TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC1803-0054(1)

2. Customer

- Name : LG Electronics MobileComm USA, Inc.
- Address : 1000 Sylvan Ave., Englewood Cliffs, New Jersey, United States, 07632
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : Mobile Phone / DS1803 FCC ID : ZNFDS1803
- 5. Test Method Used : KDB971168 D01v03, ANSI/TIA-603-E-2016, ANSI C63.26-2015 Test Specification : §2, §22, §27
- 6. Date of Test : 2018.02.08 ~ 2018.03.09
- 7. Testing Environment : Refer to appended test report.
- 8. Test Result : Refer to the attached test result.

Name : Geunki Son
d only to the sample supplied by applicant and
pose. This test report shall not be reproduced
pproval of DT&C Co., Ltd.
. 16 .
., Ltd.
-,
nticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1803-0054	Mar. 12, 2018	Initial issue
DRTFCC1803-0054(1)	Mar. 16, 2018	Revised the section 2.6.

Table of Contents

1.	GENERAL INFORMATION	5
2.	INTRODUCTION	6
	2.1 EUT DESCRIPTION	6
	2.2. EUT CAPABILITIES	6
	2.3. TESTING ENVIRONMENT	6
	2.4 MEASURING INSTRUMENT CALIBRATION	6
	2.5. MEASUREMENT UNCERTAINTY	6
	2.6. TEST FACILITY	6
3.	DESCRIPTION OF TESTS	7
	3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)	7
	3.2 PEAK TO AVERAGE RATIO	9
	3.3 OCCUPIED BANDWIDTH.	.10
	3.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	. 11
	3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	.12
	3.6 UNDESIRABLE EMISSIONS	.13
	3.7 FREQUENCY STABILITY	
4.	LIST OF TEST EQUIPMENT	15
5.	SUMMARY OF TEST RESULTS	16
6.	SAMPLE CALCULATION	17
7.	TEST DATA	18
	7.1 OCCUPIED BANDWIDTH	. 18
	7.2 PEAK TO AVERAGE RATIO	-
	7.3 BAND EDEG EMISSIONS (Conducted)	. 18
	7.4 SPURIOUS AND HARMONICS EMISSIONS (Conducted)	. 18
	7.5 ERP & EIRP	.19
	7.5.1 LTE Band 12,17	.19
	7.5.2 LTE Band 12	.20
	7.5.3 LTE Band 5	.21
	7.6 UNDESIRABLE EMISSIONS (Radiated)	.22
	7.6.1 LTE Band 12,17	.22
	7.6.2 LTE Band 12	.23
	7.6.3 LTE Band 5	
	7.7 FREQUENCY STABILITY	.25
	7.7.1 LTE Band 17	.25
	7.7.2 LTE Band 12	-
	7.7.3 LTE Band 5	
8.	TEST PLOTS	-
	8.1 OCCUPIED BANDWIDTH	
	8.1.1 LTE Band 17	. 28

8.1.2 LTE Band 12	30
8.1.3 LTE Band 5	34
8.2 PEAK TO AVERAGE RATIO	
8.2.1 LTE Band 17	38
8.2.2 LTE Band 12	40
8.2.3 LTE Band 5	44
8.3 BAND EDGE EMISSIONS(Conducted)	
8.3.1 LTE Band 17	
8.3.2 LTE Band 12	52
8.3.3 LTE Band 5	60
8.4 SPURIOUS AND HARMONICS EMISSIONS(Conducted)	68
8.4.1 LTE Band 17	68
8.4.2 LTE Band 12	71
8.4.3 LTE Band 5	77

1. GENERAL INFORMATION

Applicant Name	:	LG Electronics MobileComm USA, Inc.				
Address	:	1000 Sylvan Ave., Englewood Cliffs, New Jersey, United States, 07632				
FCC ID	:	ZNFDS1803				
FCC Classification	:	PCS Licensed Transmitter held to ear (PCE)				
ЕИТ Туре	:	Mobile Phone				
Model Name	:	DS1803				
Add Model Name	:	NA				
Supplying power	:	DC 3.85 V				
Antenna Information	:	PIFA Antenna				

		Emission		Ef	RP
Mode	TX Frequency (MHz)	Emission Designator	Modulation Max pov (dBm		Max power (W)
LTE Band 12,17	704 ~ 711	9M0G7D	QPSK	16.00	0.040
LTE Band 12,17	704 ~ 711	8M96W7D	16QAM	15.14	0.033
LTE Band 12,17	701.5 ~ 713.5	4M49G7D	QPSK	15.53	0.036
LTE Band 12,17	701.5 ~ 713.5	4M50W7D	16QAM	15.01	0.032
LTE Band 12	700.5 ~ 714.5	2M69G7D	QPSK	15.67	0.037
LTE Band 12	700.5 ~ 714.5	2M69W7D	16QAM	15.07	0.032
LTE Band 12	699.7 ~ 715.3	1M09G7D	QPSK	14.95	0.031
LTE Band 12	699.7 ~ 715.3	1M09W7D	16QAM	14.38	0.027
LTE Band 5	829 ~ 844	8M98G7D	QPSK	20.78	0.120
LTE Band 5	829 ~ 844	8M94W7D	16QAM	19.86	0.097
LTE Band 5	826.5 ~ 846.5	4M49G7D	QPSK	20.42	0.110
LTE Band 5	826.5 ~ 846.5	4M49W7D	16QAM	20.00	0.100
LTE Band 5	825.5 ~ 847.5	2M69G7D	QPSK	20.79	0.120
LTE Band 5	825.5 ~ 847.5	2M69W7D	16QAM	20.15	0.104
LTE Band 5	824.7 ~ 848.3	1M09G7D	QPSK	20.76	0.119
LTE Band 5	824.7 ~ 848.3	1M09W7D	16QAM	20.33	0.108

Note: This device supports both LTE Band 12(699 ~ 716MHz) and LTE Band 17(704 ~ 716MHz). And LTE Band 12 overlaps the entire frequency range of LTE Band 17. Therefore, test data provided in this report covers Band 17 as well as Band 12.

2. INTRODUCTION

2.1 EUT DESCRIPTION

The Equipment under Test (EUT) supports WCDMA, LTE, WLAN, Bluetooth and NFC.

2.2. EUT CAPABILITIES

This EUT contains the following capabilities: 850/1900 WCDMA/HSUPA, Multi-band LTE, 802.11b/g/n WLAN(2.4GHz), 802.11a/n WLAN(5GHz), Bluetooth(BDR, EDR, LE), NFC

2.3. TESTING ENVIRONMENT

Ambient Condition	
Temperature	+20 °C ~ +25 °C
 Relative Humidity 	40 % ~ 45 %

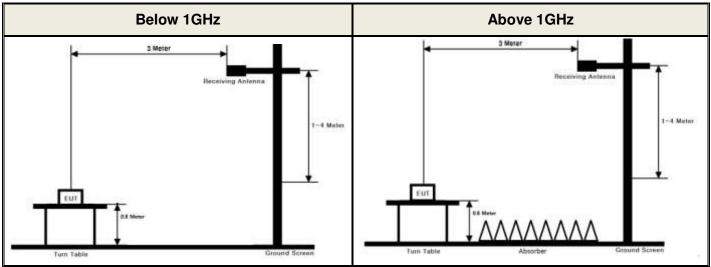
2.4 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Radiated Disturbance (Below 1 GHz)	\pm 5.1 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (1 GHz ~ 18 GHz)	\pm 5.4 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (Above 18 GHz)	\pm 5.3 dB (The confidence level is about 95 %, k = 2)


2.6. TEST FACILITY

DT&C Co., Lt	d.	
		conducted measurement facility used to collect the radiated data are located at the
42, Yurim-ro, 1	54beor	n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.
The test site co	w vlam	vith the requirements of § 2.948 according to ANSI 63.4-2014.
- FCC MRA	Accre	dited Test Firm No. : KR0034
	Accre	dited Test Firm No. : KR0034
www.dtnc.net	Accre	dited Test Firm No. : KR0034
	Accre	

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

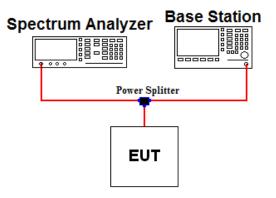
- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 D01v03 Section 5.2.2
- ANSI C63.26-2015 Section 5.2.4.4.1

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1% to 5% of the OBW.
- 3. Set VBW \ge 3 x RBW.
- 4. Set number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - 1) Set = auto-couple, or
 - 2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.
- 6. Detector = power averaging (rms).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-power transmissions).
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference Between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

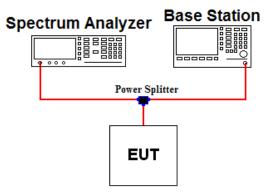
- KDB971168 D01v03 Section 5.7.2
- ANSI C63.26-2015 Section 5.2.3.4

A peak to average ratio measurement is performed at the conducted port of the EUT.

