

EMC TEST REPORT

Test item : Cellular/PCS GSM/GPRS/WCDMA/HSDPA phone
with Bluetooth & WLAN

Model No. : LG-E400g, E400g, LGE400g, LG-E400G, LGE400G

Order No. : 1201-00012

Date of receipt : 2012-01-04

Test duration : 2012-01-18 ~ 2012-01-19

Use of report : FCC CoC Marking

Date of Issue : 2012-01-20

Applicant : LG Electronics MobileComm U.S.A., Inc.
10101 Old Grove Road., San Diego, CA 92131

Test laboratory : Digital EMC Co., Ltd.
683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 449-080, Korea

Test specification : ANSI C 63.4:2003
FCC Part 15 Subpart B
(Type of Device : Class B Personal Computers
and Peripherals (JBP))

Test environment : Temperature : (21 ~ 22) °C,
Humidity : (34 ~ 36) % R.H.

Test result : Comply Not Comply

The test results presented in this test report are limited only to the sample supplied by applicant and
the use of this test report is inhibited other than its purpose.

This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Tested by:

Manager
H.S.KO

Reviewed by:

General Manager
C.H.LEE

The above test report is the accredited test results by Korea Laboratory Accreditation Scheme,
which signed the ILAC-MRA.

PRESIDENT OF DIGITAL EMC CO., LTD.

CONTENTS

1. General Remarks	3
2. Test Laboratory	3
3. General Information of EUT	4
4. Test Summary	5
4.1 Applied standards and test results	5
4.2 Test environment and conditions	5
4.3 Test result Summary	5
5. Test Set-up and operation mode	6
5.1 Principle of Configuration Selection	6
5.2 Test Operation Mode	6
5.3 Support Equipment Used	6
6. Test Results : Emission	7
6.1 Conducted Disturbance	7
6.2 Radiated Disturbance	10
Appendix 1.....	15
List of Test and Measurement Instruments.....	15

1. General Remarks

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address : 683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 449-080, Korea

<http://www.digitalemc.com>

Tel: +82-31-321-2664 Fax: +82-31-321-1664

2. Test Laboratory

Digital EMC Co., Ltd. has been accredited / filed / authorized by the agencies listed in the following table;

Certificate	Nation	Agency	Code	Mark
Accreditation	Korea	KOLAS	393	ISO/IEC 17025
Site Filing	USA	FCC	101842 678747	Test Facility list & NSA Data
	Canada	IC	5740A-1 5740A-2	Test Facility list & NSA Data
	Japan	VCCI	C-1427 R-1364, R-3385 T-1442, G-338	Test Facility list & NSA Data
Certification	Korea	KC	KR0034	Test Facility list & NSA Data
	Germany	TUV	ROK1028C	ISO/IEC 17025

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

3. General Information of EUT

Model No.	LG-E400g
Add Model No.	E400g, LGE400g, LG-E400G, LGE400G
EUT Type	Cellular/PCS GSM/GPRS/WCDMA/HSDPA phone with Bluetooth &WLAN
Serial No	NONE
FCC ID	ZNFE400G
Type of Sample Tested	Pre-Production
High Frequency	800 MHz
Supplied Power for Test	AC120 V, 60 Hz
Applicant	LG Electronics MobileComm U.S.A., Inc. 10101 Old Grove Road., San Diego, CA 92131

4. Test Summary

4.1 Applied standards and test results

Test Items	Applied Standards	Results
Conducted Disturbance	ANSI C63.4:2003	C
Radiated Disturbance	ANSI C63.4:2003	C
C=Comply N/C=Not Comply N/T=Not Tested N/A=Not Applicable		

The data in this test report are traceable to the national or international standards.

