

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

GSM AND WCDMA PHONE WITHBLUETOOTH, NFC, AND WLAN

MODEL NUMBER: E960, LGE960, AND LG-E960

FCC ID: ZNFE960

IC ID: 2703C-ZNFE960

REPORT NUMBER: 12U14580-4

ISSUE DATE: AUGUST 24, 2012

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY 07632

> Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 12U14580-4	
EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN	
FCC ID: ZNFE960	

Revision History

Rev.	lssue Date	Revisions	Revised By
	08/24/12	Initial Issue	T. Lee

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 53

REPORT NO: 12U14580-4 EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN FCC ID: ZNFE960

IC ID: 2703C-ZNFE960

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAI	LIBRATION AND UNCERTAINTY	6
	.1.	MEASURING INSTRUMENT CALIBRATION	
4	.2.	SAMPLE CALCULATION	
4	.3.	MEASUREMENT UNCERTAINTY	6
5.	FQI	JIPMENT UNDER TEST	7
	.1.	MAXIMUM OUTPUT POWER	
-	.2.	SOFTWARE AND FIRMWARE	
5	.3.	MODEL DIFFERNECE	
5	.4.	WORST-CASE CONFIGURATION AND MODE	7
5	.5.	MODIFICATIONS	7
5	.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	ST AND MEASUREMENT EQUIPMENT1	1
7.		DIATED EMISSION TEST RESULTS1	
	.1.	LIMITS AND PROCEDURE1	
,	7.1. 7.1. 7.1.	1. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)1	4
8.	AC	MAINS LINE CONDUCTED EMISSIONS2	3
8	.1.	USB CHARGER (w/o 50 ohm Load)2	4
8	.2.	USB CHARGER (with 50 ohm Load)2	7
8	.3.	INDUCTIVE CHARGER (w/o 50 ohm Load)3	0
8	.4.	INDUCTIVE CHARGER (with 50 ohm Load)	3
9.	FRE	EQUENCY STABILITY	6
10.	9	9% BANDWIDTH	7
11.		ETUP PHOTOS	
		RADIATED EMISSION BELOW 30 MHz	-
'	11.1	I.1. BATTERY POWER	9
	11.1 11.1		
1	1.2.	RADIATED EMISSION ABOVE 30 MHz4	
,		Page 3 of 53	
	200	EORM NO: COSUP4701	2

REPORT NO: 12U14580-4

EUT: TRI-BAN FCC ID: ZNFE	D GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN 960	IC ID: 2703C-ZNFE960
11.2.1.		

11.2.2	2.	INDUCTIVE CHARGER	47
11.3.	AC	MAINS LINE CONDUCTED EMISSION	
11.3.1	۱.	USB CHARGER	
11.3.2	2.	INDUCTIVE CHARGER	
11.4.	FRI	EQUENCY TOLERANCE OVER EXTREME CONDITIONS	

Page 4 of 53

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY 07632
EUT DESCRIPTION:	GSM AND WCDMA PHONE WITHBLUETOOTH, NFC AND WLAN
MODEL:	E960, LGE960, AND LG-E960
SERIAL NUMBER:	207KPXV001162 (RADIATED) AND 207KPWQ001161 (CONDUCTED)
DATE TESTED:	AUGUST 22 TO 24, 2012

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 15 SUBPART C	Pass			
INDUSTRY CANADA RSS-210 Issue 8, Annex 2	Pass			
INDUSTRY CANADA RSS-GEN Issue 3	Pass			

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

TIM LEE STAFF ENGINEER UL CCS

Douçlas Combuser .

DOUG ANDERSON EMC ENGINEER UL CCS

Page 5 of 53

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 53

5. EQUIPMENT UNDER TEST

The EUT is BT3.0, 802.11b/g/n 1x1 HT20, GSM/WCDMA 850/1900MHz, Bar Phone with HOTSPOTS and VOIP supported.

The manufacturer of the radio module is LG.

5.1. MAXIMUM OUTPUT POWER

The transmitter maximum E-field at 10m distance is 18.07 dBuV/m

5.2. SOFTWARE AND FIRMWARE

The kernel version installed in the EUT during testing was 3.0.21 Jh.koo@fanta #1 SMP PREEMPT Tue Jul 17 13:18:23 KST 2012.

The Build number installed in the EUT during testing was geeb_att_us-eng 4.0.4 IMM76L b85552b7e test-keys.

5.3. MODEL DIFFERNECE

Models, LG-E960 and LGE960, are identical to Model E960 except for model designation.

5.4. WORST-CASE CONFIGURATION AND MODE

All configurations were tested, EUT with USB charger and and EUT with inductive charger.

Since the EUT is a portable device, an X, Y, and Z orientations, and worst orientations among X, Y, and Y with Headset and/or AC Adapter were investigated to determine the worst case. After the investigation the worst case turned out to be Y-Orientation with an AC Adapter and Headset.

5.5. MODIFICATIONS

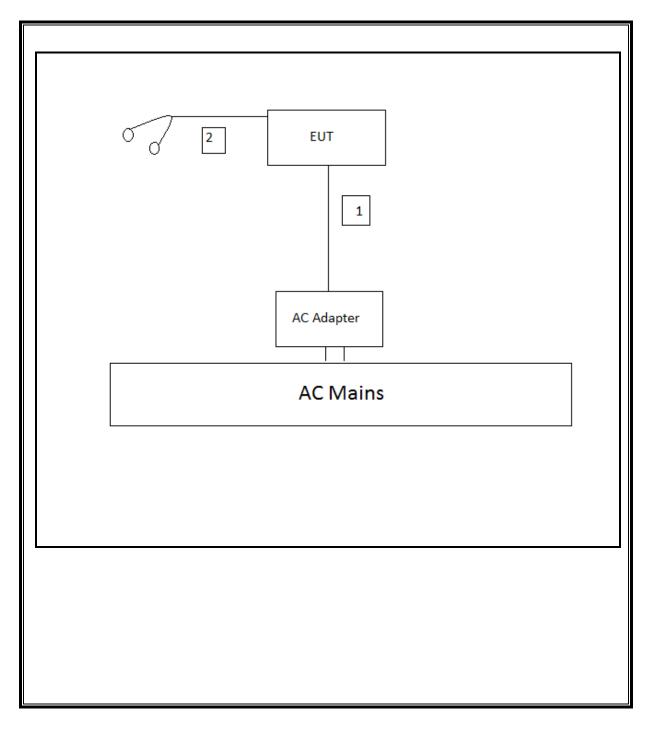
A ferrite was added on the Charging Pad's AC Adapter in order to pass 30-1000MHz emissions test. Ferrite: Manufacture: TDK, Serial Number: ZCAT 2035-0930.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

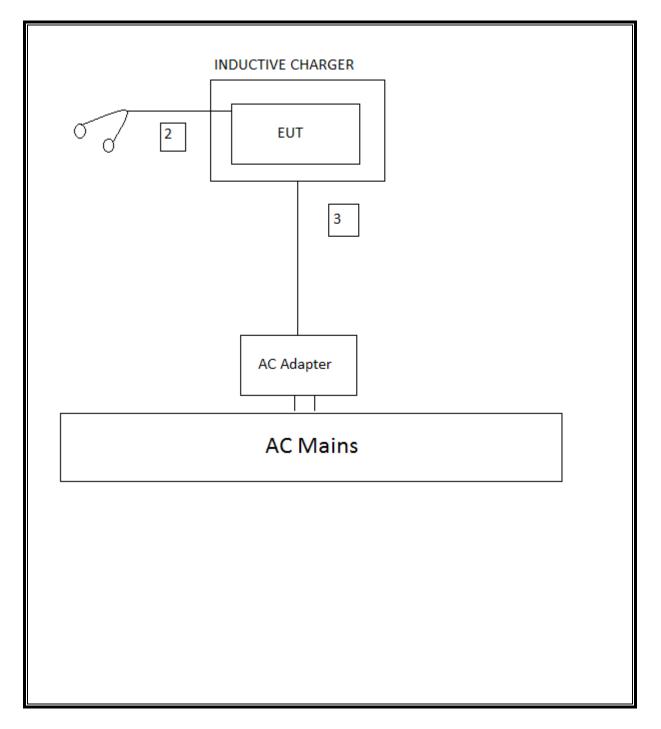
Support Equipment List					
Description Manufacturer Model Serial Number					
AC ADAPTER	LG ELECTRONICS	MCS-01WR	RA1Z0051473		
HEADSET	LG ELECTRONICS	NA	N/A		
AC ADAPTER	LG ELECTRONICS	WCA-D01WT	TA170000040		
INDUCTIVE CHARGER	LG ELECTRONICS	WCP-700	A1106WP000029		

