

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 05/05/13 - 05/20/13 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1305060801 - R2.ZNF

FCC ID:

ZNFE410G

APPLICANT:

LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Application Type: FCC Rule Part(s): Model(s): Portable Handset Certification CFR §2.1093 LG-E410g, LGE410g, E410g, LG-E410B, LGE410B, E410B, LG-E411g, LGE411g, E411g

Equipment	Band & Mode	Tx Frequency	Measured Conducted	SAR		
Class			Power [dBm]	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)
PCE	GSM/GPRS/EDGE Rx Only 850	824.20 - 848.80 MHz	33.51	0.80	1.20	1.20
PCE	UMTS 850	826.40 - 846.60 MHz	22.88	0.51	0.99	0.99
PCE	GSM/GPRS/EDGE Rx Only 1900	1850.20 - 1909.80 MHz	29.79	0.74	0.73	0.73
PCE	UMTS 1900	1852.4 - 1907.6 MHz	22.29	0.77	0.72	0.72
DTS	2.4 GHz WLAN	2412 - 2462 MHz	15.68	0.54	0.25	0.25
DSS Bluetooth 2402 - 2480 MHz 8.91				N/A		
Simultaneous	Simultaneous SAR per KDB 690783 D01v01r02:				1.45	1.45

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

Note: This revised Test Report (S/N: 0Y1305060801 – R2.ZNF) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

			-
···· V SNOTHERING LABORATORY, INC.	SAR EVALUATION REPORT	🕒 LG	Quality Manager
Test Dates:	DUT Type:		Dage 1 of 26
05/05/13 - 05/20/13	Portable Handset		Page 1 of 36
	Test Dates:	Test Dates: DUT Type: 05/05/13 – 05/20/13 Portable Handset	Test Dates: DUT Type: 05/05/13 - 05/20/13 Portable Handset

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	. 3
2	INTROD	JCTION	. 8
3	DOSIME	TRIC ASSESSMENT	. 9
4	DEFINIT	ON OF REFERENCE POINTS	10
5	TEST CO	ONFIGURATION POSITIONS FOR HANDSETS	11
6	RF EXPO	DSURE LIMITS	14
7	FCC ME	ASUREMENT PROCEDURES	15
8	RF CON	DUCTED POWERS	18
9	SYSTEM	VERIFICATION	21
10	SAR DAT	TA SUMMARY	23
11	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	27
12	SAR ME	ASUREMENT VARIABILITY	31
13	EQUIPM	ENT LIST	32
14	MEASUF	EMENT UNCERTAINTIES	33
15	CONCLU	ISION	34
16	REFERE	NCES	35
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 2 of 36	
© 2013 PCTEST Engineering Labor	atory, Inc.			REV 12.4 M	

1 DEVICE UNDER TEST

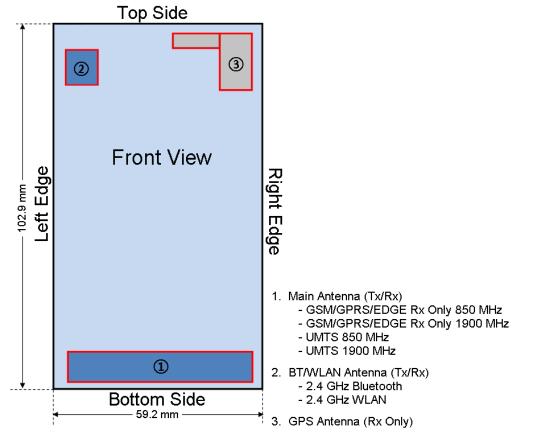
1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE Rx Only 850	Voice/Data	824.20 - 848.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
GSM/GPRS/EDGE Rx Only 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 3 of 36
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 3 01 30
© 2013 PCTEST Engineering Laboratory, Inc.				

Nominal and Maximum Output Power Specifications 1.2

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.


Mode / Band	Voice (dBm)	Burst Average GMSK (dBm)				
Mode / Ballu	1 TX	1 TX	2 TX	3 TX	4 TX	
	Slot	Slot	Slots	Slots	Slots	
GSM/GPRS 850	Maximum	33.7	33.7	30.7	29.2	27.7
G31VI/GFR3 830	Nominal	33.2	33.2	30.2	28.7	27.2
GSM/GPRS 1900	Maximum	30.2	30.2	27.7	26.2	24.7
G3101/ GPRS 1900	Nominal	29.7	29.7	27.2	25.7	24.2

	Modulated Average (dBm)			
Mode / Band	3GPP	3GPP	3GPP	
	RMC	HSDPA	HSUPA	
UMTS Band 5 (850 MHz)	Maximum	23.2	23.2	23.2
010113 Barld 5 (850 10112)	Nominal	22.7	22.7	22.7
UMTS Band 2 (1900 MHz)	Maximum	22.7	22.7	22.7
	Nominal	22.2	22.2	22.2

Mode / Band	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	16.0
IEEE 802.110 (2.4 GHZ)	Nominal	15.5
IEEE 802.11g (2.4 GHz)	Maximum	13.5
TEEE 802.11g (2.4 GHZ)	Nominal	13.0
IEEE 802.11n (2.4 GHz)	Maximum	13.5
IEEE 802.1111 (2.4 GHZ)	Nominal	13.0
Bluetooth	Maximum	9.0
BidetOOtii	Nominal	8.5

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 4 of 36	
© 2013 PCTEST Engineering Labor	atory, Inc.			REV 12.4 M	

1.3 DUT Antenna Locations

Note: Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing. Figure 1-1

DUT Antenna Locations

Table 1-1
Mobile Hotspot Sides for SAR Testing

Mobile Hotspot Sides for SAR Testing							
Mode	Back	Front	Тор	Bottom	Right	Left	
GPRS 850	Yes	Yes	No	Yes	Yes	Yes	
UMTS 850	Yes	Yes	No	Yes	Yes	Yes	
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes	
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes	
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes	

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 5 of 36
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset	ndset	

1.4 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

	Simultaneous Transmission Scenarios							
		Head	Body-Worn Accessory	Hotspot				
No. S	Simultaneous Transmission Configurations	IEEE 1528, Supp C	Supp C	FCC KDB 941225 D06 edges/sides	Note			
1	GSM850/1900 Voice + 2.4 GHz WIFI	Yes	Yes	No				
2	GSM850/1900 Voice + 2.4 GHz Bluetooth	No	Yes	No				
3	UMTS850/1900 Voice + 2.4 GHz WIFI	Yes	Yes	No				
4	UMTS850/1900 Voice + 2.4 GHz Bluetooth	No	Yes	No				
5	GPRS850/1900 Data + 2.4 GHz WIFI	Yes	Yes	Yes	GPRS + WIFI Hotspot			
6	UMTS850/1900 Data + 2.4 GHz WIFI	Yes	Yes	Yes	UMTS + WIFI Hotspot			
7	GSM850/1900 Voice + GPRS850/1900 Data	No	No	No				
Note								

 Table 1-2

 Simultaneous Transmission Scenarios

Notes:

- When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 2. Bluetooth and 2.4 GHz WIFI share the same antenna path and cannot transmit simultaneously.
- 3. Per the manufacturer, WIFI Direct Group Owner capabilities are available in the 2.4 GHz Band.

1.5 SAR Test Exclusions Applied

(A) WIFI/BT

Per FCC KDB 447498 D01 v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(8 / 10)^* \sqrt{2.441}] = 1.2 < 3.0$.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 6 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 6 of 36

1.6 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)

1.8 Device Serial Numbers

Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE Rx Only 850	SAR#1	SAR#1	SAR#1
UMTS 850	SAR#1	SAR#1	SAR#1
GSM/GPRS/EDGE Rx Only 1900	SAR#1	SAR#3	SAR#3
UMTS 1900	SAR#1	SAR#3	SAR#3
2.4 GHz WLAN	SAR#2	SAR#2	SAR#2

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo Z of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 7 of 36
© 2013 PCTEST Engineering Laboratory, Inc.				REV 12.4 M

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation d(dU) = d(dU)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 8 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 8 of 36
© 2013 PCTEST Engineering Laboratory, Inc.				REV 12.4 M

3 DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1).
- 2. The point SAR measurement was taken at the maximum SAR region

determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

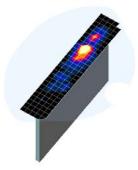
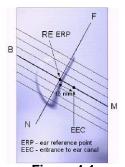


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Maximum Area Scan				Maximum Zoom Scan Spatial Resolution (mm)		
Frequency	Resolution (mm) (Δx ₂₀₀₂ , Δy ₂₀₀₂)	Resolution (mm) (Δx ₂₀₀ , Δy ₂₀₀)	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
(— area/ — area/	· 200119 / 200119	∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*		
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤ 5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤ 4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	≤1.5*Δz _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 22

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01


FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dage 0 of 26		
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 9 of 36		
© 2012 DOTECT Engineering Labor						

© 2013 PCTEST Engineering Laboratory, Inc.

4 DEFINITION OF REFERENCE POINTS

4.1 EAR REFERENCE POINT

Figure 4-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 4-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 4-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 4-1 Close-Up Side view of ERP

4.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 4-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 4-2 Front, back and side view of SAM Twin Phantom

Figure 4-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 10 of 20
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 10 of 36
© 2013 PCTEST Engineering Laboratory, Inc.				

5 TEST CONFIGURATION POSITIONS FOR HANDSETS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

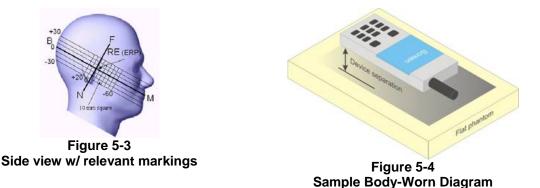
5.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 5-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 5-2).

5.3 Positioning for Ear / 15° Tilt


With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5-2).

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dage 11 of 20		
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 11 of 36		
© 2012 DCTEST Engineering Labor	2012 DOTEST Engineering Laboratory Inc.					

Figure 5-2 Front, Side and Top View of Ear/15º Tilt Position

5.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

Figure 5-5 Twin SAM Chin20

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 10 of 20
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 12 of 36
2012 DOTEST Engineering Laboratory Inc.				

5.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5-4). Per FCC KDB Publication 648474 D04_v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01_v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 12 of 20
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset	Page 13 of 36

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS								
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)						
Peak Spatial Average SAR _{Head}	1.6	8.0						
Whole Body SAR	0.08	0.4						
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20						

Table 6-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 14 of 26	
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset	Page 14 of 36		

7 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

7.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

7.3 SAR Measurement Conditions for UMTS

7.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

7.3.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	.G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 15 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 15 of 36

7.3.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

7.3.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK =5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

7.3.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βε	βa	β _d (SF)	₿¢/βa	$\beta_{hs}^{(1)}$	Bec	Bed	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1 <mark>039/225</mark>	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}: 47/15$ $\beta_{ed2}: 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1	: Δ_{ACK}, Δ_{N}	$_{\rm ACK}$ and $\Delta_{\rm C}$	_{QI} = 8 ¢	$\Rightarrow A_{hs} = \beta_h$	$\beta_c = 30$	$/15 \Leftrightarrow \beta_{hs} =$	30/15 *β _c .		-	1.1			
Note 2	: CM = 1	for B./B. =1	2/15 B	1./B = 24/1	5. For all	other coml	inations of I	DPDCF	I DPCCH	HS- DPO	CCH E-1	DPDCH :	ind E-

Note 2: CM = 1 for β_c/β_d =12/15, β_h/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dage 16 of 26		
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 16 of 36	
© 2012 DCTEST Engineering Labora	ton/ Inc			DEV/12.4 M	

7.4 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

7.4.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

7.4.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

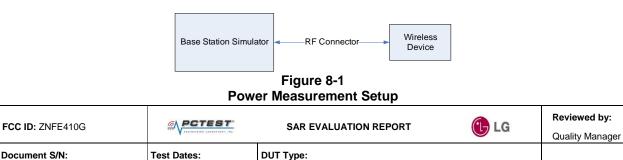
If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg or if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager				
Document S/N:	Test Dates:	DUT Type:		Dage 17 of 26				
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 17 of 36				
© 2013 PCTEST Engineering Laboratory, Inc.								

8 **RF CONDUCTED POWERS**

8.1 **GSM Conducted Powers**

		M	aximum Bur	st-Averaged	Output Powe	er
		Voice		GPRS/EDGE	Data (GMSK))
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot
	128	33.47	33.49	30.26	29.07	27.63
GSM 850	190	33.51	33.51	30.30	29.02	27.61
	251	33.48	33.46	30.23	29.07	27.58
	512	29.85	29.82	27.53	25.86	24.57
GSM 1900	661	29.79	29.78	27.51	25.82	24.47
	810	29.75	29.76	27.49	25.78	24.50
		Calcula	ted Maximur	n Frame-Ave	raged Outpu	t Power
		Calcula Voice			raged Outpu Data (GMSK)	
Band	Channel					
Band	Channel 128	<i>Voice</i> GSM [dBm] CS	GPRS [dBm] 1	GPRS/EDGE GPRS [dBm] 2	Data (GMSK, GPRS [dBm] 3) GPRS [dBm] 4
Band GSM 850		Voice GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS/EDGE GPRS [dBm] 2 Tx Slot	Data (GMSK, GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot
	128	Voice GSM [dBm] CS (1 Slot) 24.44	GPRS [dBm] 1 Tx Slot 24.46	GPRS/EDGE GPRS [dBm] 2 Tx Slot 24.24	Data (GMSK, GPRS [dBm] 3 Tx Slot 24.81	GPRS [dBm] 4 Tx Slot 24.62
	128 190	Voice GSM [dBm] CS (1 Slot) 24.44 24.48	GPRS [dBm] 1 Tx Slot 24.46 24.48	GPRS/EDGE GPRS [dBm] 2 Tx Slot 24.24 24.28	Data (GMSK, GPRS [dBm] 3 Tx Slot 24.81 24.76	GPRS [dBm] 4 Tx Slot 24.62 24.60
	128 190 251	Voice GSM [dBm] CS (1 Slot) 24.44 24.48 24.45	GPRS [dBm] 1 Tx Slot 24.46 24.48 24.43	GPRS/EDGE GPRS [dBm] 2 Tx Slot 24.24 24.28 24.21	Data (GMSK, GPRS [dBm] 3 Tx Slot 24.81 24.76 24.81	GPRS [dBm] 4 Tx Slot 24.62 24.60 24.57


Note:

0Y1305060801 - R2.ZNF

© 2013 PCTEST Engineering Laboratory, Inc.

