

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: May 7-8, 2014 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Test Report Serial No.:** 0Y1405060931.ZNF

FCC ID:

ZNFD850

APPLICANT:

LG ELECTRONICS MOBILECOMM U.S.A., INC.

Scope of Test: Application Type: FCC Rule Part(s): **HAC Standard:** EUT Type: Model(s): **Test Device Serial No.:** Class II Permissive Change(s): **Original Grant Date:**

Audio Band Magnetic Testing (T-Coil) **Class II Permissive Change** CFR §20.19(b) ANSI C63.19-2011 Portable Handset LG-D850, LGD850, D850 Pre-Production Sample [S/N: HAC T-coil] See FCC Change Document 5/19/2014

C63.19-2011 HAC Category:

T3 (SIGNAL TO NOISE CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 1 of 1
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 1 of 1
© 2014 PCTEST Enginee	ring Laboratory Inc			REV 3.0 M

1.	INTRODUCTION	3
2.	TEST SITE	4
3.	EUT DESCRIPTION	5
4.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
5.	METHOD OF MEASUREMENT	8
6.	FCC 3G MEASUREMENTS	18
7.	TEST SUMMARY	19
8.	MEASUREMENT UNCERTAINTY	25
9.	EQUIPMENT LIST	26
10.	CALIBRATION CERTIFICATES	27
11.	CONCLUSION	34
12.	REFERENCES	35
13.	TEST SETUP PHOTOGRAPHS	37

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dago 2 of 2
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 2 of 2
© 2014 PCTEST Enginee	ring Laboratory, Inc.			REV 3.0.M

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 2 of 2
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 3 of 3
© 2014 PCTEST Engineering	© 2014 PCTEST Engineering Laboratory, Inc.			

2. TEST SITE

I. Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), Long-Term Evolution (LTE), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).

- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dogo 4 of 4	
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 4 of 4	
© 2014 PCTEST Engineering	g Laboratory, Inc.	© 2014 PCTEST Engineering Laboratory, Inc.			

EUT DESCRIPTION 3.

FCC ID:	ZNFD850
Applicant:	LG Electronics MobileComm U.S.A., Inc.
	1000 Sylvan Avenue
	Englewood Cliffs, NJ 07632
	United States
Model(s):	LG-D850, LGD850, D850
Serial Number:	HAC T-coil
HW Version:	N/A
SW Version:	D85008d_pre4
Antenna:	Internal Antenna
HAC Test Configurations:	GSM 850, 128, 190, 251, BT Off, WLAN Off, LTE Off
	GSM 1900, 512, 661, 810, BT Off, WLAN Off, LTE Off
	UMTS V, 4132, 4183, 4233, BT Off, WLAN Off, LTE Off
	UMTS IV, 1312, 1412, 1862, BT Off, WLAN Off, LTE Off
	UMTS II, 9262, 9400, 9538, BT Off, WLAN Off, LTE Off
EUT Type:	Portable Handset

850 1900 RS/EDGE 850 1700 1900 HSPA	VO DT VO	Yes No	Yes: WIFI or BT Yes: WIFI or BT	N/A	N/A	Na
RS/EDGE 850 1700 1900		No	Yes: WIFI or BT	,	N/A	
850 1700 1900		No	Yes: WIFI or BT			No
1700 1900	vo			Yes		
1900	VO					
		Yes	Yes: WIFI or BT	N/A	N/A	N/A
LICDA					N/A	N/A
HJFA	DT	No	Yes: WIFI or BT	Yes		
700					N/A	
850						N/A
1700	VD	No ¹	Yes: WIFI or BT	Yes		
1900						
2500						
2450						
5200						
5300	DT	No	Yes: GSM, UMTS or LTE	Yes	N/A	N/A
5500						
5800						
2450	DT	No	Yes: GSM, UMTS or LTE	N/A	N/A	N/A
		Notes:				
			accordance with the guidance is	sued by OET in KDB publicatio	n 285076 D02 ⁻	T-Coil testing for CMRS
8 1 2 5 5 5 5 2 1 1	350 700 900 500 450 200 300 500 800 450	350 VD 700 VD 900 450 200 DT 300 DT 800 DT ntended for CMRS Service	350 VD No ¹ 700 VD No ¹ 900 500 450 200 300 DT No 500 450 DT No 500 450 DT No 500 450 DT No 800 450 DT No ntended for CMRS Service IP. Not tested in	350 VD No ¹ Yes: WIFI or BT 900 500 450 200 300 DT No Yes: GSM, UMTS or LTE 500 800 450 200 1 No Yes: GSM, UMTS or LTE 500 800 1 No Yes: GSM, UMTS or LTE Notes: 1. Not tested in accordance with the guidance is intended for CMRS Service IP. 1 Notes intended in accordance with the guidance is intended for CMRS Service	350 VD No ¹ Yes: WIFI or BT Yes 900 500 VD No ¹ Yes: WIFI or BT Yes 500 450	350 700 VD No ¹ Yes: WIFI or BT Yes N/A 900 500 Prescription (Constraint) Prescription (Constraint) Prescription (Constraint) N/A 500 450 Prescription (Constraint) Prescription (Constraint) Prescription (Constraint) N/A 300 DT No Yes: GSM, UMTS or LTE Yes N/A 500 0 DT No Yes: GSM, UMTS or LTE N/A N/A 500 0 T No Yes: GSM, UMTS or LTE N/A N/A 500 0 T No Yes: GSM, UMTS or LTE N/A N/A 500 0 T No Yes: GSM, UMTS or LTE N/A N/A 450 DT No Yes: GSM, UMTS or LTE N/A N/A rescription T Notes: 1. Not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 To Prescription Prescription 285076 D02 To Prescription

Table 3-1: ZNFD850 HAC Air Interfaces

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dego E of E
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 5 of 5
© 2014 PCTEST Enginee	ring Laboratory, Inc.			REV 3.0.M

ANSI C63.19-2011 PERFORMANCE CATEGORIES 4.

