

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE

FCC Certification

Applicant Name: LG Electronics MobileComm U.S.A., Inc.	Date of Issue: July 25, 2014 Test Site/Location:
Address:	HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-
1000 Sylvan Avenue, Englewood Cliffs NJ 07632	myeon, Icheon-si, Gyeonggi-do, Korea
	Report No.: HCT-R-1407-F029-1

HCT FRN: 0005866421

FCC ID : ZNFD690N

APPLICANT : LG Electronics MobileComm U.S.A., Inc.

FCC Model(s):	LG-D690n
Additional FCC Model(s):	LG-D690N, LGD690n, LG-D693n, LG-D693N, LGD693n
EUT Type:	Cellular/PCS GSM/GPRS/EDGE Rx/WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN and NFC
RF Output Field Strength	14.37 dBuV/m
Frequency of Operation:	13.560121 MHz
Modulation type	ASK
FCC Classification:	Low Power Communication Device – Transmitter
FCC Rule Part(s):	FCC Part 15.225 Subpart C

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Kyoung Houn Seo Test Engineer of RF Team

Approved by : Chang Seok Choi Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1407-F029	July 17, 2014	- First Approval Report
HCT-R-1407-F029-1	July 25, 2014	-Revised the plot for 20 dB bandwidth -Revised the calibrated equipment

Table of Contents

1. GENERAL INFORMATION	
2. EUT DESCRIPTION	ŀ
3. TEST METHODOLOGY	;
3.1 EUT CONFIGURATION	;
3.2 EUT EXERCISE	;
3.3 GENERAL TEST PROCEDURES	;
3.4 DESCRIPTION OF TEST MODES	;
3.5 STANDARDS6	;
4. INSTRUMENT CALIBRATION	
5. FACILITIES AND ACCREDITATIONS	,
5.1 FACILITIES	,
5.2 EQUIPMENT	,
6. ANTENNA REQUIREMENTS	,
7. TEST SUMMARY	5
5. TEST SUMMARY	5
8. RADIATED EMISSION MEASUREMENT	
8.1. RADIATED EMISSION 9 kHz – 30 MHz 10)
8.2. RADIATED EMISSION 30 MHz – 1000 MHz 13	
9. EMISSION BANDWIDTH PLOT 14	ŀ
10. FREQUENCY TOLERANCE	;
11. POWERLINE CONDUCTE EMISSIONS	;
12. LIST OF TEST EQUIPMENT	;
12.1 LIST OF TEST EQUIPMENT(Conducted Test)	5
12.2 LIST OF TEST EQUIPMENT(Radiated Test)	;

Model: LG-D690n

1. GENERAL INFORMATION

Applicant:	LG Electronics MobileComm U.S.A., Inc.
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632
FCC ID:	ZNFD690N
EUT Type:	Cellular/PCS GSM/GPRS/EDGE Rx/WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN and NFC
Model name(s):	LG-D690n
Additional Model name(s):	LG-D690N, LGD690n, LG-D693n, LG-D693N, LGD693n
Date(s) of Tests:	June 18, 2014 ~ July 03, 2014
Place of Tests:	HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea
	(IC Recognition No. : 5944A-3)

2. EUT DESCRIPTION

FCC Model Name	LG-D690n
Additional FCC Model Name	LG-D690N, LGD690n, LG-D693n, LG-D693N, LGD693n
ЕՍТ Туре	Cellular/PCS GSM/GPRS/EDGE Rx/WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN and NFC
Power Supply	DC 3.8 V
Battery Type	Li-ion Battery(Standard)
Frequency of Operation	13.560121 MHz
Transmit Power	14.37 dBuV/m
Modulation Type	ASK
Antenna Specification	Manufacturer: IM-Tech
	Antenna type: FPCB Antenna

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009).

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.225 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2009) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.3 of ANSI C63.10. (Version: 2009).

