

SGS Korea Co., Ltd. (Gunpo Laboratory)

Report Number: F690501/RF-RTL006169-2

TEST REPORT

of

FCC Part 15 Subpart C §15.247

FCC ID: ZNFE450F

Equipment Under Test	;	GSM & WCDMA Phone with Bluetooth and WLAN
Model Name	:	LG-E450f
Serial No.	÷	N/A
Applicant	:	LG Electronics MobileComm U.S.A., Inc.
Manufacturer	:	LG Electronics MobileComm U.S.A., Inc.
Date of Test(s)	:	2013.01.03 ~ 2013.02.05
Date of Issue	÷	2013.02.05

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Alvin Kim	Date:	2013.02.05	
Approved By:	mo	Date:	2013.02.05	
	Denny Ham		X	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

INDEX

Table of contents

1. General information	3
2. Transmitter radiated spurious emissions and conducted spurious emission	6
3. 6 dB bandwidth	42
4. Maximum peak output power	50
5. Power Spectral Density	54
6. Transmitter AC Power Line Conducted Emission	62
7. Antenna Requirement	67

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040
All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.
Telephone : +82 31 428 5700
FAX : +82 31 427 2371

1.2. Details of Applicant

LG Electronics MobileComm U.S.A., Inc.
1000 Sylvan Avenue Englewood Cliffs, NJ 07632
Park, Joon-Soo
+82 2 2033 1153

1.3. Description of EUT

Kind of Product	GSM & WCDMA Phone with Bluetooth and WLAN		
Model Name	LG-E450f		
Serial Number	N/A		
Power Supply	DC 3.8 V (Li-Ion Battery)		
Frequency Range	2 412 M₂ ~ 2 462 M₂ (11b/g/n_HT20), 2 422 M₂ ~ 2 452 M₂ (11n_HT40)		
Modulation Technique	DSSS, OFDM		
Number of Channels	11 channels (11b/g/n_HT20), 7 channels (11n_HT40)		
Antenna Type	PIFA type		
Antenna Gain	0.7 dB i		
H/W Version	Rev.1.0		
S/W Version	V05e		

1.4. Declaration by the manufacturer

- Duty Cycle \geq 98 percent.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Page: 4 of 67

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Signal Generator	R&S	SMR40	100272	Aug. 23, 2012	Annual	Aug. 23, 2013
Spectrum Analyzer	Agilent	N9030A	US51350132	Oct. 30, 2012	Annual	Oct. 30, 2013
Attenuator	AEROFLEX / INMET	26A – 10dB	1	Apr. 02, 2012	Annual	Apr. 02, 2013
Attenuator	AEROFLEX / INMET	18N – 20dB	2	Apr. 02, 2012	Annual	Apr. 02, 2013
High Pass Filter	Wainwright	WHK3.0/18G-10SS	344	Jul. 12, 2012	Annual	Jul. 12, 2013
High Pass Filter	Wainwright	WHK7.5//26.5G-6SS	N/A	Jul. 12, 2012	Annual	Jul. 12, 2013
Low Pass Filter	Mini-Circuits	NLP-1200+	V8979400903-1	Jul. 12, 2012	Annual	Jul. 12, 2013
Power Meter	Anritsu	ML2495A	1223004	Jul. 20, 2012	Annual	Jul. 20, 2013
Power Sensor	Anritsu	MF2411B	1207272	Jul. 20, 2012	Annual	Jul. 20, 2013
DC power Supply	Agilent	U8002A	MY49030063	Dec. 20, 2012	Annual	Dec. 20, 2013
Preamplifier	H.P.	8447F	2944A03909	Jul. 03, 2012	Annual	Jul. 03, 2013
Preamplifier	R&S	SCU18	10117	Jan. 14, 2013	Annual	Jan. 14, 2014
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	Jul. 12, 2012	Annual	Jul, 12, 2013
Test Receiver	R&S	ESU26	100109	Feb. 21, 2012	Annual	Feb. 21, 2013
Bilog Antenna	SCHWARZBECK	VULB9163	396	May 12, 2011	Biennial	May 12, 2013
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170431	May 15, 2012	Biennial	May 15, 2014
Horn Antenna	R&S	HF 906	100326	Nov. 23, 2011	Biennial	Nov. 23, 2013
Antenna Master	INN-CO	MM4000	N/A	N/A	N/A	N.C.R.
Turn Table	INN-CO	DS 1200 S	N/A	N/A	N/A	N.C.R.
Test Receiver	R&S	ESHS10	863365/018	Jun. 04, 2012	Annual	Jun. 04, 2013
Two-Line V-Network	R&S	ENV216	100190	Jan. 04, 2013	Annual	Jan. 04, 2014
Anechoic Chamber	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N/A	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N/A	N/A	N.C.R.