The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level.

Test setting

The spectrum Analyzer's CCDF measurement function is enabled.


- 1. Set resolution/measurement bandwidth \geq OBW or specified reference bandwidth.
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve.
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to the greater of [10 × (number of points in sweep) ×

(transmission symbol period)] or 1 ms.

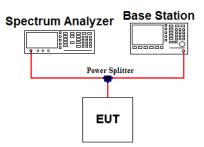
- 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
- 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- 4. Record the maximum PAPR level associated with a probability of 0.1%.
- 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

3.3 OCCUPIED BANDWIDTH.

Test set-up

Test Procedure

- KDB971168 D01v03 Section 4.3
- ANSI C63.26-2015 Section 5.4.4


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

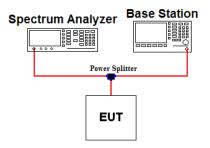
- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 ~ 5 % of the expected OBW & VBW \geq 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 ~ 5 % of the 99 % occupied bandwidth observed in step 6.

3.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7


All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all bandwidths, modulations and RB configurations.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.

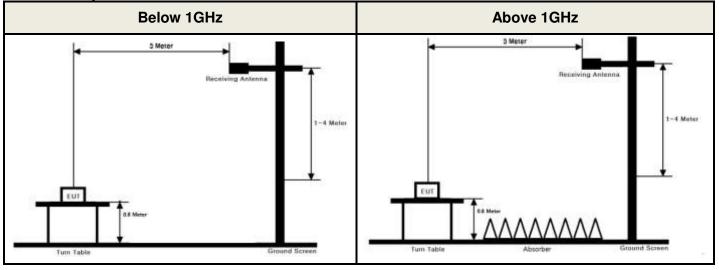
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1 % of the emission bandwidth
- 4. VBW ≥ 3 X RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point ≥ 2 X span / RBW
- 8. The trace was allowed to stabilize
- Note 1: Per Part 22.917(b)(1) / 24.238(b) / 27.53(h) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- Note 2: Per Part 27.53(c.5) for operations in the 776-788 MHz band, compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.
- Note 3: Per Part 27.53(c.4) for all frequencies between 763-775 MHz and 793-805 MHz, the FCC limit is 65 + 10log10(P[Watts])= -35dBm in a 6.25kHz bandwidth.

3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test set-up

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7


The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths, modulations and RB configurations. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.

- 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize
- Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1GHz and 1MHz or greater for frequencies greater than 1GHz.

3.6 UNDESIRABLE EMISSIONS

Test Set-up

These measurements were performed at 3 test site. The equipment under test is placed on a non-conductive table 0.8meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

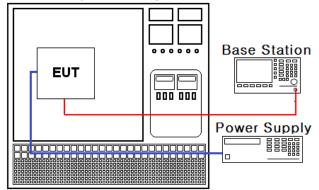
- ANSI/TIA-603-E-2016 Section 2.2.12
- KDB971168 D01v03 Section 5.8
- ANSI C63.26-2015 Section 5.5

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW \geq 3 X RBW
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated power measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.


For radiated power measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

3.7 FREQUENCY STABILITY

Test Set-up

Constant Temp & Humidity Chamber

Test Procedure

- ANSI/TIA-603-E-2016
- KDB971168 D01v03 Section 9

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24, 27. The frequency stability of the transmitter shall be maintained within \pm 0.000 25 % (\pm 2.5 ppm) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
 A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	17/09/05	18/09/05	MY50410163
Spectrum Analyzer	Agilent Technologies	N9020A	17/09/05	18/09/05	MY46471251
Radio Communication Analyzer	Anritsu	MT8820C	17/09/07	18/09/07	6201127429
DC Power Supply	Agilent	66332A	17/09/05	18/09/05	MY43000719
DC Power Supply	Agilent	66332A	17/12/27	18/12/27	US37473833
Multimeter	FLUKE	17B	17/12/26	18/12/26	26030065WS
Power Splitter	Anritsu	K241B	17/12/27	18/12/27	1301183
Temp & Humi Test Chamber	SJ Science	SJ-TH-S50	17/09/07	18/09/07	U5542113
Thermohygrometer	BODYCOM	BJ5478	18/01/03	19/01/03	120612-2
Signal Generator	Rohde Schwarz	SMBV100A	17/12/27	18/12/27	255571
Signal Generator	Rohde Schwarz	SMF100A	17/12/27	18/12/27	102341
Loop Antenna	ETS	6502	17/03/24	19/03/24	3471
BILOG ANTENNA	Schwarzbeck	VULB 9160	16/08/05	18/08/05	9160-3362
Dipole Antenna	Schwarzbeck	VHA9103	17/03/14	19/03/14	2116
Dipole Antenna	Schwarzbeck	VHA9103	16/04/15	18/04/15	2117
Dipole Antenna	Schwarzbeck	UHA9105	17/03/14	19/03/14	2261
Dipole Antenna	Schwarzbeck	UHA9105	16/04/15	18/04/15	2262
HORN ANT	ETS	3117	16/05/03	18/05/03	00140394
HORN ANT	ETS	3117	17/08/02	19/08/02	00154312
HORN ANT	A.H.Systems	SAS-574	17/04/25	19/04/25	154
HORN ANT	A.H.Systems	SAS-574	17/07/31	19/07/31	155
Amplifier	RF Bay Inc	MPA-40-40	17/12/28	18/12/28	21151801
Amplifier	EMPOWER	BBS3Q7ELU	17/09/06	18/09/06	1020
PreAmplifier	H.P	8447D	17/12/26	18/12/26	2944A07774
PreAmplifier	Agilent	8449B	17/09/05	18/09/05	3008A02108
High-pass filter	Wainwright	WHKX12-935- 1000-15000-40SS	17/09/05	18/09/05	7
High-pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	17/09/05	18/09/05	3

5. SUMMARY OF TEST RESULTS

icted Output ied Bandwidth o Average Edge / icted Spurious	N/A N/A < 13 dB		C Note2 C
o Average Edge /	< 13 dB		
Edge /			C
			C
ions	>43 + 10log_{10} (P) dB at Band edge and for all out-of-band emissions	Conducted	с
ency Stability	< 2.5 ppm (Part 22) Fundamental emissions must stay within Authorized frequency block (Part 27)		С
	< 3 Watts max. ERP		с
	< 7 Watts max. ERP	Radiated	с
	> 43 + 10log ₁₀ (P) dB for all out-of-band emissions		с
		ency Stability Fundamental emissions must stay within Authorized frequency block (Part 27) ted Output (B12, 17) < 3 Watts max. ERP	Ency Stability Fundamental emissions must stay within Authorized frequency block (Part 27) ted Output (B12, 17) < 3 Watts max. ERP

6. SAMPLE CALCULATION

A. Emission Designator

LTE Band 17(QPSK)

Emission Designator = **8M92G7D** LTE OBW = 8.924 MHz

- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data Transmission

LTE Band 12(QPSK)

Emission Designator = 9M00G7D

- LTE OBW = 8.996 MHz
- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data Transmission

LTE Band 5(QPSK)

Emission Designator = 8M98G7D

- LTE OBW = 8.979 MHz
- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Data Transmission

B. For substitution method

LTE Band 17(16QAM)

Emission Designator = **8M94W7D** LTE OBW = 8.940 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data Transmission

LTE Band 12(16QAM)

Emission Designator = **8M96W7D** LTE OBW = 8.957 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data Transmission

LTE Band 5(16QAM)

Emission Designator = 8M94W7D LTE OBW = 8.944 MHz

- W = Amplitude/Angle Modulated
- 7 = Quantized/Digital Info
- D = Data Transmission

Channel Bandwidth (MHz)	Test Frequency (MHz)	Test Mode	RB Size/ Offset	Spectrum Reading Value(dBm)	EUT Axis	Ant Pol (H/V)	Level(dBm) @ Ant Terminal	TX Ant Gain (dBd)	ERP (dBm)	ERP (W)
10	829	QPSK	1/25	-16.07	Y	V	19.55	1.23	20.78	0.120

ERP or EIRP = Level @ Ant Terminal LEVEL(dBm) + Tx Ant. Gain

1) The EUT mounted on a non-conductive turntable is 0.8 meter above test site ground level.

- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.

4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.

5) Increase the signal generator output till the field strength meter's level is equal to the item (3).

6) The signal generator output level with substituted antenna gain is the rating of ERP, EIRP or Radiated spurious emission.

7.TEST DATA

7.1 OCCUPIED BANDWIDTH

- Plots of the EUT's Occupied Bandwidth are shown in Clause 8.1

7.2 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.2

7.3 BAND EDEG EMISSIONS (Conducted)

- Plots of the EUT's Band Edge Emissions are shown in Clause 8.3

7.4 SPURIOUS AND HARMONICS EMISSIONS (Conducted)

- Plots of the EUT's Spurious Emissions are shown in Clause 8.4

7.5 ERP & EIRP

7.5.1 LTE Band 12,17

Channel Bandwidth (MHz)	Test Frequency (MHz)	Test Mode	RB Size/ Offset	Ant Pol (H/V)	Level(dBm) @ Ant Terminal	TX Ant Gain (dBd)	ERP (dBm)	ERP (W)
	704	QPSK	1/0	V	14.25	1.28	15.53	0.036
	704	16QAM	1/0	V	13.77	1.28	15.05	0.032
10	707.5	QPSK	1/0	V	14.72	1.28	16.00	0.040
10	707.5	16QAM	1/0	V	13.86	1.28	15.14	0.033
	711	QPSK	1/0	V	12.81	1.28	14.09	0.026
		16QAM	1/0	V	12.22	1.28	13.50	0.022
	701.5	QPSK	1/0	V	14.25	1.28	15.53	0.036
		16QAM	1/0	V	13.73	1.28	15.01	0.032
F	707 E	QPSK	1/0	V	13.28	1.28	14.56	0.029
5	707.5	16QAM	1/0	V	12.55	1.28	13.83	0.024
	710 5	QPSK	1/0	V	11.43	1.28	12.71	0.019
	713.5	16QAM	1/0	V	10.61	1.28	11.89	0.015

Note: This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

7.5.2 LTE Band 12

Channel Bandwidth (MHz)	Test Frequency (MHz)	Test Mode	RB Size/ Offset	Ant Pol (H/V)	Level(dBm) @ Ant Terminal	TX Ant Gain (dBd)	ERP (dBm)	ERP (W)
	700.5	QPSK	1/0	V	14.39	1.28	15.67	0.037
	700.5	16QAM	1/0	V	13.79	1.28	15.07	0.032
3	707.5	QPSK	1/0	V	12.88	1.28	14.16	0.026
3	707.5	16QAM	1/0	V	12.40	1.28	13.68	0.023
	714.5	QPSK	1/0	V	10.55	1.28	11.83	0.015
		16QAM	1/0	V	10.20	1.28	11.48	0.014
	000 7	QPSK	1/2	V	13.67	1.28	14.95	0.031
	699.7	16QAM	1/2	V	13.10	1.28	14.38	0.027
1.4	707 5	QPSK	1/2	V	12.44	1.28	13.72	0.024
1.4	707.5	16QAM	1/2	V	12.02	1.28	13.30	0.021
	745.0	QPSK	1/2	V	10.81	1.28	12.09	0.016
	715.3	16QAM	1/2	V	10.13	1.28	11.41	0.014

Note: This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

7.5.3 LTE Band 5

Channel Bandwidth (MHz)	Test Frequency (MHz)	Test Mode	RB Size/ Offset	Ant Pol (H/V)	Level(dBm) @ Ant Terminal	TX Ant Gain (dBd)	ERP (dBm)	ERP (W)
	829	QPSK	1/25	V	19.55	1.23	20.78	0.120
	029	16QAM	1/25	V	18.63	1.23	19.86	0.097
10	836.5	QPSK	1/25	V	18.54	1.22	19.76	0.095
10	030.3	16QAM	1/25	V	17.40	1.22	18.62	0.073
	844	QPSK	1/25	V	17.48	1.21	18.69	0.074
	044	16QAM	1/25	V	16.58	1.21	17.79	0.060
	826.5	QPSK	1/12	V	19.19	1.23	20.42	0.110
	020.D	16QAM	1/12	V	18.77	1.23	20.00	0.100
5	906 F	QPSK	1/12	V	18.66	1.22	19.88	0.097
5	836.5	16QAM	1/12	V	18.07	1.22	19.29	0.085
	846.5	QPSK	1/12	V	18.04	1.21	19.25	0.084
		16QAM	1/12	V	17.36	1.21	18.57	0.072
	825.5	QPSK	1/7	V	19.56	1.23	20.79	0.120
		16QAM	1/7	V	18.92	1.23	20.15	0.104
0	836.5	QPSK	1/7	V	18.69	1.22	19.91	0.098
3		16QAM	1/7	V	17.91	1.22	19.13	0.082
	047.5	QPSK	1/7	V	17.71	1.21	18.92	0.078
	847.5	16QAM	1/7	V	16.88	1.21	18.09	0.064
	004.7	QPSK	1/2	V	19.53	1.23	20.76	0.119
	824.7	16QAM	1/2	V	19.10	1.23	20.33	0.108
1.4	836.5	QPSK	1/2	V	18.54	1.22	19.76	0.095
1.4		16QAM	1/2	V	18.45	1.22	19.67	0.093
	0.40.0	QPSK	1/2	V	17.02	1.21	18.23	0.067
	848.3	16QAM	1/2	V	16.40	1.21	17.61	0.058

Note: This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

7.6 UNDESIRABLE EMISSIONS (Radiated)

7.6.1 LTE Band 12,17

B.W	Test	RB Tes	Test		Ant	Level(dBm)	TX Ant	Res	sult	Limit
(MHz)	(MHz) Freq. (MHz)	Size/ Offset	Mode	Freq.(MHz)	Pol (H/V)	@ Ant Terminal	Gain(dBd)	(dBm)	(dBc)	(dBc)
	704	1/0	QPSK	1400.72	V	-57.49	2.90	-54.59	70.12	28.53
	704	1/0	16QAM	1401.67	V	-57.82	2.91	-54.91	69.96	28.05
10	707.5	1/0	QPSK	1404.43	V	-56.63	2.93	-53.70	69.70	29.00
10	707.5	1/0	16QAM	1404.54	V	-57.82	2.93	-54.89	70.03	28.14
	711	1/0	QPSK	1411.32	V	-57.95	2.97	-54.98	69.07	27.09
	/ 11	1/0	16QAM	1413.25	V	-58.84	2.98	-55.86	69.36	26.50
	701 5	1/0	QPSK	1390.48	V	-57.32	2.79	-54.53	70.06	28.53
	701.5	1/0	16QAM	1391.23	V	-57.67	2.80	-54.87	69.88	28.01
F	707 F	1/0	QPSK	1403.54	V	-58.01	2.92	-55.09	69.65	27.56
5	707.5	1/0	16QAM	1405.89	V	-58.07	2.94	-55.13	68.96	26.83
	710 F	1/0	QPSK	1414.25	V	-57.89	2.99	-54.90	67.61	25.71
	713.5	1/0	16QAM	1413.41	V	-57.97	2.98	-54.99	66.88	24.89

Note 1: Limit Calculation = 43 + 10log₁₀ (P[Watts])

Note 2: This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

Note 3: The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions above table.