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3.5 STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance With

FCC Part 15.Subpart C

Regulation	Measurement standard	Range	
Title 47 of the CFR:2012, Part 15			
Subpart (c), Clause 15.225(a)	ANSI C63.10:2009	13.553MHz to 13.567MHz	
Title 47 of the CFR:2012, Part 15		outside of the 13.110-14.010 MHz band	
Subpart (c), Clause 15.225(d)	ANSI C63.10:2009	outside of the 13.110-14.010 MHz band	
Title 47 of the CFR:2012, Part 15	ANSI C63.10:2009		
Subpart (c), Clause 15.209	ANSI C63.10:2009	9kHz to 30MHz	
Title 47 of the CFR:2012, Part 15	ANSI C63.10:2009	30MHz to 1GHz	
Subpart (c), Clause 15.209	ANSI C63.10.2009		
Title 47 of the CFR:2012, Part 15	ANSI C63.10:2009	150kHz to 30MHz	
Subpart (c), Clause 15.207	ANSI C63.10.2009		
Title 47 of the CFR:2012, Part 15	ANSI C63.10:2009	0.01% of nominal	
Subpart (c), Clause 15.225(e)	ANSI C63.10.2009		
Title 47 of the CFR:2012, Part 15	ANSI C63.10:2009		
Subpart (c), Clause 15.215(c)	ANGI C03. 10.2009	-	

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The 10 m semi anechoic chamber used to collect the Conducted and Radiated data is located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4. Detailed description of test facilities was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned loop, dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of §15.203

7. TEST SUMMARY

The results in this report apply only to sample tested

Regulation	Test Type	Range	Result
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.225(a)	Radiated Electric Field Emissions	13.553MHz to 13.567MHz	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.225(b)	Radiated Electric Field Emissions	13.410MHz to 13.553MHz and 13.567MHz to 13.710MHz	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.225(c)	Radiated Electric Field Emissions	13.110 MHz to 13.410 MHz and 13.710 MHz to 14.010 MHz	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.209 (d)	Radiated Electric Field Emissions	9kHz to 30MHz	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.209	Radiated Electric Field Emissions	30MHz to 1GHz	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.207	AC power conducted emissions	150kHz to 30MHz	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.225(e)	Frequency Stability	0.01% of nominal	Pass
Title 47 of the CFR:2012, Part 15 Subpart (c), Clause 15.215(c)	20 dB Bandwidth	-	Pass

8. RADIATED EMISSION MEASUREMENT

Requirement(s): 15.209, 15.225

Except as provided elsewhere in this paragraph the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Rule Part	Frequency (MHz)	Limit		
	0.009 ~ 0.490	2400/F(kHz)uV/m@300		
	0.490 ~1.705	24000/F(kHz)uV/m@30		
	1.705 ~ 30 30 uV/m@30			
Part 15.209	30 ~ 88	100 ** uV/m@3m		
	88 ~ 216	150 ** uV/m@3m		
	216 ~ 960	200 ** uV/m@3m		
	Above 960	500 uV/m@3m		

Minimum Standard: FCC Part 15.225 / 15.209

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

15.225 Operation within the band 13.110 – 14.010 MHz.

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter (= 84 dBuV/m) at 30 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed

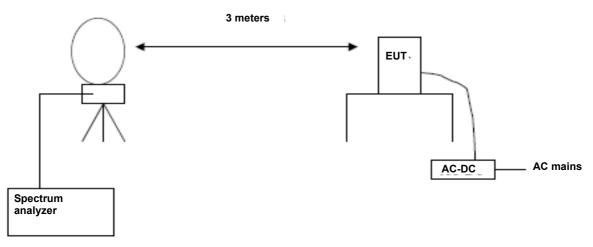
334 microvolts/meter (=50.5dBuV/m) at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed

106 microvolts/meter (=40.5 dBuV/m) at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

(e) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


(f) In the case of radio frequency powered tags designed to operate with a device authorized under this section, the tag may be approved with the device or be considered as a separate device subject to its own authorization. Powered tags approved with a device under a single application shall be labeled with the same identification number as the device.

Model: LG-D690n

8.1. RADIATED EMISSION 9 kHz - 30 MHz

Test Set-up

Test Procedure

The EUT was placed on a non-conductive table located on a large open test site. The loop antenna was placed at a location 3m from the EUT. Radiated emissions were measured with the

loop antenna was placed at a location 3m from the EUT. Radiated emissions were measured with the loop antenna both parallel and perpendicular to the plane of the EUT loop antenna and with x, y, z planes in EUT.