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table according to KDB 941225 D03v01.
- 3. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

GSM Class: B GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: Rx Only **DTM Multislot Class: N/A**

Portable Handset

05/05/13 - 05/20/13

Page 18 of 36

03/25/2013

3GPP Release	Mode	Mode 3GPP 34.121 Cellular Bar Subtest		lar Band [dBm]	PC	3GPP MPR [dB]		
Version		oustoot	4132	4183	4233	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	22.75	22.71	22.88	22.46	22.29	22.26	-
99	VV CDIVIA	12.2 kbps AMR	22.73	22.72	22.75	22.41	22.34	22.31	-
6		Subtest 1	22.57	22.46	22.85	22.14	22.32	22.37	0
6	HSDPA	Subtest 2	22.55	22.35	22.60	22.13	22.24	22.21	0
6	I NOUFA	Subtest 3	22.02	21.98	22.21	21.78	21.89	21.90	0.5
6		Subtest 4	21.95	21.81	22.16	21.73	21.73	21.82	0.5
6		Subtest 1	22.29	22.31	22.60	21.75	22.19	21.87	0
6	1	Subtest 2	20.78	20.56	21.16	20.41	20.65	20.53	2
6	HSUPA	Subtest 3	20.93	21.18	21.55	21.01	21.17	21.14	1
6]	Subtest 4	21.16	21.11	21.01	21.00	21.01	21.17	2
6		Subtest 5	22.34	22.19	22.21	22.03	21.89	21.96	0

8.2 UMTS Conducted Powers

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

This device does not support DC-HSDPA.

It is expected by the manufacturer that MPR for some HSUPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Base Station Simulator	RF Connector	Wireless Device						
Figure 8-2								
Power Measurement Setup								

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 10 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 19 of 36
© 2013 PCTEST Engineering Laborator	y, Inc.			REV 12.4 M

8.3 WLAN Conducted Powers

802.11b (2.4 GHz) Conducted Power [dBm] Freq Mode Channel Data Rate [Mbps] [MHz] 1 11 2 5.5 802.11b 2412 1* 15.29 15.62 15.68 15.69 802.11b 2437 6* 15.03 15.22 15.07 15.09 802.11b 2462 11* 15.68 15.85 15.92 15.92

 Table 8-1

 IEEE 802.11b Average RF Power

Table 8-2 IEEE 802.11g Average RF Power

	Freq		802.11g (2.4 GHz) Conducted Power [dBm]							
Mode	Ticq	Channel	Data Rate [Mbps]							
[MHz]		6	9	12	18	24	36	48	54	
802.11g	2412	1	12.69	12.61	12.38	12.40	12.36	12.39	12.29	12.23
802.11g	2437	6	12.44	12.39	12.45	12.49	12.49	12.46	12.23	12.27
802.11g	2462	11	13.38	13.00	13.37	13.17	13.37	13.16	12.96	12.93

Table 8-3 IEEE 802.11n Average RF Power

	Freq				802.11n (2.4	GHz) Condu	icted Powe	er [dBm]				
Mode	Fley	Channel	nnel Data Rate [Mbps]									
	[MHz]	6.5	13	20	26	39	52	58	65			
802.11n	2412	1	12.38	12.18	12.46	12.43	12.32	12.58	12.03	12.34		
802.11n	2437	6	12.54	12.42	12.43	12.28	12.15	12.22	12.07	12.07		
802.11n	2462	11	12.98	13.19	13.05	12.87	12.85	12.81	12.65	12.71		

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes:

- 1. For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- 3. The bolded data rate and channel above were tested for SAR.

Power Measurement Setup

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 20
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 20 of 36
© 2013 PCTEST Engineering Labor	atory, Inc.			REV 12.4 M

9 SYSTEM VERIFICATION

9.1 **Tissue Verification**

			Measu	red Tissue		5			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			820	0.908	40.629	0.898	41.571	1.11%	-2.27%
5/8/2013	835H	23.1	835	0.922	40.501	0.900	41.500	2.44%	-2.41%
			850	0.937	40.307	0.916	41.500	2.29%	-2.87%
			1850	1.401	39.750	1.400	40.000	0.07%	-0.63%
5/7/2013	1900H	21.6	1880	1.432	39.627	1.400	40.000	2.29%	-0.93%
			1910	1.468	39.478	1.400	40.000	4.86%	-1.31%
			1850	1.386	39.770	1.400	40.000	-1.00%	-0.57%
5/13/2013	1900H	22.3	1880	1.410	39.566	1.400	40.000	0.71%	-1.08%
			1910	1.432	39.510	1.400	40.000	2.29%	-1.23%
5/7/2013			2401	1.816	38.264	1.758	39.298	3.30%	-2.63%
5/7/2013	2450H	22.9	2450	1.869	37.997	1.800	39.200	3.83%	-3.07%
5/7/2013			2499	1.932	37.895	1.852	39.135	4.32%	-3.17%
			820	0.985	54.917	0.969	55.258	1.65%	-0.62%
5/5/2013	835B	20.7	835	1.002	54.873	0.970	55.200	3.30%	-0.59%
			850	1.019	54.688	0.988	55.154	3.14%	-0.84%
			820	0.996	55.028	0.969	55.258	2.79%	-0.42%
5/13/2013	835B	22.2	835	1.011	54.917	0.970	55.200	4.23%	-0.51%
			850	1.027	54.746	0.988	55.154	3.95%	-0.74%
			1850	1.456	52.124	1.520	53.300	-4.21%	-2.21%
5/7/2013	1900B	22.1	1880	1.483	52.070	1.520	53.300	-2.43%	-2.31%
			1910	1.531	51.990	1.520	53.300	0.72%	-2.46%
			2401	1.960	51.972	1.903	52.765	3.00%	-1.50%
5/6/2013	2450B	23.1	2450	2.025	51.808	1.950	52.700	3.85%	-1.69%
			2499	2.093	51.605	2.019	52.638	3.67%	-1.96%

Table 9-1

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 21 of 36
© 2013 PCTEST Engineering Labor	atory, Inc.			REV 12.4 M

Test System Verification 9.2

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

	System Verification Results												
						ystem Ve RGET & N							
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR1g (W/kg)	1 W Target SAR1g (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)	
D	835	HEAD	05/08/2013	24.4	23.4	0.100	4d132	3288	1.010	9.660	10.100	4.55%	
G	1900	HEAD	05/07/2013	23.0	21.6	0.100	5d148	3209	3.990	39.700	39.900	0.50%	
С	1900	HEAD	05/13/2013	24.3	22.0	0.100	5d080	3022	4.050	39.400	40.500	2.79%	
С	2450	HEAD	05/07/2013	24.4	22.7	0.100	719	3022	5.400	52.700	54.000	2.47%	
G	835	BODY	05/05/2013	23.1	20.7	0.100	4d132	3209	0.955	9.360	9.550	2.03%	
G	835	BODY	05/20/2013	24.9	23.1	0.100	4d132	3209	0.973	9.360	9.730	3.95%	
В	1900	BODY	05/07/2013	23.9	22.2	0.100	5d080	3287	4.090	40.300	40.900	1.49%	
С	2450	BODY	05/06/2013	23.5	23.0	0.100	719	3022	5.180	51.600	51.800	0.39%	

Table 9-2 Poculto .:....

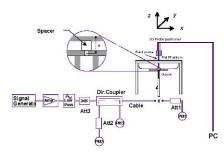


Figure 9-1 System Verification Setup Diagram

Figure 9-2 **System Verification Setup Photo**

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 af 00
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 22 of 36
© 2013 PCTEST Engineering Labor	atory, Inc.			REV 12.4 M

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

Table 10-1 GSM/GPRS 850 Head SAR

					ME	ASURE	MENT R	ESULTS							
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of GPRS	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.51	0.08	Right	Cheek	SAR#1	1	1:8.3	0.532	1.045	0.556	
836.60	190	GSM 850	GSM	33.7	33.51	0.05	Right	Tilt	SAR#1	1	1:8.3	0.322	1.045	0.336	
836.60	190	GSM 850	GSM	33.7	33.51	0.00	Left	Cheek	SAR#1	1	1:8.3	0.437	1.045	0.457	
836.60	190	GSM 850	GSM	33.7	33.51	0.03	0.03 Left Tilt SAR#1 1 1:8.3 0.245 1.045 0.256								
836.60	190	GSM 850	GPRS	29.2	29.02	-0.10	Right	Cheek	SAR#1	3	1:2.76	0.764	1.042	0.796	A1
836.60	190	GSM 850	GPRS	29.2	29.02	0.18	Right	Tilt	SAR#1	3	1:2.76	0.452	1.042	0.471	
836.60	190	GSM 850	GPRS	29.2	29.02	-0.12	Left	Cheek	SAR#1	3	1:2.76	0.694	1.042	0.723	
836.60	190	GSM 850	GPRS	0.20	Left	Tilt	SAR#1	3	1:2.76	0.415	1.042	0.432			
		ISI / IEEE C95 Sp ontrolled Expo	atial Peak							Head W/kg (m iged over					

Table 10-2 UMTS 850 Head SAR

					I	MEASUR	EMENT R	ESULTS	6					
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power Drift	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	23.2	22.71	-0.04	Right	Cheek	SAR#1	1:1	0.455	1.119	0.509	A2
836.60	4183	UMTS 850	RMC	23.2	22.71	0.00	Right	Tilt	SAR#1	1:1	0.241	1.119	0.270	
836.60	4183	UMTS 850	RMC	23.2	22.71	0.02	Left	Cheek	SAR#1	1:1	0.400	1.119	0.448	
836.60	4183	UMTS 850	RMC	23.2	22.71	0.09	Left	Tilt	SAR#1	1:1	0.242	1.119	0.271	
		ANSI / IEEE	E C95.1 199	2 - SAFETY	LIMIT					Н	ead			
	Spatial Peak Uncontrolled Exposure/General Population						1.6 W/kg (mW/g) averaged over 1 gram							

Table 10-3 GSM/GPRS 1900 Head SAR

						MEASU	JREMEN	NT RESU	LTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	# of GPRS	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.2	29.79	0.04	Right	Cheek	SAR#1	1	1:8.3	0.522	1.099	0.574	
1880.00	661	GSM 1900	GSM	30.2	29.79	0.02	Right	Tilt	SAR#1	1	1:8.3	0.263	1.099	0.289	
1880.00	661	GSM 1900	GSM	30.2	29.79	-0.04	Left	Cheek	SAR#1	1	1:8.3	0.671	1.099	0.737	A3
1880.00	661	GSM 1900	GSM	30.2	29.79	-0.12	12 Left Tilt SAR#1 1 1:8.3 0.257 1.099 0.282								
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.13	Right	Cheek	SAR#1	3	1:2.76	0.620	1.091	0.676	
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.12	Right	Tilt	SAR#1	3	1:2.76	0.302	1.091	0.329	
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.10	Left	Cheek	SAR#1	3	1:2.76	0.602	1.091	0.657	
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.04	Left	Tilt	SAR#1	3	1:2.76	0.232	1.091	0.253	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head 6 W/kg (raged ove				

FCC ID: ZNFE410G		SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 26
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 23 of 36
© 2012 DOTECT Engineering Labore	ton loo			

Table 10-4 UMTS 1900 Head SAR

					ME	ASURE	MENT R	ESULTS							
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number		(W/kg)	Factor	(W/kg)		
1880.00	9400	UMTS 1900	RMC	22.7	22.29	0.03	Right	Cheek	SAR#1	1:1	0.644	1.099	0.708		
1880.00	9400	UMTS 1900	RMC	22.7	22.29	0.05	Right	Tilt	SAR#1	1:1	0.327	1.099	0.359		
1880.00	9400	UMTS 1900	RMC	22.7	22.29	0.05	Left	Cheek	SAR#1	1:1	0.704	1.099	0.774	A4	
1880.00	9400	UMTS 1900	RMC	22.7	22.29	-0.01	Left	Tilt	SAR#1	1:1	0.304	1.099	0.334		
		ANSI / IEEE 0	C95.1 1992 - S	SAFETY LI	TIN		Head								
			Spatial Peal	(1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population										over 1 gram	า			

Table 10-5 DTS Head SAR

					MEA	SUREN	IENT RI	ESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty Cycle	SAR (1g)	oouning	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)		(W/kg)	Factor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.0	15.68	-0.08	Right	Cheek	SAR#2	1	1:1	0.503	1.076	0.541	A5
2462	11	IEEE 802.11b	DSSS	0.01	Right	Tilt	SAR#2	1	1:1	0.277	1.076	0.298			
2462	11	IEEE 802.11b	-0.02	Left	Cheek	SAR#2	1	1:1	0.346	1.076	0.372				
2462	2462 11 IEEE 802.11b DSSS 16.0 15.68 (Left Tilt SAR#2 1 1:1 0.294 1.076 0.316							
		SI / IEEE C95.1 Spat ntrolled Expos	ial Peak						1.6 W	Head /kg (mW/g d over 1 g					

10.2 Standalone Body-Worn SAR Data

Table 10-6 GSM/UMTS Body-Worn SAR Data

					MEASU	REMEN	T RESU	LTS							
FREQUE		Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Fower [uBili]	Dint [ub]		Number	31013	Cycle		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.51	-0.04	10 mm	SAR#1	1	1:8.3	back	0.759	1.045	0.793	A6
824.20	128	GSM 850	GPRS	29.2	29.07	0.19	10 mm	SAR#1	3	1:2.76	back	1.100	1.030	1.133	
836.60	190	GSM 850	GPRS	29.2	29.02	0.12	10 mm	SAR#1	3	1:2.76	back	1.090	1.042	1.136	
848.80	251	GSM 850	GPRS	29.2	29.07	-0.01	10 mm	SAR#1	3	1:2.76	back	0.937	1.030	0.965	
824.20	128	GSM 850	GPRS	29.2	29.07	-0.01	10 mm	SAR#1	3	1:2.76	back	1.160	1.030	1.195	A7
826.40	4132	UMTS 850	RMC	23.2	22.75	-0.01	10 mm	SAR#1	N/A	1:1	back	0.732	1.109	0.812	
836.60	4183	UMTS 850	RMC	23.2	22.71	-0.03	10 mm	SAR#1	N/A	1:1	back	0.744	1.119	0.833	
846.60	4233	UMTS 850	RMC	23.2	22.88	-0.01	10 mm	SAR#1	N/A	1:1	back	0.917	1.076	0.987	A8
1880.00	661	GSM 1900	GSM	30.2	29.79	0.01	10 mm	SAR#3	1	1:8.3	back	0.483	1.099	0.531	A9
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.02	10 mm	SAR#3	3	1:2.76	back	0.666	1.091	0.727	
1880.00	9400	UMTS 1900	RMC	22.7	22.29	-0.03	10 mm	SAR#3	N/A	1:1	back	0.652	1.099	0.717	A11
			E C95.1 1992 - S Spatial Peak								Body N/kg (m	•			
		Uncontrolle	d Exposure/Gen	eral Populati	on					averag	ed over	1 gram			

Note: Blue Entries identify repeatability measurements

Table 10-7
DTS Body-Worn SAR Data

	MEASUREMENT RESULTS														
FREQU	JENCY	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBili]	[dBm]	[UD]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.0	15.68	0.12	10 mm	SAR#2	1	back	1:1	0.234	1.076	0.252	A12
	Spatial Peak 1.6 W/kg (mW/g) Uncontrolled Exposure/General Population averaged over 1 gram														
FCC ID: ZN	IFE410)G	2		5. 5.	SAR I	EVALUA	TION R	EPORT			🕒 LO	G		wed b y Mana
Document 1Y13050608		R2.ZNF		Dates: 5/13 – 05/20/13		UT Type: ortable Hai	ndset							Page	24 of 3
2013 PCTE	ST Eng	ineering Laborat	ory, Inc.												REV 1 03/25

