

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE

FCC Certification

Applicant Name:
LG Electronics MobileComm U.S.A., Inc.Date of Issue:
July 22, 2014
Test Site/Location:
HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-
myeon, Icheon-si, Gyeonggi-do, Korea
Report No.: HCT-R-1407-F027

HCT FRN: 0005866421

FCC ID : ZNFD690N

APPLICANT : LG Electronics MobileComm U.S.A., Inc.

FCC Model(s):	LG-D690n
Additional FCC Model(s):	LG-D690N, LGD690n, LG-D693n, LG-D693N, LGD693n
EUT Type:	Cellular/PCS GSM/GPRS/EDGE Rx/WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN and NFC
Peak RF Output Power:	-2.640 dBm (0.5445 mW)
Frequency Range:	2402 MHz -2480 MHz(BT 4.0_Low Energy Mode)
Modulation type	GFSK
FCC Classification:	Digital Transmission System(DTS)
FCC Rule Part(s):	Part 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Kyoung Houn Seo Test Engineer of RF Team

Approved by : Chang Seok Choi Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1407-F027	July 22, 2014	- First Approval Report

Table of Contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	4
3. TEST METHODOLOGY	5
3.1 EUT CONFIGURATION	5
3.2 EUT EXERCISE	5
3.3 GENERAL TEST PROCEDURES	5
3.4 DESCRIPTION OF TEST MODES	5
4. INSTRUMENT CALIBRATION	6
5. FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES	6
5.2 EQUIPMENT	
6. ANTENNA REQUIREMENTS	6
7. SUMMARY TEST OF RESULTS	7
8. TEST RESULT	8
8. TEST RESULT 8.1 DUTY CYCLE	-
	8
8.1 DUTY CYCLE	8 9
8.1 DUTY CYCLE 8.2 6dB BANDWIDTH MEASUREMENT	8 9 2
8.1 DUTY CYCLE 8.2 6dB BANDWIDTH MEASUREMENT 8.3 OUTPUT POWER MEASUREMENT	8 9 2 9
8.1 DUTY CYCLE	8 9 2 9 3
8.1 DUTY CYCLE	8 9 2 9 3 4
8.1 DUTY CYCLE	8 9 2 9 3 4 4
8.1 DUTY CYCLE	8 9 2 9 3 4 4 3
8.1 DUTY CYCLE	8 9 2 9 3 4 4 3 5
8.1 DUTY CYCLE	8 9 2 9 3 4 3 5 0

Model: LG-D690n

1. GENERAL INFORMATION

Applicant:	LG Electronics MobileComm U.S.A., Inc.
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632
FCC ID:	ZNFD690N
EUT Type:	Cellular/PCS GSM/GPRS/EDGE Rx/WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN and NFC
Model name(s):	LG-D690n
Additional Model name(s):	LG-D690N, LGD690n, LG-D693n, LG-D693N, LGD693n
Date(s) of Tests:	June 18, 2014 ~ July 03, 2014
Place of Tests:	HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea (IC Recognition No. : 5944A-3)

2. EUT DESCRIPTION

FCC Model Name	LG-D690n		
Additional FCC Model Name	LG-D690N, LGD690n, LG-D693n, LG-D693N, LGD693n		
EUT Type	Cellular/PCS GSM/GPRS/EDGE Rx/WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN		
	and NFC		
Power Supply	DC 3.8 V		
Battery type	Li-ion Battery(Standard)		
Frequency Range	TX: 2402 MHz ~ 2480 MHz		
	RX: 2402 MHz ~ 2480 MHz		
Max. RF Output Power	Peak -2.640 dBm (0.5445 mW)		
	Average	-2.770 dBm (0.5284 mW)	
BT Operating Mode	BT 4.0_Low Energy Mode		
Modulation Type	GFSK		
Number of Channels	40 Channels		
Antenna Specification	Manufacturer: IM-Tech		
	Antenna type: FF	CB Antenna	
	Peak Gain : -2.42	2 dBi	

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v03r02 dated June 05, 2014 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.4-2003) Operating Under §15.247" were used in the measurement.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

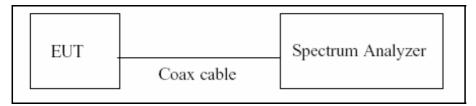
"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of §15.203

7. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Peak Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	CONDUCTED	PASS
Band Edge(Out of Band Emissions)	§15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 8.7		PASS
Radiated Spurious Emissions §15.205, 15.209		cf. Section 8.6.1	RADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.6.2	RADIATED	PASS



8. TEST RESULT 8.1 DUTY CYCLE

TEST PROCEDURE

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zerospan measurement method, 6.0)b) in KDB 558074(issued 06/05/2014)

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure $T_{\text{total}} \, \text{and} \, T_{\text{on}}$
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle)

LE Mode	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor
	0.1120	0.6240	0.1795	7.46

8.2 6dB BANDWIDTH MEASUREMENT

Test Requirements and limit, §15.247(a)(2)

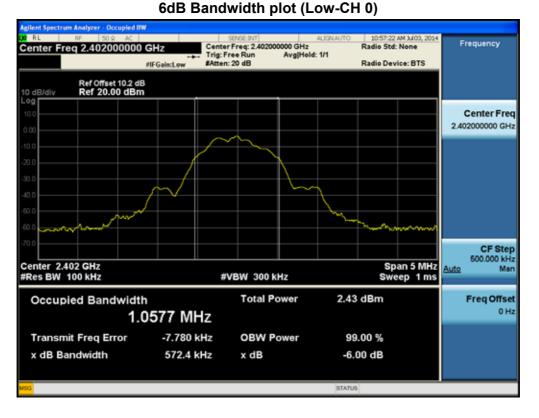
The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