The limit is converted from microvolts/meter to decibel microvolts/meter. Sample Calculation:

Corrected Amplitude = Raw Amplitude(dBµV/m) + ACF(dB) + Cable Loss(dB) – Distance Correction Factor

The spectrum analyzer is set to: Frequency Range = 9 kHz ~ 1GHz

RBW = 9 kHz (9 kHz ~ 30MHz) = 120 kHz (30 MHz ~ 1 GHz)

Trace Mode = max hold Detector Mode = peak / Quasi-peak Sweep time = auto

Test Results

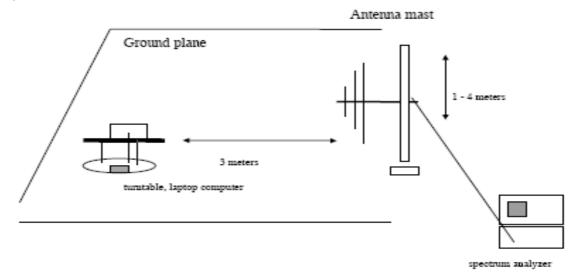
	13.553 MHz-13.567 MHz					
Frequency	Read Level	Ant.Factor+Cable	Distance	Result Level	Limit	Margin
		Loss	Correction			
(MHz)	(dBuV)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)
13.560121	34.79(H)*	19.58	-40	14.37	84	69.63
13.560121	30.27(V)*	19.58	-40	9.85	84	74.15

13.410 MHz-13.553 MHz and 13.567 MHz-13.710 MHz						
Frequency	Read Level	Ant.Factor+Cable	Distance	Result Level	Limit	Margin
		Loss	Correction			
(MHz)	(dBuV)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)
13.5530	22.08	19.58	-40	1.66	50.47	48.81
13.5670	22.52	19.58	-40	2.10	50.47	48.37

13.110 MHz – 13.410 MHz and 13.710 MHz-14.010 MHz							
Frequency Read Level Ant.Factor+Cable Distance Result Level Limit Margir							
		Loss	Correction				
(MHz)	(dBuV)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)	
13.1874	6.87	19.58	-40	-13.55	40.51	54.06	
13.9338	7.95	19.58	-40	-12.47	40.51	52.98	

		9 kH	lz -30 MHz			
Frequency	Read Level	Ant.Factor+Cable	Distance	Result Level	Limit	Margin
		Loss	Correction			
(MHz)	(dBuV)@3m	(dB/m)	(dB)	(dBuV/m)@30m	(dBuV/m)@30m	(dB)
10.3325	8.56	19.58	-40	-11.86	29.54	41.40
21.2374	6.87	18.58	-40	-14.55	29.54	44.09
27.1218	5.75	18.58	-40	-15.67	29.54	45.21
27.1305	6.18	18.58	-40	-15.24	29.54	44.78

Note :


- Distance Correction Below 30MHz = 40log(3m/30m) = 40 dB Measurement Distance : 3 m (Below 30 MHz)
- 2. Factor = Antenna Factor + Cable Loss
- 3. Result Level = Read Level + Factor + Distance Correction
- 4. Margin = Limit Result Level
- 5. We have done x, y, z planes in EUT
- 6. Antenna rotated about its vertical/horizontal axis for maximum response at each azimuth position around the EUT.
- 7. Worst case of operating mode is type A, analog mode and 106 kbps.

Model: LG-D690n

8.2. RADIATED EMISSION 30 MHz - 1000 MHz

Test Set-up

Test Procedures: Radiated emissions were measured according to ANSI C63.10.

The EUT was set to transmit at the highest output power.

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBµV	dB /m	dB	(H/V)	dBµV/m	dBµV/m	dB
35.17	20.75	12.01	0.97	Н	33.73	40.0	6.27
43.86	21.16	12.89	1.08	Н	35.13	40.0	4.87
51.67	19.75	13.24	1.18	V	34.17	40.0	5.83
77.96	22.46	9.35	1.45	Н	33.26	40.0	6.74
137.35	20.99	11.98	1.95	Н	34.92	43.5	8.58
145.77	23.85	12.52	2.03	V	38.4	43.5	5.10

The EUT was set 3 meter away from the measuring antenna.