10.3 Standalone Wireless Router SAR Data

					MEAS	UREME	NT RES	ULTS							
FREQUE		Mode	Service	Maximum Allowed	Conducted Power	Power Drift [dB]	Spacing	Device Serial	# of GPRS	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	Dint [ab]		Number	Slots	-		(W/kg)		(W/kg)	
824.20	128	GSM 850	GPRS	29.2	29.07	0.19	10 mm	SAR#1	3	1:2.76	back	1.100	1.030	1.133	
836.60	190	GSM 850	GPRS	29.2	29.02	0.12	10 mm	SAR#1	3	1:2.76	back	1.090	1.042	1.136	
848.80	251	GSM 850	GPRS	29.2	29.07	-0.01	10 mm	SAR#1	3	1:2.76	back	0.937	1.030	0.965	
836.60	190	GSM 850	GPRS	29.2	29.02	0.02	10 mm	SAR#1	3	1:2.76	front	0.613	1.042	0.639	
836.60	190	GSM 850	GPRS	29.2	29.02	0.12	10 mm	SAR#1	3	1:2.76	bottom	0.173	1.042	0.180	
836.60	190	GSM 850	GPRS	29.2	29.02	-0.14	10 mm	SAR#1	3	1:2.76	right	0.657	1.042	0.685	
836.60	190	GSM 850	GPRS	29.2	29.02	-0.07	10 mm	SAR#1	3	1:2.76	left	0.435	1.042	0.453	
824.20	128	GSM 850	GPRS	29.2	29.07	-0.01	10 mm	SAR#1	3	1:2.76	back	1.160	1.030	1.195	A7
826.40	4132	UMTS 850	RMC	23.2	22.75	-0.01	10 mm	SAR#1	N/A	1:1	back	0.732	1.109	0.812	
836.60	4183	UMTS 850	RMC	23.2	22.71	-0.03	10 mm	SAR#1	N/A	1:1	back	0.744	1.119	0.833	
846.60	4233	UMTS 850	RMC	23.2	22.88	-0.01	10 mm	SAR#1	N/A	1:1	back	0.917	1.076	0.987	A8
836.60	4183	UMTS 850	RMC	23.2	22.71	0.01	10 mm	SAR#1	N/A	1:1	front	0.364	1.119	0.407	
836.60	4183	UMTS 850	RMC	23.2	22.71	0.02	10 mm	SAR#1	N/A	1:1	bottom	0.100	1.119	0.112	
836.60	4183	UMTS 850	RMC	23.2	22.71	-0.07	10 mm	SAR#1	N/A	1:1	right	0.396	1.119	0.443	
836.60	4183	UMTS 850	RMC	23.2	22.71	0.04	10 mm	SAR#1	N/A	1:1	left	0.229	1.119	0.256	
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.02	10 mm	SAR#3	3	1:2.76	back	0.666	1.091	0.727	A10
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.08	10 mm	SAR#3	3	1:2.76	front	0.340	1.091	0.371	
1880.00	661	GSM 1900	GPRS	26.2	25.82	-0.15	10 mm	SAR#3	3	1:2.76	bottom	0.281	1.091	0.307	
1880.00	661	GSM 1900	GPRS	26.2	25.82	0.07	10 mm	SAR#3	3	1:2.76	right	0.165	1.091	0.180	
1880.00	661	GSM 1900	GPRS	26.2	25.82	0.13	10 mm	SAR#3	3	1:2.76	left	0.123	1.091	0.134	
1880.00	9400	UMTS 1900	RMC	22.7	22.29	-0.03	10 mm	SAR#3	N/A	1:1	back	0.652	1.099	0.717	A11
1880.00	9400	UMTS 1900	RMC	22.7	22.29	-0.01	10 mm	SAR#3	N/A	1:1	front	0.393	1.099	0.432	
1880.00	9400	UMTS 1900	RMC	22.7	22.29	0.06	10 mm	SAR#3	N/A	1:1	bottom	0.243	1.099	0.267	
1880.00	9400	UMTS 1900	RMC	22.7	22.29	-0.05	10 mm	SAR#3	N/A	1:1	right	0.169	1.099	0.186	
1880.00	9400	UMTS 1900	RMC	22.7	22.29	-0.01	10 mm	SAR#3	N/A	1:1	left	0.131	1.099	0.144	
		ANSI / IEEE 0	C95.1 1992 - SA	FETY LIMIT							Body				
			Spatial Peak				1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population averaged over 1 gram														

Table 10-8 GPRS/UMTS Hotspot SAR Data

Note: Blue Entries identify repeatability measurements

Table 10-9 DTS Hotspot SAR Data

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			[dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.0	15.68	0.12	10 mm	SAR#2	1	back	1:1	0.234	1.076	0.252	A12
2462	11	IEEE 802.11b	DSSS	16.0	15.68	-0.03	10 mm	SAR#2	1	front	1:1	0.174	1.076	0.187	
2462	11	IEEE 802.11b	DSSS	16.0	15.68	-0.06	10 mm	SAR#2	1	top	1:1	0.133	1.076	0.143	
2462	11	IEEE 802.11b	DSSS	16.0	15.68	0.01	10 mm	SAR#2	1	left	1:1	0.143	1.076	0.154	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Body				
	Spatial Peak									1.6	W/kg (m	W/g)			
		Uncontrolled E	xposure/	General Popu	lation					avera	ged over	1 gram			

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 25 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 25 of 36
© 2012 PCTEST Engineering Laborator	v Inc			DEV/12/1 M

10.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01, since the standalone reported SAR was > 1.2 W/kg, additional SAR evaluations using a headset cable were performed.
- 8. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 12 for variability analysis.
- During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 5.6 for more details).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. This device supports GSM VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for body-worn SAR
- 3. Justification for reduced test configurations per KDB Publication 941225 D03v01: The source-based timeaveraged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power was evaluated for SAR.
- 4. Per FCC KDB Publication 447498 D01v05, when the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration was ≥ 0.8 W/kg, the other output channels were tested for SAR. Otherwise testing at the other channels is not required for such test configuration(s).

UMTS Notes:

- 1. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- Per FCC KDB Publication 447498 D01v05, when the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration was ≥ 0.8 W/kg, the other output channels were tested for SAR. Otherwise testing at the other channels is not required for such test configuration(s).

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 3. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 26 of 26
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 26 of 36

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$$

	Table 1 Estimate			
Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2441	9.00	10	0.167

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 27 of 36
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 27 01 36
© 2013 PCTEST Engineering Laboratory	/, Inc.	•		REV 12.4 M

11.3 Head SAR Simultaneous Transmission Analysis

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.556	0.541	1.097		Right Cheek	0.509	0.541	1.050
Head SAR	Right Tilt	0.336	0.298	0.634	Head SAR	Right Tilt	0.270	0.298	0.568
Tieau SAIX	Left Cheek	0.457	0.372	0.829	Head SAIN	Left Cheek	0.448	0.372	0.820
	Left Tilt	0.256	0.316	0.572		Left Tilt	0.271	0.316	0.587
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.574	0.541	1.115		Right Cheek	0.708	0.541	1.249
Head SAR	Right Tilt	0.289	0.298	0.587	Head SAR	Right Tilt	0.359	0.298	0.657
Head SAR	Left Cheek	0.737	0.372	1.109	Heau SAR	Left Cheek	0.774	0.372	1.146
	Left Tilt	0.282	0.316	0.598		Left Tilt	0.334	0.316	0.650
Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.796	0.541	1.337		Right Cheek	0.676	0.541	1.217
Head SAR	Right Tilt	0.471	0.298	0.769	Head SAR	Right Tilt	0.329	0.298	0.627
	Left Cheek	0.723	0.372	1.095		Left Cheek	0.657	0.372	1.029
	Left Tilt	0.432	0.316	0.748		Left Tilt	0.253	0.316	0.569

Table 11-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 29 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 28 of 36
© 2013 PCTEST Engineering Labor	atory, Inc.			REV 12.4 M

11.4 Body-Worn Simultaneous Transmission Analysis

ConfigurationMode2G/3G SAR (W/kg)2.4 GHz WLAN SAR (W/kg)Σ SAR (W/kg)	ult <u>aneous Transmi</u>	ission Scenario with	2.4 GHz W	LAN (Body	/-Worn at 1	1.0
	Configuration	Mode	SAR	WLAN SAR	_	
Back Side GSM 850 0.793 0.252 1.045	Back Side	GSM 850	0.793	0.252	1.045	
Back Side GPRS 850 1.195 0.252 1.447	Back Side	GPRS 850	1.195	0.252	1.447	
Back Side UMTS 850 0.987 0.252 1.239	Back Side	UMTS 850	0.987	0.252	1.239	
Back Side GSM 1900 0.531 0.252 0.783	Back Side	GSM 1900	0.531	0.252	0.783	
Back Side GPRS 1900 0.727 0.252 0.979	Back Side	GPRS 1900	0.727	0.252	0.979	
Back Side UMTS 1900 0.717 0.252 0.969	Back Side	UMTS 1900	0.717	0.252	0.969	

Table 11-3 Simu cm)

Table 11-4 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Body-Worn at 1.0 cm)

Configuration	Mode	2G/3G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.793	0.167	0.960
Back Side	GPRS 850	1.195	0.167	1.362
Back Side	UMTS 850	0.987	0.167	1.154
Back Side	GSM 1900	0.531	0.167	0.698
Back Side	GPRS 1900	0.727	0.167	0.894
Back Side	UMTS 1900	0.717	0.167	0.884

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 29 of 36
© 2013 PCTEST Engineering Labor	ratory, Inc.			REV 12.4 M

11.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Simultaneous Transmission Scenario (Hotspot at 1.0 cm)							
Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
	Back	1.195	0.252	1.447			
	Front	0.639	0.187	0.826			
Dody CAD	Тор	-	0.143	0.143			
Body SAR	Bottom	0.180	-	0.180			
	Right	0.685	-	0.685			
	Left	0.453	0.154	0.607			
Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
	Back	0.987	0.252	1.239			
	Front	0.407	0.187	0.594			
Dady CAD	Тор	-	0.143	0.143			
Body SAR	Bottom	0.112	-	0.112			
	Right	0.443	-	0.443			
	Left	0.256	0.154	0.410			
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
	Back	0.727	0.252	0.979			
	Front	0.371	0.187	0.558			
	Top	-	0.143	0.143			
Body SAR	Bottom	0.307	-	0.307			
	Right	0.180	-	0.180			
	Left	0.134	0.154	0.288			
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
	Back	0.717	0.252	0.969			
		0 422	0.187	0.619			
	Front	0.432	0.107	0.0.0			
Rody SAP	Top	-	0.143	0.143			
Body SAR	Top	- 0.267					
Body SAR	Тор	-		0.143			

Table 11-5	
Simultaneous Transmission Scenario	(Hotspot at 1.0 cm)

11.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕚 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 20
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 30 of 36

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

	Body OAN measurement variability results														
	BODY VARIABIL						ABILIT	Y RESU	JLTS						
Band	FREQUE	NCY	Mode	Service	# of Time Slots	Rate	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.				(Mbps)			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
835	824.20	128	GSM 850	GPRS	3	N/A	back	10 mm	1.100	1.220	1.11	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Bo	dy					
	Spatial Peak				1.6 W/kg (mW/g)										
		Uncon	trolled Exposure	/General Popula	ation					ave	eraged c	over 1 gram	I		

 Table 12-1

 Body SAR Measurement Variability Results

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 21 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 31 of 36
© 2012 DCTEST Engineering Loborg	ton/ Inc			DEV/ 12.4 M