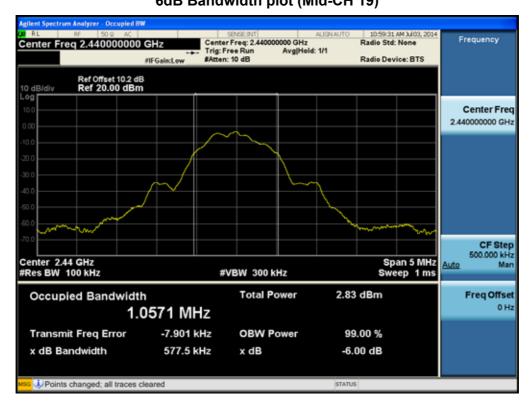
TEST CONFIGURATION

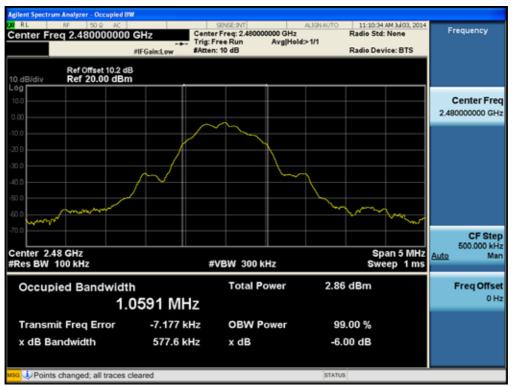
TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.


The Spectrum Analyzer is set to (Page 5 in KDB 558074, issued 06/05/2014)

RBW = 100 kHz VBW ≥ 3 x RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize


Note : We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.


RESULT PLOTS

6dB Bandwidth plot (Mid-CH 19)

6dB Bandwidth plot (High-CH 39)

8.3 OUTPUT POWER MEASUREMENT

Test Requirements and limit, §15.247(b)(3)

A transmitter antenna terminal of EUT is connected to the input of a Spectrum Analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function.

This EUT TX condition is actual operating mode by BT LE mode test program.

The Spectrum Analyzer is set to

- Peak Power (Procedure 9.1.1 in KDB 558074, issued 06/05/2014)
 - RBW ≥ DTS Bandwidth
 - $VBW \ge 3 \times RBW$
 - SPAN \ge 3 x RBW
 - Detector Mode = Peak
 - Sweep = auto couple
 - Trace Mode = max hold
 - Allow trace to fully stabilize.
 - Use peak marker function to determine the peak amplitude level
- Average Power (Procedure 9.2.2.4 in KDB 558074, issued 06/05/2014)
 - Measure the duty cycle
 - Set span to at least 1.5 times the OBW
 - RBW = 1-5 % of the OBW, not to exceed 1 MHz.
 - VBW \geq 3 x RBW.
 - Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$,
 - so that narrowband signals are not lost between frequency bins.)
 - Sweep time = auto.
 - Detector = RMS(i.e., power averaging)

Do not use sweep triggering. Allow the sweep to "free run".

Trace average at least 100 traces in power averaging(RMS) mode.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.

Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor Output Power = 10 dBm + 10 dB + 0.8 dB + 0.2 dB = 21.0 dBm

Note :

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.2 dB is offset for 2.4 GHz Band.

TEST RESULTS-Peak

Conducted Output Power Measurements

LE Me	ode	Measured	Limit
Frequency[MHz]	Channel No.	Power(dBm)	(dBm)
2402	0	-3.055	30
2440	19	-2.700	30
2480	39	-2.640	30

TEST RESULTS-Average

Conducted Output Power Measurements

LE Mode				Measured	
Frequency[MHz]	Channel No.	Measured Power(dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
2402	0	-10.67	7.46	-3.21	30
2440	19	-10.38	7.46	-2.92	30
2480	39	-10.23	7.46	-2.77	30

RESULT PLOTS-Peak

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

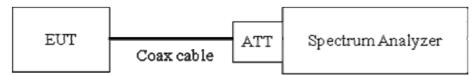
Conducted Output Power (High-CH 39)

RESULT PLOTS-Average

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Conducted Output Power (High-CH 39)


8.4 POWER SPECTRAL DENSITY

Test Requirements and limit, §15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard – The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to Procedure 10.2 in KDB 558074, issued 06/05/2014

The spectrum analyzer is set to :

Set analyzer center frequency to DTS channel center frequency.

Span = 1.5 times the DTS channel bandwidth.

 $RBW = 3 kHz \le RBW \le 100 kHz.$

VBW \geq 3 x RBW.

Sweep = auto couple

Detector = peak

Trace Mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

PSD = Reading Value + ATT loss + Cable loss(1 ea)

Output Power = -5 dBm + 10 dB + 0.8 dB = 5.8 dBm

Note :

- 1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So,10.2 dB is

offset for 2.4 GHz Band.

