



**FCC CFR47 PART 24 SUBPART E  
FCC CFR47 PART 27 SUBPART L**

**C2PC-2 CERTIFICATION TEST REPORT**

for  
**GSM/WCDMA/LTE Phone + Bluetooth, DTS/UNII a/b/g/n and NFC**

**MODEL NUMBER: LG-D725, LGD725, D725, LG-D727, LGD727, D727**

**FCC ID: ZNFD725**

**REPORT NUMBER: 15I19863-E1**

**ISSUE DATE: JANUARY 28, 2015**

*Prepared for*  
**LG ELECTRONICS MOBILECOMM U.S.A., INC**  
**1000 SYLVAN AVENUE**  
**ENGLEWOOD CLIFFS,**  
**NEW JERSEY, 07632, U.S.A**

*Prepared by*  
**UL VERIFICATION SERVICES INC**  
**47173 BENICIA STREET**  
**FREMONT, CA 94538, U.S.A.**  
**TEL: (510) 771-1000**  
**FAX: (510) 661-0888**

**NVLAP**<sup>®</sup>  
NVLAP LAB CODE 200065-0

## Revision History

| Rev. | Issue Date | Revisions     | Revised By |
|------|------------|---------------|------------|
| ---- | 1/28/15    | Initial Issue | D. Corona  |
|      |            |               |            |
|      |            |               |            |

## TABLE OF CONTENTS

|                                                      |           |
|------------------------------------------------------|-----------|
| <b>1. ATTESTATION OF TEST RESULTS .....</b>          | <b>5</b>  |
| <b>2. TEST METHODOLOGY .....</b>                     | <b>6</b>  |
| <b>3. FACILITIES AND ACCREDITATION .....</b>         | <b>6</b>  |
| <b>4. CALIBRATION AND UNCERTAINTY .....</b>          | <b>6</b>  |
| 4.1. <i>MEASURING INSTRUMENT CALIBRATION .....</i>   | 6         |
| 4.2. <i>SAMPLE CALCULATION .....</i>                 | 6         |
| 4.3. <i>MEASUREMENT UNCERTAINTY .....</i>            | 7         |
| <b>5. EQUIPMENT UNDER TEST .....</b>                 | <b>8</b>  |
| 5.1. <i>DESCRIPTION OF EUT .....</i>                 | 8         |
| <b>6. MAXIMUM OUTPUT POWER (LTE) .....</b>           | <b>9</b>  |
| 6.1. <i>DESCRIPTION OF AVAILABLE ANTENNAS .....</i>  | 10        |
| 6.2. <i>DESCRIPTION OF TEST SETUP .....</i>          | 11        |
| <b>7. TEST AND MEASUREMENT EQUIPMENT .....</b>       | <b>14</b> |
| <b>8. SUMMARY TABLE .....</b>                        | <b>15</b> |
| <b>9. CONDUCTED POWER VERIFICATION RESULTS .....</b> | <b>16</b> |
| 9.1. <i>LTE OUTPUT VERIFICATION .....</i>            | 16        |
| 9.1.1. <i>LTE OUTPUT RESULT .....</i>                | 16        |
| <b>10. PEAK TO AVERAGE RATIO .....</b>               | <b>18</b> |
| 10.1. <i>CONDUCTED PEAK TO AVERAGE RESULT .....</i>  | 18        |
| <b>11. LIMITS AND CONDUCTED RESULTS .....</b>        | <b>21</b> |
| 11.1. <i>OCCUPIED BANDWIDTH .....</i>                | 21        |
| 11.1.1. <i>LTE OCCUPIED BANDWIDTH RESULTS .....</i>  | 22        |
| 11.1.1. <i>OCCUPIED BANDWIDTH PLOTS .....</i>        | 23        |
| 11.2. <i>BAND EDGE EMISSIONS .....</i>               | 25        |
| 11.2.1. <i>BAND EDGE PLOTS .....</i>                 | 26        |
| 11.3. <i>OUT OF BAND EMISSIONS .....</i>             | 34        |
| 11.3.1. <i>OUT OF BAND EMISSIONS RESULT .....</i>    | 35        |
| 11.3.2. <i>OUT OF BAND EMISSIONS PLOTS .....</i>     | 36        |
| 11.4. <i>FREQUENCY STABILITY .....</i>               | 38        |
| 11.4.1. <i>FREQUENCY STABILITY RESULTS .....</i>     | 39        |
| <b>12. RADIATED TEST RESULTS .....</b>               | <b>41</b> |
| 12.1. <i>RADIATED POWER (ERP &amp; EIRP) .....</i>   | 41        |

|            |                                                   |           |
|------------|---------------------------------------------------|-----------|
| 12.1.1.    | LTE ERP/EIRP Results .....                        | 42        |
| 12.1.2.    | ERP/EIRP PLOTS.....                               | 43        |
| 12.2.      | <i>FIELD STRENGTH OF SPURIOUS RADIATION</i> ..... | 51        |
| 12.2.1.    | SPURIOUS RADIATION PLOTS.....                     | 52        |
| <b>13.</b> | <b>SETUP PHOTOS .....</b>                         | <b>60</b> |

## 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** LG ELECTRONICS MOBILECOMM U.S.A., INC  
**EUT DESCRIPTION:** GSM/WCDMA/LTE Phone + Bluetooth, DTS/UNII a/b/g/n and NFC  
**MODEL:** LG-D725, LGD725, D725, LG-D727, LGD727, D727  
**SERIAL NUMBER:** 411KPTM003289 (Conducted), 411KPUU00281 (Radiated)  
**DATE TESTED:** JANUARY 22-28, 2015

| APPLICABLE STANDARDS |              |
|----------------------|--------------|
| STANDARD             | TEST RESULTS |
| FCC PART 24E and 27F | PASS         |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:



---

DAN CORONIA  
CONSUMER TECHNOLOGY DIVISION  
WiSE PROJECT LEAD  
UL VERIFICATION SERVICES INC

Tested By:



---

STEVEN TRAN  
CONSUMER TECHNOLOGY DIVISION  
WiSE LAB ENGINEER  
UL VERIFICATION SERVICES INC

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR Part 24, and FCC CFR 47 Part 27.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street                                       | 47266 Benicia Street                            |
|------------------------------------------------------------|-------------------------------------------------|
| <input type="checkbox"/> Chamber A(IC: 2324B-1)            | <input type="checkbox"/> Chamber D(IC: 2324B-4) |
| <input type="checkbox"/> Chamber B(IC: 2324B-2)            | <input type="checkbox"/> Chamber E(IC: 2324B-5) |
| <input checked="" type="checkbox"/> Chamber C(IC: 2324B-3) | <input type="checkbox"/> Chamber F(IC: 2324B-6) |
|                                                            | <input type="checkbox"/> Chamber G(IC: 2324B-7) |
|                                                            | <input type="checkbox"/> Chamber H(IC: 2324B-8) |

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://ts.nist.gov/standards/scopes/2000650.htm>.

## 4. CALIBRATION AND UNCERTAINTY

### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

### 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss( between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss( between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

### 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | 3.52 dB     |
| Radiated Disturbance, 30 to 1000 MHz  | 4.94 dB     |

Uncertainty figures are valid to a confidence level of 95%.

## 5. EQUIPMENT UNDER TEST

### 5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + Bluetooth, DTS/UNII a/b/g/n and NFC

## 6. MAXIMUM OUTPUT POWER (LTE)

The transmitter has a maximum peak conducted and radiated ERP/EIRP output powers as follows:

| FCC Part 27 |                      |                 |               |           |         |          |         |
|-------------|----------------------|-----------------|---------------|-----------|---------|----------|---------|
| Band        | Frequency Range(MHz) | BandWidth (MHz) | Modulation mW | Conducted |         | Radiated |         |
|             |                      |                 |               | AVG(dBm)  | AVG(mW) | AVG(dBm) | AVG(mW) |
| LTE4        | 1710~1755            | 20MHz           | QPSK          | 24.40     | 275.42  | 25.40    | 346.74  |
|             | 1710~1755            |                 | 16QAM         | 23.60     | 229.09  | 24.28    | 267.92  |

| FCC Part 27 |                      |                 |               |           |         |          |         |
|-------------|----------------------|-----------------|---------------|-----------|---------|----------|---------|
| Band        | Frequency Range(MHz) | BandWidth (MHz) | Modulation mW | Conducted |         | Radiated |         |
|             |                      |                 |               | AVG(dBm)  | AVG(mW) | AVG(dBm) | AVG(mW) |
| LTE4        | 1710~1755            | 15MHz           | QPSK          | 24.50     | 281.84  | 25.71    | 372.39  |
|             | 1710~1755            |                 | 16QAM         | 23.20     | 208.93  | 24.54    | 284.45  |

| FCC Part 24 |                      |                 |               |           |         |          |         |
|-------------|----------------------|-----------------|---------------|-----------|---------|----------|---------|
| Band        | Frequency Range(MHz) | BandWidth (MHz) | Modulation mW | Conducted |         | Radiated |         |
|             |                      |                 |               | AVG(dBm)  | AVG(mW) | AVG(dBm) | AVG(mW) |
| LTE2        | 1850~1910            | 20MHz           | QPSK          | 24.50     | 281.84  | 24.09    | 256.45  |
|             | 1850~1910            |                 | 16QAM         | 23.70     | 234.42  | 23.16    | 207.01  |

| FCC Part 24 |                      |                 |               |           |         |          |         |
|-------------|----------------------|-----------------|---------------|-----------|---------|----------|---------|
| Band        | Frequency Range(MHz) | BandWidth (MHz) | Modulation mW | Conducted |         | Radiated |         |
|             |                      |                 |               | AVG(dBm)  | AVG(mW) | AVG(dBm) | AVG(mW) |
| LTE2        | 1850~1910            | 15MHz           | QPSK          | 24.50     | 281.84  | 23.82    | 240.99  |
|             | 1850~1910            |                 | 16QAM         | 23.30     | 213.80  | 23.36    | 216.77  |

## 6.1. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna for the [List the bands supported] with a maximum peak gain as follow:

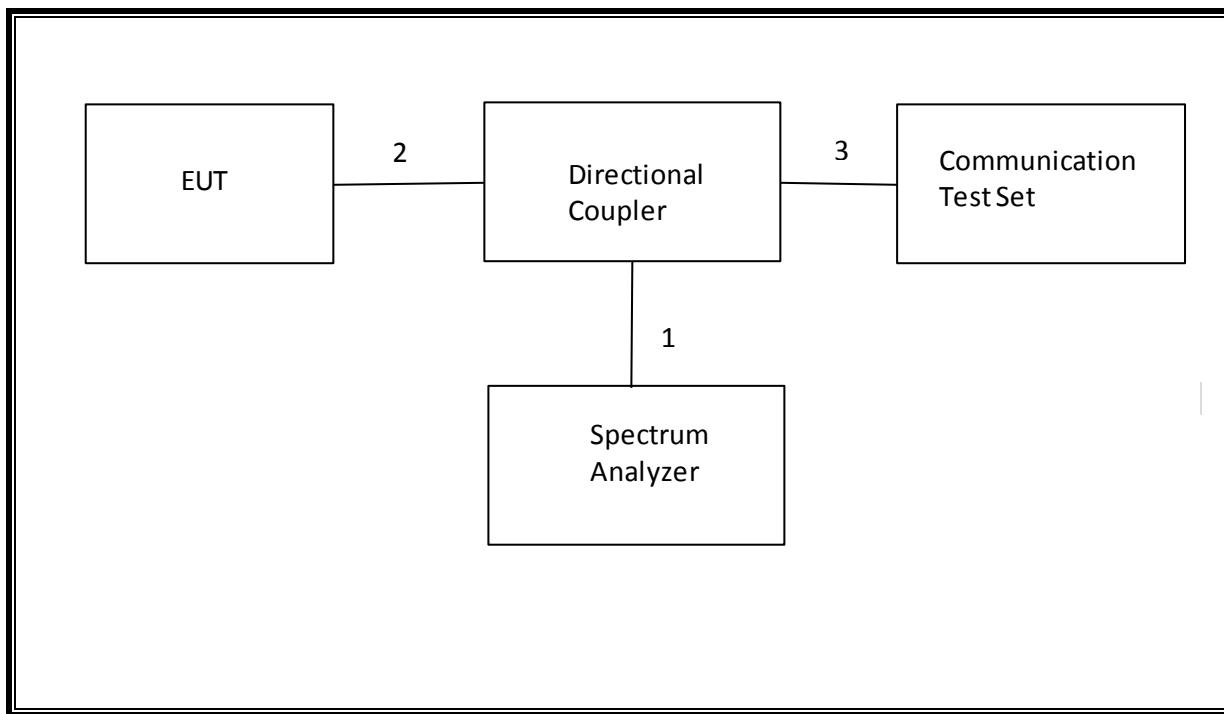
| Frequency (MHz)      | Peak Gain (dBi) |
|----------------------|-----------------|
| Band 2, 1850~1910MHz | 0.72            |
| Band 4, 1710~1755MHz | 0.03            |

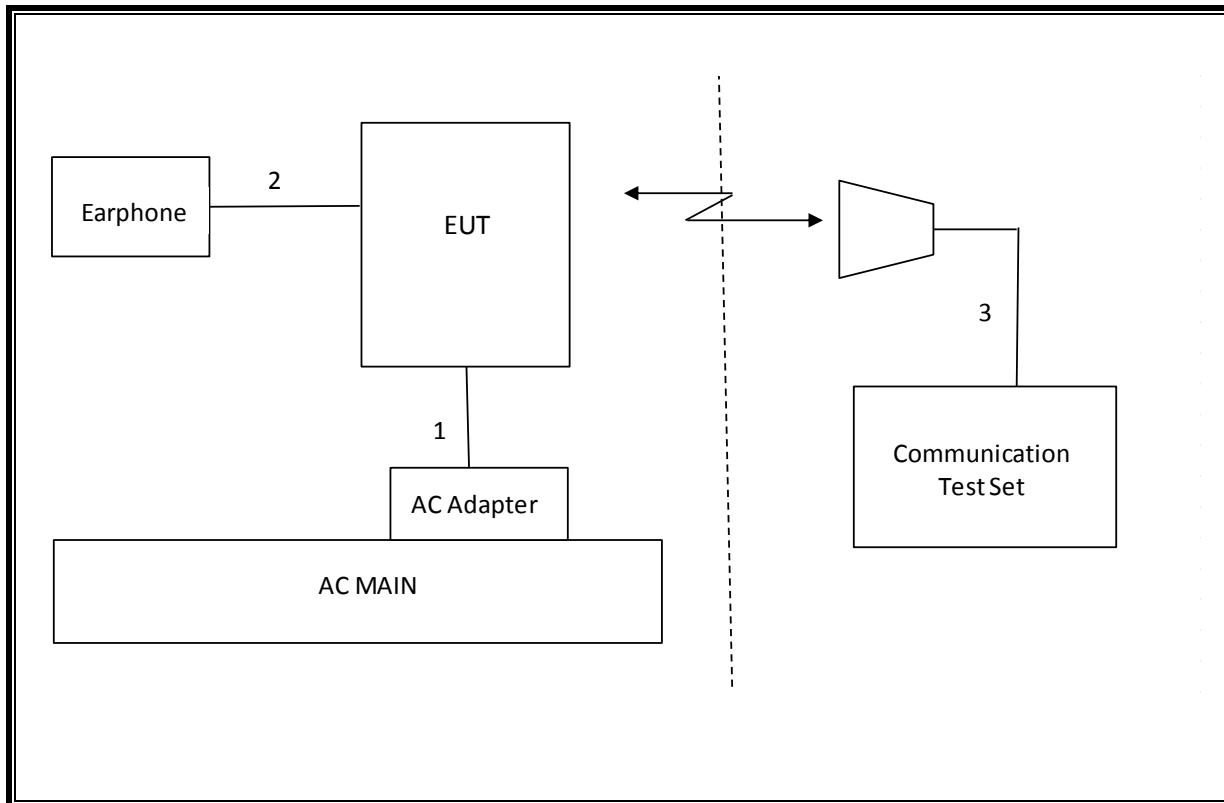
## 6.2. DESCRIPTION OF TEST SETUP

### SUPPORT EQUIPMENT

| Support Equipment List |              |          |               |        |
|------------------------|--------------|----------|---------------|--------|
| Description            | Manufacturer | Model    | Serial Number | FCC ID |
| AC Adapter             | LG           | MCS-02WR | RA4Y1031433   | N/A    |
| Earphone               | LG           | N/A      | N/A           | N/A    |

### I/O CABLES (CONDUCTED SETUP)


| I/O Cable List |              |                      |                        |            |                  |         |
|----------------|--------------|----------------------|------------------------|------------|------------------|---------|
| Cable No       | Port         | # of identical ports | Connector Type         | Cable Type | Cable Length (m) | Remarks |
| 1              | RF Out       | 1                    | Spectrum Analyzer      | Shielded   | None             | NA      |
| 2              | Antenna Port | 1                    | EUT                    | Shielded   | 0.1m             | NA      |
| 3              | RF In/Out    | 1                    | Communication Test Set | Shielded   | 1m               | NA      |


### I/O CABLES (RADIATED SETUP)

| I/O CABLE LIST |           |                      |                        |             |              |         |
|----------------|-----------|----------------------|------------------------|-------------|--------------|---------|
| Cable No.      | Port      | # of Identical Ports | Connector Type         | Cable Type  | Cable Length | Remarks |
| 1              | USB       | 1                    | AC Adapter             | Un-shielded | 1.2m         | NA      |
| 2              | Jack      | 1                    | Headset                | Shielded    | 1m           | NA      |
| 3              | RF In/out | 1                    | Communication Test Set | Un-shielded | 2m           | NA      |

### TEST SETUP

The EUT is continuously communicated to the call box during the tests.

**SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)**

**SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)**

## 7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST                |                |              |        |          |
|------------------------------------|----------------|--------------|--------|----------|
| Description                        | Manufacturer   | Model        | Asset  | Cal Due  |
| Spectrum Analyzer, 44 GHz          | Agilent / HP   | E 4446A      | C01179 | 02/26/15 |
| Antenna, Bilog, 2 GHz              | Sunol Sciences | JB1          | C01011 | 04/22/15 |
| Antenna, Horn, 18 GHz              | EMCO           | 3115         | C00783 | 10/25/15 |
| Antenna, Horn, 18 GHz              | EMCO           | 3115         | C00784 | 10/25/15 |
| Highpass Filter, 2.7 GHz           | Micro-Tronics  | HPM 13194    | N02687 | CNR      |
| Highpass Filter, 1.5 GHz           | Micro-Tronics  | HPM 13193    | N02688 | CNR      |
| Temperature / Humidity Chamber     | Thermotron     | SE 600-10-10 | C00930 | 01/09/15 |
| Communications Test Set            | R&S            | CMW500       | T159   | 07/02/15 |
| DC power supply, 8 V @ 3 A or 15 V | Agilent / HP   | E 3610A      | None   | CNR      |
| Vector signal generator, 6 GHz     | Agilent / HP   | E 4438C      | None   | 06/18/15 |
| Antenna, Tuned Dipole 400~1000     | ETS            | 3121C DB4    | C00993 | 02/14/15 |
| Directional Coupler                | RF-Lambda      | RFDC5M06G15  | None   | CNR      |
| Antenna, Horn, 26.5 GHz            | ARA            | MWH-1826/B   | C00589 | 12/17/15 |

## 8. SUMMARY TABLE

C2PC-2 Reason:

1. LTE Band 2 and 4 added 15MHz and 20MHz bandwidth without hardware change.
2. Model number LG-D727, LGD727 and D727 was added; LG Electronics, Inc. confirms that additional models are electrically identical.

| FCC Part Section                             | RSS Section(s)                                               | Test Description                        | Test Limit | Test Condition | Test Result | Note      |
|----------------------------------------------|--------------------------------------------------------------|-----------------------------------------|------------|----------------|-------------|-----------|
| 2.1049                                       | N/A                                                          | Occupied Band width (99%)               | N/A        | Conducted      | Pass        | 17.9 MHz  |
| 22.917(a)<br>24.238(a)<br>27.53(g)<br>90.691 | RSS-132(4.5.1)<br>RSS-133(6.5.1)<br>RSS-139(6.5.1)           | Band Edge / Conducted Spurious Emission | -13dBm     |                | Pass        | -24.4 dBm |
| 2.1046                                       | N/A                                                          | Conducted output power                  | N/A        |                | Pass        | 24.5 dBm  |
| 22.355<br>24.235<br>27.54<br>90.213          | RSS-132(4.3)<br>RSS-133(6.3)<br>RSS-139(6.3)<br>RSS-199(4.3) | Frequency Stability                     | 2.5PPM     |                | Pass        | 0.01 PPM  |
| 24.232(c)<br>27.50(h)(2)                     | RSS-133(6.4)<br>RSS-199(4.4)                                 | Equivalent Isotropic Radiated Power     | 33dBm      | Radiated       | Pass        | 24.2 dBm  |
| 27.50(d)(4)                                  | RSS-139(6.4)                                                 |                                         | 30dBm      |                | Pass        | 25.7 dBm  |
| 22.917(a)<br>24.238(a)<br>27.53(g)           | RSS-132(4.5.1)<br>RSS-133(6.5.1)<br>RSS-139(6.5.1)           | Radiated Spurious Emission              | -13dBm     |                | Pass        | -46.4 dBm |

## 9. CONDUCTED POWER VERIFICATION RESULTS

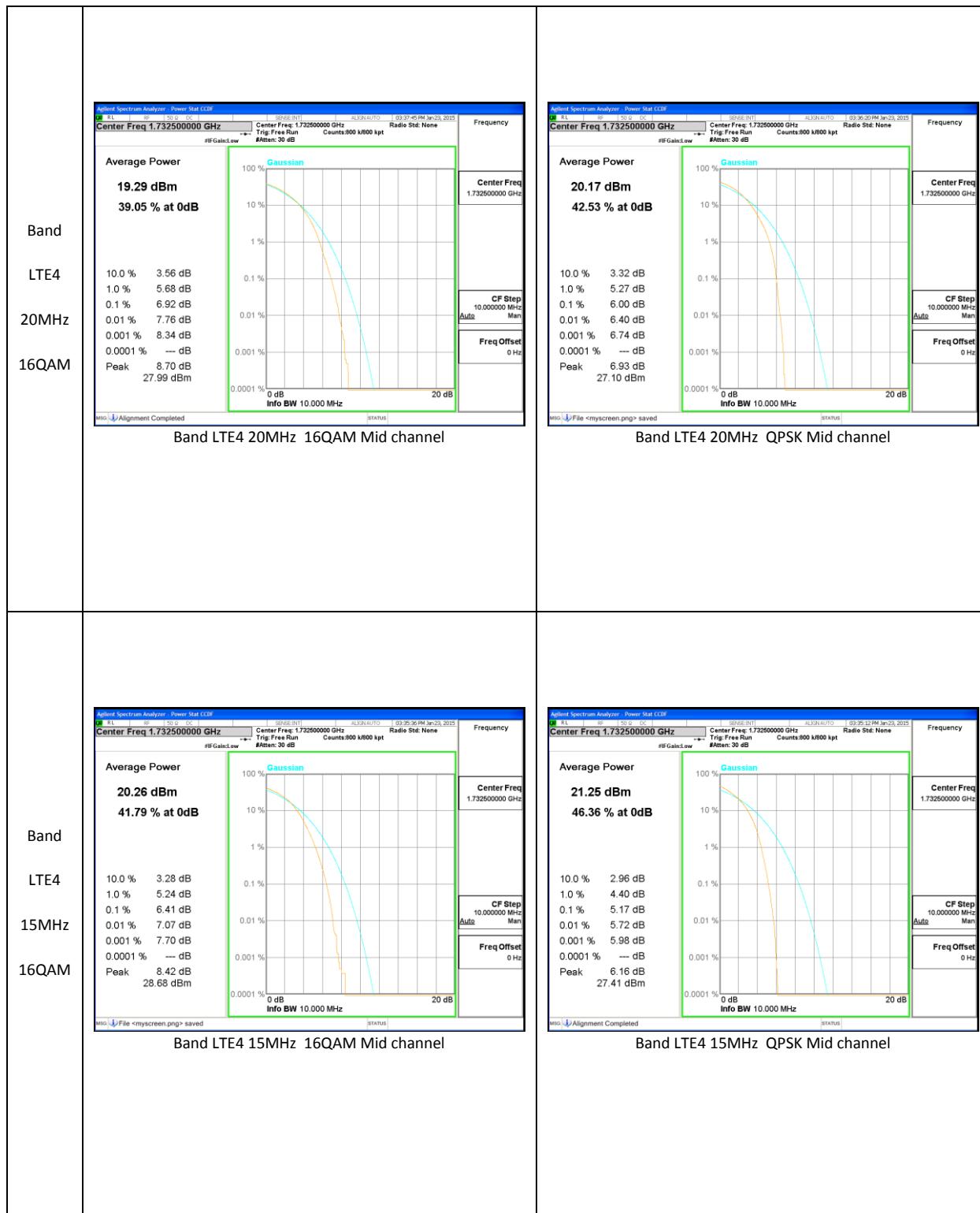
### 9.1. LTE OUTPUT VERIFICATION

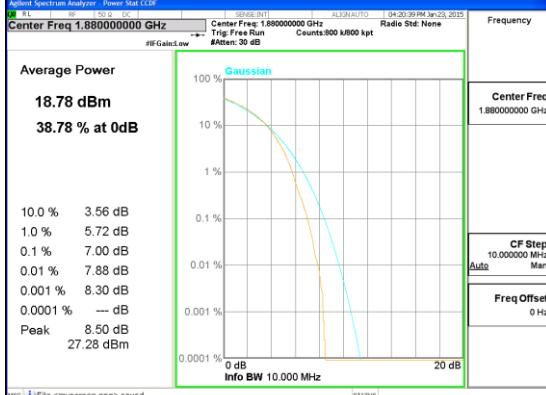
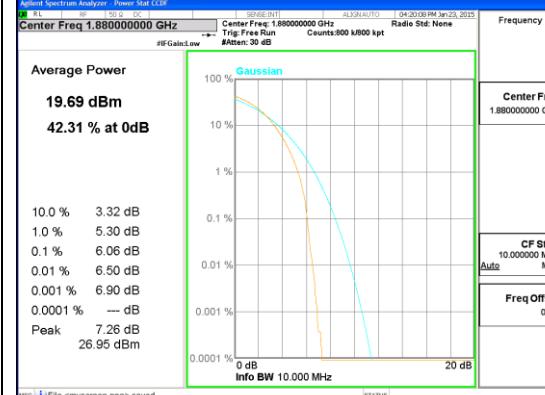
#### 9.1.1. LTE OUTPUT RESULT

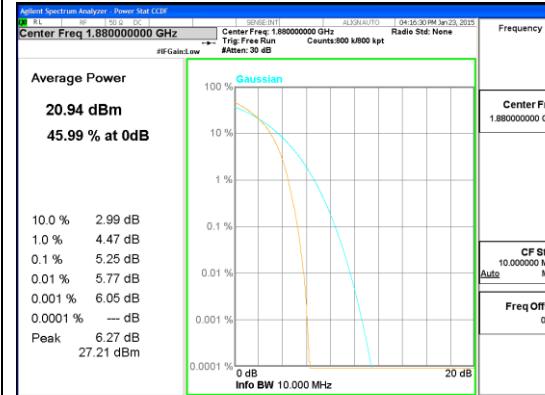
| Band       | BW (MHz) | Mode  | RB Allocation | RB offset | Target MPR | Avg Pwr (dBm) |          |            |
|------------|----------|-------|---------------|-----------|------------|---------------|----------|------------|
|            |          |       |               |           |            | 18700         | 18900    | 19100      |
|            |          |       |               |           |            | 1860 MHz      | 1880 MHz | 1900 MHz   |
| LTE Band 2 | 20       | QPSK  | 1             | 0         | 0          | 24.50         | 24.50    | 24.30      |
|            |          |       | 1             | 49        | 0          | 24.40         | 24.50    | 24.20      |
|            |          |       | 1             | 99        | 0          | 24.50         | 24.40    | 24.30      |
|            |          |       | 50            | 0         | 1          | 23.50         | 23.50    | 23.50      |
|            |          |       | 50            | 24        | 1          | 23.40         | 23.40    | 23.40      |
|            |          |       | 50            | 50        | 1          | 23.40         | 23.50    | 23.40      |
|            |          |       | 100           | 0         | 1          | 23.40         | 23.40    | 23.50      |
|            | 16QAM    | 16QAM | 1             | 0         | 1          | 23.70         | 23.70    | 23.50      |
|            |          |       | 1             | 49        | 1          | 23.30         | 23.60    | 23.30      |
|            |          |       | 1             | 99        | 1          | 23.30         | 23.50    | 23.20      |
|            |          |       | 50            | 0         | 2          | 22.50         | 22.50    | 22.40      |
|            |          |       | 50            | 24        | 2          | 22.50         | 22.44    | 22.40      |
|            |          |       | 50            | 50        | 2          | 22.50         | 22.42    | 22.30      |
|            |          |       | 100           | 0         | 2          | 22.40         | 22.43    | 22.30      |
| Band       | BW (MHz) | Mode  | RB Allocation | RB offset | Target MPR | Avg Pwr (dBm) |          |            |
|            |          |       |               |           |            | 18675         | 18900    | 19125      |
|            |          |       |               |           |            | 1857.5 MHz    | 1880 MHz | 1902.5 MHz |
| LTE Band 2 | 15       | QPSK  | 1             | 0         | 0          | 24.50         | 24.50    | 24.40      |
|            |          |       | 1             | 37        | 0          | 24.40         | 24.40    | 24.50      |
|            |          |       | 1             | 74        | 0          | 24.40         | 24.40    | 24.40      |
|            |          |       | 36            | 0         | 1          | 23.40         | 23.40    | 23.40      |
|            |          |       | 36            | 20        | 1          | 23.40         | 23.30    | 23.30      |
|            |          |       | 36            | 39        | 1          | 23.30         | 23.30    | 23.40      |
|            |          |       | 75            | 0         | 1          | 23.40         | 23.40    | 23.40      |
|            | 16QAM    | 16QAM | 1             | 0         | 1          | 23.20         | 23.30    | 23.20      |
|            |          |       | 1             | 37        | 1          | 23.20         | 23.20    | 23.20      |
|            |          |       | 1             | 74        | 1          | 23.20         | 23.20    | 23.30      |
|            |          |       | 36            | 0         | 2          | 22.40         | 22.40    | 22.40      |
|            |          |       | 36            | 20        | 2          | 22.30         | 22.35    | 22.30      |
|            |          |       | 36            | 39        | 2          | 22.20         | 22.34    | 22.40      |
|            |          |       | 75            | 0         | 2          | 22.40         | 22.50    | 22.40      |

| Band       | BW (MHz) | Mode  | RB Allocation | RB offset | Target MPR | Avg Pwr (dBm) |            |            |
|------------|----------|-------|---------------|-----------|------------|---------------|------------|------------|
|            |          |       |               |           |            | 20050         | 20175      | 20300      |
|            |          |       |               |           |            | 1720 MHz      | 1732.5 MHz | 1745 MHz   |
| LTE Band 4 | 20       | QPSK  | 1             | 0         | 0          | 24.40         | 24.20      | 24.30      |
|            |          |       | 1             | 49        | 0          | 24.40         | 24.20      | 24.30      |
|            |          |       | 1             | 99        | 0          | 24.40         | 24.30      | 24.30      |
|            |          |       | 50            | 0         | 1          | 23.40         | 23.40      | 23.50      |
|            |          |       | 50            | 24        | 1          | 23.50         | 23.40      | 23.50      |
|            |          |       | 50            | 50        | 1          | 23.50         | 23.50      | 23.50      |
|            |          |       | 100           | 0         | 1          | 23.40         | 23.40      | 23.50      |
|            |          | 16QAM | 1             | 0         | 1          | 23.30         | 23.60      | 23.40      |
|            |          |       | 1             | 49        | 1          | 23.20         | 23.60      | 23.40      |
|            |          |       | 1             | 99        | 1          | 23.30         | 23.60      | 23.50      |
|            |          |       | 50            | 0         | 2          | 22.50         | 22.50      | 22.50      |
|            |          |       | 50            | 24        | 2          | 22.50         | 22.50      | 22.50      |
|            |          |       | 50            | 50        | 2          | 22.50         | 22.50      | 22.50      |
|            |          |       | 100           | 0         | 2          | 22.50         | 22.50      | 22.50      |
| Band       | BW (MHz) | Mode  | RB Allocation | RB offset | Target MPR | Avg Pwr (dBm) |            |            |
|            |          |       |               |           |            | 20025         | 20175      | 20325      |
|            |          |       |               |           |            | 1717.5 MHz    | 1732.5 MHz | 1747.5 MHz |
| LTE Band 4 | 15       | QPSK  | 1             | 0         | 0          | 24.30         | 24.40      | 24.50      |
|            |          |       | 1             | 37        | 0          | 24.30         | 24.40      | 24.50      |
|            |          |       | 1             | 74        | 0          | 24.30         | 24.30      | 24.50      |
|            |          |       | 36            | 0         | 1          | 23.50         | 23.50      | 23.50      |
|            |          |       | 36            | 20        | 1          | 23.40         | 23.50      | 23.60      |
|            |          |       | 36            | 39        | 1          | 23.50         | 23.50      | 23.60      |
|            |          |       | 75            | 0         | 1          | 23.50         | 23.60      | 23.60      |
|            |          | 16QAM | 1             | 0         | 1          | 23.40         | 23.60      | 23.40      |
|            |          |       | 1             | 37        | 1          | 23.40         | 23.60      | 23.40      |
|            |          |       | 1             | 74        | 1          | 23.40         | 23.60      | 23.40      |
|            |          |       | 36            | 0         | 2          | 22.50         | 22.50      | 22.60      |
|            |          |       | 36            | 20        | 2          | 22.40         | 22.50      | 22.50      |
|            |          |       | 36            | 39        | 2          | 22.40         | 22.50      | 22.50      |
|            |          |       | 75            | 0         | 2          | 22.60         | 22.60      | 22.60      |

## 10. PEAK TO AVERAGE RATIO


### TEST PROCEDURE


Per KDB 971168 D01 Power Meas License Digital Systems v02r02

### TEST SPEC

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

### 10.1. CONDUCTED PEAK TO AVERAGE RESULT



|  |                                                                                                                              |                                                                                                                              |
|--|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|  |  <p>Band LTE2 20MHz 16QAM Mid channel</p>   |  <p>Band LTE2 20MHz QPSK Mid channel</p>   |
|  |  <p>Band LTE2 15MHz 16QAM Mid channel</p> |  <p>Band LTE2 15MHz QPSK Mid channel</p> |