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per §8.3.2.

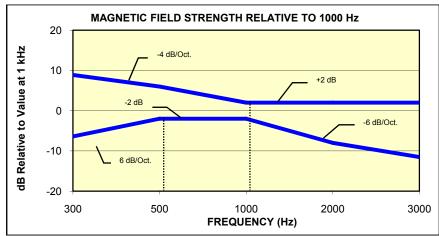


Figure 4-1 Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB (A/m) at 1 kHz

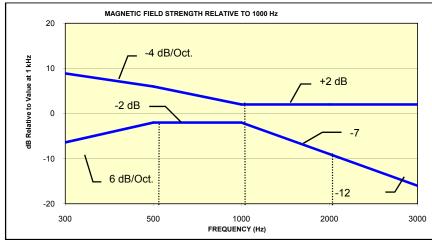


Figure 4-2

Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dege 6 of 6
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 6 of 6
© 2014 PCTEST Enginee	ring Laboratory, Inc.			REV 3.0.M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Cotogomy	Telephone RF Parameters			
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 4-1 Magnetic Coupling Parameters				

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dana Zaf Z
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 7 of 7
© 2014 PCTEST Engineer	ing Laboratory Inc			REV 3.0 M

METHOD OF MEASUREMENT 5.

I. **Test Setup**

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

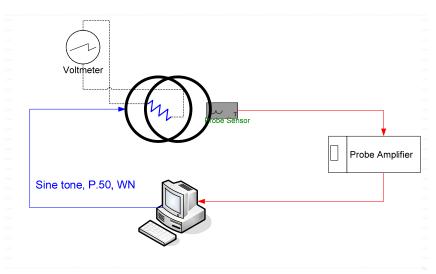
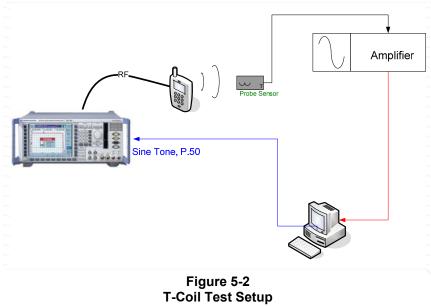



Figure 5-1 Validation Setup with Helmholtz Coil

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 9 of 9
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 8 of 8
© 2014 PCTEST Engineerin	© 2014 PCTEST Engineering Laboratory, Inc.			

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

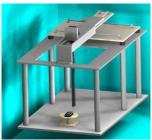


Figure 5-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer:	
Active Frequency	
Range:	
Stimulus Type:	
Single Sample	
Duration:	
Activity Level:	

ITU-T
100 Hz – 8 kHz
Male and Female, no spaces
20.96 seconds
100%

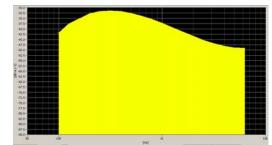


Figure 5-4 Spectral Characteristic of full P.50

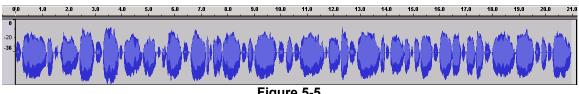
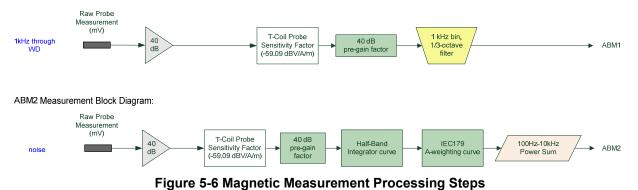



Figure 5-5 Temporal Characteristic of full P.50

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕞 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dana 0 af 0
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 9 of 9
© 2014 PCTEST Enginee	ring Laboratory Inc	*		REV 3.0 M

ABM1 Measurement Block Diagram:

IV. **Test Procedure**

- 1. Ambient Noise Check per C63.19 §7.3.1
 - Ambient interference was monitored using a Real-Time Analyzer between100-10,000 Hz а with 1/3 octave filtering.
 - "A-weighting" and Half-Band Integration was applied to the measurements. b.
 - Since this measurement was measured in the same method as ABM2 measurements, С this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is: -18 - 30 - 10= -58 dBA/m

- Measurement System Validation(See Figure 5-1) 2.
 - The measurement system including the probe, pre-amplifier and acquisition system were a. validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil. N=20: r=0.13m: R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.31623A / m \approx -10dB(A / m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29 mV was observed across the 10 Ω resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within ± 0.5 dB of the -10dB(A/m) value (see Page 24).

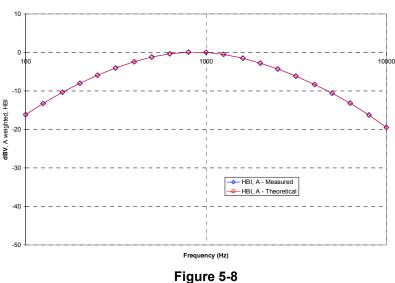
FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 10 of 10
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 10 of 10
© 2014 PCTEST Enginee	ring Laboratory Inc			REV 3.0 M

Frequency Response Validation C.