13 EQUIPMENT LIST

Gigatronics 80701A (0.05+18)-lpower Sensor 10/10/2012 Annual 4/16/2014 MY457011 Aglient 8753E (30kHz 64/L) Network, Analyzer 4/16/2013 Annual 4/16/2014 MY457011 Aglient 8544A (9kHz-26/L) Signal Generator 4/17/2013 Annual 4/17/2014 J202013 56480 SPEAG D1900/V2 1900 MHz SAR Dipole 7/20/2012 Annual 2/20/2014 56480 SPEAG D1900/V2 1900 MHz SAR Dipole 2/8/2013 Annual 2/8/2013 Annual 2/8/2014 56146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58146 58222013 109892 58247012 Annual 1/7/2014 44132 Nrda 47772-3 Attenuator (361) CBT N/A CBT N/A CBT N/A CBT N/A CBT N/A CBT N/A CBT	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Numbe
Aglent EEST7D (220H+2:0GH2) Signal Generator 4/16/2013 Annual 4/16/2014 M/45/2014 Aglent 8594A (8H-2:3GH2) Spectrum Analyzer N/A N/A N/A N/A N/A Aglent 8684B (8H-2:3GH2) Spectrum Analyzer N/A Spectrum Annual 4/17/2013 Spectrum Annual Annual Annual Annual Annual Annual Annual 2/20/31 Annual Annual<							1833460
Aglent BT3E (30th-te-6bcf) Network Analyzer 4/16/2013 Annual V172014 JP3202016 Aglent B80480 (0Ht-ta-ObtL) Signal Generator 4/17/2013 Annual 7/20/2013 5/0800 SPEAG D1900/2 1900 MHt SAR Dipole 7/20/2013 Annual 7/20/2013 5/0800 SPEAG D1900/2 1900 MHt SAR Dipole 2/2/2013 Annual 2/8/2014 5/148 SPEAG D1900/2 1900 MHt SAR Dipole 2/2/2013 Annual 2/8/2013 7/19 Narda 4014/C-6 4 - 8 GHt SMA Dipole 2/2/2013 Annual 2/8/2013 7/19 Narda C015/2 0.85 MHt SAR Dipole CBT N/A CBT 1/13 SPEAG D015/2 0.85 MHt SAR Dipole 0.62/2013 Annual 1/13/2014 4113 SPEAG D045/2 0.85 MHt SAR Dipole 0.62/2013 Annual 6/2/2013 1/13/2014 4113 SPEAG DAE4 Dms yData Acquintion Electronics 9/12/2012 Annual 9/12/201	u u						MY45470194
Agilent B994A (IPH-2-9EH: Spectrum Anakyar) NA NA NA NA S0 (54001 Agilent B984BO (IPH-L-GH-L) Space Internation of V172013 Annual 4/172013 56000 SPEAG D1900V2 1900 MHz SAR Dipole 7/20/2013 Annual 2/20/2013 Annual 2/20/2013 Annual 2/20/2013 Annual 2/20/2014 50144 50144 SPEAG D2/50/22 2450 MHz SAR Dipole 8/23/2012 Annual 2/20/2013 Annual 2/20/2013 Annual 6/23/2013 1/20/214 50144 Amplier Research BS104 5/12/2014 G618 Annual C617 N/A C617 1/3 SPEAG D8/50/2 8/5 MHz SAR Dipole 1/7/2013 Annual 5/22/2013 1/0/2014 6/4132 Narda 4/17/2013 Annual 6/23/2013 1/20/213 1/7/2013 Annual 5/22/213 1/0/2014 6/4132 Patternack PE2/206-10 Bidirectonal Coupler C617 N/A C617	2		(30kHz-6GHz) Network Analyzer	4/16/2013			JP38020182
Agent Bet#0 (BH+L+GH2) Signal Generator 4/17/2013 Annual 4/17/2014 35220006 SPEAG D1900V2 1900 MHz SAR Dopole 27202012 Annual 27820123 50600 SPEAG D1900V2 1900 MHz SAR Dopole 28220121 Annual 6722013 7119 Narda 4014C-6 4 - 8 GHz SMA ED Dopole 28220121 Annual 6722012 7119 Narda 4014C-6 4 - 8 GHz SMA ED Dopole CBT NNA CBT 211910 MCL BV-NRWS+ 66B Alternator CGBT NNA CBT 211910 40132 Narda 477273 Attenuator (GB) CBT NNA SP	ų						3051A00187
SPEAG D1500V2 1900 MHz SAR Dopole 7/20/2012 Annual 7/20/2013 5/860 SPEAG D2450V2 1300 MHz SAR Dopole 8/22/012 Annual 8/22/013 5/180 Narda 4014/C-6 4 8/81/2 CBT N/A CBT N/A Amplier Research 55104 5/18/2000 CBT N/A CBT N/A MCL BW-NWY+ 66/8 xtemuator CBT N/A CBT 1139 SPEAG D8/55/2 8/5 MHT-SAR Dople 117/2013 Annual 117/2014 44132 Narda 4772 Attenuator (GB) CBT N/A CBT 940 Rold & Schwarz CM/200 Bes Bation Simulator 522/2012 Annual 522/2013 10982 Pastomack PE2/200-10 Bidractional Coupler CBT N/A CBT N/A SPEAG DAE4 Daey Data Acquatinor Electronics 8/24/2012 Annual 5/22/2013 10/32/2013 10/32/2013 10/32/2013 10/3	U U		· · · · · · · · · · · · · · · · · · ·				
SPEAG D1900/V2 1900 MHz SAR Dipole 28/2013 Annual 22/2013 57/10 Narda 4014C-6 4 - 8 CHz SMA G BD Inschond Coupler CBT N/A CET N/A SPEAG D8/30/021 Annual 62/32/013 Annual CET N/A GET N/A CET N/A CET N/A CET N/A SPEAG D835/VE 638 Attenuator CBT N/A CET 17/3014 4/4132 Narda 4772-3 Attenuator CET N/A CET 9/40 Rothel S MTME SAR Dipole CET N/A CET N/A CET N/A Pasternack PE2208-6 Bidirectonal Coupler CET N/A CET N/A SPEAG DAE4 Daey Data Acquisition Electronics 11/13/2012 Arrunal 8/2/2013 1323 SPEAG DAE4 Daey Data Acquisition Electronics 11/13/2012 Arrunal 8/2/2013 1323 SPEAG DAE4							
SPEAG D2450V2 2450 MHz 5AR Dipolo B272012 Annual 6232013 719 Narda 4014-C6 4.6 UHS SMA 6 BD Excendenal Cupuler CBT N/A CBT N/A Anpiller Research 55164 55V, 600MHz-4.2CHz CBT N/A CET 1139 SPEAG D383V2 835 MHz 5AR Dipole 11772013 Annual 11772014 44172-3 Narda 4772-3 Altenuator (SBB) CBT N/A CCT 9406 Rohde A 5272-3 Altenuator (SBB) CBT N/A CCT N/A Pasternack PE2209-10 Bidrectional Coupler CBT N/A CBT N/A SPEAG DAE4 Dasy Dita Acquisition Electronics 8/9/2012 Annual 9/9/2013 1333 SPEAG DAE4 Dasy Dita Acquisition Electronics 3/9/2012 Annual 3/9/2014 1333 SPEAG DAE4 Dasy Dita Acquisition Electronics 3/9/2012 Annual 1/1/2013 11/1/2013 11/1/2013 11/1/2013							
Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CRT N/A CRT N/A MCL BW-N6W5+ 6dB Atternator CRT N/A CRT 1139 SPEAG D385/V2 635 MHz SAR Doloh 177/2013 Annual 177/2014 417723 Narda 4772-3 Atternator (2dB) CRT N/A CRT 4906 Rohe & Schwar, C MU200 Bases Station Simulator 522/2012 Annual 622/2013 109892 Pastemack PE2208-6 Bidirectional Coupler CRT N/A CRT N/A SPEAG DAE4 Dazy Data Acquisiton Electronics 8/4/2012 Annual 8/24/2013 1323 SPEAG DAE4 Dazy Data Acquisiton Electronics 1/13/2012 Annual 1/13/2013 1333 SPEAG DAE4 Dazy Data Acquisiton Electronics 1/12/2014 Annual 1/21/2014 N/443006 SPEAG DAK4.3 Delectric Assessment Kit 1/21/2014 Annual 1/21/2014 N/443006							
Amplifer Research 551G4 5V.800/Hz-42GHz CBT N/A CBT 21910 MCL BW-N6W5+ 60B Attruntor CBT N/A CBT 1139 SPEAG D835V2 85 MHz SAR Dipole 117/2013 Annual 17/2014 44112 Narda 4772-3 Attenuator (3dB) CBT N/A CET N/A Rolde & Schwarz CMU200 Base Station Simulator 522/2012 Annual 652/2013 10892 Pasternack PE2209-10 Bidrectional Coupler CBT N/A CBT N/A SPEAG DAE4 Dasy Data Acquisition Electronics 919/2012 Annual 919/2013 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 39/2013 Annual 39/2014 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 39/2013 Annual 21/2013 1001 SPEAG DAK4.3 Deleticic Assessment Kit 61/20/2014 Annual 21/4/2014 MM4 10/22/2014 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
MCL BW-N6WS+ GB4 Attenuator CBT NA CBT 1133 SPEAG DB35V2 353 MHz SA Dopole 1/7/2014 4/d132 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9/06 Rolde Schwarz CMU200 Base Station Simulator 5/22/2012 Annual CS22013 109892 Pasternack PE2206-6 Bidrectonal Coupler CBT N/A CBT N/A Pasternack PE2206-10 Bidrectonal Coupler CBT N/A CBT N/A SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2013 Annual 8/19/2013 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 1/11/3/2012 Annual 3/8/2014 1334 Mini Circuits BW-N20WS+ DC to 18 GHz Proceiaon Fixed 20 dB Attonuator CBT N/A CBT N/A SPEAG DAK-3.5 Delectric Assessment Kit 12/11/2012 Annual 12/14/2014 N/4/43006 Rohde Schwarz				-		-	
SPEAG DB35V2 B38 MHz SAR Djoole 1/7/2013 Annual 1/7/2014 44132 Narda 47723 Attenuation (3d) CBT N/A CBT <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>				-			
Narda 4772-3 Attenuator (3dE) CBT N/A CBT 9406 Rohde & Schwart C. CML200 Base Station Simulator 5/22/2012 Annual C22/2013 109992 Pasternack PE2206-6 Bidrectional Coupler CBT N/A CCT N/A SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/24/2013 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 1/1/3/2013 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 1/1/3/2013 Annual 1/1/3/2013 1333 SPEAG DAF4 Dasy Data Acquisition Electronics 1/1/3/2012 Annual 1/1/1/2013 10/1/1 SPEAG DAF4.5 Deletcric Assessment Ki 6/19/2012 Annual 1/1/1/2013 10/1/1 10/1/1 1/1/1/2013 10/1/1 10/1/2014 1/1/1/2013 10/1/2/1 10/1/2/1 10/1/2/1 10/1/2/1 10/1/2/1 10/1/2/1/1 10/1/2/1/1 10/1/2/1/1 10/1/2/1/1 10/1/2/1/1 10/1/2/1/1 10/1							
Rohde & Schwarz CMU200 Base Station Simulator 5/22/2012 Annual 5/22/2013 109882 Pasternack PE2208-6 Bidrectional Coupler CBT N/A CBT N/A SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2013 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 9/24/2013 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 1/11/3/2013 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 3/8/2014 1333 Min-Circuits BW-M20W5+ DC to 18/12/Precision Fred 20 dB Attenuator CBT N/A CBT N/A SPEAG DAK-3.5 Delectric Assessment Kit 12/11/2013 Annual 12/11/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014							
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Psternack PE2401 Date Acquisition Electronics 8/24/2012 Annual 8/24/2013 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 9/19/2013 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/13/2012 Annual 9/19/2014 1334 Mini-Circuits BW-A20W5+ DC to 16 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A SPEAG DAK-3.5 Dielectic Assessment Ka 12/11/2012 Annual 12/11/2013 10/01 Applent 85070E Dielectic Assessment Ka 12/11/2012 Annual 10/11/2013 10/01 Applent 85070E Dielectic Assessment Ka 12/11/2012 Annual 10/11/2014 10/14300 Andre AStrivarz NRVD Dua Channel Power Meter 10/12/2014 10/04501 Control Company 61/22/416 Low Pass Filter CBT N/A CBT							
Pestemack PE220-10 Bitfrectional Coupler CBT N/A CBT N/A SPEAG DAE4 Daxy Data Acquisition Electronics 9/19/2013 1323 SPEAG DAE4 Daxy Data Acquisition Electronics 9/19/2013 1333 SPEAG DAE4 Daxy Data Acquisition Electronics 3/8/2013 Annual 11/13/2014 1333 Mini-Circuits BW-A20W5+ Do to Griz Precision Fixed 20 dS Attenuator CBT N/A CBT N/A SPEAG DAK3.5 Dielectic Assessment Xit 12/11/2012 Annual 12/11/2013 1091 Aqlient 88/070E Dielectic Assessment Xit 12/11/2013 Annual 2/14/2013 10191 Aqlient 88/070E Dielectic Messessment Xit 12/12/2013 Annual 2/14/2013 1191 Control Company 61220-416 Long-Stem Thermometer 7/1/2013 1194 1194 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A MiniCircuits NLP-1200+							
SPEAG DA54 Dasy Data Acquisition Electronics 9/24/2012 Annual 9/24/2013 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 11/13/2012 Annual 11/13/2013 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/13/2012 Annual 11/13/2013 1333 Min-Circuits BV-A20W5+ DC to 15 GHz Presion Fixed 20 dS Attenuator CBT N/A				-			N/A
SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 9/19/2013 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 3/8/2013 Annual 1/11/3/2012 Annual 1/11/3/2012 Annual 1/11/3/2013 1333 Min-Circuits BW AR20015+ DC to 18 GHz Precision Fixed 20 BA Rtenuator CBT N/A CBT	Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
SPEAG DAE4 Dasy Data Acquisition Electronics 11/13/2013 Annual 11/13/2013 1333 Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A SPEAG DAK-3.5 Dielectic Assessment Ki 6/19/2012 Annual 2/11/2013 1070 SPEAG DAK-3.5 Dielectric Probe Kit 2/11/2013 Annual 2/11/2013 1010 Aglient 86070E Dielectric Probe Kit 2/14/2013 Annual 2/11/2013 1101695 Control Company 6122/011 Long-Stem Thermometer 7/1/2011 Biennial 7/1/2013 11142423 MiniCircuits VLF-6000-t Low Pass Filter CBT N/A CBT N/A MiniCircuits NLP-200-t Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-203-t Low Pass Filter C to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-204-t Low Pass Filter C to 2700 MHz CBT N/A <	SPEAG	DAE4	Dasy Data Acquisition Electronics	8/24/2012	Annual	8/24/2013	1322
SPEAG DAE4 Dasy Data Acquistion Fleet 2048 Attenuator OBT N/A CBT N/A SPEAG DAK-3.5 Dielectic Assessment Kit 6/19/2012 Annual 6/19/2013 1070 SPEAG DAK-3.5 Dielectic Assessment Kit 12/11/2012 Annual 6/19/2013 1070 Aglent 85070E Dielectic Probe Kit 2/14/2013 Annual 12/11/2014 N/443006 Rohde & Schwarz NRVD Dual Channel Power Meter 10/12/2012 Annual 6/12/2014 10/12/2014 11/16/2014 10/12/2014 10/12/2014 10/12/2014 10/12/2014 11/16/2013 10/12/2014 10/12/2014 10/12/2014 11/16/2013 10/12/2014 10/12/2014 10/	SPEAG	DAE4	Dasy Data Acquisition Electronics	9/19/2012	Annual	9/19/2013	1323
SPEAG DAE4 Dasy Data Acquisition Fleed 204 Attenuator OET N/A CBT N/A SPEAG DAK-35 Dielectic Assessment Kit 6/19/2012 Annual 6/19/2013 1070 Applent 86070E Dielectic Probe Kit 12/11/2012 Annual 12/11/2013 10701 Applent 86070E Dielectic Probe Kit 21/14/2013 Annual 12/11/2014 NY443005 Rohde & Schwarz NRVD Dual Channel Power Meter 10/12/2012 Annual 6/12/2014 10/1	SPEAG	DAE4	Dasy Data Acquisition Electronics	11/13/2012	Annual	11/13/2013	1333
SPEAG DAK-3.5 Dielectic Assessment Kit 61/9/2012 Annual 61/9/2013 1070 Aglient 85070E Dielectric Assessment Kit 12/11/2012 Annual 12/11/2013 10/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014 11/11/2014	SPEAG	DAE4			Annual	3/8/2014	1334
SPEAG DAK-3.5 Dielectric Assessment Kit 61/9/2012 Annual 61/9/2013 1070 Aglient 85070E Dielectric Assessment Kit 12/11/2012 Annual 12/11/2013 Manual 12/11/2013 Manual 12/11/2014 10/12/2014 11/10/12/2014 11/10/12/2014 11/10/12/2014 11/10/12/2014 11/10/12/2014 11/10/12/2014 11/10/12/2014 11/11/12/2014 11/11/12/2014 11/11/12/2014 11/11/12/2014 11/11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 11/12/2014 13/12/2014 13/12/2014							
SPEAG DAK-3.5 Dielectric Assessment Kit 1211/2012 Annual 1211/2013 1011 Aglent 85070E Dielectric Probe Kit 2/14/2013 Annual 2/14/2014 MY443006: Intelligent Weighing PD-3000 Electronic Balance 6/29/2012 Annual 6/29/2013 1204050: Control Company 6122-02146 Long-Stern Thermometer 7/1/2011 Blennial 1/1/2013 11142233 MiniCircuits VLF-6000+ Low Pass Filter CET N/A CET N/A MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A WR 6234-4925 Mini-Therrometer 10/4/2011 Blennial 10/2/2013 11186844 Anrisu ML2438A Power Meter 2/14/2013 Annual 2/14/2013 11186844 Anrisu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 <td< td=""><td></td><td></td><td></td><td></td><td>Annual</td><td></td><td></td></td<>					Annual		
Agilent 86070E Dielectric Probe Kit 2/14/2013 Annual 2/14/2014 MY480065 Rohde & Schwarz NRVD Dual Channel Power Meter 10/12/2012 Biennial 10/12/2014 10/1685 Rohde & Schwarz NRVD Electronic Balance 6/29/2012 Biennial 10/12/2013 11/164233 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLF-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLF-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A WWR 6234-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2013 11/18/2014 Rohde & Schwarz NRV-322 Peak Power Sensor 10/12/2014 83001901 Mini-Circuits ML2438A Power Meter 2/14/2013 Annual 2/14/2014 1918							
Rohde & Schwarz NRVD Dual Channel Power Meter 10/12/2012 Biennial 10/12/2014 10/1695 Intelligent Weighing PD-3000 Electronic Balance 6/29/2012 Annual 6/29/2013 12040501 Control Company 61220-416 Long-Stern Thermometer 7/1/2011 Biennial 7/1/2013 1104233 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-2890+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A WR 6234-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2013 11188644 Rohde & Schwarz NRV-32 Peak Power Sensor 10/12/2012 Biennial 10/12/2014 1188644 Rohde & Schwarz NRV-32 Peak Power Meter 2/14/2013 Annual 2/14/2014 5381 Anritsu ML2438A Power Meter 2/14/2013 Annual							
Intelligent Weighing PD-3000 Electronic Balance 6/29/2012 Annual 6/29/2013 12040501 Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Bilennial 7/1/2013 11164283 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A MiniCircuits SLF-2400+ Low Pass Filter CBT N/A CBT N/A MiniCircuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A WR 62344-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2013 11188644 Rohde & Schwarz NRV-Z32 Peak Power Sensor 10/24/2013 Annual 2/14/2014 8301901 Mini-Circuits BW-V-232 Peak Power Sensor 2/14/2013 Annual 2/14/2014 98150017 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2	V						
Control Company 61220-416 Long-Stem Thermometer 7/1/2011 Blennial 7/1/2013 11164283 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A WR 62344-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2013 11188644 Rohde & Schwarz NRV-323 Peak Power Sensor 10/1/2/2012 Biennial 10/24/2014 198013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 1980104 Anritsu ML2481A Power Sensor 2/14/2013 Annual 2/14/2014 5821 Anritsu ML2481A Power Sensor 12/4/2013 Annual 2/14/2013 12/07/2014 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
MinCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A MinCircuits SLP-2400+ Low Pass Filter CBT N/A CBT R879500 Mini-Circuits SLP-2400+ Low Pass Filter DC to 1000 MHz CBT N/A CBT R879500 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2350+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A WR 62344-925 Mini-Thermometer 10/24/2011 Biennial 10/12/2014 83601901 Mini-Circuits BW-N20W5 Power Sensor 10/12/2013 Annual 2/14/2014 11286 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 1/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Pulse Power Sensor 1/2/2/2012 Annual 1/2/4/2013 12/2/2013 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A MiniCircuits SLP-2400+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A WWR 66344-925 Mini-Thermometer 10/24/2011 Biennial 10/12/2014 836019/01 Mini-Circuits BW-N20W5 Power Meter 2/14/2013 Annual 2/14/2014 1190013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5821 Anritsu MA2411B Pulse Power Sensor 12/26/2012 Annual 2/14/2013 11207364 Anritsu MA2411B Pulse Sensor 12/4/2014 10/172014 8010177 S							
MiniCircuits SLP-2400+ Low Pass Filter C CBT N/A CBT R89795009 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A WR 62344-925 Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Rohde & Schwarz NRV-732 Peak Power Sensor 10/12/2012 Biennial 10/24/2013 8108019/01 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CET 1226 Anritsu ML2438A Power Attenuator CBT N/A CET 119013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Pulse Power Sensor 1/24/2012 Annual 1/2/2/2013 1/20203 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 1/16/2013 62090113 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CET NA CBT N/A WWR 62344-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2014 836019/01 Mini-Circuits BW-N20W5 Power Attenuator CBT NA CBT 11/38644 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 9815004 Anritsu MA2481A Power Meter 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/4/2013 12/2/2013 12/2/2013 12/2/2013 12/2/2013 102/2/2013 102/2/2013 102/2/2013 102/2/2013 102/2/2013 102/2/2013 12/2/2013 102/2/2013 12/2/2/2013 12/2/2/2/1 12/4/2/2/1 12/4/2/2/1							
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A WWR 6234-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2013 11188644 Rohde & Schwarz NRV-323 Peak Power Sensor 10/12/2014 Biennial 10/12/2014 83601901 Mini-Circuits BW-N20W5 Power Meter 2/14/2013 Annual 2/14/2014 1190013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 981500/4 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481B Poles Power Sensor 12/14/2013 Annual 2/14/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/14/2012 Annual 12/12/2013 1027293 Anritsu MA2411B Pulse Power Sensor 12/12/2012 Annual 12/12/2013 1027293 Anritsu MA2411B Pulse Power Sensor 12/12/2012 Annual 12/12/2013							
WRR 62344-925 Mini-Thermometer 10/24/2011 Biennial 10/24/2013 11188644 Rohde & Schwarz NRV-323 Peak Power Sensor 10/12/2012 Biennial 10/12/2014 836019/01 Mini-Circuits BW-N20WS Power Attenuator CBT N/A CBT 1226 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 190013 Anritsu ML2438A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 1126063 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 12/2/2013 1027293 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 12/5/2013 1027293 Anritsu MA2411B Reali Time Spectrum Analyzer 4/17/2013 Annual 11/5/201				-			
Rohde & Schwarz NRV-Z32 Peak Power Sensor 10/12/2012 Biennial 10/12/2014 836019/01 Mini-Circuits BW-N20W/5 Power Attenuator CBT N/A CBT 1226 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 1190013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 538 Anritsu MA2481A Power Sensor 12/5/2012 Annual 2/14/2013 1126566 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 1126566 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 19/19/2013 1207364 Anritsu MA2411B Pulse Sensor 11/6/2012 Annual 9/19/2013 1027293 Anritsu MA2411B Reali Time Spectrum Analyzer 4/17/2013 Annual 3/15/2013 30022				-			
Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 1190013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 9815004' Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Power Sensor 2/16/2012 Annual 2/14/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/6/2012 Annual 12/4/2013 1027293 Anritsu MA2411B Pulse Power Sensor 11/6/2012 Annual 19/19/2013 1027293 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 11/16/2013 6209011 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 11/16/2013 6320203 SPEAG ES3DV3 SAR Probe 31/16/2013 Annual 3/15/2013 33227 S							
Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 1190013 Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 9815004' Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5381 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/5/2013 11207364 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 11/6/2013 1027293 Anritsu MR2411B Pulse Sensor 9/19/2012 Annual 11/6/2013 62099011 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 4/17/2014 B010177 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209	Rohde & Schwarz	NRV-Z32	Peak Power Sensor	10/12/2012	Biennial	10/12/2014	836019/013
Anritsu ML2438A Power Meter 2/14/2013 Annual 2/14/2014 9815004* Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/4/2013 1027283 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 11/6/2013 62009011 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 11/6/2013 62009011 Anritsu MR820C Radio Communication Tester 11/6/2013 Annual 11/6/2013 3022 SPEAG ES3DV2 SAR Probe 8/15/2013 Annual 8/28/2014 3022 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 S	Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5318 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/6/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/6/2012 Annual 12/4/2013 1207364 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 9/19/2013 1027293 Anritsu MK820C Radio Communication Tester 11/6/2012 Annual 9/19/2013 1027293 Anritsu MK820C Radio Communication Tester 11/6/2012 Annual 4/17/2014 B010177 SPEAG ES3DV2 SAR Probe 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2014 3209 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 11/15/2013 3287 Rohde & Schwarz SMIE06 Signal Generator 10/11	Anritsu	ML2438A	Power Meter	2/14/2013	Annual	2/14/2014	1190013
Anritsu MA2481A Power Sensor 2/14/2013 Annual 2/14/2014 5821 Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/4/2013 1027394 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 9/19/2013 1027293 Anritsu MT8820C Radio Communication Tester 11/6/2012 Annual 9/19/2013 620090115 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 8/28/2013 30227 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 8/28/2013 30227 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 9/20/2013 3288 Rohde & Schwarz SME06 Signal Generator 10/11/2013 Anzerametriter Annual <td< td=""><td>Anritsu</td><td>ML2438A</td><td>Power Meter</td><td>2/14/2013</td><td>Annual</td><td>2/14/2014</td><td>98150041</td></td<>	Anritsu	ML2438A	Power Meter	2/14/2013	Annual	2/14/2014	98150041
Anritsu MA2411B Pulse Power Sensor 12/5/2012 Annual 12/5/2013 1126066 Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/4/2013 1207364 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 12/4/2013 1207364 Anritsu MT8820C Radio Communication Tester 11/6/2012 Annual 11/6/2013 620090113 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 8/28/2013 3022 SPEAG ES3DV2 SAR Probe 8/28/2013 Annual 3/15/2014 3209 SPEAG ES3DV3 SAR Probe 3/15/2012 Annual 3/15/2014 3208 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 10/11/2013 3287 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 3288 Rohde & Schwarz SME06 Signal Generator 10/11/2013 Annual 4/17/2014 DE27259 <td>Anritsu</td> <td>MA2481A</td> <td>Power Sensor</td> <td>2/14/2013</td> <td>Annual</td> <td>2/14/2014</td> <td>5318</td>	Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	5318
Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/4/2013 1207364 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 9/19/2013 1027293 Anritsu MT8820C Radio Communication Tester 11/6/2012 Annual 11/6/2013 620090115 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 4/17/2014 B010177 SPEAG ES3DV2 SAR Probe 8/28/2013 Annual 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 10/11/2013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 10/11/2013 3288 Rohde & Schwarz SML066 Signal Generator 10/11/2013 Annual 10/11/2014 22225	Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	5821
Anritsu MA2411B Pulse Power Sensor 12/4/2012 Annual 12/4/2013 1207364 Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 9/19/2013 1027293 Anritsu MT8820C Radio Communication Tester 11/6/2012 Annual 11/6/2013 620090115 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 4/17/2014 B010177 SPEAG ES3DV2 SAR Probe 8/28/2012 Annual 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2014 3209 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 1/1/12/013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 10/11/2013 3288 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2014 D22759 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M3400-11 Agilent	Anritsu	MA2411B	Pulse Power Sensor	12/5/2012	Annual	12/5/2013	1126066
Anritsu MA2411B Pulse Sensor 9/19/2012 Annual 9/19/2013 1027293 Anritsu MT8820C Radio Communication Tester 11/6/2012 Annual 11/6/2013 620090115 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 4/17/2014 B010177 SPEAG ES3DV2 SAR Probe 8/28/2012 Annual 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 11/15/2013 3022 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3229 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 Rohde & Schwarz SME06 Signal Generator 10/11/2014 Annual 10/11/2013 832026 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M34 100-11 Agilent 85047A S-Parameter Test Set N/A N/A N/A 204A0057 <		MA2411B	Pulse Power Sensor	12/4/2012	Annual	12/4/2013	1207364
Anritsu MT8820C Radio Communication Tester 11/6/2012 Annual 11/6/2013 620090119 Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 4/17/2014 B010177 SPEAG ES3DV2 SAR Probe 8/28/2012 Annual 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 10/11/2013 3287 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M3/4 A00-1 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fishe							
Tektronix RSA6114A Real Time Spectrum Analyzer 4/17/2013 Annual 4/17/2014 B010177 SPEAG ES3DV2 SAR Probe 8/28/2012 Annual 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 3/15/2013 3287 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 10/11/2012 Annual 10/11/2013 3288 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M3W1A00-11 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Binnial 11/6/2014 12264002 Seekonk							
SPEAG ES3DV2 SAR Probe 8/28/2012 Annual 8/28/2013 3022 SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 11/15/2013 3287 Rohde & Schwarz SME06 Signal Generator 10/11/2013 Annual 10/11/2014 DE27259 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M3W1A00-11 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264005 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anrit							
SPEAG ES3DV3 SAR Probe 3/15/2013 Annual 3/15/2014 3209 SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 11/15/2013 3287 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 Rohde & Schwarz SME06 Signal Generator 10/11/2013 Annual 4/17/2014 DE27259 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MIS5A00-0 COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A CBT M3W1A00-11 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A							
SPEAG ES3DV3 SAR Probe 11/15/2012 Annual 11/15/2013 3287 SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 9/20/2013 3288 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 Rohde & Schwarz SME06 Signal Generator 10/11/2013 Annual 10/11/2014 DE27259 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MSA Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/16/2012 Biennial 11/16/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 30/2015 N/A Gigatronics 8651A Universal Sensor 12/17/2012 Annual 10/10/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG ES3DV3 SAR Probe 9/20/2012 Annual 9/20/2013 3288 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 Rohde & Schwarz SMIQ03B Signal Generator 4/17/2013 Annual 4/17/2014 DE27259 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M35A00-0 COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A CBT M3400-1 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8'lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Sensor 12/17/2012 Annual 12/17/2013 12							
Rohde & Schwarz SME06 Signal Generator 10/11/2012 Annual 10/11/2013 832026 Rohde & Schwarz SMIQ03B Signal Generator 4/17/2013 Annual 4/17/2014 DE27259 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-0 COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A CBT M3W1A00-17 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/2/2/012 Annual 12/17/2013							
Rohde & Schwarz SMIQ03B Signal Generator 4/17/2013 Annual 4/17/2014 DE27259 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-0 COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A CBT M3W1A00-17 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Agilent MA24106A USB Power Sensor 8/22/2012 Annual 12/17/2013							
COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-0 COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A CBT M3W1A00-11 Agilent 85047A S-Parameter Test Set N/A N/A CBT M3W1A00-11 Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204443 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 12/17/2013 1244524 Agilent MA24106A USB Power Sensor 12/12/1212 Annual 12/12/131 1244							
COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A CBT M3W1A00-1/ Agilent 85047A S-Parameter Test Set N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 122640025 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 10/10/2013 8650319 Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 12/17/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/6/20			0				
Agilent 85047A S-Parameter Test Set N/A N/A N/A N/A 2904A0057 Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual							M1S5A00-00
Fisher Scientific 15-077-960 Thermometer 11/6/2012 Biennial 11/6/2014 12264002 Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204443 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial <td>COMTECH</td> <td>AR85729-5/5759B</td> <td>Solid State Amplifier</td> <td>CBT</td> <td>N/A</td> <td>CBT</td> <td>M3W1A00-100</td>	COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-100
Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3/5/2015 N/A Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204449 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204449 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial	Agilent	85047A	S-Parameter Test Set	N/A	N/A	N/A	2904A00579
Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448	Fisher Scientific	15-077-960	Thermometer	11/6/2012	Biennial	11/6/2014	122640025
Gigatronics 8651A Universal Power Meter 10/10/2012 Annual 10/10/2013 8650319 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448	Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204343 Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244504 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448							8650319
Anritsu MA2481D Universal Sensor 12/17/2012 Annual 12/17/2013 1204419 Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/6/2013 1248508 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448							
Anritsu MA24106A USB Power Sensor 8/22/2012 Annual 8/22/2013 1231535 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/6/2013 1248508 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448							
Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12/7/2013 1244524 Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/6/2013 1248508 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448							
Agilent MA24106A USB Power Sensor 12/6/2012 Annual 12/6/2013 1248508 Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448							
Control Company 36934-158 Wall-Mounted Thermometer 1/4/2012 Biennial 1/4/2014 12201448							÷
	U U						
			vvali-iviounted Thermometer	1/4/2012	Biennial	1/4/2014	122014488