TEST RESULTS

Frequency Channel		Test Result				
(MHz)	5		Mode	PSD	Limit	Pass/
			(dBm)	(dBm)	Fail	
2402	0		-17.338	8	Pass	
2440	19	LE	-16.960	8	Pass	
2480	39		-16.866	8	Pass	

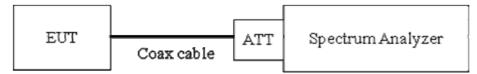
Conducted Power Density Measurements

RESULT PLOTS

Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Power Spectral Density (High-CH 39)



8.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit : 20 dBc

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074, issued 06/05/2014)

RBW = 100 kHz

 $VBW \ge 3 \times RBW$

Set span to encompass the spectrum to be examined

Detector = Peak

Trace Mode = max hold

Sweep time = auto couple

Ensure that the number of measurement points \geq 2*Span/RBW

Allow trace to fully stabilize.

Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 10th harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note :

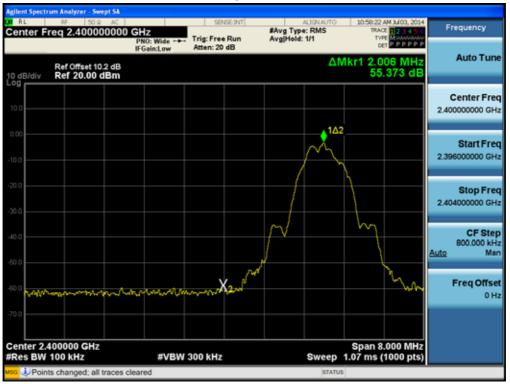
1. The band edge results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.2 dB is offset for 2.4 GHz Band.
- 4. In case of conducted spurious emissions test, please check factors blow table.
- 5. In order to simplify the report, attached plots were only the worst case channel and data rate.

FACTORS FOR FREQUENCY

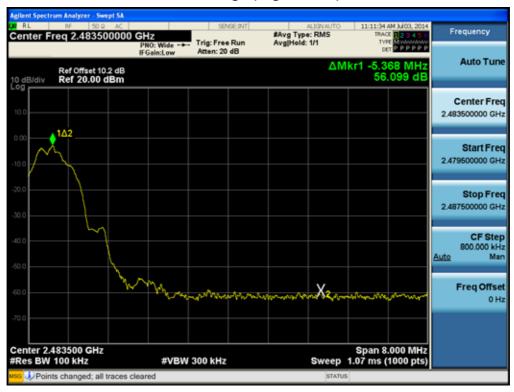
Freq(MHz)	Factor(dB)
30	9.95
100	10.01
200	10.03
300	10.04
400	10.05
500	10.04
600	10.03
700	10.09
800	10.10
900	10.08
1000	10.11
2000	10.25
2400*	10.19
2500*	10.26
3000	10.27
4000	10.22
5000	10.48
5700*	10.42
5800*	10.48
6000	10.48
7000	10.57
8000	10.45
9000	10.50
10000	10.64
11000	10.69
12000	10.75
13000	10.92
14000	11.90

Model: LG-D690n

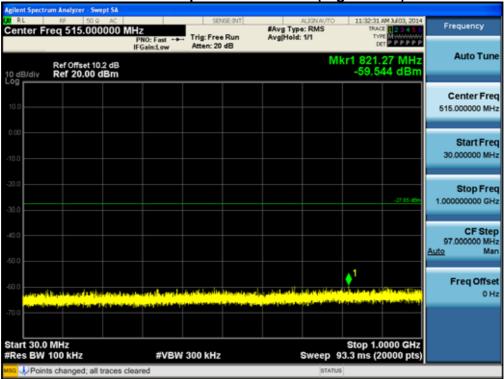

15000	11.00
16000	11.03
17000	10.93
18000	10.96
19000	10.85
20000	12.11
21000	11.17
22000	10.99
23000	11.12
24000	11.10
25000	11.42

Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Attenuator loss

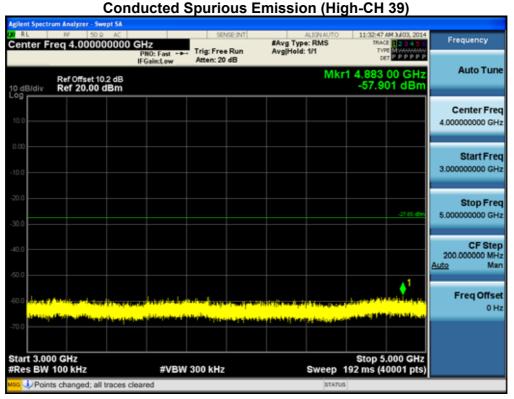


RESULT PLOTS


BandEdge (Low-CH 0)

BandEdge (High-CH 39)

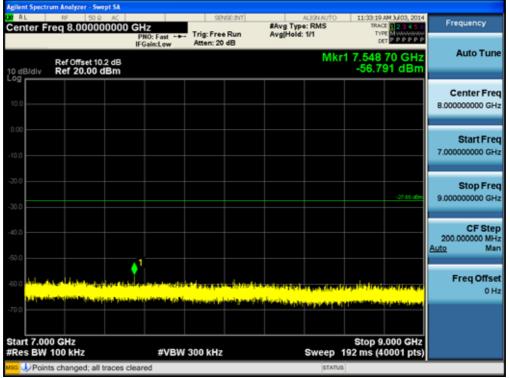
30 MHz ~ 1 GHz


Conducted Spurious Emission (High-CH 39)

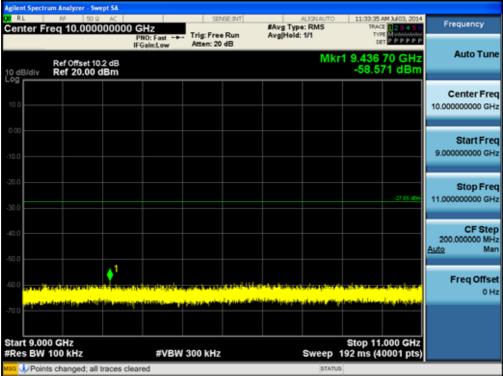
1 GHz ~ 3 GHz

	um Analyzer - Swept S					
Center F	req 2.0000000		Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg[Hold: 1/1	11:32:15 AM 3403, 2014 TRACE 2 3 4 5 6 TYPE MULTINE DET P P P P P P	Frequency
10 dBJdiv	Ref Offset 10.2 d Ref 20.00 dBn	8	PAGE 20 0D	Mk	r1 2.691 00 GHz -57.494 dBm	Auto Tune
10.0						Center Freq 2.000000000 GHz
0.00 +10.0						Start Freq 1.000000000 GHz
-20.0					-27 55 dBn	Stop Freq 3.000000000 GHz
-40.0						CF Step 200.000000 MHz Auto Man
50.0	, and in the second state of the					Freq Offset 0 Hz
-70.0 Start 1.00		ng data (gind) ita danin tanihi ng			Stop 2 000 CH	
#Res BW		#VBW	300 kHz	Sweep	Stop 3.000 GHz 192 ms (40001 pts)	
🔤 🤳 Poin	ts changed; all trac	es cleared		STAT	us	

$3 \text{ GHz} \sim 5 \text{ GHz}$

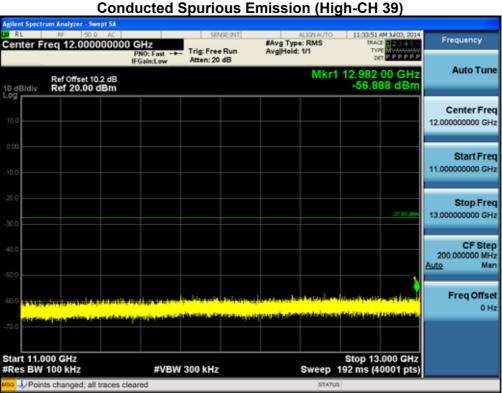

5 GHz ~ 7 GHz

RL	IN Analyzer - Swept SA		SD	SE:INT		ALIGNAUTO		M 3.403, 2014	Frequency
Center F	req 6.000000000	PNO: Fast ↔ IFGain:Low	- Trig: Free Atten: 20		#Avg Typ Avg[Hold:			т <mark>рррррр</mark>	Frequency
10 dB/div	Ref Offset 10.2 dB Ref 20.00 dBm					Mkr	1 6.262 -58.0	55 GHz 04 dBm	Auto Tune
10.0									Center Free 6.000000000 GH
.10.0									Start Free 5.000000000 GH
-20.0								-27.85 dBn	Stop Free 7.000000000 GH
-40.0									CF Stej 200.000000 MH <u>Auto</u> Ma
-50.0			o to logic,	(areasis)	1 All Hacks		a in grade de	here den the	Freq Offse
-70.0							a second de	ينات التكليل وعلا	
Start 5.00 #Res BW		#VBW	/ 300 kHz			Sweep	Stop 7. 192 ms (4	.000 GHz 0001 pts)	
usa 🤳 Poin	ts changed; all traces of	:leared				STATU	5		



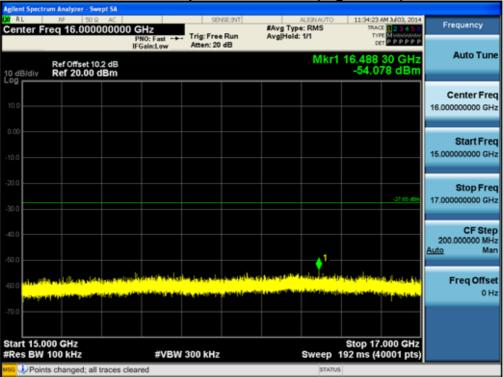
7 GHz ~ 9 GHz

Conducted Spurious Emission (High-CH 39)



9 GHz ~ 11 GHz

11 GHz ~ 13 GHz

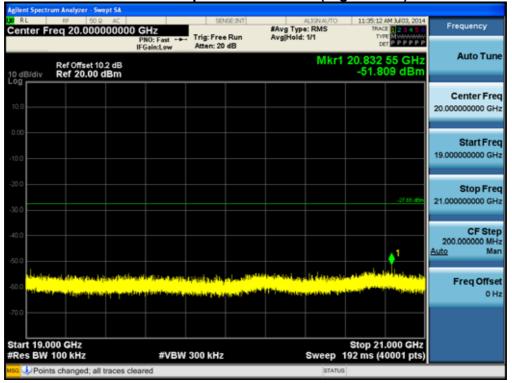


13 GHz ~ 15 GHz

Agilent Spectrum Analyzer - Swept SA				
RL RF 500 AC Center Freq 14.00000000	PNO: Fast Trig: Free Run	#Avg Type: RMS Avg[Hold: 1/1	11:34:07 AM 3,403, 2014 TRACE 2 3 4 5 6 TYPE MULLION	Frequency
Ref Offset 10.2 dB 10 dB/div Ref 20.00 dBm	IFGain:Low Atten: 20 dB	Mkr	14.960 15 GHz -55.594 dBm	Auto Tune
10.0				Center Freq 14.00000000 GHz
10.0				Start Freq 13.00000000 GHz
-20.0			-27 65 d ö n	Stop Fred 15.00000000 GHz
-40.0				CF Step 200.000000 MH3 Auto Mar
60.0 all and an and a second s	and distribution in the Michigan distriction of the second states of the	l produčje tel kolo do stano se osp Na postana se na postana se ostana se ost	and the second s	Freq Offset 0 Hz
-70.0 Start 13.000 GHz			Stop 15.000 GHz	
#Res BW 100 kHz	#VBW 300 kHz	Sweep	192 ms (40001 pts)	