I/O CABLES


	I/O Cable List							
Cable	ble Port # of identical Connector Cable Type Cable Length R		Remarks					
No		ports	Туре		(m)			
1	DC	1	MINI USB	UN-SHELDED	1.0m	N/A		
2	AUDIO	1	MINI JACK	UN-SHELDED	1.2m	N/A		
3	DC	1	MINI JACK	UN-SHELDED	1.5m	N/A		

TEST SETUP

Page 8 of 53


REPORT NO: 12U14580-4	
EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN	
FCC ID: ZNFE960	

SETUP DIAGRAM WITH USB CHARGER

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

SETUP DIAGRAM WITH INDUCTIVE CHARGER

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 10 of 53

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
EMI Receiver, 6.5GHz	Agilent / HP	85462A	N/A	06/19/12	06/19/13	
Antenna, Loop, 30 MHz	EMCO	6502	C00593	02/10/11	02/10/13	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	2/16/2012	02/16/13	
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	8/19/2011	08/19/13	
Antenna, Loop, 30 MHz	EMCO	6502	C00593	2/10/2011	02/10/13	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	7/16/2011	03/23/13	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	11/11/2011	11/11/12	
LISN, 30 MHz	FCC	50/250-25-2	C00626	12/13/2011	12/13/12	
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	10/20/2012	10/20/12	

Page 11 of 53

7. RADIATED EMISSION TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMIT</u>

§15.225 IC RSS-210, Section 2.6 (Transmitter) IC RSS-GEN, Section 6 (Receiver)

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110– 14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows: §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits fo	or radiated disturbance of	of an intentional radiator
Frequency range (MHz)	Limits (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400 / F (kHz)	300
0.490 - 1.705	24000 / F (kHz)	30
1.705 – 30.0	30	30
30 – 88	100**	3
88 - 216	150**	3
216 – 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the filed strength from uV/m to dBuV/m is: Limit (dBuV/m) = 20 log limit (uV/m)

In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

TEST PROCEDURE

ANSI C63.4

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 19.2 MHz; therefore, the frequency range was investigated from 30 MHz to the 10th harmonic of the highest fundamental frequency, or 1000 MHz.

RESULTS

No non-compliance noted:

Page 13 of 53

7.1.1. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)

STAND ALONE:

	: 12U1458 E960 (Ba derson	80 attery Po	wered)									
requency (MHz)	PK (dBu/V)	QP (dBu/V)	AV (dBuV)	AF dB/m	Distance Correction (dB)	PK Corrected Reading (dBuV/m)	AV Corrected Reading (dBuV/m)	QP Limit (dBuV/m)	AV Limit (dBuV/m)	PK Margin (dB)	AV Margin (dB)	Notes
		<u>, , , , , , , , , , , , , , , , , , , </u>	(===)			, (, (, (,, (, , , , , , , , ,		(((+=)	(==)	
oop Ante 13.56	enna Face 25.3	e On: 22.2	N/A	10.56	-19.08	13.67	N/A	84.00	N/A	-70.3	N/A	Fundamental @ 10m Dist
13.41	15	10.3	N/A	10.56	-19.08	1.76	N/A	50.48	N/A	-48.7	N/A	13.41-13.553MHz Sprious @ 10m
13.553	18.1	12.9	N/A	10.54	-19.08	4.37	N/A	50.48	N/A	-46.1	N/A	13.41-13.553MHz Sprious @ 10m
13.567	18.5	13.6	N/A	10.56	-19.08	5.07	N/A	50.48	N/A	-	N/A	13.567-13.710MHz Spurious @ 10m
13.71	16.6	11.8	N/A	10.57	-19.08	3.29	N/A	40.51	N/A		N/A	13.567-13.710MHz Spurious @ 10m
13.11	14.4	10	N/A	10.51	-19.08	1.43	N/A	40.51	N/A		N/A	13.110-13.410MHz Spurious @ 10m
13.41	15	10.3	N/A	10.54	-19.08	1.76	N/A	40.51	N/A	-38.8	N/A	13.110-13.410MHz Spurious @ 10m
13.71	16.6	11.8	N/A	10.57	-19.08	3.29	N/A	40.51	N/A	-37.2	N/A	13.710-14.010MHz Spurious @ 10m
14.01	17.3	11.4	N/A	10.6	-19.08	2.92	N/A	29.54	N/A	-26.6	N/A	13.710-14.010MHz Spurious @ 10m
27.12	17.2	12.4	N/A	9.046	-19.08	2.36	N/A	29.54	N/A	-27.2	N/A	14.010-30MHz Spurious @ 10m
non Ante	enna Face	o Off∙			l	I	l	1	1	I		1
13.56	24.2	21.8	N/A	10.56	-19.08	13.27	N/A	84.00	N/A	-70.7	N/A	Fundamental @ 10m Dist
13.41	14.8	10	N/A	10.54	-19.08	1.46	N/A	50.48	N/A	-49.0	N/A	13.41-13.553MHz Sprious @ 10m
13.553	17.1	12.6	N/A	10.56	-19.08	4.07	N/A	50.48	N/A	-46.4	N/A	13.41-13.553MHz Sprious @ 10m
13.567	17.5	13.6	N/A	10.56	-19.08	5.07	N/A	50.48	N/A	-45.4	N/A	13.567-13.710MHz Spurious @ 10m
13.71	15.5	9.8	N/A	10.57	-19.08	1.29	N/A	40.51	N/A	-39.2	N/A	13.567-13.710MHz Spurious @ 10m
13.11	15.7	9.8	N/A	10.51	-19.08	1.23	N/A	40.51	N/A	-39.3	N/A	13.110-13.410MHz Spurious @ 10m
13.41	14.8	10	N/A	10.54	-19.08	1.46	N/A	40.51	N/A	-39.1	N/A	13.110-13.410MHz Spurious @ 10m
13.71	15.5	9.8	N/A	10.57	-19.08	1.29	N/A	40.51	N/A	-39.2	N/A	13.710-14.010MHz Spurious @ 10m
14.01	14.8	10	N/A	10.6	-19.08	1.52	N/A	29.54	N/A	-28.0	N/A	13.710-14.010MHz Spurious @ 10m
27.12	16.4	10.5	N/A	9.046	-19.08	0.46	N/A	29.54	N/A	-29.1	N/A	14.010-30MHz Spurious @ 10m
<u>ote:</u> Thi a .K. = Pe .P. = Qi	e emissio nd above eak uasi Peak tenna fac	10000Mh Reading	re base z. Radi	d on me	asurements e	employing a CISF n these three bar						90 kHz, 110–490 kHz etector.