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 26
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 32 of 36

14 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

а	b	с	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		C _i	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	ui	vi
	000.	(,			5		(± %)	(± %)	
Measurement System							<u> </u>		
Probe Calibration	E.2.1	6.0	Ν	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)	1	1	RSS		L		12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🔁 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 26
0Y1305060801 – R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 33 of 36

© 2013 PCTEST Engineering Laboratory, Inc.

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 26
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 34 of 36
© 2013 PCTEST Engineering Labor	atory, Inc.	· · · · · · · · · · · · · · · · · · ·		REV 12.4 M

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 25 of 20
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset		Page 35 of 36

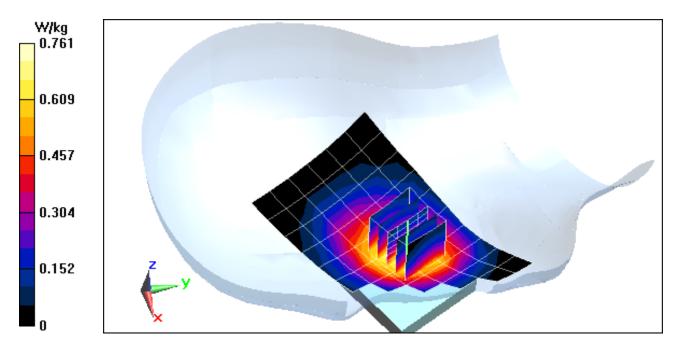
- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [33] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFE410G		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 36 of 36	
0Y1305060801 - R2.ZNF	05/05/13 - 05/20/13	Portable Handset			

APPENDIX A: SAR TEST DATA

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1

Communication System: GSM GPRS; 3 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.76 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 40.48$; $\rho = 1000$ kg/m³


Phantom section: Right Section

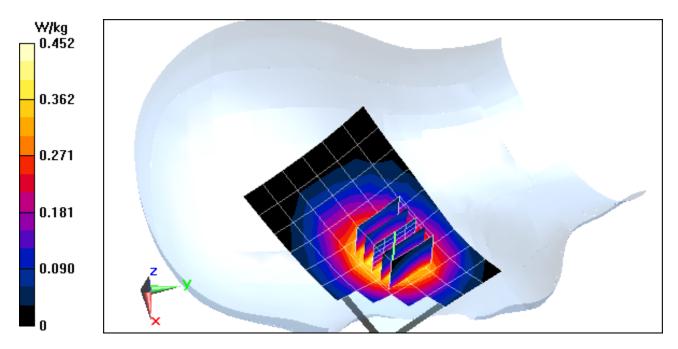
Test Date: 05-08-2013; Ambient Temp: 24.4°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3288; ConvF(6.41, 6.41, 6.41); Calibrated: 9/20/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/19/2012 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 3 Tx slots

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.320 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.951 W/kg SAR(1 g) = 0.764 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1


Communication System: UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.924$ S/m; $\varepsilon_r = 40.48$; $\rho = 1000$ kg/m³ Phantom section: Right Section

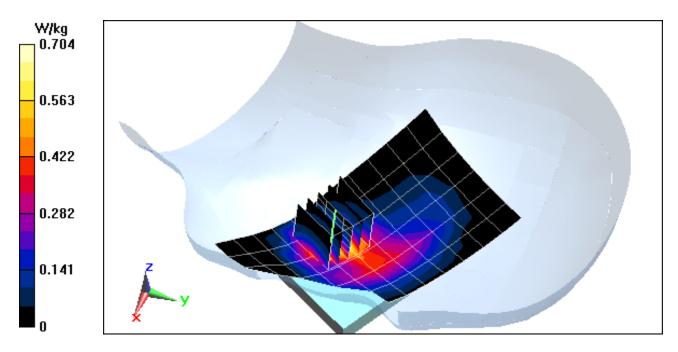
Test Date: 05-08-2013; Ambient Temp: 24.4°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3288; ConvF(6.41, 6.41, 6.41); Calibrated: 9/20/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/19/2012 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.8 (7117)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.364 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.565 W/kg SAR(1 g) = 0.455 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1


"Communication System: GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.432$ S/m; $\varepsilon_r = 39.627$; $\rho = 1000$ kg/m³ Phantom section: Left Section

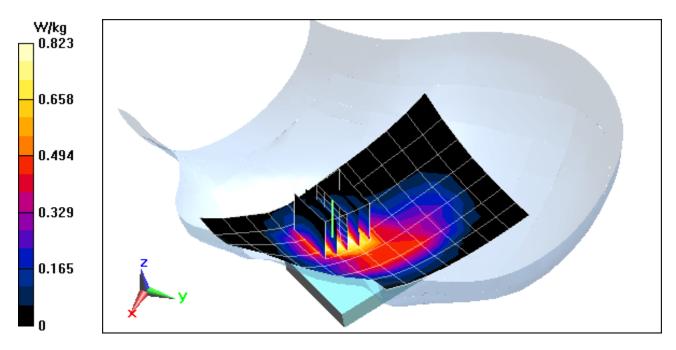
Test Date: 05-07-2013; Ambient Temp: 23.0°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3209; ConvF(5.21, 5.21, 5.21); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.8 (7117)

Mode: GSM 1900, Left Head, Cheek, Mid.ch

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.967 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.671 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1


Communication System: UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 J gcf 'Medium parameters used: f = 1880 MHz; $\sigma = 1.432$ S/m; $\varepsilon_r = 39.627$; $\rho = 1000$ kg/m³ Phantom section: Left Section

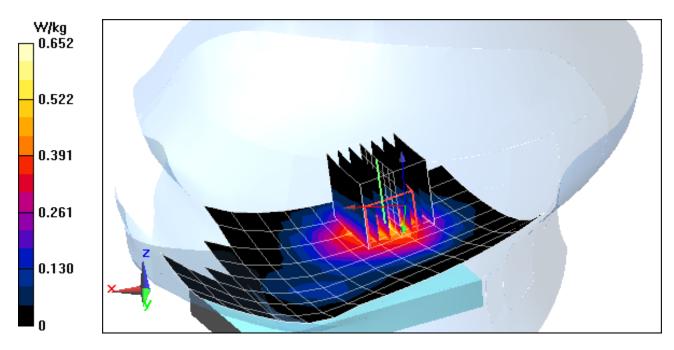
Test Date: 05-07-2013; Ambient Temp: 23.0°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3209; ConvF(5.21, 5.21, 5.21); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.8 (7117)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.301 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.12 W/kg SAR(1 g) = 0.704 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#2


Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.884$ S/m; $\varepsilon_r = 37.972$; $\rho = 1000$ kg/m³ Phantom section: Right Section

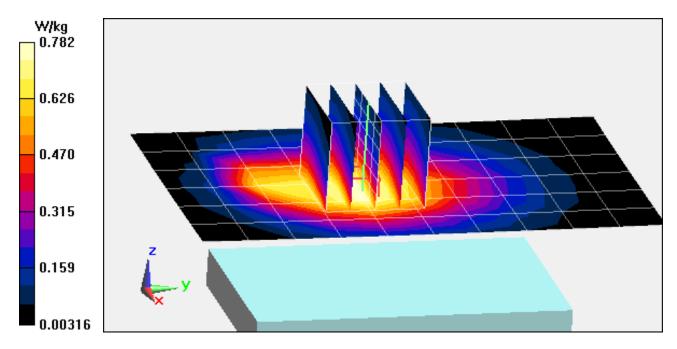
Test Date: 05-07-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7117)

Mode: IEEE 802.11b, Right Head, Cheek, Ch 11, 1 Mbps

Area Scan (9x14x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.825 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.503 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1


Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.004$ S/m; $\varepsilon_r = 54.853$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

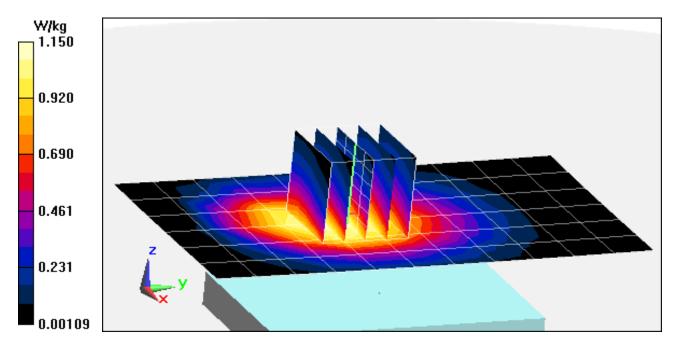
Test Date: 05-05-2013; Ambient Temp: 23.1°C; Tissue Temp: 20.7°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0 Door; Type: QDOVA002BB; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117)

Mode: GSM 850, Body SAR, Back side, Mid.ch

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.192 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.759 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1


Communication System: GSM GPRS; 3 Tx slots; Frequency: 824.2 MHz;Duty Cycle: 1:2.76 Medium: 835 Body Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.987$ S/m; $\varepsilon_r = 56.148$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

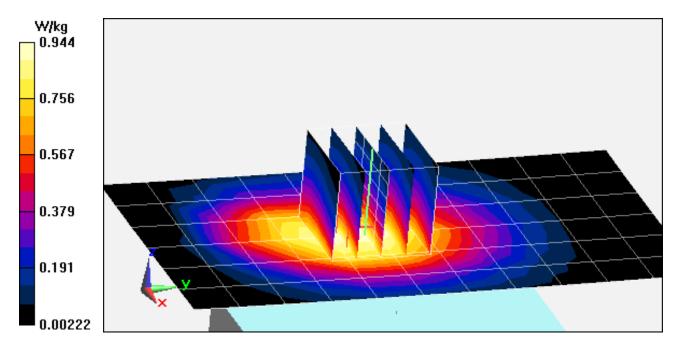
Test Date: 05-20-2013; Ambient Temp: 24.9°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0 Door; Type: QDOVA002BB; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117)

Mode: GPRS 850, Body SAR, Back side, Low.ch, 3 Tx Slots

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.137 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 1.16 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#1


Communication System: UMTS; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 54.73$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-05-2013; Ambient Temp: 23.1°C; Tissue Temp: 20.7°C

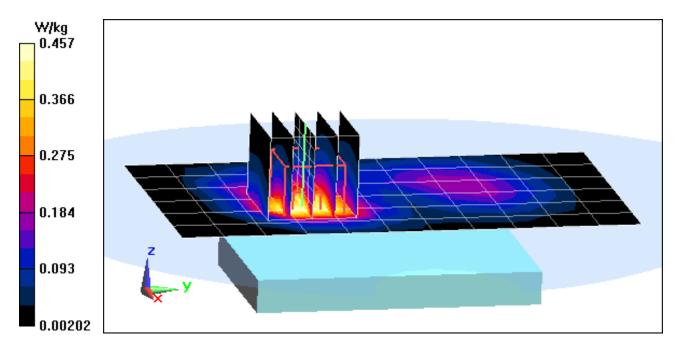
Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0 Door; Type: QDOVA002BB; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.8 (7117)

Mode: UMTS 850, Body SAR, Back side, High.ch

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.895 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.917 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#3

Communication System: GSM1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.483$ S/m; $\varepsilon_r = 52.07$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3287; ConvF(4.69, 4.69, 4.69); Calibrated: 11/15/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 11/13/2012 Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7117)

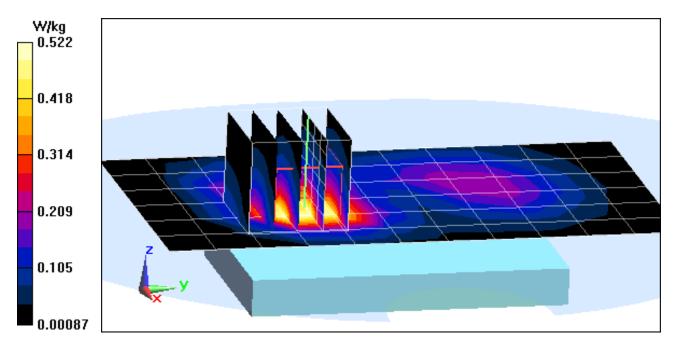
Mode: GSM 1900, Body SAR, Back side, Mid.ch

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.149 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.824 W/kg SAR(1 g) = 0.483 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#3

Communication System: GSM1900 GPRS 3 Tx Slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used:

f = 1880 MHz; σ = 1.483 S/m; ε_r = 52.07; ρ = 1000 kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

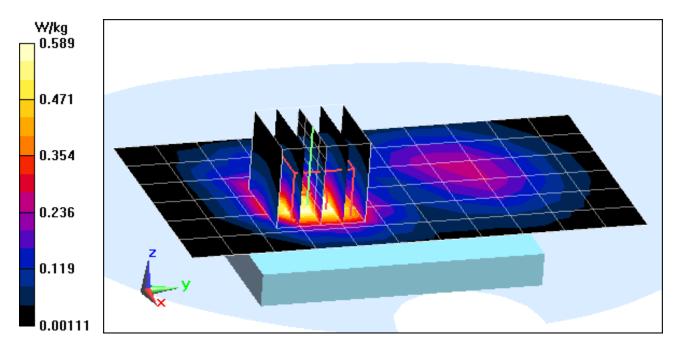
Probe: ES3DV3 - SN3287; ConvF(4.69, 4.69, 4.69); Calibrated: 11/15/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 11/13/2012 Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7117)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 3 Tx Slots

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.077 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.666 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#3

Communication System:WCDMA1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.483$ S/m; $\varepsilon_r = 52.07$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

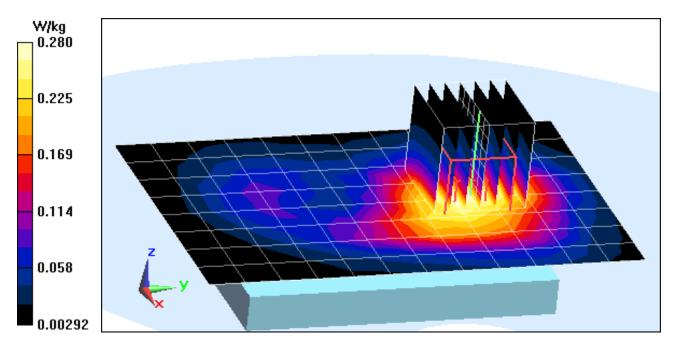
Test Date: 05-07-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3287; ConvF(4.69, 4.69, 4.69); Calibrated: 11/15/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 11/13/2012 Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7117)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.312 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.652 W/kg

DUT: ZNFE410G; Type: Portable Handset; Serial: SAR#2


Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.042$ S/m; $\varepsilon_r = 51.758$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2013; Ambient Temp: 23.5°C; Tissue Temp: 23.0°C

Probe: ES3DV2 - SN3022; ConvF(3.97, 3.97, 3.97); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7117)

Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Back Side

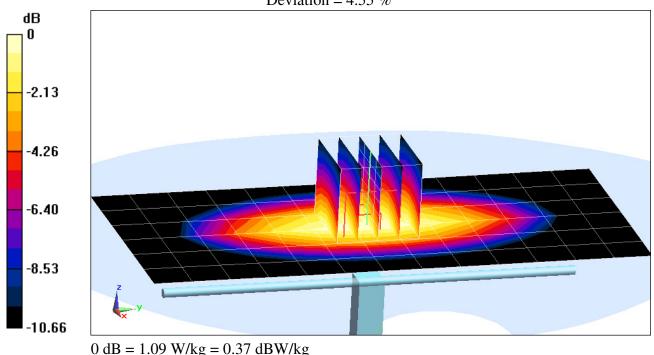
Area Scan (9x13x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.084 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.410 W/kg SAR(1 g) = 0.234 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.922$ S/m; $\varepsilon_r = 40.501$; $\rho = 1000$ kg/m³