4.2 Test environment and conditions

Test Items	Test date (MM-DD)	Temp (°C)	Humidity (% R.H.)	Pressure (hPa)
Conducted Disturbance	01-19	21	34	-
Radiated Disturbance	01-18	22	36	

4.3 Test result Summary

(1) Conducted Emission

Frequency [MHz]	Phase	Result [dB μ V]	Detector	Limit [dB μ V]	Margin [dB]
0.15092	L1	60.4	Quasi-Peak	65.9	5.5
0.15043	N	59.8	Quasi-Peak	66.0	6.2

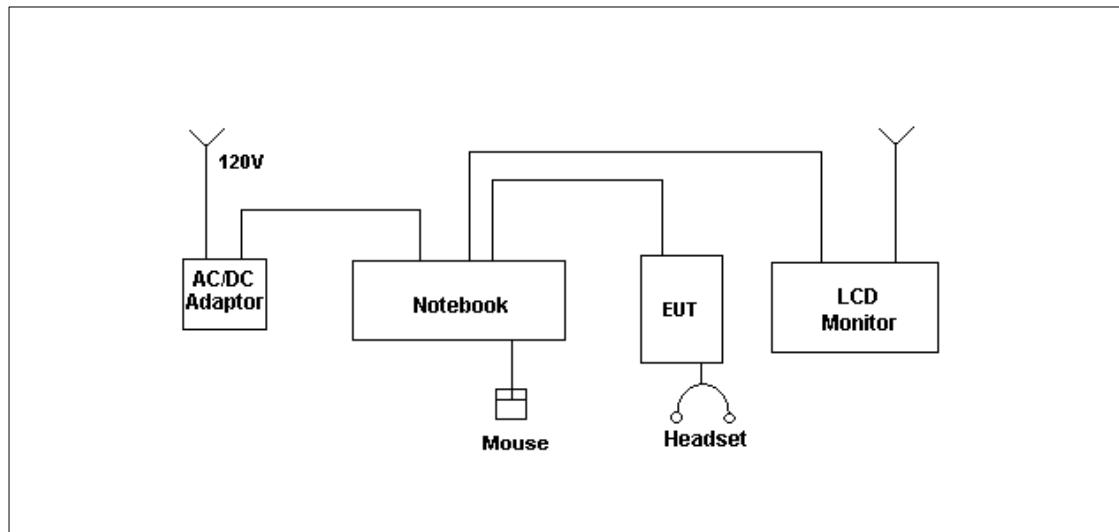
(2) Radiated Emission

Frequency [MHz]	Pol.	Result [dB(μ V/m)]	Detector	Limit [dB(μ V/m)]	Margin [dB]
129.212	V	26.4	Quasi-Peak	30.0	3.6

5. Test Set-up and operation mode

5.1 Principle of Configuration Selection

Emission : The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use.


5.2 Test Operation Mode

- PC link mode (The measurement was made of the maximized by: Write/Delete/Read the "H" pattern mode; data exchange speed; moving the cable)

5.3 Support Equipment Used

Unit	Model No.	Serial No.	Manufacturer	CABLE			Backshell	FCC ID
				Connect type	Length (m)	shield		
LCD Monitor	W2261VT	905NDFV73203	LG	POWER DSUB	1.8 1.5	Non- Shield	Plastic	DOC
Mouse	1484	352700021375	Microsoft Corp	USB	1.5	Non- Shield	Plastic	DOC
Headset	EAB62209201	N/A	I-Sound	Audio In/Out	1.1	Non- Shield	Plastic	DOC
Note Book	LGX14	004QTYS024338	LG	Power USB	1.8 1.1	Non- Shield Shield	Plastic	DOC
AC/DC Adaptor	ADP-40PH	6T1094	DELTA ELECTONICS INC	Power	1.6	Non- Shield	Plastic	VER

(Configuration of Tested System)

6. Test Results : Emission

6.1 Conducted Disturbance

6.1.1 Measurement Procedure

In the range of 0.15MHz to 30MHz, the conducted disturbance was measured and set-up was made accordance with **ANSI C63.4**.

If the EUT is table top equipment, it was placed on a wooden table with a height of 0.8m above the reference ground plane and 0.4m from the conducting wall of the shielded room.

Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15m above the reference ground plane.

Connect the EUT's power source lines to the appropriate power mains / peripherals through the LISN. All the other peripherals are connected to the 2nd LISN, if any.

Unused measuring port of the LISN was resistively terminated by 50 ohm terminator.

The measuring port of the LISN for EUT was connected to spectrum analyzer.

Using conducted emission test software, the emissions were scanned with peak detector mode.

After scanning over the frequency range, suspected emissions were selected to perform final measurement. When performing final measurement, the receiver was used which has Quasi-Peak detector and Average detector.

By varying the configuration of the test sample and the cable routing it was attempted to maximize the emission.

For further description of the configuration refer to the picture of the test set-up.

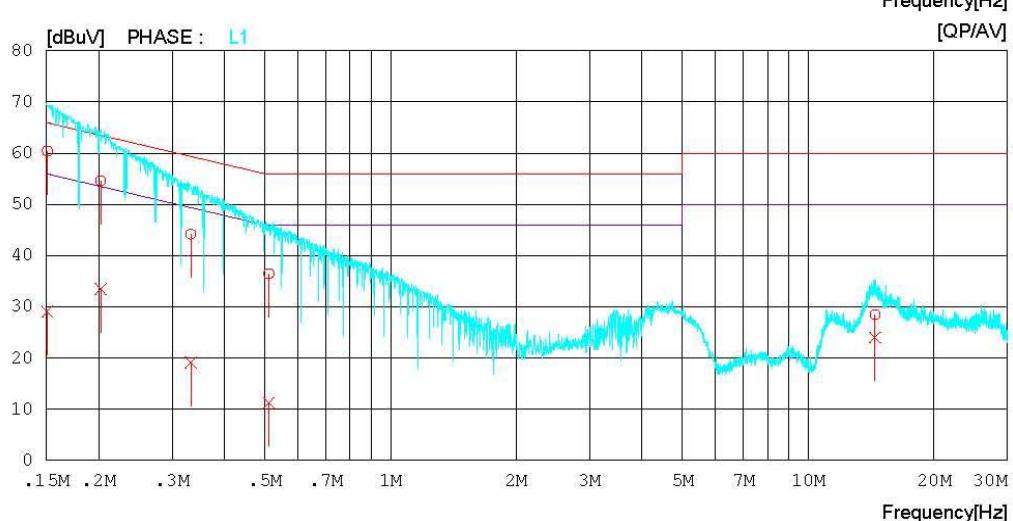
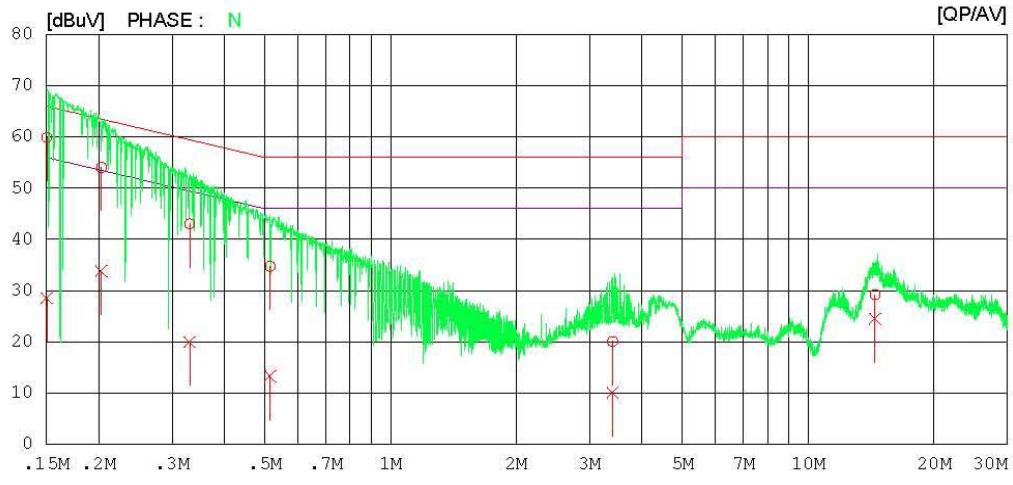
6.1.2 Limit for Conducted Disturbance

(1) Conducted disturbance at mains ports.

Frequency range (MHz)	Limits dB(µV)			
	Quasi-peak		Average	
	Class A	Class B	Class A	Class B
0.15 to 0.50	79	66 to 56	66	56 to 46
0.50 to 5	73	56	60	46
5 to 30		60		50

Note 1 The lower limit shall apply at the transition frequencies.
Note 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

Test Result

Results of Conducted Emission

 Digital EMC
 Date : 2012-01-19

 Model No. : LG-E400g
 Type :
 Serial No. :
 Test Condition :

 Reference No.
 Power Supply : 120 V 60 Hz
 Temp/Hum. : 21 'C 34 % R.H.
 Operator : H.S KO

 Memo :
 LIMIT : CISPR22_B QP
 CISPR22_B AV

Results of Conducted Emission

Digital EMC
Date : 2012-01-19

Model No. : LG-E400g
 Type :
 Serial No. :
 Test Condition :
 Referrrence No.
 Power Supply : 120 V 60 Hz
 Temp/Humi. : 21 'C 34 % R.H.
 Operator : H.S KO

Memo :

LIMIT : CISPR22_B QP
 CISPR22_B AV

NO	FREQ [MHz]	READING		C. FACTOR [dB]	RESULT		LIMIT		MARGIN QP [dBuV]	PHASE AV [dBuV]
		QP [dBuV]	AV [dBuV]		QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]		
1	0.15043	59.5	28.3	0.3	59.8	28.6	66.0	56.0	6.2	27.4 N
2	0.20335	53.8	33.6	0.2	54.0	33.8	63.5	53.5	9.5	19.7 N
3	0.33056	42.8	19.7	0.2	43.0	19.9	59.4	49.4	16.4	29.5 N
4	0.51521	34.5	13.1	0.2	34.7	13.3	56.0	46.0	21.3	32.7 N
5	3.40200	19.7	9.6	0.4	20.1	10.0	56.0	46.0	35.9	36.0 N
6	14.45600	28.3	23.6	0.9	29.2	24.5	60.0	50.0	30.8	25.5 N
7	0.15092	60.1	28.7	0.3	60.4	29.0	65.9	55.9	5.5	26.9 L1
8	0.20230	54.4	33.3	0.2	54.6	33.5	63.5	53.5	8.9	20.0 L1
9	0.33265	44.0	19.0	0.2	44.2	19.2	59.4	49.4	15.2	30.2 L1
10	0.51168	36.3	11.1	0.2	36.5	11.3	56.0	46.0	19.5	34.7 L1
11	14.46750	27.6	23.1	0.9	28.5	24.0	60.0	50.0	31.5	26.0 L1

6.2 Radiated Disturbance

6.2.1 Measurement Procedure

The radiated disturbance was measured and set-up was made accordance with **ANSI C63.4**.

If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8m above the reference ground plane and 3m and 10m away from the interference receiving antenna in the **10m semi-anechoic chamber**.

Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15m above the reference ground plane.

Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4m above the reference ground plane continuously to determine associated with higher emission levels and record them.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

For below 1GHz frequency range, Quasi-Peak detector with 120kHz RBW was used.

Also Peak and Average detector with 1MHz RBW were used for above 1GHz frequency range.

For further description of the configuration refer to the picture of the test set-up.

6.2.2 Limit for Radiated Disturbance

- The test frequency range of Radiated Disturbance measurements are listed below.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

(1) Limit for Radiated Emission below 1000MHz

Frequency range (MHz)	Class A Equipment (10m distance)	Class B Equipment (3m distance)
	Quasi-peak (dB μ N/m)	Quasi-peak (dB μ N/m)
30 to 88	39.1	40
88 to 216	43.5	43.5
216 to 960	46.4	46
960 to 1000	49.5	54

Note 1 The lower limit shall apply at the transition frequency.

Note 2 Additional provisions may be required for cases where interference occurs.

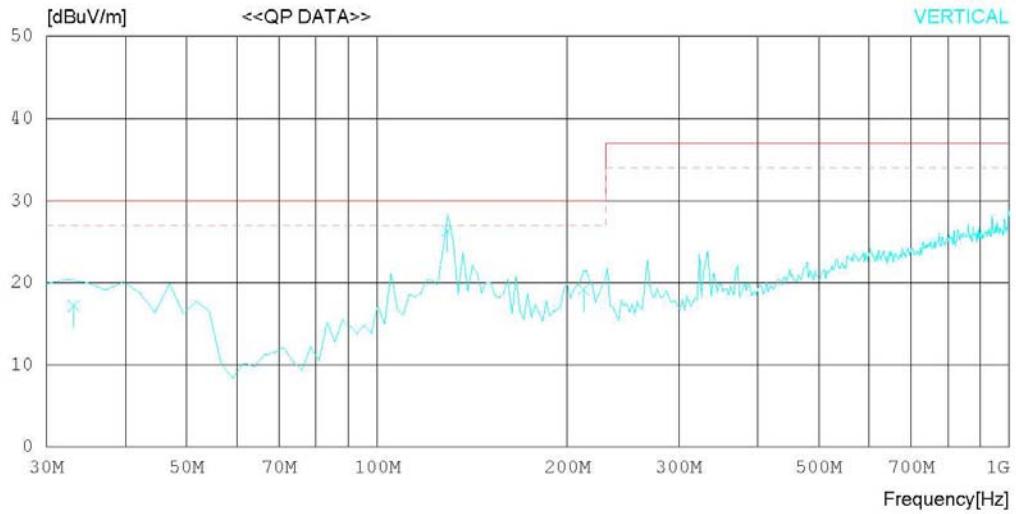
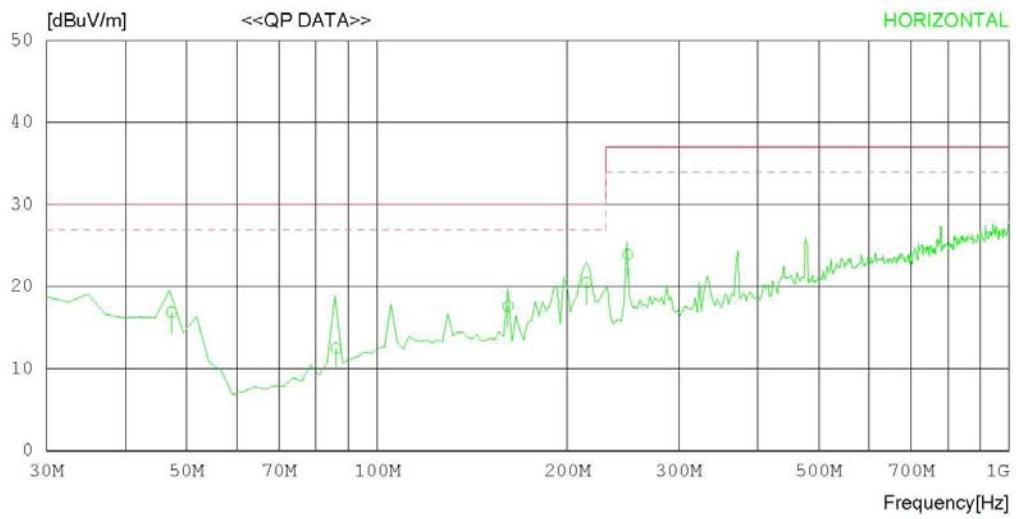
Note 3 According to 15.109(g), as an alternative to the radiated emission limit shown above, digital devices may be shown to comply with the standards(CISPR), Pub. 22 shown as below.

Frequency range (MHz)	Class A Equipment (10m distance)	Class B Equipment (10m distance)
	Quasi-peak (dB μ N/m)	Quasi-peak (dB μ N/m)
30 to 230	40	30
230 to 1000	47	37

(2) Limits for Radiated Emission above 1000MHz at a measuring distance of 3m

Frequency (GHz)	Class A Equipment		Class B Equipment	
	Peak (dB μ N/m)	Average (dB μ N/m)	Peak (dB μ N/m)	Average (dB μ N/m)
1 to 40	80	60	74	54

Test Result

< 30 MHz ~ 1 GHz >**RADIATED EMISSION**

Date : 2012-01-18

Model Name	:	LG-E400g	Reference No.	:
Model No.	:		Power Supply	:
Serial No.	:		Temp/Humi	:
Test Condition	:	PC LINK MODE	Operator	:

Memo :

LIMIT : CISPR Pub.22 Class B (10m)
MARGIN: 3 dB

RADIATED EMISSION

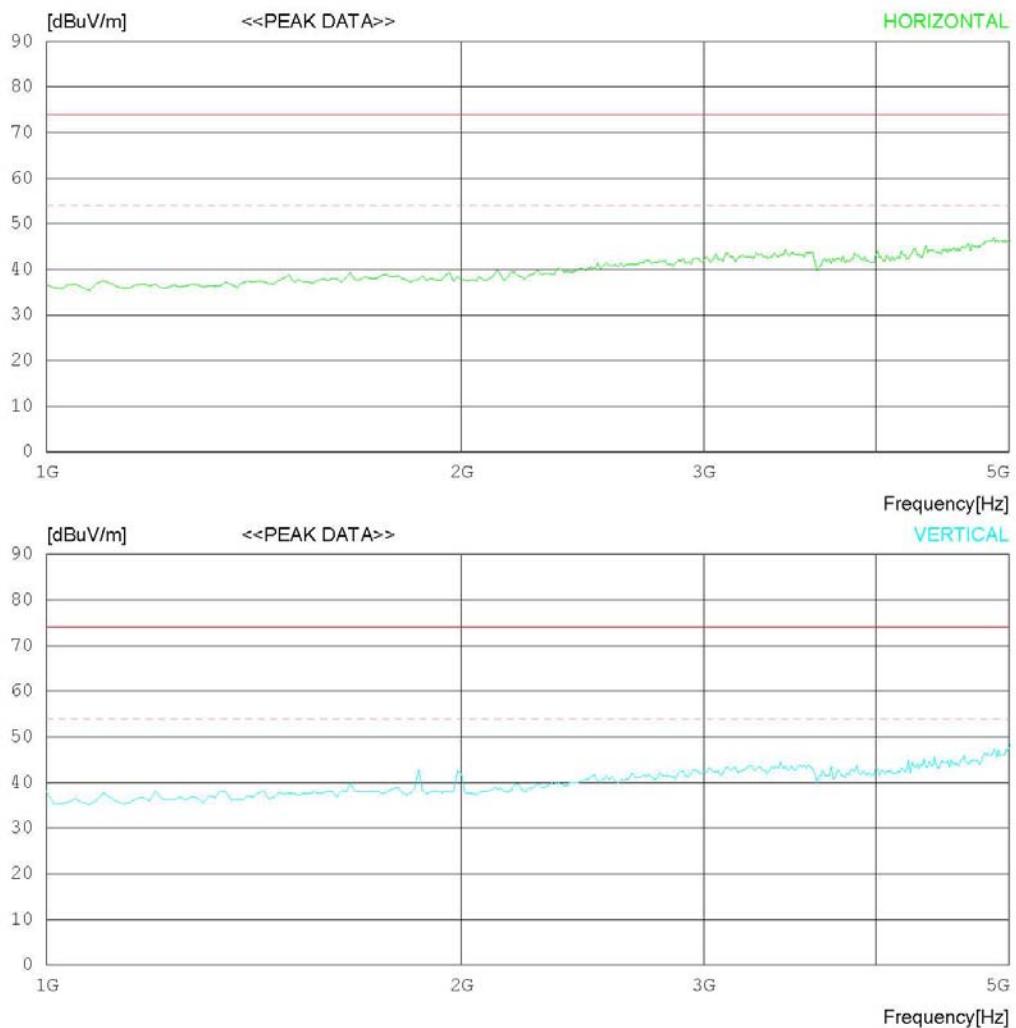
Date : 2012-01-18

Model Name	:	LG-E400g	Reference No.	:
Model No.	:		Power Supply	:
Serial No.	:		Temp/Humi	:
Test Condition	:	PC LINK MODE	Operator	:

Memo :

LIMIT : CISPR Pub.22 Class B (10m)
MARGIN: 3 dB

No.	FREQ [MHz]	READING QP [dBuV]	ANT FACTOR [dB]	LOSS [dB]	GAIN [dB]	RESULT [dBuV/m]	LIMIT [dBuV/m]	MARGIN [dB]	ANTENNA [cm]	TABLE [DEG]
<hr/>										
1	47.303	26.3	12.0	1.2	22.6	16.9	30.0	13.1	400	213
2	86.136	25.2	8.3	1.6	22.6	12.5	30.0	17.5	100	202
3	161.157	28.4	10.2	2.1	23.1	17.6	30.0	12.4	100	215
4	214.229	30.8	10.6	2.4	23.3	20.5	30.0	9.5	301	223
5	249.118	31.8	13.0	2.6	23.5	23.9	37.0	13.1	301	214
<hr/>										
<hr/>										
6	33.148	21.8	17.0	1.0	22.6	17.2	30.0	12.8	199	232
7	129.212	35.9	11.6	1.8	22.9	26.4	30.0	3.6	100	220
8	212.233	29.6	10.5	2.4	23.3	19.2	30.0	10.8	100	165


