioning. The worst case test configuration was found in the vertical setup with an RB size of 1 and offset of 0. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	INCIDENTE LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Fage 12 01 16

Band 17 Radiated Measurements (cont'd) §2.1053, §27.53(g)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 710.00 MHz

CHANNEL: 23790

MEASURED OUTPUT POWER: 25.24 dBm = 0.335 W

MODULATION SIGNAL: QPSK

BANDWIDTH: 5 MHz

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 38.24$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1420.00	-52.25	3.68	-48.57	Н	73.82
2130.00	-34.83	3.92	-30.91	Н	56.16
2840.00	-88.66	5.02	-83.63	Н	108.88
3550.00	-91.51	6.25	-85.26	Н	110.51
4260.00	-90.70	7.25	-83.45	Η	108.69
4970.00	-90.41	7.90	-82.50	Н	107.75

Table 6-5. Radiated Spurious Data (Ch. 23790)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations and channel bandwidth configurations and the worst case emissions are reported at the maximum channel BW and respective settings for QPSK for all bands. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations, modulations, RB sizes and offsets and positioning. The worst case test configuration was found in the vertical setup with an RB size of 1 and offset of 0. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	ENGINEERING LABBATBUT, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	(LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Fage 13 01 16

Band 17 Radiated Measurements (cont'd) §2.1053, §27.53(g)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 713.50 MHz

> 23825 CHANNEL:

MEASURED OUTPUT POWER: 23.86 0.243 dBm

MODULATION SIGNAL: **QPSK**

> 5 MHz BANDWIDTH:

3 DISTANCE: meters

> LIMIT: $43 + 10 \log_{10} (W) =$ 36.86 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1427.00	-52.40	3.73	-48.67	Н	72.53
2140.50	-32.82	3.94	-28.88	Н	52.74
2854.00	-88.51	5.04	-83.48	Н	107.34
3567.50	-91.40	6.25	-85.15	Н	109.01
4281.00	-90.70	7.25	-83.45	Н	107.31
4994.50	-90.41	7.94	-82.47	Н	106.33

Table 6-6. Radiated Spurious Data (Ch. 23825)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations and channel bandwidth configurations and the worst case emissions are reported at the maximum channel BW and respective settings for QPSK for all bands. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations, modulations, RB sizes and offsets and positioning. The worst case test configuration was found in the vertical setup with an RB size of 1 and offset of 0. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	PETEST (NE. LABBATERF. INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		rage 14 01 10

6.5 Band 7 Radiated Measurements §2.1053, §27.53(h)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 2505.00 MHz

CHANNEL: 20800

MEASURED OUTPUT POWER: 23.29 dBm = 0.213 W

MODULATION SIGNAL: QPSK

BANDWIDTH: 10 MHz

DISTANCE: _____ meters

LIMIT: $55 + 10 \log_{10} (W) = 48.29$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5010.00	-55.50	10.97	-44.52	Н	67.81
7515.00	-52.49	10.84	-41.65	Н	64.94
10020.00	-93.68	12.31	-81.37	Н	104.66
12525.00	-92.84	12.93	-79.91	Н	103.20
15030.00	-88.77	12.28	-76.49	Η	99.78
17535.00	-86.28	13.54	-72.74	Ι	96.03

Table 6-7. Radiated Spurious Data (Ch. 20800)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations and channel bandwidth configurations and the worst case emissions are reported at the maximum channel BW and respective settings for QPSK for all bands. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations, modulations, RB sizes and offsets and positioning. The worst case test configuration was found in the horizontal setup with an RB size of 1 and offset of 0. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	PCTEST CHECKING LABERTERS, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset	Page 15 01 16

Band 7 Radiated Measurements (cont'd) §2.1053, §27.53(h)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 2535.00 MHz

CHANNEL: 21100

MEASURED OUTPUT POWER: 22.40 dBm = 0.174 W

MODULATION SIGNAL: QPSK

BANDWIDTH: 10 MHz

DISTANCE: _____ meters

LIMIT: $55 + 10 \log_{10} (W) = 47.40$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5070.00	-55.71	11.00	-44.71	Н	67.11
7605.00	-54.34	11.08	-43.26	Н	65.66
10140.00	-93.73	12.41	-81.32	Н	103.72
12675.00	-92.89	13.13	-79.76	Н	102.16
15210.00	-89.52	13.36	-76.15	Н	98.55
17745.00	-86.97	14.68	-72.29	Н	94.69

Table 6-8. Radiated Spurious Data (Ch. 21100)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations and channel bandwidth configurations and the worst case emissions are reported at the maximum channel BW and respective settings for QPSK for all bands. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations, modulations, RB sizes and offsets and positioning. The worst case test configuration was found in the horizontal setup with an RB size of 1 and offset of 0. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	ENGINEERING LABBATBUT, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		Fage 10 01 10

Band 7 Radiated Measurements (cont'd) §2.1053, §27.53(h)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 2565.00 MHz

CHANNEL: 21400

MEASURED OUTPUT POWER: 25.06 dBm = 0.321 W

MODULATION SIGNAL: QPSK

BANDWIDTH: 10 MHz

DISTANCE: 3 meters

LIMIT: $55 + 10 \log_{10} (W) = 50.06$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
5130.00	-53.99	10.97	-43.03	Н	68.09
7695.00	-53.94	11.16	-42.78	Н	67.84
10260.00	-93.74	12.47	-81.27	Н	106.33
12825.00	-92.49	12.89	-79.61	Н	104.67
15390.00	-90.09	14.37	-75.72	Н	100.78
17955.00	-86.97	15.15	-71.82	Н	96.88

Table 6-9. Radiated Spurious Data (Ch. 21400)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations and channel bandwidth configurations and the worst case emissions are reported at the maximum channel BW and respective settings for QPSK for all bands. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations, modulations, RB sizes and offsets and positioning. The worst case test configuration was found in the horizontal setup with an RB size of 1 and offset of 0. The data reported in the table above was measured in this test setup.

FCC ID: ZNFE971	PCTEST CHECKING LABERTERS, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset	Page 17 01 16

CONCLUSION 7.0

The data collected relate only to the item(s) tested and show that the LGE Portable Handset FCC ID: ZNFE971 complies with all the requirements of Parts 2 and 27 of the FCC rules for LTE operation only.

FCC ID: ZNFE971	PCTEST*	FCC Pt. 27 LTE MEASUREMENT REPORT (Class II Permissive Change)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 18
0Y1209201377.ZNF	Sept. 24 - Oct. 09, 2012	Portable Handset		rage 10 01 10