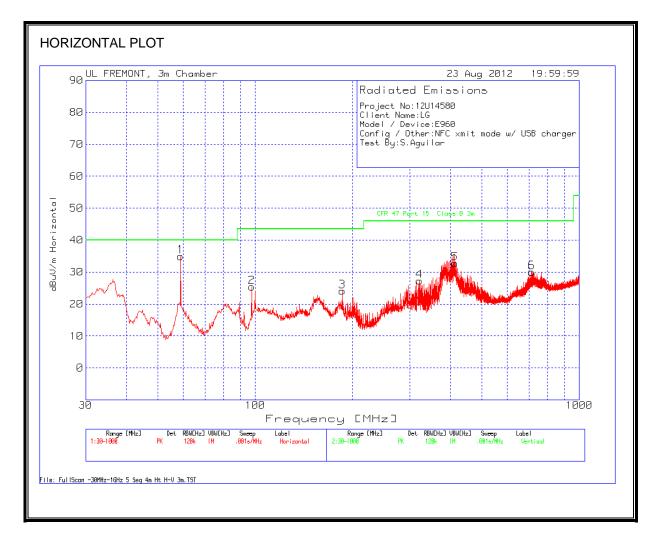
Page 14 of 53

REPORT NO: 12U14580-4	
EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN	
FCC ID: ZNFE960	

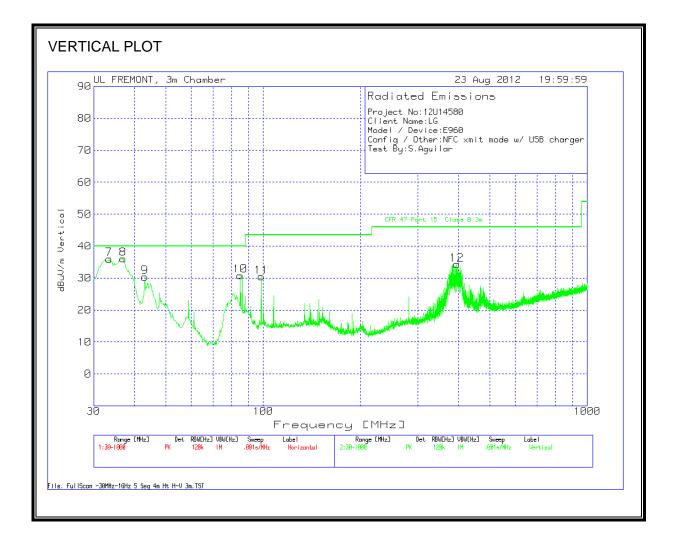
USB CHARGER:

•	12U1458 E960 (US lerson		ger)									
equency	PK	QP	AV	AF	Distance	PK Corrected	AV Corrected	QP Limit	AV Limit	PK Margin	AV Margin	Notes
(MHz)	(dBu/V)	(dBu/V)	(dBuV)	dB/m	Correction (dB)	Reading (dBuV/m)	Reading (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	
	nna Face											
13.56	28.8	26.6	N/A	10.56	-19.08	18.07	N/A	84.00	N/A			Fundamental @ 10m Dist
13.41 13.553	17.6 28.3	12 26.4	N/A N/A	10.54	-19.08 -19.08	3.46 17.87	N/A N/A	50.48 50.48	N/A N/A		N/A N/A	13.41-13.553MHz Sprious @ 10m 13.41-13.553MHz Sprious @ 10m
3.553	28.3	26.4	N/A	10.56 10.56	-19.08	17.87	N/A	50.48	N/A N/A		N/A N/A	13.41-13.55310Hz Sphous @ 10m 13.567-13.710MHz Spurious @ 10r
13.71	16.8	12.1	N/A	10.50	-19.08	3.59	N/A	40.51	N/A		N/A	13.567-13.710MHz Spurious @ 10
13.11	16.9	11.7	N/A	10.57	-19.08	3.13	N/A	40.51	N/A	-30.9	N/A N/A	13.110-13.410MHz Spurious @ 10
13.41	17.6	12	N/A	10.54	-19.08	3.46	N/A	40.51	N/A		N/A	13.110-13.410MHz Spurious @ 10
13.71	16.8	12.1	N/A	10.57	-19.08	3.59	N/A	40.51	N/A	-	N/A	13.710-14.010MHz Spurious @ 10
4.01	18.1	12.3	N/A	10.6	-19.08	3.82	N/A	29.54	N/A	-25.7	N/A	13.710-14.010MHz Spurious @ 10
27.12	15.1	10.2	N/A	9.046	-19.08	0.16	N/A	29.54	N/A	-29.4	N/A	14.010-30MHz Spurious @ 10m
13.41 3.553 3.567 13.71 13.11 13.41 13.71 13.71 14.01	16.5 21.4 22.4 14.3 14.1 16.5 20 15.7	10.2 18.3 18.3 10.4 10.1 10.2 12.2 11.9	NVA NVA NVA NVA NVA NVA NVA	10.54 10.56 10.57 10.57 10.51 10.54 10.57 10.6	-19.08 -19.08 -19.08 -19.08 -19.08 -19.08 -19.08 -19.08	1.66 9.77 9.77 1.89 1.53 1.66 3.69 3.42	N/A N/A N/A N/A N/A N/A	50.48 50.48 50.48 40.51 40.51 40.51 40.51 29.54	N/A N/A N/A N/A N/A N/A N/A	-40.7 -40.7 -38.6 -39.0 -38.9 -36.8	N/A N/A N/A N/A N/A N/A N/A N/A	13.41-13.553MHz Sprious @ 10m 13.41-13.553MHz Sprious @ 10m 13.567-13.710MHz Spurious @ 10 13.567-13.710MHz Spurious @ 10 13.110-13.410MHz Spurious @ 10 13.110-13.410MHz Spurious @ 10 13.710-14.010MHz Spurious @ 10 13.710-14.010MHz Spurious @ 10
27.12	17.1	11.2	N/A	9.046	-19.08	1.16	N/A	29.54	N/A		N/A	14.010-30MHz Spurious @ 10m
<u>ote:</u> The ar K. = Pea .P. = Qu	nd above	n limits a 10000Mł Reading	are base nz. Rad	d on me	asurements e	employing a CISF n these three bar						90 kHz, 110–490 kHz etector.

REPORT NO: 12U14580-4	
EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN	
FCC ID: ZNFE960	


INDUCTIVE CHARGER:

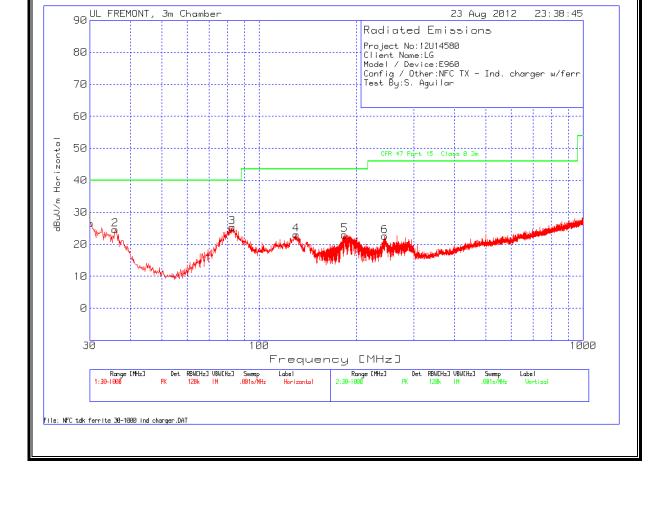
npany: LG ject #: 12U145 del #: E960 (I ng Anderson e: 08/21/12											
del #: E960 (I 1g Anderson											
ıg Anderson		Charger	•								
0		changer,	,								
C. UO/41/14											
DI	0.0	-		Distance	DK Osmuslad	AV (0	ODUN	A3(1)	DK Maaria	A) / M	Notes
uency PK IHz) (dBu/V)	QP (dBu/V)	AV (dBuV)	AF dB/m	Distance Correction (dB)	PK Corrected Reading (dBuV/m)	AV Corrected Reading (dBuV/m)			OK Margin (dB)	AV Margin (dB)	Notes
	((/				, , , , , , , , , , , , , , , , , , , ,	((+-+)	(==)	(+=)	
p Antenna Fac			10 50	40.00	10.07						
3.56 22.6	19.4	N/A	10.56		10.87	N/A	84.00	N/A	-	N/A	Fundamental @ 10m Dist
3.41 14.7 .553 23.4	10.6	N/A N/A	10.54		2.06 10.87	N/A	50.48	N/A N/A	-48.4 -39.6	N/A	13.41-13.553MHz Sprious @ 10m
.553 23.4 .567 23.6	19.4 19.5	N/A N/A	10.56		10.87	N/A N/A	50.48 50.48	N/A N/A	-39.6	N/A N/A	13.41-13.553MHz Sprious @ 10m 13.567-13.710MHz Spurious @ 10r
.567 <u>23.6</u> 3.71 15.2	19.5	N/A	10.56		2.19	N/A	40.51	N/A N/A	-39.5	N/A N/A	13.567-13.710MHz Spurious @ 10r
B.11 13.2	10.7	N/A	10.57	-19.08	1.53	N/A	40.51	N/A		N/A	13.110-13.410MHz Spurious @ 10r
3.41 14.7	10.1	N/A	10.54	-19.08	2.06	N/A	40.51	N/A	-38.5	N/A	13.110-13.410MHz Spurious @ 10
3.71 15.2	10.7	N/A	10.57		2.19	N/A	40.51	N/A	-38.3	N/A	13.710-14.010MHz Spurious @ 10
10.2	12.2	N/A	10.6	-19.08	3.72	N/A	29.54	N/A	-25.8	N/A	13.710-14.010MHz Spurious @ 10r
7.12 15.6	10.4	N/A	9.046		0.36	N/A	29.54	N/A	-29.2	N/A	14.010-30MHz Spurious @ 10m
3.56 22.1 3.41 15.1 .553 16.3	19.6 9.4 11.5	N/A N/A N/A	10.56 10.54 10.56		11.07 0.86 2.97	N/A N/A N/A	84.00 50.48 50.48	N/A N/A N/A	-72.9 -49.6 -47.5	N/A N/A N/A	Fundamental @ 10m Dist 13.41-13.553MHz Sprious @ 10m 13.41-13.553MHz Sprious @ 10m
.567 18.6	13.1	N/A	10.56	-19.08	4.57	N/A	50.48	N/A	-45.9	N/A	13.567-13.710MHz Spurious @ 10r
3.71 15.8	10.3	N/A	10.57			N/A	40.51	N/A		N/A	13.567-13.710MHz Spurious @ 10r
		N/A	10.51				40.51		-39.0		13.110-13.410MHz Spurious @ 10r
3.41 15.1	9.4	N/A				N/A					13.110-13.410MHz Spurious @ 10r
											13.710-14.010MHz Spurious @ 10r
-								-			13.710-14.010MHz Spurious @ 10r
.12 20.5	10.9	N/A	9.046	-19.08	0.86	N/A	29.54	N/A	-28.7	N/A	14.010-30MHz Spurious @ 10m
3.41 15.1 .553 16.3 .567 18.6 3.71 15.8 3.11 14.2	19.6 9.4 11.5 13.1 10.3 10.1 9.4 10.3 10.3 10.3 10.9	NVA NVA NVA NVA NVA NVA NVA NVA	10.54 10.56 10.57 10.51 10.54 10.57 10.6 9.046	-19.08 -19.08 -19.08 -19.08 -19.08 -19.08 -19.08 -19.08 -19.08 -19.08	0.86 2.97	N/A N/A N/A N/A N/A N/A N/A N/A	50.48 50.48 50.48 40.51 40.51 40.51 29.54 29.54	N/A N/A N/A N/A N/A N/A N/A N/A	-49.6 -47.5 -45.9 -38.7 -39.0 -39.7 -38.7 -27.7 -28.7	N/A N/A N/A N/A N/A N/A N/A N/A	13.41-13.553MHz Spriou: 13.41-13.553MHz Spriou: 13.567-13.710MHz Spuri 13.567-13.710MHz Spuri 13.110-13.410MHz Spuri 13.110-13.410MHz Spuri 13.710-14.010MHz Spuri


Page 16 of 53

7.1.2. TX SPURIOUS EMISSION 30 TO 1000 MHz

USB CHARGER (WORST CASE):

Page 17 of 53

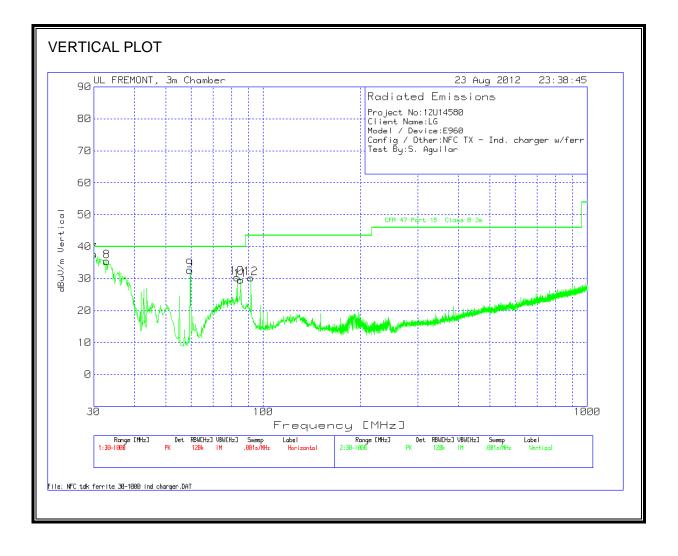


UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 18 of 53

Company N	ame:	LG							
Project:		12U14580							
Date:		8/23/2012							
Configuration	on:	EUT + USB	Adapter + I	leadset					
Mode:		NFC, Wors							
Tested by:		S.Aguilar							
Test	Meter		Pre Amp	Antenna		Class C PK			
Frequency	Reading	Detector	Factor	Factor	Corrected	limit	QP	Height	
[MHz]	[dB(µV)]		[dB]	[dB/m]	[dB(µV/m)]	[dB(µV/m)]	Margin [dB]	[cm]	Polarity
Range 1 30	0 - 1000MH	z							
58.8829	55.06	PK	-27.2	7.1	34.96	40	-5.04	400	Horz
97.6519	43.12	PK	-26.9	9.2	25.42	43.5	-18.08	400	Horz
185.6575	39.17	PK	-25.9	10.8	24.07	43.5	-19.43	201	Horz
321.9305	38.8	PK	-25.3	13.8	27.3	46	-18.7	101	Horz
413.4253	42.44	PK	-25.7	16	32.74	46	-13.26	101	Horz
714.4664	34.83	РК	-25.1	20.3	30.03	46	-15.97	101	Horz
Range 2 3	0 - 1000MI	lz							
33.4892	44.81	PK	-27.5	18.7	36.01	40	-3.99	100	Vert
36.9784	47.51	PK	-27.4	16	36.11	40	-3.89	100	Vert
43.1815	46.36	PK	-27.4	11.4	30.36	40	-9.64	301	Vert
85.052	50.44	PK	-27	7.4	30.84	40	-9.16	301	Vert
98.8149	47.9	PK	-26.9	9.5	30.5	43.5	-13	100	Vert
396.1731	44.69	PK	-25.6	15.2	34.29	46	-11.71	100	Vert

Page 19 of 53



INDUCTIVE CHARGER:

HORIZONTAL PLOT

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 53

Page 21 of 53

ame:	LG							
	12U14580							
	8/23/2012							
on:	EUT + Ind.	Charge Pac	d + Headse	t				
	NFC TX Mc	de , Worst	Case					
	S.Aguilar							
Meter		Pre Amp		1	Class B PK	1 1		
Reading		Factor	Factor	Corrected	limit	QP	Height	
[dB(µV)]		[dB]	[dB/m]	[dB(µV/m)]	[dB(µV/m)]	Margin [dB]	[cm]	Polarity
			.		1	. ,		
32.96	PK	-27.5	21.1	26.56	40	-13.44	201	Horz
35.22								Horz
44.87	PK	-27	7.5	25.37	40	-14.63	400	Horz
35.86	PK	-26.5	13.7	23.06	43.5	-20.44	301	Horz
38.09	PK	-26		22.99	43.5	-20.51	201	Horz
36.3	PK	-25.4	11.7	22.6	46	-23.4	100	Horz
L								
	1	T	T	1	1			1
								Vert
								Vert
								Vert
						+ +		Vert
								Vert
								Vert
49.33	PK	-26.9	7.8	30.23	43.5	-13.27	101	Vert
	Meter Reading [dB(μV)] 0 - 1000MH 32.96 35.22 44.87 35.86 38.09 36.3	12U14580 8/23/2012 EUT + Ind. 0 NFC TX Mo S.Aguilar Meter Reading Detector [dB(µV)] D- 1000MHz 32.96 PK 35.22 PK 44.87 PK 35.86 PK 38.09 PK 36.3 PK 0 - 1000MHz	12U14580 8/23/2012 on: EUT + Ind. Charge Pace NFC TX Mode , Worst S.Aguilar Meter Pre Amp Reading Detector [dB[µV)] Factor 32.96 PK -1000MHz -27.5 35.22 PK 9K -27.4 44.87 PK 27 35.86 9K -26.5 38.09 PK -25.4 43.97 PK 43.97 PK 43.88 PK -27.5 43.88 PK -27.5 43.88 PK -27.5 43.88 PK -27.5 43.89 PK -27.5 43.89 PK	12U14580 8/23/2012 on: EUT + Ind. Charge Pad + Headser NFC TX Mode , Worst Case S.Aguilar Meter Pre Amp Antenna Reading Detector Factor Factor [dB]µV)] Detector Factor Factor 32.96 PK -27.5 21.1 35.22 PK -27.4 16.8 44.87 PK -27 7.5 35.86 PK -26.5 13.7 38.09 PK -26.5 10.9 36.3 PK -25.4 11.7 43.97 PK -27.5 21.2 42.85 QP -27.5 19.8 43.88 PK -27.5 19.1 52.77 PK -27.2 7.1 49.89 PK -27.2 7.1 49.89 PK -27.2 7.5	12U14580 8/23/2012 on: EUT + Ind. Charge Pad + Headset NFC TX Mode , Worst Case S.Aguilar Meter Pre Amp Antenna Reading Detector Factor Factor [dB] [dB/m] [dB(µV)] D-1000MHz -27.5 21.1 26.56 35.22 PK -27.4 16.8 24.62 44.87 PK -27 7.5 25.37 35.86 PK -26.5 13.7 23.06 38.09 PK -26.5 10.9 22.99 36.3 PK -27.5 21.2 37.67 43.97 PK -27.5 19.8 35.15 43.88 PK -27.5 19.1 35.48 52.77 PK -27.2 7.1 32.67 49.89 PK -27.2 7.1 32.67	12U14580 8/23/2012 besting EUT + Ind. Charge Pad + Headset NFC TX Mode , Worst Case S.Aguilar Meter Pre Amp Antenna Class B PK IdB(μV) Detector Factor Factor Corrected limit IdB(μV) Detector Factor IdB(m) IdB(μV/m) IdB(μV/m) 0 - 1000MHz -27.5 21.1 26.56 40 35.22 PK -27.4 16.8 24.62 40 35.86 PK -26.5 13.7 23.06 43.5 38.09 PK -26.5 13.7 23.06 43.5 36.3 PK -25.4 11.7 22.6 46 0 D D D D D 0 D 27.5 21.2 37.67 40 43.97 PK -27.5 19.8 35.15 40 43.88 PK -27.5 19.1 35.48 40 52.77 PK -27.2 7.1 32.67 40 <th< td=""><td>Meter Reading Pre Amp Detector Antenna Factor Class B PK Imit QP [dB(μV)] Pre Amp Antenna Factor Corrected [dB(μV/m]] Imit QP 32.96 PK -27.5 21.1 26.56 40 -13.44 35.22 PK -27.4 16.8 24.62 40 -15.38 44.87 PK -27 7.5 25.37 40 -14.63 35.86 PK -26.5 13.7 23.06 43.5 -20.44 38.09 PK -26.4 11.7 22.6 46 -23.4 0 10.9 22.99 43.5 -20.51 1.1 36.3 PK -26.5 13.7 23.06 43.5 -20.51 36.3 PK -26.5 13.7 23.06 43.5 -20.51 36.3 PK -25.4 11.7 22.6 46 -23.4 43.97 PK -27.5 21.2 37.67 40 -2.33 42.85 QP -27.5 19.8 35.15 40</td><td>Meter Reading (dB(μV)) Pre Amp Factor [dB] Antenna Factor [dB(μV)] Class B PK limit [dB(μV/m)] QP Margin [dB] Height [cm] 0-1000MHz -27.5 21.1 26.56 40 -13.44 201 35.22 PK -27.5 21.1 26.56 40 -15.38 400 35.22 PK -27.4 16.8 24.62 40 -15.38 400 35.26 PK -27.5 13.7 23.06 43.5 -20.44 301 35.86 PK -26.5 13.7 23.06 43.5 -20.51 201 36.3 PK -25.4 11.7 22.6 46 -23.4 100 36.3 PK -25.5 13.7 23.66 46 -23.4 100 36.3 PK -27.5 21.2 37.67 40 -2.33 101 43.87 PK -27.5 19.8 35.15 40 -4.85 101 43.88 PK -</td></th<>	Meter Reading Pre Amp Detector Antenna Factor Class B PK Imit QP [dB(μV)] Pre Amp Antenna Factor Corrected [dB(μV/m]] Imit QP 32.96 PK -27.5 21.1 26.56 40 -13.44 35.22 PK -27.4 16.8 24.62 40 -15.38 44.87 PK -27 7.5 25.37 40 -14.63 35.86 PK -26.5 13.7 23.06 43.5 -20.44 38.09 PK -26.4 11.7 22.6 46 -23.4 0 10.9 22.99 43.5 -20.51 1.1 36.3 PK -26.5 13.7 23.06 43.5 -20.51 36.3 PK -26.5 13.7 23.06 43.5 -20.51 36.3 PK -25.4 11.7 22.6 46 -23.4 43.97 PK -27.5 21.2 37.67 40 -2.33 42.85 QP -27.5 19.8 35.15 40	Meter Reading (dB(μV)) Pre Amp Factor [dB] Antenna Factor [dB(μV)] Class B PK limit [dB(μV/m)] QP Margin [dB] Height [cm] 0-1000MHz -27.5 21.1 26.56 40 -13.44 201 35.22 PK -27.5 21.1 26.56 40 -15.38 400 35.22 PK -27.4 16.8 24.62 40 -15.38 400 35.26 PK -27.5 13.7 23.06 43.5 -20.44 301 35.86 PK -26.5 13.7 23.06 43.5 -20.51 201 36.3 PK -25.4 11.7 22.6 46 -23.4 100 36.3 PK -25.5 13.7 23.66 46 -23.4 100 36.3 PK -27.5 21.2 37.67 40 -2.33 101 43.87 PK -27.5 19.8 35.15 40 -4.85 101 43.88 PK -

Page 22 of 53

8. AC MAINS LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

§15.207 IC RSS-GEN, Section 7.2.2

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

alc Average
ak Average
56 to 46
46
50

Notes:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

TEST PROCEDURE

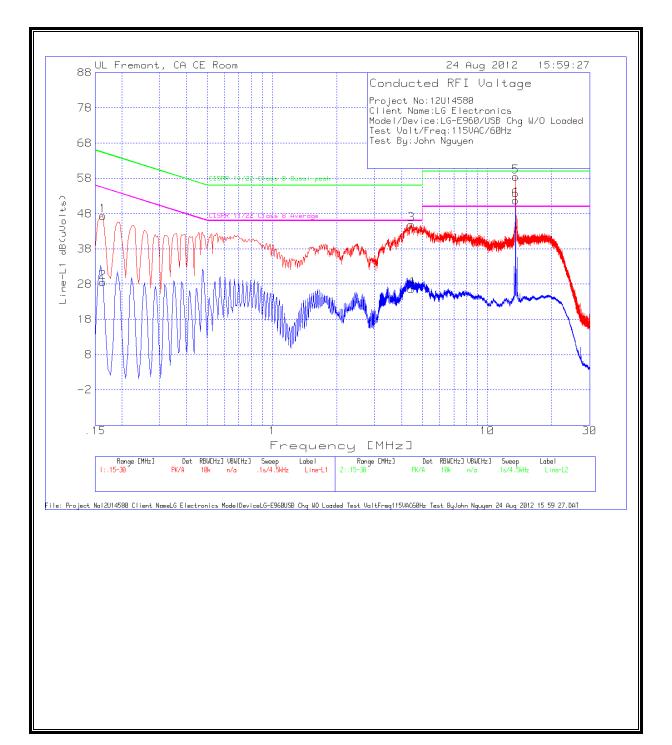
ANSI C63.4

<u>RESULTS</u>

No non-compliance noted.