The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the Normal speech signal as shown below:

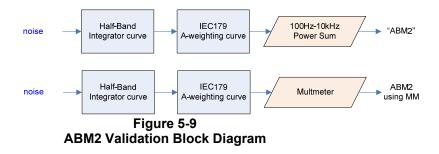
Figure 5-7 Frequency Response Validation

d. ABM2 Measurement Validation


WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

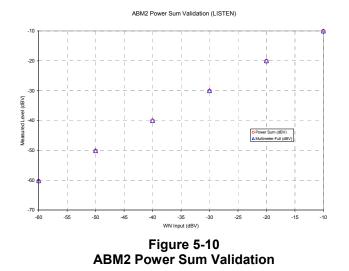
ABM	l2 Frequency R	e 5-1 Response Valid	lation
	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

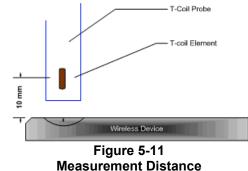
Table 5-1


FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕞 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 11 of 11
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 11 of 11
© 2014 PCTEST Engine	ring Laboratory Inc	•		REV 3.0 M

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation


The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 5-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:


The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

A		le 5-2 Sum Validation	
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.36	-60.2	0.16
-50	-50.19	-50.13	0.06
-40	-40.14	-40.03	0.11
-30	-30.13	-30.01	0.12
-20	-20.12	-20	0.12
-10	-10.14	-10	0.14

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dogo 12 of 12
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 12 of 12
© 2014 DOTEST Engineerin	a Laboratory Inc			DEV 3.0 M

- 3. Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below:

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the sound check system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 5-16 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
	TDMA (22 and 11 Hz)	-18

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 12 of 12
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 13 of 13
© 2014 PCTEST Engineer	ring Laboratory Inc			REV 3.0 M

The CMU200 audio levels were determined using base station simulator manufacturer calibration procedures resulting in the below corresponding voltages relative to handset test point level (in dBm0):

Table 5-3 CMU200 Voltage Input Levels for Audio

dBm0 Ref.	Volt	age	Notes
3.14 dBm0	990.5 mV	-0.08 dBV	From GSM "DECODER CAL". (What is needed through Encoder for FS)
-16 dBm0	109.4 mV -19.2 dBV		For Speechcod/Handset Low
dBm0 Ref.	Volt	age	Notes
dBm0 Ref. 3.14 dBm0	Volt 1068.5 mV	age 0.58 dBV	Notes From UMTS "DECODER CAL". (What is needed through Encoder for FS)

- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition under EFR (GSM); AMR 12.2 kbps (UMTS); (see below):

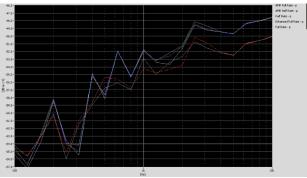


Figure 5-12 Vocoder Analysis for ABM Noise

- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 4-1 or Figure 4-2between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 14 of 14
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 14 of 14
© 2014 PCTEST Engine	DEV 3.0 M			

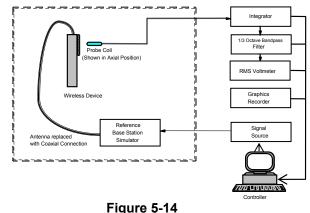

ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 5-13. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.

Figure 5-13 Frequency Response Block Diagram

- iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
- c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight on, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

V. Test Setup

Audio Magnetic Field Test Setup

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection to account for effects of standard battery cover versus the wireless charging cover.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dage 15 of 15
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 15 of 15
© 2014 PCTEST Engineering	REV 3.0.M			

VII. Air Interface Technologies Tested

WIFI and all 3G packet services were not tested for this device since they are considered 'Over-the-Top' applications and are not within the current definition of a managed CMRS service.

VoLTE air interfaces were not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil testing for CMRS IP.

VIII. Wireless Device Channels and Frequencies

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band.

To facilitate setting of a base station simulator for ABM measurements, specific band plan channel numbers are listed that may be used in lieu of the band center frequencies.

Center Channels and Frequencies				
Test frequencies & associated channels				
Channel Frequency (MHz)				
Cellular 850				
190 (GSM)	836.60			
4183(UMTS)	836.60			
PCS 1900				
661 (GSM)	1880			
9400 (UMTS)	1880			
AWS 1750	AWS 1750			
1412 (UMTS)	1730.40			

Table 5-4

IX. **RF Emission Effect on T-coil Measurements**

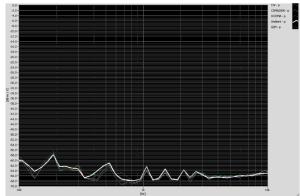


Figure 5-15

High power RF Emissions Effect with HAC Dipole on the T-coil Probe System 10mm between dipole maximum and magnetic probe

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 16 of 16
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 16 of 16
© 2014 PCTEST Enginee	REV 3.0.M			

Test Flow Χ.

The flow diagram below was followed (From C63.19):

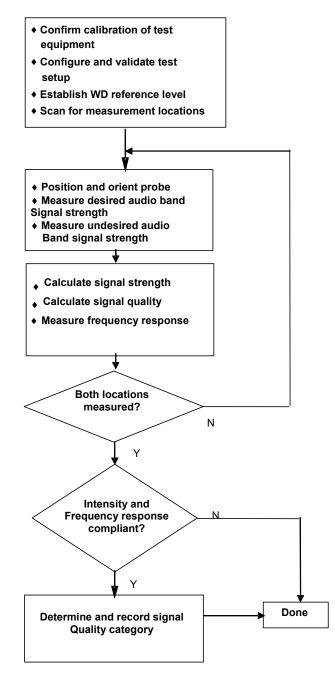
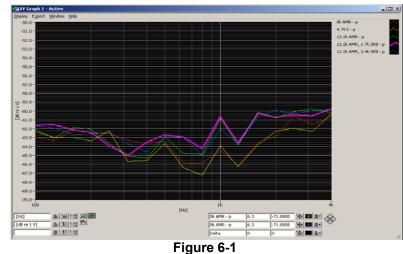



Figure 5-16 C63.19 T-Coil Signal Test Process

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕞 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dogo 17 of 17
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 17 of 17
© 2014 PCTEST Engineering Laboratory. Inc.				