7.6.2 LTE Band 12

B.W	Test		Test		Ant	Level(dBm)	TX Ant	Res	sult	Limit
(MHz) Freq. (MHz)	Size/ Offset	MINDAE	Freq.(MHz)	Pol (H/V)	@ Ant Terminal	Gain(dBd)	(dBm)	(dBc)	(dBc)	
	700.5	1/0	QPSK	1391.96	٧	-57.46	2.81	-54.65	70.32	28.67
	700.5	1/0	16QAM	1392.77	V	-57.78	2.82	-54.96	70.03	28.07
3	707.5	1/0	QPSK	1404.34	٧	-57.91	2.93	-54.98	69.14	27.16
3	707.5	1/0	16QAM	1403.76	V	-58.55	2.92	-55.63	69.31	26.68
	714.5	1/0	QPSK	1422.44	V	-57.82	3.03	-54.79	66.62	24.83
	714.5	1/0	16QAM	1422.94	V	-58.51	3.04	-55.47	66.95	24.48
	600.7	1/2	QPSK	1400.78	٧	-57.27	2.90	-54.37	69.32	27.95
	699.7	1/2	16QAM	1399.06	V	-58.21	2.89	-55.32	69.70	27.38
14	707.5	1/2	QPSK	1411.57	٧	-57.74	2.97	-54.77	68.49	26.72
1.4	707.5	1/2	16QAM	1411.28	V	-58.11	2.97	-55.14	68.44	26.30
	715.0	1/2	QPSK	1429.35	V	-57.66	3.08	-54.58	66.67	25.09
715.3	1/2	16QAM	1428.86	V	-58.08	3.07	-55.01	66.42	24.41	

Note 1: Limit Calculation = 43 + 10log₁₀ (P[Watts])

Note 2: This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

Note 3: The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions above table.

7.6.3 LTE Band 5

🛈 Dt&C

B.W	Test	RB	Test		Ant	Level(dBm)	TX Ant	Res	sult	Limit
(MHz)	Freq. (MHz)	Size/ Offset	Mode	Freq.(MHz)	Pol (H/V)	@ Ant Terminal	Gain(dBd)	(dBm)	(dBc)	(dBc)
	829	1/25	QPSK	1657.29	V	-58.01	3.78	-54.23	75.01	33.78
	029	1/25	16QAM	1657.60	V	-58.35	3.78	-54.57	74.43	32.86
10 000 5	1/25	QPSK	1673.85	V	-57.17	3.78	-53.39	73.15	32.76	
10	836.5	1/25	16QAM	1674.13	V	-57.74	3.78	-53.96	72.58	31.62
	844	1/25	QPSK	1688.22	V	-57.06	3.79	-53.27	71.96	31.69
	044	1/25	16QAM	1689.18	V	-57.29	3.79	-53.50	71.29	30.79
000 F	1/12	QPSK	1651.39	V	-56.66	3.78	-52.88	73.30	33.42	
	826.5	1/12	16QAM	1651.89	V	-57.11	3.78	-53.33	73.33	33.00
5 836.5	000 F	1/12	QPSK	1674.46	V	-56.85	3.78	-53.07	72.95	32.88
	636.5	1/12	16QAM	1674.18	V	-57.22	3.78	-53.44	72.73	32.29
	846.5	1/12	QPSK	1693.20	V	-56.01	3.79	-52.22	71.47	32.25
	040.0	1/12	16QAM	1692.22	V	-56.68	3.79	-52.89	71.46	31.57
	825.5	1/7	QPSK	1650.14	V	-57.78	3.78	-54.00	74.79	33.79
	620.0	1/7	16QAM	1649.84	V	-57.99	3.77	-54.22	74.37	33.15
3		1/7	QPSK	1671.98	V	-57.07	3.78	-53.29	73.20	32.91
3	836.5	1/7	16QAM	1672.41	V	-57.28	3.78	-53.50	72.63	32.13
	847.5	1/7	QPSK	1695.51	V	-57.32	3.79	-53.53	72.45	31.92
	047.3	1/7	16QAM	1695.81	V	-57.58	3.79	-53.79	71.88	31.09
	0047	1/2	QPSK	1648.06	V	-56.75	3.77	-52.98	73.74	33.76
	824.7	1/2	16QAM	1648.64	V	-57.37	3.77	-53.60	73.93	33.33
1.4	836.5	1/2	QPSK	1671.87	V	-57.05	3.78	-53.27	73.03	32.76
1.4	030.3	1/2	16QAM	1672.77	V	-57.13	3.78	-53.35	73.02	32.67
	040.0	1/2	QPSK	1695.89	V	-57.25	3.79	-53.46	71.69	31.23
848.3	040.3	1/2	16QAM	1695.46	V	-57.21	3.79	-53.42	71.03	30.61

Note 1: Limit Calculation = 43 + 10log₁₀ (P[Watts])

Note 2: This device was tested under all bandwidths, modulations and RB configurations and the worst case data are reported in the table above.

Note 3: The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions above table.

7.7 FREQUENCY STABILITY

7.7.1 LTE Band 17

OPERATING FREQUENCY : **REFERENCE VOLTAGE** : LIMIT

<u>710 MHz</u> 3.85 VDC

1

÷

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

VOLTAGE	POWER	TEMP	FREQUENCY	FREQ.Dev	De	viation
(%)	(V DC)	(°C)	(Hz)	(Hz)	(ppm)	(%)
100%		+20(Ref)	709,999,996	-4	-0.0056	-0.000000563
100%		-30	709,999,993	-7	-0.0099	-0.000000986
100%		-20	709,999,993	-7	-0.0099	-0.00000986
100%		-10	709,999,998	-2	-0.0028	-0.000000282
100%	0.05	0	710,000,001	1	0.0014	0.000000141
100%	3.85	+10	709,999,997	-3	-0.0042	-0.000000423
100%		+20	709,999,996	-4	-0.0056	-0.000000563
100%		+30	710,000,002	2	0.0028	0.000000282
100%		+40	710,000,001	1	0.0014	0.000000141
100%		+50	710,000,005	5	0.0070	0.000000704
115%	4.43	+20	709,999,999	-1	-0.0014	-0.000000141
Low Batt.	3.20	+20	709,999,997	-3	-0.0042	-0.000000423

7.7.2 LTE Band 12

OPERATING FREQUENCY : REFERENCE VOLTAGE : LIMIT : <u>707.5 MHz</u> <u>3.85 VDC</u>

÷

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

VOLTAGE	POWER	TEMP	FREQUENCY	FREQ.Dev	De	viation
(%)	(V DC)	(°C)	(Hz)	(Hz)	(ppm)	(%)
100%		+20(Ref)	707,499,998	-2	-0.0028	-0.000000283
100%		-30	707,499,992	-8	-0.0113	-0.000001131
100%		-20	707,499,993	-7	-0.0099	-0.000000989
100%		-10	707,499,993	-7	-0.0099	-0.000000989
100%	0.05	0	707,499,995	-5	-0.0071	-0.000000707
100%	3.85	+10	707,499,997	-3	-0.0042	-0.000000424
100%		+20	707,499,998	-2	-0.0028	-0.000000283
100%		+30	707,500,001	1	0.0014	0.000000141
100%		+40	707,500,005	5	0.0071	0.000000707
100%		+50	707,500,002	2	0.0028	0.00000283
115%	4.43	+20	707,500,004	4	0.0057	0.000000565
Low Batt.	3.20	+20	707,499,997	-3	-0.0042	-0.000000424

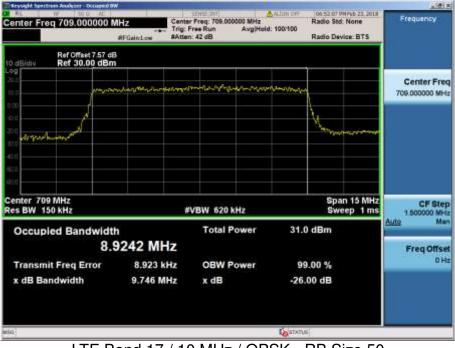
7.7.3 LTE Band 5

OPERATING FREQUENCY : REFERENCE VOLTAGE : DEVIATION LIMIT :

