

SAR TEST REPORT

HCT CO., LTD

EUT Type:	GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP, Hotsot support
FCC ID:	ZNFD680
Model:	LG-D680
Additional Model	LGD680, D680
Date of Issue:	Aug. 22, 2013
Test report No.:	HCTA1308FS08
Test Laboratory:	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea TEL: +82 31 645 6300 FAX: +82 31 645 6401
Applicant :	LG Electronics, MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632
Testing has been carried out in accordance with:	RSS-102 Issue 4; Health Canada Safety Code 6 47CFR §2.1093 ANSI/ IEEE C95.1 – 1992 IEEE 1528-2003
Test result:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.
Signature	Report prepared by : Yun-Jeang Heo : Jae-Sang So Test Engineer of SAR Part Approved by : Jae-Sang So Manager of SAR Part

Table of Contents

1. INTRODUCTION		4
2. TEST METHODOLOGY		5
3. DESCRIPTION OF DEVICE		6
4. DESCRIPTION OF TEST EQUIPMENT		7
5. SAR MEASUREMENT PROCEDURE	1	5
6. DESCRIPTION OF TEST POSITION	1	7
7. MEASUREMENT UNCERTAINTY		
8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2	0
9. SAR SYSTEM VALIDATION		
10. SYSTEM VERIFICATION		
11. RF CONDUCTED POWER MEASUREMENT		
11.4 SAR Test Exclusions Applied		
12. SAR Test configuration & Antenna Information		
13. SAR TEST DATA SUMMARY		
13.1 Measurement Results (GSM850 Head SAR)		
13.2 Measurement Results (GSM1900 Head SAR)		
13.3 Measurement Results (WCDMA850 Head SAR)		
13.5 Measurement Results (WCDMA1900 Head SAR)		
13.8 Measurement Results (DTS Head SAR)		
13.10 Measurement Results (GSM850 Hotspot SAR)		
13.11 Measurement Results (GSM1900 Hotspot SAR)		
13.12 Measurement Results (WCDMA850 Hotspot SAR)	4	4
13.14 Measurement Results (WCDMA1900 Hotspot SAR)	4	5
13.17 Measurement Results (WLAN Hotspot SAR)	4	6
13.18 Measurement Results (DTS Body-worn)		
13.20 Measurement Results (Body-worn SAR)	4	8
14. SAR Measurement Variability and Uncertainty	4	9
15. SAR Summation Scenario	5	0
16. CONCLUSION	5	5
17. REFERENCES	5	6
Attachment 1. – SAR Test Plots	5	7
Attachment 2. – Dipole Verification Plots	8	0
Attachment 3. – Probe Calibration Data	8	6
Attachment 4 - Dipole Calibration Data	٥	1

Revision History

Rev.	Issue DATE	DESCRIPTION
-	Aug. 22, 2013	Initial Issue

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

SAR = $\sigma E^2/\rho$ where: σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

HCT CO., LTD.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with IEEE Standard 1528-2003 & IEEE 1528a-2005 and the following published KDB procedures.

- FCC KDB Publication 941225 D01 SAR test for 3G devices v02
- FCC KDB Publication 941225 D02 Guidance for 3GPP R6 and R7 HSPA v02v01
- FCC KDB Publication 941225 D03 SAR Test Reduction GSM GPRS EDGE v01
- FCC KDB Publication 941225 D06 Hot Spot SAR v01
- FCC KDB Publication 248227 D01v01r02(SAR Considerationa for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 648474 D04 SAR Handsets Multi Xmiter and Ant v01
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01
- FCC KDB Publication 865664 D02 SAR Reporting v01

3. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP, Hotsot support											
		Filone with Bluetoot	.113.U, WIF18UZ.	11 b/g/11(2.4G	⊓∠), VUIP, H0	ізоі ѕирроп					
FCC ID:	ZNFD680										
Model:	LG-D680										
Additional Model	LGD680, D680	_GD680, D680									
Trade Name	LG Electronics, MobileComm U.S.A., Inc.										
Application Type	Certification	ertification									
Mode(s) of Operation	GSM850/GSM1	SM850/GSM1900 /WCDMA850/WCDMA1900/802.11b/g/n									
Tx Frequency	826.4 - 846.6 MH	24.20 - 848.80 MHz (GSM850) /1 850.20 – 1 909.80 MHz (GSM1900) 26.4 - 846.6 MHz (WCDMA850)/1 852.4 – 1 907.6 MHz (WCDMA1900) 412- 2 462 MHz (802.11b/g/n)									
Production Unit or Identical Prototype	Prototype										
	Band	Tx Frequency (MHz)	Equipment Class	Reported 1g SAR (W/kg)							
				Head	Body-worn	Hotspot					
	GSM850	824.2 - 848.8	PCE	0.22	0.59	0.59					
	GSM1900	1 850.2 -1 909.8	PCE	0.20	0.50	0.50					
Max SAR	WCDMA 850	826.4 - 846.6	PCE	0.18	0.38	0.38					
IVIAX SAR	WCDMA 1900	1 852.4 - 1 907.6	PCE	0.43	0.54	0.54					
	Blue Tooth	2 402.0 - 2 480.0	DSS	-	-	-					
	802.11b	2 412.0- 2 462.0	DTS	0.03	0.02	0.02					
Simultaneous SA	R per KDB 69078	33 D01		0.45	0.61	0.61					
Date(s) of Tests	Aug.05, 2013 ~	~ Aug.09, 2013									
Antenna Type	Integral Antenr	na									
GPRS	Multislot Class	: 12									
Key Feature(s)	This device su	pports Mobile Hotsp	oot.								

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.4.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

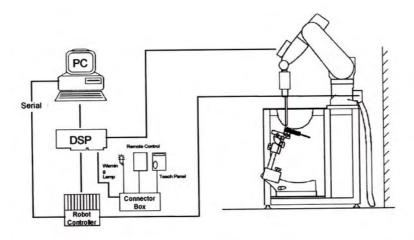


Figure 4.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

4.2 DASY4 E-FIELD PROBE SYSTEM

4.1 ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System

Built-in shielding against static charges

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and

1.8 GHz (accuracy: 8 %)

Frequency 10 MHz to > 3 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal probe axis)

Dynamic 5 $\mu M/g$ to > 100 mW/g;

Range Linearity: \pm 0.2 dB

Surface \pm 0.2 mm repeatability in air and clear liquids

Detection over diffuse reflecting surfaces.

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dissymmetry up to 3 GHz

Compliance tests of WCDMA/LTE Phones

Fast automatic scanning in arbitrary phantoms

Figure 4.1 Photograph of the probe and the Phantom

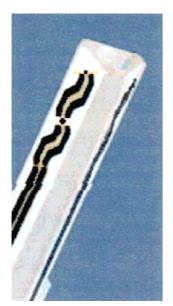


Figure 4.2 ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric

probe

ET3DV6, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity

and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.2.1 EX3DV4 Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

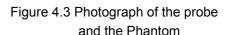
Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)


Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

9 of 136

Figure 4.4 EX3DV4 E-field Probe

classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.3 PROBE CALIBRATION PROCESS

4.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than \pm 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where:

 σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

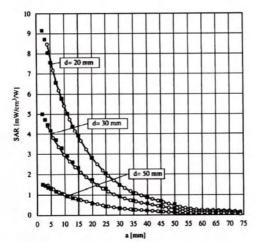


Figure 4.4 E-Field and Temperature measurements at 900 MHz

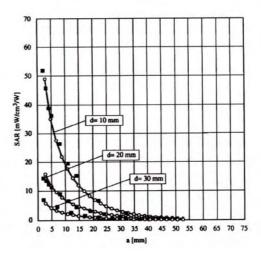


Figure 4.5 E-Field and temperature measurements at 1.8 GHz

4.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i$$
 = compensated signal of channel i (i=x,y,z)
 $U_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$ with V_i = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{\,2} \cdot \frac{\sigma}{\rho \cdot 1000} \hspace{1cm} \text{with} \hspace{0.5cm} \begin{array}{c} \text{SAR} \hspace{0.5cm} = \text{local specific absorption rate in W/g} \\ \hspace{0.5cm} E_{tot} \hspace{0.5cm} = \text{total field strength in V/m} \\ \hspace{0.5cm} \sigma \hspace{0.5cm} = \text{conductivity in [mho/m] or [Siemens/m]} \\ \hspace{0.5cm} \rho \hspace{0.5cm} = \text{equivalent tissue density in g/cm}^{3} \end{array}$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{proc} = \frac{E_{tot}^2}{3770}$$
 with P_{pwe} = equivalent power density of a plane wave in W/cm² = total electric field strength in V/m

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

11 of 136

HCT CO., LTD.

4.4 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness 2.0 mm \pm 0.2 mm (6 \pm 0.2 mm at ear point)

Filling Volume about 25 L

Dimensions 810 mm x 1 000 mm x 500 mm (H x L x W)

Figure 4.6 SAM Phantom

Triple Modular Phantom consists of tree identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. The MFP V5.1 will be delivered including wooden support only (**non**-standard SPEAG support).

Applicable for system performance check from 700 MHz to 6 GHz (MFP V5.1C) or 800 MHz - 6 GHz (MFP V5.1A) as well as dosimetric evaluations for body-worn operation.

Shell Thickness 2.0 mm \pm 0.2 mm Filling Volume approx. 9.2 L

Dimensions 830 mm x 500 mm (L x W)

Figure 4.7 Triple Modular Phantom

4.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 4.8 Device Holder

12 of **136**

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

4.6 Tissue Simulating Mixture Characterization

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to mach within 5%, per the FCC recommendations

Ingredients	Frequency (MHz)											
(% by weight)	83	835		900	2 450	- 2700	5200-5800					
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body				
Water	40.45	53.06	54.9	70.17	71.88	73.2	65.52	78.66				
Salt (NaCl)	1.45	0.94	0.18	0.39	0.16	0.1	0.0	0.0				
Sugar	57.0	44.9	0.0	0	0.0	0.0	0.0	0.0				
HEC	1.0	1.0	0.0	0	0.0	0.0	0.0	0.0				
Bactericide	0.1	0.1	0.0	0	0.0	0.0	0.0	0.0				
Triton X-100	0.0	0.0	0.0	0.0	19.97	0.0	17.24	10.67				
DGBE	0.0	0.0	44.92	29.44	7.99	26.7	0.0	0.0				
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	10.67				

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 4.1 Composition of the Tissue Equivalent Matter