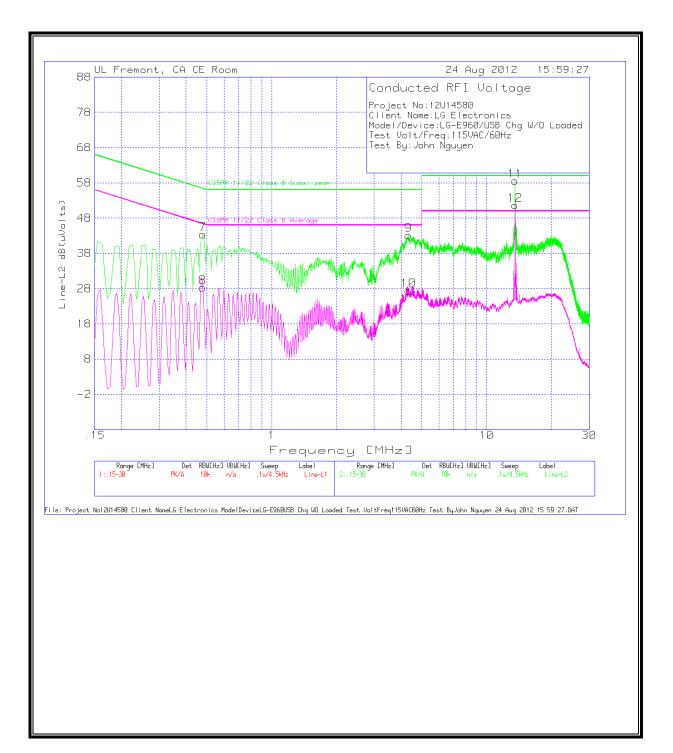
Page 23 of 53

REPORT NO: 12U14580-4 EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN FCC ID: ZNFE960


IC ID: 2703C-ZNFE960

8.1. USB CHARGER (w/o 50 ohm Load)

6 WORST EMISSIONS

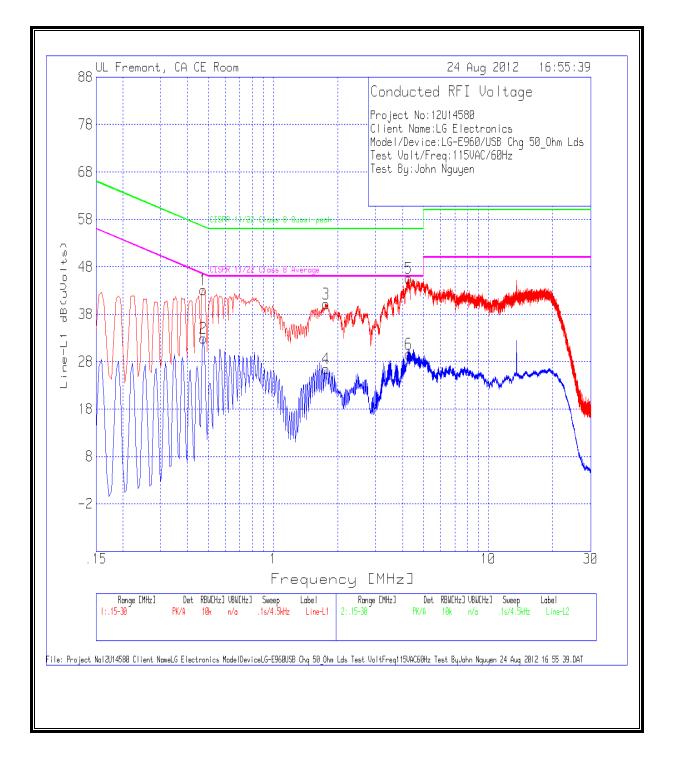

Project No:1	2U14580								
Client Name	:LG Electronics								
Model/Devi	ce:LG-E960/USB C	hg W/O Loa	aded						
Test Volt/Fre	eq:115VAC/60Hz								
Test By:John	Nguyen								
Line-L1 .15 -	30MHz								
Test	Meter Reading	Detector	T24 IL	LC Cables	dB(uVolts)	CISPR	Margin	CISPR	Margin
0.1635	47.34	РК	0.1	0	47.44	65.3	-17.86	-	-
0.1635	28.47	Av	0.1	0	28.57	-	-	55.3	-26.73
4.434	44.74	РК	0.1	0.1	44.94	56	-11.06	-	-
4.434	26.45	Av	0.1	0.1	26.65	-	-	46	-19.35
13.56	58.04	РК	0.2	0.2	58.44	60	-1.56	-	-
13.56	51.39	Av	0.2	0.2	51.79	-	-	50	1.79
Line-L2 .15 -	30MHz								
Test	Meter Reading	Detector	T24 IL	LC Cables	dB(uVolts)	CISPR	Margin	CISPR	Margin
0.4785	43.27	РК	0.1	0	43.37	56.4	-13.03	-	-
0.4785	28.16	Av	0.1	0	28.26	-	-	46.4	-18.14
4.3305	42.89	РК	0.1	0.1	43.09	56	-12.91	-	-
4.3305	27.24	Av	0.1	0.1	27.44	-	-	46	-18.56
13.56	58.14	РК	0.2	0.2	58.54	60	-1.46	-	-
13.56	51.3	Av	0.2	0.2	51.7	-	-	50	1.7
Project No:1	.2U14580								
Client Name	:LG Electronics								
Model/Devi	ce:LG-E960/USB C	hg W/O Loa	ded						
Test Volt/Fre	eq:115VAC/60Hz								
Test By:John	Nguyen								

LINE 1 RESULTS

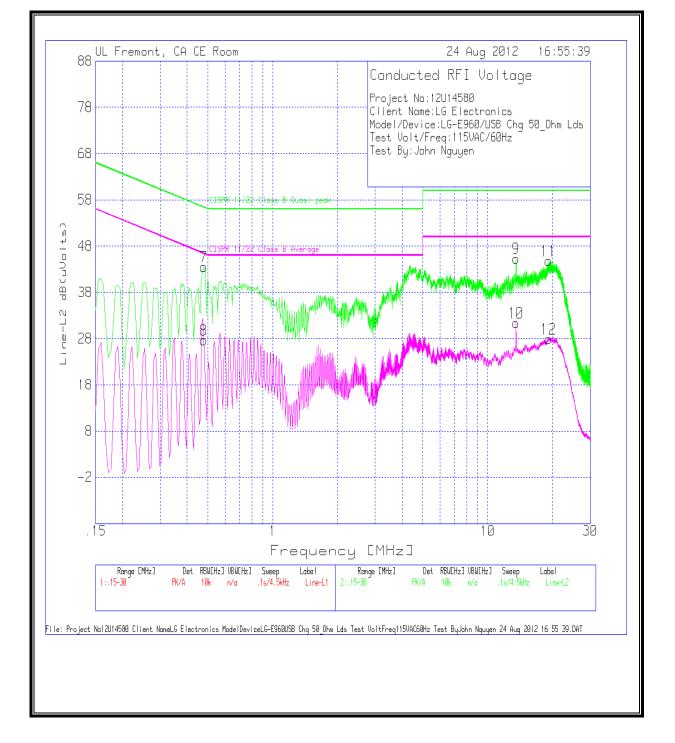
REPORT NO: 12U14580-4 EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN FCC ID: ZNFE960

LINE 2 RESULTS

DATE: AUGUST 24, 2012


USB CHARGER (with 50 ohm Load) 8.2.