836.5 MHz 3.85 VDC ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQUENCY	FREQ.Dev	De	viation
(%)	(V DC)	(°C)	(Hz)	(Hz)	(ppm)	(%)
100%		+20(Ref)	836,499,994	-6	-0.0072	-0.000000717
100%		-30	836,500,002	2	0.0024	0.000000239
100%		-20	836,500,001	1	0.0012	0.000000120
100%		-10	836,499,997	-3	-0.0036	-0.000000359
100%	0.05	0	836,499,992	-8	-0.0096	-0.000000956
100%	3.85	+10	836,499,996	-4	-0.0048	-0.000000478
100%		+20	836,499,994	-6	-0.0072	-0.000000717
100%		+30	836,499,992	-8	-0.0096	-0.000000956
100%		+40	836,499,992	-8	-0.0096	-0.000000956
100%		+50	836,499,993	-7	-0.0084	-0.00000837
115%	4.43	+20	836,499,995	-5	-0.0060	-0.000000598
Low Batt.	3.20	+20	836,499,996	-4	-0.0048	-0.000000478

Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. as such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

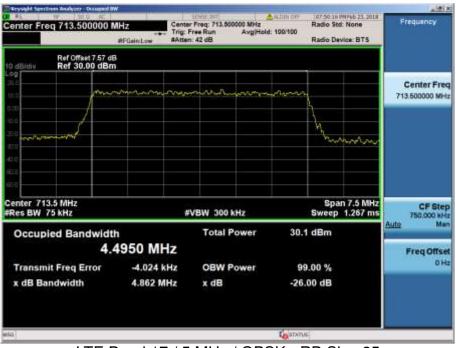


8. TEST PLOTS

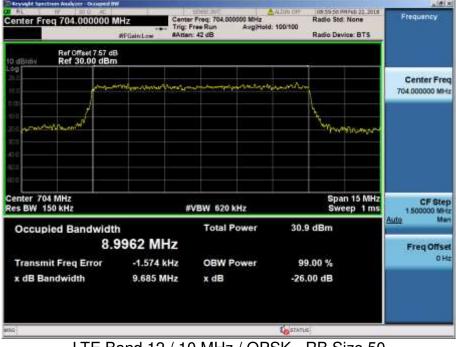
Note: All bandwidths, RB configurations, and modulations were investigated. The worst case test results are reported below.

8.1 OCCUPIED BANDWIDTH

8.1.1 LTE Band 17


LTE Band 17 / 10 MHz / QPSK - RB Size 50

LTE Band 17 / 10 MHz / 16QAM - RB Size 50



LTE Band 17 / 5 MHz / QPSK - RB Size 25

LTE Band 17 / 5 MHz / QPSK - RB Size 25

8.1.2 LTE Band 12

LTE Band 12 / 10 MHz / QPSK - RB Size 50

LTE Band 12 / 10 MHz / 16QAM - RB Size 50

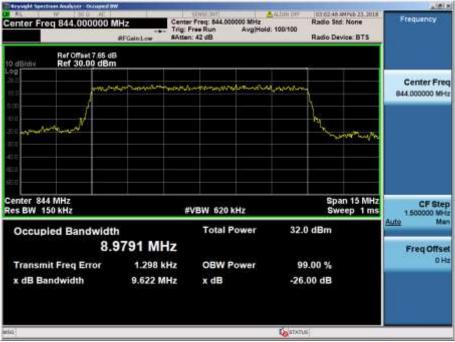
LTE Band 12 / 5 MHz / QPSK - RB Size 25

LTE Band 12 / 5 MHz / 16QAM - RB Size 25

CO AL	eq 714.500000	MIHz Cent	er Freq: 714.500000 MHz	& Albin Crit d: 100/100	Radio Std: None Radio Device: BTS		Frequency
10 dBittiv	Ref Offset 7.57 d Ref 30.00 dB	16 m					
20.0 20.0 10.0 0.00			na n	in	l.		Center Freq 714.500000 MHz
10.0 37.0 Junites	count				1 m	hornor	
40.0							
Center 71 #Res BW			¥VBW 180 kHz		Span 4.5 MHz Sweep 1.933 ms		CF Step 450.000 kHz
			Total Power 30				Auto Man Freg Offset
		-2.696 kHz 2.944 MHz	OBW Power x dB	99.00 % -26.00 dB			OHz
MSQ .				atxit.s	6		

LTE Band 12 / 3 MHz / QPSK - RB Size 15

LTE Band 12 / 3 MHz / 16QAM - RB Size 15



LTE Band 12 / 1.4 MHz / QPSK - RB Size 6

LTE Band 12 / 1.4 MHz / 16QAM - RB Size 6

8.1.3 LTE Band 5

LTE Band 5 / 10 MHz / QPSK - RB Size 50

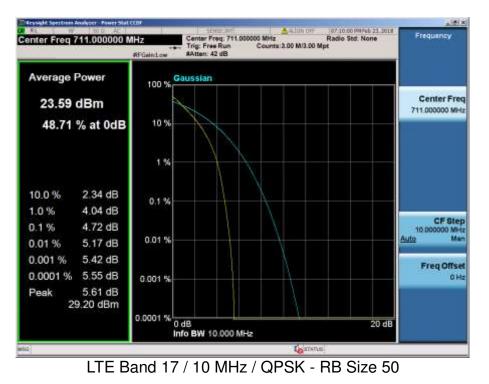
LTE Band 5 / 10 MHz / 16QAM - RB Size 50

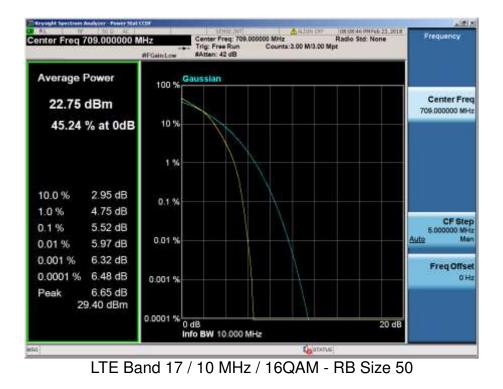
LTE Band 5 / 5 MHz / QPSK - RB Size 25

LTE Band 5 / 5 MHz / 16QAM - RB Size 25

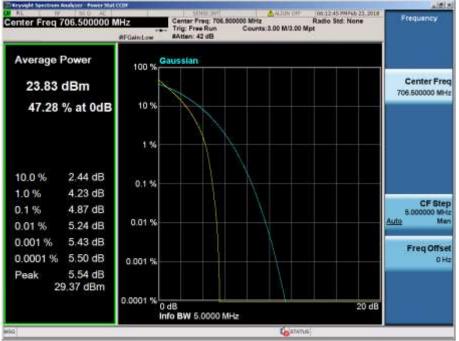
LTE Band 5 / 3 MHz / QPSK - RB Size 15

LTE Band 5 / 3 MHz / 16QAM - RB Size 15


LTE Band 5 / 1.4 MHz / QPSK - RB Size 6



LTE Band 5 / 1.4 MHz / 16QAM - RB Size 6


8.2 PEAK TO AVERAGE RATIO

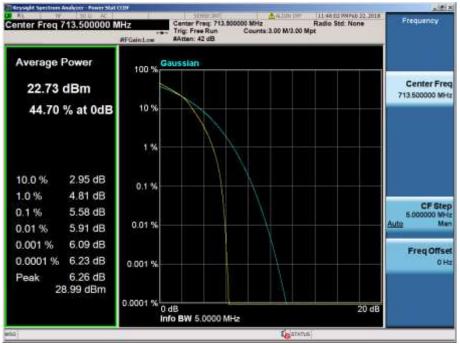
8.2.1 LTE Band 17

LTE Band 17 / 5 MHz / QPSK - RB Size 25

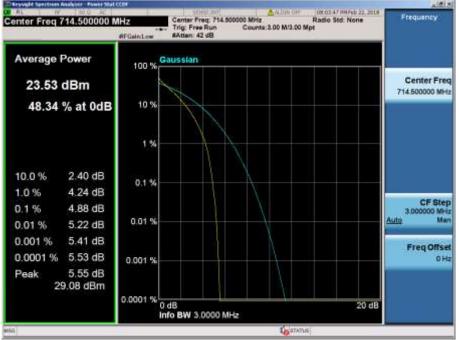
LTE Band 17 / 5 MHz / 16QAM - RB Size 25

8.2.2 LTE Band 12

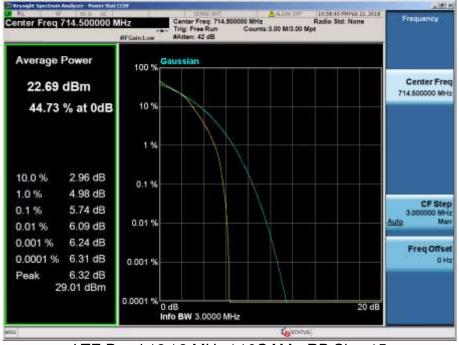
LTE Band 12 / 10 MHz / QPSK - RB Size 50



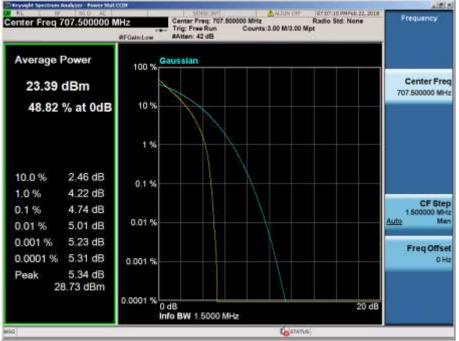
LTE Band 12 / 10 MHz / 16QAM - RB Size 50



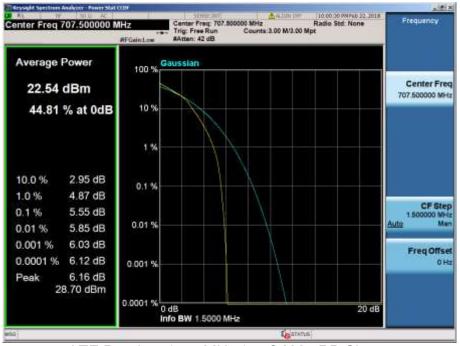
LTE Band 12 / 5 MHz / QPSK - RB Size 25



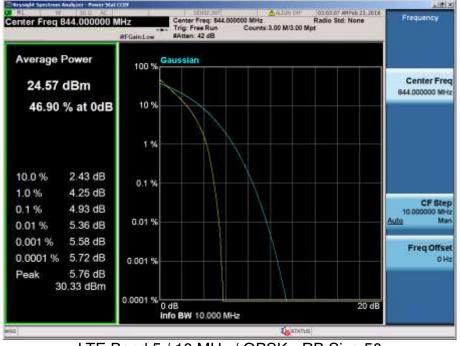
LTE Band 12 / 5 MHz / 16QAM - RB Size 25



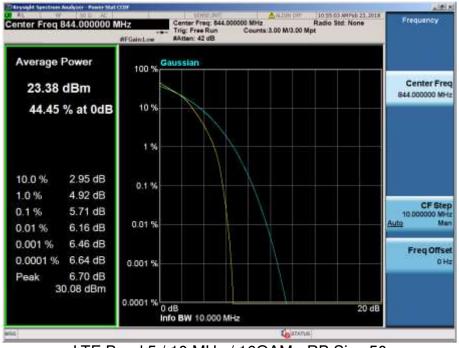
LTE Band 12 / 3 MHz / QPSK - RB Size 15



LTE Band 12 / 3 MHz / 16QAM - RB Size 15

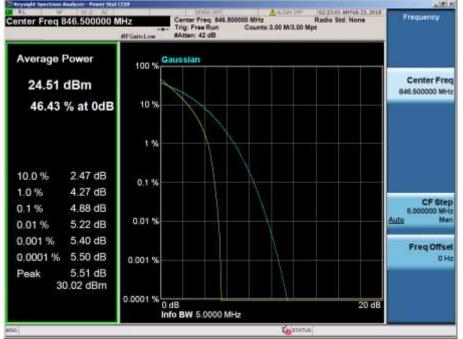


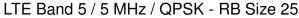
LTE Band 12 / 1.4 MHz / QPSK - RB Size 6



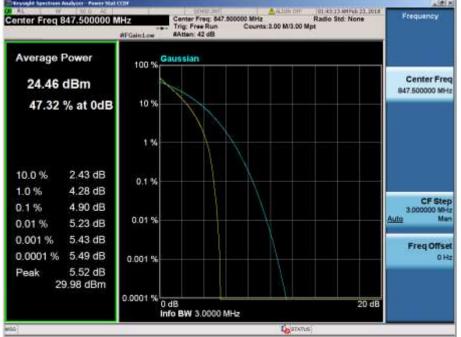
LTE Band 12 / 1.4 MHz / 16QAM - RB Size 6

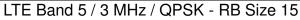
8.2.3 LTE Band 5

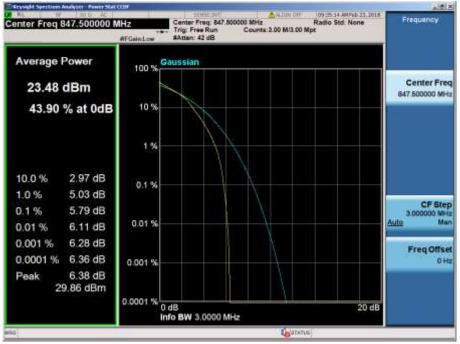



LTE Band 5 / 10 MHz / QPSK - RB Size 50

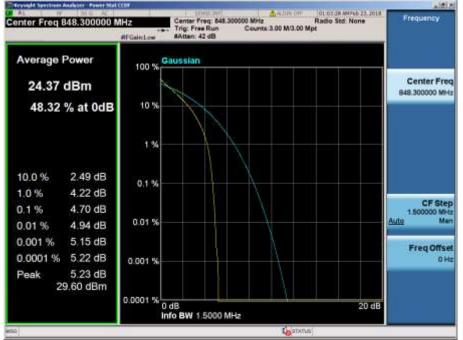
LTE Band 5 / 10 MHz / 16QAM - RB Size 50

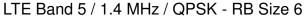


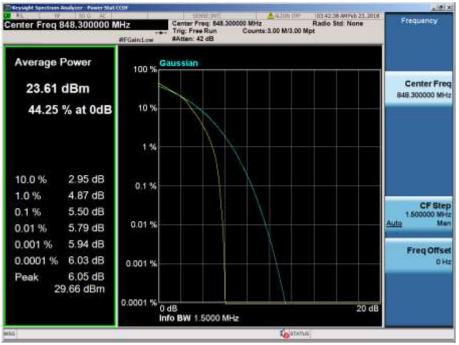




LTE Band 5 / 5 MHz / 16QAM - RB Size 25



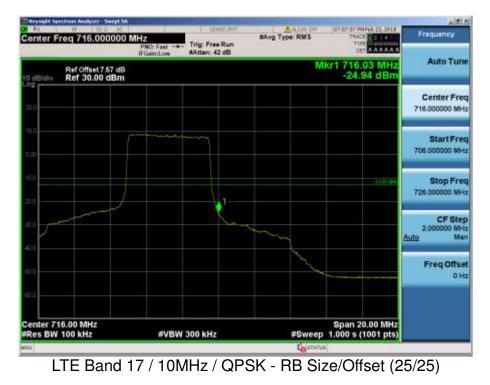




LTE Band 5 / 3 MHz / 16QAM - RB Size 15

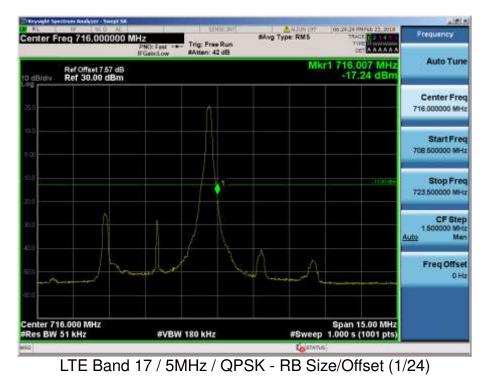
LTE Band 5 / 1.4 MHz / 16QAM - RB Size 6