Support equipment

Description	Manufacturer	Model	Serial Number
N/A	-	-	-

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part15 Subpart C § 15.247					
Standard section	Result				
15.205 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied			
15.247(a)(2)	6 dB Bandwidth	Complied			
15.247(b)(3)	Maximum Peak Output Power	Complied			
15.247(e)	Power Spectral Density	Complied			
15.207	Transmitter AC Power Line Conducted Emission	Complied			

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003) and the guidance provided in KDB 558074 were used in the measurement of the DUT.

1.8. Sample calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation test

Field strength level $(dB\mu)/m$ = Measured level $(dB\mu)$ + Antenna factor (dB) + Cable loss (dB) - amplifier gain(dB)

1.9. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL006169	Initial
1	F690501/RF-RTL006169-1	Add equipment information and Modify applicant information
2	F690501/RF-RTL006169-2	Retest 6 dB Bandwidth

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 \mathbb{G} Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

2.1.2. Conducted Spurious Emission

EUT	Attenuator	Spectrum Analyzer
		•

2.2. Limit

According to \$15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section \$15.205(a), must also comply the radiated emission limits specified in section \$15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (№)	Distance (Meters)	Field Strength (dB⊭V/m)	Field Strength (<i>μ</i> ∛/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 10.0 of KDB 558074

2.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

NOTE;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

1. Unwanted Emissions into Non-Restricted Frequency Bands

- The Reference Level Measurement refer to section 9.1 & 10.1.1

Set analyzer center frequency, SPAN = 1.5 times the DTS channel bandwidth, the RBW = 3 kHz and VBW \geq 3 x RBW,

Detector = Peak, Sweep time = Auto couple, Trace = Max hold (i.e., set = 100 kHz and VBW ≥ 300 kHz)

- Unwanted Emissions Level Measurement refer to section 9.1 & 10.1.2

Set analyzer emission frequency, the RBW = 100 $\,\rm kHz\,$ and VBW $\geq\,$ 300 $\rm kHz$, Detector = Peak, Sweep time = Auto couple, Trace = Max hold

2. Unwanted Emissions into Restricted Frequency Bands

- Peak Power measurement procedure refer to section 8.1.1 & 10.2.3.2

Set RBW = 1 MHz, VBW \ge 3 x RBW, SPAN \ge RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold Note that if the peak measured value complies with the average limit, it is not necessary to perform a separate average measurement. If this option is exercised, it should be so noted in the test report.

-Average Power measurements procedure refer to section 8.2.1 & 10.2.3.3

Set the analyzer span to a minimum of 1.5 times the EBW, RBW = 1 Mz, VBW \geq 3 Mz,

Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$, Sweep time = auto peak,

Detector = power averaging (RMS) or sample detector when RMS not available,

Employ trace averaging in power averaging (RMS) mode over a minimum of 100 traces.

Note : If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 Mz intervals extending across the entire EBW.

3. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes.

2.3.2. Test Procedures for Conducted Spurious Emissions

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074, section 10.1.1 & 10.1.2, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 kHz. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 30 dB below the fundamental emission level measured in a 100 kHz bandwidth.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2.4. Test Results

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	47	% R.H.

2.4.1. Radiated Spurious Emission (Worst case configuration_11b mode, 1 Mbps, middle channel) The frequency spectrum from 30 Mb to 1 000 Mb was investigated. All reading values are peak values.

Radi	ated Emissio	ons	Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
31.2	39.8	Peak	н	10.7	-26.4	24.1	40.0	15.9
32.8	39.8	Peak	V	11.5	-26.4	24.9	40.0	15.1
58.4	40.6	Peak	V	13.0	-26.2	27.4	40.0	12.6
95.1	35.2	Peak	V	11.1	-26.2	20.1	43.5	23.4
733.2	36.0	Peak	V	19.9	-24.3	31.6	46.0	14.4
Above 800.0	Not detected	-	-	-	-	-	-	-

Remark:

1. All spurious emission at channels are almost the same below 1 GHz, so that the middle channel was chosen at representative in final test.