Phantom section: Flat Section ; Space: 1.5 cm


Test Date: 05-08-2013; Ambient Temp: 24.4°C; Tissue Temp: 23.4°C

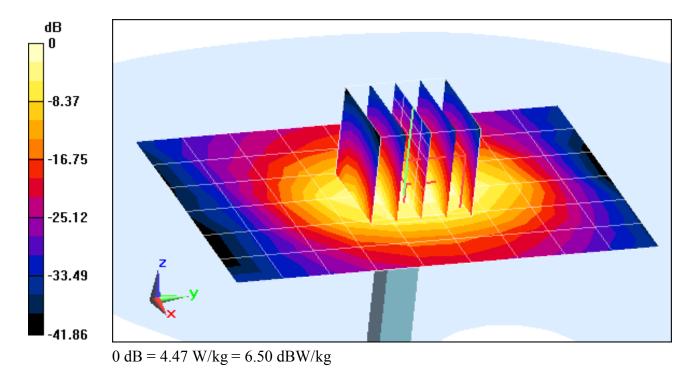
Probe: ES3DV3 - SN3288; ConvF(6.41, 6.41, 6.41); Calibrated: 9/20/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/19/2012 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY52, Version 52.8 (6);SEMCAD X Version 14.6.9 (7117)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.01 W/kg Deviation = 4.55 %

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.456$ S/m; $\varepsilon_r = 39.528$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

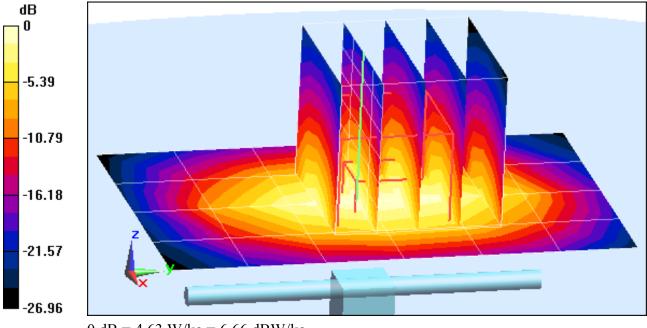
Test Date: 05-07-2013; Ambient Temp: 23.0°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3209; ConvF(5.21, 5.21, 5.21); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Right; Type: QD000P40CD; Serial: 1686 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.8 (7117)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 7.45 W/kg SAR(1 g) = 3.99 W/kg Deviation = 0.50 %

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.425$ S/m; $\varepsilon_r = 39.529$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-13-2013; Ambient Temp: 24.3°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(4.86, 4.86, 4.86); Calibrated: 8/28/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7117)

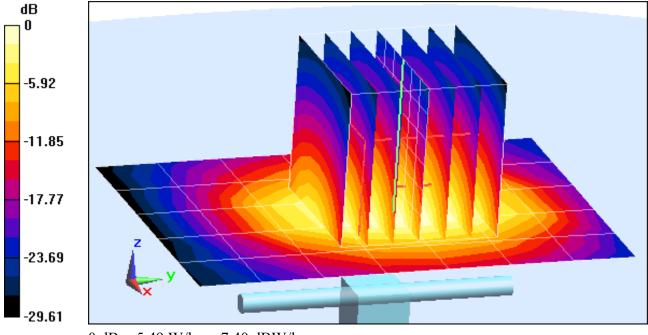
1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 7.42 W/kg SAR(1 g) = 4.05 W/kg Deviation = 2.79 %

0 dB = 4.63 W/kg = 6.66 dBW/kg

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.869$ S/m; $\varepsilon_r = 37.997$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.7°C

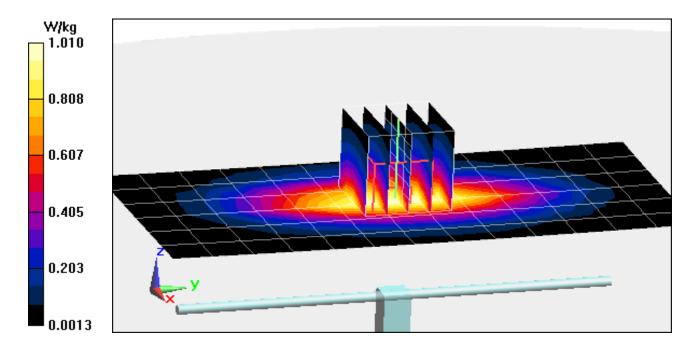
Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.8 (7117)

2450MHz System Verification

Area Scan (6x8x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.4 W/kg Deviation = 2.47 %

0 dB = 5.49 W/kg = 7.40 dBW/kg

DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d132


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 1.003$ S/m; $\varepsilon_r = 55.98$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

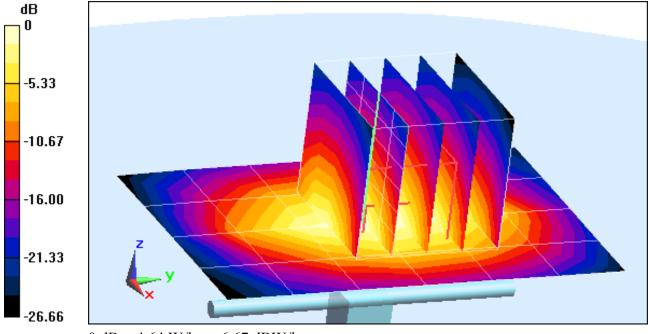
Test Date: 05-20-2013; Ambient Temp: 24.9°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: ELI v5.0 Door; Type: QDOVA002BB; Serial: TP-1158 Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 1.41 W/kg SAR(1 g) = 0.973 W/kg; SAR(10 g) = 0.641 W/kg Deviation = 3.95 %

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.515$ S/m; $\varepsilon_r = 52.017$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3287; ConvF(4.69, 4.69, 4.69); Calibrated: 11/15/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 11/13/2012 Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.8 (7117)

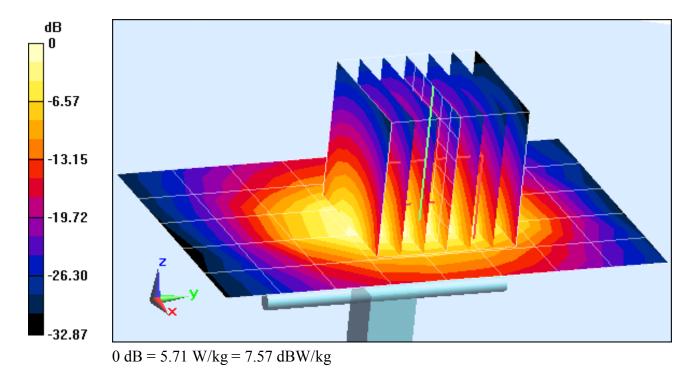
1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 7.44 W/kg SAR(1 g) = 4.09 W/kg Deviation = 1.49 %

0 dB = 4.64 W/kg = 6.67 dBW/kg

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.025$ S/m; $\varepsilon_r = 51.808$; $\rho = 1000$ kg/m³


Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2013; Ambient Temp: 23.5°C; Tissue Temp: 23.0°C

Probe: ES3DV2 - SN3022; ConvF(3.97, 3.97, 3.97); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.8 (7117)

2450MHz System Verification

Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.18 W/kg Deviation = 0.39 %

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

GWISS C. C. Z. PRIORATIO

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Client PC Test

Certificate No:	1900V2-5d148	Feb13

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5	d148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	February 06, 201	3	AN A
	•	onal standards, which realize the physical ur obability are given on the following pages ar	
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sif Then
Approved by:	Katja Pokovic	Technical Manager	Al hof-
			Issued: February 6, 2013
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory	y.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole 6 positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 6
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna 6 connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.9 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω + 6.3 jΩ
Return Loss	- 23.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

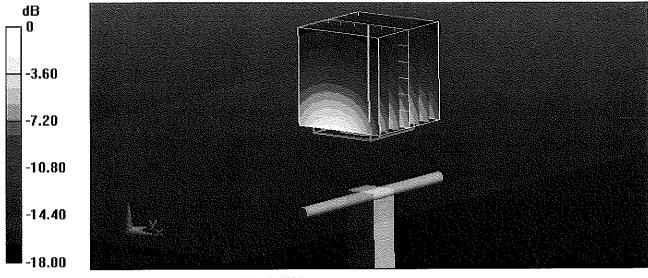
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 06.02.2013

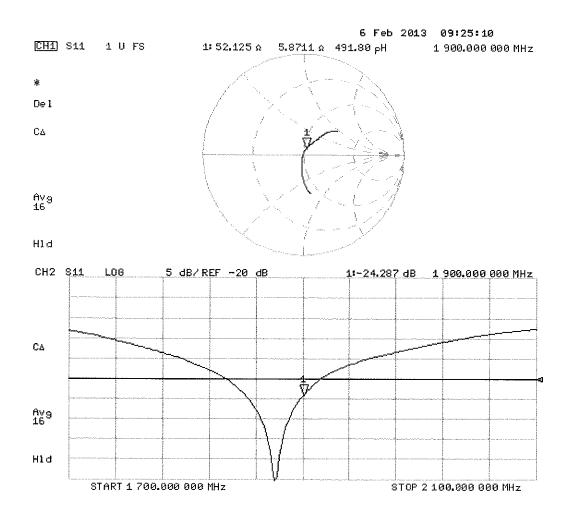
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 S/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.534 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

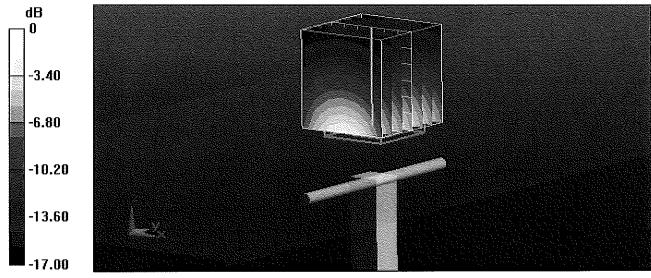
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

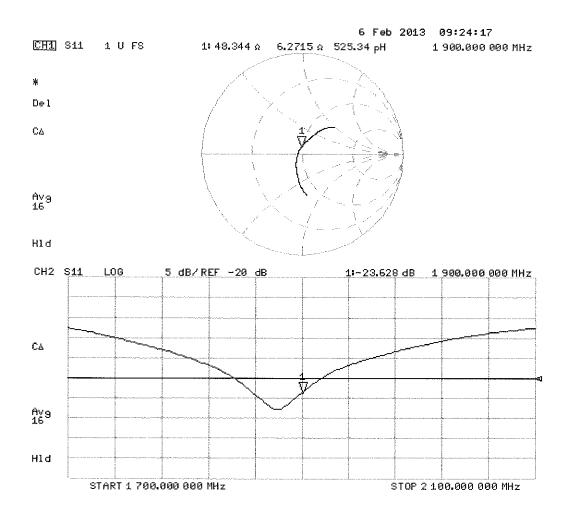
Date: 06.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.534 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.45 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D1900V2-5d080_Jul12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D1900V2 - SN: 5d080 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz ~Koth July 20, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards Cal Date (Certificate No.) ID # Oct-12 05-Oct-11 (No. 217-01451) GB37480704 Power meter EPM-442A Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 Reference 20 dB Attenuator 27-Mar-12 (No. 217-01533) Apr-13 SN: 5047.2 / 06327 Type-N mismatch combination Dec-12 30-Dec-11 (No. ES3-3205_Dec11) SN: 3205 Reference Probe ES3DV3 Jun-13 27-Jun-12 (No. DAE4-601_Jun12) DAE4 SN: 601 Scheduled Check Secondary Standards 1D # Check Date (in house) 18-Oct-02 (in house check Oct-11) In house check: Oct-13 Power sensor HP 8481A MY41092317 In house check: Oct-13 04-Aug-99 (in house check Oct-11) 100005 RF generator R&S SMT-06 In house check: Oct-12 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) Name Function Signature Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: July 20, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	·····
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1 .40 m ho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.35 mW / g

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω + 5.7 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 6.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

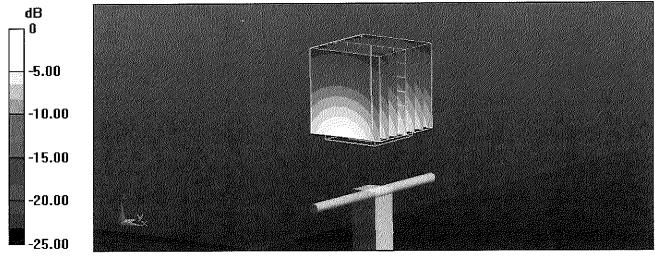
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 20.07.2012

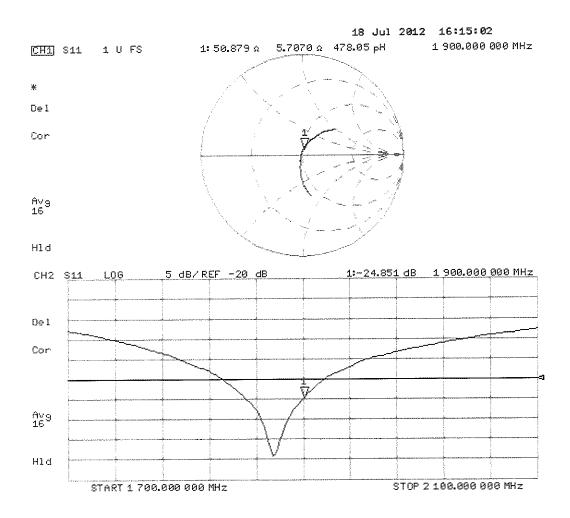
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d080


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 mho/m; ϵ_r = 39.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 97.586 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.454 mW/g SAR(1 g) = 9.78 mW/g; SAR(10 g) = 5.17 mW/g Maximum value of SAR (measured) = 12.2 mW/g

0 dB = 12.2 mW/g = 21.73 dB mW/g

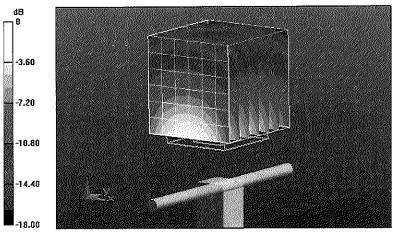
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.07.2012

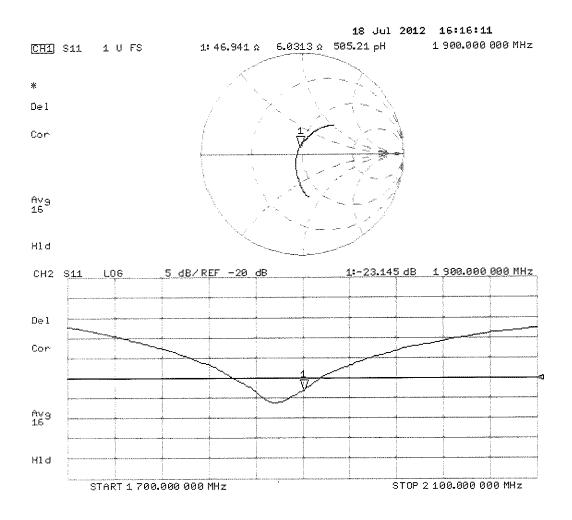
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d080