< 1 GHz ~ 5 GHz >

RADIATED EMISSION

Date : 2012-01-18

Model Name	: LG-E400g	Reference No.
Model No.	...	Power Supply
Serial No.	...	Temp/Humi
Test Condition	PC LINK MODE	Operator

Memo :

 LIMIT : FCC Part15 Subpart.B Class B (3m) - 18G(Peak)
 FCC Part15 Subpart.B Class B (3m) - 18G(Avg)

* Remark : There are no emissions as above data plots.

Appendix 1

List of Test and Measurement Instruments

1. Conducted Disturbance

Name of Instrument	Model No.	Manufacturer	Serial No.	Cal. Date	Next Cal. Date
<input type="checkbox"/> SPECTRUM ANALYZER	8591E	H/P	3649A05889	2011.03.07	2012.03.07
<input type="checkbox"/> RFI/FIELD INTENSITY METER	KNM-2402	KYORITSU	4N-170-3	2011.07.02	2012.07.02
<input type="checkbox"/> LISN	KNW-407	KYORITSU	8-317-8	2012.01.09	2013.01.09
<input type="checkbox"/> LISN	KNW-242	KYORITSU	8-654-15	2011.07.01	2012.07.01
<input type="checkbox"/> 50 OHM TERMINATOR	CT-01	TME	N/A	2012.01.09	2013.01.09
<input checked="" type="checkbox"/> EMI TEST RECEIVER	ESCI	ROHDE & SCHWARZ	100364	2011.03.08	2012.03.08
<input checked="" type="checkbox"/> LISN	ESH2-Z5	ROHDE & SCHWARZ	828739/006	2011.09.30	2012.09.30
<input checked="" type="checkbox"/> LISN	LISN1600	TTI	197204	2012.07.02	2012.07.02
<input checked="" type="checkbox"/> 50 OHM TERMINATOR	CT-01	TME	N/A	2012.01.09	2013.01.09

2. Radiated Disturbance

Name of Instrument	Model No.	Manufacturer	Serial No.	Cal. Date	Next Cal. Date
<input checked="" type="checkbox"/> EMI TEST RECEIVER	ESU	ROHDE & SCHWARZ	100014	2011.01.20	2012.01.20
<input checked="" type="checkbox"/> BILOG ANTENNA	CBL6112B	SCHAFFNER	2737	2010.07.14	2012.07.14
<input checked="" type="checkbox"/> HORN ANTENNA	BBHA9120A	SCHWARZBECK	322	2010.04.13	2012.04.13
<input checked="" type="checkbox"/> AMPLIFIER	8447E	H/P	2945A02865	2012.01.09	2013.01.09
<input checked="" type="checkbox"/> AMPLIFIER	MLA-00108-B02-36	TSJ	1518831	2012.01.09	2013.01.09
<input type="checkbox"/> SPECTRUM ANALYZER	E4411B	AGILENT	US41062735	2011.07.01	2012.07.01
<input type="checkbox"/> AMPLIFIER	8447D	AGILENT	2443A03690	2011.07.01	2012.07.01
<input type="checkbox"/> BILOG ANTENNA	VULB9160	SCHAFFNER	3151	2010.08.25	2012.08.25
<input type="checkbox"/> EMI TEST RECEIVER	ESCI	ROHDE & SCHWARZ	100364	2011.03.08	2012.03.08
<input type="checkbox"/> BICONICAL ANT.	VHA 9103	SCHWARZBECK	91032789	2010.11.29	2012.11.29
<input type="checkbox"/> LOG-PERIODIC ANT.	UHALP 9108A	SCHWARZBECK	590	2010.07.07	2012.07.07
<input type="checkbox"/> BICONICAL ANT.	VHA 9103	SCHWARZBECK	91031946	2010.12.21	2012.12.21
<input type="checkbox"/> LOG-PERIODIC ANT.	UHALP 9108-A1	SCHWARZBECK	1098	2010.11.29	2012.11.29
<input type="checkbox"/> AMPLIFIER	MLA-100K01-B01-26	TSJ	1252741	2011.03.07	2012.03.07