FCC 3G MEASUREMENTS 6.

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

UMTS Audio Band Magnetic Noise

I. **ABM Measurements**

Table 6-1 FCC 3G ABM Measurements for ZNFD850

ABM1	Pre-Test	(dBA/m	I)

AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel
3.930	3.740	4.150	Radial	1412

ABM2 Pre-Test (dBA/m), A, HBI

AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel
-42.04	-43.12	-43.24	Radial	1412

. Mute on; Backlight on; Max Volume, Max Contrast .

UMTS: TPC="All 1s";

Figure 6-2 Audio Band Magnetic Curve Measurement Block Diagram

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Daga 19 of 19	
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 18 of 18	
© 2014 DOTEST Engineer					

7. TEST SUMMARY

I. T-Coil Test Summary

	Table of Results for GSM						
C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict	
				dBA/m	dBA/m	PASS/FAIL	
8.3.1			Intensity, Axial	-18	13.1	PASS	
8.3.1			Intensity, Radial	-18	1.8	PASS	
8.3.4	GSM	Cellular	Signal-to-Noise/Noise, Axial	20	31.9	PASS	
8.3.4			Signal-to-Noise/Noise, Radial	20	23.1	PASS	
8.3.2			Frequency Response, Axial	0	1.8	PASS	
8.3.1			Intensity, Axial	-18	13.2	PASS	
8.3.1			Intensity, Radial	-18	5.5	PASS	
8.3.4	GSM	PCS	Signal-to-Noise/Noise, Axial	20	35.7	PASS	
8.3.4			Signal-to-Noise/Noise, Radial	20	29.3	PASS	
8.3.2			Frequency Response, Axial	0	1.8	PASS	

Table 7-1 Table of Results for GSM

Note: The above summary table represents the worst-case numerical values according to configurations in Table 7-4.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dego 10 of 10
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 19 of 19
© 2014 PCTEST Engineering Laboratory Inc.				

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict		
				dBA/m	dBA/m	PASS/FAIL		
8.3.1			Intensity, Axial	-18	11.3	PASS		
8.3.1			Intensity, Radial	-18	4.0	PASS		
8.3.4	UMTS	Cellular	Signal-to-Noise/Noise, Axial	20	52.4	PASS		
8.3.4			Signal-to-Noise/Noise, Radial	20	46.0	PASS		
8.3.2			Frequency Response, Axial	0	1.9	PASS		
			1					
8.3.1			Intensity, Axial	-18	11.6	PASS		
8.3.1			Intensity, Radial	-18	4.1	PASS		
8.3.4	UMTS	PCS	Signal-to-Noise/Noise, Axial	20	52.7	PASS		
8.3.4					Signal-to-Noise/Noise, Radial	20	46.5	PASS
8.3.2			Frequency Response, Axial	0	1.9	PASS		
8.3.1			Intensity, Axial	-18	11.5	PASS		
8.3.1			Intensity, Radial	-18	3.7	PASS		
8.3.4	UMTS	AWS	Signal-to-Noise/Noise, Axial	20	52.6	PASS		
8.3.4			Signal-to-Noise/Noise, Radial	20	45.9	PASS		
8.3.2			Frequency Response, Axial	0	1.9	PASS		

Table 7-2 Table of Results for UMTS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 7-5.

Table 7-3						
Consolidated	Tabled	Results				

	Volume Setting			AWS		PCS	
		Axial	Radial	Axial	Radial	Axial	Radial
Freq. Response Margin		PASS	N/A	PASS	N/A	PASS	N/A
Magnetic Intensity Verdict	Maximum	PASS	PASS	PASS	PASS	PASS	PASS
FCC SNR Verdict		PASS	PASS	PASS	PASS	PASS	PASS

Note: Result shown is for T-coil category only.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dega 20 of 20
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 20 of 20
© 0014 DOTEOT Essister				

II. Raw Handset Data

K									
	Volume	Cell. Band							
	volume		Axial				Radi	al	
		128	190	251	128	190	251	190 WCC ⁶	190 WCC ⁷
ABM1, dBA/m		13.11	13.86	13.27	5.53	5.79	5.82	5.87	1.78
ABM2, dBA/m		-19.48	-18.58	-18.62	-20.91	-20.27	-20.43	-20.42	-21.27
Ambient Noise, dBA/m		-61.42	-61.42	-61.42	-62.07	-62.07	-62.07	-62.07	-62.07
Freq. Response Margin (dB)	Maximum	1.80	1.77	1.81	N/A	N/A	N/A	N/A	N/A
S+N/N (dB)		32.59	32.44	31.89	26.44	26.06	26.25	26.29	23.05
S+N/N per orientation (dB)			31.89 23.05						
	Volume	PCS Band							
			Axial			-	Radi	al	
		512	661	810	512	661	810		
ABM1, dBA/m		13.28	13.44	13.17	5.89	5.53	5.75		
ABM2, dBA/m		-22.45	-23.16	-25.41	-23.45	-24.00	-25.72		
Ambient Noise, dBA/m		-61.42	-61.42	-61.42	-62.07	-62.07	-62.07		
Freq. Response Margin (dB)	Maximum	1.75	1.77	1.75	N/A	N/A	N/A		
S+N/N (dB)		35.73	36.60	38.58	29.34	29.53	31.47		
S+N/N per orientation (dB)			35.73		29.34				
T-coil Coordinates (cm)	[x,y] from bottom left		2.1, 1.3		2.0, 0.6				