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE3	446	Jan. 16, 2013	Annual	Jan. 16, 2014
SPEAG	DAE4	648	Apr. 24, 2013	Annual	Apr. 24, 2014
SPEAG	DAE4	652	Mar. 21, 2013	Annual	Mar. 21, 2014
SPEAG	E-Field Probe ET3DV6	1798	Apr. 29, 2013	Annual	Apr. 29, 2014
SPEAG	E-Field Probe ET3DV6	1630	Jan. 24, 2013	Annual	Jan. 24, 2014
SPEAG	E-Field Probe EX3DV4	3797	Nov. 22, 2012	Annual	Nov. 22, 2013
SPEAG	E-Field Probe EX3DV4	3903	Mar. 18, 2013	Annual	Mar. 18, 2014
SPEAG	Dipole D835V2	441	Apr. 25, 2013	Annual	Apr. 25, 2014
SPEAG	Dipole D1900V2	5d038	May. 29, 2013	Annual	May. 29, 2014
SPEAG	Dipole D2450V2	743	Aug. 23, 2012	Annual	Aug. 23, 2013
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 02, 2012	Annual	Nov. 02, 2013
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 02, 2012	Annual	Nov. 02, 2013
HP	Dielectric Probe Kit 85070C	00721521		CBT	
HP	Dual Directional Coupler 778D	16072	Nov. 02, 2012	Annual	Nov. 02, 2013
R&S	Base Station CMW500	1201.0002K50_116858	Jan. 17,2013	Annual	Jan. 17,2014
HP	Base Station E5515C	GB44400269	Feb. 14, 2013	Annual	Feb. 14, 2014
HP	Signal Generator 8664A	3744A02069	Nov. 02, 2012	Annual	Nov. 02, 2013
Hewlett Packard	11636B/Power Divider	11377	Nov. 11. 2012	Annual	Nov. 11. 2013
Agilent	N9020A/ SIGNAL ANALYZER	MY51110020	Apr. 25, 2013	Annual	Apr. 25, 2014
TESCOM	TC-3000C / BLUETOOTH TESTER	3000C000276	Apr. 24, 2013	Annual	Apr. 24, 2014

NOTE:

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

^{1.} The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

^{2.} CBT(Calibrating Before Testing). Prior to testing, the dielectric probe kit was calibrated via the network analyzer, with the specified procedure(calibrated in pure water) and calibration kit(standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

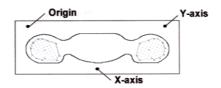


Figure 5.1 SAR Measurement Point in Area Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extend, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the hightest E-field value to determine the averaged SASR-distribution over 10g.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01 quoted below

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

15 of 136

			≤3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro			5 ± 1 mm	½-δ-ln(2) ± 0.5 mm		
Maximum probe angle in normal at the measurem		axis to phantom surface	30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$		
Maximum area scan spa	atial resoluti	on: Δх _{Агва} , Δу _{Агва}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan sp	patial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	Δz _{Zoam} (n>1); between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$			
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

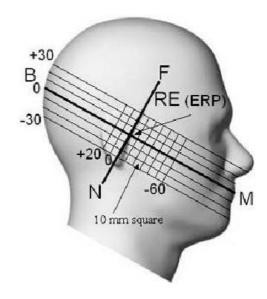


Figure 6.1 Side view of the phantom

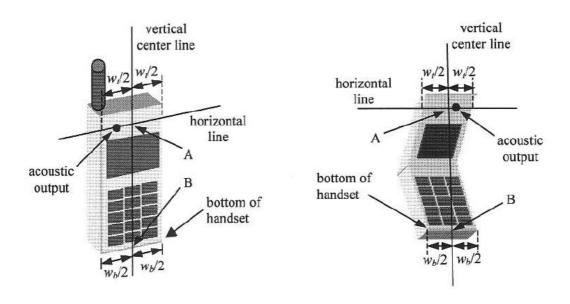


Figure 6.2 Handset vertical and horizontal reference lines

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

18 of 136

7. MEASUREMENT UNCERTAINTY

Error	Tol	Prob.			Standard	
Description		dist.	Div.	Ci	Uncertainty	V _{eff}
	(± %)	'			(± %)	
1. Measurement System						
Probe Calibration	6.00	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related						
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup			-			
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	5.02	N	1	0.6	3.01	9
Combind Standard Uncertai	nty	•	<u>. </u>		11.13	•
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					22.25	

Table 7.1 Uncertainty (800 MHz- 2700 MHz)

8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
SPATIAL PEAK SAR * (Brain)	1.60	8.00		
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40		
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

20 of 136

9. SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01 v01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

CAD			Dro	nhe		Drobo		Drobo		Probe			Dielectric	Parameters	CV	V Validation	1	Modulation Validation		
SAR System #	Probe	probe Type	Calib	ration pint	Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isortopy	MOD.	Duty Factor	PAR						
7	1630	ET3DV6	Head	835	441	May.06,2013	42.01	0.92	PASS	PASS	PASS	GMSK	PASS	N/A						
7	1630	ET3DV6	Head	1900	5d038	July.01,2013	40.2	1.42	PASS	PASS	PASS	GMSK	PASS	N/A						
7	1630	ET3DV6	Head	2450	743	Feb.06,2013	40.51	1.82	PASS	PASS	PASS	OFDM	N/A	PASS						
7	1630	ET3DV6	Body	835	441	May.06,2013	55.88	0.99	PASS	PASS	PASS	GMSK	PASS	N/A						
7	1630	ET3DV6	Body	1900	5d038	July.01,2013	52.9	1.53	PASS	PASS	PASS	GMSK	PASS	N/A						
7	1630	ET3DV6	Body	2450	743	Feb.06,2013	51.63	1.99	PASS	PASS	PASS	OFDM	N/A	PASS						
6	1798	ET3DV6	Head	835	441	May.06,2013	42.01	0.92	PASS	PASS	PASS	GMSK	PASS	N/A						
6	1798	ET3DV6	Head	1900	5d038	July.01,2013	40.2	1.42	PASS	PASS	PASS	GMSK	PASS	N/A						
6	1798	ET3DV6	Head	2450	743	May.08,2013	40.23	1.81	PASS	PASS	PASS	OFDM	N/A	PASS						
6	1798	ET3DV6	Body	835	441	May.06,2013	55.88	0.99	PASS	PASS	PASS	GMSK	PASS	N/A						
6	1798	ET3DV6	Body	1900	5d038	July.01,2013	52.9	1.53	PASS	PASS	PASS	GMSK	PASS	N/A						
6	1798	ET3DV6	Body	2450	743	May.08,2013	52.77	1.97	PASS	PASS	PASS	OFDM	N/A	PASS						

SAR System Validation Summary

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table bove represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r01. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

10. SYSTEM VERIFICATION

10.1 Tissue Verification

Freq. [MHz]	Date	Probe	Dipole	Liquid	Liquid Temp. [°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]							
835	Aug. 05,	1630		Head	20.1	8 r	41.5	40.5	- 2.41	± 5							
655	2013	1030	444	Heau	20.1	σ	0.90	0.919	+ 2.11	± 5							
835	Aug. 06,	1700	441	441	441	441	Dody	20.4	€ r	55.2	56.8	+ 2.90	± 5				
2013	1798		Body	20.4	σ	0.97	0.981	+ 1.13	± 5								
1 000	Aug. 07, 2013 1630	1620	1620	1630	1630	1630	1630	1630	1620		llaad	20.1	٤r	40.0	39.7	- 0.75	± 5
1 900		1630	E4020	Head	20.1	σ	1.40	1.41	+ 0.71	± 5							
1 900	Aug. 08,	1798	5d038	Dady 00.4	εr	53.3	53.7	+ 0.75	± 5								
1 900	2013	1790		Body	20.4	σ	1.52	1.50	- 1.32	± 5							
2 450	Aug. 09,	1630		Head	20.5	εr	39.2	38.0	- 3.06	± 5							
2 450	2013	1630	743	пеац	20.5	σ	1.80	1.84	+ 2.22	± 5							
2.450	Aug. 09,	Aug. 09,	743	Dady	20.5	εr	52.7	52.6	- 0.19	± 5							
2 450 Adg. 65,	2013	1630		Body	20.5	σ	1.95	1.95	+ 0.00	± 5							

The Tissue dielectronic parameters were measured prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz / 1 900 MHz/ 2 450MHz by using the system Verification kit. (Graphic Plots Attached)

Freq. [MHz]	Date	Probe (SN)	Dipole (SN)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1g} (SPEAG) (mW/g)	Measured SAR _{1g} (mW/g)	1 W Normalized SAR _{1g} (mW/g)	Deviation [%]	Limit [%]
835	Aug. 05, 2013	1630	444	Head	20.3	20.1	9.68	0.980	9.8	+ 1.24	± 10
835	Aug. 06, 2013	1798	441	Body	20.6	20.4	9.69	0.957	9.57	- 1.24	± 10
1 900	Aug. 07, 2013	1630	E4020	Head	20.3	20.1	39.0	4.2	42	+ 7.69	± 10
1 900	Aug. 08, 2013	1798	5d038	Body	20.6	20.4	39.9	3.99	39.9	+ 0.00	± 10
2 450	Aug. 09, 2013	1630	740	Head	20.7	20.5	52.7	5.28	52.8	+ 0.19	± 10
2 450	Aug. 09, 2013	1630	743	Body	20.7	20.5	51.2	5.1	51	- 0.39	± 10

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

11. RF CONDUCTED POWER MEASUREMENT

Power measurements were performed using a base station simulator under digital average power. The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more then 5 % occurred, the tests were repeated.

11.1 Output Power Specifications.

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v05.

GSM

GSM850	GSM1900
Target Power : 33.2 dBm	Target Power : 30.2 dBm
GPRS850	PCS1900
GPRS 1tx : 33.2 dBm	GPRS 1tx : 30.2 dBm
GPRS 2tx : 32.2 dBm	GPRS 2tx : 29.2 dBm
GPRS 3tx : 31.2 dBm	GPRS 3tx : 26.4 dBm
GPRS 4tx : 30.2 dBm	GPRS 4tx : 25.2 dBm
Tune-up Tolerance : -1.5 dB/ +0.5 dB	

WCDMA

WCDMA850	WCDMA1900
Target Power : 23.7 dBm	Target Power : 23.2 dBm
Tune-up Tolerance: -1.5 dB/ +0.5 dB	

Wifi

	Mode / Band	Mode / Band					
	802.11b	Maximum	15.7 dBm				
	802.110	Nominal	15.0 dBm				
	802.11g	Maximum	12.7 dBm				
WIFI	802.11g	Nominal	12.0 dBm				
	802.11n (HT20)	Maximum	11.7 dBm				
	802.1111 (11120)	Nominal	11.0 dBm				
	802.11 n (HT40)	Maximum	11.7 dBm				
	002.1111(11140)	Nominal	11.0 dBm				

BT.

Model	Channal	Frequency	Output Power (dBm)					
	Channel	(MHz)	GFSK	8DPSK	π/4DQPSK			
LG-D680	0	2402	4	1	1			
	39	2441	4	1	1			
	78	2480	5	2	2			

Tolerance: +0.7 dB

11.2 GSM

Conducted output power measurements were performed using a base station simulator under digital average power.

Base Station Simulator RF Connector EUT

SAR Test for WWAN were performed with a base station simulator Agilent E5515C. Communication between the device and the emulator was established by air link. Set base station emulator to allow DUT to radiate maximum output power during all tests. Please refer to the below worst case SAR operation setup.

GSM voice: Head SAR

- GPRS Multi-slots: Body SAR with GPRS Multi-slot Class12 with CS 1 (GMSK)

Note;

CS1/MCS7 coding scheme was used in GPRS output power measurements and SAR Testing, as a condition where GMSK/8PSK modulation was ensured. Investigation has shown that CS1 - CS4/ MCS5 - MCS9 settings do not have any impact on the output levels in the GPRS modes.

GSM Conducted output powers (Burst-Average)

		Voice	G	PRS(GMSK	() Data – C	S1
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)
GSM 850	128	33.33	33.35	32.45	31.66	30.49
	190	33.32	33.29	32.46	31.69	30.52
830	251	33.31	33.31	32.47	31.7	30.54
CCM	512	30.53	30.5	29.49	26.84	25.66
GSM 1900	661	30.46	30.44	29.45	26.84	25.64
1900	810	30.32	30.31	29.38	26.80	25.64

GSM Conducted output powers (Frame-Average)

		Voice	G	PRS(GMSK	() Data – C	S1
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)
CCM	128	24.3	24.32	26.43	27.4	27.48
GSM 850	190	24.29	24.26	26.44	27.43	27.51
650	251	24.28	24.28	26.45	27.44	27.53
0014	512	21.5	21.47	23.47	22.58	22.65
GSM 1900	661	21.43	21.41	23.43	22.58	22.63
1900	810	21.29	21.28	23.36	22.54	22.63

Note:

Time slot average factor is as follows:

1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power – 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power – 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power – 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power – 3.01 dB

HCT CO., LTD.

11.2 WCDMA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

11.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3 GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s".

11.2.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

11.2.3 Body SAR Measurement

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

11.2.4 Handsets with Release 5 HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

Sub-Test 1 Setup for Release 5 HSDPA

Sub-test	βς	β_d	β _d (SF)	β_c/β_d	β _{hs} ^(I)	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

11.2.5 Handsets with Release 6 HSPA (HSDPA/HSUPA)

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.1 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than $\frac{1}{4}$ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurement should be used to test for head exposure.

Sub- test	βε	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	(dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15(3)	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{edi} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15(4)	15/15(4)	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{is} = \beta_{is}/\beta_c = 30/15 \Leftrightarrow \beta_{is} = 30/15 *\beta_c$.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

Note 2: CM = 1 for β_c/β_d =12/15, β_{lb}/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

WCDMA 850

2000		3GPP 34.121			Cellular Ba	nd [dBm]			
3GPP Release Version	Mode	Subtest	UL 4132 (826.4)	Power reduction	UL 4183 (836.6)	Power reduction	UL 4233 (846.6)	Power reduction	MPR
VCISIOII			DL 4357	(dB)	DL 4408	(dB)	DL 4458	(dB)	
99	WCDMA	12.2 kbps RMC	24.2		24.19		24.06		-
99	WCDMA	12.2 kbps AMR	24.1		24.18		24		-
5		Subtest 1	24.2	0	24.18	0.01	24.1	-0.04	0
5	LICDDA	Subtest 2	23.23	0.97	23.25	0.94	23.09	0.97	-1
5	HSDPA	Subtest 3	22.75	1.45	22.78	1.41	22.6	1.46	-1.5
5		Subtest 4	22.74	1.46	22.77	1.42	22.6	1.46	-1.5
6		Subtest 1	22.2	2	22.3	1.89	22.12	1.94	-2
6		Subtest 2	21.25	2.95	21.31	2.88	21.15	2.91	-3
6	HSUPA	Subtest 3	21.77	2.43	21.81	2.38	21.67	2.39	-2.5
6		Subtest 4	22.23	1.97	22.31	1.88	22.13	1.93	-2
6		Subtest 5	23.6	0.6	23.6	0.59	23.6	0.46	-0.5

WCDMA 1900

WCDINA 1900									
2000		3GPP 34.121			Cellular Ba	nd [dBm]			
3GPP Release Version	Mode	Subtest	UL 9262 (1852.4)	Power reduction	UL 9400 (1880.0)	Power reduction	UL 9538 (1907.6)	Power reduction	MPR
VCISION			DL 9662	(dB	DL 9800	(dB)	DL 9938	(dB)	
99	WCDMA	12.2 kbps RMC	23.7		23.69		23.5		-
99	WCDMA	12.2 kbps AMR	23.6		23.65		23.5		-
5		Subtest 1	23.7	0	23.68	0.01	23.4	0.1	0
5	LICEDA	Subtest 2	22.8	0.9	22.74	0.95	22.55	0.95	-1
5	HSDPA	Subtest 3	22.1	1.6	22.3	1.39	22.1	1.4	-1.5
5		Subtest 4	22.22	1.48	22.29	1.4	22.11	1.39	-1.5
6		Subtest 1	21.8	1.9	21.82	1.87	21.6	1.9	-2
6	HSUPA	Subtest 2	20.9	2.8	20.84	2.85	20.69	2.81	-3
6		Subtest 3	21.28	2.42	21.33	2.36	21.2	2.3	-2.5
6		Subtest 4	21.84	1.86	21.83	1.86	21.6	1.9	-2
6		Subtest 5	23.2	0.5	23.2	0.49	23.1	0.4	-0.5

WCDMA Average Conducted output powers

11.4 WiFi

11.4.1 SAR Testing for 802.11b/g/n modes

General Device Setup

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11.802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; Channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz § 15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11,15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels.

These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

				Turbo	"De	fault Test C	hanne	ls"
Me	de	GHz	Channel	Channel		.247	177	III
				Channel	802.11b	802.11g	0,	т.
802.11 b/g		2.412	1		V	∇		
		2.437	6	6	1	∇		
		2.462	11		1	∇		
		5.18	36				V	
		5.20	40	42 (5.21 GHz)				-
		5.22	44					-
		5.24	48	50 (5.25 GHz)			N	
		5.26	52				1	
		5.28	56	58 (5.29 GHz)				
		5.30	60	36 (3.27 GHz)				
		5.32	64				V	
		5.500	100					
	UNII	5.520	104				-√	
		5.540	108					
802.11a		5.560	112					-
302.114		5.580	116				V	
		5.600	120	Unknown				-
		5.620	124				V	
		5.640	128					
		5.660	132					*
		5.680	136				1	
		5.700	140					
	UNII	5.745	149		1		1	
		5.765	153	152 (5.76 GHz)				*
	or §15.247	5.785	157		1			- *
	210.14	5.805	161	160 (5.80 GHz)			V	
	§15.247	5.825	165		V			

802.11 Test Channels per FCC Requirements

■ TEST RESULTS-Average

Conducted Output Power Measurements (802.11b Mode)

802.11b	Mode		Measured	
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		1 Mbps	14.70	30
2412	1	2 Mbps	14.62	30
	'	5.5 Mbps	14.48	30
		11 Mbps	14.43	30
		1 Mbps	14.99	30
0.407		2 Mbps	14.95	30
2437	6	5.5 Mbps	14.97	30
		11 Mbps	14.99	30
		1 Mbps	15.15	30
2462	44	2 Mbps	15.11	30
2462	11	5.5 Mbps	15.13	30
		11 Mbps	15.17	30

Conducted Output Power Measurements (802.11g Mode)

802.11g Mode			Measured	
	Channel No.	Rate (Mbps)	Power(dBm)	Limit
Frequency[MHz]		rtate (mbps)	+	(dBm)
			Duty Cycle Factor	
		6 Mbps	10.65	30
		9 Mbps	10.60	30
		12 Mbps	10.54	30
2412	1	18 Mbps	10.67	30
2412	'	24 Mbps	10.58	30
		36 Mbps	10.58	30
		48 Mbps	10.62	30
		54 Mbps	10.68	30
	6	6 Mbps	10.79	30
		9 Mbps	10.74	30
		12 Mbps	10.73	30
2437		18 Mbps	10.75	30
2437		24 Mbps	10.78	30
		36 Mbps	10.80	30
		48 Mbps	10.84	30
		54 Mbps	10.93	30
	11	6 Mbps	10.80	30
		9 Mbps	10.82	30
		12 Mbps	10.74	30
2462		18 Mbps	10.73	30
		24 Mbps	10.74	30
		36 Mbps	10.77	30
		48 Mbps	10.72	30
		54 Mbps	11.21	30

Conducted Output Power Measurements (802.11n 20M BW Mode)

802.11n Mode			Measured	
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6.5 Mbps	8.92	30
		13 Mbps	9.41	30
		19.5 Mbps	9.50	30
2412	,	26 Mbps	9.46	30
2412	1	39 Mbps	9.45	30
		52 Mbps	9.42	30
		58.5 Mbps	9.46	30
		65 Mbps	9.54	30
	6	6.5 Mbps	9.37	30
		13 Mbps	9.29	30
		19.5 Mbps	9.27	30
2437		26 Mbps	9.25	30
2437		39 Mbps	9.81	30
		52 Mbps	9.87	30
		58.5 Mbps	9.86	30
		65 Mbps	9.38	30
	11	6.5 Mbps	9.65	30
		13 Mbps	9.61	30
2462		19.5 Mbps	9.58	30
		26 Mbps	9.57	30
		39 Mbps	9.48	30
		52 Mbps	9.50	30
		58.5 Mbps	9.55	30
		65 Mbps	9.64	30

HCTA1308FS08 Report No.: FCC ID: ZNFD680 Date of Issue: Aug. 22, 2013

Conducted Output Power Measurements (802.11n 40M BW Mode)

802.11n Mode			Measured	
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6.5 Mbps	9.45	30
		13 Mbps	9.96	30
		19.5 Mbps	10.00	30
0440		26 Mbps	10.02	30
2412	1	39 Mbps	10.05	30
		52 Mbps	10.81	30
		58.5 Mbps	10.90	30
		65 Mbps	11.00	30
	6	6.5 Mbps	10.15	30
		13 Mbps	10.23	30
		19.5 Mbps	10.32	30
2437		26 Mbps	10.34	30
2437		39 Mbps	10.71	30
		52 Mbps	11.00	30
		58.5 Mbps	11.10	30
		65 Mbps	11.26	30
	11	6.5 Mbps	9.99	30
		13 Mbps	10.11	30
2462		19.5 Mbps	10.17	30
		26 Mbps	10.19	30
		39 Mbps	10.96	30
		52 Mbps	10.79	30
		58.5 Mbps	10.86	30
		65 Mbps	11.03	30

SAR testing was performed according to the FCC KDB 248227D01

11.4 SAR Test Exclusions Applied

11.4.1 BT

Per FCC KDB 447498 D01v05, The SAR exclusion threshold for distance < 50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel(mW)}}{\textit{Test Separation Distance (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

. Mode	Frequency	Maximum Allowed Power	Separatuin Distance	≤ 3.0
	[MHz]	[mW]	[mm]	
Bluetooth	2441	4	10	0.58

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(4/10)^*\sqrt{2.441}] = 0.58 < 3.0$.