<u>6 WORST EMISSIONS</u>


Project No):	12U14580							
Client Nar	ne:	LG Electro	nics						
Model/De	vice:	LG-E960/L	ISB Chg 50_	Ohm Lds					
Test Volt/	Freq:	115VAC/6	0Hz						
Test By:		John Nguy	/en						
Line-L1.15	5 - 30MHz								
						CISPR			
						11/22		CISPR	
Test			T24 IL	LC Cables		Class B		11/22	
Frequenc	Meter		L1.TXT	1&3.TXT	dB(uVolt	Quasi-		Class B	
у	Reading	Detector	(dB)	(dB)	s)	peak	Margin	Average	Margin
0.474	43.08	РК	0.1	0	43.18	56.4	-13.22	-	-
0.474	32.86	Av	0.1	0			-	46.4	-13.44
1.7655	40	РК	0.1	0.1	40.2	56	-15.8	-	-
1.7655	26.36	Av	0.1	0.1	26.56	-	-	46	-19.44
4.263	45.34	РК	0.1	0.1	45.54	56	-10.46	-	-
4.263	29.37	Av	0.1	0.1	29.57	-	-	46	-16.43
Line-L2 .15	5 - 30MHz								
Test Frequenc	Meter		T24 IL L2.TXT	LC Cables 2&3.TXT	dB(uVolt	CISPR 11/22 Class B Quasi-		CISPR 11/22 Class B	
у	Reading	Detector	(dB)	(dB)	s)	peak	Margin	Average	Margin
0.4785	43.41	РК	0.1	0	43.51	56.4	-12.89	-	-
0.4785	27.58	Av	0.1	0	27.68	-	-	46.4	-18.72
13.56	44.94	РК	0.2	0.2	45.34	60	-14.66	-	-
13.56	31.05	Av	0.2	0.2	31.45	-	-	50	-18.55
19.203	44.31	РК	0.3	0.2	44.81	60	-15.19	-	-
19.203	27.47	Av	0.3	0.2	27.97	-	-	50	-22.03
Project No):12U14580)							
,	ne:LG Elec								
Model/De	vice:LG-E9	60/USB Ch	g 50_Ohm	Lds					
	Freq:115V								
Test By:Jo	•								

Page 27 of 53

LINE 1 RESULTS

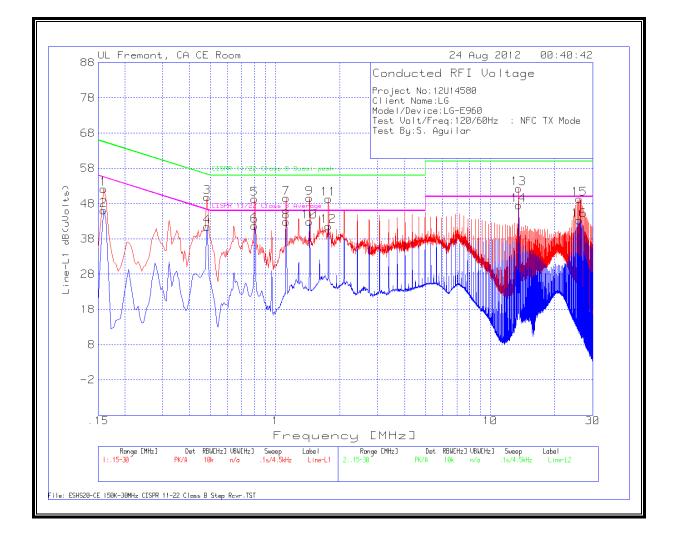
LINE 2 RESULTS

DATE: AUGUST 24, 2012

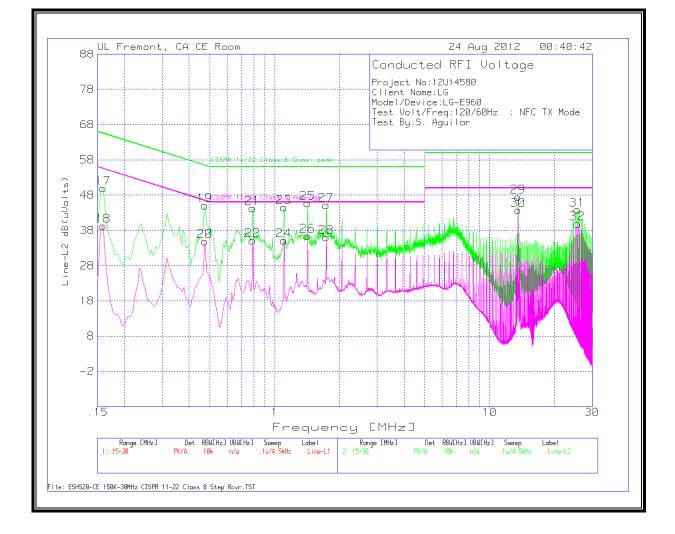
INDUCTIVE CHARGER (w/o 50 ohm Load) 8.3.

6 WORST EMISSIONS

Project No:12U1	4580								
Client Name:LG									
Model/Device:L	G-E960								
	120/60Hz : NFC T	X Mode							
Test By:S. Aguila	-								
Line-L1 .15 - 30N	1Hz								
Test Frequency	Meter Reading		T24 LISN	LC Cables		FCC Class B		FCC Class B	
(MHz)	dB(uVolts)	Detector	(dB)	(dB)	dB(uVolts)	QP Limit	Margin	Avg. Limit	Margin
0.159	52.07	PK	0.1	0	52.17	65.5	-13.33	-	-
0.159	45.98	Av	0.1	0	46.08	-	-	55.5	-9.42
0.483	49.71	PK	0.1	0	49.81	56.3	-6.49	-	-
0.483	41.33	Av	0.1	0	41.43	-	-	46.3	-4.87
0.8025	49.19	PK	0.1	0	49.29	56	-6.71	-	-
0.8025	41.67	Av	0.1	0	41.77	-	-	46	-4.23
1.1265	49.48	PK	0.1	0	49.58	56	-6.42	-	-
1.1265	42.72	Av	0.1	0	42.82	-	-	46	-3.18
1.446	49.41	PK	0.1	0.1	49.61	56	-6.39	-	-
1.446	42.71	Av	0.1	0.1	42.91	-	-	46	-3.09
1.77	49.15	PK	0.1	0.1	49.35	56	-6.65	-	-
1.77	41.33	Av	0.1	0.1	41.53	-	-	46	-4.47
13.56	51.94	PK	0.2	0.2	52.34	60	-7.66	-	-
13.56	47.09	Av	0.2	0.2	47.49	-	-	50	-2.51
25.9665	48.56	РК	0.5	0.3	49.36	60	-10.64	-	-
25.9665	42.49	Av	0.5	0.3	43.29	-	-	50	-6.71
Line-L2 .15 - 30N	/Hz								
	Meter Reading		T24 LISN	LC Cables		FCC Class B		FCC Class B	
(MHz)	dB(uVolts)	Detector	(dB)	(dB)	dB(uVolts)		Margin	Avg. Limit	Margin
0.159	49.9	PK	0.1	0	50	65.5	-15.5	Avg. Linit	wargin
0.159	39.21	Av	0.1	0	39.31	-	-15.5	55.5	-16.19
0.474	44.91	PK	0.1	0	45.01	56.4	-11.39	-	-10.15
0.474	34.8	Av	0.1	0	34.9	-	-11.55	46.4	-11.5
0.789	44.21	PK	0.1	0	44.31	56	-11.69	-	-11.5
0.789	35.03	Av	0.1	0	35.13	-	-11.05	46	-10.87
1.104	44.35	PK	0.1	0.1	44.55	56	-11.45	-	-10.07
1.104	34.91	AV	0.1	0.1	35.11	-	-11.45	- 46	-10.89
1.4235	45.48	PK	0.1	0.1	45.68	- 56	-10.32	- 40	-10.85
1.4235	36.19	Av	0.1	0.1	36.39	-	-10.32	46	-9.61
1.7385	45.05	PK	0.1	0.1	45.25	- 56	-10.75	- 40	-5.01
1.7385	35.88	Av	0.1	0.1	36.08	-	-10.75	46	-9.92
13.56	47.11	PK	0.1	0.1	47.51	- 60	-12.49	- 40	-9.92
13.56	47.11		0.2		47.51	-	-12.49		
		Av PK		0.2				50	-6.23
25.611	43.04		0.5	0.3	43.84 39.94	60	-16.16	-	-
25.611	39.14	Av	0.5	0.3	39.94	-	-	50	-10.06
PK - Peak detec	tor								
PK - Peak detec QP - Quasi-Peak									