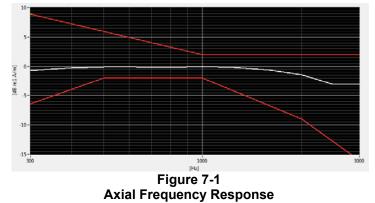
Table 7-4Raw Data Results for GSM

Notes:

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Phone Condition: Mute on; Backlight on; Max Volume, Max Contrast
- 3. Vocoder Configuration: EFR (GSM);
- 4. 'Radial' orientation refers to radial transverse.
- 5. Speech Signal: ITU-T P.50 Artificial Voice
- 6. Testing using the wireless charging cover (WCC) in an **open** position was performed on the worst case channel and probe orientation configuration.
- 7. Testing using the wireless charging cover (WCC) in a **closed** position was performed on the worst case channel and probe orientation configuration.

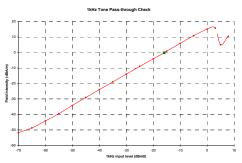
FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager			
Filename:	Test Dates:	EUT Type:	Pa				
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset	Portable Handset				
© 2014 DOTEST Enginee	DEV/20M						

Raw Data Results for UMTS							
	Volume	Cellular Band					
	Volume		Axial			Radial	
		4132	4183	4233	4132	4183	4233
ABM1, dBA/m		11.44	11.34	11.54	4.00	4.10	4.01
ABM2, dBA/m		-40.94	-41.59	-41.03	-42.13	-41.87	-42.21
Ambient Noise, dBA/m		-61.42	-61.42	-61.42	-62.07	-62.07	-62.07
Freq. Response Margin (dB)	Maximum	1.86	1.85	1.87	N/A	N/A	N/A
S+N/N (dB)		52.38	52.93	52.57	46.13	45.97	46.22
S+N/N per orientation (dB)			52.38			45.97	
	Volume			PCS	Band		
			Axial			Radial	
		9262	9400	9538	9262	9400	9538
ABM1, dBA/m		11.74	11.84	11.58	4.21	4.25	4.14
ABM2, dBA/m		-41.07	-41.02	-41.10	-42.31	-42.71	-42.38
Ambient Noise, dBA/m		-61.42	-61.42	-61.42	-62.07	-62.07	-62.07
Freq. Response Margin (dB)	Maximum	1.87	1.88	1.86	N/A	N/A	N/A
S+N/N (dB)		52.81	52.86	52.68	46.52	46.96	46.52
S+N/N per orientation (dB)			52.68			46.52	
	Volume	AWS Band					
			Axial			Radial	
		1312	1412	1862	1312	1412	1862
ABM1, dBA/m		11.51	11.58	11.46	3.79	3.86	3.71
ABM2, dBA/m		-41.32	-41.00	-41.38	-42.21	-42.07	-42.75
Ambient Noise, dBA/m		-61.42	-61.42	-61.42	-62.07	-62.07	-62.07
Freq. Response Margin (dB)	Maximum	1.86	1.86	1.88	N/A	N/A	N/A
S+N/N (dB)		52.83	52.58	52.84	46.00	45.93	46.46
S+N/N per orientation (dB)			52.58			45.93	
T-coil Coordinates (cm)	[x,y] from bottom left		2.1, 1.3		2.0, 0.6		

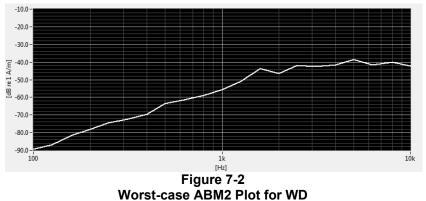

Table 7-5 Raw Data Results for UMTS

Notes:

- 1. Power Configuration: UMTS: TPC="All 1s";
- Phone Condition: Mute on; Backlight on; Max Volume, Max Contrast
 Vocoder Configuration: AMR 12.2 kbps (UMTS);
- 4. 'Radial' orientation refers to radial transverse.
- 5. Speech Signal: ITU-T P.50 Artificial Voice

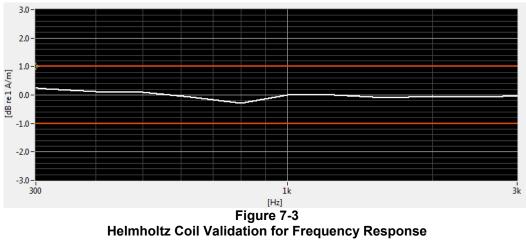

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 22 of 22	
0Y1405060931.ZNF	May 7-8, 2014	4 Portable Handset		
© 2014 PCTEST Engineer	REV 3.0 M			

III. Frequency Response Graph


Note: User T-coil Mode (**Settings→Call Settings→Hearing aids**) was set to ON for Frequency Response compliance. This frequency response represents the worst-case ABM2 test configuration according to Tables 7-4 and 7-5.

IV. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM and UMTS. This measurement was taken in the axial configuration above the maximum location.