Remark

- 1. Result Level = Read Level + (Antenna Factor+ Cable Loss)
- 2. Margin = Limit Result Level

9. EMISSION BANDWIDTH PLOT.

Requirement(s):

Test Set-up: The EUT was connected to a spectrum analyzer.

Test Procedure: The 20 dB bandwidth was measured by using a spectrum analyzer.

10. FREQUENCY TOLERANCE

Procedure: Part 15.225, ANSI 63.10

If required, the operating or transmitting frequency of an intentional radiator should be measured in accordance with the following procedure to ensure that the device operates outside certain precluded frequency bands and within the frequency range. No modulation needs to be supplied to the intentional radiator during these tests, unless modulation is required to produce an output, e.g., single-sideband suppressed carrier transmitters.

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -20°C to + 50°C using an environmental chamber.
- b) For battery operated equipment, the equipment tests shall be performed using a new battery.

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

VOLTAGE	POWER	Temperature	Frequency	Frequency
				Error
(%)		(°C)	(MHz)	(Hz)
100%		-20	13.560179	58
100%		-10	13.560157	36
100%		0	13.560154	33
100%	2.0.1/	10	13.560139	18
100%	3.8 V	20	13.560121	0
100%		30	13.560108	-13
100%		40	13.560097	-24
100%		50	13.560080	-41
115%	4.37	20	13.560137	16
Batt. Endpoint	3.23	20	13.560149	28

Measurement Result:

11. POWERLINE CONDUCTE EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits (dBµV)					
Frequency Range (MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

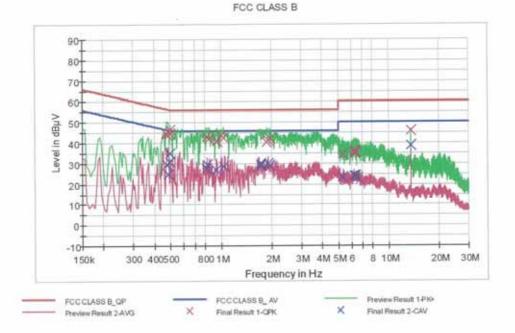
See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. The EUT is the device with a detachable antenna operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected

- For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Test Plots Unterminate the Antenna Conducted Emissions (Line 1)



1/2

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: Operator Name: LG-D690n LG SHIELD ROOM NFC (UNTERMINATED) KH-SEO

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0,469500	44.4	9,000	Off	L1	9.7	12.1	56.5
0.478500	44.2	9,000	Off	L1	9.7	12.2	56.4
0,496500	46.2	9.000	Off	L1	9.7	9,9	56.1
0.500000	44.8	9.000	Off	L1	9.7	11.2	56.0
0.815000	43.0	9.000	Off	L1	9.7	13.0	56.0
0.851000	41.9	9,000	Off	L1	9.7	14.1	56.0
0.950000	40.7	9.000	Off	L1	9.7	15.3	56.0
1.004000	43.7	9.000	Off	L1	9.7	12.3	56.0
1.035500	42.3	9.000	Off	L1	9.7	13.7	56.0
1.877000	40.5	9,000	Off	L1	9.8	15.5	56.0
1.922000	41.2	9.000	Off	L1	9.8	14.8	56.0
1.958000	42.0	9.000	Off	L1	9.8	14.0	56.0
5.306000	34,7	9,000	Off	L1	9.9	25.3	60,
6,219500	35.2	9.000	Off	L1	9.9	24.8	60.0
6.233000	35.7	9.000	Off	L1	9.9	24.3	60.
6,269000	35.1	9,000	Off	L1	9.9	24.9	60.