UL CCS

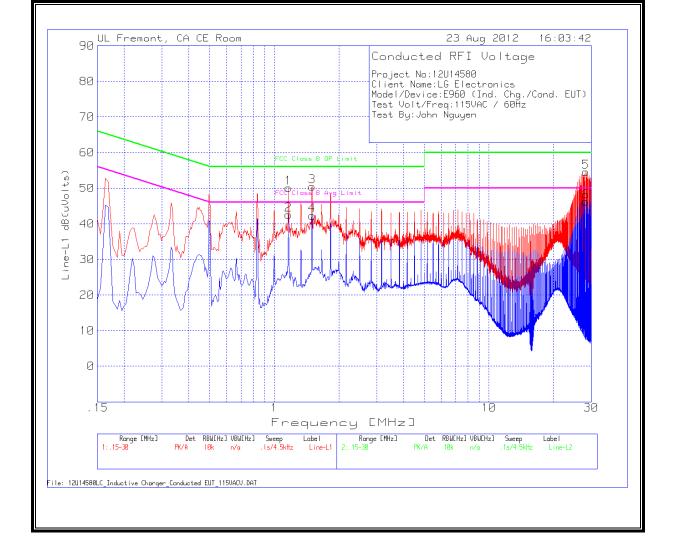
Page 30 of 53


REPORT NO: 12U14580-4 EUT: TRI-BAND GSM/WCDMA PHONE WITH BLUETOOTH AND WLAN FCC ID: ZNFE960

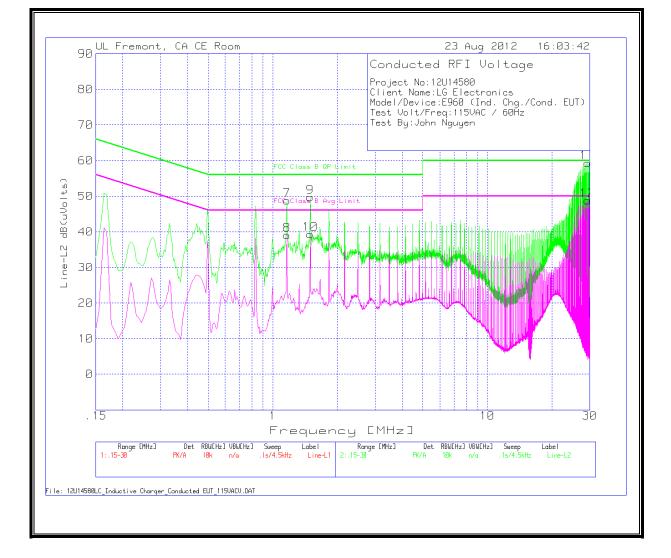
IC ID: 2703C-ZNFE960

LINE 1 RESULTS

LINE 2 RESULTS


8.4. INDUCTIVE CHARGER (with 50 ohm Load)

6 WORST EMISSIONS


Project No: 1	2U14580								
Client Name:	LG Electronics								
Model/Devic	e:E960 (Ind. Chg.	/Cond. EUT	Г)						
Test Volt/Fre	q:115VAC / 60Hz								
Test By:John Nguyen									
Line-L1 .15 - 3	80MHz								
Test	Meter Reading	Detector	T24 LISN	LC Cables	dB(uVolts)	FCC Class B	Margin	FCC Class B	Margin
Frequency (MHz)	dB(uVolts)		(dB)	(dB)		QP Limit	0	Avg Limit	0
1.1625	49.94	РК	0.1	0.1	50.14	56	-5.86	-	-
1.1625	42.29	Av	0.1	0.1	42.49	-	-	46	-3.51
1.5	50.29	РК	0.1	0.1	50.49	56	-5.51	-	-
1.5	42.15	Av	0.1	0.1	42.35	-	-	46	-3.65
28.248	53.8	РК	0.5	0.3	54.6	60	-5.4	-	-
28.248	45.48	Av	0.5	0.3	46.28	-	-	50	-3.72
Line-L2 .15 - 3	80MHz								
Test Frequency (MHz)	Meter Reading dB(uVolts)	Detector	T24 LISN (dB)	LC Cables (dB)	dB(uVolts)	FCC Class B QP Limit	Margin	FCC Class B Avg Limit	Margin
1.1625	48.73	РК	0.1	0	48.83	56	-7.17	-	-
1.1625	38.96	Av	0.1	0	39.06	-	-	46	-6.94
1.4955	49.53	РК	0.1	0.1	49.73	56	-6.27	-	-
1.4955	39.16	Av	0.1	0.1	39.36	-	-	46	-6.64
29.2245	58.57	РК	0.5	0.3	59.37	60	-0.63	-	-
29.2245	47.97	Av	0.5	0.3	48.77	-	-	50	-1.23
PK - Peak det	ector								
QP - Quasi-Pe	eak detector								
Av - Average	detector								

Page 33 of 53

LINE 1 RESULTS

LINE 2 RESULTS

DATE: AUGUST 24, 2012

9. FREQUENCY STABILITY

<u>LIMIT</u>

§15.225 (e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.3.1 and 2.3.2

RESULTS

No non-compliance noted.

Reference Frequency: EUT Channel 13.56 MHz @ 20ºC Limit: ± 100 ppm = 135.599 kHz						
Power Supply	Environment					
(Vac)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)		
115.00	50	13.5599175	0.014	± 100		
115.00	40	13.5599295	0.005	± 100		
115.00	30	13.5599338	0.002	± 100		
115.00	20	13.5599362	0.000	± 100		
115.00	10	13.5599766	-0.030	± 100		
115.00	0	13.5599881	-0.038	± 100		
115.00	-10	13.5599879	-0.038	± 100		
115.00	-20	13.5599646	-0.021	± 100		
97.15	20	13.5599357	0.000	± 100		
132.25	20	13.5599347	0.001	± 100		

Page 36 of 53

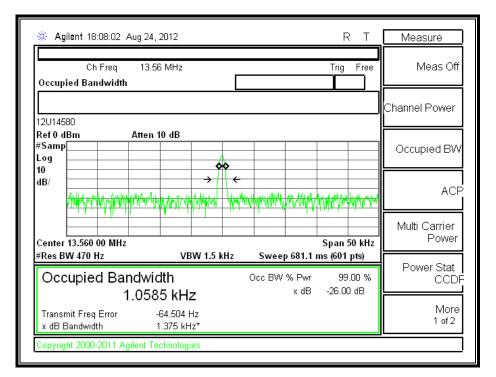
10. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


<u>RESULTS</u>

Frequency	99% Bandwidth		
(MHz)	(KHz)		
13.56	1.0585		

Page 37 of 53

Page 38 of 53					
ULCCS	F	ORM NO: CCSUP4701G			
47173 BENICIA STREET, FREMONT, CA 94538, USA	TEL: (510) 771-1000	FAX: (510) 661-0888			
This report shall not be reproduced except in full,	without the written a	pproval of UL CCS.			

FCC ID: ZNFE960