V. Undesirable Audio Magnetic Band Plot (ABM2)

Note: This plot represents the data from the location/configuration resulting in the highest ABM2 result shown in Tables 7-4 and 7-5.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕞 LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dana 00 of 00	
0Y1405060931.ZNF	May 7-8, 2014	lay 7-8, 2014 Portable Handset		Page 23 of 23	
© 2014 PCTEST Engineer	REV 3.0 M				

VI. T-Coil Validation Test Results

	Table 7-6						
Helmholtz Coil Validation Table of Results							

Item	Target	Result	Verdict
Signal Validation			
Frequency Response, from limits	0 ± 0.5 dB	0.30	PASS
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.755	PASS
Noise Validation			
Axial Environmental Noise	< - 58 dBA/m	-61.42	PASS
Radial Environmental Noise	< - 58 dBA/m	-62.07	PASS

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dage 24 of 24		
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 24 of 24	
© 2014 PCTEST Enginee	REV 3.0 M				

8. MEASUREMENT UNCERTAINTY

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty	/, uc (k=1)					17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Table 8-1 Uncertainty Estimation Table

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dana OF of OF
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 25 of 25
© 2014 DCTEST Engineer	ing Laboratory Inc			DEV/30M

EQUIPMENT LIST 9.

Table 9-1 **Equipment List**

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E5515C	Wireless Communications Test Set	5/9/2013	Biennial	5/9/2015	GB43304447
Anritsu	MT8820C	Radio Communication Analyzer	6/28/2013	Annual	6/28/2014	6201240328
Listen	SoundConnect	Microphone Power Supply	2/17/2014	Annual	2/17/2015	0899-PS150
Listen	SoundCheck	Acoustic Analyzer System	10/11/2013	Annual	10/11/2014	04-06-5876-SC2850
NI	4474	Data Acquisition Card	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	4/24/2014	Annual	4/24/2015	836371/0079
Seekonk	NC-100	Torque Wrench (8" lb)	11/29/2011	Triennial	11/29/2014	21053
TEM	Axial T-Coil Probe	Axial T-Coil Probe	2/17/2014	Annual	2/17/2015	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	2/17/2014	Annual	2/17/2015	TEM-1129
TEM	Helmholtz Coil	Helmholtz Coil	8/6/2013	Annual	8/6/2014	SBI 1052
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 26 of 26
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Fage 20 01 20
© 2014 PCTEST Enginee	ring Laboratory, Inc.			REV 3.0.M

CALIBRATION CERTIFICATES 10.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dego 27 of 27
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 27 of 27
© 2014 PCTEST Enginee	ring Laboratory, Inc.			REV 3.0.M

PCTEST Engineering Laboratory, Inc. © 201

			() () () () () () () () () () () () () (
West	Caldwell Call	bration L	aboratories Inc.	
Cort	ificate	of C	alibration	
	mau			
5		for		
	Axia Manufactured b	l T Coil Probe ov: TEl	M CONSULTING	1000
	Model No:	Axi	al T Coil Probe	
	Serial No: Calibration Rec		M-1123 89	
	s	Submitted By:		
	Customer:	JUSTIN CHA	.0	S.
	Company:		GINEERING LAB	
	Address:	6660-B DOBE COLUMBIA	BIN ROAD MD 21045	
National Institute of	Standards and Technologic	ogy or to accepte	ication using standards traceable to t d values of natural physical constant specification upon its return to the	
West Caldwell Calib	ration Laboratories Pro	cedure No.	Axial T Coi TEM	
Upon receipt for Cal	ibration, the instrument	was found to be	:	(****)
With	in (X) see atta	ched Report of (Calibration.	
the tolerance of the i	ndicated specification.			100 100
West Caldwell Calib	ration Laboratories' cal	ibration control	system meets the requirements, ISO	
10012-1 MIL-STD-4	5662A, ANSI/NCSE/Z54	10-1, IEC Guide	25, ISO 9001:2008 and ISO 17025.	
			JC 2/22/14	æ
Note: With this Certificat	e, Report of Calibration is in	cluded.	Approved by:	
Calibration Date:	17-Feb-14		FC	
Certificate No:	23889 - 1		Felix Christopher (QA Mgr.)	
QA Doc, #1051 Rev. 2.0 10/1/01		cate Page 1 of 1	ISO/IEC 17025:2005	Ż
	West Caldwell			
	Calibration	Inc	ACCREDITED	
uncompromised calibration 1575 State Route 96, Victor	Laboratories,	BHIG.	Calibration Lab. Cert. # 1533.01	Nor and

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 28 of 28
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Fage 20 01 20
© 2014 PCTEST Enginee	ring Laboratory, Inc.			REV 3.0.M

HCATEMC_TEM-1123_Feb-17-2014

1575 State Route 96, Victor NY 14564

Calibration Lab. Cert. # 1533.01

REPORT OF CALIBRATION

TEM Consulting LP Axial T Coil Probe Company : PCTEST Engineering Lab.			N	lodel	No.: Axial T (Coil Probe		Serial No.: TEM-1123					
								I. D. N	o: 8058	2			
alibi	ratio	n results:						Before	data:		After da	ta:	
		Probe Se	ensitivity mea		th Helmho	ltz Coil			D .(-	0		v	
		the number	Helmho r of turns on e	oltz Coll;	10	No.			Beto	re & att	er data san	1e:A.	•••••
	···· , ··· ,		0.204				Laborato	v Enviror	nment:				
		the current in	-	-	0.09	Α			Ambient Temp	•	21.2	°C	
		Hel	mholtz Coil C	onstant;	7.09	A/n	n/V		Ambient H	umidity:	29.1	% RH	
		Helmhol	tz Coil magne	tic field;	5.98	A/n	ı		Ambient Pr	essure:	100.7	kPa	
									Calibratio	n Date:	17-Feb-14	ł	
			Probe Sensi	itivity at	1000	Hz.			Re-calibrati	on Due:	17-Feb-1	5	
				was	-60.20	dB	//A/m		Report N	lumber:	23889	-1	
				• .	0.977		/A/m		Control N	lumber:	23889		
			Probe res		894	Oh		e					
		ove listed ins						manufacture	er's specific	ations.	•		
		pration is traceable ided uncertainty of c	-			•	7708 	ane factor of k=2					
		presents Probes Fro					001010						
						Axial	Probe	Response				1	
	20 -	p						-		Mea	sured Probe	 	
												-	
	15 -			1									
	10 -									-			
ଳି	5 -	-			1								
e (di	5												
itud	0 -												
Magnitude (dB)	-5 -					-							
-	-10 -												
-	15 -												
	20 -												
-		00	•••••		F	req. (Hz	10	000					10000
									11 141 1 -				
		ove listed instru			sing calibr	ation p	roced				Dec # 40		TEMO
		ion Laboratorie n was performed b	•		n i aboratori	ae Inc. i	nder (ev. 7.0 Jan. 2	4, 2014	DOC. # 10	50 HOA	LWO
		to implement the re								ISO 900	1:2008, ISO	17025	
											4	5-	
				eb-2014				Meas	urements perfor	-			
		d on WCCL syste	•••								Felix Chris	•	
is di	ocum	ent shall not be reprodu	uced, except in ful	l, without the v	vritten approva	I from Wes	t Caldwe	ell Cal. Labs. Inc.	R	ev. 7.0 Jan.	24, 2014 Doc. #	1038 HCATE	MG