7/1/2014

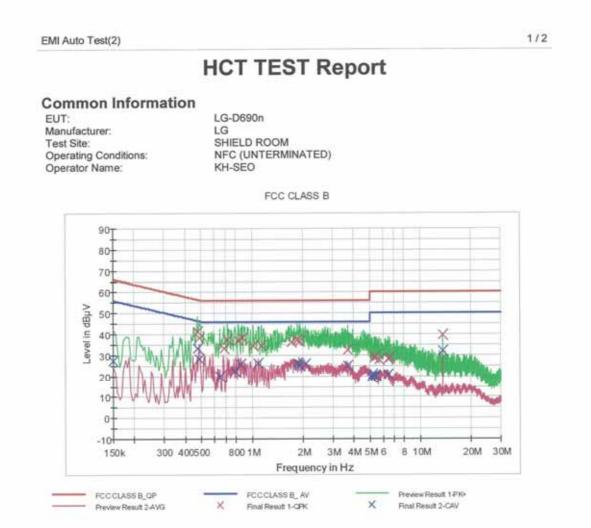
4:30:01

EMI Auto Test(2)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6.354500	35.6	9.000	Off	L1	9,9	24.4	60.0
13.559000	46.0	9.000	MO	L1	10.2	14.0	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.478500	29.4	9.000	011	L1	9.7	17.0	46.4
0.487500	24.8	9.000	Off	L1	9.7	21.4	46.2
0,496500	34.8	9.000	Off	L1	9.7	11.3	46.1
0.500000	30.7	9.000	Off	L1	9.7	15.3	46.0
0.815000	28.0	9,000	Off	L1	9.7	18.0	46.0
0.828500	29.4	9,000	Off	L1	9.7	16.6	46.0
0.941000	26.9	9.000	Off	L1	9.7	19.1	46.0
1.040000	28.8	9,000	Off	L1	9.7	17.2	46.0
1.724000	29.7	9.000	Off	L1	9.8	16,3	46.0
1.733000	29.1	9,000	Off	L1	9.8	16.9	46.0
1.922000	29.8	9.000	Off	L1	9.8	16.2	46.0
1.958000	29.1	9,000	Off	L1	9.8	16,9	46.0
5,306000	23.4	9.000	Off	L1	9.9	26.6	50.0
6.219500	24.0	9.000	Off	L1	9.9	26.0	50.0
6.233000	24.0	9.000	Off	L1	9.9	26.0	50.0
6.354500	24.0	9,000	Off	L1	9.9	26.0	50.0
6.512000	23.1	9.000	Off	L1	10.0	26.9	50.0
13.559000	38.7	9,000	Off	L1	10.2	11.3	50.0


2/2

7/1/2014

4:30:01

Conducted Emissions (Line 2)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0,474000	41.2	9.000	Off	N	9.7	15.2	56.4
0.487500	38,4	9,000	Off	N	9.7	17.8	56.2
0.684500	33.4	9.000	Off	N	9.7	22.6	56.0
0.716000	37.3	9.000	Off	N	9.7	18.7	56.0
0.833000	37.1	9.000	110	N	9.7	18.9	56.0
0.873500	38.2	9.000	Off	N	9.7	17.8	56.0
1.022000	34.4	9.000	Off	N	9.7	21.6	56.0
1.134500	34.5	9.000	Off	N	9.7	21.5	56.0
1.701500	36.4	9.000	Off	N	9,8	19.6	56.0
1.854500	37.0	9,000	Off	N	9.8	19.0	56.0
1.926500	36.6	9,000	Off	N	9.8	19.4	56.0
3,708500	32.4	9.000	Off	N	9,9	23.6	56.0
5.333000	28.6	9.000	Off	N	9.9	31.4	60.0
5.360000	29.6	9.000	Off	N	9,9	30.4	60.0
5.666000	27,8	9.000	Off	N	9.9	32.2	60.0
6.399500	28.3	9.000	Off	N	9,9	31.7	60.0