2. Actual = Reading + AF + AMP + CL

2.4.2. Spurious Radiated Emission

The frequency spectrum above 1 000 $M_{\rm B}$ was investigated. Emission levels are not reported much lower than the limits by over 30 dB.

DSSS : 802.11b(1 Mbps)

Low Channel (2 412 Mz)

Radi	ated Emissio	ons	Ant	Correction Factors		Total	FCC Li	imit Margin (dB)	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
*2 390.00	25.11	Peak	н	28.05	7.18	60.34	74.00	13.66	
*2 390.00	14.39	Average	Н	28.05	7.18	49.62	54.00	4.38	

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (₩₺)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 823.58	45.39	Peak	Н	32.30	-32.66	45.03	74.00	28.97
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 Mtz)

Radiated Emissions		ons	Ant	Correction Factors		Total	FCC L	imit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 873.84	46.76	Peak	Н	32.79	-32.60	46.95	74.00	27.05
Above 4 900.00	Not detected	-	-	-	-	-	-	-

High Channel (2 462 Mb)

Radi	ated Emissic	ons	Ant	Correctio	n Factors	Total	FCC Limit	
Frequency (M脸)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	23.56	Peak	н	28.31	7.37	59.24	74.00	14.76
*2 483.50	14.27	Average	н	28.31	7.37	49.95	54.00	4.05

Radi	Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 924.14	47.34	Peak	н	33.11	-32.44	48.01	74.00	25.99
Above 5 000.00	Not detected	-	-	-	-	-	-	-

OFDM : 802.11g(6 Mbps)

Low Channel (2 412 Mz)

Radi	ated Emissio	ons	Ant	Correction Factors		Total	FCC Li	imit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	24.81	Peak	н	28.05	7.18	60.04	74.00	13.96
*2 390.00	14.39	Average	Н	28.05	7.18	49.62	54.00	4.39

Radi	Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit
Frequency (M脸)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 825.64	43.05	Peak	н	32.33	-32.65	42.73	74.00	31.27
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 Mb)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 876.76	43.48	Peak	н	32.81	-32.55	43.74	74.00	30.27
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Page: 13 of 67

High Channel (2 462 Mz)

Radi	ated Emissic	ons	Ant	Correctio	n Factors	Total	FCC Limit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	24.48	Peak	Н	28.31	7.37	60.16	74.00	13.84
*2 483.50	14.50	Average	Н	28.31	7.37	50.18	54.00	3.82

Radiated Emissions		ons	Ant	Correction Factors		Total	FCC L	imit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 923.54	42.25	Peak	н	33.10	-32.42	42.93	74.00	31.07
Above 5 000.00	Not detected	-	-	-	-	-	-	-

OFDM : 802.11n_HT20(MCS0)

Low Channel (2 412 Mb)

Radi	ated Emissio	ons	Ant	Correction Factors		Total	FCC Li	mit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	24.51	Peak	Н	28.05	7.18	59.74	74.00	14.26
*2 390.00	14.44	Average	Н	28.05	7.18	49.67	54.00	4.33

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (M脸)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 820.00	42.93	Peak	н	32.25	-32.67	42.51	74.00	31.49
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 Mz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (₩₺)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 872.18	41.96	Peak	н	32.77	-32.57	42.16	74.00	31.84
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Page: 15 of 67

High Channel (2 462 Mz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (M脸)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	24.60	Peak	Н	28.31	7.37	60.28	74.00	13.72
*2 483.50	14.82	Average	н	28.31	7.37	50.50	54.00	3.50

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 928.28	42.84	Peak	н	33.14	-32.45	43.53	74.00	30.47
Above 5 000.00	Not detected	-	-	-	-	-	-	-

OFDM : 802.11n_HT40(MCS0)

Low Channel (2 422 Mb)

Radiated Emissions		Ant	Correction Factors		Total	FCC Li	mit	
Frequency (쌢)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	24.04	Peak	н	28.05	7.18	59.27	74.00	14.73
*2 390.00	14.07	Average	Н	28.05	7.18	49.30	54.00	4.70

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (M脸)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 840.70	42.09	Peak	н	32.53	-32.36	42.26	74.00	31.74
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 Mz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 873.04	41.68	Peak	н	32.78	-32.58	41.88	74.00	32.13
Above 4 900.00	Not detected	-	-	-	-	-	-	-

High Channel (2 452 Mtz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	25.87	Peak	Н	28.31	7.37	61.55	74.00	12.45
*2 483.50	14.39	Average	н	28.31	7.37	50.07	54.00	3.93

Radiated Emissions		Ant	Correction Factors		Total	FCC Li	mit	
Frequency (쌢)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 900.78	41.86	Peak	Н	32.98	-31.63	43.21	74.00	30.79
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Remarks :

1. "*" means the restricted band.