Reviewed by: PCTEST 🕒 LG FCC ID:ZNFD850 HAC (T-COIL) TEST REPORT Quality Manager Filename: Test Dates: EUT Type: Page 29 of 29 0Y1405060931.ZNF May 7-8, 2014 Portable Handset REV 3.0.M

HCATEMC_TEM-1123_Feb-17-2014

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe

for Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Company : PCTEST Engineering Lab.

Test	Function	Tolera	nce	Measured values			
				Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.20			
	· · · · · · · · · · · · · · · · · · ·		dB			1	
2.0	Probe Level Linearity		6	6.03			
		Ref. (0 dB)	0	0.00			
			-6	-6.02			
			-12	-12.05			
			Hz				
3.0	Probe Frequency Response		100	-19.9			
			126	-17.9			
			158	-16.0			
			200	-13.9			
			251	-12.0			
			316	-10.0			
			398	-8.0			
			501	-6.0			
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	6.0			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
			6310	15.9			
			7943	18.0			
			10000	20.2			

Instruments used for calibration	on:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N 36064102	8-Oct-2013	,287708	8-Oct-2014
HP	34401A	S/N 36102471	8-Oct-2013	,287708	8-Oct-2014
HP	33120A	S/N 36043716	8-Oct-2013	,287708	8-Oct-2014
B&K	2133	S/N 1583254	9-Dec-2012	683/281764-12	10-Dec-2013

Cal. Date: 17-Feb-2014 Tested by: Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Page 2 of 2

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 30 of 30
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Fage 30 01 30
© 2014 PCTEST Engineering	Laboratory, Inc.	•		REV 3.0.M

	est Ca	aldwell Cal	ibratio	on Labora	tories Inc.	
	<u>, e ,</u>	ړ فار	e i	<u>л</u> 1•1	, ●	
Ce	rtii	icate	01 (Calib	ration	
			for			
		Rad Manufactured Model No: Serial No:	ial T Coil H by:	Probe TEM CONSUI Radial T Coil TEM-1129		
		Calibration Re	ecall No:	23889		
			Submitted	•		
		Customer: Company:		N CHAO ST ENGINEERIN	CLAR	
		Address:		DOBBIN ROAD	MD 21045	
National Instit	ute of Sta	ndards and Teehno	ology or to a	eccepted values of	g standards traceable to natural physical constant on upon its return to the	
si li		ion Laboratories Pr			EM	
Upon receipt f	or Calibr	ation, the instrume	nt was found	d to be:		
Ð	Within	(X) see at	tached Repo	ort of Calibration.		GE
the tolerance of	of the indi	cated specification.				
West Caldwell 10012-1 MIL-	Calibrat STD-4566	ion Laboratories' c 2A, ANSI/NCSL Z	alibration co 540-1, IEC (ontrol system mee Guide 25, ISO 90	ts the requirements, ISO 01:2008 and ISO 17025.	
					JC) E
Note: With this C	ertificate. F	Report of Calibration is i	included.	Annre	2/22/14 oved by:	
					-	
Calibration D		17-Feb-14			FZ	
QA Doc. #1051 Rev. 2		23889 - 2 Certi	ificate Page 1		Christopher (QA Mgr.) ISO/IEC 17025:2005	
	≜ W∢	est Caldwell alibration	Ū			
100 A. A.			, Inc.		**CCDEDITED!	

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 31 of 31
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Fage ST 01 ST
© 2014 PCTEST Engineer	ring Laboratory, Inc.	-		REV 3.0.M