7/1/2014

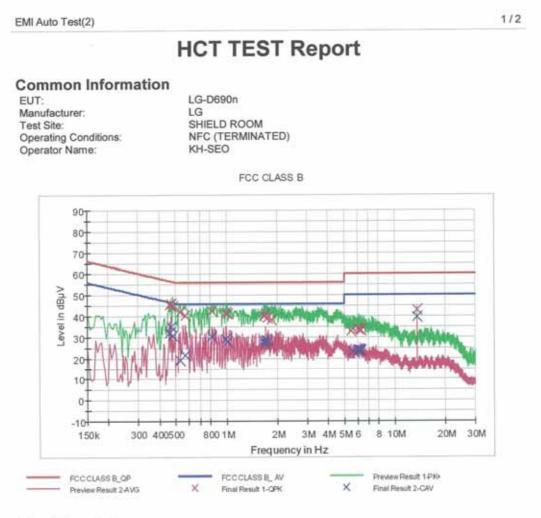
4:06:48

EMI Auto Test(2)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6.552500	28.5	9.000	Off	N	10.0	31.5	60.0
13,559000	39.6	9.000	Off	N	10.1	20.4	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	27.6	9.000	Off	N	9.6	28.4	56.0
0.474000	33.1	9,000	Off	N	9.7	13.3	46.4
0.487500	28.1	9.000	110	N	9.7	18.1	46.2
0.644000	20.0	9,000	Off	N	9.7	26.0	46.0
0.792500	22.3	9.000	Off	N	9.7	23.8	46.0
0.860000	25.8	9,000	Off	N	9.7	20.2	46.0
1.089500	26.2	9.000	Off	N	9.7	19.8	46.0
1.854500	25.9	9,000	Off	N	9,8	20.1	46.0
1.890500	25.8	9,000	Off	N	9,8	20.2	46.0
1.926500	24.7	9,000	Off	N	9,8	21.3	46.0
2.066000	25.5	9,000	Off	N	9.8	20.5	46.0
3,708500	24.8	9.000	Off	N	9.9	21.2	46.0
5,148500	19.4	9.000	110	N	9.9	30.6	50.0
5,166500	20.8	9,000	Off	N	9.9	29.2	50.0
5.360000	20.3	9,000	Off	N	9.9	29.7	50.0
5,400500	19.9	9.000	110	N	9.9	30.1	50.0
6.399500	20.5	9.000	Off	N	9.9	29.5	50.0
13.559000	32.2	9.000	Off	N	10.1	17.8	50.0


2/2

7/1/2014

4:06:48

Terminate the Antenna Conducted Emissions (Line 1)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0,460500	45.5	9,000	Off	L1	9.7	11.2	56.7
0.469500	45.9	9.000	Off	L1	9.7	10.6	56.5
0.483000	44.7	9.000	Off	L1	9.7	11.6	56.3
0.536000	42.1	9.000	Off	L1	9.7	13.9	56.0
0.572000	40.3	9.000	Off	L1	9.6	15.7	56.0
0.819500	42.4	9.000	Off	L1	9.7	13.6	56.0
0.995000	41.5	9.000	Off	L1	9.7	14.5	56.0
1.013000	41.1	9.000	Off	L1	9.7	14.9	56.0
1.670000	40.1	9.000	Off	L1	9.8	15.9	56.0
1.706000	41.4	9.000	Off	L1	9,8	14.6	56.0
1.751000	39.3	9.000	Off	L1	9.8	16.7	56.0
1.850000	38.2	9.000	Off	L1	9.8	17.8	56.0
5.481500	32.9	9.000	Off	L1	9.9	27.1	60.0
6.030500	33.9	9.000	Off	L1	9.9	26.1	60.0
6,152000	33.8	9.000	Off	L1	9.9	26.2	60.0
6.228500	33.6	9.000	Off	L1	9.9	26.4	60.0