## 11. LIMITS AND CONDUCTED RESULTS

### 11.1. OCCUPIED BANDWIDTH

#### RULE PART(S)

FCC: §2.1049

IC: RSS-132, 4.5; RSS-133, 6.5

#### LIMITS

For reporting purposes only

#### TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v02r02)

#### MODES TESTED

LTE Band 2 and LTE Band 4

#### RESULTS


### 11.1.1. LTE OCCUPIED BANDWIDTH RESULTS

| Band | BW(MHz) | Mode  | RB/RB Size | f (MHz) | 99% BW (MHz) | -26dB BW (MHz) |
|------|---------|-------|------------|---------|--------------|----------------|
| LTE4 | 20      | QPSK  | 100/0      | 1720    | 17.876       | 19.294         |
|      |         |       | 100/0      | 1732.5  | 17.866       | 19.285         |
|      |         |       | 100/0      | 1745    | 17.903       | 19.346         |
|      |         | 16QAM | 100/0      | 1720    | 17.883       | 19.265         |
|      |         |       | 100/0      | 1732.5  | 17.832       | 19.208         |
|      |         |       | 100/0      | 1745    | 17.855       | 19.336         |
|      | 15      | QPSK  | 75/0       | 1717.5  | 13.454       | 14.67          |
|      |         |       | 75/0       | 1732.5  | 13.396       | 14.609         |
|      |         |       | 75/0       | 1747.5  | 13.45        | 14.684         |
|      |         | 16QAM | 75/0       | 1717.5  | 13.43        | 14.605         |
|      |         |       | 75/0       | 1732.5  | 13.386       | 14.639         |
|      |         |       | 75/0       | 1747.5  | 13.43        | 14.554         |

| Band | BW(MHz) | Mode  | RB/RB Size | f (MHz) | 99% BW (MHz) | -26dB BW (MHz) |
|------|---------|-------|------------|---------|--------------|----------------|
| LTE2 | 20      | QPSK  | 100/0      | 1860    | 17.74        | 19.05          |
|      |         |       | 100/0      | 1880    | 17.88        | 19.22          |
|      |         |       | 100/0      | 1900    | 17.82        | 19             |
|      |         | 16QAM | 100/0      | 1860    | 17.78        | 19.04          |
|      |         |       | 100/0      | 1880    | 17.88        | 19.19          |
|      |         |       | 100/0      | 1900    | 17.78        | 19.21          |
|      | 15      | QPSK  | 75/0       | 1857.5  | 13.39        | 14.51          |
|      |         |       | 75/0       | 1880    | 13.39        | 14.47          |
|      |         |       | 75/0       | 1902.5  | 13.36        | 14.45          |
|      |         | 16QAM | 75/0       | 1857.5  | 13.37        | 14.29          |
|      |         |       | 75/0       | 1880    | 13.44        | 14.44          |
|      |         |       | 75/0       | 1902.5  | 13.4         | 14.36          |

## 11.1.1. OCCUPIED BANDWIDTH PLOTS





## 11.2. BAND EDGE EMISSIONS

### RULE PART(S)

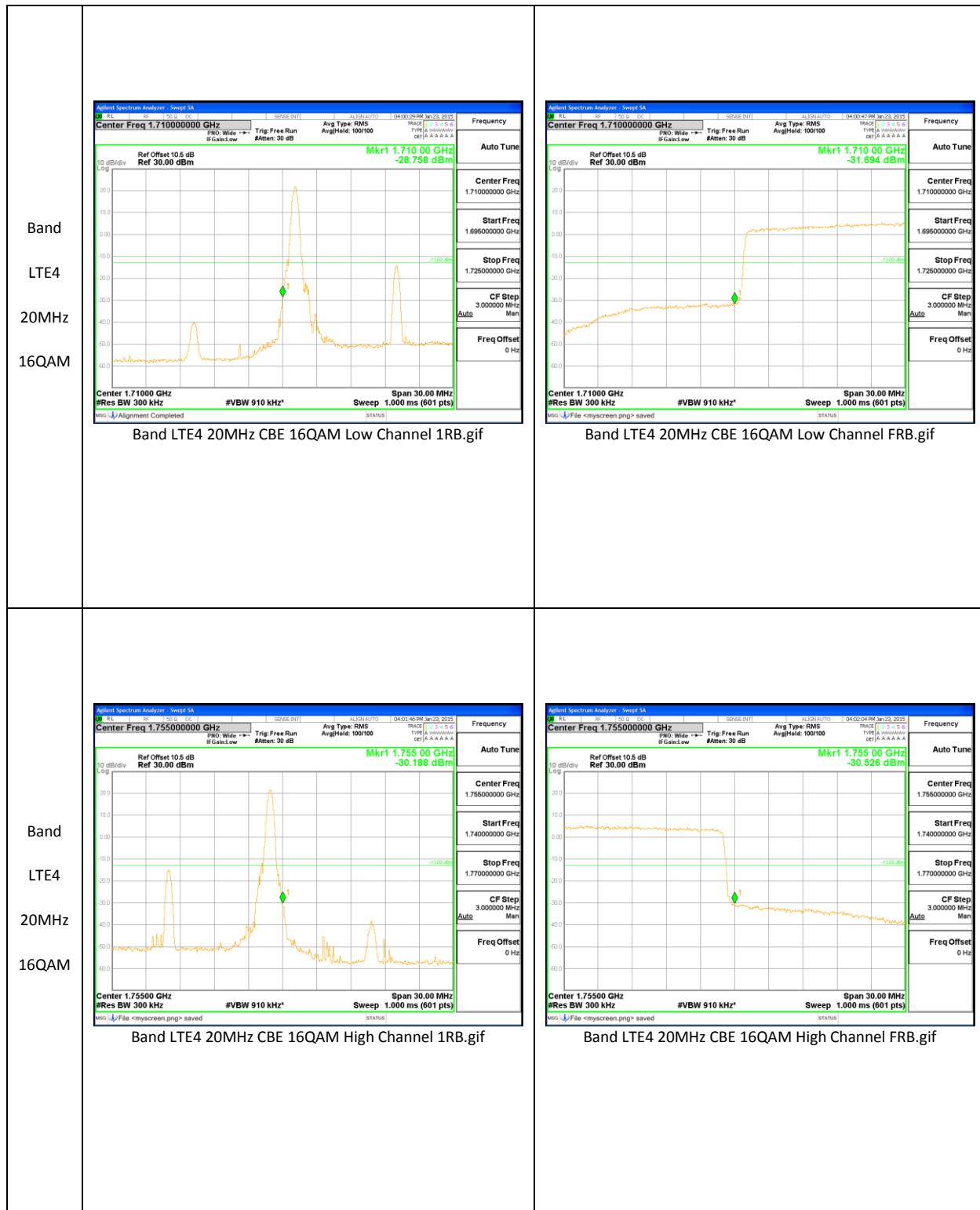
FCC: §24.238, §27. 53

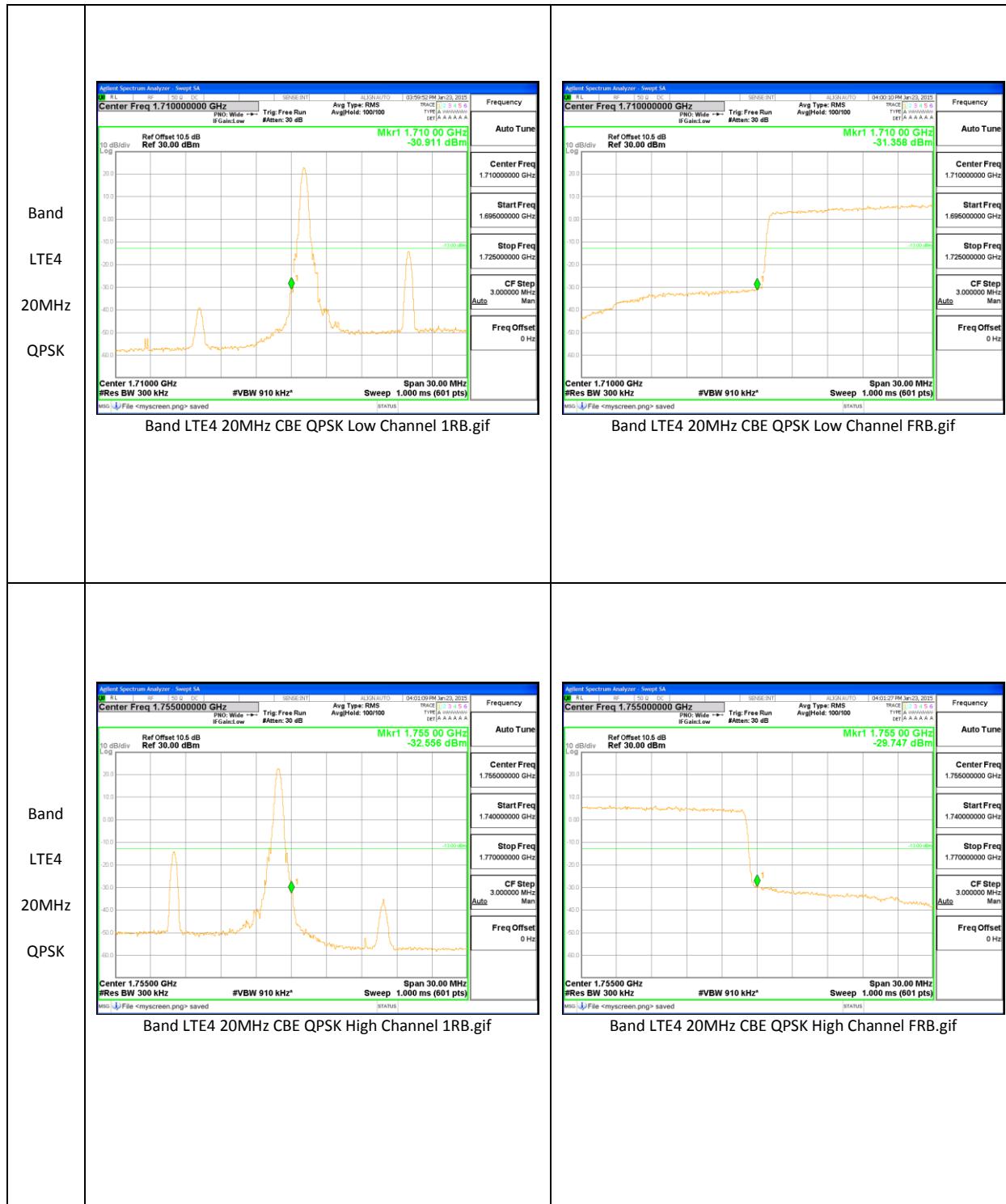
### LIMITS

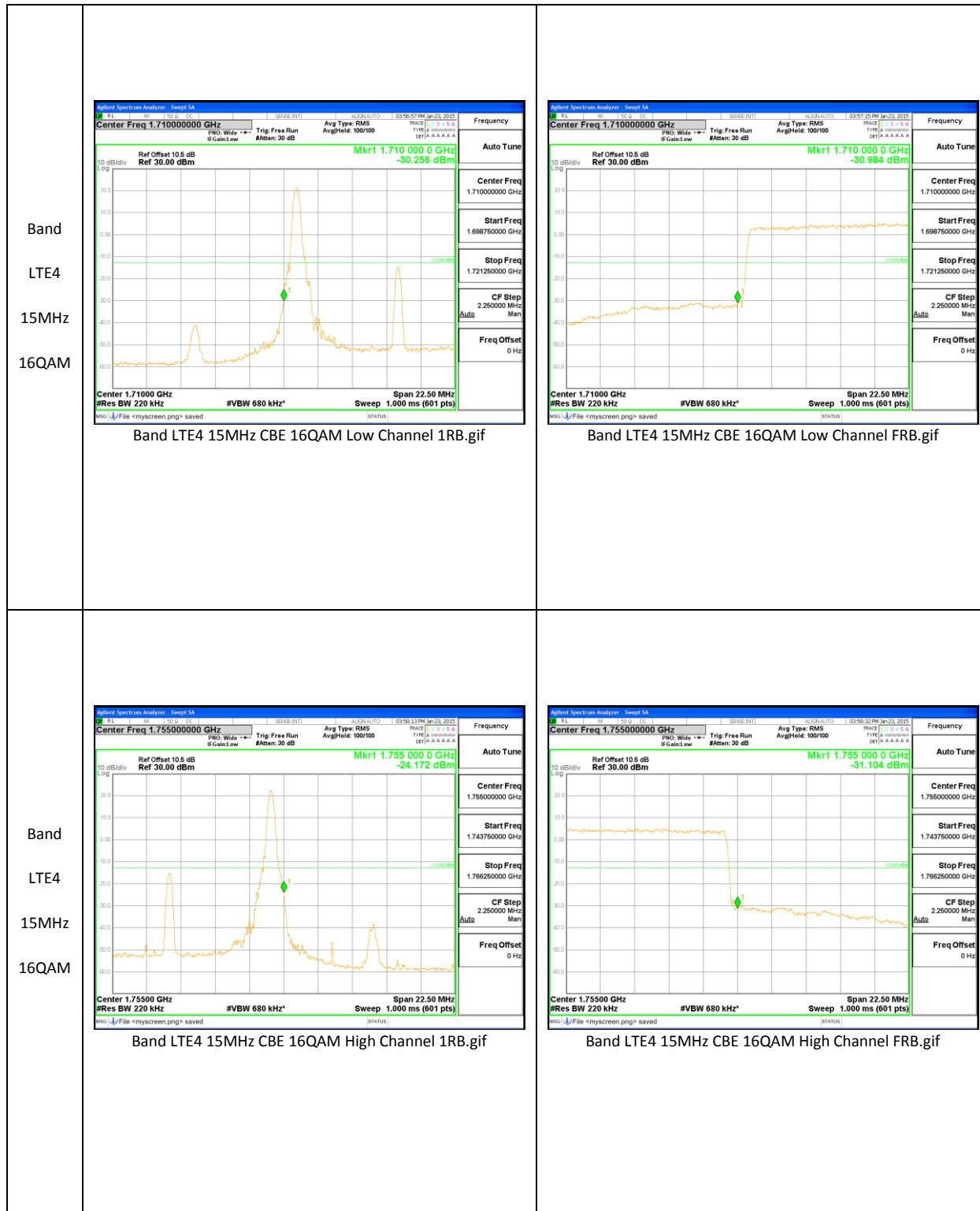
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log (P)$  dB.

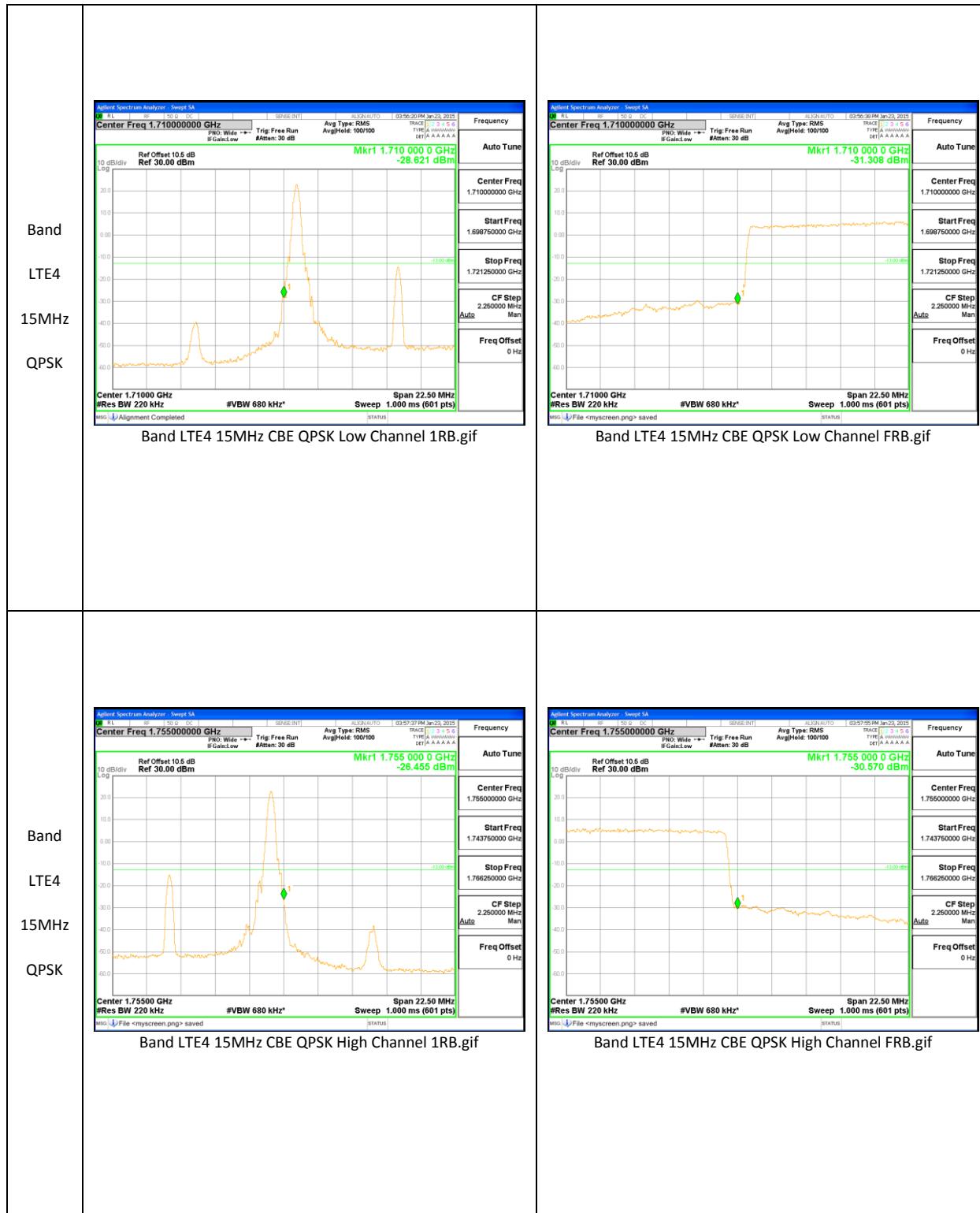
### TEST PROCEDURE

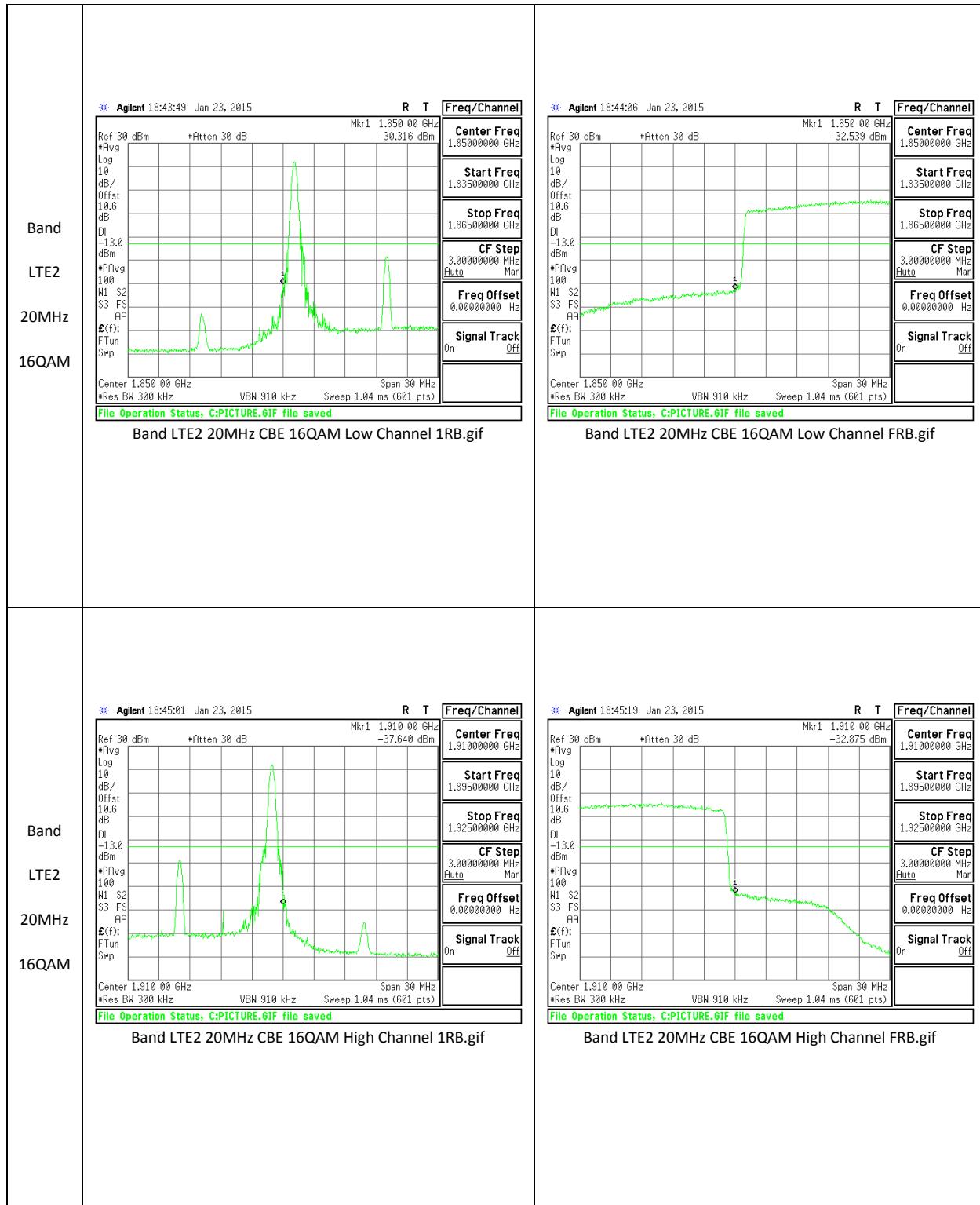
Per KDB 971168 D01 Power Meas License Digital Systems v02r02