HCRTEMC_TEM-1129_Feb-17-2014

1575 State Route 96, Victor NY 14564

Calibration Lab. Cert. # 1533.01

REPORT OF CALIBRATION

mnany · PCTECT	J LP Radial T Coil P			No.: Radial T Coil		I. D. No	: TEM-1129
ompany : PCTEST	cogineering Lab.						
ration results:		0-11-1k	- 0 - 11	Before data:		After data	к
Probe Sen	nsitivity measured wit Helmholtz Coll;	in Heimnon	IZ COII		Bofore & aff	er data same	. x
the number (of turns on each coil;	10	No.		Belore d alt	or data same	
	f each coil, in meters;	0.204	m		Laboratory Enviro	nment:	
the current in the	the coils, in amperes.;	0.09	Α	Ambi	ent Temperature:	21.2	°C
Heim	nholtz Coil Constant;	7.09	A/m/V	A	mbient Humidity:	29.1	% RH
Helmholtz	z Coil magnetic field;	5.98	A/m	A	mbient Pressure:	100.7	kPa
					Calibration Date:	17-Feb-14	
F	Probe Sensitivity at	1000	Hz.	Re	e-calibration Due:	17-Feb-15	
	was	-60.38	dBV/A/m		Report Number:	23889	-2
	Duck a market of	0.957	mV/A/m		Control Number:	23889	
above listed to a	Probe resistance	900	Ohms he tested -		maaification		
	trument meets or hrough NIST test numbers		ne tested i ,287708	nanuracturer's s	pecifications	•	
	libration: 0.30dB at 95% c		·.	ne factor of k=2			
n represents Probes Free			in mar a corora				
· · · · · · · · · · · · · · · · · · ·	<u></u>		Radial Probe	Response	 [
20		·····			Measu	ed Probe Resp.	
15							
10							
_							
5	1 1						
0						<u>├──</u> ├── ├	
0							
0							
0 -5 10							
0 -5							
0 -5 -5		Err	an (Hz) 10	200			
0 -5 10 15 20 100			eq. (Hz) 10				10000
0 -5 10 15 20 100 above listed instrum	nent was checked us		· ·····	ire documented in			
0 -5 10 15 20 100 above listed instrum pration Laboratories	Inc. procedure :	sing calibra	tion proced	ire documented in Rev. 7.0	West Caldwell J Jan. 24, 2014	Doc. # 103	
0 -5 10 15 20 100 above listed instrum oration Laboratories ration was performed by	Inc. procedure : West Caldwell Calibration	sing calibra n Laboratorie	tion procedu	ire documented in Rev. 7.0 perating Procedures) Jan. 24, 2014		8 HCRTEMC
0 -5 10 15 20 100 above listed instrum oration Laboratories ration was performed by	Inc. procedure :	sing calibra n Laboratorie	tion procedu	ire documented in Rev. 7.0 perating Procedures) Jan. 24, 2014		8 HCRTEMC
0 -5 10 15 20 100 above listed instrum pration Laboratories ration was performed by ded to implement the req	Inc. procedure : West Caldwell Calibration	sing calibra n Laboratorie	tion procedu	Ire documented in Rev. 7.(perating Procedures . 2540-1, (MIL-STD-456) Jan. 24, 2014	1:2008, ISO 17	8 HCRTEMC
0 -5 10 15 20 100 above listed instrum pration Laboratories ration was performed by ded to implement the req	B Inc. procedure : West Caldwell Calibration quirements of ISO10012-1 Date: 17-Feb-2014	sing calibra n Laboratorie	tion procedu	Ire documented in Rev. 7.(perating Procedures . 2540-1, (MIL-STD-456) Jan. 24, 2014 662A) and ISO 900 nts performed by:	1:2008, ISO 17	8 HCRTEMC ⁰²⁵ て
0 -5 10 15 20 100 above listed instrum pration Laboratories ration was performed by ded to implement the req Cal. D rrated on WCCL system	B Inc. procedure : West Caldwell Calibration quirements of ISO10012-1 Date: 17-Feb-2014	sing calibra n Laboratorie I, IEC Guide 2	tion procedu s Inć. under C 25, ANSI/NCSI	ure documented in Rev. 7.(perating Procedures . 2540-1, (MIL-STD-456 Measureme) Jan. 24, 2014 362A) and ISO 900 nts performed by:	1:2008, ISO 17	8 HCRTEMC 025 2

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 32 of 32
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Fage 32 01 32
© 2014 PCTEST Engineering	g Laboratory, Inc.			REV 3.0.M

HCRTEMC_TEM-1129_Feb-17-2014

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe

Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Company : PCTEST Engineering Lab.

Test	Function	Tolera	Me	Measured values			
	- 			Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.38			
			dB				
2.0	Probe Level Linearity		6	6.04			
		Ref. (0 dB)	0	0.00			
			-6	-6.03			
			-12	-12.05			
			Hz				
3.0	Probe Frequency Response		100	-19.9			
			126	-17.9			
			158	-15.9			
			200	-13.9			
			251	-12.0			
			316	-10.0			
			398	-8.0			
			501	-6.0			
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	6.0			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
			6310	16.0			
			7943	18.0			
		·	10000	20.2			

Instruments used for calibration:				Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N	36064102	8-Oct-2013	,287708	8-Oct-2014
HP	34401A	S/N	36102471	8-Oct-2013	,287708	8-Oct-2014
HP	33120A	S/N	36043716	8-Oct-2013	,287708	8-Oct-2014
B&K	2133	S/N	1583254	9-Dec-2012	683/281764-12	10-Dec-2013

Cal. Date: 17-Feb-2014

014

Tested by: Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	🕒 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 33 of 33
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Fage 33 01 33
© 2014 PCTEST Engineering	Laboratory, Inc.	•		REV 3.0.M

03/24/14

11. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dogo 24 of 24
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 34 of 34
© 2014 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.0.M

12. **REFERENCES**

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 3. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 4. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 5. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 6. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 8. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, " U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 11. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 12. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 13. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 14. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 15. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Daga 25 of 25
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 35 of 35
@ 2014 DOTEST Engineer	ring Laboratory Inc			

- 16. IEEE 100. The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 17. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 18. Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 19. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 20. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC. Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 21. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 22. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 23. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 24. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 25. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 26. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 27. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 28. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID:ZNFD850		HAC (T-COIL) TEST REPORT	💽 LG	Reviewed by: Quality Manager		
Filename:	Test Dates:	EUT Type:		Dana 20 af 20		
0Y1405060931.ZNF	May 7-8, 2014	Portable Handset		Page 36 of 36		
© 2014 PCTEST Engineer	© 2014 PCTEST Engineering Laboratory Inc.					