15 GHz ~ 17 GHz

Conducted Spurious Emission (High-CH 39)


17 GHz ~ 19 GHz

	um Analyzer - Swep									
Center F	req 18.0000	00000 G	Hz NO: Fast ↔ Gain:Low			#Avg Type Avg[Hold:			MM 3.400, 2014 E 2 3 4 5 6 E MULLION T P P P P P P	Frequency
10 dB/div	Ref Offset 10.2 Ref 20.00 di	2 dB	Sameow	PARTER: 20	10		Mkr1	18.968 -53.7	60 GHz 83 dBm	Auto Tune
10.0										Center Freq 18.000000000 GHz
0.00 -10.0										Start Freq 17.000000000 GHz
-20.0									-27.65 dBm	Stop Free 19.00000000 GH2
-40.0									,	CF Step 200.000000 MH Auto Mar
-50.0	and diadhsin Ngangangangangan	uliter a bit	ander kand Receiver	and and the	olentquicite Anno 1944	under side	and the book	Despite de la La construir Popular de la Construir	na Hannak Kanada In	Freq Offset 0 Ha
-70.0 Start 17.0	00 GHz							Stop 19	.000 GHz	
#Res BW	100 kHz			300 kHz				192 ms (4	0001 pts)	
Poin Poin	ts changed; all tr	aces clear	ea				STATU	9		

19 GHz ~ 21 GHz

Conducted Spurious Emission (High-CH 39)

21 GHz ~ 23 GHz

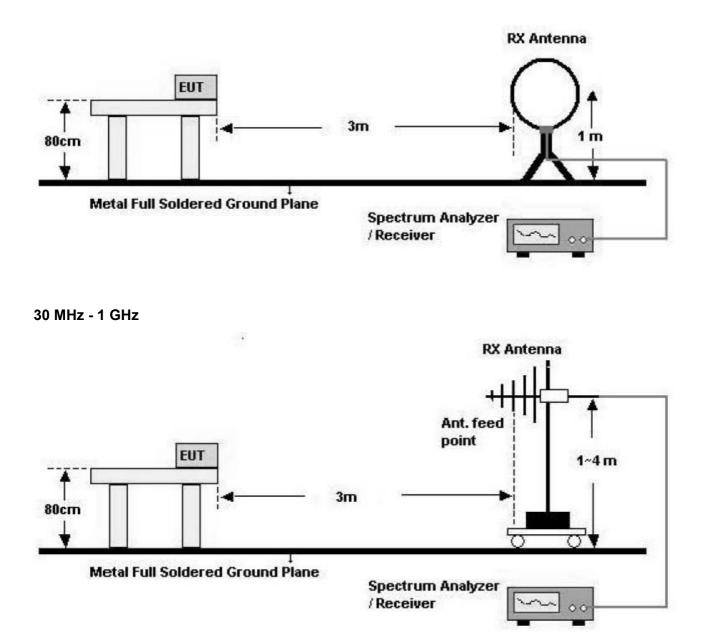
	rum Analyzer - Swept SA							-
Center F	req 22.00000000	PNO: Fast	Trig: Free	Run	#Avg Typ Avg[Hold:		11:35:20 AM 3,403, TRACE 2 3 TYPE MWWW DET P.P.P.	Frequency
10 dB/div	Ref Offset 10.2 dB Ref 20.00 dBm	IFGain:Low	Atten: 20	dB		Mkr	1 21.855 85 G -51.912 d	Hz Auto Tune
10.0								Center Freq 22.000000000 GHz
.10.0								Start Freq 21.00000000 GHz
-20.0							-27.60	Stop Freq 23.00000000 GHz
-40.0			1					CF Step 200.000000 MH Auto Mar
-50.0	an in suite le la plane. Le parte anné intérnétique	alariya yaladir waqoo yaani		tan agalat Tagataga	l enderhilden er generiken er	na je stanov Naje stanovno	, adapti katibati ang	Freq Offset
-70.0 Start 21.0	000 GHz						Stop 23.000 G	Hz
#Res BW	100 kHz ts changed; all traces of		300 kHz			Sweep	192 ms (40001)	ots)

23 GHz ~ 25 GHz

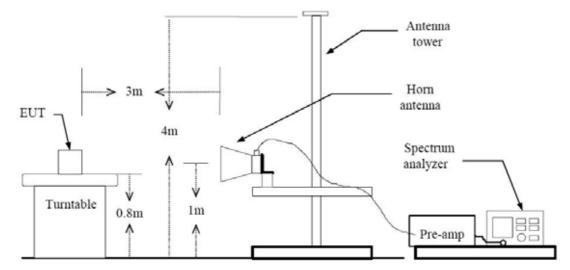
	rum Analyzer - Swept SA					_
enter F	req 24.0000000		Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg[Hold: 1/1	11:35:44 AM 3,403, 2014 TRACE 2 3 4 5 6 TYPE MUSEUMOUT DET P P P P P P	Frequency
0 dB/div	Ref Offset 10.2 dB Ref 20.00 dBm			Mkr1	24.705 95 GHz -49.572 dBm	Auto Tun
10.0						Center Free 24.000000000 GH
0.0						Start Free 23.000000000 GH
30.0					-27.65 dBn	Stop Fre 25.000000000 GH
0.0						CF Ste 200.000000 MH <u>Auto</u> Ma
0.0 <mark>10100000000000000000000000000000000</mark>	an da anna dhini an an Anna an Anna Anna dhini an Anna	lan das delated delan. Angelan delan d				Freq Offse 0 H
0.0						
	000 GHz 100 kHz	#VBW	300 kHz	Sween	Stop 25.000 GHz 192 ms (40001 pts)	

