

RF TEST REPORT

Test item	:	Cellular/PCS GSM/GPRS/EDGE, Cellular WCDMA/HSDPA/HSUPA with Bluetooth, WLAN, NFC
Model No.	:	LG-D722J, D722J, LGD722J
Order No.	:	DTNC1408-03706
Date of receipt	:	2014-08-25
Test duration	:	2014-08-26 ~ 2014-10-06
Date of issue	:	2014-10-08
Use of report	:	FCC Original Grant
Applicant : LG Electronics Mobil 1000 Sylvan Avenue		omm U.S.A., Inc. nglewood Cliffs NJ 07632
Test laboratory : DT&C Co., Ltd. 42, Yurim-ro, 154bec	on-g	jil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935
Test specification : F		Part 15.407 Subpart E -210 Issue 8: 2010
Test environment : S	eea	appended test report

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

: 🛛 Pass

Fail

Tested by:

Reviewed by:

Technical Manager Geunki Son

The

Test result

Engineer HoonPyo Lee

TRF-RF-227(00)140916

DT&C Co., Ltd.

Test Report Version

Test Report No.	Date	Description
DRTFCC1410-1279	Oct. 08, 2014	Initial issue

CONTENTS

1. EUT DESCRIPTION4
2. Information about test items5
2.1 Test mode / Channel Information5
2.2 Tested Channel Information5
2.3 Auxiliary equipment6
2.4 Tested environment6
2.5 EMI Suppression Device(s)/Modifications6
3. SUMMARY OF TESTS7
4. TEST METHODOLOGY8
4.1 EUT configuration8
4.2 EUT exercise
4.3 General test procedures8
4.4 Description of test modes8
5. INSTRUMENT CALIBRATION9
6. FACILITIES AND ACCREDITATIONS9
6.1 Facilities9
6.1 Facilities
6.2 Equipment9
6.2 Equipment
6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10
6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 Emission Bandwidth(26 dB Bandwidth) 10
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)27
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)278.3 Maximum Conducted Output Power33
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)278.3 Maximum Conducted Output Power338.4 Maximum Power Spectral Density37
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)278.3 Maximum Conducted Output Power338.4 Maximum Power Spectral Density378.5 Frequency Stability61
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)278.3 Maximum Conducted Output Power338.4 Maximum Power Spectral Density378.5 Frequency Stability618.6 Radiated Spurious Emission Measurements62
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)278.3 Maximum Conducted Output Power338.4 Maximum Power Spectral Density378.5 Frequency Stability618.6 Radiated Spurious Emission Measurements628.7 AC Conducted Emissions71
6.2 Equipment97. ANTENNA REQUIREMENTS98. TEST RESULT108.1 Emission Bandwidth(26 dB Bandwidth)108.2 Minimum Emission Bandwidth(6 dB Bandwidth)278.3 Maximum Conducted Output Power338.4 Maximum Power Spectral Density378.5 Frequency Stability618.6 Radiated Spurious Emission Measurements628.7 AC Conducted Emissions718.8 Occupied Bandwidth80

1. EUT DESCRIPTION

FCC Equipment Class	Unlicensed National Information Infrastructure (UNII)	
Product	Cellular/PCS GSM/GPRS/EDGE, Cellular WCDMA/HSDPA/HSUPA with Bluetooth, WLAN, NFC	
Model Name	LG-D722J	
Add Model Name	 D722J, LGD722J 3 models are same mechanical, electrical and functional. The only difference is the model name, which are changed for marketing purpose. 	
Power Supply	DC 3.8 V	
Frequency Range	Band I(5150 ~ 5250MHz) • 802.11a/n(HT20): 5180 ~ 5240 MHz • 802.11n(HT40): 5190 ~ 5230 MHz Band II(5250 ~ 5350MHz) • 802.11a/n(HT20): 5260 ~ 5320 MHz • 802.11n(HT40): 5270 ~ 5310 MHz Band III(5470 ~ 5725MHz) • 802.11a/n(HT20): 5500 ~ 5700 MHz • 802.11n(HT40): 5510 ~ 5670 MHz Band IV(5425 ~ 5850MHz) • 802.11a/n(HT20): 5745 ~ 5825 MHz • 802.11n(HT40): 5755 ~ 5795 MHz	
Modulation type	64QAM, 16QAM, QPSK BPSK for OFDM	
Antenna Specification	Antenna type: Internal Antenna Antenna gain • Band I: -5.640 dBi • Band II: -5.640 dBi • Band III: -1.950 dBi • Band IV: -1.950 dBi	

2. Information about test items

2.1 Test mode	Channel	Information
---------------	---------	-------------

5GHz Band	Mode	Data Rate
	802.11a	6Mbps
Band I	802.11n(HT20)	MCS 0
	802.11n(HT40)	MCS 0
	802.11a	6Mbps
Band II	802.11n(HT20)	MCS 0
	802.11n(HT40)	MCS 0
	802.11a	6Mbps
Band III	802.11n(HT20)	MCS 0
	802.11n(HT40)	MCS 0
	802.11a	6Mbps
Band IV	802.11n(HT20)	MCS 0
	802.11n(HT40)	MCS 0

The worst case data rate for each modulation is determined as above table. And all tests conducted in this report were made at the worst case data rate of each modulation.

2.2 Tested Channel Information

5GHz Band	802.11a/	/n(HT20)	802.11n(HT40)		
JOILZ Balld	Channel	Frequency [MHz]	Channel	Frequency [MHz]	
	36	5180	38	5190	
Band I	40	5200	-	-	
	48	5240	46	5230	
	52	5260	54	5270	
Band II	60	5300	-	-	
	64	5320	62	5310	
	100	5500	102	5510	
Band III	116	5580	110	5550	
	140	5700	134	5670	
	149	5745	151	5755	
Band IV	157	5785	-	-	
	165	5825	159	5795	

2.3 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2.4 Tested environment

Temperature: 21 °C ~ 24 °C	
Relative humidity content	: 38 % ~ 52 % R.H.
Details of power supply	: DC 3.8 V

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1		
I. Transmit	. Transmitter Mode (TX)						
15.407(a)	N/A	Emission Bandwidth (26 dB Bandwidth)	N/A		С		
15.407(e)	RSS-210 [A8.2]	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz (5725-5850)		С		
15.407(a)	RSS-210 [A9.2]	Maximum Conducted Output Power	 5150 ~ 5250MHz For FCC: < 30 dBm or < 23.97 dBm 5150 ~ 5250MHz For IC: 200mW or <10 + 10log₁₀(B) dBm, whichever power is less. 5250 ~ 5350MHz & 5470 ~ 5725MHz For FCC & IC 250mW or <11 + 10log₁₀(B) dBm, whichever power is less. 5725 ~ 5850MHz For FCC: < 30 dBm 	Conducted	C Note 3		
15.407(a) RSS-210 Peak Power [A9.2] Spectral Density			5150 ~ 5250MHz For FCC: 11dBm/MHz or 17dBm/MHz 5150 ~ 5250MHz For IC: 10dBm/MHz 5250 ~ 5350MHz & 5470 ~ 5725MHz For FCC & IC: 11dBm/MHz 5725 ~ 5850MHz For FCC: 30dBm/500kHz		C Note 4		
15.407(g)	N/A	Frequency Stability			С		
-	RSS Gen [4.6.1]	Occupied Bandwidth (99%)			NA		
15.407(b)	RSS-210 [A9.2]	Undesirable Emissions	5150 ~ 5725MHz: < -27 dBm/MHz EIRP 5725 ~ 5850MHz: < -17 dBm/MHz EIRP or< -27 dBm/MHz EIRP		C Note 5		
15.205 15.209 15.407(b)	RSS-Gen [7.2.5]	General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	C Note 6		
15.407(h)	RSS-210 [A9.3]	Dynamic Frequency Selection	See DFS test report	-	C Note 7		
15.207	RSS-Gen [7.2.4]	AC Conducted Emissions	FCC 15.207	AC Line Conducted	С		
15.203	RSS-Gen [7.1.2]	Antenna Requirements	FCC 15.203	-	С		

Note 2: The test items were performed according to the KDB789033 D02 V01 and ANSI C63.10-2009.

Note 3: (i) For access point operating in the band 5.15-5.25 GHz: < 30 dBm

(ii) For mobile and portable client devices in the 5.15-5.25 GHz band: < 23.97 dBm

Note 4: (i) For access point operating in the band 5.15-5.25 GHz: < 17 dBm/MHz

(ii) For mobile and portable client devices in the 5.15-5.25 GHz band: < 11 dBm/MHz

Note 5: For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz

Note 6: These test items were performed in each axis and the worst case data was reported.

Note 7: For DFS testing, please refer to DFS test report.

4. TEST METHODOLOGY

Generally the tests were performed according to the KDB789033 D02 v01. And ANSI C63.10-2009 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart C.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02 v01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2009.

The EUT is placed on the table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15MHz and 30MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02 v01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2009 as stated on KDB789033 D02 v01.

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis.

4.4 Description of test modes

A test program is used to control the EUT for staying in continuous transmitting mode with maximum fixed duty cycle.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number : 678747

6.2 Equipment

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

7.1 According to FCC 47 CFR §15.203& RSS-Gen [7.1.2]:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antenna is attached on the main PCB using the special spring tension. (Please refer to the internal photo.)

Therefore this E.U.T Complies with the requirement of §15.203

8.1 Emission Bandwidth (26 dB Bandwidth)

Test Requirements

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26dB bandwidth is used to determine the conducted output power limit.

TEST CONFIGURATION

Refer to the APPENDIX I.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02 V01.

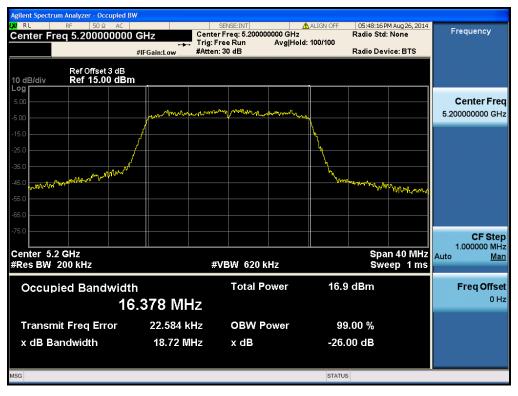
1. Set resolution bandwidth (RBW) = approximately **1** % of the EBW.

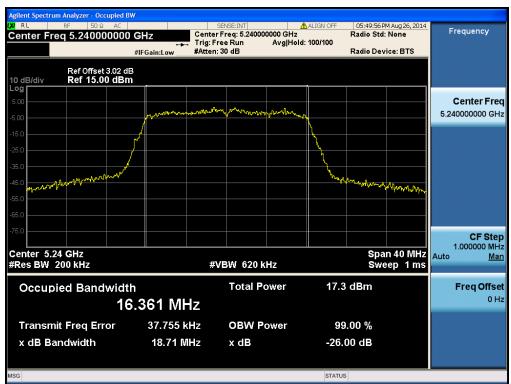
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

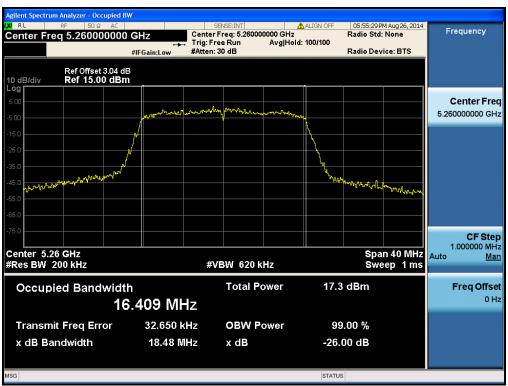
TEST RESULTS: Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
		36	5180	18.54
	Band I	40	5200	18.72
		48	5240	18.71
		52	5260	18.48
802.11a	Band II	60	5300	18.56
		64	5320	18.52
		100	5500	18.50
	Band III	116	5580	18.69
		140	5700	18.73
	Band I	36	5180	19.08
		40	5200	18.97
		48	5240	18.98
802.11n		52	5260	19.00
802.11h (HT20)	Band II Band III	60	5300	19.01
(11120)		64	5320	18.96
		100	5500	19.04
		116	5580	18.90
		140	5700	18.98
	Dend	38	5190	42.75
	Band I	46	5230	43.56
000.44	Dond II	54	5270	42.40
802.11n (HT40)	Band II	62	5310	42.77
(11140)		102	5510	43.11
	Band III	110	5550	43.08
		134	5670	42.24

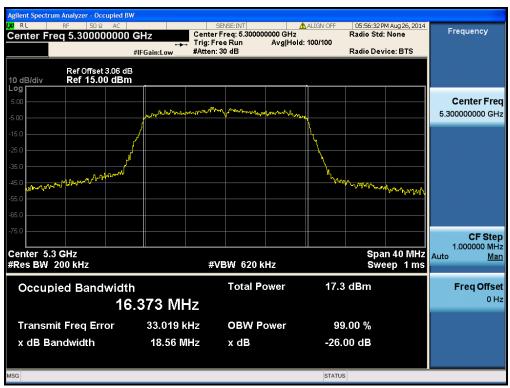

Result Plots

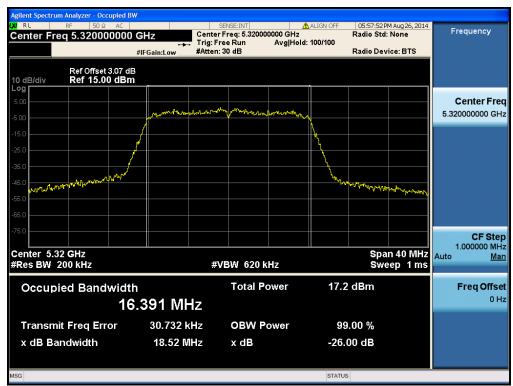

26 dB Bandwidth

Test Mode: 802.11a & Ch.36

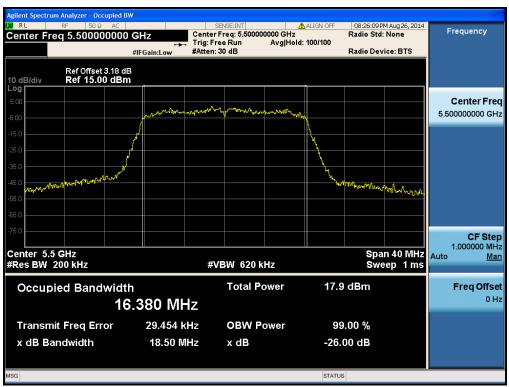


26 dB Bandwidth

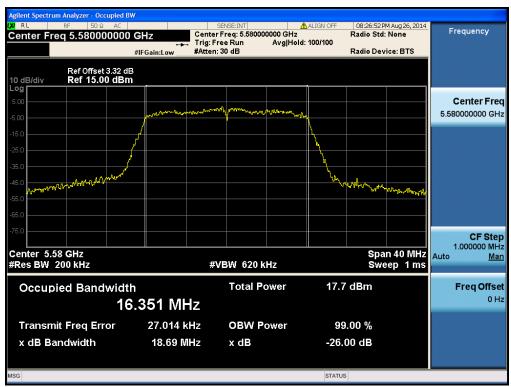


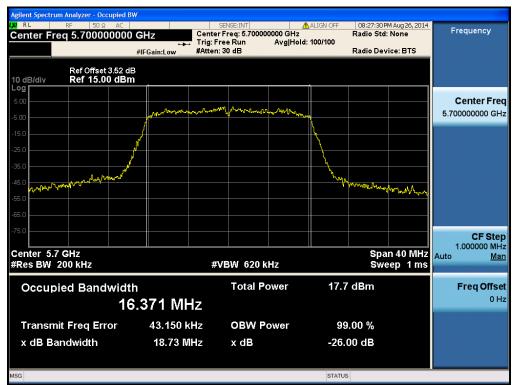


Test Mode: 802.11a & Ch.52

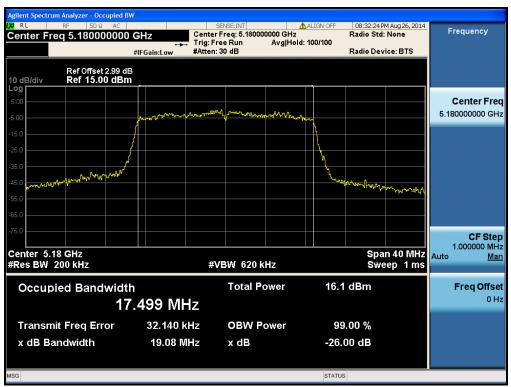


26 dB Bandwidth

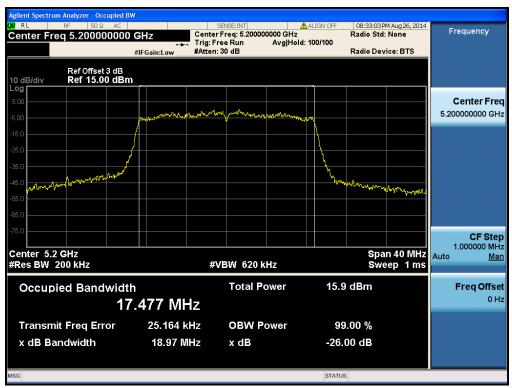


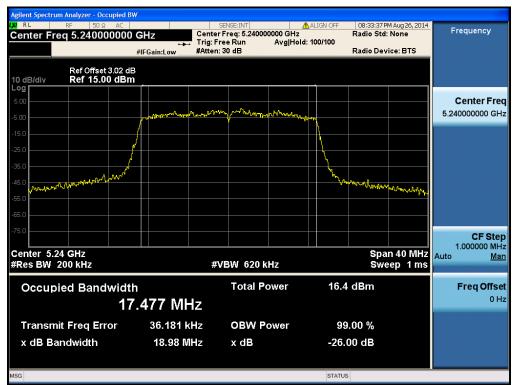


Test Mode: 802.11a & Ch.100

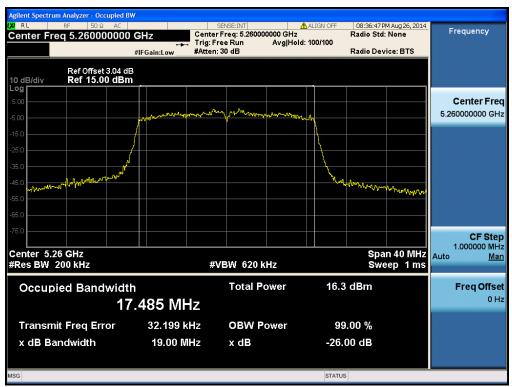


26 dB Bandwidth

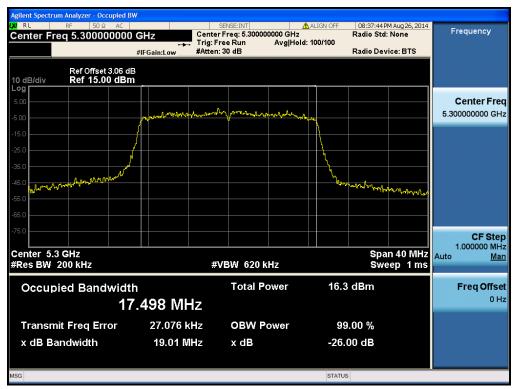


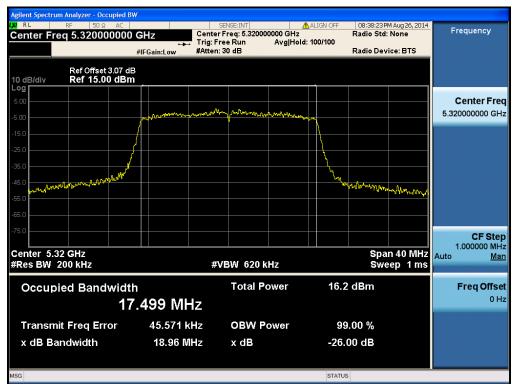


Test Mode: 802.11n HT20 & Ch.36

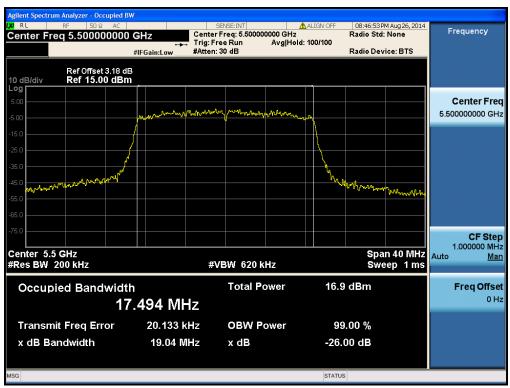


26 dB Bandwidth

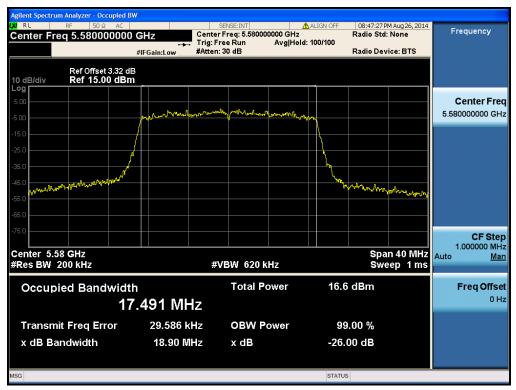


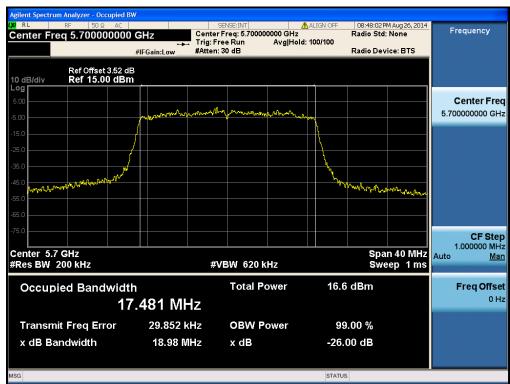


Test Mode: 802.11n HT20 & Ch.52

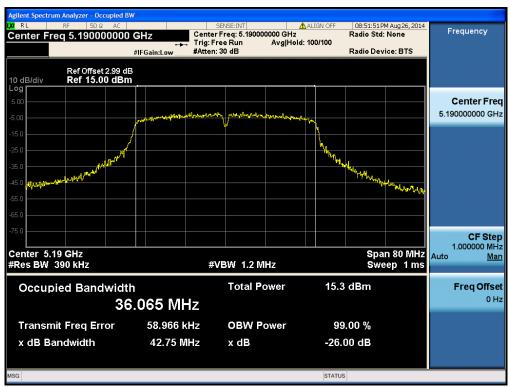


26 dB Bandwidth

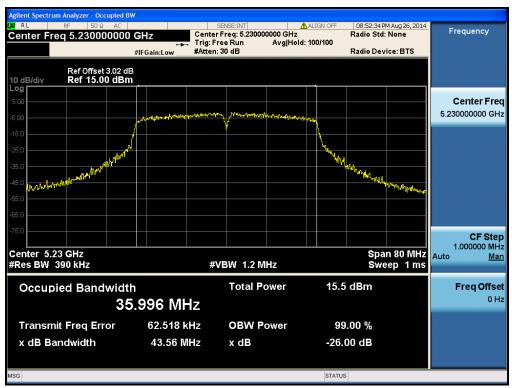


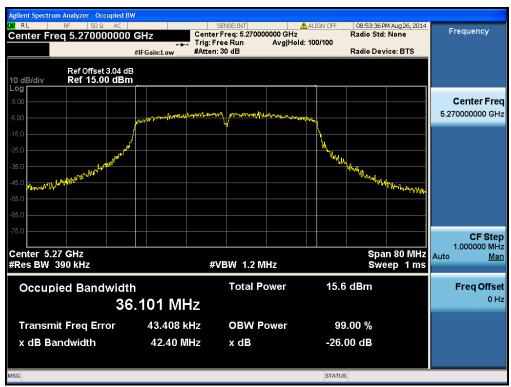


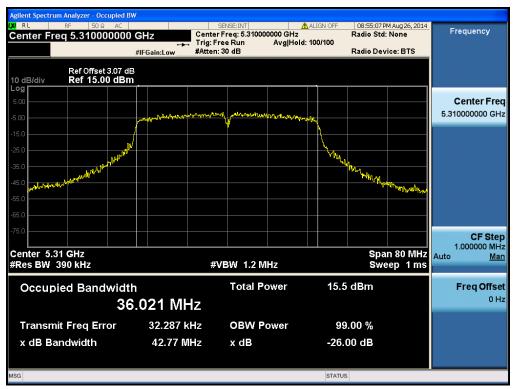
Test Mode: 802.11n HT20 & Ch.100

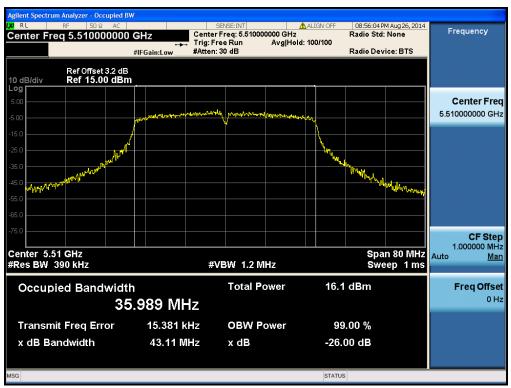


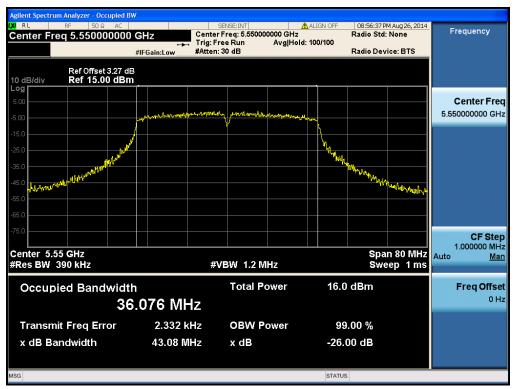
26 dB Bandwidth

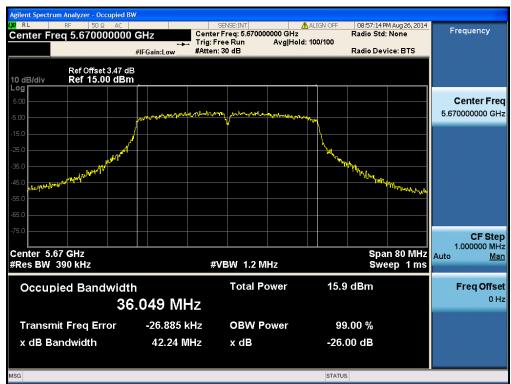



Test Mode: 802.11n HT40 & Ch.38


26 dB Bandwidth


Test Mode: 802.11n HT40 & Ch.54


26 dB Bandwidth



Test Mode: 802.11n HT40 & Ch.102

26 dB Bandwidth

8.2 Minimum Emission Bandwidth (6 dB Bandwidth)

Test Requirements

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

TEST CONFIGURATION

Refer to the APPENDIX I.

TEST PROCEDURE

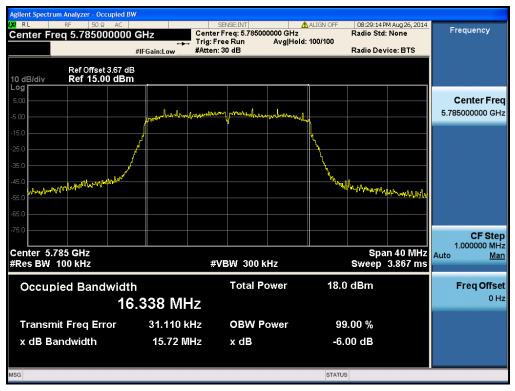
The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02 V01.

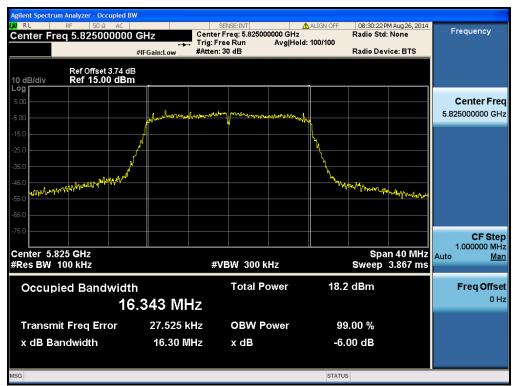
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth \geq 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

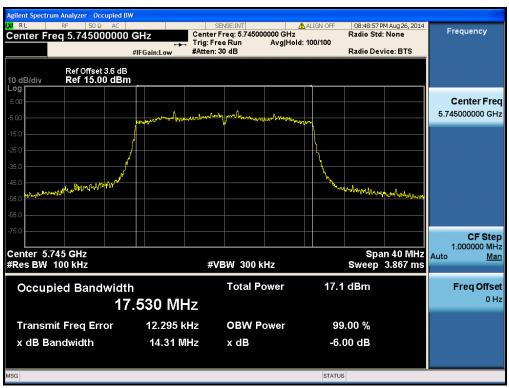
TEST RESULTS: Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
		149	5745	15.37
802.11a	Band IV	157	5785	15.72
		165	5825	16.30
	Band IV	149	5745	14.31
802.11n (HT20)		157	5785	14.14
		165	5825	15.16
802.11n (HT40)	Band IV	151	5755	33.89
		159	5795	33.80

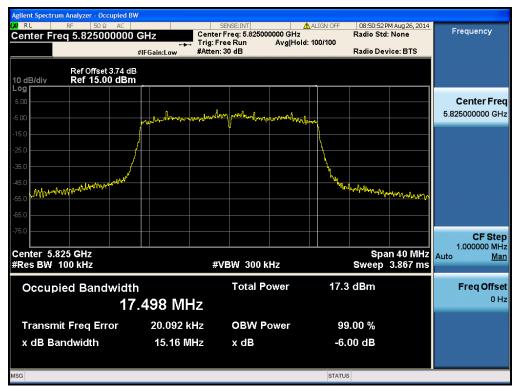

RESULT PLOTS


ent Spectrum Analyzer - Occupied BW Center Freq: 5.745000000 GHz Trig: Free Run Avg|Hold #Atten: 30 dB \rm ALIGN Aug 26, 2014 Radio Std: None Frequency Center Freq 5.745000000 GHz Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 3.6 dB Ref 15.00 dBm 10 dB/div og **Center Freq** h. al 5 745000000 GHz mul CF Step 1.000000 MHz Center 5.745 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.867 ms Auto Man #VBW 300 kHz Occupied Bandwidth **Total Power** 18.2 dBm **Freq Offset** 0 Hz 16.353 MHz 28.702 kHz **OBW Power** 99.00 % Transmit Freg Error x dB Bandwidth 15.37 MHz -6.00 dB x dB STATUS

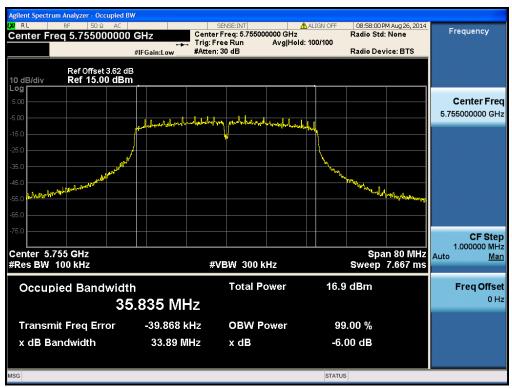
6 dB Bandwidth


Test Mode: 802.11a & Ch.149

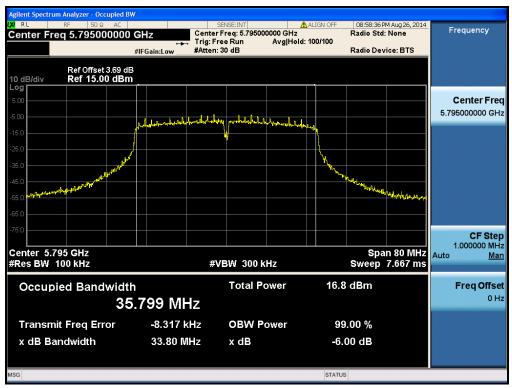
6 dB Bandwidth



Test Mode: 802.11n HT20 & Ch.149



6 dB Bandwidth



Test Mode: 802.11n HT40 & Ch.151

6 dB Bandwidth

8.3 Maximum Conducted Output Power

Test Requirements

(1) For the band 5.15-5.25 GHz.

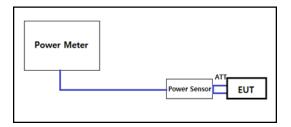
(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.


- Output power Limit Calculation

Bands	Mode	Power Limit [mW]	Calculated Limit [dBm]	ANT Gain	Determined Limit [dBm]
Band I	802.11a	250	23.97		23.97
	802.11n HT20	250	23.97	-5.640	23.97
	802.11n HT40	250	23.97		23.97

Bands	Mode	Power Limit [mW] Least 26dBC BW [MHz]	Calculation Limit [dBm]	ANT Gain	Determined Limit [dBm]
	802.11a	250	23.97	-5.640	23.66
		18.477	23.66		
Band II	802.11n HT20	250	23.97		23.77
Band II		18.963	23.77		
	802.11n HT40	250	23.97		23.97
		42.398	27.27		
Band III	802.11a	250	23.97		23.67
	002.11a	18.496	23.67		
	802.11n HT20	250	23.97	-1.950	23.76
		18.895	23.76		23.70
	802.11n HT40	250	23.97	23.97	22.07
		42.236	27.25		23.31

Bands	Mode	Power Limit [mW]	Calculated Limit [dBm]	ANT Gain	Determined Limit [dBm]
Band IV	802.11a	1000	30.00		30.00
	802.11n HT20	1000	30.00	-1.950	30.00
	802.11n HT40	1000	30.00		30.00

Test Configuration

Test Procedure

Maximum Conducted Output Power is measured using Measurement Procedure Method PM-G of KDB789033 D02 V01

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Test Results : Comply

Mode	Channel	Frequency [MHz]	Test Result [dBm]
	36	5180	11.340
	40	5200	11.330
	48	5240	11.320
	52	5260	11.340
	60	5300	11.270
802.11a	64	5320	11.260
002.11d	100	5500	11.660
	116	5580	11.770
	140	5700	11.390
	149	5745	11.650
	157	5785	11.540
	165	5825	11.430

Mode	Channel	Frequency [MHz]	Test Result [dBm]
	36	5180	10.230
	40	5200	10.230
	48	5240	10.210
	52	5260	10.210
	60	5300	10.210
802.11n HT20	64	5320	10.110
002.1111 1120	100	5500	10.540
	116	5580	10.470
	140	5700	10.210
	149	5745	10.530
	157	5785	10.470
	165	5825	10.350

Mode	Channel	Frequency [MHz]	Test Result [dBm]
	38	5190	9.350
	46	5230	9.300
	54	5270	9.290
	62	5310	9.290
802.11n HT40	102	5510	9.710
	110	5550	9.680
	134	5670	9.430
	151	5755	9.670
	159	5795	9.520

Test requirements

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1MHz band.^{note1}

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1MHz band.^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1MHz band. ^{note1}

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band.^{note1}
- (3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band.^{note1,note2}
- **Note1**: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- **Note2**: fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Band	Limit [dBm]	ANT Gain [dBi]	Determined Limit [dBm]
Band I	4	-5.640	4
Band II	11	-5.640	11
Band III	11	-1.950	11
Band IV	30	-1.950	30

- Peak Power Spectral Density Limit Calculation

Test configuration

Refer to the APPENDIX I.

Test procedure

Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02 V01

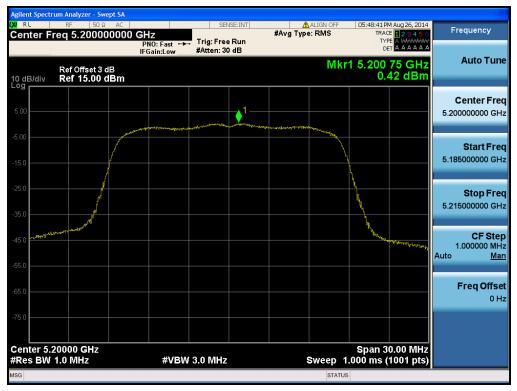
- Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3) Make the following adjustments to the peak value of the spectrum, if applicable:
- a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
- b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
 4) The result is the Maximum PSD over 1 MHz reference bandwidth.
- 5) For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
 - a) Set RBW \geq 1/T, where T is defined in section II.B.1.a). (Refer to Appendix II)
 - b) Set VBW \geq 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.
- Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW=100 kHZ is available on nearly all spectrum analyzers.

Test result : Comply

Mode	Channel	Frequency [MHz]	Reading [dBm]	DCF [dB] Note 1	Test Result [dBm]
	36	5180	0.569		0.799
	40	5200	0.418		0.648
	48	5240	1.186		1.416
	52	5260	1.101		1.331
	60	5300	1.190		1.420
802.11a	64	5320	1.021	0.230	1.251
602.11a	100	5500	1.743	0.230	1.973
	116	5580	1.401		1.631
	140	5700	1.408		1.638
	149	5745	-0.184		0.046
- F	157	5785	-0.260		-0.030
	165	5825	0.041		0.271

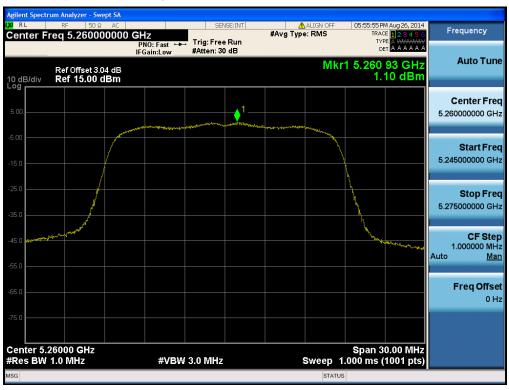
Mode	Channel	Frequency [MHz]	Reading [dBm]	DCF [dB] Note 1	Test Result [dBm]
	36	5180	-0.489		-0.259
	40	5200	-0.858		-0.628
	48	5240	-0.149		0.081
	52	5260	-0.316		-0.086
	60	5300	-0.349		-0.119
802.11n HT20	64	5320	-0.530	0.230	-0.300
ου <u>2</u> .1111Π120	100	5500	0.294	0.230	0.524
	116	5580	-0.081		0.149
	140	5700	-0.113		0.117
	149	5745	-1.341		-1.111
	157	5785	-1.332		-1.102
	165	5825	-0.882		-0.652
	38	5190	-5.309		-4.849
	46	5230	-4.542		-4.082
	54	5270	-4.270		-3.810
	62	5310	-4.284		-3.824
802.11n HT40	102	5510	-3.891	0.460	-3.431
	110	5550	-3.877		-3.417
	134	5670	-4.032		-3.572
	151	5755	-6.085		-5.625
	159	5795	-5.799		-5.339

Note 1 : <u>Refer to Appendix II. Only applied when Duty cycle < 0.98</u> Note 2 : Test Result = Measurement Data + DCF

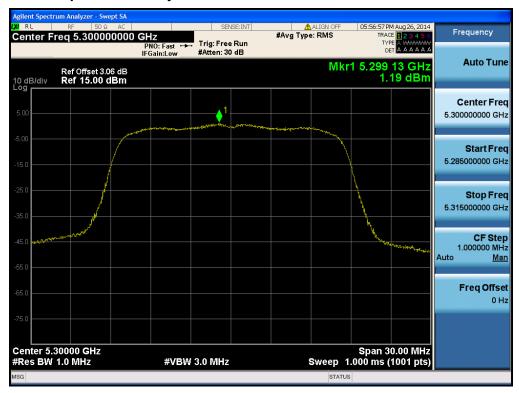

RESULT PLOTS



Test Mode: 802.11a & Ch.36

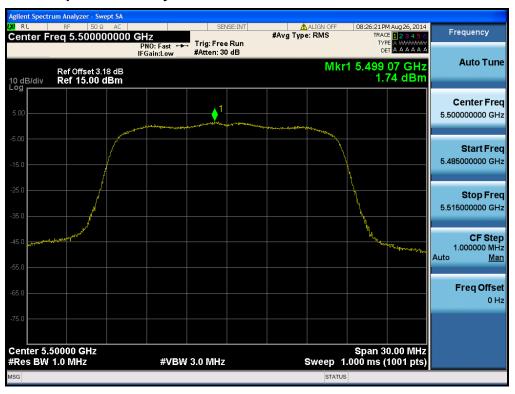

nt Spectru Center Freq 5.180000000 GHz PN0: Fast IFGain:Low ALIGN O #Avg Type: RMS 05:47:04 PM Aug 26, 2014 SENSE:INT Frequency RACE Trig: Free Run #Atten: 30 dB TYPE DET AAAAA Auto Tune Mkr1 5.179 25 GHz 0.57 dBm Ref Offset 2.99 dB Ref 15.00 dBm 10 dB/div **Center Freq** 5.180000000 GHz Start Freq 5.165000000 GHz Stop Freq 5.195000000 GHz CF Step 1.000000 MHz Auto Man Freq Offset 0 Hz Center 5.18000 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz

Maximum Power Spectral Density Tes



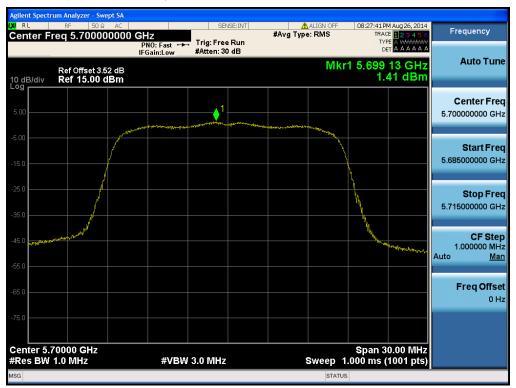


Test Mode: 802.11a & Ch.52



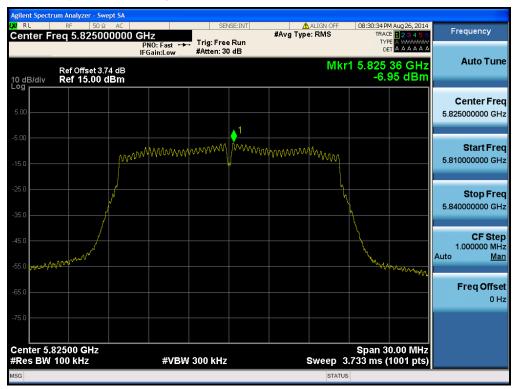
Maximum Power Spectral Density





Test Mode: 802.11a & Ch.100

Maximum Power Spectral Density



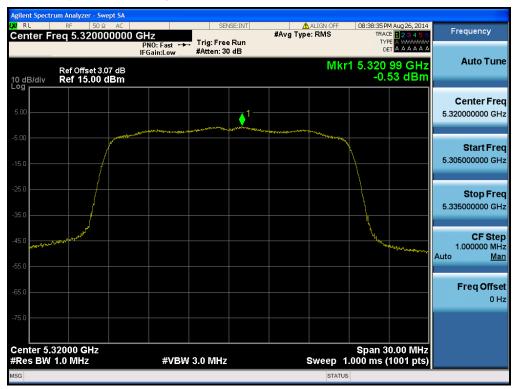
Test Mode: 802.11a & Ch.149



Maximum Power Spectral Density

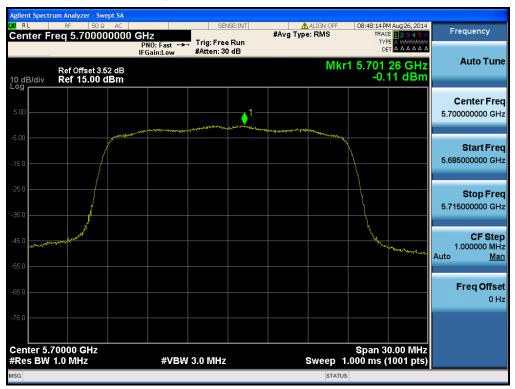
Test Mode: 802.11n HT20 & Ch.36

Maximum Power Spectral Density



Test Mode: 802.11n HT20 & Ch.52

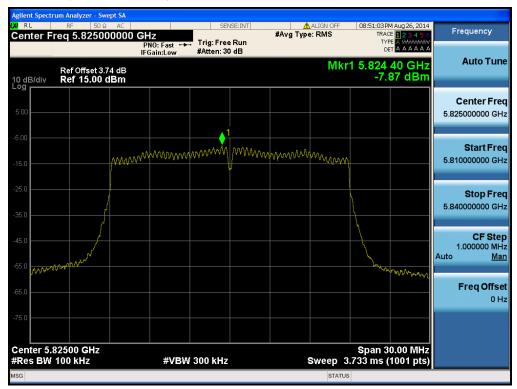
Maximum Power Spectral Density



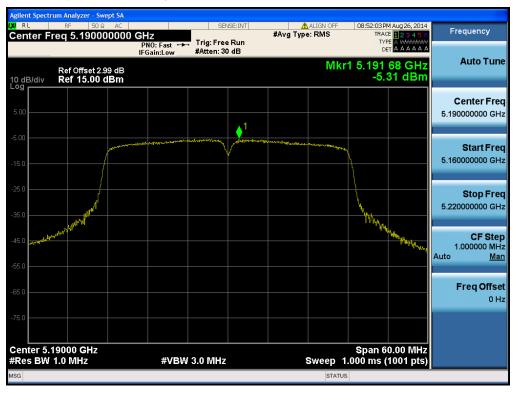
Test Mode: 802.11n HT20 & Ch.100



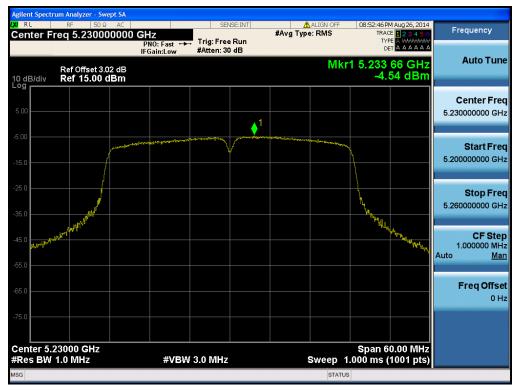
Maximum Power Spectral Density



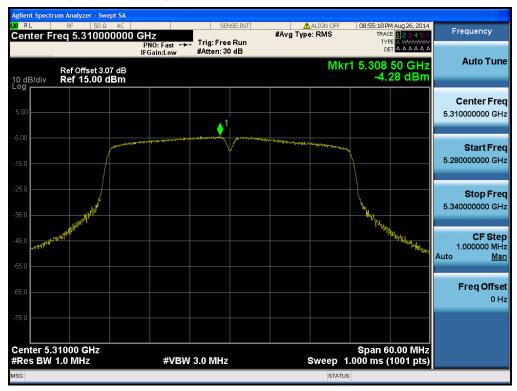
Test Mode: 802.11n HT20 & Ch.149



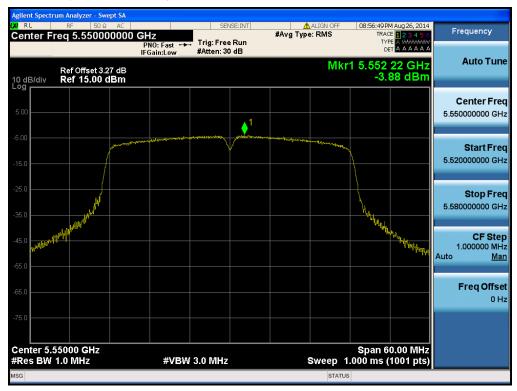
Maximum Power Spectral Density

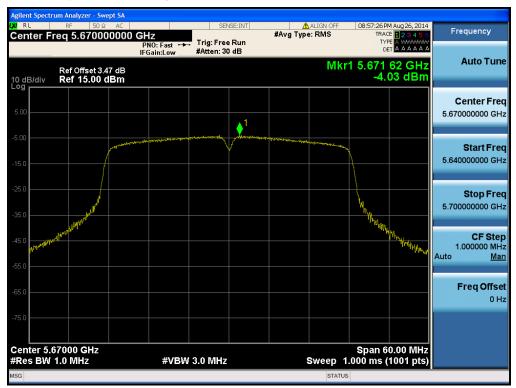


Test Mode: 802.11n HT40 & Ch.38


Maximum Power Spectral Density


Test Mode: 802.11n HT40 & Ch.54

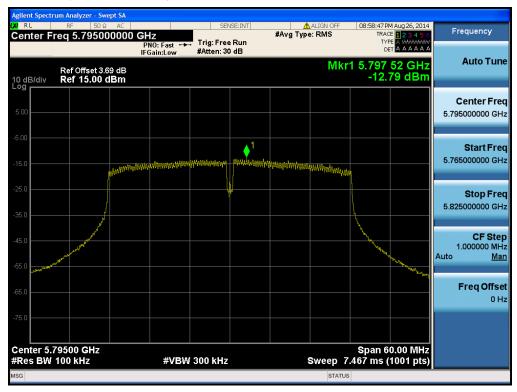

Maximum Power Spectral Density



Test Mode: 802.11n HT40 & Ch.102



Maximum Power Spectral Density



Test Mode: 802.11n HT40 & Ch.151

Maximum Power Spectral Density

8.5 Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -20 °C and +50 °C. The temperature was incremented by 10 °C intervals and the unit was allowed to stabilize at each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.

Supply	TEMP	Ban	d I	Band	II	Band	ш	Band IV		
Voltage (V DC)	(℃)	Frequency (Hz)	Deviation (%)	Frequency (Hz)	Deviation (%)	Frequency (Hz)	Deviation (%)	Frequency (Hz)	Deviation (%)	
	+25	5,200,019,953	0.000384	5,300,020,132	0.000380	5,580,020,522	0.000368	5,785,022,109	0.000382	
	+50	5,200,010,385	0.000200	5,300,010,409	0.000196	5,580,010,510	0.000188	5,785,011,002	0.000190	
	+40	5,200,015,102	0.000290	5,300,015,221	0.000287	5,580,015,305	0.000274	5,785,017,511	0.000303	
	+30	5,200,014,443	0.000278	5,300,014,270	0.000269	5,580,014,312	0.000256	5,785,016,765	0.000290	
3.80	+20	5,200,019,407	0.000373	5,300,019,125	0.000361	5,580,019,299	0.000346	5,785,020,058	0.000347	
	+10	5,200,035,235	0.000678	5,300,035,402	0.000668	5,580,035,621	0.000638	5,785,038,165	0.000660	
	0	5,200,043,031	0.000828	5,300,044,022	0.000831	5,580,045,368	0.000813	5,785,048,056	0.000831	
	-10	5,200,052,730	0.001014	5,300,053,123	0.001002	5,580,054,108	0.000970	5,785,057,421	0.000993	
	-20	5,200,058,232	0.001120	5,300,059,302	0.001119	5,580,061,825	0.001108	5,785,064,721	0.001119	
3.40	+25	5,200,019,950	0.000384	5,300,020,127	0.000380	5,580,020,526	0.000368	5,785,022,110	0.000382	
4.37	+25	5,200,019,948	0.000384	5,300,020,125	0.000380	5,580,020,525	0.000368	5,785,022,111	0.000382	

Test Result : Comply

8.6 Radiated Spurious Emission Measurements

Test Procedure

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 – 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	160.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	160.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	160.7 ~ 160.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240	3600 ~ 4000		
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

• FCC Part 15.407 (b): Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the **5.15-5.25 GHz band**: all emissions outside of the **5.15-5.35 GHz band** shall not exceed an **EIRP of -27 dBm/MHz**.
- (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Test Procedure

The EUT was placed on a 0.8m high non-conductive table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in semi anechoic chamber. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine the worst-case orientation for maximum emissions.

Radiated spurious emission measured using following Measurement Procedure of KDB789033 D02 V01

► General Requirements for Unwanted Emissions Measurements

The following requirements apply to all unwanted emissions measurements, both in and outside of the restricted bands:

- EUT Duty Cycle
 - (1) The EUT shall be configured or modified to transmit continuously except as stated in (ii), below. The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle(to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
 - (2) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations of the EUT (e.g., overheating), the following additions to the measurement and reporting procedures are required:
 - The EUT shall be configured to operate at the maximum achievable duty cycle.
 - Measure the duty cycle, x, of the transmitter output signal.
 - Adjustments to measurement procedures (e.g., increasing test time and number of traces
 - averaged) shall be performed as described in the procedures below.
 - The test report shall include the following additional information:
 - $\ensuremath{\,^\circ}$ The reason for the duty cycle limitation.
 - The duty cycle achieved for testing and the associated transmit duration and interval between transmissions.
 - The sweep time and the amount of time used for trace stabilization during max-hold measurements for peak emission measurements.
 - (3) Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission not on an average across on and off times of the transmitter.

Measurements below 1000 MHz

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

Measurements Above 1000MHz(Peak)

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".b) Peak emission levels are measured by setting the analyzer as follows:
 - (i) **RBW = 1 MHz**.
 - (ii) VBW ≥ 3 MHz.
 - (iii) Detector = Peak.
 - (iv) Sweep time = auto.
 - (v) Trace mode = max hold.
 - (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

Measurements Above 1000MHz(Method AD)

- (i) **RBW = 1 MHz.**
- (ii) **VBW** ≥ 3 MHz.
- (iii) Detector = RMS, if span/(# of points in sweep) ≤ RBW/2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.
- (iv) Averaging type = power (i.e., RMS)
 - As an alternative, the detector and averaging type may be set for linear voltage averaging. Some analyzers require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- (v) Sweep time = auto.
- (vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 percent duty cycle, at least 200 traces shall be averaged.
- (vii) If tests are performed with the EUT transmitting at a duty cycle less than 98 percent, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

• If power averaging (RMS) mode was used in step (iv) above, the correction factor is 10 log(1/x), where x is the duty cycle.

For example, if the transmit duty cycle was 50 percent, then 3 dB must be added to the measured emission levels.

- If linear voltage averaging mode was used in step (iv) above, the correction factor is $20 \log(1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 6 dB must be added to the measured emission levels.
- If a specific emission is demonstrated to be continuous (100 percent duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & Band I

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5144.320	Н	Y	PK	45.20	8.45	N/A	N/A	53.65	74.00	20.35
36 (5180MHz)	5143.970	н	Y	AV	33.71	8.45	0.23	N/A	42.39	54.00	11.61
(0.000	10360.840	Н	Z	PK	36.47	9.49	N/A	-9.54	36.42	68.20	31.78
	10399.520	Н	Z	PK	36.94	9.69	N/A	-9.54	37.09	68.20	31.11
40 (5200MHz)	-	-	-	-	-	-	-	-	-	-	-
()	-	-	-	-	-	-	-	-	-	-	-
	10478.820	Н	Z	PK	37.87	10.01	N/A	-9.54	38.34	68.20	29.86
48 (5240MHz)	-	-	-	-	-	-	-	-	-	-	-
()	-	-	-	-	-	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & Band II

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	10521.300	Н	Z	PK	39.91	10.04	N/A	-9.54	40.41	68.20	27.79
52 (5260MHz)	-	-	-	-	-	-	-	-	-	-	-
(020011112)	-	-	-	-	-	-	-	-	-	-	-
	10600.760	Н	Z	PK	43.59	10.17	N/A	-9.54	44.22	74.00	29.78
60 (5300MHz)	10600.400	Н	Z	AV	32.18	10.17	0.23	-9.54	33.04	54.00	20.96
(00000000000000000000000000000000000000	-	-	-	-	-	-	-	-	-	-	-
	5350.510	Н	Z	PK	43.79	8.81	N/A	N/A	52.60	74.00	21.40
64	5350.260	Н	Z	AV	33.44	8.81	0.23	N/A	42.48	54.00	11.52
(5320MHz)	10645.710	Н	Z	PK	41.26	10.92	N/A	-9.54	42.64	74.00	31.36
	10640.240	Н	Z	AV	31.75	10.92	0.23	-9.54	33.36	54.00	20.64

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Sample Calculation. Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

- 3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)
- 4. The limit is converted to field strength. E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27dBm + 95.2 = 68.2dBuV/m
- 5. If peak measurement satisfy the average limit, then average measurement are not required.

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & Band III

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5456.400	Н	Y	PK	42.87	9.05	N/A	N/A	51.92	74.00	22.08
	5458.080	Н	Y	AV	32.63	9.05	0.23	N/A	41.91	54.00	12.09
100 (5500MHz)	5468.610	Н	Y	PK	43.69	9.09	N/A	N/A	52.78	68.20	15.42
(00000012)	11000.180	Н	Z	PK	41.94	11.15	N/A	-9.54	43.55	74.00	30.45
	10999.740	Н	Z	AV	31.72	11.15	0.23	-9.54	33.56	54.00	20.44
	11159.920	Н	Z	PK	41.68	11.44	N/A	-9.54	43.58	74.00	30.42
116 (5580MHz)	11160.060	Н	Z	AV	31.72	11.44	0.23	-9.54	33.85	54.00	20.15
(000011112)	-	-	-	-	-	-	-	-	-	-	-
	5725.770	Н	Y	PK	43.27	9.98	N/A	N/A	53.25	68.20	14.95
140 (5700MHz)	11400.620	Н	Z	PK	41.16	11.58	N/A	-9.54	43.20	74.00	30.80
(01 00 00 12)	11400.060	Н	Z	AV	31.71	11.58	0.23	-9.54	33.98	54.00	20.02

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & Band IV

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5724.430	V	Z	PK	46.35	9.98	N/A	N/A	56.33	78.20	21.87
149 (5745MHz)	11486.980	V	Z	PK	42.19	11.64	N/A	-9.54	44.29	74.00	29.71
(***********)	11490.100	V	Z	AV	32.38	11.64	0.23	-9.54	34.71	54.00	19.29
	11569.500	Н	Z	PK	42.57	11.85	N/A	-9.54	44.88	74.00	29.12
157 (5785MHz)	11569.980	Н	Z	AV	32.92	11.85	0.23	-9.54	35.46	54.00	18.54
()	-	-	-	-	-	-	-	-	-	-	-
	5850.700	V	Z	PK	48.66	9.92	N/A	N/A	58.58	78.20	19.62
165 (5825MHz)	11652.130	V	Z	PK	42.44	12.26	N/A	-9.54	45.16	74.00	28.84
()	11650.000	V	Z	AV	32.18	12.26	0.23	-9.54	35.13	54.00	18.87

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Sample Calculation. Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

- 3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : $9.54 \text{ dB} = 20^{\circ}\log(1m/3m)$
- 4. The limit is converted to field strength. E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27dBm + 95.2 = 68.2dBuV/m
- 5. If peak measurement satisfy the average limit, then average measurement are not required.

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & Band I

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5144.020	Н	Y	PK	45.10	8.45	N/A	N/A	53.55	74.00	20.45
36 (5180MHz)	5143.850	н	Y	AV	33.41	8.45	0.23	N/A	42.09	54.00	11.91
(01001112)	10359.900	н	Z	PK	32.95	9.49	N/A	-9.54	32.90	68.20	35.30
	10403.140	Н	Z	PK	33.96	9.69	N/A	-9.54	34.11	68.20	34.09
40 (5200MHz)	-	-	-	-	-	-	-	-	-	-	-
(020012)	-	-	-	-	-	-	-	-	-	-	-
	10482.440	Н	Z	PK	35.69	10.01	N/A	-9.54	36.16	68.20	32.04
48 (5240MHz)	-	-	-	-	-	-	-	-	-	-	-
()	-	-	-	-	-	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & Band II

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	10520.260	Н	Z	PK	36.11	10.04	N/A	-9.54	36.61	68.20	31.59
52 (5260MHz)	-	-	-	-	-	-	-	-	-	-	-
(020011112)	-	-	-	-	-	-	-	-	-	-	-
	10598.300	Н	Z	PK	41.37	10.17	N/A	-9.54	42.00	74.00	32.00
60 (5300MHz)	10601.220	Н	Z	AV	31.23	10.17	0.23	-9.54	32.09	54.00	21.91
(00000000012)	-	-	-	-	-	-	-	-	-	-	-
	5350.970	Н	Z	PK	43.52	8.81	N/A	N/A	52.33	74.00	21.67
64	5350.280	Н	Z	AV	32.98	8.81	0.23	N/A	42.02	54.00	11.98
(5320MHz)	10643.700	Н	Z	PK	40.94	10.92	N/A	-9.54	42.32	74.00	31.68
	10640.210	Н	Z	AV	31.52	10.92	0.23	-9.54	33.13	54.00	20.87

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Sample Calculation. Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = $20*\log(1m/3m)$

4. The limit is converted to field strength. E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27dBm + 95.2 = 68.2dBuV/m

5. If peak measurement satisfy the average limit, then average measurement are not required.

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & Band III

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5457.150	Н	Y	PK	42.81	9.05	N/A	N/A	51.86	74.00	22.14
	5458.080	Н	Y	AV	32.41	9.05	0.23	N/A	41.69	54.00	12.31
100 (5500MHz)	5468.550	Н	Y	PK	43.15	9.09	N/A	N/A	52.24	68.20	15.96
(00001112)	11000.590	Н	Z	PK	41.79	11.15	N/A	-9.54	43.40	74.00	30.60
	10999.810	Н	Z	AV	31.70	11.15	0.23	-9.54	33.54	54.00	20.46
	11159.880	Н	Z	PK	41.60	11.44	N/A	-9.54	43.50	74.00	30.50
116 (5580MHz)	11160.070	Н	Z	AV	31.67	11.44	0.23	-9.54	33.80	54.00	20.20
(00001112)	-	-	-	-	-	-	-	-	-	-	-
	5725.810	Н	Y	PK	43.05	9.98	N/A	N/A	53.03	68.20	15.17
140 (5700MHz)	11400.470	Н	Z	PK	41.11	11.58	N/A	-9.54	43.15	74.00	30.85
(01000012)	11400.030	Н	Z	AV	31.62	11.58	0.23	-9.54	33.89	54.00	20.11

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & Band IV

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5724.390	V	Z	PK	46.02	9.98	N/A	N/A	56.00	78.20	22.20
149 (5745MHz)	11487.480	V	Z	PK	42.05	11.64	N/A	-9.54	44.15	74.00	29.85
(01 1011112)	11490.070	V	Z	AV	32.32	11.64	0.23	-9.54	34.65	54.00	19.35
	11569.110	Н	Z	PK	42.52	11.85	N/A	-9.54	44.83	74.00	29.17
157 (5785MHz)	11570.060	Н	Z	AV	32.21	11.85	0.23	-9.54	34.75	54.00	19.25
(0.000	-	-	-	-	-	-	-	-	-	-	-
	5850.810	V	Z	PK	48.52	9.92	N/A	N/A	58.44	78.20	19.76
165 (5825MHz)	11651.750	V	Z	PK	42.31	12.26	N/A	-9.54	45.03	74.00	28.97
()	11650.090	V	Z	AV	32.00	12.26	0.23	-9.54	34.95	54.00	19.05

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

- 3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)
- 4. The limit is converted to field strength. $E[dB_{11}]/(m) = E[BP[dBm] + 95.2 dB = -27dBm]$

E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27dBm + 95.2 = 68.2dBuV/m

5. If peak measurement satisfy the average limit, then average measurement are not required.

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT40) & Band I

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5149.220	Н	Z	PK	44.16	8.45	N/A	N/A	52.61	74.00	21.39
38 (5190MHz)	5143.190	Н	Z	AV	34.24	8.45	0.46	N/A	43.15	54.00	10.85
(01001112)	10374.540	Н	Z	PK	30.52	9.68	N/A	-9.54	30.66	68.20	37.54
	10460.800	Н	Z	PK	30.76	10.00	N/A	-9.54	31.22	68.20	36.98
46 (5230MHz)	-	-	-	-	-	-	-	-	-	-	-
(02000000)	-	-	-	-	-	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT40) & Band II

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	10541.080	Н	Z	PK	32.24	10.05	N/A	-9.54	32.75	68.20	35.45
54 (5270MHz)	-	-	-	-	-	-	-	-	-	-	-
(027 0111 12)	-	-	-	-	-	-	-	-	-	-	-
	5351.300	Н	Y	PK	43.89	8.81	N/A	N/A	52.70	74.00	21.30
62	5350.690	Н	Y	AV	35.08	8.81	0.46	N/A	44.35	54.00	9.65
(5310MHz)	10621.620	Н	Z	PK	34.53	10.90	N/A	-9.54	35.89	74.00	38.11
	10621.340	Н	Z	AV	29.95	10.90	0.46	-9.54	31.77	54.00	22.23

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

- 3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)
- 4. The limit is converted to field strength. E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27dBm + 95.2 = 68.2dBuV/m
- 5. If peak measurement satisfy the average limit, then average measurement are not required.

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT40) & Band III

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5459.840	Н	Y	PK	43.65	9.05	N/A	N/A	52.70	74.00	21.30
	5459.920	Н	Y	AV	33.54	9.05	0.46	N/A	43.05	54.00	10.95
102 (5510MHz)	5469.530	Н	Y	PK	44.02	9.09	N/A	N/A	53.11	68.20	15.09
(00101112)	11020.150	Н	Y	PK	40.90	11.17	N/A	-9.54	42.53	74.00	31.47
	11021.100	Н	Y	AV	31.02	11.17	0.46	-9.54	33.11	54.00	20.89
	11100.580	Н	Y	PK	40.51	11.29	N/A	-9.54	42.26	74.00	31.74
110 (5550MHz)	11100.240	Н	Y	AV	30.94	11.29	0.46	-9.54	33.15	54.00	20.85
(00001112)	-	-	-	-	-	-	-	-	-	-	-
	5727.050	Н	Y	PK	43.94	9.98	N/A	N/A	53.92	68.20	14.28
134 (5670MHz)	11339.440	Н	Y	PK	41.57	11.53	N/A	-9.54	43.56	74.00	30.44
(001 01112)	11340.040	Н	Y	AV	31.15	11.53	0.46	-9.54	33.60	54.00	20.40

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT40) & Band IV

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	11510.970	Н	Z	PK	41.33	11.79	N/A	-9.54	43.58	74.00	30.42
151 (5755MHz)	11510.030	н	Z	AV	32.11	11.79	0.46	-9.54	34.82	54.00	19.18
(01 00	-	-	-	-	-	-	-	-	-	-	-
	11588.200	Н	Z	PK	41.45	12.21	N/A	-9.54	44.12	74.00	29.88
159 (5795MHz)	11589.920	Н	Z	AV	32.18	12.21	0.46	-9.54	35.31	54.00	18.69
(0.00	-	-	-	-	-	-	-	-	-	-	-

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)

4. The limit is converted to field strength. E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27dBm + 95.2 = 68.2dBuV/m

5. If peak measurement satisfy the average limit, then average measurement are not required.

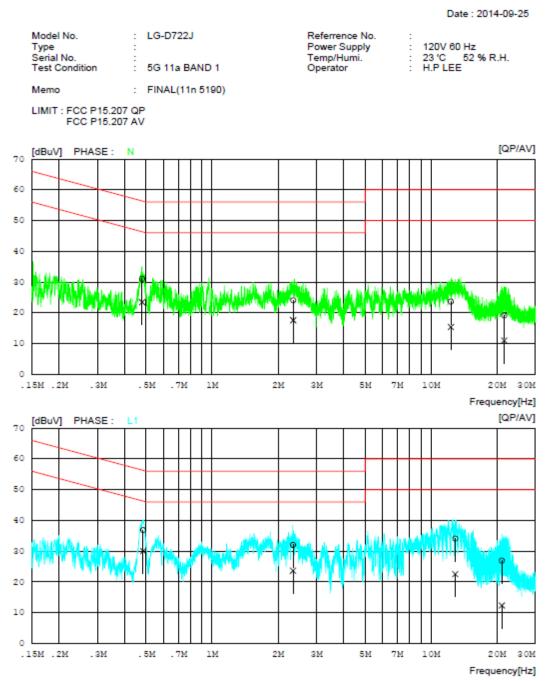
8.7 AC Conducted Emissions

TEST PROCEDURE :

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode (AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.


Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

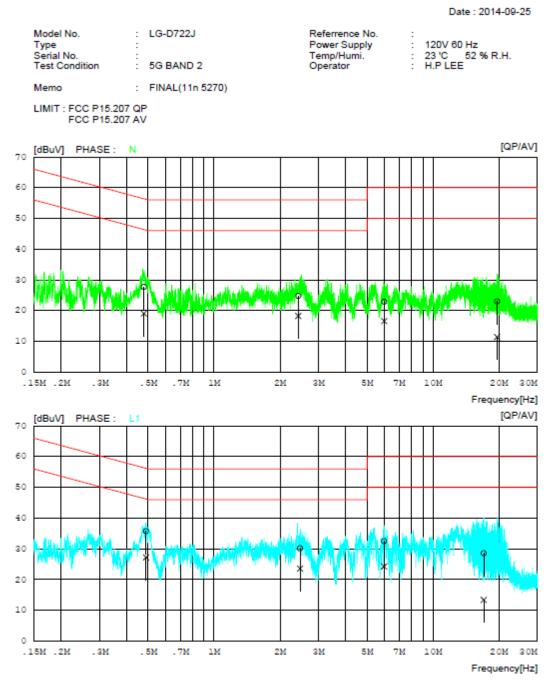
* Decreases with the logarithm of the frequency

AC Line Conducted Emissions (Graph)

Test Mode: Band I &802.11nHT40

Test Mode: Band I &802.11n HT40

Results of Conducted Emission


Date : 2014-09-25

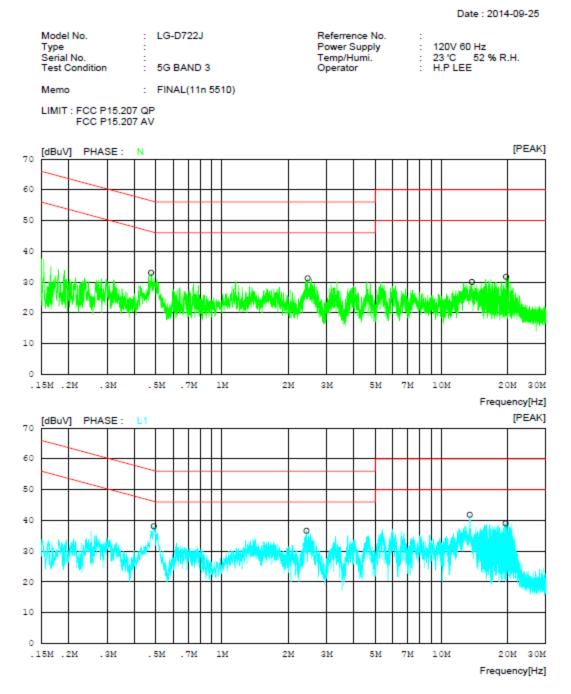
Model No. Type Serial No. Test Condition	Type : Serial No. :		eferrence No. ower Supply emp/Humi. perator	: : 120V 60 Hz : 23 'C 52 % R.H. : H.P LEE		
Memo	: FINAL(11n 5190)					
LIMIT : FCC P1: FCC P1: NO FREQ	5.207 AV					
	READING C.FACTO	R RESULT	LIMIT	MARGIN PHASE		
[MHz]	QP AV [dBuV][dBuV] [dB]	QP AV	QP AV [dBuV][dBuV]	QP AV		
-	QP AV [dBuV][dBuV] [dB]	QP AV	QP AV	QP AV		
[MHz]	QP AV [dBuV][dBuV] [dB] 2 21.1 13.6 9.9	QP AV [dBuV][dBuV]	QP AV [dBuV][dBuV]	QP AV [dBuV][dBuV]		
[MHz]	QP AV [dBuV] [dBuV] [dB] 2 21.1 13.6 9.9 0 14.0 7.6 10.0	QP AV [dBuV][dBuV] 31.0 23.5	QP AV [dBuV][dBuV] 56.4 46.4	QP AV [dBuV][dBuV] 25.4 22.9 N		
[MHz] 1 0.47892 2 2.34840 3 12.33100 4 21.62160	QP AV [dBuV][dBuV] [dB] 2 21.1 13.6 9.9 0 14.0 7.6 10.0 0 13.3 5.1 10.3 0 8.7 0.6 10.4	QP AV [dBuV][dBuV] 31.0 23.5 24.0 17.6 23.6 15.4 19.1 11.0	QP AV [dBuV][dBuV] 56.4 46.4 56.0 46.0 60.0 50.0 60.0 50.0	QP AV [dBuV][dBuV] 25.4 22.9 N 32.0 28.4 N 36.4 34.6 N 40.9 39.0 N		
[MHz] 1 0.47892 2 2.34840 3 12.3310 4 21.62160 5 0.48440	QP AV [dBuV][dBuV] [dB] 2 21.1 13.6 9.9 0 14.0 7.6 10.0 0 13.3 5.1 10.3 0 8.7 0.6 10.4 0 26.9 20.1 9.9	QP AV [dBuV][dBuV] 31.0 23.5 24.0 17.6 23.6 15.4	QP AV [dBuV][dBuV] 56.4 46.4 56.0 46.0 60.0 50.0 60.0 50.0 56.3 46.3	QP AV [dBuV][dBuV] 25.4 22.9 N 32.0 28.4 N 36.4 34.6 N 40.9 39.0 N 19.5 16.3 L1		
[MHz] 1 0.47892 2 2.3484(3 12.33100 4 21.6216(5 0.4844(6 2.3432(QP AV [dBuV] [dBuV] [dB] 2 21.1 13.6 9.9 0 14.0 7.6 10.0 0 13.3 5.1 10.3 0 8.7 0.6 10.4 0 26.9 20.1 9.9 0 22.0 13.7 10.0	QP AV [dBuV][dBuV] 31.0 23.5 24.0 17.6 23.6 15.4 19.1 11.0 36.8 30.0 32.0 23.7	QP AV [dBuV] [dBuV] [dBuV] 56.4 46.4 56.0 46.0 60.0 50.0 60.0 50.0 56.3 46.3 56.0 46.0	QP AV [dBuV] [dBuV] 25.4 22.9 N 32.0 28.4 N 36.4 34.6 N 40.9 39.0 N 19.5 16.3 L1 24.0 22.3 L1 10.5 10.5 10.5		
[MHz] 1 0.47892 2 2.34840 3 12.3310 4 21.62160 5 0.48440	QP AV [dBuV] [dBuV] [dB] 2 21.1 13.6 9.9 0 14.0 7.6 10.0 0 13.3 5.1 10.3 0 8.7 0.6 10.4 0 26.9 20.1 9.9 0 23.9 12.3 10.2	QP AV [dBuV][dBuV] 31.0 23.5 24.0 17.6 23.6 15.4 19.1 11.0 36.8 30.0	QP AV [dBuV][dBuV] 56.4 46.4 56.0 46.0 60.0 50.0 60.0 50.0 56.3 46.3	QP AV [dBuV][dBuV] 25.4 22.9 N 32.0 28.4 N 36.4 34.6 N 40.9 39.0 N 19.5 16.3 L1		

AC Line Conducted Emissions (Graph)

Test Mode: Band II &802.11n HT40

Test Mode: Band II &802.11n HT40

Results of Conducted Emission

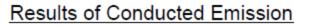

Date : 2014-09-25

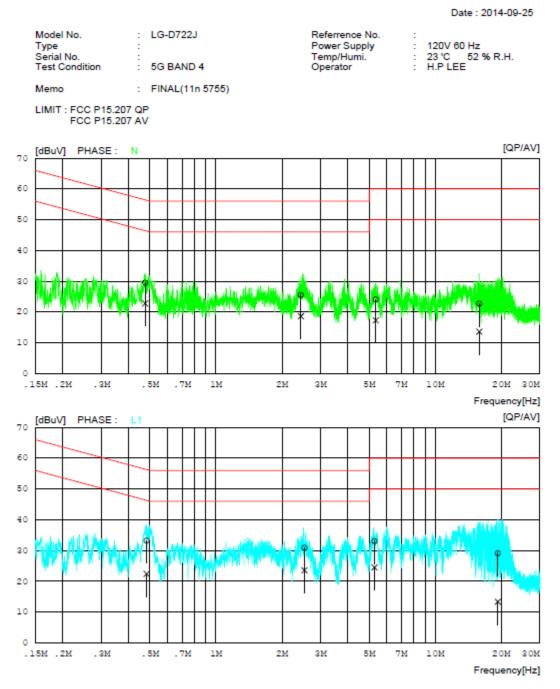
Model No. Type Serial No. Test Condition	: LG-D722J : : 5G BAND 2	Referrence No. Power Supply Temp/Humi. Operator	: : 120V 60 Hz : 23 'C 52 % R.H. : H.P LEE
Memo	: FINAL(11n 5270)		
LIMIT : FCC P15.2 FCC P15.2 NO FREQ [MH#] [RESULT LIMIT QP AV QP AV [dBuV][dBuV][dBuV]	MARGIN PHASE QP AV [dBuV][dBuV]
1 0.47750	17.8 9.2 9.9	27.7 19.1 56.4 46.4	28.7 27.3 N
2 2.42320	14.8 8.2 10.0	24.8 18.2 56.0 46.0	31.2 27.8 N
3 5.98780	12.8 6.5 10.1	22.9 16.6 60.0 50.0	37.1 33.4 N
4 19.64280	12.6 1.0 10.4	23.0 11.4 60.0 50.0	37.0 38.6 N
5 0.48881 6 2.47080	25.8 17.3 9.9	35.7 27.2 56.2 46.2	20.5 19.0 L1
	20.2 13.6 10.0	30.2 23.6 56.0 46.0	25.8 22.4 L1
	22.4 14.2 10.1	32.5 24.3 60.0 50.0	27.5 25.7 L1
8 17.05440	18.3 3.1 10.3	28.6 13.4 60.0 50.0	31.4 36.6 L1

AC Line Conducted Emissions (Graph)

Test Mode: Band III &802.11n HT40

Results of Conducted Emission


Test Mode: Band III &802.11n HT40


Results of Conducted Emission

								Date : 2	2014-09-25
Model No. : LG-D722J Type : Serial No. : Test Condition : 5G BAND 3					Referrer Power S Temp/H Operato	Supply lumi.		V 60 Hz C 52 9 LEE	% R.H.
Mer	no	: FINAL(11	1n 5510)						
NO	IT : FCC P15 FCC P15 FREQ [MH#]		C.F [dB]	RESULT	QP	MIT AV (dBuV)	MAR(QP [dB]	GIN AV [dB]	PHASE
1	0.47500	23.1	9.9	33.0	56.4	23.4	46.4	13.4	N
2	2.45800	21.2	10.0	31.2	56.0	24.8	46.0	14.8	N
3	13.80000	19.7	10.3	30.0	60.0	30.0	50.0	20.0	N
4	19.76600	21.3	10.4	31.7	60.0	28.3	50.0	18.3	N
5	0.48900	28.2	9.9	38.1	56.2	18.1	46.2	8.1	L1
6	2.43000	26.6	10.0	36.6	56.0	19.4	46.0	9.4	L1
7	13.50000	31.6	10.2	41.8	60.0	18.2	50.0	8.2	Ll
8	19.67000	28.6	10.4	39.0	60.0	21.0	50.0	11.0	L1

AC Line Conducted Emissions (Graph)

Test Mode: Band IV &802.11n HT40

Test Mode: Band IV &802.11n HT40

Results of Conducted Emission

Date : 2014-09-25

Model No. Type Serial No. Test Conditio	ype :		Referrenc Power Suj Temp/Hur Operator	pply : ni. :	: 120V 60 Hz 23 'C 52 % R.H. H.P LEE		
Memo	: FINAL(1	1n 5755)					
LIMIT : FCC FCC NO FRE	P15.207 AV Q READING QP AV	QP	SULT LIP AV QP [[dBuV] [dBuV]	AV QE		PHASE	
1 0.473 2 2.440 3 5.354 4 15.880 5 0.482 6 2.533 7 5.284 8 19.313	140 15.5 8.6 560 13.9 7.2 320 12.4 3.3 251 23.3 12.5 240 20.8 13.5 480 22.9 14.4	10.0 25.8 10.1 24.0 10.3 22.7 9.9 33.2 10.1 30.9 10.1 30.9		46.4 26. 46.0 30. 50.0 36. 50.0 37. 46.3 23. 46.0 25. 50.0 27. 50.0 30.	5 27.4 0 32.7 3 36.4 1 23.9 1 22.4 0 25.5	N N N L1 L1 L1 L1 L1	

ZNFD722J

8.8 Occupied Bandwidth

Test Requirements

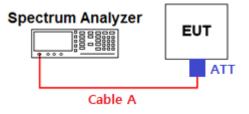
When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured

Test Configuration

Refer to the APPENDIX I.

Test Procedure :

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual


Test Result : NA

9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
MXA Signal Analyzer	Agilent	N9020A	14/03/28	15/03/28	MY50510026
Digital Multimeter	H.P	34401A	14/02/27	15/02/27	3146A13475
Dynamic Measurement DC Source	Agilent	66332A	14/09/11	15/09/11	US37473627
Thermohygrometer	BODYCOM	BJ5478	14/03/03	15/03/03	1209
Vector Signal Generator	Rohde Schwarz	SMJ100A	14/01/07	15/01/07	100148
Signal Generator	Rohde Schwarz	SMF100A	14/07/01	15/07/01	102341
Attenuator(3dB)	SMAJK	SMAJK-2-3	13/10/22	14/10/22	3
High-pass filter	Wainwright	WHNX8.5	14/09/11	15/09/11	1
High-pass filter	Wainwright	WHKX3.0	14/09/11	15/09/11	9
LOOP Antenna	Schwarzbeck	FMZB1513	14/04/29	16/04/29	1513-128
BILOG ANTENNA	SCHAFFNER	CBL6112B	12/11/06	14/11/06	2737
Horn Antenna	ETS-LINDGREN	3117	14/05/12	16/05/12	00140394
HORN ANT	A.H.Systems	SAS-574	13/03/20	15/03/20	154
Amplifier (22dB)	H.P	8447E	14/01/07	15/01/07	2945A02865
Amplifier (30dB)	Agilent	8449B	14/02/27	15/02/27	3008A00370
EMI TEST RECEIVER	R&S	ESU	14/01/07	15/01/07	100014
EMI TEST RECEIVER	R&S	ESCI	14/02/27	15/02/27	100910
CVCF	EM TEST	NETWAVE 60-400	14/05/26	15/05/26	P1311115470
LISN	SCHWARZBECK	NNLK8121	14/08/18	15/08/18	NNLK8121-580
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A/ MA2411B	13/10/29	14/10/29	1338004 / 1306053

APPENDIX I Conducted Test set up Diagram

Conducted Measurement

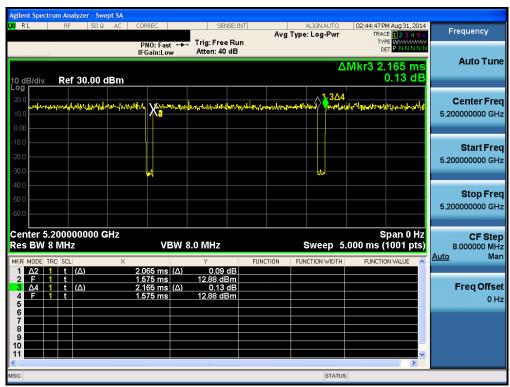
APPENDIX II

Duty Cycle Information

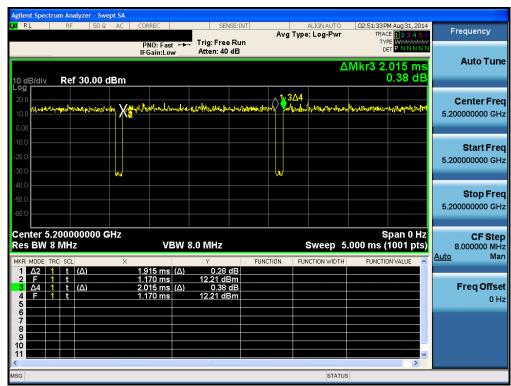
TEST PROCEDURE

Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02 V01

- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW \geq RBW.
- 4. Set detector = peak.
- 5. Note : The zero-span measurement method shall not be used unless both **RBW and VBW** are> 50/*T*, where *T* is defined in section II.B.1.a), and the number of sweep points across duration *T* exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if $T \le 16.7$ microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (*T* = On time of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)


	Mode	Channel	Tested Channel Frequency		ximum Achieva /cle (<i>x</i>) = On / ((Duty Cycle Correction	1/ <i>T</i>	
	inicac		[MHz]	On Time [ms]	On+OffTime [ms]	x	Factor [dB]	[Hz]
8	302.11a	40	5200	2.065	2.165	0.95	0.23	484.27
	302.11n (HT20)	40	5200	1.915	2.015	0.95	0.23	522.2
-	302.11n (HT40)	46	5230	0.944	1.042	0.9	0.46	1059.33

TEST DATA


Duty Cycle

Duty Cycle

Test Mode: 802.11a & Ch.40

Test Mode: 802.11n HT20 & Ch.40

Duty Cycle

Test Mode: 802.11n HT40 & Ch.46

Agilent Spectru										
LXI RL	RF 5	ΟΩ AC	CORREC		SENSE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	TRAC	Aug 31, 2014	Frequency
			PNO: Fast IFGain:Low		ree Run : 40 dB	• //		TYF	E WWWWWWWW T P N N N N N	
			IFGain:LUW	Aden	. 40 00		٨	Mkr3 1.	042 mg	Auto Tune
10 dB/div	Ref 30.0	0 dBm							042 ms).84 dB	
20.0										Center Freq
	Horachertoria			with the state of		and an and an and a start of the second	142 344	In A Alberton	the out officients of	5.190000000 GHz
0.00	and the stand in the	L X	india te salande d	ulthhyperety		Mary and a start of the start	1	(nhainithean an a	of a strategy and	
-10.0										Otant Enga
-20.0										Start Freq 5.19000000 GHz
-30.0		handle					Vollin h			3.19000000 GHz
-40.0		1-1 24					a adda a			
-50.0										Stop Freq
-60.0										5.19000000 GHz
Center 5.1	0000000								pan 0 Hz	
Res BW 8		0 GHZ	VB	W 8.0 MH	z		Sweep 2	.000 ms ('	1001 pts)	CF Step 8.000000 MHz
MKR MODE TR	C SCL	×		Y		UNCTION FU	NCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Man
1 Δ2 1 2 F 1	t (Δ)		944.0 µs 442.0 µs		51 dB dBm					
<u>3</u> <u>A</u> 4 <u>1</u>	t (Δ)		1.042 ms	(Δ) 0.	84 dB					Freq Offset
4 F 1 5			442.0 µs	3.78	dBm				=	0 Hz
6										
8										
10										
11 <									>	
MSG							STATUS	5		