2. Measuring frequencies from 1 $\mathbb{G}_{\mathbb{R}}$ to the 10th harmonic of highest fundamental frequency.

3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.

4. Average test would be performed if the peak result were greater than the average limit.

5. Actual = Reading + AF + AMP + CL

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission DSSS : 802.11b(1 Mbps)

Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Agilent Spectrum Analyzer - Swept S	5A		15			
Marker 1 26.32289409	6470 GHz	SENSE:IN	T Avg	ALIGNAUTO Type: Log-Pwr	04:36:00 PM Jan 10, 2013 TRACE 1 2 3 4 5 6	Peak Search
	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 10 dB			DET P N N N N N	NewtDeel
10 dB/div Ref 0.00 dBm				Mkr	26.322 9 GHz -62.98 dBm	NextPea
-10.0 -20.0 -30.0						Next Pk Righ
40.0					-44.11 dBm	Next Pk Le
70.0 Weinter Billion (1997) 80.0 90.0			Usentika ako ako ako ar	and the still state of a stat		Marker Del
Start 10.000 GHz Res BW 1.0 MHz	#VBV	V 3.0 MHz	RUNCTION	Sweep 2	Stop 26.500 GHz 3.0 ms (30000 pts)	Mkr→C
1 N 1 f	× 26.322 9 GHz	-62.98 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 3 4 5 6						Mkr→RefL
, 8 9 10 11 12						Moi 1 of
ISG				STATUS		

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (MHz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 388.88	-73.54	10.67	-52.87
2 390.00	-75.40	10.68	-54.72
2 397.52	-58.19	10.70	-47.49
2 400.00	-69.90	10.70	-59.20
4 824.70	-59.19	11.39	-47.80
26 322.90	Noise floor	-	-

Middle Channel

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
4 874.90	-58.54	11.39	-47.15
25 837.80	Noise floor	-	-

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

	, , ,		
Frequency (Mbz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-66.05	10.75	-55.30
4 925.10	-59.91	11.44	-48.47
26 194.20	Noise floor	-	-

OFDM : 802.11g(6 Mbps)

Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Agilent Spectrum Analyzer - Swep	t SA					
X/ RF 50Ω Marker 1, 25, 9724200		SENSE:IN	Ανα		05:06:11 PM Jan 10, 2013	Peak Search
Marker 1 25.8724290	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 10 dB	Arg.	Type. Log-t wi		
10 dB/div Ref 0.00 dB	m			Mkr	25.872 4 GHz -63.28 dBm	Next Peak
-10.0 -20.0 -30.0						Next Pk Righ
-40.0				and the state of t	-50.37 dBm 1 1	Next Pk Lef
-70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						Marker Delta
Start 10.000 GHz #Res BW 1.0 MHz	#VB	N 3.0 MHz	TUNCTION	Sweep 2	Stop 26.500 GHz 3.0 ms (30000 pts)	Mkr→Cf
1 N 1 f	25.872 4 GHz	-63.28 dBm	FUNCTION	FONCTION WIDTH	FUNCTION VALUE	
3 4 5 6 7						Mkr→RefLv
8 9 10 11 12						Mon 1 of:
ISG				STATUS	,	

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mbz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 390.00	-67.76	10.68	-57.08
2 400.00	-59.89	10.70	-49.19
4 821.40	-65.63	11.21	-54.42
25 872.40	Noise floor	-	-

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Agilent Spectrum Analyzer - Swept S/						
RF 50 Ω DC Marker 1 26 462598753	292 GHz	SENSE:IN	Avg	ALIGNAUTO Type: Log-Pwr	04:46:55 PM Jan 10, 2013 TRACE 1 2 3 4 5 6	Peak Search
	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 10 dB			TYPE MWWWWW DET PNNNNN	
10 dB/div Ref 0.00 dBm				Mkr	26.462 6 GHz -62.95 dBm	NextPeak
-10.0 -20.0 -30.0						Next Pk Righ
-40.0					-49.58 dBm 1 1	Next Pk Lef
-70.0 grant Martin Martin Lindowski protosovan protosov (M -80.0	anti Arten Alfred I. en dagan dari Kimatiki Anti ying Baranan Kimatiki Anti ying Baranan					Marker Delt
Start 10.000 GHz #Res BW 1.0 MHz	#VBV	V 3.0 MHz		Sweep 2	Stop 26.500 GHz 3.0 ms (30000 pts)	Mkr→Ci
MKR MODE TRC SCL	< 26.462 6 GHz	ץ -62.95 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 3 4 5 6 7						Mkr→RefLv
8 9 10 11 12						Mor 1 of
MSG				STATUS		

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
4 870.30	-64.57	11.38	-53.19
26 462.60	Noise floor	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

	· · · · · · ·		
Frequency (MBz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-67.27	10.75	-56.52
4 923.40	-65.74	11.40	-54.34
25 673.30	Noise floor	-	-

OFDM : 802.11n_HT20(MCS0)

Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Agilent Spectrum Analyzer - Swept SA	di series		10. <i>1</i> 0			
RF 50Ω DC		SENSE:INT	Ava	ALIGNAUTO	05:09:50 PM Jan 10, 2013	Peak Search
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 10 dB		,pe: _ e g :		
10 dB/div Ref 0.00 dBm				Mkr1	26.116 1 GHz -63.21 dBm	NextPeak
-10.0 -20.0 -30.0						Next Pk Righ
-40.0						Next Pk Lef
-70.0 all delucits and acceleration of a second sec	s de referencia de la constanta de servicio de la constanta de la constanta de la constanta de la constanta de Constanta de la constanta de la Constanta de la constanta de la					Marker Delt
Start 10.000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz		Sweep 28	Stop 26.500 GHz 3.0 ms (30000 pts)	Mkr→Ci
MKH MODE THE SEL X	5.116 1 GHz	-63.21 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 3 3 4 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						Mkr→RefLv
' 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						Mor 1 of
MSG				STATUS		

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

	, - , ,		
Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 390.00	-72.17	10.68	-61.49
2 400.00	-64.68	10.70	-53.98
4 823.10	-65.73	11.23	-54.50
26.116.10	Noise floor	-	-

Middle Channel

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
4 878.20	-64.00	11.40	-52.60
25.958.20	Noise floor	-	-

High Channel

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

	, - , ,		
Frequency (MBz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-69.10	10.75	-58.35
4 933.10	-65.26	11.50	-53.76
26 440.60	Noise floor	-	-

OFDM : 802.11n_HT40(MCS0)

Low Channel

Agilent Spectrum Analyzer - Sw	rept SA		an an an		
(X) RF 50Ω Marker 1 26 474140		SENSE:INT	ALIGN	NAUTO 05:30:30 PM Jan 10, 201	Peak Search
Marker 1 20.474148	PNO: Fast C	Trig: Free Run	nig type. Log		
	IFGain:Low	Atten: 10 dB		DET	Nevt Peal
				Mkr1 26.474 1 GHz	HEAT CU
10 dB/div Ref 0.00 d	Bm			-63.45 dBm	
-10.0					
20.0					Next Pk Righ
30.0					
40.0					
-40.0					Next Dick of
-50.0				-53.05 c^	Next PK Le
-6U.U			tote the constant of the	والمتحد المتحدية والمرو بالتربية التكوريون الروار ومقاده وا	
-70.0 -70.0 - The second secon	and the second s	and the second of the second se		and the second	
-80.0					Marker Delt
-90.0					
Start 10 000 CHz				Stop 26 500 CH	17
#Res BW 1.0 MHz	#VB	W 3.0 MHz	Swe	ep 28.0 ms (30000 pts	
	×	× I			Mkr→C
1 N 1 f	26.474 1 GHz	-63.45 dBm		TONCTION VALUE	<u>.</u>
2					-
4					Mkr→RefL
5					
7					
8					Mor
10					1 of
11					101
80				STATUS	
				STATUS	

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mbz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 390.00	-67.43	10.68	-56.75
2 400.00	-62.08	10.70	-51.38
4 838.00	-65.23	11.25	-53.98
26 474.10	Noise floor	-	-

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (MR) Reading values (dBm) Sourious offset (dB) Result (dBm)	
3 828.40 Noise floor	
25 843.30 Noise floor	

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

	, , ,		
Frequency (Mbz)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-65.09	10.75	-54.34
3 778.50	Noise floor	-	-
25 656.80	Noise floor	-	-