7/1/2014

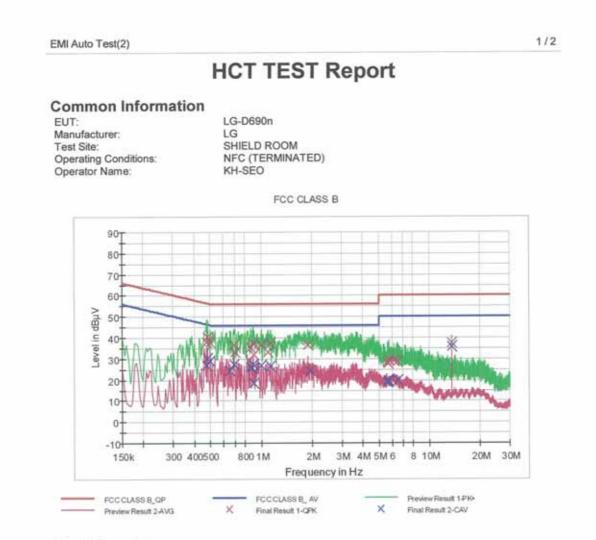
4:18:41

EMI Auto Test(2)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6,323000	33.4	9.000	Off	L1	9,9	26.6	60.0
13,559000	43.0	9,000	Off	L1	10.2	17.0	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.460500	31.8	9,000	Off	L1	9.7	14.9	46.7
0.469500	34.9	9.000	110	L1	9.7	11.6	46.5
0.483000	30.8	9,000	Off	L1	9.7	15.5	46.3
0.536000	18.9	9.000	Off	L1	9.7	27.1	46.0
0.572000	21.5	9.000	Off	L1	9,6	24.5	46.0
0.819500	30.2	9.000	110	L1	9.7	15.8	46.0
0.995000	29.1	9.000	Off	L1	9,7	16.9	46.0
1.013000	27.8	9.000	Off	L1	9.7	18.2	46.0
1.670000	28.3	9,000	Off	L1	9.8	17.7	46.0
1.683500	27.1	9,000	Off	L1	9.8	18.9	46.0
1.706000	28.8	9.000	Off	L1	9.8	17.2	46.0
1.742000	28.1	9,000	Off	L1	9.8	17.9	46.0
5,648000	23.2	9.000	Off	L1	9.9	26.8	50.0
6.030500	24.0	9,000	Off	L1	9,9	26.0	50.0
6.152000	24.1	9.000	Off	L1	9.9	25.9	50.0
6.228500	23.6	9.000	Off	L1	9.9	26.4	50.0
6.323000	23.8	9.000	Off	L1	9.9	26.2	50.0
13.559000	39.5	9.000	Off	L1	10.2	10.5	50.0


2/2

7/1/2014

4:18:41

Conducted Emissions (Line 2)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.474000	38.1	9,000	Off	N	9.7	18.3	56.4
0.483000	40.5	9.000	Off	N	9.7	15.8	56.3
0.500000	37.9	9.000	0ff	N	9.7	18,1	56.0
0.689000	36.6	9.000	Off	N	9.7	19.4	56.0
0.698000	33.4	9.000	Off	N	9.7	22.6	56.0
0.869000	35,4	9,000	110	N	9.7	20.6	56.0
0.896000	37.3	9.000	Off	N	9.7	18.7	56.0
0.909500	31.9	9.000	Off	N	9.7	24.1	56.0
0.999500	36.6	9.000	Off	N	9.7	19.4	56.0
1.094000	33.3	9.000	Off	N	9.7	22.7	56.0
1,139000	37.4	9,000	Off	N	9.7	18.6	56.0
1.895000	36.7	9.000	Off	N	9.8	19.3	56.0
5,625500	28.1	9,000	Off	N	9.9	31.9	60.0
5.688500	28.0	9.000	Off	N	9.9	32.0	60.0
5.733500	29.3	9.000	Off	N	9,9	30.7	60.0
6,125000	28.9	9.000	110	N	9.9	31.1	60.0

7/1/2014

4:12:30

2/2

EMI Auto Test(2)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6,413000	28.5	9.000	Off	N	9,9	31.5	60.0
13.559000	37.4	9.000	Off	N	10.1	22.6	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.474000	27.1	9,000	Off	N	9.7	19.3	46.4
0.483000	30.5	9.000	Off	N	9.7	15.8	46.3
0.500000	29.0	9.000	Off	N	9.7	17.0	46.0
0.653000	24.6	9.000	Off	N	9.7	21.4	46.0
0.689000	27.5	9.000	Off	N	9.7	18.5	46.0
0.869000	26.0	9.000	Off	N	9,7	20.0	46.0
0.887000	25.6	9,000	Off	N	9.7	20.4	46.0
0.896000	27.6	9.000	Off	N	9.7	18.4	46.0
0.909500	18.6	9,000	Off	N	9.7	27.4	46.0
0.999500	27.0	9.000	Off	N	9.7	19.0	46.0
1.134500	26.4	9.000	Off	N	9.7	19.6	46.0
1.949000	24.4	9,000	Off	N	9.8	21.6	46.0
5.625500	19.1	9.000	ho	N	9.9	30.9	50.0
5.679500	19.9	9.000	Off	N	9.9	30.1	50.0
5.688500	19.3	9,000	tto	N	9.9	30.7	50.0
5.733500	19.6	9.000	0ff	N	9.9	30.4	50.0
6.534500	20.0	9,000	Off	N	10.0	30.0	50.0
13,559000	35,9	9.000	110	N	10.1	14.1	50.0

7/1/2014

4:12:30

12. LIST OF TEST EQUIPMENT 12.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	01/29/2014	Annual	01/29/2015	100073
Agilent	E4440A/ Spectrum Analyzer	04/09/2014	Annual	04/09/2015	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	05/23/2014	Annual	05/23/2015	MY51110063
Agilent	N1911A/Power Meter	01/24/2014	Annual	01/24/2015	MY45100523
Agilent	N1921A /POWER SENSOR	07/11/2013	Annual	07/11/2014	MY45241059
Hewlett Packard	11636B/Power Divider	10/22/2013	Annual	10/22/2014	11377
Agilent	87300B/Directional Coupler	12/18/2013	Annual	12/18/2014	3116A03621
Hewlett Packard	11667B / Power Splitter	01/27/2014	Annual	01/27/2015	10545
DIGITAL	EP-3010 /DC POWER SUPPLY	10/29/2013	Annual	10/29/2014	3110117
ITECH	IT6720 / DC POWER SUPPLY	11/05/2013	Annual	11/05/2014	010002156287001199
TESCOM	TC-3000C / BLUETOOTH TESTER	04/24/2014	Annual	04/24/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Agilent	8493C / Attenuator(10 dB)	07/24/2013	Annual	07/24/2014	76649
WEINSCHEL	2-3 / Attenuator(3 dB)	10/28/2013	Annual	10/28/2014	BR0617
NAENG YEOL CO.LTD	NY-THR18750/ Temp & Humidity Chamber	10/30/2013	Annual	10/30/2014	NY-200912201A

12.2 LIST OF TEST EQUIPMENT(Radiated Test)

		Calibration	Calibration	Calibration		
Manufacturer	Model / Equipment	Date	Interval	Due	Serial No.	
Schwarzbeck	VULB 9160/ TRILOG Antenna	12/17/2012	Biennial	12/17/2014	3150	
Rohde & Schwarz	ESCI / EMI TEST RECEIVER	01/24/2014	Annual	01/24/2015	100584	
HD	MA240/ Antenna Position Tower	N/A	N/A	N/A	556	
EMCO	1050/ Turn Table	N/A	N/A	N/A	114	
HD GmbH	HD 100/ Controller	N/A	N/A	N/A	13	
HD GmbH	KMS 560/ SlideBar	N/A	N/A	N/A	12	
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	09/10/2013	Annual	09/10/2014	10094	
CERNEX	CBL18265035 / POWER AMP	07/24/2013	Annual	07/24/2014	22966	
CERNEX	CBL26405040 / POWER AMP	04/04/2014	Annual	04/04/2015	19660	
Schwarzbeck	BBHA 9120D/ Horn Antenna	07/05/2013	Biennial	07/05/2015	1151	
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	10/30/2012	Biennial	10/30/2014	BBHA9170124	
Rohde & Schwarz	FSP / Spectrum Analyzer	01/24/2014	Annual	01/24/2015	839117/011	
Wainwright		02/03/2014	Annual	02/03/2015	F6	
Instrument	WHF3.0/18G-10EF / High Pass Filter					
Wainwright	WHNX6.0/26.5G-6SS / High Pass Filter	04/00/2014	Annual	04/00/2015	1	
Instrument	WHINKO.0/20.30-033 / High Pass Piller	04/09/2014	Annuai	04/09/2015	1	
Wainwright	WHNX7.0/18G-8SS / High Pass Filter	04/04/2014	Annual	04/04/2015	29	
Instrument	WHINK 7.0/100-033 / High Pass Filter	04/04/2014	Annuai	04/04/2013	29	
Wainwright	WRCJ2400/2483.5-2370/2520-60/14SS /	06/24/2014	Annual	06/17/2015	1	
Instrument	Band Reject Filter	00/24/2014			Ι	
TESCOM	TC-3000C / BLUETOOTH TESTER	04/24/2014	Annual	04/24/2015	3000C000276	
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422	
Rohde & Schwarz	LOOP ANTENNA	08/14/2012	Biennial	08/14/2014	100179	
CERNEX	CBL06185030 / POWER AMP	07/24/2013	Annual	07/24/2014	22965	
CERNEX	CBLU1183540 / POWER AMP	07/24/2013	Annual	07/24/2014	22964	