8.3 BAND EDGE EMISSIONS(Conducted)


8.3.1 LTE Band 17


- Lower Band Edge

LTE Band 17 / 10MHz / QPSK - RB Size/Offset (25/0)



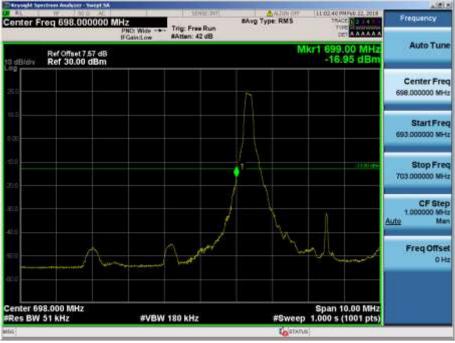
LTE Band 17 / 5MHz / 16QAM RB Size/Offset (1/0)

LTE Band 17 / 5MHz / 16QAM RB Size/Offset (1/0)

LTE Band 17 / 5MHz / 16QAM - RB Size/Offset (1/24)

8.3.2 LTE Band 12


- Lower Band Edge



LTE Band 12 / 5MHz / 16QAM Offset/Size (1/0)

LTE Band 12 / 5MHz / QPSK Offset/Size (12/0)

LTE Band 12 / 5MHz / 16QAM - RB Size/Offset (1/24)

LTE Band 12 / 3MHz / 16QAM - RB Size/Offset (1/0)

LTE Band 12 / 3MHz / QPSK - RB Size/Offset (15/0)

LTE Band 12 / 3MHz / QPSK - RB Size/Offset (1/14)

- #Avg Type: RMS Frequency Freq 718.600000 MHz Trig: Free Run #Atten: 42 dB IFG Auto Tune Mkr1 716.100 MHz -17.93 dBm Ref Offset 7.57 dB Ref 30.00 dBm Center Freq 718.600000 MHz Start Freq 716.100000 MHz Stop Freq 721,100000 MHz CF Ster Auto Ma Freq Offset OH Start 716.100 MHz Res BW 100 kHz Stop 721.100 MHz #Sweep 1.000 s (1001 pts) #VBW 300 kHz LTE Band 12 / 3MHz / 16QAM - RB Size/Offset (1/14)
- Upper Extended Band Edge

LTE Band 12 / 1.4MHz / QPSK - RB Size/Offset (3/0)

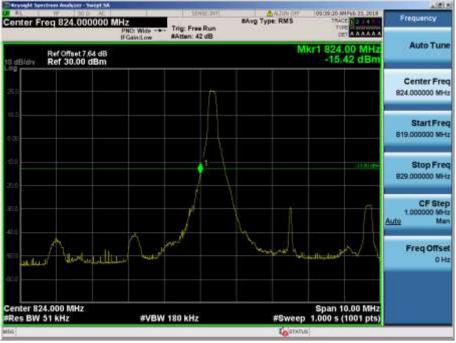
- #Avg Type: RMS Frequency r Freq 695.400000 MHz Trig: Free Run #Atten: 42 dB PH Auto Tun Mkr1 697.900 MH: -32.25 dBn Ref Offset 7.57 dB Ref 30.00 dBm Center Freq 695-400000 MHz Start Freq 692.900000 MHz Stop Freq 697.900000 MH CF Step 500.000 kl M Freq Offset OH Start 692.900 MHz #Res BW 100 kHz Stop 697.900 MHz #Sweep 1.000 s (1001 pts) #VBW 300 kHz
- Lower Extended Band Edge

LTE Band 12 / 1.4MHz / 16QAM - RB Size/Offset (6/0)

8.3.3 LTE Band 5

- Lower Band Edge

LTE Band 5 / 10MHz / QPSK - RB Size/Offset (25/0)



LTE Band 5 / 10MHz / QPSK - RB Size/Offset (50/0)

LTE Band 5 / 5MHz / 16QAM Offset/Size (1/0)

LTE Band 5 / 5MHz / QPSK Offset/Size (12/0)



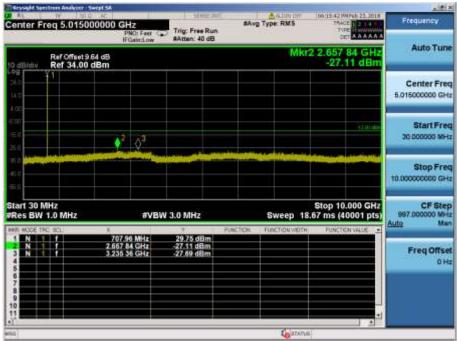
LI E Band 5 / 3WHZ / TOQAWI - RB SIZE/OIISEL (

LTE Band 5 / 3MHz / QPSK - RB Size/Offset (15/0)

LTE Band 5 / 1.4MHz / 16QAM - RB Size/Offset (1/0)

8.4 SPURIOUS AND HARMONICS EMISSIONS(Conducted)

8.4.1 LTE Band 17


LTE Band 17 / 10MHz / QPSK - RB Size/Offset (1/49) – Low Channel

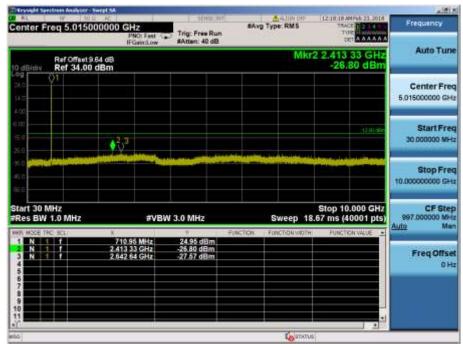
LTE Band 17 / 10MHz / QPSK - RB Size/Offset (1/0) - High Channel

LTE Band 17 / 5MHz / QPSK - RB Size/Offset (12/6) - Low Channel

LTE Band 17 / 5MHz / QPSK - RB Size/Offset (1/0) – Mid Channel

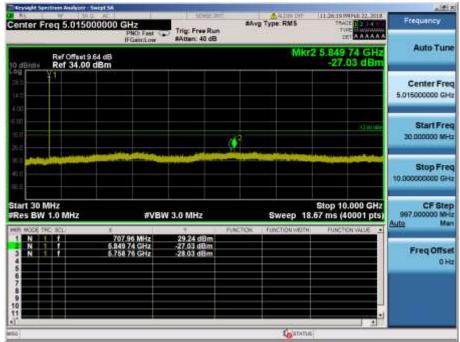
	0000000 GHz PNC: Fast IFGainLow	Trig: Free Run AAtten: 40 dB	#Avg T	de Allim Ort- ype: RMS	00.25.43 MMP 18402 19402 1970 001	404444	Frequency	
Ref Offaet 9 64 dB Mkr2 2.434 51 GHz 2 dBirthy Ref 34.00 dBm -28.14 dBm							Auto Tuni	
98 1 349 1 4.5							Center Fre 5.015000000 GH	
	¢2∕3					31 mate	Start Fre 30 000000 MH	
60 							Stop Fre 10.00000000 GH	
art 30 MHz Stop 10.000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 18.67 ms (40001 pts							CF Ste 997.000000 Mi Auto Mi	
HT MODE THE SEL	K 715.94 MHz	29.85 dBm	PUNCTION 1	FUNCTION WOTH	PUNCTION	WHIE .	in the second se	
	2.434 51 GHz	-26.14 dBm -27.07 dBm					Freq Offse	
	2.680 77 GHz						OH	
	2.680 77 GHz						OF	

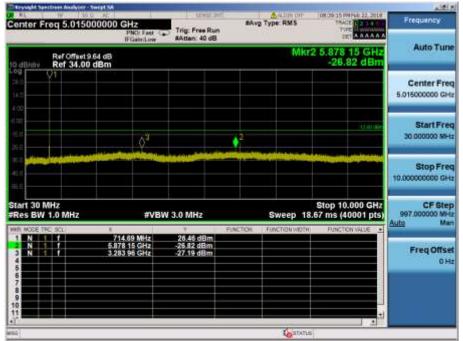
LTE Band 17 / 5MHz / QPSK - RB Size/Offset (1/24) - High Channel