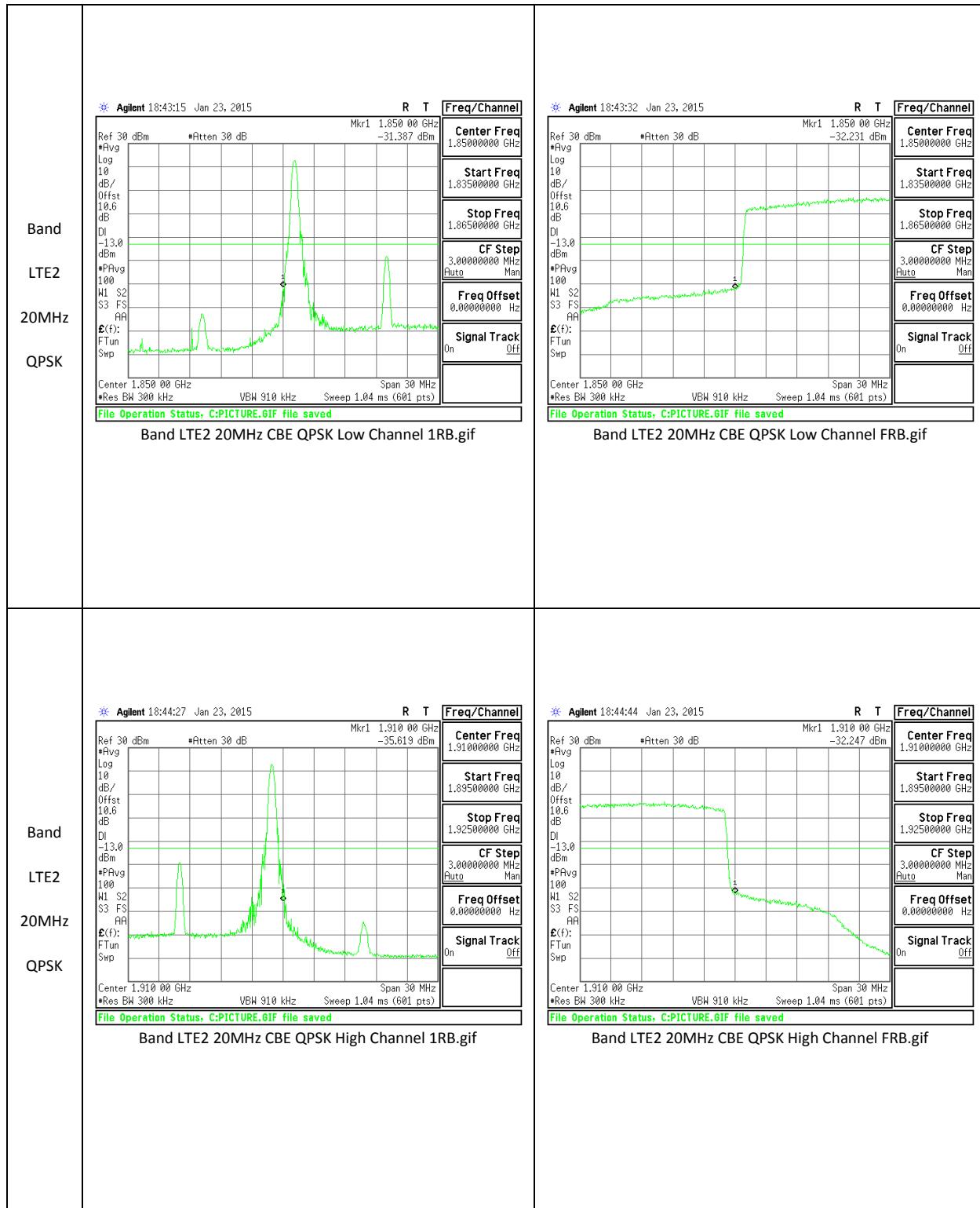

The transmitter output was connected to an Agilent 8960 or a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

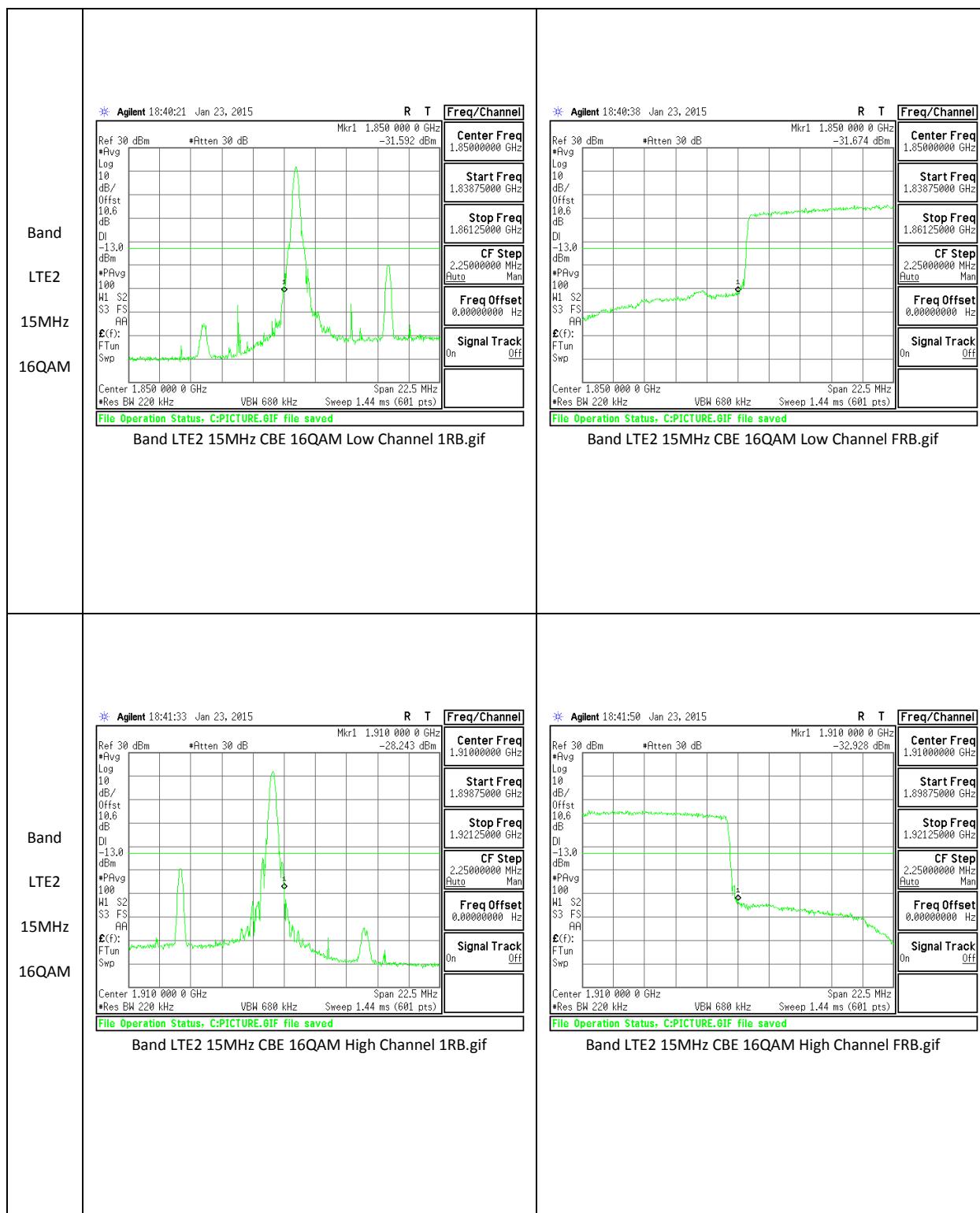

### MODES TESTED

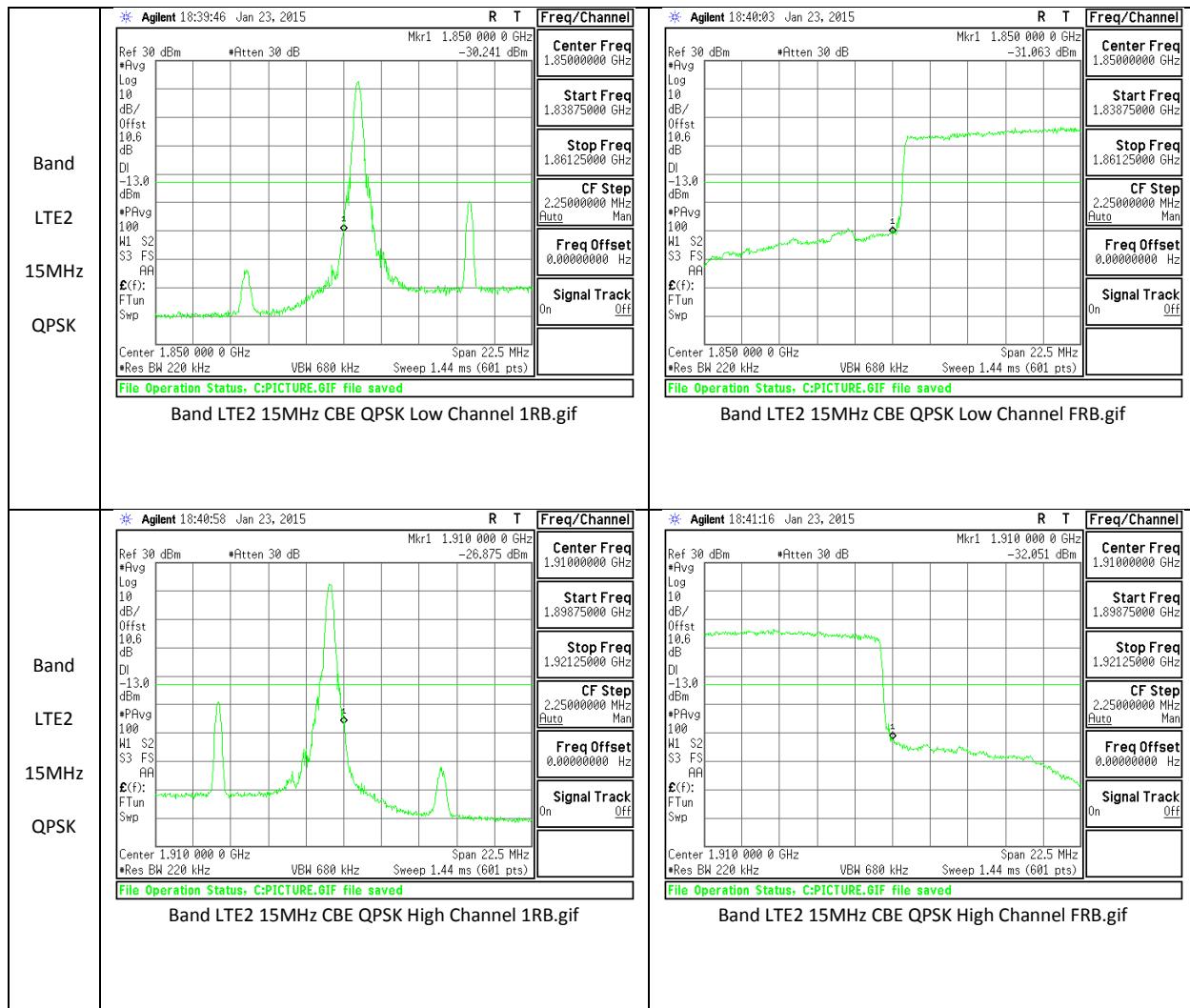

LTE Band 2 and LTE Band 4


### RESULTS


## 11.2.1. BAND EDGE PLOTS














### 11.3. OUT OF BAND EMISSIONS

#### RULE PART(S)

FCC: §2.1051, §24.238, and §27.53

#### LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log (P)$  dB.

#### TEST PROCEDURE

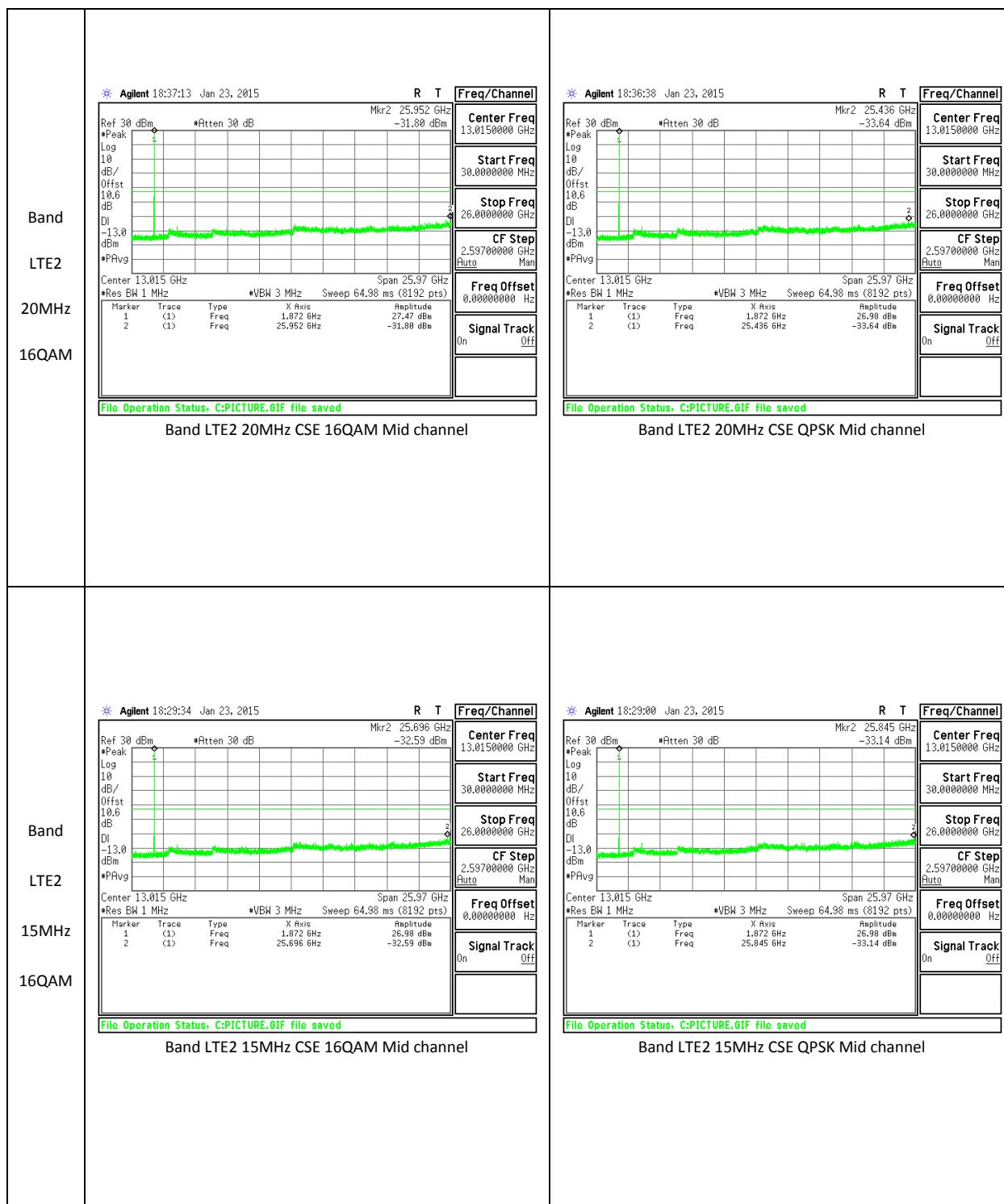
Per KDB 971168 D01 Power Meas License Digital Systems v02r02