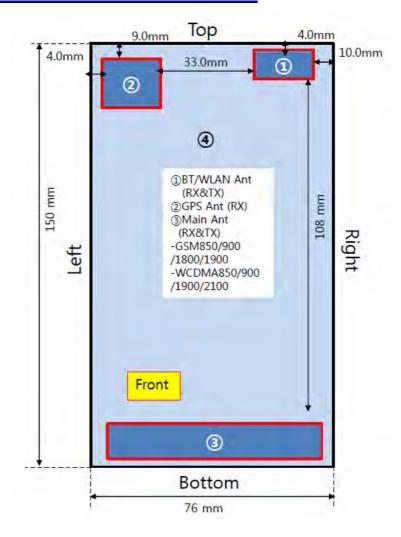
his device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v05 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter

Estimated SAR =
$$\frac{\sqrt{f(GHZ)}}{7.5} * \frac{(Max \ Power \ of \ channel \ mW)}{Min \ Seperation \ Distance}$$

. Mode	Frequency	Maximum	Separatuin	Estimated SAR	
		Allowed Power	Distance (Body)	(Body)	
	[MHz]	[mW]	[mm]	[W/kg]	
Bluetooth	2441	4	10	0.08	

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. The Estimated SAR results were determined according to FCC KDB447498 D01v05

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr



12. SAR Test configuration & Antenna Information

12.1 Mobile Hotspot sides for SAR Testing configurations

Mode	Rear	Front	Left	Right	Bottom	Тор
GSM 850	Yes	Yes	Yes	Yes	Yes	No
GSM 1 900	Yes	Yes	Yes	Yes	Yes	No
WCDMA 850	Yes	Yes	Yes	Yes	Yes	No
WCDMA 1 900	Yes	Yes	Yes	Yes	Yes	No
2.4 GHz WLAN	Yes	Yes	No	Yes	No	Yes

12.2 Antenna and Device Information

Note;

Per FCC KDB Publication 941225 D06v01, we performed the SAR testing at 1 cm from the top & bottom surfaces and also from side edges with a transmitting antenna \leq 2.5 cm from an edge.

*Please see the LG-D680_Antenna distance for futher information.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

13. SAR TEST DATA SUMMARY

13.1 Measurement Results (GSM850 Head SAR)

Frequency		Modulation	Conducted	Power Drift	Datton	Phantom	Measured	Scaling	Scaled	Plot
MHz	Channel	Modulation	(dBm)	(dB)	Battery	Position	SAR(mW/g)	Facor	SAR(mW/g)	No.
836.6	190		33.32	-0.125	Standard	Left Ear	0.094	1.091	0.103	-
836.6	190	0014050	33.32	-0.005	Standard	Left Tilt	0.052	1.091	0.057	-
836.6	190	GSM850	33.32	0.010	Standard	Right Ear	0.091	1.091	0.099	-
836.6	190		33.32	-0.050	Standard	Right Tilt	0.040	1.091	0.044	-
836.6	190		30.52	-0.038	Standard	Left Ear	0.210	1.042	0.219	-
836.6	190	0000 47	30.52	-0.065	Standard	Left Tilt	0.122	1.042	0.127	-
836.6	190	GPRS 4Tx	30.52	-0.071	Standard	Right Ear	0.214	1.042	0.223	1
836.6	190]	30.52	-0.064	Standard	Right Tilt	0.097	1.042	0.101	-
	ANSI/ IEEE C95.1 - 1992 – Safety Limit					Head				
	Spatial Peak					1.6 W/kg (mW/g)				
	Unco	ntrolled Expo	sure/ Genera	I Population)	Averaged over 1 gram				

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typica
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- Tissue parameters and temperatures are listed on the SAR plot.

_	rissue parameters and t	emperatures are listed on	i tile ozit piot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	⊠ Base Station Simulator	•

- 7 According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- For head SAR testing, the EUT was set in GPRS multi-slot class12 with 4uplink slots for GSM850 due to maximum source-based time-averaged output power.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

37 of 136

13.2 Measurement Results (GSM1900 Head SAR)

Fred	quency	Modulation	Conducted Power	Power Drift	Battery	Phantom	Measured	Scaling	Scaled	Plot
MHz	Channel		(dBm)	(dB)	-	Position	SAR(mW/g)	Facor	SAR(mW/g)	No.
1 880.0	661		30.46	-0.033	Standard	Left Ear	0.190	1.057	0.201	2
1 880.0	661	0014 4000	30.46	0.020	Standard	Left Tilt	0.102	1.057	0.108	-
1 880.0	661	GSM 1900	30.46	-0.148	Standard	Right Ear	0.118	1.057	0.125	-
1 880.0	661		30.46	0.063	Standard	Right Tilt	0.111	1.057	0.117	-
1 880.0	661		29.45	-0.163	Standard	Left Ear	0.057	1.059	0.060	-
1 880.0	661	ODDO OT	29.45	-0.016	Standard	Left Tilt	0.029	1.059	0.031	1
1 880.0	661	GPRS 2Tx	29.45	-0.165	Standard	Right Ear	0.033	1.059	0.035	-
1 880.0	661		29.45	-0.096	Standard	Right Tilt	0.032	1.059	0.034	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Head .6 W/kg (mW/g raged over 1 gr		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type ⊠ Standard □ Extended □ Slim
 Batteries are fully charged for all readings.
- 6 Test Signal Call Mode □ Manual Test cord ☑ Base Station Simulator
- 7 According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 8 For Head SAR testing, the EUT was set in GPRS multi-slot class12 with 2uplink slots for GSM1900 due to maximum source-based time-averaged output power.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

38 of 136

FCC ID: Report No .: HCTA1308FS08 ZNFD680 Date of Issue: Aug. 22, 2013

13.3 Measurement Results (WCDMA850 Head SAR)

Frequency		Modulation	Conducted Power Power Drift		Battery	Phantom	Measured	Scaling	Scaled	Plot
MHz	Channel		(dBm)	(dBm) (dB)	,	Position	SAR(mW/g)	Facor	SAR(mW/g)	No.
836.6	4183		24.19	-0.117	Standard	Left Ear	0.152	1.002	0.152	-
836.6	4183		24.19	-0.011	Standard	Left Tilt	0.082	1.002	0.082	-
836.6	4183	WCDMA850	24.19	-0.072	Standard	Right Ear	0.176	1.002	0.176	3
836.6	4183		24.19	-0.032	Standard	Right Tilt	0.077	1.002	0.077	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population					Head 1.6 W/kg (mW/g) Averaged over 1 gram				

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.

- 2 All modes of operation were investigated and the worst-case are reported.
- Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm. 3

4	rissue parameters and t	emperatures are listed on	the SAN plot.	
5	Battery Type	Standard	□ Extended	\square Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

13.4 Measurement Results (WCDMA1900 Head SAR)

Frequency		Modulation	Conducted Power	Power Drift	Battery	Phantom	Measured SAR(mW/g)	Scaling	Scaled	Plot
MHz	Channel	oud.au.o	(dBm)			Position	SAR(mW/g)	Facor	SAR(mW/g)	No.
1 880.0	9400		23.69	0.014	Standard	Left Ear	0.429	1.002	0.430	4
1 880.0	9400		23.69	-0.018	Standard	Left Tilt	0.204	1.002	0.204	-
1 880.0	9400	WCDMA1900	23.69	-0.134	Standard	Right Ear	0.256	1.002	0.257	-
1 880.0	9400		23.69	0.092	Standard	Right Tilt	0.219	1.002	0.220	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population					Head 1.6 W/kg (mW/g) Averaged over 1 gram					

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-head position set in a typica
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

_	rissue parameters and t	chiperatures are listed or	i tile ont piot.	
5	Battery Type	Standard	□ Extended	\square Slim
		Batteries are fully charg	ged for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	•

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 8 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

13.5 Measurement Results (DTS Head SAR)

Fred	quency	Modulation	Modulation	Modulation	Conducted Power	Power Drift	Battery	Phantom	Data	Measured	Scaling	Scaled	Plot
MHz	Channel		(dBm) (dB)	Position	Rate	SAR(mW/g)	Facor	SAR(mW/g)	No.				
	11	802.11b	15.15	0.006	Standard	Left Ear	1Mbps	0.014	1.135	0.016	-		
0.400			15.15	-0.138	Standard	Left Tilt	1Mbps	0.011	1.135	0.012	-		
2 462			15.15	0.132	Standard	Right Ear	1Mbps	0.025	1.135	0.028	5		
			15.15	-0.136	Standard	Right Tilt	1Mbps	0.015	1.135	0.017	-		
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							He 1.6 W/kg Averaged o	(mW/g)				

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-nead position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.
2	All modes of operation were investigated and the worst-case are reported.

Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.

-				
4	Tissue parameters and te	emperatures are listed on	the SAR plot.	
5	Battery Type	⊠ Standard	□ Extended	☐ Slim
		Batteries are fully charg	jed for all readings.	
6	Test Signal Call Mode		□ Base Station Simulato	r
7	IEEE 802.11g(including 8	302.11n) SAR testing is re	equired when the conducted	l powers are equal

greater than 0.25 dB Than the conducted powers in IEEE 802.11b.

For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

to or

13.6 Measurement Results (GSM850 Hotspot SAR)

Frequency		Modulation	Conducted Power	Power Drift	Configuration	Separation	Measured	Scaling Facor	Scaled	Plot
MHz	Channel		(dBm)	(dB)	ooga.a.a.	Distance	SAR(mW/g)		SAR(mW/g)	No.
836.6	190		30.52	-0.025	Rear	1.0 cm	0.569	1.042	0.593	6
836.6	190		30.52	-0.060	Front	1.0 cm	0.377	1.042	0.393	ı
836.6	190	GPRS 4Tx	30.52	0.010	Left	1.0 cm	0.116	1.042	0.121	-
836.6	190		30.52	0.007	Right	1.0 cm	0.289	1.042	0.301	ı
836.6	190		30.52	-0.038	Bottom	1.0 cm	0.130	1.042	0.136	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Body 1.6 W/kg (mW/g) eraged over 1 gra	m	

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typica
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.
2	All modes of appration were investigated and the worst case are reported

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 9 For body SAR testing, the EUT was set in GPRS multi-slot class12 with 4uplink slots for GSM850 due to maximum source-based time-averaged output power.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

13.7 Measurement Results (GSM1900 Hotspot SAR)

Frequ	Frequency		Conducted Power	Power Drift Configuration	Separation	Measured SAR	Scaling	Scaled SAR	Plot	
MHz	Channel	Wodalation	(dBm)	(dB)	Comigaration	Distance	(mW/g)	Facor	(mW/g)	No.
1 880.0	661		29.45	0.129	Rear	1.0 cm	0.478	1.059	0.506	7
1 880.0	661		29.45	-0.123	Front	1.0 cm	0.400	1.059	0.424	-
1 880.0	661	GPRS 2Tx	29.45	0.031	Left	1.0 cm	0.416	1.059	0.441	-
1 880.0	661		29.45	-0.016	Right	1.0 cm	0.193	1.059	0.204	-
1 880.0	661		29.45	-0.117	Bottom	1.0 cm	0.210	1.059	0.222	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit					Body				
	Spatial Peak Uncontrolled Exposure/ General Population							W/kg (mW/g) ged over 1 gra	m	

NOTES:

1	•			oody position set in a typical						
2	configuration. Test procedures used are according to FCC KDB Publication 447498 D01. All modes of operation were investigated and the worst-case are reported.									
3	Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.									
4	Tissue parameters and t	emperatures are listed or	the SAR plot.							
5	Battery Type	Standard Standard	□ Extended	☐ Slim						
		Batteries are fully charg	ged for all readings.							
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Si	mulator						
7	Test Configuration	☐ With Holster								
8	According to KDB 447	498, Testing of other re	equired channels with	nin the operating mode of a						
	frequency hand is not re	ouired when the reported	1-a or 10-a SAR for t	the mid-hand or highest output						

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 9 For body SAR testing, the EUT was set in GPRS multi-slot class12 with 2uplink slots for GSM1900 due to maximum source-based time-averaged output power.