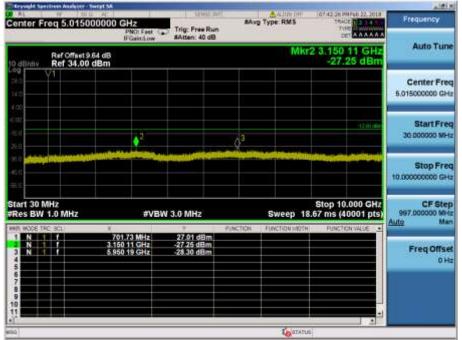


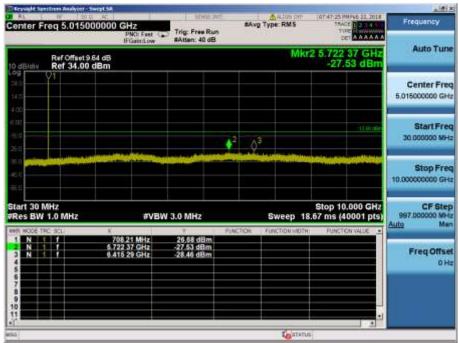
8.4.2 LTE Band 12

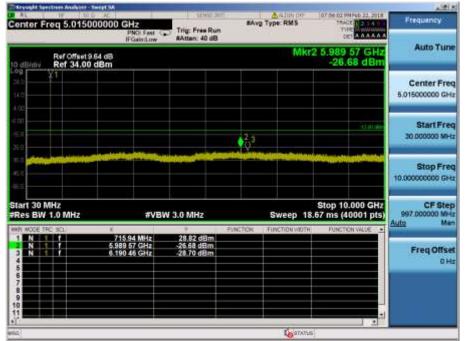

Dt&C

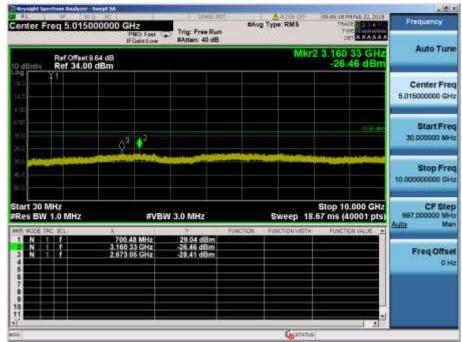

LTE Band 12 / 10MHz / 16QAM - RB Size/Offset (50/0) - Low Channel

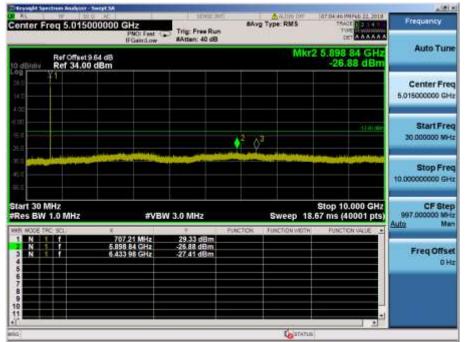

LTE Band 12 / 10MHz / 16QAM - RB Size/Offset (25/0) - High Channel

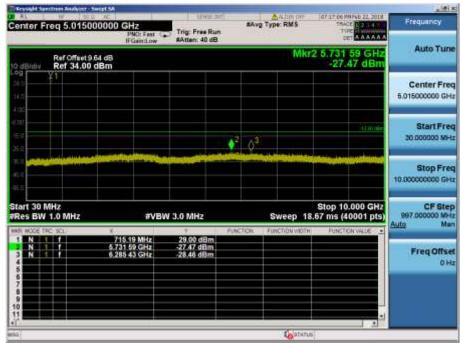

LTE Band 12 / 5MHz / 16QAM - RB Size/Offset (12/13) - Low Channel


LTE Band 12 / 5MHz / 16QAM - RB Size/Offset (1/12) - Mid Channel

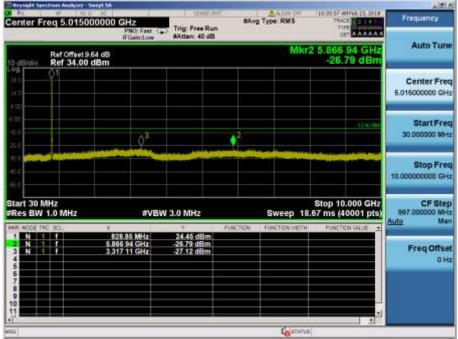

LTE Band 12 / 5MHz / QPSK - RB Size/Offset (12/6) - High Channel


LTE Band 12 / 3MHz / QPSK - RB Size/Offset (8/7) - Low Channel


LTE Band 12 / 3MHz / QPSK - RB Size/Offset (8/4) – Mid Channel


LTE Band 12 / 3MHz / QPSK - RB Size/Offset (1/14) - High Channel

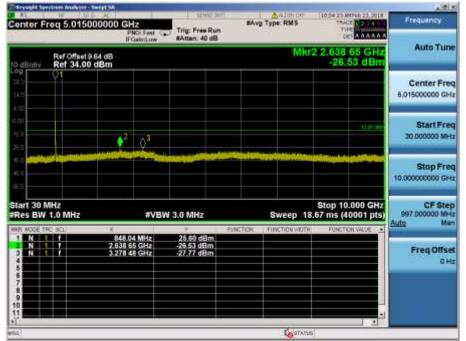
LTE Band 12 / 1.4MHz / 16QAM - RB Size/Offset (1/5) – Low Channel



LTE Band 12 / 1.4MHz / QPSK - RB Size/Offset (1/0) - Mid Channel

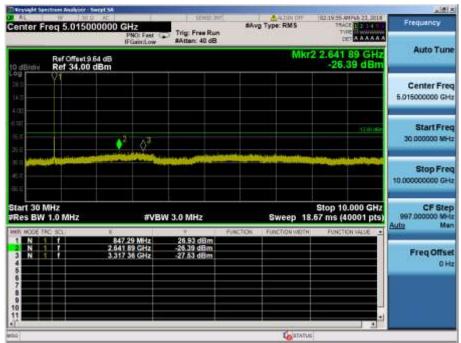


LTE Band 12 / 1.4MHz / QPSK - RB Size/Offset (3/0) - High Channel


8.4.3 LTE Band 5

LTE Band 5 / 10MHz / 16QAM - RB Size/Offset (50/0) - Low Channel

LTE Band 5 / 10MHz / QPSK - RB Size/Offset (50/0) - Mid Channel

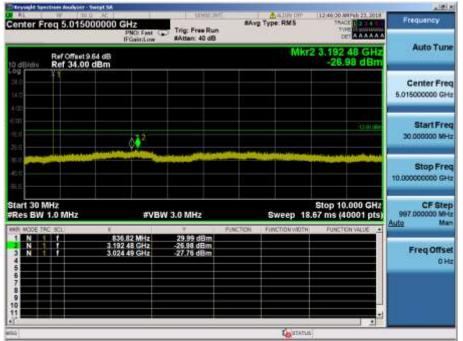

LTE Band 5 / 10MHz / 16QAM - RB Size/Offset (25/25) – High Channel

LTE Band 5 / 5MHz / 16QAM - RB Size/Offset (1/24) - Low Channel

LTE Band 5 / 5MHz / 16QAM - RB Size/Offset (1/0) - Mid Channel

LTE Band 5 / 5MHz / QPSK - RB Size/Offset (12/6) - High Channel


LTE Band 5 / 3MHz / 16QAM - RB Size/Offset (1/7) - Low Channel


LTE Band 5 / 3MHz / 16QAM - RB Size/Offset (8/7) – Mid Channel


LTE Band 5 / 3MHz / 16QAM - RB Size/Offset (8/0) - High Channel

LTE Band 5 / 1.4MHz / QPSK - RB Size/Offset (1/0) – Low Channel

LTE Band 5 / 1.4MHz / QPSK - RB Size/Offset (3/2) - Mid Channel

LTE Band 5 / 1.4MHz / 16QAM - RB Size/Offset (1/5) - High Channel