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

#### MODES TESTED

LTE Band 2 and LTE Band 4

#### RESULTS


### 11.3.1. OUT OF BAND EMISSIONS RESULT

| Band | BW (MHz) | Mode  | f (MHz) | Spur (dBm) | Spec (dBm) | Delta (dB) |
|------|----------|-------|---------|------------|------------|------------|
| LTE4 | 20       | QPSK  | 1720    | -32.27     | -13        | -19.27     |
|      |          |       | 1732.5  | -30.54     | -13        | -17.54     |
|      |          |       | 1745    | -24.83     | -13        | -11.83     |
|      |          | 16QAM | 1720    | -24.81     | -13        | -11.81     |
|      |          |       | 1732.5  | -31.20     | -13        | -18.20     |
|      |          |       | 1745    | -25.04     | -13        | -12.04     |
|      | 15       | QPSK  | 1717.5  | -31.67     | -13        | -18.67     |
|      |          |       | 1732.5  | -24.86     | -13        | -11.86     |
|      |          |       | 1747.5  | -24.98     | -13        | -11.98     |
|      |          | 16QAM | 1717.5  | -32.64     | -13        | -19.64     |
|      |          |       | 1732.5  | -25.02     | -13        | -12.02     |
|      |          |       | 1747.5  | -24.42     | -13        | -11.42     |

| Band | BW (MHz) | Mode  | f (MHz) | Spur (dBm) | Spec (dBm) | Delta (dB) |
|------|----------|-------|---------|------------|------------|------------|
| LTE2 | 20       | QPSK  | 1860    | -34.33     | -13        | -21.33     |
|      |          |       | 1880    | -33.64     | -13        | -20.64     |
|      |          |       | 1900    | -34.19     | -13        | -21.19     |
|      |          | 16QAM | 1860    | -33.54     | -13        | -20.54     |
|      |          |       | 1880    | -31.80     | -13        | -18.80     |
|      |          |       | 1900    | -33.06     | -13        | -20.06     |
|      | 15       | QPSK  | 1857.5  | -33.75     | -13        | -20.75     |
|      |          |       | 1880    | -33.14     | -13        | -20.14     |
|      |          |       | 1902.5  | -33.49     | -13        | -20.49     |
|      |          | 16QAM | 1857.5  | -33.57     | -13        | -20.57     |
|      |          |       | 1880    | -32.59     | -13        | -19.59     |
|      |          |       | 1902.5  | -33.22     | -13        | -20.22     |

### 11.3.2. OUT OF BAND EMISSIONS PLOTS





## 11.4. FREQUENCY STABILITY

### RULE PART(S)

FCC: §2.1055, §24.235, §27.54

### LIMITS

§24.235 - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

§27.54 - The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

### TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r02

### MODES TESTED

LTE Band 2 and LTE Band 4

### RESULTS

See the following pages.

### 11.4.1. FREQUENCY STABILITY RESULTS

#### LTE BAND 2 – MID CHANNEL (1880.0 MHz)

| Reference Frequency: Cellular Mid Channel 1879.999996MHz @ 20°C<br>Limit: to stay +- 2.5 ppm = 4700.000 Hz |                              |                                               |             |             |
|------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|-------------|-------------|
| Power Supply (Vdc)                                                                                         | Environment Temperature (°C) | Frequency Deviation Measured with Time Elapse |             |             |
|                                                                                                            |                              | (MHz)                                         | Delta (ppm) | Limit (ppm) |
| 3.80                                                                                                       | 50                           | 1879.999992                                   | 0.002       | 2.5         |
| 3.80                                                                                                       | 40                           | 1879.999994                                   | 0.001       | 2.5         |
| 3.80                                                                                                       | 30                           | 1879.999995                                   | 0.001       | 2.5         |
| <b>3.80</b>                                                                                                | <b>20</b>                    | <b>1879.999996</b>                            | <b>0</b>    | <b>2.5</b>  |
| 3.80                                                                                                       | 10                           | 1879.999993                                   | 0.002       | 2.5         |
| 3.80                                                                                                       | 0                            | 1879.999996                                   | 0.000       | 2.5         |
| 3.80                                                                                                       | -10                          | 1879.999997                                   | -0.001      | 2.5         |
| 3.80                                                                                                       | -20                          | 1879.999993                                   | 0.002       | 2.5         |
| 3.80                                                                                                       | -30                          | 1879.999996                                   | 0.000       | 2.5         |
| <hr/>                                                                                                      |                              |                                               |             |             |
| Reference Frequency: Cellular Mid Channel 1879.999996MHz @ 20°C<br>Limit: to stay +- 2.5 ppm = 4700.000 Hz |                              |                                               |             |             |
| Power Supply (Vdc)                                                                                         | Environment Temperature (°C) | Frequency Deviation Measured with Time Elapse |             |             |
|                                                                                                            |                              | (MHz)                                         | Delta (ppm) | Limit (ppm) |
| <b>3.80</b>                                                                                                | <b>20</b>                    | <b>1879.999996</b>                            | <b>0</b>    | <b>2.5</b>  |
| 3.30                                                                                                       | 20                           | 1879.999995                                   | 0.001       | 2.5         |
| 4.30                                                                                                       | 20                           | 1879.999993                                   | 0.002       | 2.5         |

**LTE BAND 4 – MID CHANNEL**

| Reference Frequency: PCS Mid Channel 1732.5MHz @ 20°C           |                              |                                               |             |             |
|-----------------------------------------------------------------|------------------------------|-----------------------------------------------|-------------|-------------|
| Limit: within the authorized block or +/- 2.5 ppm = 4331.250 Hz |                              |                                               |             |             |
| Power Supply (Vdc)                                              | Environment Temperature (°C) | Frequency Deviation Measured with Time Elapse |             |             |
|                                                                 |                              | (MHz)                                         | Delta (ppm) | Limit (ppm) |
| 3.80                                                            | 50                           | 1732.500012                                   | -0.010      | 2.5         |
| 3.80                                                            | 40                           | 1732.500010                                   | -0.009      | 2.5         |
| 3.80                                                            | 30                           | 1732.500011                                   | -0.010      | 2.5         |
| 3.80                                                            | 20                           | <b>1732.499994</b>                            | <b>0</b>    | <b>2.5</b>  |
| 3.80                                                            | 10                           | 1732.499993                                   | 0.001       | 2.5         |
| 3.80                                                            | 0                            | 1732.499993                                   | 0.001       | 2.5         |
| 3.80                                                            | -10                          | 1732.499992                                   | 0.001       | 2.5         |
| 3.80                                                            | -20                          | 1732.499990                                   | 0.002       | 2.5         |
| 3.8                                                             | -30                          | 1732.499989                                   | 0.003       | 2.5         |

| Reference Frequency: PCS Mid Channel 1732.500012 MHz @ 20°C     |                              |                                               |                |             |
|-----------------------------------------------------------------|------------------------------|-----------------------------------------------|----------------|-------------|
| Limit: within the authorized block or +/- 2.5 ppm = 4331.250 Hz |                              |                                               |                |             |
| Power Supply (Vdc)                                              | Environment Temperature (°C) | Frequency Deviation Measured with Time Elapse |                |             |
|                                                                 |                              |                                               | Delta (ppm)    | Limit (ppm) |
| <b>3.80</b>                                                     | <b>20</b>                    | <b>1732.499994</b>                            | <b>0.00000</b> | <b>2.5</b>  |
| 4.30                                                            | 20                           | 1732.499992                                   | 0.00115        | 2.5         |
| 3.30                                                            | 20                           | 1732.499991                                   | 0.00173        | 2.5         |

## 12. RADIATED TEST RESULTS

### 12.1. RADIATED POWER (ERP & EIRP)

#### RULE PART(S)

FCC: §2.1046, §24.232, §27.

#### LIMITS

24.232(c) - Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

27.50(d) - (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.(Band 4)

#### TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17; PSA setting reference to 971168 D01 v02r02

For peak power measurement with a PSA:

a) Set the RBW  $\geq$  OBW; b) Set VBW  $\geq 3 \times$  RBW; c) Set span  $\geq 2 \times$  RBW; d) Sweep time = auto couple; e) Detector = peak; f) Ensure that the number of measurement points  $\geq$  span/RBW; g) Trace mode = max hold;

For average power measurement with a PSA:

a) Set span to at least 1.5 times the OBW; b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz; c) Set VBW  $\geq 3 \times$  RBW; d) Set number of points in sweep  $\geq 2 \times$  span / RBW; e) Sweep time = auto-couple; f) Detector = RMS (power averaging); g) Use free run trigger If burst duty cycle  $\geq$  98; h) Use trigger to capture bursts If burst duty cycle  $<$  98; i) Trace average at least 100 traces in power averaging (*i.e.*, RMS) mode. j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function.

#### **MODES TESTED**

LTE Band 2 and LTE Band 4

#### TEST RESULTS

### 12.1.1. LTE ERP/EIRP Results

| Band | BW (MHz) | Mode  | RB/RB Size | f (MHz) | ERP / EIRP |        |
|------|----------|-------|------------|---------|------------|--------|
|      |          |       |            |         | dBm        | mW     |
| LTE4 | 20       | QPSK  | 1/0        | 1720    | 24.72      | 296.48 |
|      |          |       | 1/0        | 1732.5  | 25.34      | 341.98 |
|      |          |       | 1/0        | 1745    | 25.40      | 346.74 |
|      |          | 16QAM | 1/0        | 1720    | 23.50      | 223.87 |
|      |          |       | 1/0        | 1732.5  | 24.28      | 267.92 |
|      |          |       | 1/0        | 1745    | 24.21      | 263.63 |
| Band | BW (MHz) | Mode  | RB/RB Size | f (MHz) | ERP / EIRP |        |
|      |          |       |            |         | dBm        | mW     |
| LTE4 | 15       | QPSK  | 1/0        | 1717.5  | 24.66      | 292.42 |
|      |          |       | 1/0        | 1732.5  | 25.71      | 372.39 |
|      |          |       | 1/0        | 1747.5  | 25.35      | 342.77 |
|      |          | 16QAM | 1/0        | 1717.5  | 23.84      | 242.1  |
|      |          |       | 1/0        | 1732.5  | 24.54      | 284.45 |
|      |          |       | 1/0        | 1747.5  | 24.24      | 265.46 |

| Band | BW (MHz) | Mode  | RB/RB Size | f (MHz) | ERP / EIRP |        |
|------|----------|-------|------------|---------|------------|--------|
|      |          |       |            |         | dBm        | mW     |
| LTE2 | 20       | QPSK  | 1/0        | 1860    | 24.03      | 252.93 |
|      |          |       | 1/0        | 1880    | 23.81      | 240.44 |
|      |          |       | 1/0        | 1900    | 24.09      | 256.45 |
|      |          | 16QAM | 1/0        | 1860    | 23.16      | 207.01 |
|      |          |       | 1/0        | 1880    | 22.96      | 197.7  |
|      |          |       | 1/0        | 1900    | 23.16      | 207.01 |
| Band | BW (MHz) | Mode  | RB/RB Size | f (MHz) | ERP / EIRP |        |
|      |          |       |            |         | dBm        | mW     |
| LTE2 | 15       | QPSK  | 1/0        | 1857.5  | 23.76      | 237.68 |
|      |          |       | 1/0        | 1880    | 23.82      | 240.99 |
|      |          |       | 1/0        | 1902.5  | 24.23      | 264.85 |
|      |          | 16QAM | 1/0        | 1857.5  | 22.96      | 197.7  |
|      |          |       | 1/0        | 1880    | 22.96      | 197.7  |
|      |          |       | 1/0        | 1902.5  | 23.36      | 216.77 |

### 12.1.2. ERP/EIRP PLOTS

#### LTE Band 4

|                                      |  | High Frequency Substitution Measurement<br>UL Verification Services, Inc. Chamber C |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|--------------------------------------|--|-------------------------------------------------------------------------------------|---------------------|--------------------|--------------------|-----------------------|---------------|----------------|----------------|-------|--|--|--|--|--|--|
|                                      |  | Company:                                                                            | LG                  |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | Project #:                                                                          | 15I19863            |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | Date:                                                                               | 01/27/15            |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | Test Engineer:                                                                      | Kiya Kedida         |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | Configuration:                                                                      | X-pos EUT only      |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | Mode:                                                                               | LTE_B4_20MHz_16QAM  |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
| Band                                 |  | <b>Test Equipment:</b>                                                              |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
| LTE4                                 |  | Receiving: Horn T119, and Chamber C SMA Cables                                      |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | Substitution: Horn T59 Substitution, 4ft SMA Cable Warehouse                        |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
| 20MHz                                |  |                                                                                     |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
| 16QAM                                |  |                                                                                     |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | f<br>MHz                                                                            | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Notes |  |  |  |  |  |  |
|                                      |  | Low Ch                                                                              |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | 1720.00                                                                             | 13.15               | V                  | 0.90               | 8.01                  | 20.26         | 30.0           | -9.7           |       |  |  |  |  |  |  |
|                                      |  | 1720.00                                                                             | 16.39               | H                  | 0.90               | 8.01                  | 23.50         | 30.0           | -6.5           |       |  |  |  |  |  |  |
|                                      |  | Mid Ch                                                                              |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | 1732.50                                                                             | 14.05               | V                  | 0.90               | 8.01                  | 21.16         | 30.0           | -8.8           |       |  |  |  |  |  |  |
|                                      |  | 1732.50                                                                             | 17.17               | H                  | 0.90               | 8.01                  | 24.28         | 30.0           | -5.7           |       |  |  |  |  |  |  |
|                                      |  | High Ch                                                                             |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
|                                      |  | 1745.00                                                                             | 13.88               | V                  | 0.90               | 8.01                  | 20.99         | 30.0           | -9.0           |       |  |  |  |  |  |  |
|                                      |  | 1745.00                                                                             | 17.10               | H                  | 0.90               | 8.01                  | 24.21         | 30.0           | -5.8           |       |  |  |  |  |  |  |
| Rev. 3.17.11                         |  |                                                                                     |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |
| Note: For Band 4 EIRP limit is 30dBm |  |                                                                                     |                     |                    |                    |                       |               |                |                |       |  |  |  |  |  |  |

| <b>High Frequency Substitution Measurement</b><br><b>UL Verification Services, Inc. Chamber C</b> |                                                                     |                               |                          |                                      |                                         |                                   |                |                |       |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|--------------------------|--------------------------------------|-----------------------------------------|-----------------------------------|----------------|----------------|-------|
| Band<br>LTE4<br>20MHz<br>QPSK                                                                     | <b>Company:</b><br>LG                                               | <b>Project #:</b><br>15I19863 | <b>Date:</b><br>01/27/15 | <b>Test Engineer:</b><br>Kiya Kedida | <b>Configuration:</b><br>X-pos EUT only | <b>Mode:</b><br>LTE_B4_20MHz_QPSK |                |                |       |
|                                                                                                   | <b>Test Equipment:</b>                                              |                               |                          |                                      |                                         |                                   |                |                |       |
|                                                                                                   | <b>Receiving:</b> Horn T119, and Chamber C SMA Cables               |                               |                          |                                      |                                         |                                   |                |                |       |
|                                                                                                   | <b>Substitution:</b> Horn T59 Substitution, 4ft SMA Cable Warehouse |                               |                          |                                      |                                         |                                   |                |                |       |
|                                                                                                   | f<br>MHz                                                            | SG reading<br>(dBm)           | Ant. Pol.<br>(H/V)       | Cable Loss<br>(dB)                   | Antenna Gain<br>(dBi)                   | EIRP<br>(dBm)                     | Limit<br>(dBm) | Margin<br>(dB) | Notes |
|                                                                                                   | <b>Low Ch</b>                                                       |                               |                          |                                      |                                         |                                   |                |                |       |
|                                                                                                   | 1720.00                                                             | 14.04                         | V                        | 0.90                                 | 8.01                                    | 21.15                             | 30.0           | -8.9           |       |
|                                                                                                   | 1720.00                                                             | 17.61                         | H                        | 0.90                                 | 8.01                                    | 24.72                             | 30.0           | -5.3           |       |
|                                                                                                   | <b>Mid Ch</b>                                                       |                               |                          |                                      |                                         |                                   |                |                |       |
|                                                                                                   | 1732.50                                                             | 14.95                         | V                        | 0.90                                 | 8.01                                    | 22.06                             | 30.0           | -7.9           |       |
|                                                                                                   | 1732.50                                                             | 18.23                         | H                        | 0.90                                 | 8.01                                    | 25.34                             | 30.0           | -4.7           |       |
|                                                                                                   | <b>High Ch</b>                                                      |                               |                          |                                      |                                         |                                   |                |                |       |
|                                                                                                   | 1745.00                                                             | 15.14                         | V                        | 0.90                                 | 8.01                                    | 22.25                             | 30.0           | -7.8           |       |
|                                                                                                   | 1745.00                                                             | 18.29                         | H                        | 0.90                                 | 8.01                                    | 25.40                             | 30.0           | -4.6           |       |
| Rev. 3.17.11<br>Note: For Band 4 EIRP limit is 30dBm                                              |                                                                     |                               |                          |                                      |                                         |                                   |                |                |       |

| <b>High Frequency Substitution Measurement</b><br><b>UL Verification Services, Inc. Chamber C</b> |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|----------------------------|----------------------------|-------------------------------|-----------------------|------------------------|------------------------|--------------|--|--|--|--|--|--|--|--|
| <b>Band</b><br><br><b>LTE4</b><br><br><b>15MHz</b><br><br><b>16QAM</b>                            | <b>Company:</b>                                                     | LG                          |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Project #:</b>                                                   | 15I19863                    |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Date:</b>                                                        | 01/27/15                    |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Test Engineer:</b>                                               | Kiya Kedida                 |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Configuration:</b>                                               | X-pos EUT only              |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Mode:</b>                                                        | LTE_B4_15MHz_16QAM          |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Test Equipment:</b>                                              |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Receiving:</b> Horn T119, and Chamber C SMA Cables               |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>Substitution:</b> Horn T59 Substitution, 4ft SMA Cable Warehouse |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
|                                                                                                   | <b>f<br/>MHz</b>                                                    | <b>SG reading<br/>(dBm)</b> | <b>Ant. Pol.<br/>(H/V)</b> | <b>Cable Loss<br/>(dB)</b> | <b>Antenna Gain<br/>(dBi)</b> | <b>EIRP<br/>(dBm)</b> | <b>Limit<br/>(dBm)</b> | <b>Margin<br/>(dB)</b> | <b>Notes</b> |  |  |  |  |  |  |  |  |
| <b>Low Ch</b>                                                                                     |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| 1717.50      13.10      V      0.90      8.01      20.21      30.0      -9.8                      |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| 1717.50      16.73      H      0.90      8.01      23.84      30.0      -6.2                      |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| <b>Mid Ch</b>                                                                                     |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| 1732.50      14.24      V      0.90      8.01      21.35      30.0      -8.7                      |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| 1732.50      17.43      H      0.90      8.01      24.54      30.0      -5.5                      |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| <b>High Ch</b>                                                                                    |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| 1747.50      13.88      V      0.90      8.01      20.99      30.0      -9.0                      |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| 1747.50      17.13      H      0.90      8.01      24.24      30.0      -5.8                      |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |
| Rev. 3.17.11<br>Note: For Band 4 EIRP limit is 30dBm                                              |                                                                     |                             |                            |                            |                               |                       |                        |                        |              |  |  |  |  |  |  |  |  |

| High Frequency Substitution Measurement<br>UL Verification Services, Inc. Chamber C |                |                   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------|-------------------|--|--|--|--|--|--|--|
| Band                                                                                |                |                   |  |  |  |  |  |  |  |
|                                                                                     | Project #:     | 15I19863          |  |  |  |  |  |  |  |
| LTE4                                                                                | Date:          | 01/27/15          |  |  |  |  |  |  |  |
| 15MHz                                                                               | Test Engineer: | Kiya Kedida       |  |  |  |  |  |  |  |
| QPSK                                                                                | Configuration: | X-pos EUT only    |  |  |  |  |  |  |  |
|                                                                                     | Mode:          | LTE_B4_15MHz_QPSK |  |  |  |  |  |  |  |
| <b>Test Equipment:</b>                                                              |                |                   |  |  |  |  |  |  |  |
| Receiving: Horn T119, and Chamber C SMA Cables                                      |                |                   |  |  |  |  |  |  |  |
| Substitution: Horn T59 Substitution, 4ft SMA Cable Warehouse                        |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |
|                                                                                     |                |                   |  |  |  |  |  |  |  |

**LTE Band 2**

|          |                     | High Frequency Substitution Measurement<br>UL Verification Services, Inc. Chamber C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
|----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|---------------|----------------|---------------|-------|--|----------|---------------------|--------------------|--------------------|-----------------------|---------------|----------------|---------------|-------|--------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|-------|--|-------|------|---|------|------|-------|------|------|--|--------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|-------|--|-------|------|---|------|------|-------|------|-------|--|---------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|------|--|-------|------|---|------|------|-------|------|------|--|
|          |                     | <b>Company:</b> LG<br><b>Project #:</b> 15I19863<br><b>Date:</b> 01/27/15<br><b>Test Engineer:</b> Kiya Kedida<br><b>Configuration:</b> Z-pos EUT only<br><b>Mode:</b> LTE Band 2_20MHz_16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| Band     |                     | <b>Test Equipment:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| LTE2     |                     | Receiving: Horn T119, and Chamber C SMA Cables<br>Substitution: Horn T59 Substitution, 4ft SMA Cable (244639001) Warehouse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 20MHz    |                     | <table border="1"> <thead> <tr> <th>f<br/>GHz</th><th>SG reading<br/>(dBm)</th><th>Ant. Pol.<br/>(H/V)</th><th>Cable Loss<br/>(dB)</th><th>Antenna Gain<br/>(dBi)</th><th>EIRP<br/>(dBm)</th><th>Limit<br/>(dBm)</th><th>Delta<br/>(dB)</th><th>Notes</th></tr> </thead> <tbody> <tr> <td>Low Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.860</td><td>15.3</td><td>V</td><td>0.85</td><td>8.01</td><td>22.46</td><td>33.0</td><td>-10.5</td><td></td></tr> <tr> <td>1.860</td><td>16.0</td><td>H</td><td>0.85</td><td>8.01</td><td>23.16</td><td>33.0</td><td>-9.8</td><td></td></tr> <tr> <td>Mid Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.880</td><td>15.7</td><td>V</td><td>0.85</td><td>8.01</td><td>22.86</td><td>33.0</td><td>-10.1</td><td></td></tr> <tr> <td>1.880</td><td>15.8</td><td>H</td><td>0.85</td><td>8.01</td><td>22.96</td><td>33.0</td><td>-10.0</td><td></td></tr> <tr> <td>High Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.900</td><td>16.0</td><td>V</td><td>0.85</td><td>8.01</td><td>23.16</td><td>33.0</td><td>-9.8</td><td></td></tr> <tr> <td>1.900</td><td>16.0</td><td>H</td><td>0.85</td><td>8.01</td><td>23.16</td><td>33.0</td><td>-9.8</td><td></td></tr> </tbody> </table> |                    |                       |               |                |               |       |  | f<br>GHz | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes | Low Ch |  |  |  |  |  |  |  |  | 1.860 | 15.3 | V | 0.85 | 8.01 | 22.46 | 33.0 | -10.5 |  | 1.860 | 16.0 | H | 0.85 | 8.01 | 23.16 | 33.0 | -9.8 |  | Mid Ch |  |  |  |  |  |  |  |  | 1.880 | 15.7 | V | 0.85 | 8.01 | 22.86 | 33.0 | -10.1 |  | 1.880 | 15.8 | H | 0.85 | 8.01 | 22.96 | 33.0 | -10.0 |  | High Ch |  |  |  |  |  |  |  |  | 1.900 | 16.0 | V | 0.85 | 8.01 | 23.16 | 33.0 | -9.8 |  | 1.900 | 16.0 | H | 0.85 | 8.01 | 23.16 | 33.0 | -9.8 |  |
| f<br>GHz | SG reading<br>(dBm) | Ant. Pol.<br>(H/V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| Low Ch   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.860    | 15.3                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85               | 8.01                  | 22.46         | 33.0           | -10.5         |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.860    | 16.0                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85               | 8.01                  | 23.16         | 33.0           | -9.8          |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| Mid Ch   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.880    | 15.7                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85               | 8.01                  | 22.86         | 33.0           | -10.1         |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.880    | 15.8                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85               | 8.01                  | 22.96         | 33.0           | -10.0         |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| High Ch  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.900    | 16.0                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85               | 8.01                  | 23.16         | 33.0           | -9.8          |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.900    | 16.0                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85               | 8.01                  | 23.16         | 33.0           | -9.8          |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
|          |                     | Rev. 3.17.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                       |               |                |               |       |  |          |                     |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |

|              |                     | <p style="text-align: center;"><b>High Frequency Substitution Measurement</b><br/><b>UL Verification Services, Inc. Chamber C</b></p> <p><b>Company:</b> LG<br/> <b>Project #:</b> 15I19863<br/> <b>Date:</b> 01/27/15<br/> <b>Test Engineer:</b> Kiya Kedida<br/> <b>Configuration:</b> Xpos EUT only<br/> <b>Mode:</b> LTE Band 2_20MHz_QPSK</p> <p><b>Test Equipment:</b><br/> <b>Receiving:</b> Horn T119, and Chamber C SMA Cables<br/> <b>Substitution:</b> Horn T59 Substitution, 4ft SMA Cable (244639001) Warehouse</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">f<br/>GHz</th><th style="text-align: left;">SG reading<br/>(dBm)</th><th style="text-align: left;">Ant. Pol.<br/>(H/V)</th><th style="text-align: left;">Cable Loss<br/>(dB)</th><th style="text-align: left;">Antenna Gain<br/>(dBi)</th><th style="text-align: left;">EIRP<br/>(dBm)</th><th style="text-align: left;">Limit<br/>(dBm)</th><th style="text-align: left;">Delta<br/>(dB)</th><th style="text-align: left;">Notes</th></tr> </thead> <tbody> <tr> <td>Low Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.860</td><td>16.2</td><td>V</td><td>0.85</td><td>8.01</td><td>23.39</td><td>33.0</td><td>-9.6</td><td></td></tr> <tr> <td>1.860</td><td>16.9</td><td>H</td><td>0.85</td><td>8.01</td><td>24.03</td><td>33.0</td><td>-9.0</td><td></td></tr> <tr> <td>Mid Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.880</td><td>16.6</td><td>V</td><td>0.85</td><td>8.01</td><td>23.71</td><td>33.0</td><td>-9.3</td><td></td></tr> <tr> <td>1.880</td><td>16.7</td><td>H</td><td>0.85</td><td>8.01</td><td>23.81</td><td>33.0</td><td>-9.2</td><td></td></tr> <tr> <td>High Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.900</td><td>16.9</td><td>V</td><td>0.85</td><td>8.01</td><td>24.06</td><td>33.0</td><td>-8.9</td><td></td></tr> <tr> <td>1.900</td><td>16.9</td><td>H</td><td>0.85</td><td>8.01</td><td>24.09</td><td>33.0</td><td>-8.9</td><td></td></tr> <tr> <td colspan="9" style="text-align: left;">Rev. 3.17.11</td><td></td></tr> </tbody> </table> | f<br>GHz           | SG reading<br>(dBm)   | Ant. Pol.<br>(H/V) | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes | Low Ch |  |  |  |  |  |  |  |  | 1.860 | 16.2 | V | 0.85 | 8.01 | 23.39 | 33.0 | -9.6 |  | 1.860 | 16.9 | H | 0.85 | 8.01 | 24.03 | 33.0 | -9.0 |  | Mid Ch |  |  |  |  |  |  |  |  | 1.880 | 16.6 | V | 0.85 | 8.01 | 23.71 | 33.0 | -9.3 |  | 1.880 | 16.7 | H | 0.85 | 8.01 | 23.81 | 33.0 | -9.2 |  | High Ch |  |  |  |  |  |  |  |  | 1.900 | 16.9 | V | 0.85 | 8.01 | 24.06 | 33.0 | -8.9 |  | 1.900 | 16.9 | H | 0.85 | 8.01 | 24.09 | 33.0 | -8.9 |  | Rev. 3.17.11 |  |  |  |  |  |  |  |  |  |
|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--------------------|--------------------|-----------------------|---------------|----------------|---------------|-------|--------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|------|--|-------|------|---|------|------|-------|------|------|--|--------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|------|--|-------|------|---|------|------|-------|------|------|--|---------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|------|--|-------|------|---|------|------|-------|------|------|--|--------------|--|--|--|--|--|--|--|--|--|
| f<br>GHz     | SG reading<br>(dBm) | Ant. Pol.<br>(H/V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm)      | Limit<br>(dBm)     | Delta<br>(dB)         | Notes         |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| Low Ch       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| 1.860        | 16.2                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85               | 8.01                  | 23.39              | 33.0               | -9.6                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| 1.860        | 16.9                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85               | 8.01                  | 24.03              | 33.0               | -9.0                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| Mid Ch       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| 1.880        | 16.6                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85               | 8.01                  | 23.71              | 33.0               | -9.3                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| 1.880        | 16.7                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85               | 8.01                  | 23.81              | 33.0               | -9.2                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| High Ch      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| 1.900        | 16.9                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85               | 8.01                  | 24.06              | 33.0               | -8.9                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| 1.900        | 16.9                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85               | 8.01                  | 24.09              | 33.0               | -8.9                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |
| Rev. 3.17.11 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |  |

|                |                     | <p style="text-align: center;"><b>High Frequency Substitution Measurement</b><br/><b>UL Verification Services, Inc. Chamber C</b></p> <p><b>Company:</b> LG<br/> <b>Project #:</b> 15I19863<br/> <b>Date:</b> 01/27/15<br/> <b>Test Engineer:</b> Kiya Kedida<br/> <b>Configuration:</b> Xpos EUT only<br/> <b>Mode:</b> LTE Band 2_15MHz_16QAM</p> <p><b>Test Equipment:</b><br/> <b>Receiving:</b> Horn T119, and Chamber C SMA Cables<br/> <b>Substitution:</b> Horn T59 Substitution, 4ft SMA Cable (244639001) Warehouse</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">f<br/>GHz</th><th style="text-align: left;">SG reading<br/>(dBm)</th><th style="text-align: left;">Ant. Pol.<br/>(H/V)</th><th style="text-align: left;">Cable Loss<br/>(dB)</th><th style="text-align: left;">Antenna Gain<br/>(dBi)</th><th style="text-align: left;">EIRP<br/>(dBm)</th><th style="text-align: left;">Limit<br/>(dBm)</th><th style="text-align: left;">Delta<br/>(dB)</th><th style="text-align: left;">Notes</th></tr> </thead> <tbody> <tr> <td colspan="9"><b>Low Ch</b></td></tr> <tr> <td>1.858</td><td>15.2</td><td>V</td><td>0.85</td><td>8.01</td><td>22.36</td><td>33.0</td><td>-10.6</td><td></td></tr> <tr> <td>1.858</td><td>15.8</td><td>H</td><td>0.85</td><td>8.01</td><td>22.96</td><td>33.0</td><td>-10.0</td><td></td></tr> <tr> <td colspan="9"><b>Mid Ch</b></td></tr> <tr> <td>1.880</td><td>15.6</td><td>V</td><td>0.85</td><td>8.01</td><td>22.76</td><td>33.0</td><td>-10.2</td><td></td></tr> <tr> <td>1.880</td><td>15.8</td><td>H</td><td>0.85</td><td>8.01</td><td>22.96</td><td>33.0</td><td>-10.0</td><td></td></tr> <tr> <td colspan="9"><b>High Ch</b></td></tr> <tr> <td>1.903</td><td>15.5</td><td>V</td><td>0.85</td><td>8.01</td><td>22.66</td><td>33.0</td><td>-10.3</td><td></td></tr> <tr> <td>1.903</td><td>16.2</td><td>H</td><td>0.85</td><td>8.01</td><td>23.36</td><td>33.0</td><td>-9.6</td><td></td></tr> <tr> <td colspan="9">Rev. 3.17.11</td></tr> </tbody> </table> | f<br>GHz           | SG reading<br>(dBm)   | Ant. Pol.<br>(H/V) | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes | <b>Low Ch</b> |  |  |  |  |  |  |  |  | 1.858 | 15.2 | V | 0.85 | 8.01 | 22.36 | 33.0 | -10.6 |  | 1.858 | 15.8 | H | 0.85 | 8.01 | 22.96 | 33.0 | -10.0 |  | <b>Mid Ch</b> |  |  |  |  |  |  |  |  | 1.880 | 15.6 | V | 0.85 | 8.01 | 22.76 | 33.0 | -10.2 |  | 1.880 | 15.8 | H | 0.85 | 8.01 | 22.96 | 33.0 | -10.0 |  | <b>High Ch</b> |  |  |  |  |  |  |  |  | 1.903 | 15.5 | V | 0.85 | 8.01 | 22.66 | 33.0 | -10.3 |  | 1.903 | 16.2 | H | 0.85 | 8.01 | 23.36 | 33.0 | -9.6 |  | Rev. 3.17.11 |  |  |  |  |  |  |  |  |
|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--------------------|--------------------|-----------------------|---------------|----------------|---------------|-------|---------------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|-------|--|-------|------|---|------|------|-------|------|-------|--|---------------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|-------|--|-------|------|---|------|------|-------|------|-------|--|----------------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|-------|--|-------|------|---|------|------|-------|------|------|--|--------------|--|--|--|--|--|--|--|--|
| f<br>GHz       | SG reading<br>(dBm) | Ant. Pol.<br>(H/V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm)      | Limit<br>(dBm)     | Delta<br>(dB)         | Notes         |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| <b>Low Ch</b>  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |                    |                    |                       |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| 1.858          | 15.2                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85               | 8.01                  | 22.36              | 33.0               | -10.6                 |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| 1.858          | 15.8                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85               | 8.01                  | 22.96              | 33.0               | -10.0                 |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| <b>Mid Ch</b>  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |                    |                    |                       |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| 1.880          | 15.6                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85               | 8.01                  | 22.76              | 33.0               | -10.2                 |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| 1.880          | 15.8                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85               | 8.01                  | 22.96              | 33.0               | -10.0                 |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| <b>High Ch</b> |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |                    |                    |                       |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| 1.903          | 15.5                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85               | 8.01                  | 22.66              | 33.0               | -10.3                 |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| 1.903          | 16.2                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85               | 8.01                  | 23.36              | 33.0               | -9.6                  |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |
| Rev. 3.17.11   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |                    |                    |                       |               |                |               |       |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |               |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |       |  |                |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |              |  |  |  |  |  |  |  |  |

|          |                     | <p style="text-align: center;"><b>High Frequency Substitution Measurement</b><br/><b>UL Verification Services, Inc. Chamber C</b></p> <p><b>Company:</b> LG<br/> <b>Project #:</b> 15I19863<br/> <b>Date:</b> 01/27/15<br/> <b>Test Engineer:</b> Kiya Kedida<br/> <b>Configuration:</b> Xpos EUT only<br/> <b>Mode:</b> LTE Band 2_15MHz_QPSK</p> <p><b>Test Equipment:</b><br/> <b>Receiving:</b> Horn T119, and Chamber C SMA Cables<br/> <b>Substitution:</b> Horn T59 Substitution, 4ft SMA Cable (244639001) Warehouse</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">f<br/>GHz</th><th style="text-align: left;">SG reading<br/>(dBm)</th><th style="text-align: left;">Ant. Pol.<br/>(H/V)</th><th style="text-align: left;">Cable Loss<br/>(dB)</th><th style="text-align: left;">Antenna Gain<br/>(dBi)</th><th style="text-align: left;">EIRP<br/>(dBm)</th><th style="text-align: left;">Limit<br/>(dBm)</th><th style="text-align: left;">Delta<br/>(dB)</th><th style="text-align: left;">Notes</th></tr> </thead> <tbody> <tr> <td>Low Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.858</td><td>15.6</td><td>V</td><td>0.85</td><td>8.01</td><td>22.75</td><td>33.0</td><td>-10.3</td><td></td></tr> <tr> <td>1.858</td><td>16.6</td><td>H</td><td>0.85</td><td>8.01</td><td>23.76</td><td>33.0</td><td>-9.2</td><td></td></tr> <tr> <td>Mid Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.880</td><td>16.4</td><td>V</td><td>0.85</td><td>8.01</td><td>23.56</td><td>33.0</td><td>-9.4</td><td></td></tr> <tr> <td>1.880</td><td>16.7</td><td>H</td><td>0.85</td><td>8.01</td><td>23.82</td><td>33.0</td><td>-9.2</td><td></td></tr> <tr> <td>High Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1.903</td><td>16.6</td><td>V</td><td>0.85</td><td>8.01</td><td>23.78</td><td>33.0</td><td>-9.2</td><td></td></tr> <tr> <td>1.903</td><td>17.1</td><td>H</td><td>0.85</td><td>8.01</td><td>24.23</td><td>33.0</td><td>-8.8</td><td></td></tr> </tbody> </table> <p>Rev. 3.17.11</p> | f<br>GHz           | SG reading<br>(dBm)   | Ant. Pol.<br>(H/V) | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes | Low Ch |  |  |  |  |  |  |  |  | 1.858 | 15.6 | V | 0.85 | 8.01 | 22.75 | 33.0 | -10.3 |  | 1.858 | 16.6 | H | 0.85 | 8.01 | 23.76 | 33.0 | -9.2 |  | Mid Ch |  |  |  |  |  |  |  |  | 1.880 | 16.4 | V | 0.85 | 8.01 | 23.56 | 33.0 | -9.4 |  | 1.880 | 16.7 | H | 0.85 | 8.01 | 23.82 | 33.0 | -9.2 |  | High Ch |  |  |  |  |  |  |  |  | 1.903 | 16.6 | V | 0.85 | 8.01 | 23.78 | 33.0 | -9.2 |  | 1.903 | 17.1 | H | 0.85 | 8.01 | 24.23 | 33.0 | -8.8 |  |
|----------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--------------------|--------------------|-----------------------|---------------|----------------|---------------|-------|--------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|-------|--|-------|------|---|------|------|-------|------|------|--|--------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|------|--|-------|------|---|------|------|-------|------|------|--|---------|--|--|--|--|--|--|--|--|-------|------|---|------|------|-------|------|------|--|-------|------|---|------|------|-------|------|------|--|
| f<br>GHz | SG reading<br>(dBm) | Ant. Pol.<br>(H/V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cable Loss<br>(dB) | Antenna Gain<br>(dBi) | EIRP<br>(dBm)      | Limit<br>(dBm)     | Delta<br>(dB)         | Notes         |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| Low Ch   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.858    | 15.6                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85               | 8.01                  | 22.75              | 33.0               | -10.3                 |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.858    | 16.6                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85               | 8.01                  | 23.76              | 33.0               | -9.2                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| Mid Ch   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.880    | 16.4                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85               | 8.01                  | 23.56              | 33.0               | -9.4                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.880    | 16.7                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85               | 8.01                  | 23.82              | 33.0               | -9.2                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| High Ch  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                       |                    |                    |                       |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.903    | 16.6                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85               | 8.01                  | 23.78              | 33.0               | -9.2                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |
| 1.903    | 17.1                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85               | 8.01                  | 24.23              | 33.0               | -8.8                  |               |                |               |       |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |       |  |       |      |   |      |      |       |      |      |  |        |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |         |  |  |  |  |  |  |  |  |       |      |   |      |      |       |      |      |  |       |      |   |      |      |       |      |      |  |

## 12.2. FIELD STRENGTH OF SPURIOUS RADIATION

### **RULE PART(S)**

FCC: §2.1053, §24.238, and §27.53

### **LIMITS**

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log (P)$  dB.

### **TEST PROCEDURE**

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

### **MODES TESTED**

LTE Band 2 and LTE Band 4

### **RESULTS**

### 12.2.1. SPURIOUS RADIATION PLOTS

#### LTE Band 4

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |                                             |                     |                    |                 |                |                |               |                |               |       |
|------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|
| Company:                                                                                 | LG                                          |                     |                    |                 |                |                |               |                |               |       |
| Project #:                                                                               | 15I19863                                    |                     |                    |                 |                |                |               |                |               |       |
| Date:                                                                                    | 1/27/2015                                   |                     |                    |                 |                |                |               |                |               |       |
| Test Engineer:                                                                           | Kiya Kedida                                 |                     |                    |                 |                |                |               |                |               |       |
| Configuration:                                                                           | EUT/AC Charger/HS                           |                     |                    |                 |                |                |               |                |               |       |
| Location:                                                                                | Chamber C                                   |                     |                    |                 |                |                |               |                |               |       |
| Mode:                                                                                    | LTE_16QAM Band 4 Harmonics, 20MHz Bandwidth |                     |                    |                 |                |                |               |                |               |       |
| Band                                                                                     | f<br>MHz                                    | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |
| LTE4                                                                                     | Low Ch, 1720                                |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3440.00                                     | -20.7               | V                  | 3.0             | 36.0           | 1.0            | -55.7         | -13.0          | -42.7         |       |
|                                                                                          | 5160.00                                     | -17.0               | V                  | 3.0             | 35.4           | 1.0            | -51.4         | -13.0          | -38.4         |       |
|                                                                                          | 6880.00                                     | -13.7               | V                  | 3.0             | 35.7           | 1.0            | -48.4         | -13.0          | -35.4         |       |
| 20MHz                                                                                    | 3440.00                                     | -20.8               | H                  | 3.0             | 36.0           | 1.0            | -55.9         | -13.0          | -42.9         |       |
|                                                                                          | 5160.00                                     | -16.5               | H                  | 3.0             | 35.4           | 1.0            | -50.9         | -13.0          | -37.9         |       |
|                                                                                          | 6880.00                                     | -14.1               | H                  | 3.0             | 35.7           | 1.0            | -48.7         | -13.0          | -35.7         |       |
|                                                                                          | Mid Ch, 1732.5                              |                     |                    |                 |                |                |               |                |               |       |
| 16QAM                                                                                    | 3465.00                                     | -21.3               | V                  | 3.0             | 36.0           | 1.0            | -56.3         | -13.0          | -43.3         |       |
|                                                                                          | 5197.50                                     | -16.8               | V                  | 3.0             | 35.4           | 1.0            | -51.2         | -13.0          | -38.2         |       |
|                                                                                          | 6930.00                                     | -14.8               | V                  | 3.0             | 35.7           | 1.0            | -49.5         | -13.0          | -36.5         |       |
|                                                                                          | 3465.00                                     | -20.8               | H                  | 3.0             | 36.0           | 1.0            | -55.9         | -13.0          | -42.9         |       |
|                                                                                          | 5197.50                                     | -17.3               | H                  | 3.0             | 35.4           | 1.0            | -51.7         | -13.0          | -38.7         |       |
|                                                                                          | 6930.00                                     | -14.2               | H                  | 3.0             | 35.7           | 1.0            | -48.9         | -13.0          | -35.9         |       |
|                                                                                          | High Ch, 1745                               |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3490.00                                     | -21.0               | V                  | 3.0             | 36.0           | 1.0            | -56.0         | -13.0          | -43.0         |       |
|                                                                                          | 5235.00                                     | -17.4               | V                  | 3.0             | 35.4           | 1.0            | -51.8         | -13.0          | -38.8         |       |
|                                                                                          | 6980.00                                     | -13.7               | V                  | 3.0             | 35.7           | 1.0            | -48.3         | -13.0          | -35.3         |       |
|                                                                                          | 3490.00                                     | -21.4               | H                  | 3.0             | 36.0           | 1.0            | -56.4         | -13.0          | -43.4         |       |
|                                                                                          | 5235.00                                     | -16.2               | H                  | 3.0             | 35.4           | 1.0            | -50.6         | -13.0          | -37.6         |       |
|                                                                                          | 6980.00                                     | -13.0               | H                  | 3.0             | 35.7           | 1.0            | -47.7         | -13.0          | -34.7         |       |

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |          |                     |                    |                 |                |                |               |                |               |       |
|------------------------------------------------------------------------------------------|----------|---------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|
| Band                                                                                     | f<br>MHz | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |
| <b>Low Ch, 1720</b>                                                                      |          |                     |                    |                 |                |                |               |                |               |       |
| LTE4<br>20MHz                                                                            | 3440.00  | -20.5               | V                  | 3.0             | 36.0           | 1.0            | -55.5         | -13.0          | -42.5         |       |
|                                                                                          | 5160.00  | -17.4               | V                  | 3.0             | 35.4           | 1.0            | -51.8         | -13.0          | -38.8         |       |
|                                                                                          | 6880.00  | -13.0               | V                  | 3.0             | 35.7           | 1.0            | -47.7         | -13.0          | -34.7         |       |
| QPSK                                                                                     | 3440.00  | -20.4               | H                  | 3.0             | 36.0           | 1.0            | -55.4         | -13.0          | -42.4         |       |
|                                                                                          | 5160.00  | -17.0               | H                  | 3.0             | 35.4           | 1.0            | -51.4         | -13.0          | -38.4         |       |
|                                                                                          | 6880.00  | -14.0               | H                  | 3.0             | 35.7           | 1.0            | -48.6         | -13.0          | -35.6         |       |
| <b>Mid Ch, 1732.5</b>                                                                    |          |                     |                    |                 |                |                |               |                |               |       |
| QPSK                                                                                     | 3465.00  | -20.2               | V                  | 3.0             | 36.0           | 1.0            | -55.2         | -13.0          | -42.2         |       |
|                                                                                          | 5197.50  | -18.0               | V                  | 3.0             | 35.4           | 1.0            | -52.4         | -13.0          | -39.4         |       |
|                                                                                          | 6930.00  | -13.6               | V                  | 3.0             | 35.7           | 1.0            | -48.3         | -13.0          | -35.3         |       |
|                                                                                          | 3465.00  | -21.7               | H                  | 3.0             | 36.0           | 1.0            | -56.7         | -13.0          | -43.7         |       |
|                                                                                          | 5197.50  | -16.3               | H                  | 3.0             | 35.4           | 1.0            | -50.7         | -13.0          | -37.7         |       |
|                                                                                          | 6930.00  | -12.4               | H                  | 3.0             | 35.7           | 1.0            | -47.0         | -13.0          | -34.0         |       |
| <b>High Ch, 1745</b>                                                                     |          |                     |                    |                 |                |                |               |                |               |       |
| QPSK                                                                                     | 3490.00  | -20.5               | V                  | 3.0             | 36.0           | 1.0            | -55.5         | -13.0          | -42.5         |       |
|                                                                                          | 5235.00  | -17.1               | V                  | 3.0             | 35.4           | 1.0            | -51.5         | -13.0          | -38.5         |       |
|                                                                                          | 6980.00  | -13.0               | V                  | 3.0             | 35.7           | 1.0            | -47.7         | -13.0          | -34.7         |       |
|                                                                                          | 3490.00  | -20.3               | H                  | 3.0             | 36.0           | 1.0            | -55.3         | -13.0          | -42.3         |       |
|                                                                                          | 5235.00  | -16.3               | H                  | 3.0             | 35.4           | 1.0            | -50.7         | -13.0          | -37.7         |       |
|                                                                                          | 6980.00  | -12.0               | H                  | 3.0             | 35.7           | 1.0            | -46.7         | -13.0          | -33.7         |       |

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |       |                 |                                             |                    |                 |                |                |               |                |               |       |  |
|------------------------------------------------------------------------------------------|-------|-----------------|---------------------------------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|--|
|                                                                                          |       | Company:        | LG                                          |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | Project #:      | 15I19863                                    |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | Date:           | 1/27/2015                                   |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | Test Engineer:  | Kiya Kedida                                 |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | Configuration:  | EUT/AC Charger/HS                           |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | Location:       | Chamber C                                   |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | Mode:           | LTE_16QAM Band 4 Harmonics, 15MHz Bandwidth |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | f<br>MHz        | SG reading<br>(dBm)                         | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |  |
| Band                                                                                     |       | Low Ch, 1717.5  |                                             |                    |                 |                |                |               |                |               |       |  |
| LTE4                                                                                     | 15MHz | 3435.00         | -18.8                                       | V                  | 3.0             | 36.1           | 1.0            | -53.8         | -13.0          | -40.8         |       |  |
|                                                                                          |       | 5152.50         | -17.3                                       | V                  | 3.0             | 35.4           | 1.0            | -51.7         | -13.0          | -38.7         |       |  |
|                                                                                          |       | 6870.00         | -13.3                                       | V                  | 3.0             | 35.7           | 1.0            | -48.0         | -13.0          | -35.0         |       |  |
|                                                                                          |       | 3435.00         | -19.4                                       | H                  | 3.0             | 36.1           | 1.0            | -54.4         | -13.0          | -41.4         |       |  |
| 16QAM                                                                                    | 15MHz | 5152.50         | -16.4                                       | H                  | 3.0             | 35.4           | 1.0            | -50.8         | -13.0          | -37.8         |       |  |
|                                                                                          |       | 6870.00         | -12.5                                       | H                  | 3.0             | 35.7           | 1.0            | -47.2         | -13.0          | -34.2         |       |  |
|                                                                                          |       | Mid Ch, 1732.5  |                                             |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       | 3465.00         | -21.0                                       | V                  | 3.0             | 36.0           | 1.0            | -56.1         | -13.0          | -43.1         |       |  |
| 16QAM                                                                                    | 16QAM | 5197.50         | -17.3                                       | V                  | 3.0             | 35.4           | 1.0            | -51.7         | -13.0          | -38.7         |       |  |
|                                                                                          |       | 6930.00         | -14.8                                       | V                  | 3.0             | 35.7           | 1.0            | -49.5         | -13.0          | -36.5         |       |  |
|                                                                                          |       | 3465.00         | -21.8                                       | H                  | 3.0             | 36.0           | 1.0            | -56.9         | -13.0          | -43.9         |       |  |
|                                                                                          |       | 5197.50         | -17.7                                       | H                  | 3.0             | 35.4           | 1.0            | -52.2         | -13.0          | -39.2         |       |  |
|                                                                                          |       | 6930.00         | -13.3                                       | H                  | 3.0             | 35.7           | 1.0            | -48.0         | -13.0          | -35.0         |       |  |
|                                                                                          |       | High Ch, 1747.5 |                                             |                    |                 |                |                |               |                |               |       |  |
| 16QAM                                                                                    | 16QAM | 3495.00         | -21.4                                       | V                  | 3.0             | 36.0           | 1.0            | -56.4         | -13.0          | -43.4         |       |  |
|                                                                                          |       | 5242.50         | -18.1                                       | V                  | 3.0             | 35.4           | 1.0            | -52.6         | -13.0          | -39.6         |       |  |
|                                                                                          |       | 6990.00         | -13.8                                       | V                  | 3.0             | 35.7           | 1.0            | -48.5         | -13.0          | -35.5         |       |  |
|                                                                                          |       | 3495.00         | -20.2                                       | H                  | 3.0             | 36.0           | 1.0            | -55.2         | -13.0          | -42.2         |       |  |
| 16QAM                                                                                    | 16QAM | 5242.50         | -17.2                                       | H                  | 3.0             | 35.4           | 1.0            | -51.7         | -13.0          | -38.7         |       |  |
|                                                                                          |       | 6990.00         | -12.6                                       | H                  | 3.0             | 35.7           | 1.0            | -47.3         | -13.0          | -34.3         |       |  |
|                                                                                          |       |                 |                                             |                    |                 |                |                |               |                |               |       |  |
|                                                                                          |       |                 |                                             |                    |                 |                |                |               |                |               |       |  |

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |                 |                                            |                    |                 |                |                |               |                |               |       |
|------------------------------------------------------------------------------------------|-----------------|--------------------------------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|
|                                                                                          | Company:        | LG                                         |                    |                 |                |                |               |                |               |       |
|                                                                                          | Project #:      | 15I19863                                   |                    |                 |                |                |               |                |               |       |
|                                                                                          | Date:           | 01/27/15                                   |                    |                 |                |                |               |                |               |       |
|                                                                                          | Test Engineer:  | Kiya Kedida                                |                    |                 |                |                |               |                |               |       |
|                                                                                          | Configuration:  | EUT/AC Charger/HS                          |                    |                 |                |                |               |                |               |       |
|                                                                                          | Location:       | Chamber C                                  |                    |                 |                |                |               |                |               |       |
|                                                                                          | Mode:           | LTE_QPSK Band 4 Harmonics, 15MHz Bandwidth |                    |                 |                |                |               |                |               |       |
|                                                                                          | f<br>MHz        | SG reading<br>(dBm)                        | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |
| Band<br>LTE4<br>15MHz                                                                    | Low Ch, 1717.5  |                                            |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3435.00         | -18.2                                      | V                  | 3.0             | 36.1           | 1.0            | -53.3         | -13.0          | -40.3         |       |
|                                                                                          | 5152.50         | -16.8                                      | V                  | 3.0             | 35.4           | 1.0            | -51.3         | -13.0          | -38.3         |       |
|                                                                                          | 6870.00         | -13.1                                      | V                  | 3.0             | 35.7           | 1.0            | -47.7         | -13.0          | -34.7         |       |
|                                                                                          | 3435.00         | -21.0                                      | H                  | 3.0             | 36.1           | 1.0            | -56.1         | -13.0          | -43.1         |       |
|                                                                                          | 5152.50         | -17.5                                      | H                  | 3.0             | 35.4           | 1.0            | -52.0         | -13.0          | -39.0         |       |
| QPSK                                                                                     | 6870.00         | -13.1                                      | H                  | 3.0             | 35.7           | 1.0            | -47.8         | -13.0          | -34.8         |       |
|                                                                                          | Mid Ch, 1732.5  |                                            |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3465.00         | -20.6                                      | V                  | 3.0             | 36.0           | 1.0            | -55.7         | -13.0          | -42.7         |       |
|                                                                                          | 5197.50         | -18.0                                      | V                  | 3.0             | 35.4           | 1.0            | -52.4         | -13.0          | -39.4         |       |
|                                                                                          | 6930.00         | -13.3                                      | V                  | 3.0             | 35.7           | 1.0            | -47.9         | -13.0          | -34.9         |       |
|                                                                                          | 3465.00         | -21.5                                      | H                  | 3.0             | 36.0           | 1.0            | -56.5         | -13.0          | -43.5         |       |
|                                                                                          | 5197.50         | -17.0                                      | H                  | 3.0             | 35.4           | 1.0            | -51.5         | -13.0          | -38.5         |       |
|                                                                                          | 6930.00         | -12.4                                      | H                  | 3.0             | 35.7           | 1.0            | -47.1         | -13.0          | -34.1         |       |
|                                                                                          | High Ch, 1747.5 |                                            |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3495.00         | -21.6                                      | V                  | 3.0             | 36.0           | 1.0            | -56.6         | -13.0          | -43.6         |       |
|                                                                                          | 5242.50         | -18.2                                      | V                  | 3.0             | 35.4           | 1.0            | -52.6         | -13.0          | -39.6         |       |
|                                                                                          | 6990.00         | -12.9                                      | V                  | 3.0             | 35.7           | 1.0            | -47.6         | -13.0          | -34.6         |       |
|                                                                                          | 3495.00         | -19.7                                      | H                  | 3.0             | 36.0           | 1.0            | -54.7         | -13.0          | -41.7         |       |
|                                                                                          | 5242.50         | -16.9                                      | H                  | 3.0             | 35.4           | 1.0            | -51.3         | -13.0          | -38.3         |       |
|                                                                                          | 6990.00         | -12.2                                      | H                  | 3.0             | 35.7           | 1.0            | -46.9         | -13.0          | -33.9         |       |
|                                                                                          |                 |                                            |                    |                 |                |                |               |                |               |       |
|                                                                                          |                 |                                            |                    |                 |                |                |               |                |               |       |
|                                                                                          |                 |                                            |                    |                 |                |                |               |                |               |       |

**LTE Band 2**

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |                      |                                             |                 |              |             |             |            |             |            |       |
|------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|-----------------|--------------|-------------|-------------|------------|-------------|------------|-------|
|                                                                                          | Company:             | LG                                          |                 |              |             |             |            |             |            |       |
|                                                                                          | Project #:           | 15I19863                                    |                 |              |             |             |            |             |            |       |
|                                                                                          | Date:                | 1/27/2015                                   |                 |              |             |             |            |             |            |       |
|                                                                                          | Test Engineer:       | Kiya Kedida                                 |                 |              |             |             |            |             |            |       |
|                                                                                          | Configuration:       | EUT/AC Charger/HS                           |                 |              |             |             |            |             |            |       |
|                                                                                          | Location:            | Chamber C                                   |                 |              |             |             |            |             |            |       |
|                                                                                          | Mode:                | LTE_16QAM Band 2 Harmonics, 20MHz Bandwidth |                 |              |             |             |            |             |            |       |
| Band                                                                                     | f MHz                | SG reading (dBm)                            | Ant. Pol. (H/V) | Distance (m) | Preamp (dB) | Filter (dB) | EIRP (dBm) | Limit (dBm) | Delta (dB) | Notes |
| <b>Low Ch, 1860</b>                                                                      |                      |                                             |                 |              |             |             |            |             |            |       |
| LTE2                                                                                     | 3720.00              | -18.5                                       | V               | 3.0          | 35.8        | 1.0         | -53.3      | -13.0       | -40.3      |       |
|                                                                                          | 5580.00              | -16.2                                       | V               | 3.0          | 35.5        | 1.0         | -50.7      | -13.0       | -37.7      |       |
|                                                                                          | 7440.00              | -14.1                                       | V               | 3.0          | 35.7        | 1.0         | -48.9      | -13.0       | -35.9      |       |
|                                                                                          | 3720.00              | -19.4                                       | H               | 3.0          | 35.8        | 1.0         | -54.2      | -13.0       | -41.2      |       |
| 20MHz                                                                                    | 5580.00              | -16.5                                       | H               | 3.0          | 35.5        | 1.0         | -50.9      | -13.0       | -37.9      |       |
|                                                                                          | 7440.00              | -13.6                                       | H               | 3.0          | 35.7        | 1.0         | -48.4      | -13.0       | -35.4      |       |
|                                                                                          | <b>Mid Ch, 1880</b>  |                                             |                 |              |             |             |            |             |            |       |
|                                                                                          | 3760.00              | -18.8                                       | V               | 3.0          | 35.8        | 1.0         | -53.6      | -13.0       | -40.6      |       |
| 16QAM                                                                                    | 5640.00              | -15.9                                       | V               | 3.0          | 35.5        | 1.0         | -50.4      | -13.0       | -37.4      |       |
|                                                                                          | 7520.00              | -13.9                                       | V               | 3.0          | 35.7        | 1.0         | -48.7      | -13.0       | -35.7      |       |
|                                                                                          | 3760.00              | -18.4                                       | H               | 3.0          | 35.8        | 1.0         | -53.2      | -13.0       | -40.2      |       |
|                                                                                          | 5640.00              | -16.2                                       | H               | 3.0          | 35.5        | 1.0         | -50.7      | -13.0       | -37.7      |       |
|                                                                                          | 7520.00              | -12.6                                       | H               | 3.0          | 35.7        | 1.0         | -47.4      | -13.0       | -34.4      |       |
|                                                                                          | <b>High Ch, 1900</b> |                                             |                 |              |             |             |            |             |            |       |
|                                                                                          | 3800.00              | -17.9                                       | V               | 3.0          | 35.8        | 1.0         | -52.7      | -13.0       | -39.7      |       |
|                                                                                          | 5700.00              | -15.9                                       | V               | 3.0          | 35.5        | 1.0         | -50.4      | -13.0       | -37.4      |       |
|                                                                                          | 7600.00              | -14.0                                       | V               | 3.0          | 35.8        | 1.0         | -48.7      | -13.0       | -35.7      |       |
|                                                                                          | 3800.00              | -20.3                                       | H               | 3.0          | 35.8        | 1.0         | -55.1      | -13.0       | -42.1      |       |
|                                                                                          | 5700.00              | -15.9                                       | H               | 3.0          | 35.5        | 1.0         | -50.4      | -13.0       | -37.4      |       |
|                                                                                          | 7600.00              | -12.1                                       | H               | 3.0          | 35.8        | 1.0         | -46.9      | -13.0       | -33.9      |       |

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |                     |                    |                 |                |                |               |                |               |       |
|------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|
|                                                                                          |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |                     |                    |                 |                |                |               |                |               |       |
| f<br>MHz                                                                                 | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |
| <b>Low Ch, 1860</b>                                                                      |                     |                    |                 |                |                |               |                |               |       |
| 3720.00                                                                                  | -18.1               | V                  | 3.0             | 35.8           | 1.0            | -53.0         | -13.0          | -40.0         |       |
| 5580.00                                                                                  | -16.4               | V                  | 3.0             | 35.5           | 1.0            | -50.9         | -13.0          | -37.9         |       |
| 7440.00                                                                                  | -13.7               | V                  | 3.0             | 35.7           | 1.0            | -48.4         | -13.0          | -35.4         |       |
| 3720.00                                                                                  | -18.8               | H                  | 3.0             | 35.8           | 1.0            | -53.6         | -13.0          | -40.6         |       |
| 5580.00                                                                                  | -16.1               | H                  | 3.0             | 35.5           | 1.0            | -50.6         | -13.0          | -37.6         |       |
| 7440.00                                                                                  | -12.3               | H                  | 3.0             | 35.7           | 1.0            | -47.0         | -13.0          | -34.0         |       |
| <b>Mid Ch, 1880</b>                                                                      |                     |                    |                 |                |                |               |                |               |       |
| 3760.00                                                                                  | -18.5               | V                  | 3.0             | 35.8           | 1.0            | -53.3         | -13.0          | -40.3         |       |
| 5640.00                                                                                  | -16.1               | V                  | 3.0             | 35.5           | 1.0            | -50.6         | -13.0          | -37.6         |       |
| 7520.00                                                                                  | -13.3               | V                  | 3.0             | 35.7           | 1.0            | -48.1         | -13.0          | -35.1         |       |
| 3760.00                                                                                  | -18.3               | H                  | 3.0             | 35.8           | 1.0            | -53.1         | -13.0          | -40.1         |       |
| 5640.00                                                                                  | -15.3               | H                  | 3.0             | 35.5           | 1.0            | -49.8         | -13.0          | -36.8         |       |
| 7520.00                                                                                  | -12.6               | H                  | 3.0             | 35.7           | 1.0            | -47.4         | -13.0          | -34.4         |       |
| <b>High Ch, 1900</b>                                                                     |                     |                    |                 |                |                |               |                |               |       |
| 3800.00                                                                                  | -18.0               | V                  | 3.0             | 35.8           | 1.0            | -52.8         | -13.0          | -39.8         |       |
| 5700.00                                                                                  | -15.8               | V                  | 3.0             | 35.5           | 1.0            | -50.3         | -13.0          | -37.3         |       |
| 7600.00                                                                                  | -13.8               | V                  | 3.0             | 35.8           | 1.0            | -48.5         | -13.0          | -35.5         |       |
| 3800.00                                                                                  | -19.3               | H                  | 3.0             | 35.8           | 1.0            | -54.1         | -13.0          | -41.1         |       |
| 5700.00                                                                                  | -15.3               | H                  | 3.0             | 35.5           | 1.0            | -49.8         | -13.0          | -36.8         |       |
| 7600.00                                                                                  | -12.4               | H                  | 3.0             | 35.8           | 1.0            | -47.1         | -13.0          | -34.1         |       |

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |                                             |                     |                    |                 |                |                |               |                |               |       |
|------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|
| Company:                                                                                 | LG                                          |                     |                    |                 |                |                |               |                |               |       |
| Project #:                                                                               | 15I19863                                    |                     |                    |                 |                |                |               |                |               |       |
| Date:                                                                                    | 1/27/2015                                   |                     |                    |                 |                |                |               |                |               |       |
| Test Engineer:                                                                           | Kiya Kedida                                 |                     |                    |                 |                |                |               |                |               |       |
| Configuration:                                                                           | EUT/AC Charger/HS                           |                     |                    |                 |                |                |               |                |               |       |
| Location:                                                                                | Chamber C                                   |                     |                    |                 |                |                |               |                |               |       |
| Mode:                                                                                    | LTE_16QAM Band 2 Harmonics, 15MHz Bandwidth |                     |                    |                 |                |                |               |                |               |       |
| Band                                                                                     | f<br>MHz                                    | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |
| LTE2<br>15MHz                                                                            | Low Ch, 1857.5                              |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3715.00                                     | -19.1               | V                  | 3.0             | 35.8           | 1.0            | -54.0         | -13.0          | -41.0         |       |
|                                                                                          | 5572.50                                     | -15.6               | V                  | 3.0             | 35.5           | 1.0            | -50.1         | -13.0          | -37.1         |       |
|                                                                                          | 7430.00                                     | -14.2               | V                  | 3.0             | 35.7           | 1.0            | -48.9         | -13.0          | -35.9         |       |
|                                                                                          | 3715.00                                     | -19.4               | H                  | 3.0             | 35.8           | 1.0            | -54.3         | -13.0          | -41.3         |       |
|                                                                                          | 5572.50                                     | -16.5               | H                  | 3.0             | 35.5           | 1.0            | -50.9         | -13.0          | -37.9         |       |
| 16QAM                                                                                    | 7430.00                                     | -12.7               | H                  | 3.0             | 35.7           | 1.0            | -47.5         | -13.0          | -34.5         |       |
|                                                                                          | Mid Ch, 1880                                |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3760.00                                     | -19.1               | V                  | 3.0             | 35.8           | 1.0            | -53.9         | -13.0          | -40.9         |       |
|                                                                                          | 5640.00                                     | -14.6               | V                  | 3.0             | 35.5           | 1.0            | -49.1         | -13.0          | -36.1         |       |
|                                                                                          | 7520.00                                     | -14.0               | V                  | 3.0             | 35.7           | 1.0            | -48.8         | -13.0          | -35.8         |       |
|                                                                                          | 3760.00                                     | -19.2               | H                  | 3.0             | 35.8           | 1.0            | -54.1         | -13.0          | -41.1         |       |
|                                                                                          | 5640.00                                     | -15.1               | H                  | 3.0             | 35.5           | 1.0            | -49.6         | -13.0          | -36.6         |       |
|                                                                                          | 7520.00                                     | -13.1               | H                  | 3.0             | 35.7           | 1.0            | -47.9         | -13.0          | -34.9         |       |
|                                                                                          | High Ch, 1902.5                             |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          | 3805.00                                     | -19.0               | V                  | 3.0             | 35.8           | 1.0            | -53.8         | -13.0          | -40.8         |       |
|                                                                                          | 5707.50                                     | -16.7               | V                  | 3.0             | 35.5           | 1.0            | -51.1         | -13.0          | -38.1         |       |
|                                                                                          | 7610.00                                     | -13.5               | V                  | 3.0             | 35.8           | 1.0            | -48.2         | -13.0          | -35.2         |       |
|                                                                                          | 3805.00                                     | -18.0               | H                  | 3.0             | 35.8           | 1.0            | -52.8         | -13.0          | -39.8         |       |
|                                                                                          | 5707.50                                     | -14.2               | H                  | 3.0             | 35.5           | 1.0            | -48.7         | -13.0          | -35.7         |       |
|                                                                                          | 7610.00                                     | -13.5               | H                  | 3.0             | 35.8           | 1.0            | -48.3         | -13.0          | -35.3         |       |

| UL Verification Services Chamber C<br>Above 1GHz High Frequency Substitution Measurement |      |                 |                                            |                     |                    |                 |                |                |               |                |               |       |
|------------------------------------------------------------------------------------------|------|-----------------|--------------------------------------------|---------------------|--------------------|-----------------|----------------|----------------|---------------|----------------|---------------|-------|
|                                                                                          |      | Company:        | LG                                         |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | Project #:      | 15I19863                                   |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | Date:           | 1/27/2015                                  |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | Test Engineer:  | Kiya Kedida                                |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | Configuration:  | EUT/AC Charger/HS                          |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | Location:       | Chamber C                                  |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | Mode:           | LTE_QPSK Band 4 Harmonics, 15MHz Bandwidth |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      |                 | f<br>MHz                                   | SG reading<br>(dBm) | Ant. Pol.<br>(H/V) | Distance<br>(m) | Preamp<br>(dB) | Filter<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Delta<br>(dB) | Notes |
| Band<br>LTE2<br>15MHz                                                                    | QPSK | Low Ch, 1717.5  |                                            |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | 3435.00         | -19.2                                      |                     | V                  | 3.0             | 36.1           | 1.0            | -54.2         | -13.0          | -41.2         |       |
|                                                                                          |      | 5152.50         | -16.0                                      |                     | V                  | 3.0             | 35.4           | 1.0            | -50.4         | -13.0          | -37.4         |       |
|                                                                                          |      | 6870.00         | -13.9                                      |                     | V                  | 3.0             | 35.7           | 1.0            | -48.5         | -13.0          | -35.5         |       |
|                                                                                          |      | 3435.00         | -20.7                                      |                     | H                  | 3.0             | 36.1           | 1.0            | -55.8         | -13.0          | -42.8         |       |
|                                                                                          |      | 5152.50         | -17.0                                      |                     | H                  | 3.0             | 35.4           | 1.0            | -51.4         | -13.0          | -38.4         |       |
|                                                                                          |      | 6870.00         | -14.0                                      |                     | H                  | 3.0             | 35.7           | 1.0            | -48.7         | -13.0          | -35.7         |       |
|                                                                                          |      | Mid Ch, 1732.5  |                                            |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | 3465.00         | -19.0                                      |                     | V                  | 3.0             | 36.0           | 1.0            | -54.1         | -13.0          | -41.1         |       |
|                                                                                          |      | 5197.50         | -15.7                                      |                     | V                  | 3.0             | 35.4           | 1.0            | -50.1         | -13.0          | -37.1         |       |
|                                                                                          |      | 6930.00         | -14.4                                      |                     | V                  | 3.0             | 35.7           | 1.0            | -49.1         | -13.0          | -36.1         |       |
|                                                                                          |      | 3465.00         | -20.6                                      |                     | H                  | 3.0             | 36.0           | 1.0            | -55.6         | -13.0          | -42.6         |       |
|                                                                                          |      | 5197.50         | -16.4                                      |                     | H                  | 3.0             | 35.4           | 1.0            | -50.8         | -13.0          | -37.8         |       |
|                                                                                          |      | 6930.00         | -13.8                                      |                     | H                  | 3.0             | 35.7           | 1.0            | -48.5         | -13.0          | -35.5         |       |
|                                                                                          |      | High Ch, 1747.5 |                                            |                     |                    |                 |                |                |               |                |               |       |
|                                                                                          |      | 3495.00         | -19.9                                      |                     | V                  | 3.0             | 36.0           | 1.0            | -54.9         | -13.0          | -41.9         |       |
|                                                                                          |      | 5242.50         | -16.6                                      |                     | V                  | 3.0             | 35.4           | 1.0            | -51.0         | -13.0          | -38.0         |       |
|                                                                                          |      | 6990.00         | -14.8                                      |                     | V                  | 3.0             | 35.7           | 1.0            | -49.5         | -13.0          | -36.5         |       |
|                                                                                          |      | 3495.00         | -18.8                                      |                     | H                  | 3.0             | 36.0           | 1.0            | -53.8         | -13.0          | -40.8         |       |
|                                                                                          |      | 5242.50         | -14.5                                      |                     | H                  | 3.0             | 35.4           | 1.0            | -48.9         | -13.0          | -35.9         |       |
|                                                                                          |      | 6990.00         | -11.7                                      |                     | H                  | 3.0             | 35.7           | 1.0            | -46.4         | -13.0          | -33.4         |       |