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

13.8 Measurement Results (WCDMA850 Hotspot SAR)

Frequency		Modulation	Conducted Power	Power Drift	Configuration	Separation	Measured	Scaling	Scaled	Plot
MHz	Channel	Wodalation	(dBm)	(dB)	Comigaration	Distance	SAR(mW/g)	Facor	SAR(mW/g)	No.
836.6	4183		24.19	-0.008	Rear	1.0 cm	0.376	1.002	0.377	8
836.6	4183		24.19	-0.024	Front	1.0 cm	0.248	1.002	0.249	-
836.6	4183	WCDMA850	24.19	0.010	Left	1.0 cm	0.075	1.002	0.075	-
836.6	4183		24.19	-0.027	Right	1.0 cm	0.207	1.002	0.207	-
836.6	4183		24.19	0.009	Bottom	1.0 cm	0.085	1.002	0.085	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit					0.093Body				
	Spatial Peak Uncontrolled Exposure/ General Population							W/kg (mW/g) ged over 1 gra		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-Body position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.
2	All modes of operation were investigated and the worst-case are reported.
3	Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm

4	Tissue parameters and te	mperatures are listed on the	ne SAR plot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully charge	d for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	
7	Test Configuration	☐ With Holster	Without Holster ■	

According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.

9 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

13.9 Measurement Results (WCDMA1900 Hotspot SAR)

Frequency		Modulation	Conducted Power	Power Drift	Configuration	Separation	Measured	Scaling	Scaled	Plot
MHz	Channel	Woddiation	(dBm)	(dB)	Comigaration	Distance	SAR(mW/g)	Facor	SAR(mW/g)	No.
1 880.0	9400		23.69	0.105	Rear	1.0 cm	0.534	1.002	0.535	9
1 880.0	9400		23.69	0.068	Front	1.0 cm	0.418	1.002	0.419	-
1 880.0	9400	WCDMA1900	23.69	-0.021	Left	1.0 cm	0.481	1.002	0.482	-
1 880.0	9400		23.69	0.048	Right	1.0 cm	0.231	1.002	0.232	-
1 880.0	9400		23.69	-0.018	Bottom	1.0 cm	0.216	1.002	0.216	-
	ANSI/ IEEE C95.1 - 1992– Safety Limit					0.093Body				
	Spatial Peak Uncontrolled Exposure/ General Population							W/kg (mW/g) ed over 1 gra		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-Body position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.
2	All modes of operation were investigated and the worst-case are reported.
3	Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
	T' CARLES CARLES CONTRACTOR CONTR

4	Tissue parameters and te	mperatures are listed on the	ne SAR plot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully charge	d for all readings.	
6	Test Signal Call Mode	☐ Manual Test cord	☑ Base Station Simulator	
7	Test Configuration	☐ With Holster	Without Holster ■ Without Holst	

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 9 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

13.10 Measurement Results (WLAN Hotspot SAR)

Frequency		Modulation	Conducted Power	Power Drift	Configuration	Data Rate	Separation	Measured SAR	Scaling	Scaled SAR	Plot
MHz	Ch		(dBm)	(dB)	garanan		Distance	(mW/g)	Facor	(mW/g)	No.
			15.15	0.128	Rear	1Mbps	1.0 cm	0.014	1.135	0.016	10
0.400	11	802.11b	15.15	0.121	Front	1Mbps	1.0 cm	0.0003	1.135	0.0003	-
2 462			15.15	-0.181	Right	1Mbps	1.0 cm	0.0006	1.135	0.001	-
			15.15	0.152	Тор	1Mbps	1.0 cm	0.0006	1.135	0.001	-
ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						,	Body 1.6 W/kg (n Averaged ove	nW/g)			

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type ⊠ Standard □ Extended □ Slim Batteries are fully charged for all readings.
- 6 Test Signal Call Mode

 ☐ Manual Test code ☐ Base Station Simulator
- 7 IEEE 802.11g(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.
- 8 For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

46 of 136

13.11 Measurement Results (DTS Body-worn)

Frequency		Modulation	Conducted Power	Power Drift	Configuration	Data	Separation	Measured	Scaling	Scaled	Plot
MHz	Ch.	· · · · · · · · · · · · · · · · · · ·	(dBm)	(dB)	Comiguration	Rate	Distance	SAR(mW/g)	Facor	SAR(mW/g)	No.
2 462	11	802.11b	15.15	0.128	Rear	1Mbps	1.0 cm	0.014	1.135	0.016	10
	ANSI/ IEEE C95.1 - 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population							Bod 1.6 W/kg (Averaged over	mW/g)		

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typical
	configuration. Test procedures used are according to FCC KDB Publication 447498 D01.

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- Tissue parameters and temperatures are listed on the SAR plot.

5	Battery Type	Standard	□ Extended	Slim
		Batteries are fully ch	arged for all readings.	

- Highest average RF output power channel for the lowest data rate were selected for SAR testing. IEEE 802.11(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB than the conducted powers in IEEE 802.11a.
- For 5 GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.
- Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz Band and exposure condition

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

47 of 136

13.12 Measurement Results (Body-worn SAR)

Fre	Frequency		Conducted Power	Power Drift	Configuration	Separation	Measured	Scaling	Scaled	Plot
MHz	Channel	Wodulation	(dBm)	(dB)	3	Distance	SAR(mW/g)	Facor	SAR(mW/g)	No.
836.6	190	GSM850	33.32	-0.015	Rear	1.0 cm	0.252	1.091	0.275	11
836.6	190	GPRS 4Tx	30.52	-0.025	Rear	1.0 cm	0.569	1.042	0.593	6
1 880.0	661	GSM1900	30.46	0.049	Rear	1.0 cm	0.262	1.057	0.277	12
1 880.0	661	GPRS 2Tx	29.45	0.129	Rear	1.0 cm	0.478	1.059	0.506	7
836.6	4183	WCDMA850	24.19	-0.008	Rear	1.0 cm	0.376	1.002	0.377	8
1 880.0	9400	WCDMA1900	23.69	0.105	Rear	1.0 cm	0.534	1.002	0.535	9
			Body	1						
		1.6 W/kg (mW/g)								
		Uncontrolled Exp	osure/ Gene	ral Popula	tion			Averaged ove	er 1 gram	

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-body position set in a typical configuration. Test procedures used are according to FCC KDB Publication 447498 D01.
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.
- 6 Body-Worn accessory testing is typically associated with voice operation. Therefore, GSM voice was evaluated for body-worn SAR.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

48 of **136**

HCT CO., LTD.

14. SAR Measurement Variability and Uncertainty

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note(s)

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HCT CO., LTD.

15. SAR Summation Scenario

	Position	Applicable Combination	Note
		GSM 850 Voice + 2.4 GHz WiFi	
		GSM 1900 Voice + 2.4 GHz WiFi	
	Head	GPRS 850 Data + 2.4 GHz WiFi	
	пеац	GPRS 1900 Data + 2.4 GHz WiFi	
		WCDMA850 Voice + 2.4 GHz WiFi	
		WCDMA1900 Voice + 2.4 GHz WiFi	
		GPRS 850 Data + 2.4 GHz WiFi	
	Hotopot	GPRS 1900 Data + 2.4 GHz WiFi	
Simultaneous Transmission	Hotspot	WCDMA850 Data + 2.4 GHz WiFi	
Simultaneous Transmission		WCDMA1900 Voice + 2.4 GHz WiFi	
		GSM 850 Voice + 2.4 GHz WiFi	
		GSM 1900 Voice + 2.4 GHz WiFi	
		WCDMA850 Voice + 2.4 GHz WiFi	
	Dody worn	WCDMA1900 Voice + 2.4 GHz WiFi	
	Body-worn	GSM 850 Voice + 2.4 GHz Bluetooth	
		GSM 1900 Voice + 2.4 GHz Bluetooth	
		WCDMA850 Voice+ 2.4 GHz Bluetooth	
		WCDMA1900 Voice + 2.4 GHz Bluetooth	

15.1 Simultaneous Transmission Summation for Head

Simultaneous Transmission Summation with Wifi

Band	configuration	Scaled SAR (W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑1-g SAR (W/kg)	Band	configuration	Scaled SAR (W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑ 1-g SAR (W/kg)
	Left Cheek	0.103	0.016	0.119	GSM 1900	Left Cheek	0.201	0.016	0.217
CCMOEO	Left Tilt	0.057	0.012	0.069		Left Tilt	0.108	0.012	0.120
GSM850	Right Cheek	0.099	0.028	0.127		Right Cheek	0.125	0.028	0.153
	Right Tilt	0.044	0.017	0.061		Right Tilt	0.117	0.017	0.134
	Left Cheek	0.219	0.016	0.235	GPRS	Left Cheek	0.060	0.016	0.076
CDDCCC	Left Tilt	0.127	0.012	0.139		Left Tilt	0.031	0.012	0.043
GPRS850	Right Cheek	0.223	0.028	0.251	1900	Right Cheek	0.035	0.028	0.063
	Right Tilt	0.101	0.017	0.118		Right Tilt	0.034	0.017	0.051
	Left Cheek	0.152	0.016	0.168		Left Cheek	0.430	0.016	0.446
WCDMA	Left Tilt	0.082	0.012	0.094	WCDMA	Left Tilt	0.204	0.012	0.216
850	Right Cheek	0.176	0.028	0.204	1900	Right Cheek	0.257	0.028	0.285
	Right Tilt	0.077	0.017	0.094		Right Tilt	0.220	0.017	0.237

15.2 Simultaneous Transmission Summation for Body-Worn

Simultaneous Transmission Summation with Wifi (1 cm)

Band	configuration	Scaled SAR (W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑1-g SAR (W/kg)
GSM 850	Rear	0.593	0.016	0.609
GSM 1900	Rear	0.506	0.016	0.522
WCDMA850	Rear	0.377	0.016	0.393
WCDMA1900	Rear	0.535	0.016	0.551

Simultaneous Transmission Summation with Bluetooth (1 cm)

Band	configuration	Scaled SAR (W/kg)	BT SAR (W/kg)	∑1-g SAR (W/kg)	
GSM 850	Rear	0.593	0.08	0.673	
GSM 1900	Rear	0.480	0.08	0.560	
WCDMA850	Rear	0.410	0.08	0.490	
WCDMA1900	Rear	0.577	0.08	0.657	

15.3 Simultaneous Transmission Summation for Hotspot

Band	configuration	Scaled SAR (W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑ 1-g SAR (W/kg)	Band	configuration	Scaled SAR (W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑1-g SAR (W/kg)
	Rear	0.593	0.016	0.609		Rear	0.506	0.016	0.522
	Front	0.393	0.0003	0.3933		Front	0.424	0.0003	0.4243
GSM 850	Left	0.121		0.121	GSM 1900	Left	0.441		0.441
G3W 650	Right	0.301	0.001	0.302		Right	0.204	0.001	0.205
	Bottom	0.136		0.136		Bottom	0.222		0.222
	Тор		0.001	0.001		Тор		0.001	0.001
	Rear	0.377	0.016	0.393		Rear	0.535	0.016	0.551
	Front	0.249	0.0003	0.2493		Front	0.419	0.0003	0.4193
WCDMA	Left	0.075		0.075	WCDMA	Left	0.482		0.482
850	Right	0.207	0.001	0.208	1900	Right	0.232	0.001	0.233
	Bottom	0.085		0.085		Bottom	0.213		0.213
	Тор		0.001	0.001		Тор		0.001	0.001

HCTA1308FS08 FCC ID: ZNFD680 Date of Issue: Aug. 22, 2013 Report No.:

15.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. And therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

17. REFERENCES

- [1] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [2] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [3] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [4] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [5] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [6] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [7] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [8]K. Pokovi°, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [9] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [10] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [11] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [12] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [13] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [14] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [16] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [17] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [18] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zörich, Dosimetric Evaluation of the Cellular Phone.
- [19] SAR Evaluation of Handsets with Multiple Transmitters and Antennas #648474.
- [20] SAR Measurement Procedure for 802.11 a/b/g Transmitters #KDB 248227.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

56 of 136

Date of Issue: Aug. 22, 2013 Report No.: HCTA1308FS08 FCC ID: ZNFD680

Attachment 1. - SAR Test Plots

HCT CO., LTD.
74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.05, 2013

Plot NO. 1

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.075

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.921 mho/m; ε_r = 40.4; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(6.56, 6.56, 6.56); Calibrated: 2013-01-24

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

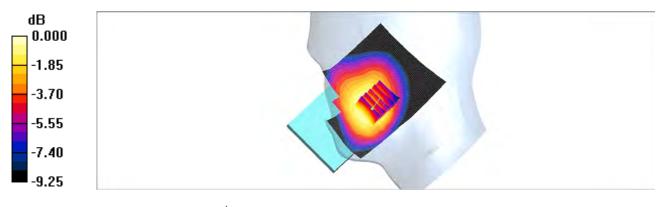
• Phantom: SAM 835/900 MHz; Type: SAM;

Measurement SW: DASY4, V4.7 Build 80;

GSM850 Right Touch 190 GPRS 4Tx/Area Scan (71x121x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.230 mW/g


GSM850 Right Touch 190 GPRS 4Tx/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.47 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.167 mW/gMaximum value of SAR (measured) = 0.219 mW/g

0 dB = 0.219 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.1 $^{\circ}$ C Ambient Temperature: 20.3 $^{\circ}$ C

Test Date: Aug.07, 2013

Plot NO. 2

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; σ = 1.39 mho/m; ε_r = 39.8; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

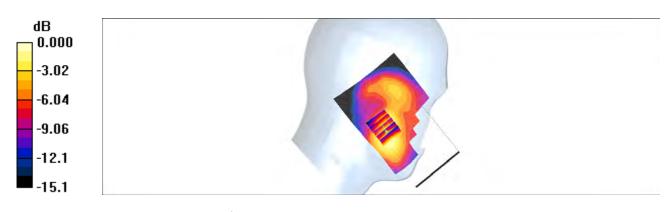
Probe: ET3DV6 - SN1630; ConvF(5.28, 5.28, 5.28); Calibrated: 2013-01-24

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

Phantom: 835/900 Phamtom; Type: SAM;

• Measurement SW: DASY4, V4.7 Build 80;


GSM1900 Left Touch 661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.201 mW/g

GSM1900 Left Touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.49 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.122 mW/g Maximum value of SAR (measured) = 0.201 mW/g

0 dB = 0.201 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.05, 2013

Plot NO. 3

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.921 mho/m; ε_r = 40.4; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(6.56, 6.56, 6.56); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

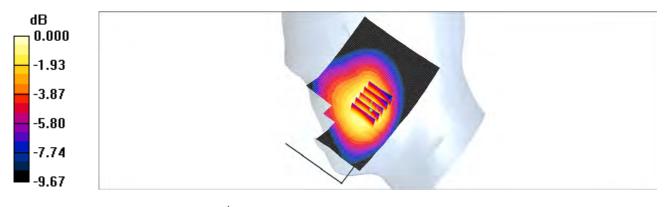
• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: SAM 835/900 MHz; Type: SAM;

Measurement SW: DASY4, V4.7 Build 80;

WCDMA850 Right touch 4183/Area Scan (71x121x1): Measurement grid: dx=15mm,

Maximum value of SAR (interpolated) = 0.185 mW/g


WCDMA850 Right touch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.40 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.176 mW/g; SAR(10 g) = 0.136 mW/g Maximum value of SAR (measured) = 0.184 mW/g

0 dB = 0.184 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.07, 2013

Plot NO. 4

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(5.28, 5.28, 5.28); Calibrated: 2013-01-24

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

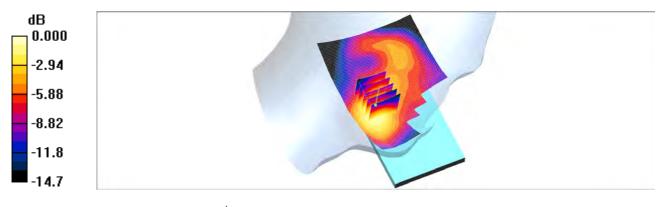
Phantom: 835/900 Phamtom; Type: SAM;Measurement SW: DASY4, V4.7 Build 80;

• Weasurement SW. DAST4, V4.7 Build 60

WCDMA1900 Left Touch 9400/Area Scan (71x121x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.462 mW/g


WCDMA1900 Left Touch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.42 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.586 W/kg

SAR(1 g) = 0.429 mW/g; SAR(10 g) = 0.275 mW/g Maximum value of SAR (measured) = 0.454 mW/g

0 dB = 0.454 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.09, 2013

Plot NO. 5

DUT: LG-D680; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.85 \text{ mho/m}$; $\epsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1630; ConvF(4.59, 4.59, 4.59); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: SAM 1800/1900 MHz; Type: SAM;

Measurement SW: DASY4, V4.7 Build 80;

WIFI2450 Right Touch 11ch/Area Scan (81x151x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (interpolated) = 0.028 mW/g

WIFI2450 Right Touch 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 1.99 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 0.082 W/kg

SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.011 mW/gMaximum value of SAR (measured) = 0.028 mW/g

0 dB = 0.028 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C

Test Date: Aug.06, 2013

Plot NO. 6

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.075

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.982 \text{ mho/m}$; $\varepsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1798; ConvF(6.46, 6.46, 6.46); Calibrated: 2013-04-29
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 80;

GSM850 Body Rear GPRS 4Tx 190/Area Scan (71x121x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.610 mW/g

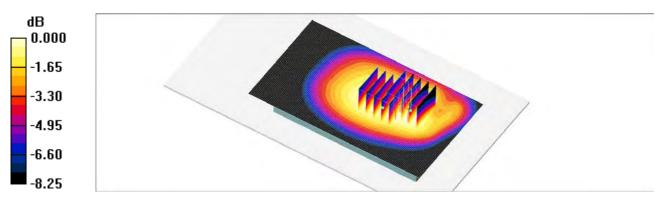
GSM850 Body Rear GPRS 4Tx 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.753 W/kg

SAR(1 g) = 0.569 mW/g; SAR(10 g) = 0.425 mW/g Maximum value of SAR (measured) = 0.603 mW/g


GSM850 Body Rear GPRS 4Tx 190/Zoom Scan (5x5x7)/Cube 1: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.679 W/kg

SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.416 mW/g Maximum value of SAR (measured) = 0.584 mW/g

0 dB = 0.584 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C

Test Date: Aug.08, 2013

Plot NO. 7

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ε_r = 53.9; ρ = 1000 kg/m³

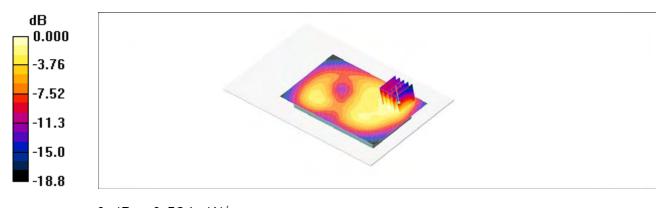
Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1798; ConvF(4.7, 4.7, 4.7); Calibrated: 2013-04-29

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C 20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 80;


GSM1900 Body Rear GPRS 2Tx 661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.537 mW/g

GSM1900 Body Rear GPRS 2Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.08 V/m; Power Drift = 0.129 dB

Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.478 mW/g; SAR(10 g) = 0.290 mW/gMaximum value of SAR (measured) = 0.524 mW/g

0 dB = 0.524 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C

Test Date: Aug.06, 2013

Plot NO. 8

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.982 mho/m; ε_r = 56.8; ρ = 1000 kg/m³

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

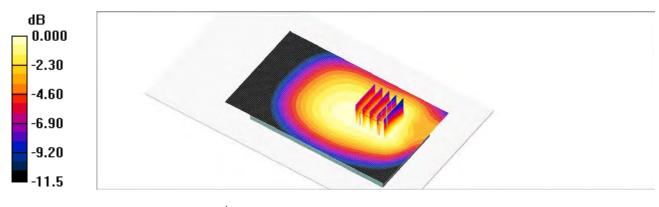
Probe: ET3DV6 - SN1798; ConvF(6.46, 6.46, 6.46); Calibrated: 2013-04-29

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 80;

WCDMA850 Body Rear 4183/Area Scan (71x121x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.397 mW/g


WCDMA850 Body Rear 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.376 mW/g; SAR(10 g) = 0.281 mW/gMaximum value of SAR (measured) = 0.393 mW/g

0 dB = 0.393 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C Test Date: Aug.08, 2013

Plot NO. 9

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

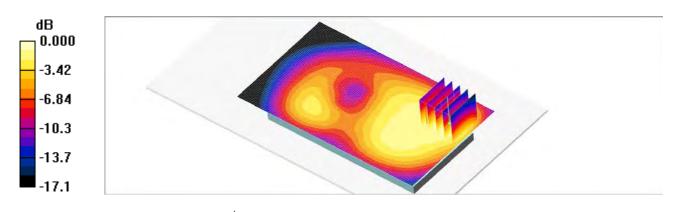
DASY4 Configuration:

- Probe: ET3DV6 SN1798; ConvF(4.7, 4.7, 4.7); Calibrated: 2013-04-29
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 80;

WCDMA1900 Body Rear 9400/Area Scan (71x121x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.591 mW/g


WCDMA1900 Body Rear 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.39 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.534 mW/g; SAR(10 g) = 0.327 mW/g Maximum value of SAR (measured) = 0.575 mW/g

0 dB = 0.575 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.09, 2013

Plot NO. 10

DUT: LG-D680; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1630; ConvF(4.26, 4.26, 4.26); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

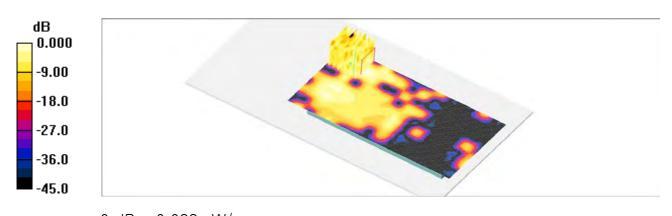
• Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

Measurement SW: DASY4, V4.7 Build 80;

WIFI2450 Body rear 11ch/Area Scan (81x151x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (interpolated) = 0.022 mW/g


WIFI2450 Body rear 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 1.53 V/m; Power Drift = 0.128 dB

Peak SAR (extrapolated) = 0.049 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00321 mW/g Maximum value of SAR (measured) = 0.022 mW/g

0 dB = 0.022 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C

Test Date: Aug.08, 2013

Plot NO.

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.982 \text{ mho/m}$; $\varepsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1798; ConvF(6.46, 6.46, 6.46); Calibrated: 2013-04-29

• Sensor-Surface: 4mm (Mechanical Surface Detection)

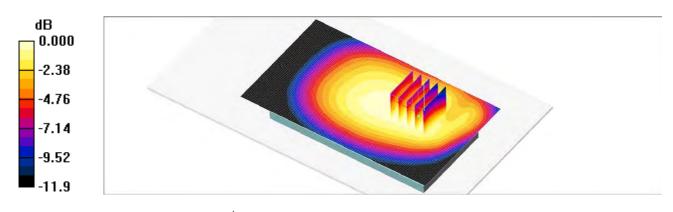
• Electronics: DAE3 Sn446; Calibrated: 2013-01-16

• Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

Measurement SW: DASY4, V4.7 Build 80;

GSM850 Body-worn Rear 190/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.268 mW/g


GSM850 Body-worn Rear 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.4 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.333 W/kg

SAR(1 g) = 0.252 mW/g; SAR(10 g) = 0.189 mW/g Maximum value of SAR (measured) = 0.264 mW/g

0 dB = 0.264 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature:20.4 $^{\circ}$ CAmbient Temperature:20.6 $^{\circ}$ C

Test Date: Aug.08, 2013

Plot NO. 12

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

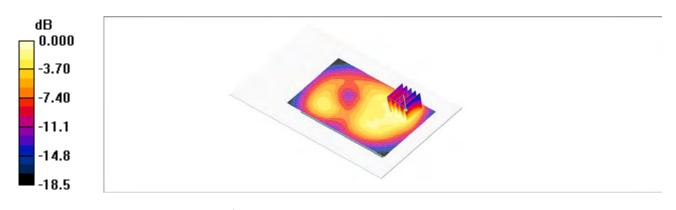
DASY4 Configuration:

• Probe: ET3DV6 - SN1798; ConvF(4.7, 4.7, 4.7); Calibrated: 2013-04-29

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 80;

GSM1900 Body-worn Rear 661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.295 mW/g


GSM1900 Body-worn Rear 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.30 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.406 W/kg

SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.160 mW/g Maximum value of SAR (measured) = 0.287 mW/g

0 dB = 0.287 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.1 $^{\circ}$ C Ambient Temperature: 20.3 $^{\circ}$ C

Test Date: Aug.05, 2013

Plot NO. 1

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.075

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.921 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(6.56, 6.56, 6.56); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2013-02-21

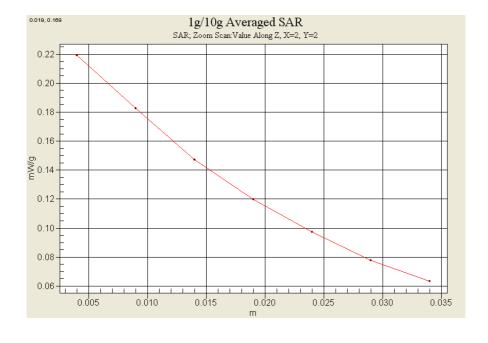
• Phantom: SAM 835/900 MHz; Type: SAM;

• Measurement SW: DASY4, V4.7 Build 80;

GSM850 Right Touch 190 GPRS 4Tx/Area Scan (71x121x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.230 mW/g


GSM850 Right Touch 190 GPRS 4Tx/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.47 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.219 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.1 $^{\circ}$ C Ambient Temperature: 20.3 $^{\circ}$ C

Test Date: Aug.07, 2013

Plot NO. 2

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; σ = 1.39 mho/m; ε_r = 39.8; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

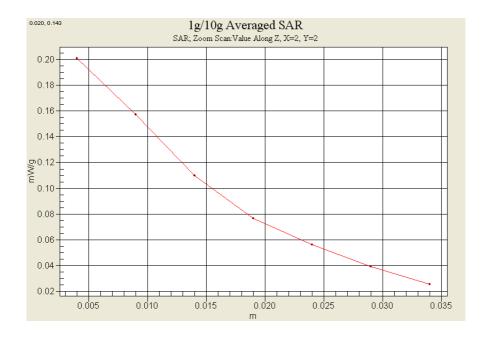
• Probe: ET3DV6 - SN1630; ConvF(5.28, 5.28, 5.28); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: 835/900 Phamtom; Type: SAM;

Measurement SW: DASY4, V4.7 Build 80;


GSM1900 Left Touch 661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.201 mW/g

GSM1900 Left Touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.49 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.122 mW/g Maximum value of SAR (measured) = 0.201 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.1 $^{\circ}$ C Ambient Temperature: 20.3 $^{\circ}$ C

Test Date: Aug.05, 2013

Plot NO. 3

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.921 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(6.56, 6.56, 6.56); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

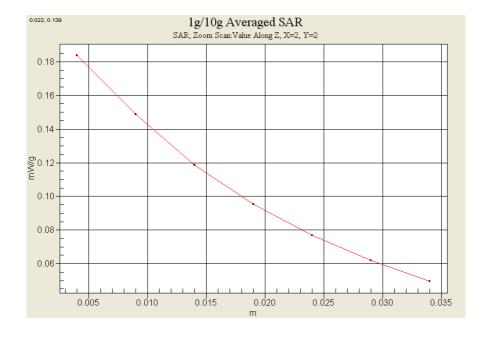
Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: SAM 835/900 MHz; Type: SAM;

Measurement SW: DASY4, V4.7 Build 80;

WCDMA850 Right touch 4183/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.185 mW/g


WCDMA850 Right touch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.40 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.176 mW/g; SAR(10 g) = 0.136 mW/gMaximum value of SAR (measured) = 0.184 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.07, 2013

Plot NO. 4

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(5.28, 5.28, 5.28); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2013-02-21

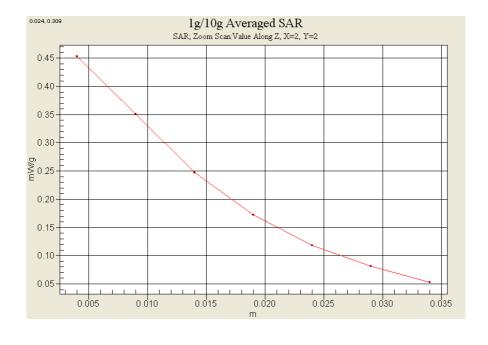
• Phantom: 835/900 Phamtom; Type: SAM;

Measurement SW: DASY4, V4.7 Build 80;

WCDMA1900 Left Touch 9400/Area Scan (71x121x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.462 mW/g


WCDMA1900 Left Touch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.42 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.586 W/kg

SAR(1 g) = 0.429 mW/g; SAR(10 g) = 0.275 mW/gMaximum value of SAR (measured) = 0.454 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.09, 2013

Plot NO. 5

DUT: LG-D680; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.85 \text{ mho/m}$; $\epsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(4.59, 4.59, 4.59); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn466; Calibrated: 2013-02-21

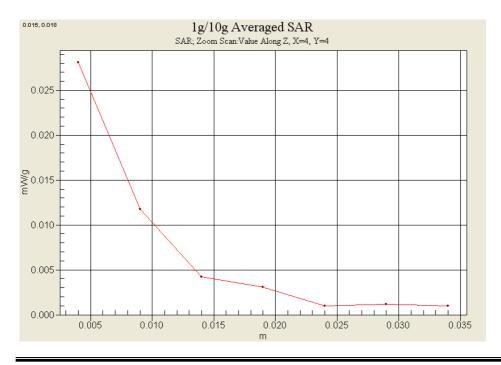
• Phantom: SAM 1800/1900 MHz; Type: SAM;

• Measurement SW: DASY4, V4.7 Build 80;

WIFI2450 Right Touch 11ch/Area Scan (81x151x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (interpolated) = 0.028 mW/g


WIFI2450 Right Touch 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 1.99 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 0.082 W/kg

SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.011 mW/g Maximum value of SAR (measured) = 0.028 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature:20.4 $^{\circ}$ CAmbient Temperature:20.6 $^{\circ}$ C

Test Date: Aug.06, 2013

Plot NO. 6

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.075

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.982 \text{ mho/m}$; $\epsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1798; ConvF(6.46, 6.46, 6.46); Calibrated: 2013-04-29

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn446; Calibrated: 2013-01-16

• Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

Measurement SW: DASY4, V4.7 Build 80;

GSM850 Body Rear GPRS 4Tx 190/Area Scan (71x121x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.610 mW/g

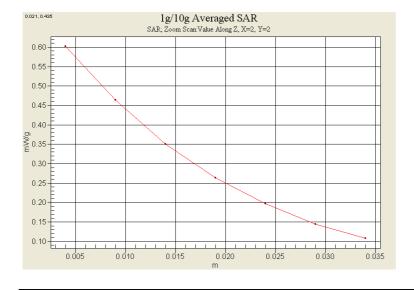
GSM850 Body Rear GPRS 4Tx 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.753 W/kg

SAR(1 g) = 0.569 mW/g; SAR(10 g) = 0.425 mW/gMaximum value of SAR (measured) = 0.603 mW/g


GSM850 Body Rear GPRS 4Tx 190/Zoom Scan (5x5x7)/Cube 1: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.679 W/kg

SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.416 mW/g Maximum value of SAR (measured) = 0.584 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

 $\begin{array}{lll} \mbox{Liquid Temperature:} & \mbox{20.4 } \% \\ \mbox{Ambient Temperature:} & \mbox{20.6 } \% \\ \end{array}$

Test Date: Aug.08, 2013

Plot NO. 7

DUT: LG-D680; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

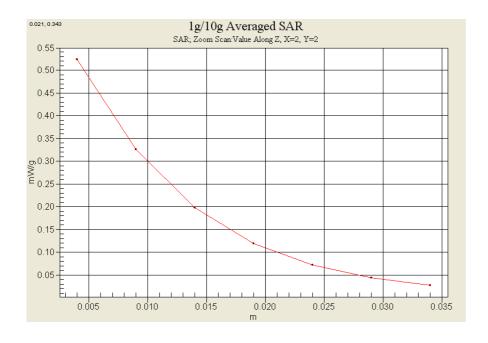
Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1798; ConvF(4.7, 4.7, 4.7); Calibrated: 2013-04-29

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 80;


GSM1900 Body Rear GPRS 2Tx 661/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.537 mW/g

GSM1900 Body Rear GPRS 2Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.08 V/m; Power Drift = 0.129 dB

Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.478 mW/g; SAR(10 g) = 0.290 mW/gMaximum value of SAR (measured) = 0.524 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.06, 2013

Plot NO. 8

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.982 \text{ mho/m}$; $\varepsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1798; ConvF(6.46, 6.46, 6.46); Calibrated: 2013-04-29

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn446; Calibrated: 2013-01-16

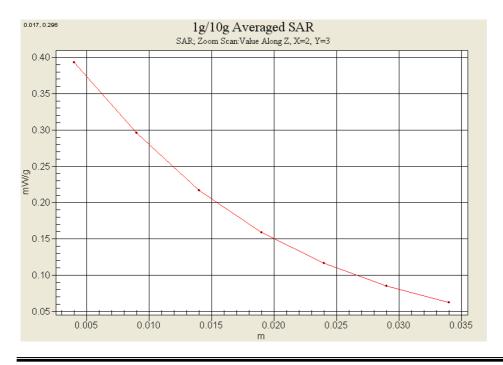
• Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

Measurement SW: DASY4, V4.7 Build 80;

WCDMA850 Body Rear 4183/Area Scan (71x121x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.397 mW/g


WCDMA850 Body Rear 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.376 mW/g; SAR(10 g) = 0.281 mW/gMaximum value of SAR (measured) = 0.393 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Liquid Temperature: 20.4 $^{\circ}$ C Ambient Temperature: 20.6 $^{\circ}$ C

Test Date: Aug.08, 2013

Plot NO. 9

DUT: LG-D680; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ε_r = 53.9; ρ = 1000 kg/m³

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1798; ConvF(4.7, 4.7, 4.7); Calibrated: 2013-04-29

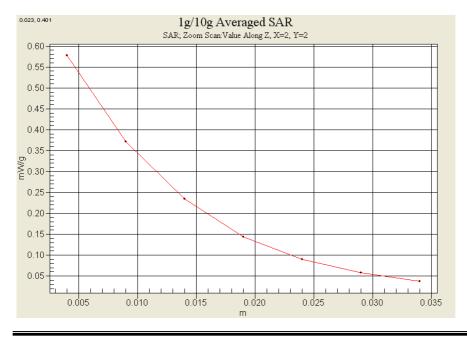
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

Measurement SW: DASY4, V4.7 Build 80;

WCDMA1900 Body Rear 9400/Area Scan (71x121x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.591 mW/g


WCDMA1900 Body Rear 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.39 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.534 mW/g; SAR(10 g) = 0.327 mW/g Maximum value of SAR (measured) = 0.575 mW/g

HCT CO., LTD.

Test Laboratory: HCT CO., LTD

EUT Type: GSM/WCDMA Phone with Bluetooth3.0, WIFI802.11 b/g/n(2.4GHz), VOIP,

Hotsot support

Test Date: Aug.09, 2013

Plot NO. 10

DUT: LG-D680; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1630; ConvF(4.26, 4.26, 4.26); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

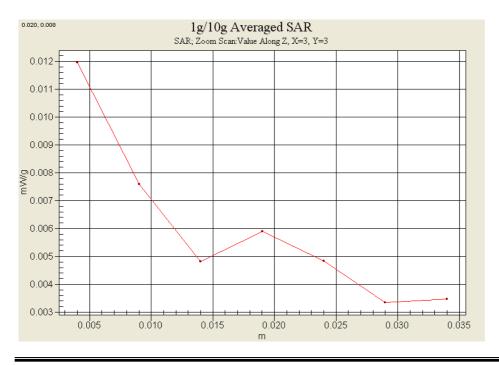
• Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

• Measurement SW: DASY4, V4.7 Build 80;

WIFI2450 Body rear 11ch/Area Scan (81x151x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (interpolated) = 0.022 mW/g


WIFI2450 Body rear 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 1.53 V/m; Power Drift = 0.128 dB

Peak SAR (extrapolated) = 0.049 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00321 mW/g Maximum value of SAR (measured) = 0.022 mW/g

Attachment 2. – Dipole Verification Plots

HCT CO., LTD.

■ Verification Data (835 MHz Head)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 20.1 $^{\circ}$ C

Test Date: Aug. 05, 2013

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:441

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

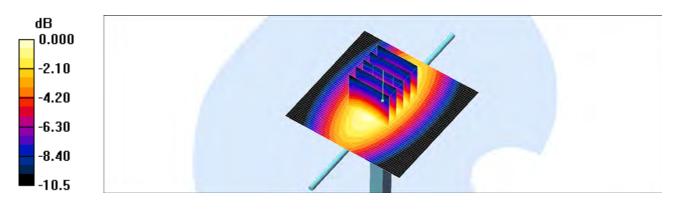
Probe: ET3DV6 - SN1630; ConvF(6.56, 6.56, 6.56); Calibrated: 2013-01-24

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: SAM 835/900 MHz; Type: SAM;

• Measurement SW: DASY4, V4.7 Build 71;


Validation 835MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.07 mW/g

Validation 835MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.5 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.980 mW/g; SAR(10 g) = 0.645 mW/gMaximum value of SAR (measured) = 1.06 mW/g

0 dB = 1.06 mW/g

■ Verification Data (835 MHz Body)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 20.4 ℃

Test Date: Aug.06, 2013

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:441

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.981 \text{ mho/m}$; $\varepsilon_r = 56.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

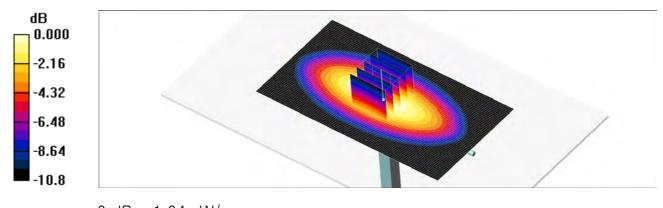
• Probe: ET3DV6 - SN1798; ConvF(6.46, 6.46, 6.46); Calibrated: 2013-04-29

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn446; Calibrated: 2013-01-16

• Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA;

• Measurement SW: DASY4, V4.7 Build 71;


Validation 835 MHz/Area Scan (111x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.04 mW/g

Validation 835 MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.7 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.957 mW/g; SAR(10 g) = 0.620 mW/g Maximum value of SAR (measured) = 1.04 mW/g

0 dB = 1.04 mW/g

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

82 of 136

■ Verification Data (1 900 MHz Head)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 20.1 $^{\circ}$ C

Test Date: Aug.07, 2013

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d038

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(5.28, 5.28, 5.28); Calibrated: 2013-01-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: SAM 835/900 MHz; Type: SAM;

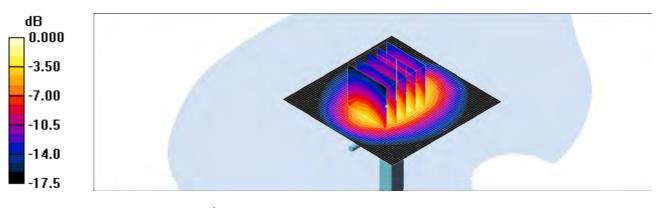
• Measurement SW: DASY4, V4.7 Build 71;

Dipole 1900MHz Validation/Area Scan (61x61x1): Measurement grid: dx=15mm,

dv=15mm

Maximum value of SAR (interpolated) = 4.71 mW/g

Dipole 1900MHz Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dv=8mm. dz=5mm

Reference Value = 61.3 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 6.69 W/kg

SAR(1 g) = 4.2 mW/g; SAR(10 g) = 2.37 mW/g

Maximum value of SAR (measured) = 4.65 mW/g

0 dB = 4.65 mW/g

Verification Data (1 900 MHz Body)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 20.4 ℃

Test Date: Aug.08, 2013

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d038

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

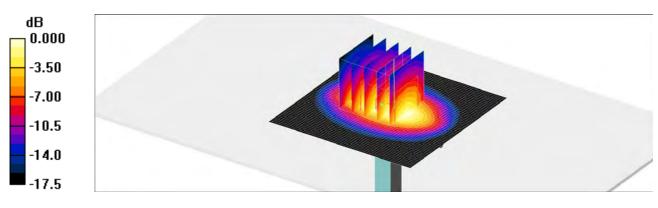
Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1798; ConvF(4.7, 4.7, 4.7); Calibrated: 2013-04-29
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2013-01-16
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;
- Measurement SW: DASY4, V4.7 Build 71;


Validation1900 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.66 mW/g

Validation 1900 MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 58.0 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 6.54 W/kg

SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.16 mW/g Maximum value of SAR (measured) = 4.45 mW/g

0 dB = 4.45 mW/g

■ Verification Data (2 450 MHz Head)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.5 $^{\circ}$ C

Test Date: Aug. 09, 2013

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\epsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(4.59, 4.59, 4.59); Calibrated: 2013-01-24

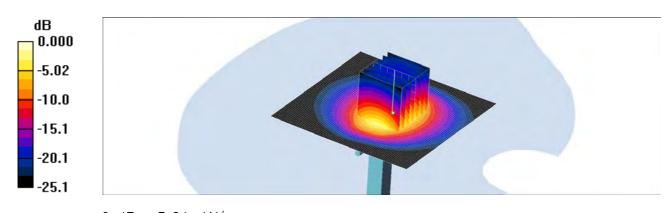
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: 835/900 Phamtom; Type: SAM;

• Measurement SW: DASY4, V4.7 Build 71;

Validation 2450MHz/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 6.01 mW/g


Validation 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.8 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 12.4 W/kg

SAR(1 g) = 5.28 mW/g; SAR(10 g) = 2.34 mW/g

Maximum value of SAR (measured) = 5.91 mW/g

0 dB = 5.91 mW/g

■ Verification Data (2 450 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 20.5 $^{\circ}$ C

Test Date: Aug. 09, 2013

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1630; ConvF(4.26, 4.26, 4.26); Calibrated: 2013-01-24

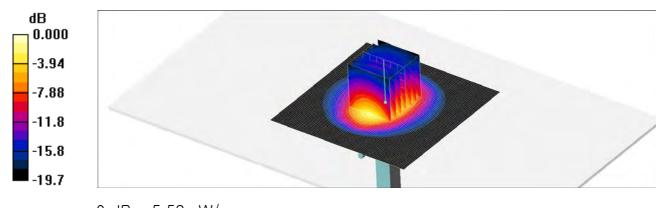
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn466; Calibrated: 2013-02-21

• Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA;

• Measurement SW: DASY4, V4.7 Build 80;

Verification 2450MHz/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 5.63 mW/g


Verification 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 52.1 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 12.7 W/kg

SAR(1 g) = 5.1 mW/g; SAR(10 g) = 2.37 mW/g Maximum value of SAR (measured) = 5.53 mW/g

0 dB = 5.53 mW/g