8.6 RADIATED MEASUREMENT.

8.6.1 RADIATED SPURIOUS EMISSIONS.


Test Requirements and limit, §15.205, §15.209

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Test Configuration

Below 30 MHz

Above 1 GHz

TEST PROCEDURE USED

Method 12.1 in KDB 558074, issued 06/05/2014

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW \geq 3 x RBW.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

	Table 1 — Row as a function of frequency				
Frequency	RBW				
9-150 kHz	200-300 Hz				
0.15-30 MHz	9-10 kHz				
30-1000 MHz	100-120 kHz				
> 1000 MHz	1 MHz				

Table 1 — RBW as a function of frequency

- Average

Set RBW = 1 MHz

Set VBW \geq 1/T.(at least 100 times less than the resolution bandwidth, but no less than 10 Hz.)

Select spectrum analyzer linear display mode.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Note :

1. We are performed the RSE and radiated band edge using standard radiated method.

2. The actual setting value of VBW for BT LE mode.

BT LE Mode	T _{on} (ms)	T _{total} (ms)	Duty Cycle (%)	VBW(1/T) (Hz)	The actual setting value of VBW (Hz)
	0.1120	0.6240	17.95	8929	3000

TEST RESULTS

9 kHz – 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBµV/m	dBm /m	dBm	(H/V)	dBµV/m	dBµV/m	dB	
	No Critical peaks found							

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBµV/m	dBm /m	dBm	(H/V)	dBµV/m	dBµV/m	dB	
	No Critical peaks found							

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Model: LG-D690n

Page 40 of 51

Above 1 GHz

Operation Mode: CH Low(LE Mode)

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	52.43	-4.32	V	48.11	73.98	25.87	PK
4804	39.12	-4.32	V	34.80	53.98	19.18	AV
7206	51.79	5.18	V	56.97	73.98	17.01	PK
7206	38.45	5.18	V	43.63	53.98	10.35	AV
4804	52.68	-4.32	Н	48.36	73.98	25.62	PK
4804	39.33	-4.32	Н	35.01	53.98	18.97	AV
7206	51.90	5.18	Н	57.08	73.98	16.90	PK
7206	38.72	5.18	Н	43.90	53.98	10.08	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4880	51.19	-3.95	V	47.24	73.98	26.74	PK
4880	38.47	-3.95	V	34.52	53.98	19.46	AV
7320	52.04	5.46	V	57.50	73.98	16.49	PK
7320	38.69	5.46	V	44.15	53.98	9.84	AV
4880	51.41	-3.95	Н	47.46	73.98	26.52	PK
4880	38.64	-3.95	Н	34.69	53.98	19.29	AV
7320	52.27	5.46	Н	57.73	73.98	16.26	PK
7320	38.99	5.46	Н	44.45	53.98	9.54	AV

Operation Mode: CH Mid(LE Mode)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	50.48	-3.49	V	46.99	73.98	26.99	PK
4960	37.58	-3.49	V	34.09	53.98	19.89	AV
7440	51.45	5.10	V	56.55	73.98	17.43	PK
7440	38.25	5.10	V	43.35	53.98	10.63	AV
4960	50.71	-3.49	Н	47.22	73.98	26.76	PK
4960	38.18	-3.49	Н	34.69	53.98	19.29	AV
7440	51.36	5.10	Н	56.46	73.98	17.52	PK
7440	38.52	5.10	Н	43.62	53.98	10.36	AV

Operation Mode: CH High(LE Mode)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.6.2 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

Operation Mode	BT 4.0_LE
Operating Frequency	2402 MHz
Channel No	0 Ch

Frequency	Reading	A.F.+CL	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	26.65	33.90	Н	60.55	73.98	13.43	PK
2390.0	14.67	33.90	н	48.57	53.98	5.41	AV
2390.0	26.29	33.90	V	60.19	73.98	13.79	PK
2390.0	14.63	33.90	V	48.53	53.98	5.45	AV

- 1. Frequency range of measurement = 2310 MHz ~ 2390 MHz
- 2. Total = Reading Value + Antenna Factor + Cable Loss
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The radiated restricted band edge measurements are measured with a spectrum analyzer connected to the receive antenna while the EUT is transmitting.

Operation Mode	BT 4.0_LE
Operating Frequency	2480 MHz
Channel No	39 Ch

Frequency [MHz]	Reading [dBuV/m]	A.F.+CL [dBm]	Ant. Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2483.5	27.26	33.99	H	61.25	73.98	12.73	PK
2483.5	14.75	33.99	Н	48.74	53.98	5.24	AV
2483.5	27.14	33.99	V	61.13	73.98	12.85	PK
2483.5	14.72	33.99	V	48.71	53.98	5.28	AV

- 1. Frequency range of measurement = 2483.5 MHz ~ 2500 MHz
- 2. Total = Reading Value + Antenna Factor + Cable Loss
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The radiated restricted band edge measurements are measured with a spectrum analyzer connected to the receive antenna while the EUT is transmitting.

Model: LG-D690n

8.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

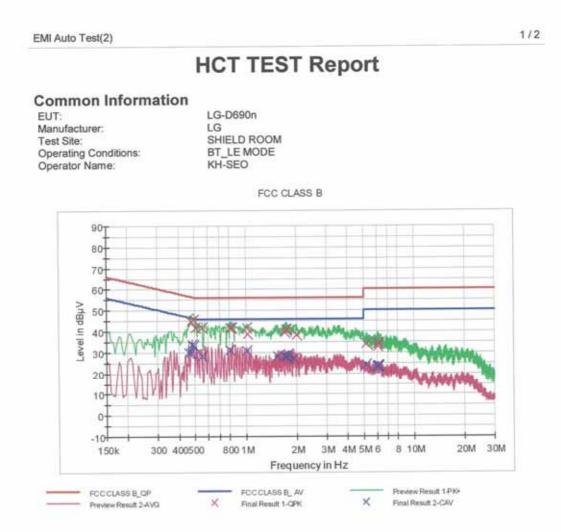
For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits	(dBµV)
Frequency Range (MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.


TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. We are performed the AC Power Line Conducted Emission test for Ch.39 on BT 4.0 LE mode. Because Ch.39 on BT 4.0 LE mode is worst case.

Model: LG-D690n

RESULT PLOTS Conducted Emissions (Line 1)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0,474000	44.7	9.000	Off	L1	9.7	11.7	56.4
0.492000	45.3	9,000	Off	L1	9.7	10.8	56.1
0.504500	41.9	9.000	Off	L1	9.7	14.1	56.0
0.554000	41.9	9,000	Off	L1	9.7	14.1	56.0
0.806000	41.8	9.000	Off	L1	9.7	14.2	56.0
0.833000	41.8	9.000	011	L1	9.7	14.2	56.0
1.013000	41.5	9.000	Off	L1	9.7	14.5	56.0
1.026500	38.7	9.000	Off	L1	9.7	17.3	56.0
1.701500	39.7	9.000	Off	L1	9.8	16,3	56.0
1.728500	40.8	9.000	Off	L1	9,8	15.2	56.0
1.755500	40.7	9.000	Off	L1	9.8	15.3	56.0
1.998500	38,4	9,000	Off	L1	9.8	17.6	56.0
5.180000	34.2	9.000	Off	L1	9,9	25.8	60.0
6.071000	33.9	9,000	Off	L1	9,9	26.1	50.0
6.084500	33.0	9.000	Off	L1	9.9	27.0	60.0
6,102500	34.2	9.000	Off	L1	9.9	25,8	60.0

7/1/2014

3:51:30

EMI Auto Test(2)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6,129500	34.2	9,000	Off	L1	9,9	25.8	60.0
6,165500	34.0	9.000	Off	L1	9,9	26.0	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0,460500	29.9	9.000	Off	L1	9.7	16.8	46.7
0.474000	30.0	9,000	Off	L1	9.7	16.4	46.4
0.483000	33.6	9,000	Off	L1	9.7	12.7	46.3
0.492000	33.4	9,000	011	L1	9,7	12.7	46.1
0.554000	28.0	9.000	Off	L1	9.7	18.0	46.0
0.806000	31.1	9,000	00	L1	9.7	14.9	46.0
1.017500	30.7	9.000	110	L1	9.7	15,3	46.0
1.553000	28.3	9.000	Off	L1	9,8	17.7	46.0
1.701500	28.4	9.000	Off	L1	9.8	17.6	46.0
1.760000	27.8	9.000	Off	L1	9.8	18.2	46.0
1.791500	29.0	9.000	Off	L1	9.8	17.0	46.0
1.935500	27.0	9,000	Off	L1	9.8	19.0	46.0
5.180000	23.9	9,000	Off	L1	9.9	26.1	50.0
6.035000	23.0	9.000	Off	L1	9.9	27.0	50.0
6.084500	23.3	9.000	Off	L1	9,9	26.7	50.0
6.102500	23.6	9.000	Off	L1	9,9	26.4	50.0
6.129500	23.4	9.000	Off	L1	9.9	26.6	50.0
6.183500	23,4	9.000	Off	L1	9.9	26.6	50.0

2/2

7/1/2014

3:51:30

Conducted Emissions (Line 2)

1/2 EMI Auto Test(2) **HCT TEST Report Common Information** LG-D690n EUT: Manufacturer: LG Test Site: SHIELD ROOM BT_LE MODE KH-SEO Operating Conditions: Operator Name: FCC CLASS B 90 80-70 60 Level in dBµV 50 40 30 20 10 0 -10 20M 30M 2M 3M 4M 5M 6 8 10M 8001M 150k 300 400500 Frequency in Hz Preview Result 1 PIG FCCCLASS B_ AV FCC CLASS B_QP × X Final Result 2-CAV Preview Result 2-AVG Final Result 1-OPK

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.478500	41.4	9,000	Off	N	9.7	15.0	56.4
0,487500	37.4	9.000	Off	N	9.7	18.8	56.2
0.504500	34.9	9,000	Off	N	9.7	21.1	56.0
0.567500	36.2	9,000	Off	N	9.6	19.8	56.0
0.684500	35.0	9.000	Off	N	9.7	21.0	56.0
0,801500	31.1	9.000	Off	N	9.7	24.9	56.0
0,923000	35.6	9,000	Off	N	9.7	19.4	56.0
1.647500	37.2	9.000	Off	N	9.8	18.8	56.0
1.697000	33.2	9.000	Off	N	9.8	22.8	56.0
1.814000	32.5	9.000	Off	N	9.8	23,5	56.0
1.845500	34.8	9.000	Off	N	9.8	21.2	56.0
1.913000	37.1	9,000	Off	N	9.8	18.9	56.0
5,153000	28.6	9.000	Off	N	9.9	31.4	60.0
5,279000	26.5	9,000	Off	N	9.9	33.5	60.0
5,427500	28.0	9.000	Off	N	9.9	32.0	60.0
5,873000	28.1	9.000	Off	N	9.9	31.9	60.0

7/1/2014

3:44:08

EMI Auto Test(2)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6,107000	29.3	9.000	Off	N	9.9	30.7	60.0
6.161000	29.9	9.000	Off	N	9.9	30.1	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.478500	33.9	9.000	Off	N	9.7	12.5	46.4
0.504500	27.4	9.000	Off	N	9.7	18.6	46.0
0.657500	29,4	9,000	Off	N	9.7	16.6	46.0
0.684500	28.1	9,000	Off	N	9.7	17.9	46.0
0.720500	27.6	9,000	Off	N	9.7	18.4	46.0
0.801500	22.5	9.000	Off	N	9.7	23,5	46.0
0.923000	28.9	9,000	Off	N	9,7	17.1	46.0
1.638500	27.8	9.000	Off	N	9.8	18.2	46.0
1.697000	24.6	9.000	Off	N	9.8	21.4	46.0
1.814000	23.1	9,000	NO	N	9.8	22.9	46.0
1.845500	27.9	9.000	110	N	9.8	18.1	46.0
1.908500	27.9	9.000	tto	N	9.8	18.1	46.0
5,427500	20.0	9,000	off	N	9.9	30.0	50.0
5.625500	19.0	9.000	Off	N	9.9	31.0	50.0
5,832500	19.8	9,000	hO	N	9.9	30.2	50.0
6.161000	20.9	9.000	tto	N	9.9	29.1	50.0
7.160000	19.2	9.000	Off	N	10.0	30.8	50.0
7.583000	18,1	9.000	Off	N	10.0	31.9	50.0

2/2

7/1/2014

3:44:08

9. LIST OF TEST EQUIPMENT 9.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	01/29/2014	Annual	01/29/2015	100073
Agilent	E4440A/ Spectrum Analyzer	04/09/2014	Annual	04/09/2015	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	05/23/2014	Annual	05/23/2015	MY51110063
Agilent	N1911A/Power Meter	01/24/2014	Annual	01/24/2015	MY45100523
Agilent	N1921A /POWER SENSOR	07/11/2013	Annual	07/11/2014	MY45241059
Hewlett Packard	11636B/Power Divider	10/22/2013	Annual	10/22/2014	11377
Agilent	87300B/Directional Coupler	12/18/2013	Annual	12/18/2014	3116A03621
Hewlett Packard	11667B / Power Splitter	01/27/2014	Annual	01/27/2015	10545
DIGITAL	EP-3010 /DC POWER SUPPLY	10/29/2013	Annual	10/29/2014	3110117
ITECH	IT6720 / DC POWER SUPPLY	11/05/2013	Annual	11/05/2014	0100021562870011 99
TESCOM	TC-3000C / BLUETOOTH TESTER	04/11/2014	Annual	04/11/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Agilent	8493C / Attenuator(10 dB)	07/24/2013	Annual	07/24/2014	76649
WEINSCHEL	2-3 / Attenuator(3 dB)	10/28/2013	Annual	10/28/2014	BR0617

9.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Calibration Due	Serial No.
Schwarzbeck	VULB 9160/ TRILOG Antenna	12/17/2012	Biennial	12/17/2014	3150
Rohde & Schwarz	ESCI / EMI TEST RECEIVER	01/24/2014	Annual	01/24/2015	100584
HD	MA240/ Antenna Position Tower	N/A	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	09/10/2013	Annual	09/10/2014	10094
CERNEX	CBL18265035 / POWER AMP	07/24/2013	Annual	07/24/2014	22966
CERNEX	CBL26405040 / POWER AMP	04/04/2014	Annual	04/04/2015	19660
Schwarzbeck	BBHA 9120D/ Horn Antenna	07/05/2013	Biennial	07/05/2015	1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	10/30/2012	Biennial	10/30/2014	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	01/24/2014	Annual	01/24/2015	839117/011
Wainwright Instrument	WHF3.0/18G-10EF / High Pass Filter	02/03/2014	Annual	02/03/2015	F6
Wainwright Instrument	WHNX6.0/26.5G-6SS / High Pass Filter	04/09/2014	Annual	04/09/2015	1
Wainwright Instrument	WHNX7.0/18G-8SS / High Pass Filter	04/04/2014	Annual	04/04/2015	29
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	06/24/2014	Annual	06/17/2015	1
TESCOM	TC-3000C / BLUETOOTH TESTER	04/11/2014	Annual	04/11/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Rohde & Schwarz	LOOP ANTENNA	08/14/2012	Biennial	08/14/2014	100179
CERNEX	CBL06185030 / POWER AMP	07/24/2013	Annual	07/24/2014	22965
CERNEX	CBLU1183540 / POWER AMP	07/24/2013	Annual	07/24/2014	22964