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.688 V/m; Power Drift = -0.00 dBPeak SAR (extrapolated) = 17.552 mW/gSAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.35 mW/g Maximum value of SAR (measured) = 12.8 mW/g

0 dB = 12.8 mW/g = 22.14 dB mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D2450V2 - SN: 7	19			
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz		
	a a star ta se star ta se star ta se star t				
Calibration date:	August 23, 2012	×	1 pot min		
	This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.				
Calibration Equipment used (M&T		, (ac., j. c			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12		
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12		
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13		
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13		
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12		
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13		
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13		
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12		
	Name	Function	Signature		
Calibrated by:	Israe El-Naouq	Laboratory Technician	Israu El-Daoug		
Approved by:	Katja Pokovic	Technical Manager	Selle-		
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory	Issued: August 23, 2012		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
 - Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	,

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω + 3.8 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω + 5.9 jΩ
Return Loss	- 24.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

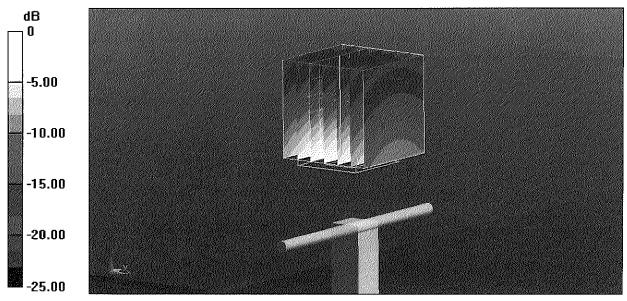
Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

Date: 23.08.2012

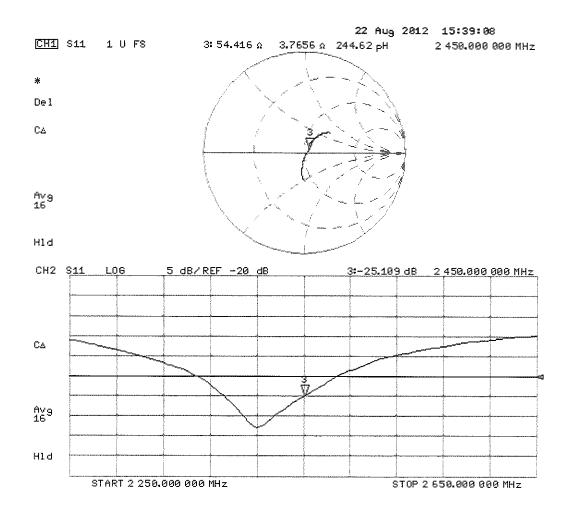
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.219 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.633 mW/g SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.19 mW/g Maximum value of SAR (measured) = 16.5 W/kg

0 dB = 16.5 W/kg = 24.35 dB W/kg

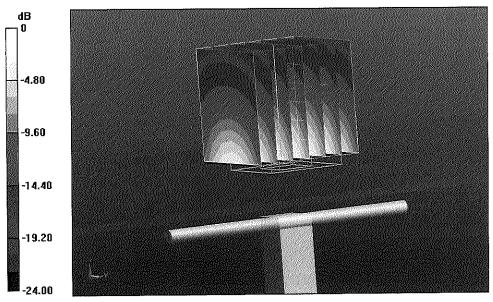
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.08.2012

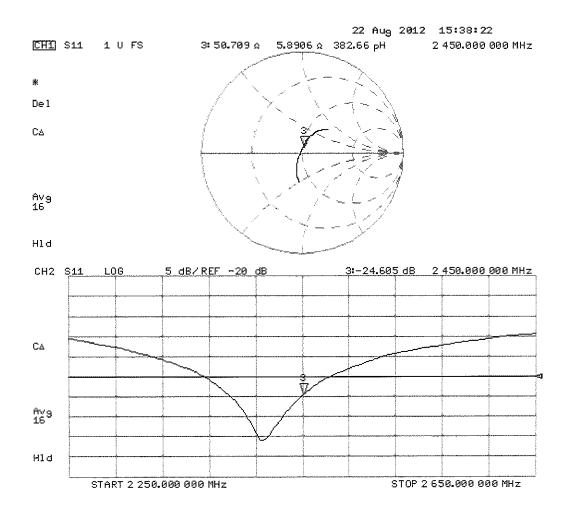
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.970 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.692 mW/g SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/g Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 24.66 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

PC Test

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d132_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D835V2 - SN: 4d	132	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	January 07, 2013		the second with the second sec
	•	onal standards, which realize the physical uni robability are given on the following pages an	
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sifthy-
Approved by:	Katja Pokovic	Technical Manager	Jele Kaf-
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laboratory	lssued: January 8, 2013

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Schmid & Partner

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	4 1 .5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.66 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.29 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.36 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.20 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 1.3 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 1.3 jΩ
Return Loss	- 34.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

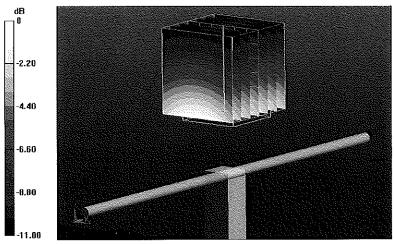
Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

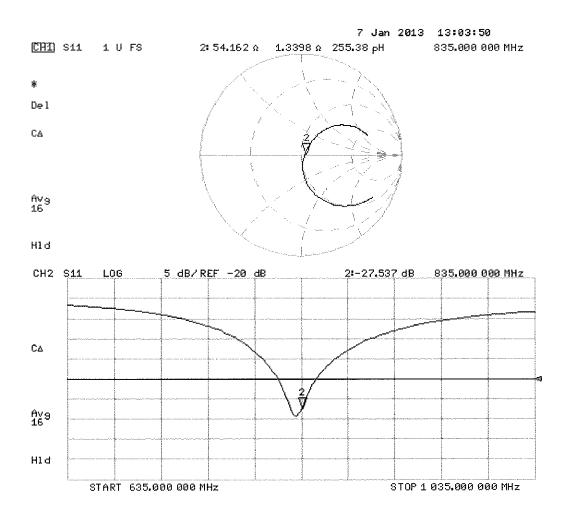
Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d132


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.542 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.88 W/kg

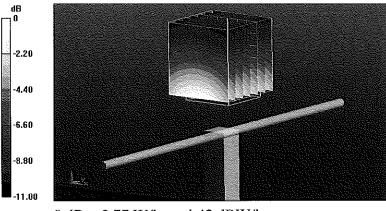
0 dB = 2.88 W/kg = 4.59 dBW/kg

DASY5 Validation Report for Body TSL

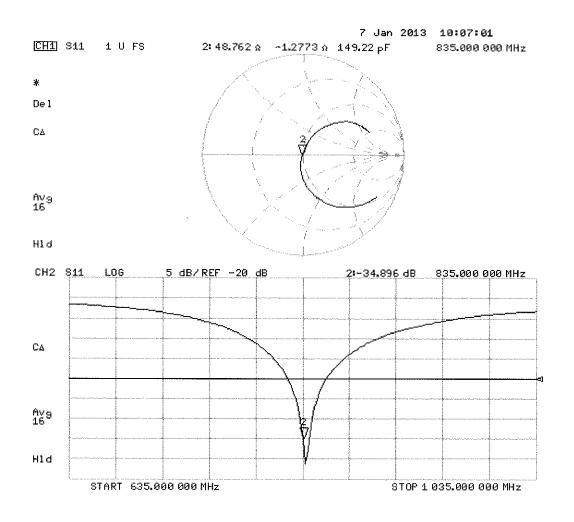
Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d132


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.512 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 3.47 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

С

S

PC Test Client

Certificate No: ES3-3022_Aug12

C	ALIB	R	A	TIC	N CE	RTIFIC	VTE

Object	ES3DV2 - SN:3022
Calibration procedure(s)	QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes
Calibration date:	August 28, 2012
	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been condu	ucted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508) Apr-13	
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	- P II
		, 	
Approved by:	Katja Pokovic	Technical Manager	
			, com second
			lanuarde Assessed 20, 2012
			Issued: August 28, 2012
This calibration certificate	e shall not be reproduced except in :	full without written approval of the lab	oratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

0103301 y.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Accreditation No.: SCS 108

Probe ES3DV2

SN:3022

Manufactured: April 15, 2003 Calibrated:

August 28, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.00	1.04	0.99	± 10.1 %
DCP (mV) ^B	98.3	99.5	101.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	133.3	±2.7 %
			Y	0.00	0.00	1.00	140.3	
			Z	0.00	0.00	1.00	178.9	

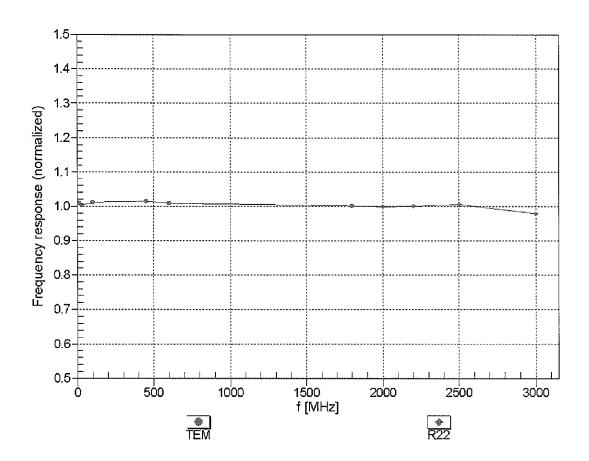
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.
- ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.30	6.30	6.30	0.30	1.72	± 12.0 %
835	41.5	0.90	6.03	6.03	6.03	0.35	1.63	± 12.0 %
1750	40.1	1.37	5.07	5.07	5.07	0.32	1.89	± 12.0 %
1900	40.0	1.40	4.86	4.86	4.86	0.40	1.57	± 12.0 %
2450	39.2	1.80	4.23	4.23	4.23	0.59	1.44	± 12.0 %
2600	39.0	1.96	4.10	4.10	4.10	0.67	1.37	± 12.0 %

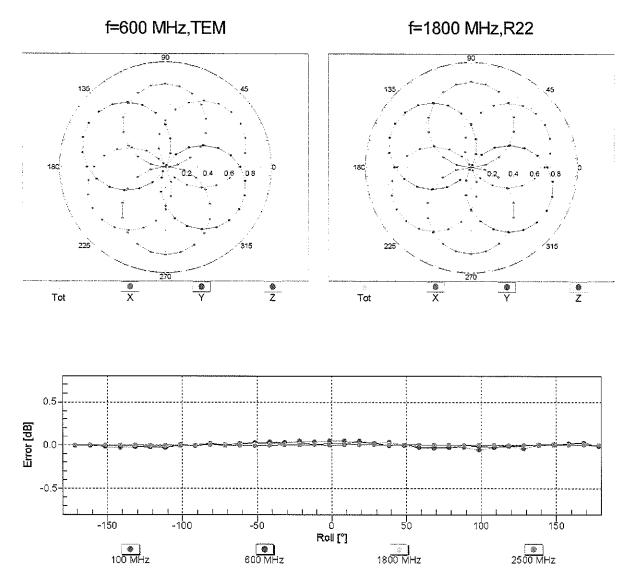
Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

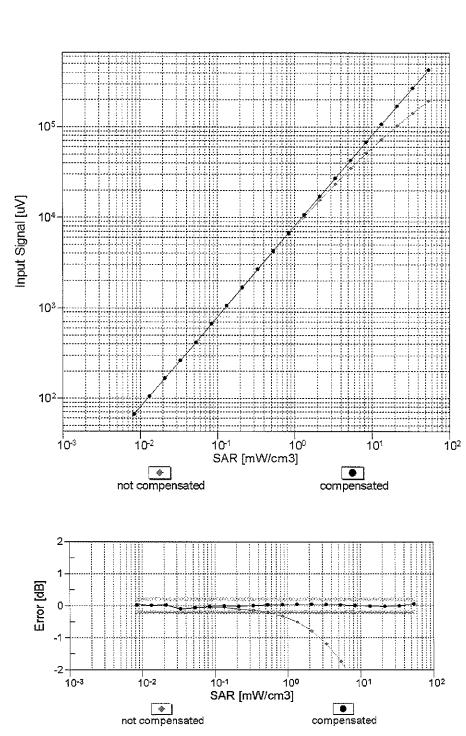

^{Γ} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.07	6.07	6.07	0.23	2.09	± 12.0 %
835	55.2	0.97	6.02	6.02	6.02	0.47	1.44	± 12.0 %
1750	53.4	1.49	4.70	4.70	4.70	0.46	1.55	± 12.0 %
1900	53.3	1.52	4.43	4.43	4.43	0.36	1.87	± 12.0 %
2450	52.7	1.95	3.97	3.97	3.97	0.65	1.06	± 12.0 %
2600	52.5	2.16	3.80	3.80	3.80	0.54	0.75	± 12.0 %

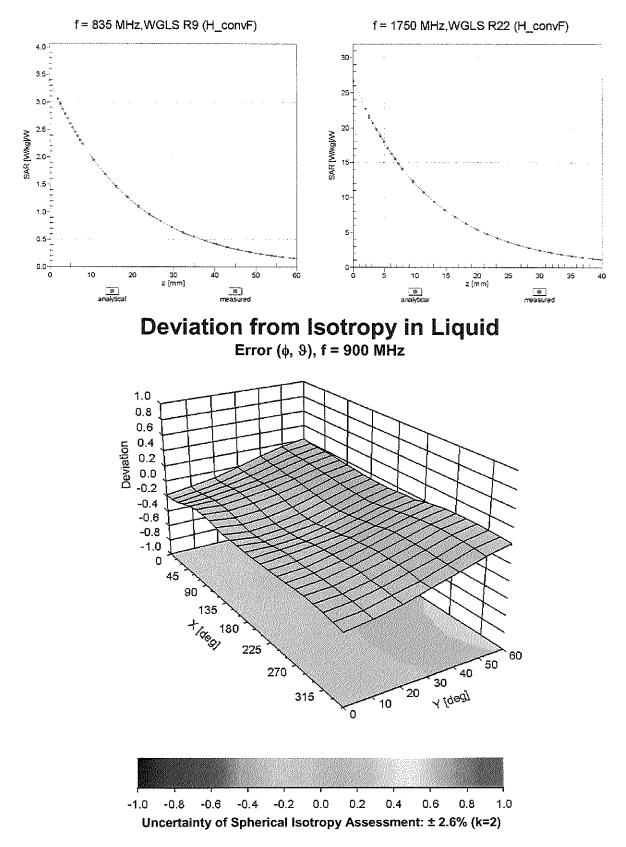
Calibration Parameter Determined in Body Tissue Simulating Media


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^L At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	98.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm