

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ)

MODEL NUMBER: LG-D500, LGD500, D500, LGMS500, LG-MS500, MS500

FCC ID: ZNFD500

REPORT NUMBER: 13U15216-2

ISSUE DATE: June 26, 2013

Prepared for

LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY 07632

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT NO: 13U15216-2 DATE: June 26.2013 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ) FCC ID: ZNFD500

Revision History

Rev.	Issue Date	Revisions	Revised By
	06/26/13	Initial Issue	P. Kim

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	. FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	SAMPLE CALCULATION	5
	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MAXIMUM OUTPUT POWER	6
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4.	SOFTWARE AND FIRMWARE	7
	5.5.	WORST-CASE CONFIGURATION AND MODE	8
	5.6.	DESCRIPTION OF TEST SETUP	9
6.	TE	ST AND MEASUREMENT EQUIPMENT	11
7.	. RA	DIATED TEST RESULTS	12
	7.1.	LIMITS AND PROCEDURE	12
	7.2. 7.2	TRANSMITTER ABOVE 1 GHz	
	7.3.	TX ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND	26
	7.4.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND	39
	7.5.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.8 GHz BAND	52
	7.6.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BAND	61
	7.7.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.8 GHz BAND	70
	7.8.	WORST-CASE BELOW 1 GHz	76
0	SE.	THE BUOTOS	90

REPORT NO: 13U15216-2 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ)

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LG ELECTRONICS MOBILECOMM U.S.A., INC.

1000 SYLVAN AVENUE

ENGLEWOOD CLIFFS, NEW JERSEY 07632

EUT DESCRIPTION: LTE Phone Bluetooth, WLAN(2.4GHz & 5GHz) and NFC

MODEL: LG-D500, LGD500, D500, LGMS500, LG-MS500, MS500

SERIAL NUMBER: 303KPHG337169

DATE TESTED: APRIL 18 ~ MAY 4, 2013

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

Buil.

UL Verification Services Inc. By:

Tested By:

PHILIP KIM

WISE PROGRAM MANAGER

UL Verification Services Inc.

meny su macon

MENGISTU MEKURIA EMC ENGINEER

UL Verification Services Inc.

Page 4 of 84

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2009, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 13U15216-2 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ)

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a LTE Phone with Bluetooth, WLAN(2.4GHz & 5GHz) and NFC capabilities.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	16.47	44.36
2412 - 2462	802.11g	14.23	26.49
2412 - 2462	802.11n HT20	12.04	16.00
5745 - 5825	802.11a	11.19	13.15
5745 - 5825	802.11n HT20	10.12	10.28
5755 - 5795	802.11n HT40	11.57	14.35

REPORT NO: 13U15216-2 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ)

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an PIFA antenna, with a maximum gain of 1.04 dBi for 2.4GHz & 2.44dBi for 5GHz.

DATE: June 26.2013 FCC ID: ZNFD500

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was kernel, Version 3.4.0.

The EUT driver software installed during testing was Android Version 4.1.2.

The test utility software used during testing was LG870LAP8960JR121210A.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

DATE: June 26.2013 FCC ID: ZNFD500

Worst-case data rates as provided by the client were: Based on the baseline scan, the worst-case data rates were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0

Radiated emissions for EUT with antenna was performed and passed; therefore, antenna port spurious was not performed.

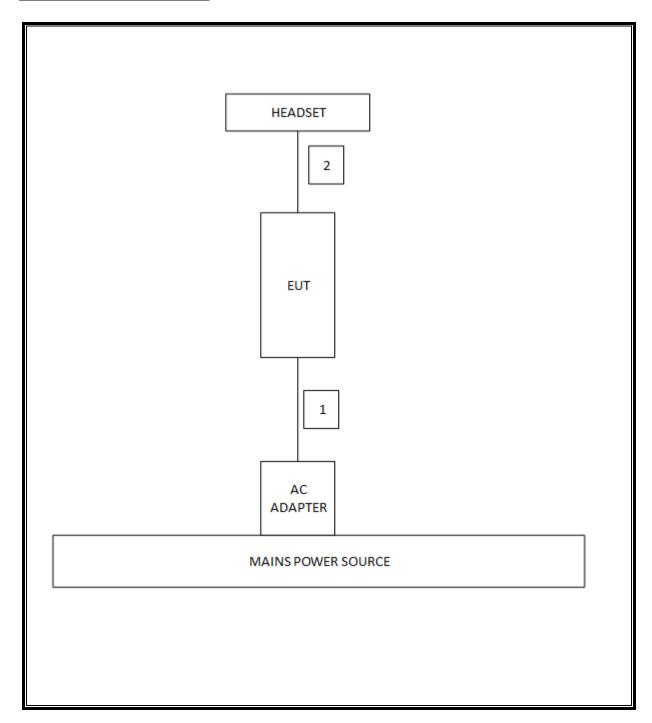
REPORT NO: 13U15216-2 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ)

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List										
Description	Manufacturer	Model	Serial Number	FCC ID						
AC Adapter	LG	MCS-01WR	RB320071516	N/A						
Earphone	I-SOUND CO. LTD	HC-MYD-LG113	N/A	N/A						

I/O CABLES


			1/0 (Cable List		
Cable No		# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A
2	Audio	1	Mini-Jack	Unshielded	1.0m	N/A

TEST SETUP

The EUT is setup as a stand-alone device.

DATE: June 26.2013

SETUP DIAGRAM FOR TESTS

REPORT NO: 13U15216-2 DATE: June 26.2013 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ) FCC ID: ZNFD500

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equipment List										
Description	Manufacturer	Model	Asset	Cal Date	Cal Due						
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	03/22/12	10/21/13						
Antenna, Horn, 18 GHz	ETS	3117	C01022	02/21/13	02/21/14						
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01176	12/13/12	12/13/13						
Single Channel PK Power Meter	Agilent	N1911A		02/18/13	02/18/14						
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	04/09/12	04/09/13						
P-Series single channel Power Meter	Agilent / HP	N1911A		10/12/12	10/12/13						
Peak / Average Power Sensor	Agilent / HP	E9323A		10/11/12	10/11/13						

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

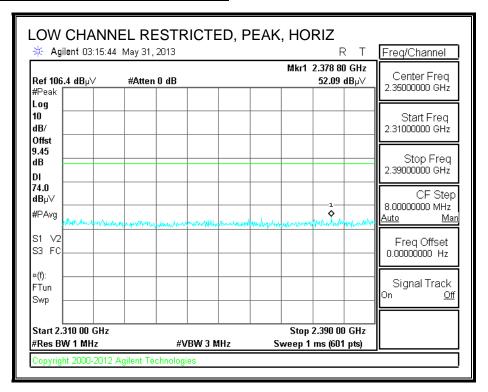
TEST PROCEDURE

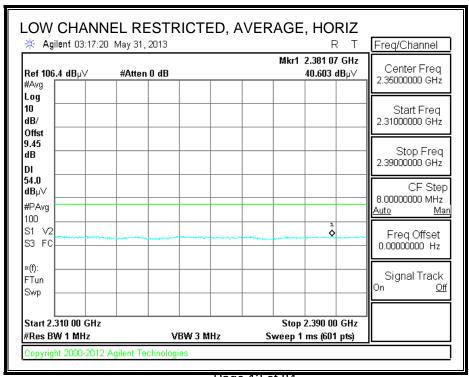
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

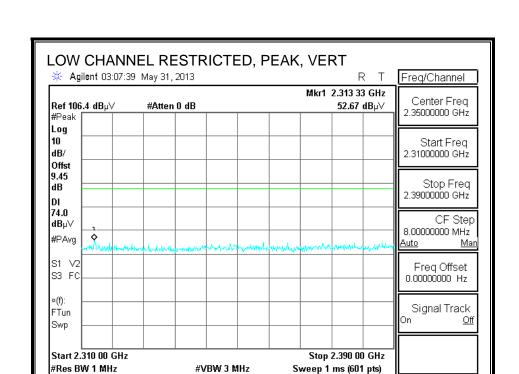
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

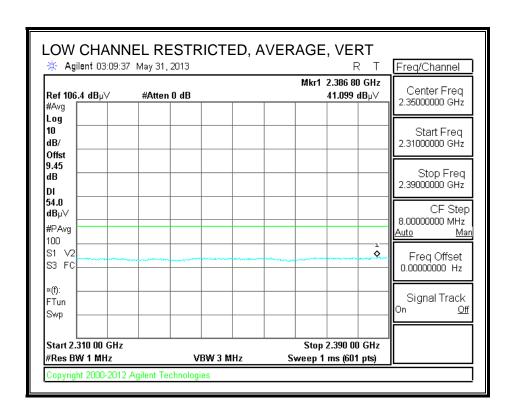

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


DATE: June 26.2013

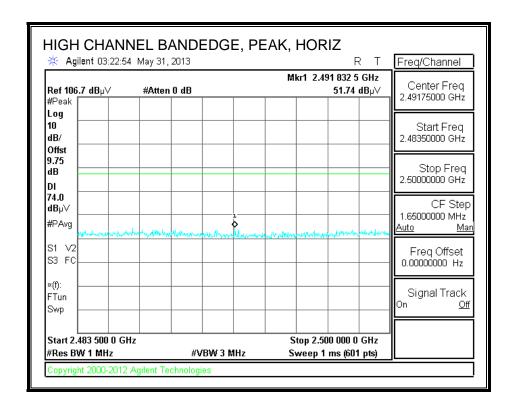
7.2. TRANSMITTER ABOVE 1 GHz

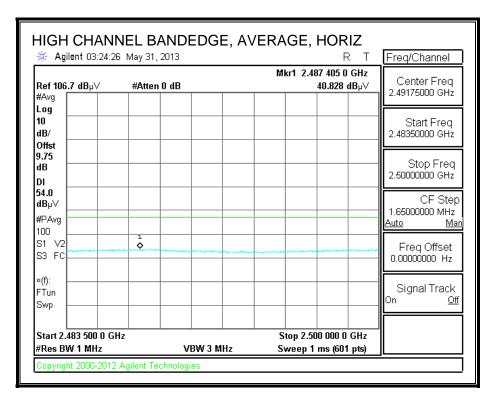
7.2.1. TX ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND

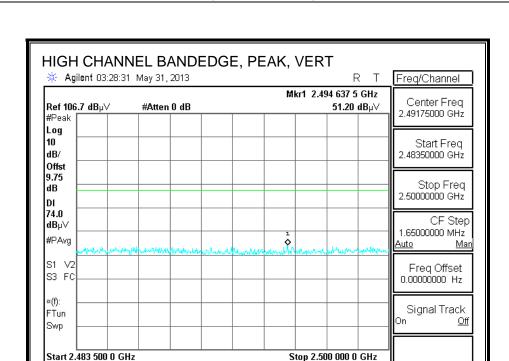

RESTRICTED BANDEDGE (LOW CHANNEL)



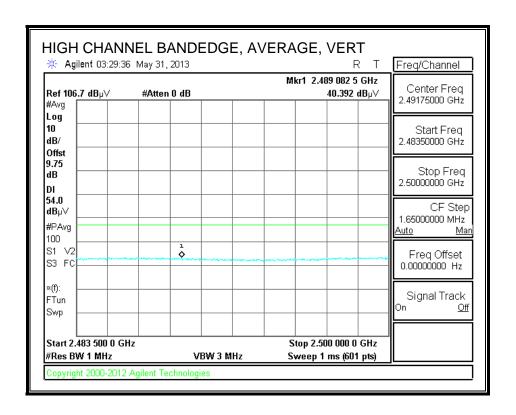
DATE: June 26.2013


opyright 2000-2012 Agilent Technolog




DATE: June 26.2013

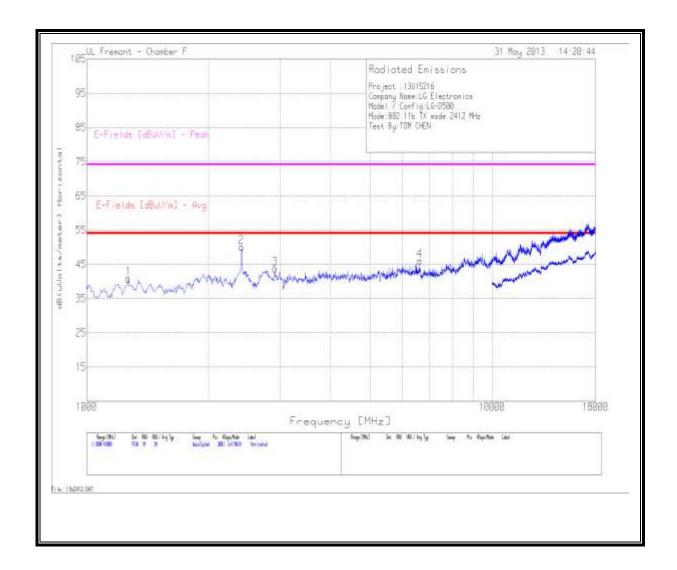
AUTHORIZED BANDEDGE (HIGH CHANNEL)



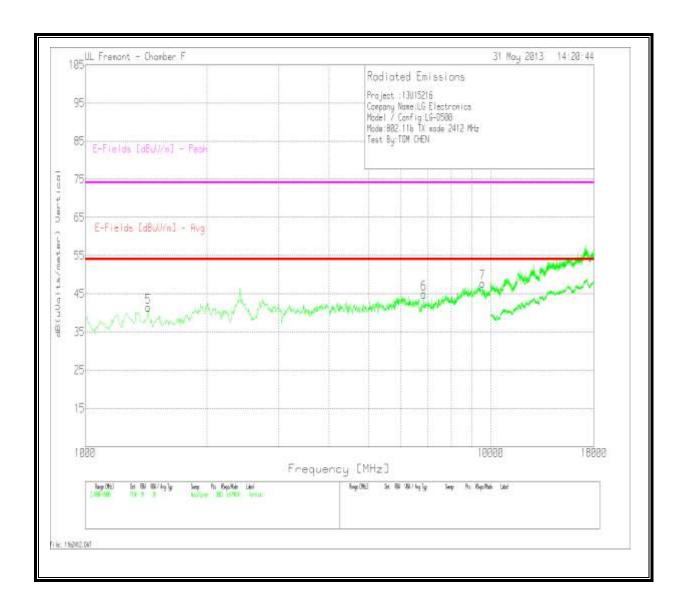
DATE: June 26.2013

#VBW 3 MHz

Sweep 1 ms (601 pts)

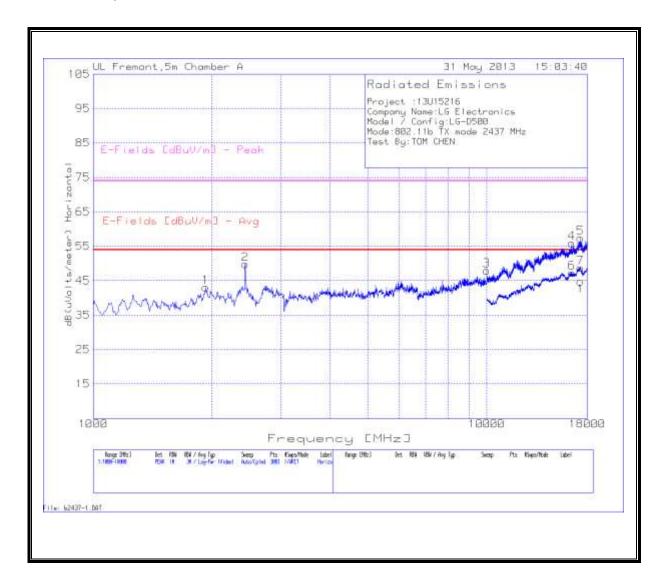

#Res BW 1 MHz

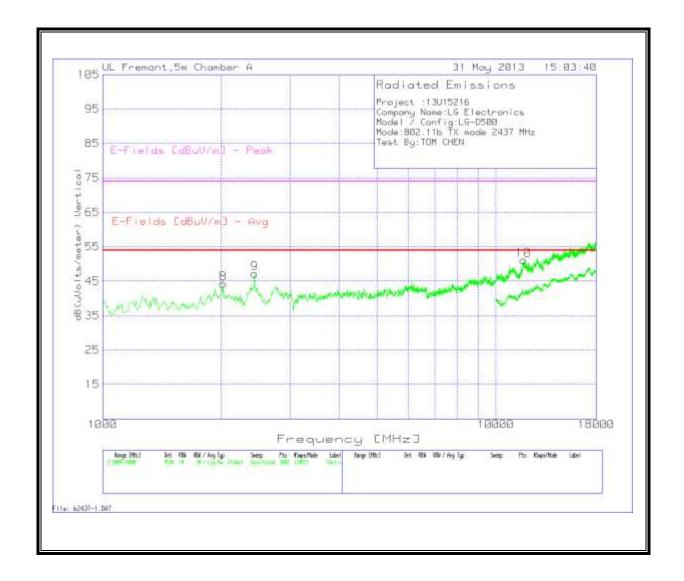
Copyright 2000-2012 Agilent Technologies


DATE: June 26.2013

HARMONICS AND SPURIOUS EMISSIONS

Low Channel, Horizontal

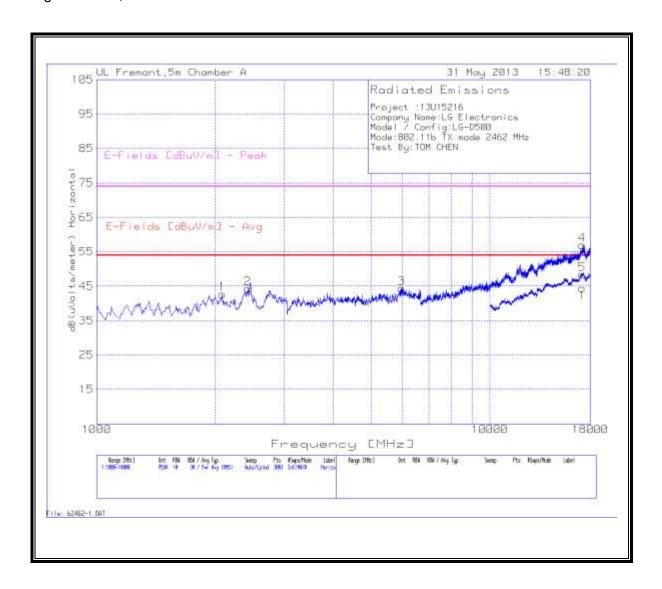

Low Channel, Vertical

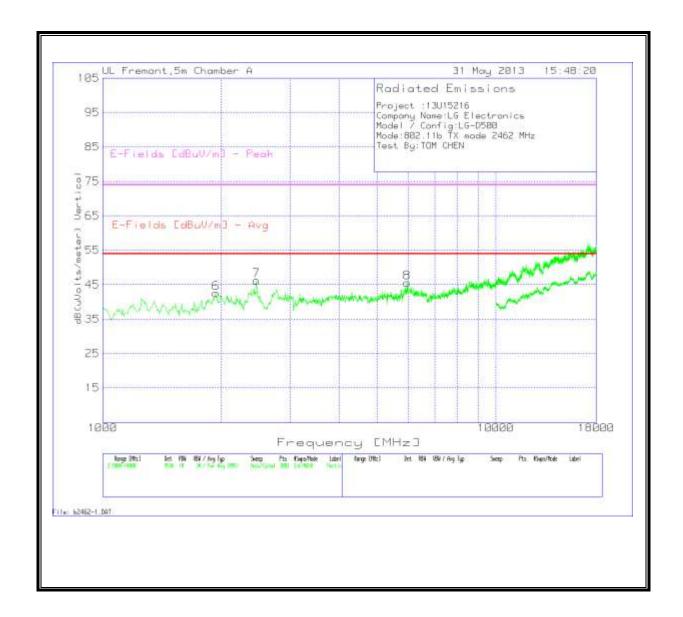


DATA

Project:1	3U15216													
Company Name:LG Electronics														
CONTRACTOR OF	onfig:LG-D5													
Annough the Area	.11b TX mod		z											
Test By:To	OM CHEN													
Marker No.	Test Frequency (MHz)	Meter Reading (dBuV)	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T160 BRF [dB]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [d8uV/m] - Peak	Margin (dB)	Height (cm)	Polarity
Horizonta	1000 - 1800	OMHz				177373								
1	1266.156	45.57	PK	30	-38.3	3.3	0,3	40.87	53.97	-13,1	74	-33.13	101	Horz
*2	2410.06	49,43	PK	32.2	-36.9	4.4	0.9	50.03	53,97	-3.94	74	-23.97	200	Horz
3	2914.057	42,17	PK	32.4	-36.7	.5	0.9	43.77	53.97	-10.2	74	-30.23	200	Horz
4	6628.914	37.63	PK	35.5	-35.6	8.2	0.3	46.03	53.97	-7.94	74	-27.97	101	Horz
Vertical 1	000 - 18000N	1Hz												
5	1430.38	46.05	ÞK	29.5	-37.9	3.4	0.4	41.45	53.97	-12.52	74	-32.55	100	Vert
6	6849.767	36.5	PK	35.4	-35.6	8.4	0.3	45	53.97	-8.97	74	-29	100	Vert
7	9556.629	36.69	PK	36.7	-36.2	10.1	0.5	47.79	53.97	-6.18	74	-26.21	100	Vert
20		7												

DATE: June 26.2013

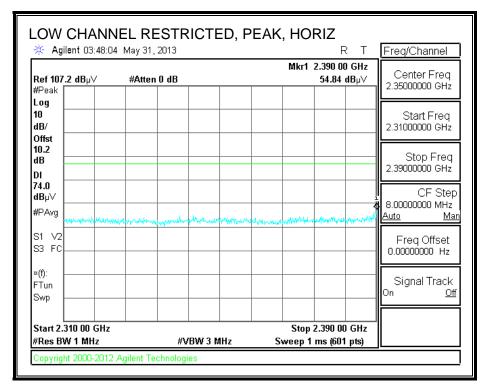


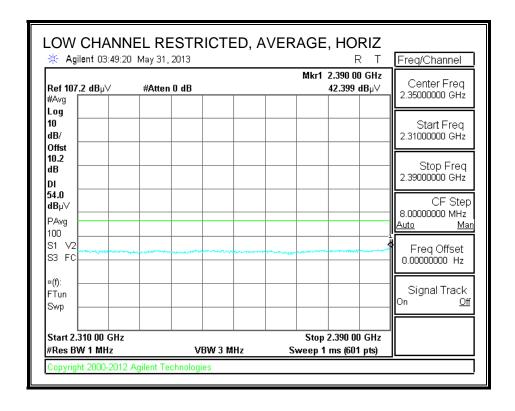

DATA

Company Model / C	3U15216 Name:LG El Config:LG-D5 2.11b TX mod DM CHEN	000	Hz											
Marker No.	Test Frequency (MHz)	Meter Reading (dBuV)	Detector	T136 Ant Factor [d8/m]	T144 Preamp Gain (dB)	Cable Factor [dB]	T160 BRF [d8]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polari
Horizonta	1000 - 1800													
1	1934.377	43.57	PK	31.8	-37.2	4	0.9	43.07	53.97	-10.9	74	-30.93	101	Hora
*2	2438.374	48.95	PK	32.3	-36.9	4,5	0.9	49.75	53.97	~4.22	74	-24.25	200	Har
3	10003.997	36,21	PK	37.2	-36,4	10.4	0.5	47.91	53.97	-6.06	74	-26,09	101	Hor
4	16442.705	35,75	PK	40.8	-34.8	13.7	0.4	55,85	53.97	1.88	74	-18.15	200	Hor
5	17314,79	36,01	PK	41	-34,4	14.1	0.6	57.31	53.97	3.34	74	-16.69	200	Hor
Vertical 1	000 - 18000N	MHz												
8	2024.983	44.7	PK	31.8	-37.1	4	0.9	44.3	53.97	-9.67	74	-29.7	200	Ver
*9	2438,374	46.41	pig	32.3	-36.9	4.5	0.9	47.21	53.97	-6.76	74	-26.79	200	Ver
10	11759.494	36.33	PK	38.6	-35.7	11.3	0.6	51.13	53.97	-2.84	74	-22.87	100	Ver
9	2381.746	43.57	PK	32	-36.9	4.4	0.9	43.97	53.97	-10	74	-30.03	100	Ver
10	9335.776	35.95	PK	36.3	-36.2	10	0,5	46.55	53.97	-7,42	74	-27.45	200	Ven
Horizonta	10000 - 180	000MHz					-							
6	16464.768	27.22	PK	40.7	-34.7	13.7	0.4	47.32	53.97	-6.65	74	-26.68	200	Hor
7	17308.346	27,42	PK	41	-34,4	14.1	0.6	48.72	53.97	-5.25	74	-25.28	200	Hora
*: Fundan	nental													
PK-Peak	detector													

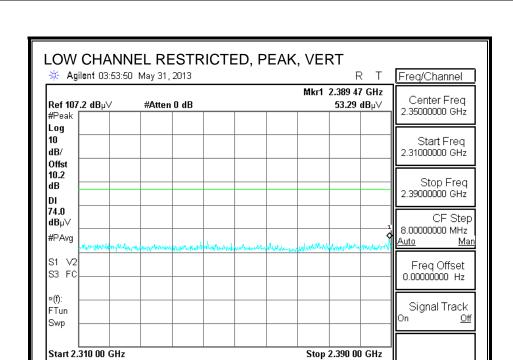
DATE: June 26.2013

High Channel, Horizontal

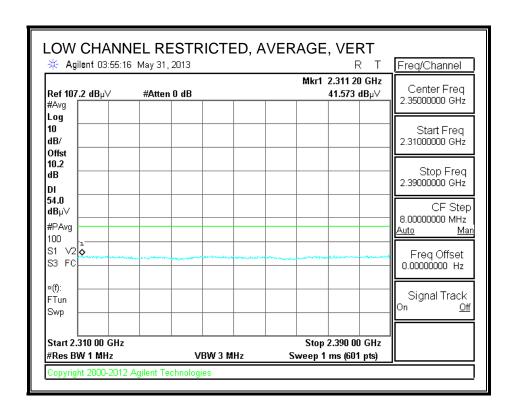

DATA


Project :1	13U15216													
Company	y Name:LG E	lectronics												
Model /	Config:LG-D	500												
Mode:80	2.11b TX mo	de 2462 M	Hz											
Test By:T	OM CHEN													
Marker No.	Test Frequency (MHz)	Meter Reading (dBuV)	Detector	T136 Ant Factor [d8/m]	T144 Preamp Gain [d8]	Cable Factor [dB]	T160 BRF [dB]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
	al 1000 - 180							Land						200
1	2087.275	43.09	PK	31.6	-37	4.1	0.9	42.69	53.97	-11.28	74	-31.31	200	Horz
2	2421.386	43.62	PK	32.2	-36.9	4.5	0.9	44.32	53.97	-9.65	74	-29.68	200	Horz
3	5966.356	36.9	PK	35.2	-35.6	7.7	0.2	44.4	53.97	-9.57	74	-29.6	200	Horz
4	17173.218	35.8	PK	40.9	-34.3	14.1	0.5	57	53.97	3.03	74	-17	101	Horz
Vertical 2	1000 - 180000	MHz						T						
6	1940,04	43.08	PK	31.8	-37,2	4	0.9	42.58	53.97	-11.39	74	-31.42	100	Vert
*7	2461.026	45.27	PK	32.4	-36.8	4.5	0.9	46.27	53.97	+7.7	74	-27.73	100	Vert
8	5949.367	38.18	PK	35.1	-35.6	7.7	0.2	45.58	53.97	-8.39	74	-28.42	100	Vert
Horizont	al 10000 - 18	zHM000												
5	17180.41	27.17	PK	40.9	-34.3	14.1	0.5	48.37	53.97	-5.6	74	-25.63	200	Horz

DATE: June 26.2013


7.3. TX ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND

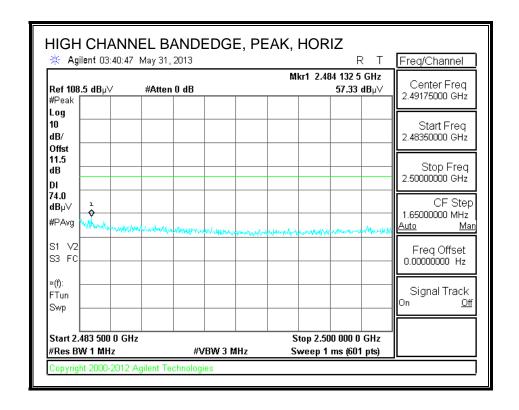
RESTRICTED BANDEDGE (LOW CHANNEL)

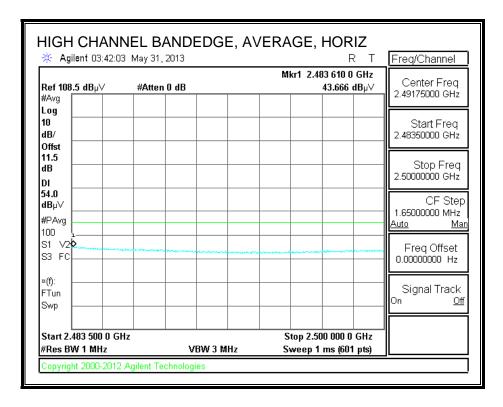


DATE: June 26.2013

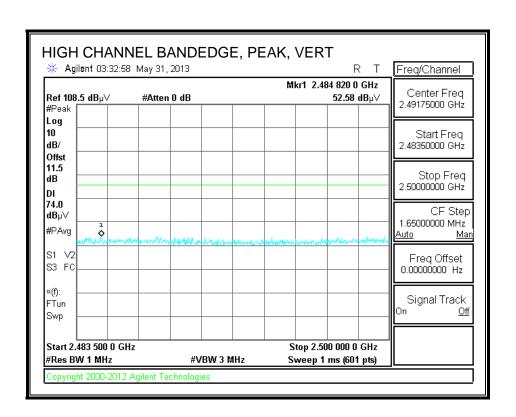
#VBW 3 MHz

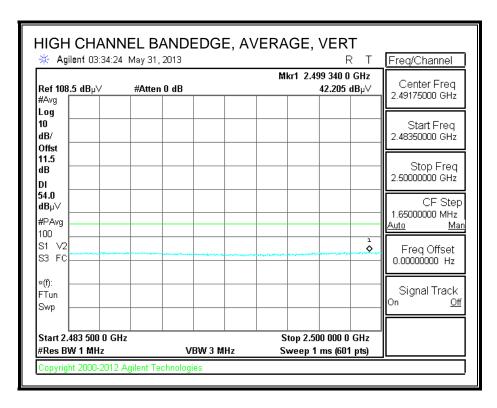
Sweep 1 ms (601 pts)



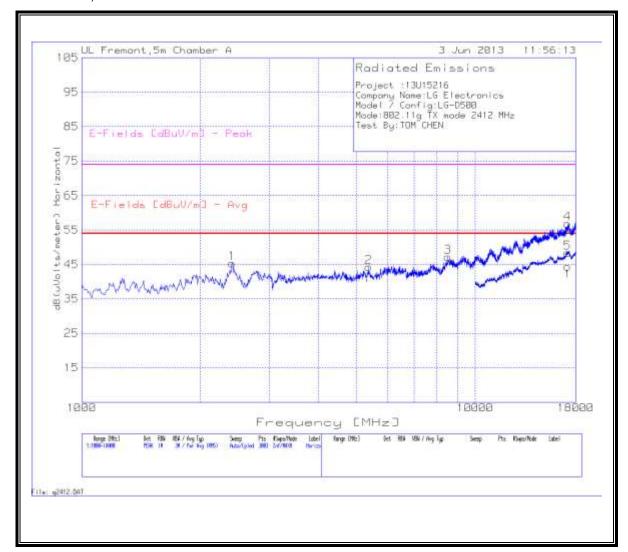

#Res BW 1 MHz

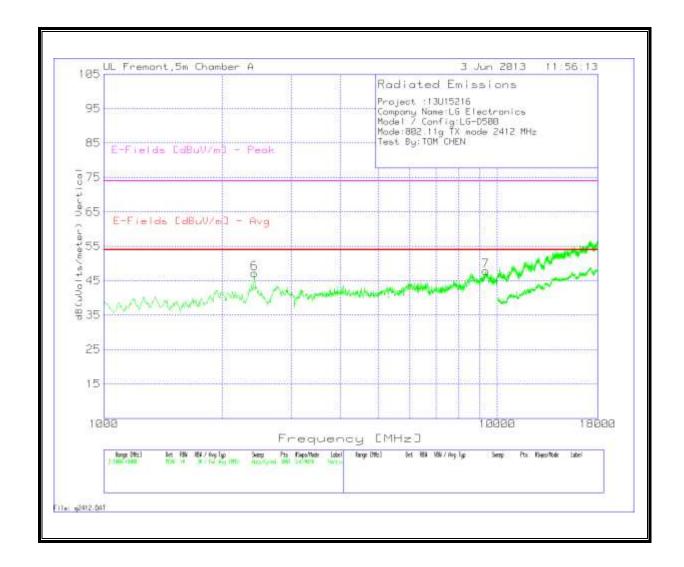
opyright 2000-2012 Agilent Technologies


DATE: June 26.2013


AUTHORIZED BANDEDGE (HIGH CHANNEL)

DATE: June 26.2013

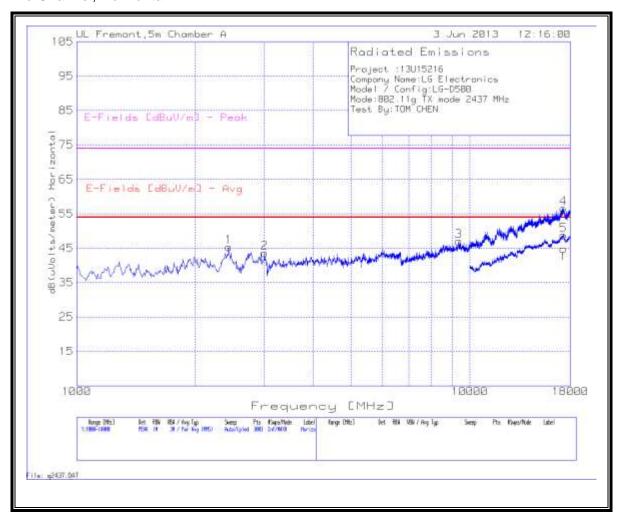




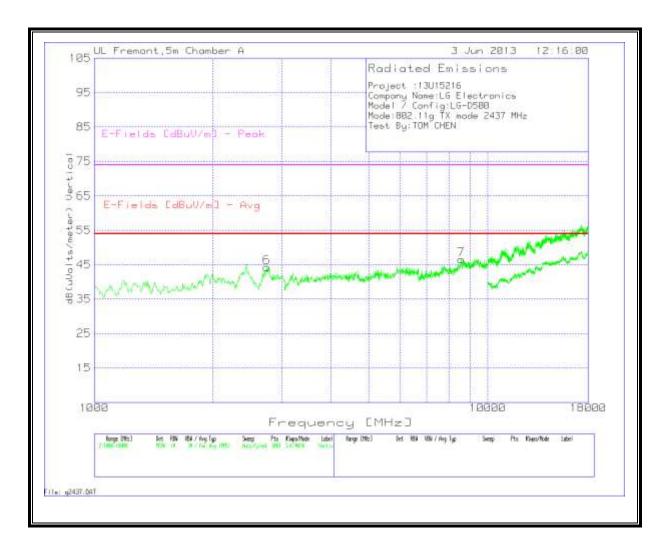
DATE: June 26.2013

HARMONICS AND SPURIOUS EMISSIONS

Low Channel, Horizontal


REPORT NO: 13U15216-2 EUT: LTE PHONE BLUETOOTH, WLAN (2.4GHZ & 5GHZ)

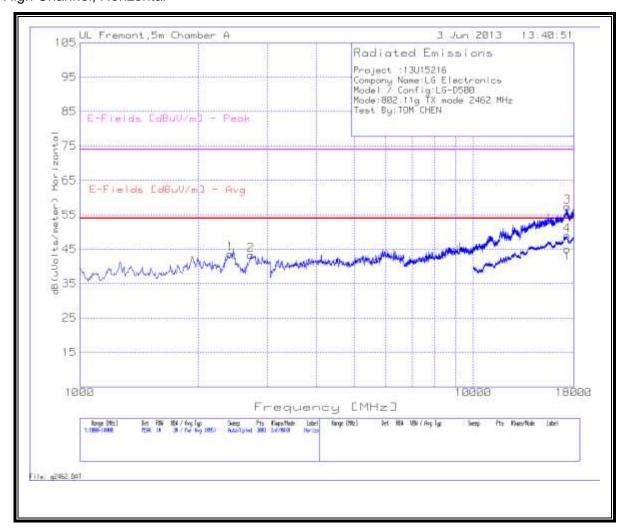
DATA


Project :1	3U15216														
	Name:LG El														
Model / (onfig:LG-D5	00													
Mode:80	2.11g TX mod	le 2412 Mi	łz												
Test By:Ti	OM CHEN														
Horizonta	l 1000 - 1800	омна													
Marker No.	Test Frequency	Meter	Detector	T136 Ant Factor (dB/m)	T144 Preamp Gain (d8)	Cable Factor [d8]	T160 BRF [dB]	DC Corr [dB]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarit
*1	2410.06	44.75	PK	32.2	-36.9	4.4	0.9	0	45.35	53.97	-8.62	74	-28.65	101	Horz
2	5360.426	37.89	PK	34.4	-35.5	7.2	0.2	0	44.19	53.97	-9.78	74	-29.81	101	Horz
3	8520.32	37.52	PK	35.7	-36	9.5	0.4	0	47.12	53.97	-6.85	74	-26.88	200	Horz
4	17173.218	35,61	PK	40.9	-34.3	14.1	0.5	0	56.81	53.97	2.84	74	-17.19	101	Horz
Vertical 1	000 - 18000N	ИНZ						į.							
*6	2415.723	46.43	PK	32.2	-36.9	4.5	0.9	0	47.13	53.97	-6.84	74	26.87	200	Vert
7	9352.765	37.12	PK	36.4	-36.2	10	0.5	0	47.82	53.97	-6.15	74	-26.18	100	Vert
Horizonta	10000 - 180	008MH2													
5	17180.41	27.2	PK.	40.9	-34,3	14.1	0.5	0	48.4	53.97	-5.57	74	-25.6	100	Horz
†: Fundar	nontal														
PK - Peak															

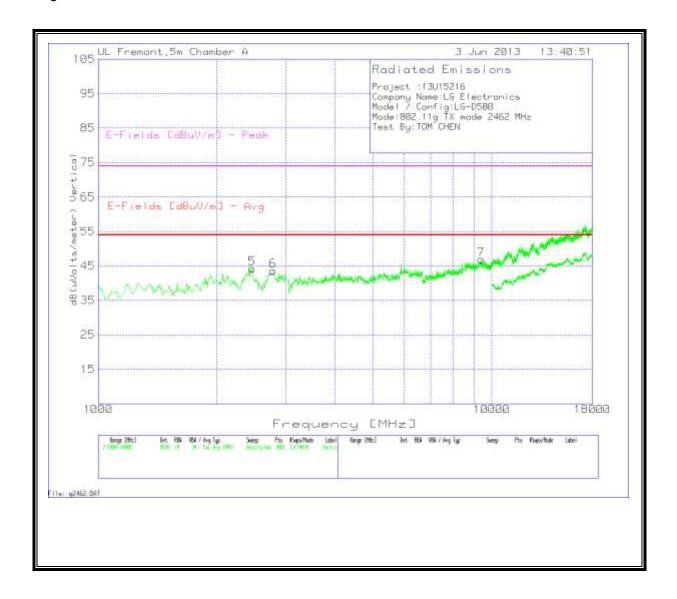
DATE: June 26.2013

Mid Channel, Horizontal

Mid Channel, Vertical



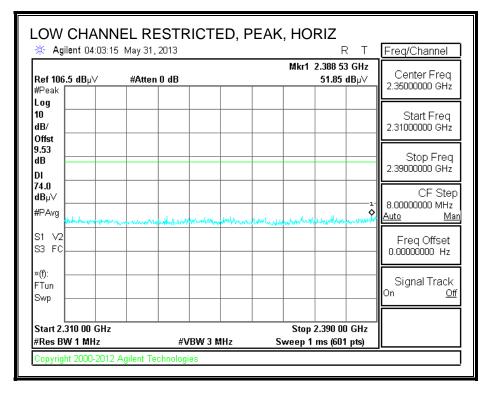
DATA

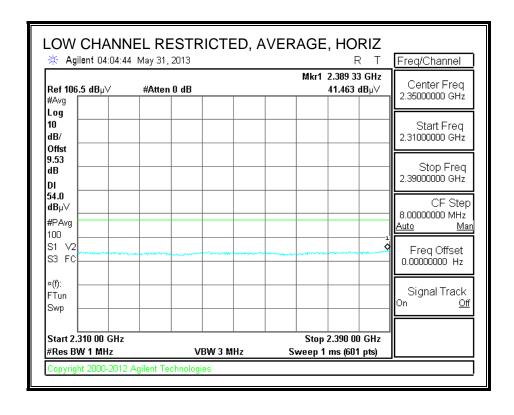

Project :13U15216 Company Name:LG Electronics Model / Config:LG-D500																													
																2.11g TX mod	le 2437 MH	4z											
															Test By:To	OM CHEN													
Horizontal 1000 - 18000MHz																													
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain (d8)	Cable Factor [dB]	T160 BRF [dB]	d8(uVolt s/meter)	E-Fields [dBuV/m]- Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity															
1	2438,374	44.52	PK	32.3	-36.9	4.5	0.9	45.32	53.97	-8.65	74	-28.68	101	Horz															
2	3010.326	41.71	PK	32.7	-36.7	5.1	0.8	43.61	53.97	-10.36	74	-30.39	101	Horz															
3	9364.091	36.3	PK	36.4	-36.2	10	0.5	47	53.97	-6.97	74	-27	200	Harz															
4	17303.464	35.23	PK	41	-34,4	14.1	0.6	56.53	53.97	2.56	74	-17.47	200	Horz															
Vertical 1	000 - 18000N	Hz:																											
6	2744.171	42.69	PK	32.7	-36,8	4.8	0.9	44.29	53,97	-9.68	74	-29.71	200	Vert															
7	8554,297	36.9	PK	35,7	-36	9.5	0.4	46.5	53.97	-7,47	74	-27.5	100	Vert															
Horizonta	10000 - 180	00MHz																											
5	17300.35	27.4	PK	41	-34,4	14.1	0,6	48.7	53.97	-5.27	74	-25.3	100	Horz															
*: Fundan	nental																												
PK - Peak	detector																												

DATE: June 26.2013

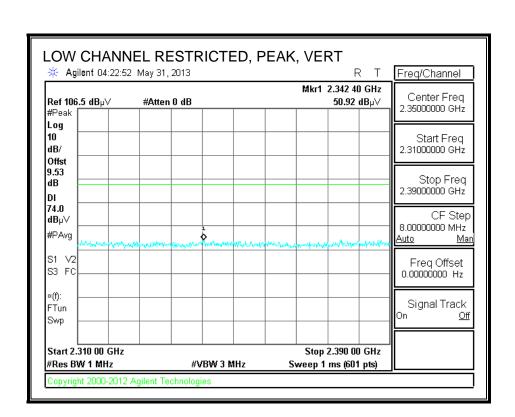
High Channel, Horizontal

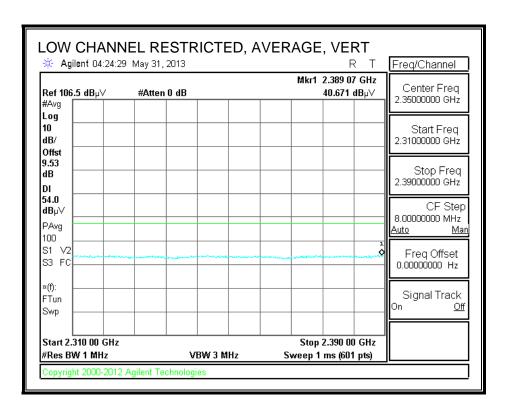
High Channel, Vertical

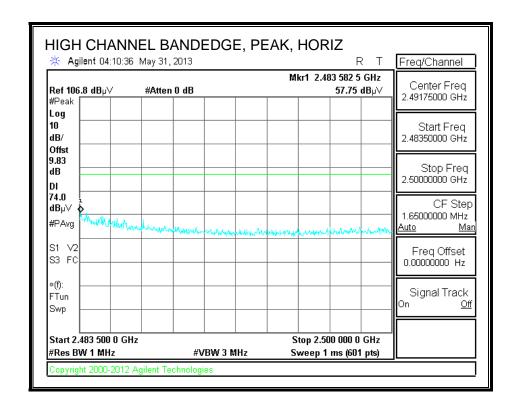


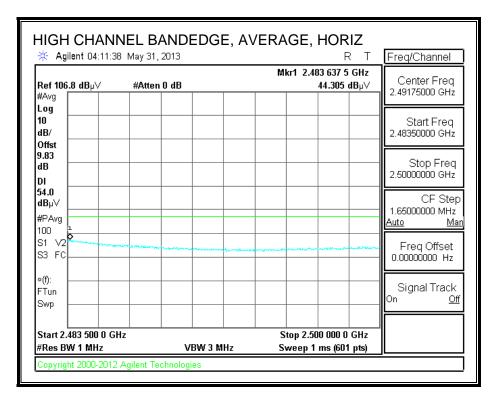

Project :1	3U15216														
Company	Name:LG El	ectronics													
Model / (onfig:LG-D5	00													
Mode:80	2.11g TX mod	le 2462 MH	tz												
Test By:Ti	OM CHEN														
	d 1000 - 1800														
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain (dB)	Cable Factor [d8]	T160 BRF [dB]	DC Corr [dB]	25-380-35-35	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] Peak	Margin (dB)	Height (cm)	Polari
1	2415.723	42.86	PK	32.2	-36.9	4.5	0.9	0	43.56	53.97	-10.41	74	-30.44	200	Hora
2	2727.182	41.75	PK	32.7	-36.8	4.8	0.9	0	43.35	53.97	-10.62	74	-30.65	200	Hora
3	17326.116	36.01	PK	41	-34.4	14.1	0.6	.0	57.31	53.97	3.34	74	-16.69	101	Hora
Vertical 1	000 - 18000N	tHz.													
*5	2461,026	43,24	PK	32.4	-36,8	4.5	0.9	0	44.24	53.97	-9.73	74	-29.76	200	Vert
6	2783.811	42.05	PK	32.6	-36.7	4,8	0.9	- 0	43.65	53.97	-10.32	74	-30,35	200	Vert
7	9398.068	36.24	ÞK	36.4	-36.2	10	0.4	0	46.84	53.97	-7.13	74	-27.16	200	Vert
Horizonta	l 10000 - 180	00MHz													
4	17320.34	27.73	PK	41	-34.4	14.1	0.6	0	49.03	53.97	-4.94	74	-24.97	200	Hora
*: Fundar	nental														
PK - Peak	detector														

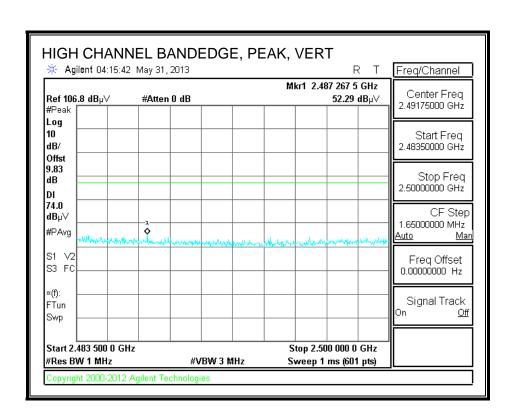
DATE: June 26.2013

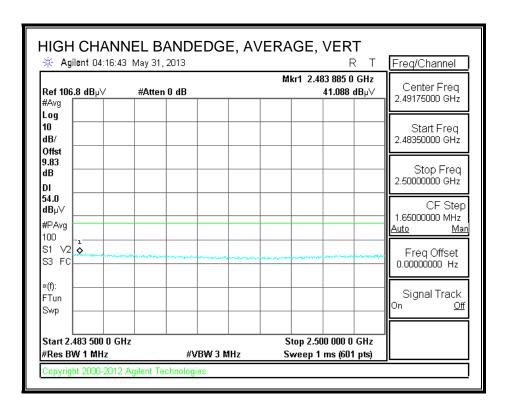

7.4. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND

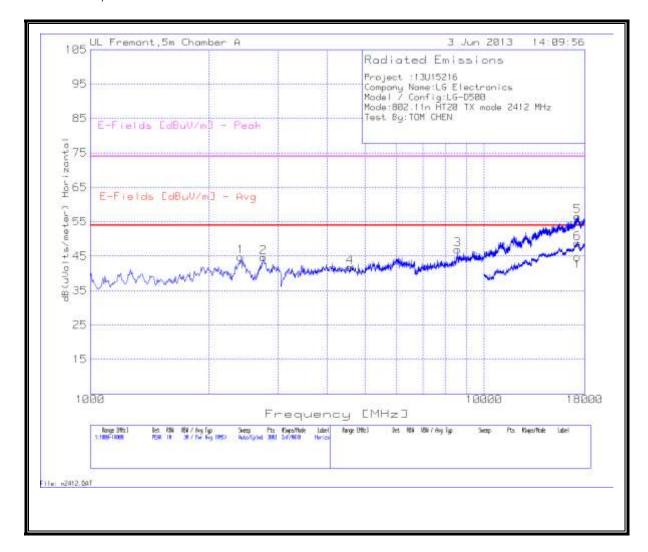

RESTRICTED BANDEDGE (LOW CHANNEL)

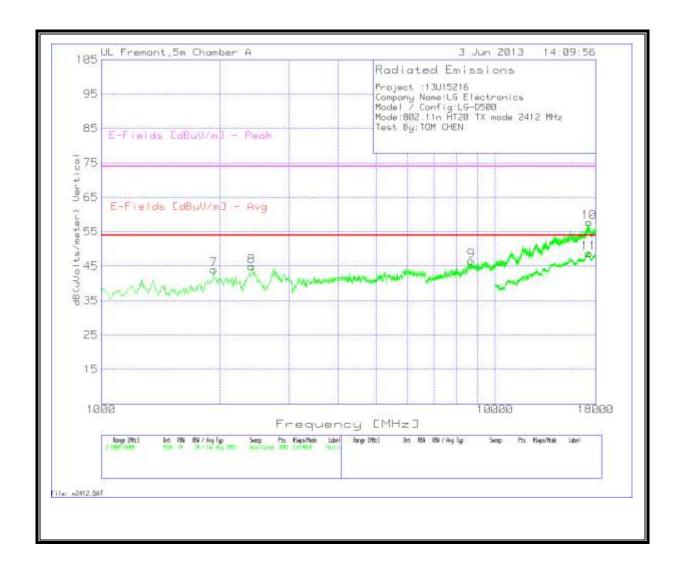



DATE: June 26.2013



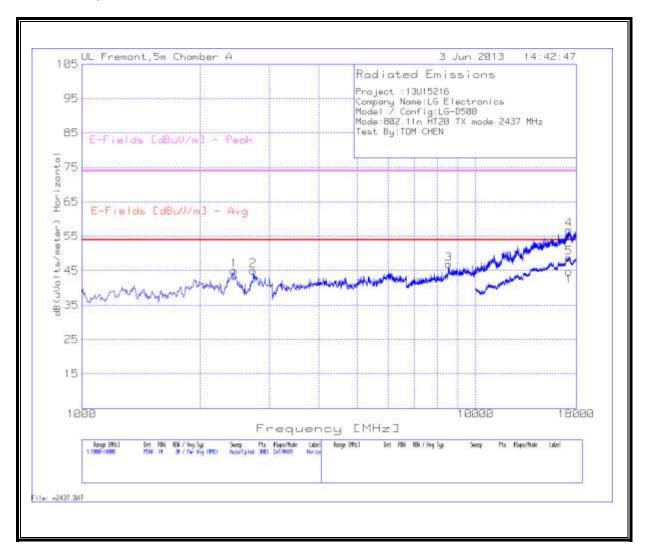

AUTHORIZED BANDEDGE (HIGH CHANNEL)

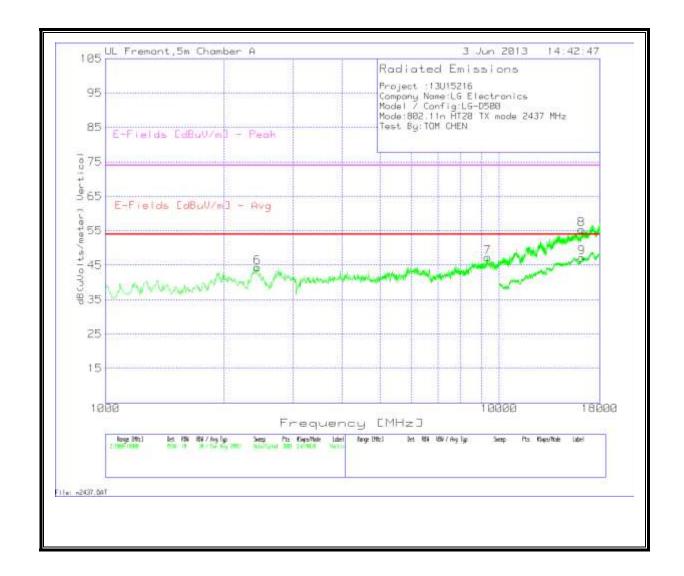

DATE: June 26.2013



HARMONICS AND SPURIOUS EMISSIONS

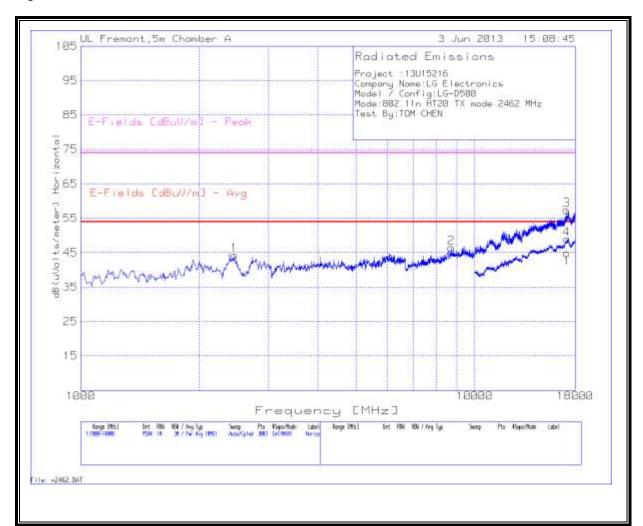
Low Channel, Horizontal

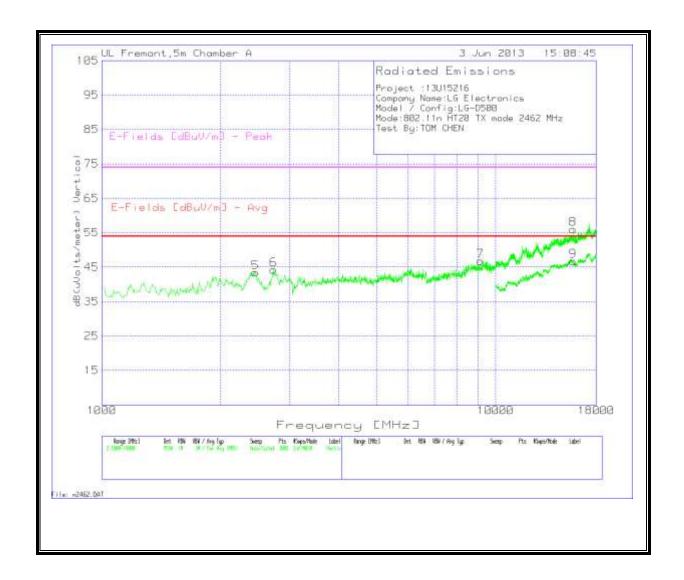




Project :1	3015216														
Company	Name:LG El	ectronics													
Model / (Config:LG-DS	00													
Mode:80	2.11n HT20 T	X mode 24	112 MHz												
Test By:T	OM CHEN														
Horizonta	al 1000 - 1800	OMIT													
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor (dB/m)	T144 Preamp Gain (dB)	Cable Factor [d8]	T160 BRF [dB]	DC Corr [dB]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields (dBuV/m) - Peak	Margin (dB)	Height [cm]	Polarit
*1	2410.06	44.15	PK	32.2	-36.9	4.4	0.9	0	44.75	53.97	-9.22	74	-29.25	200	Horz
2	2755,496	43.12	PK.	32.6	-36,8	4.8	0.9	0	44.62	53.97	-9.35	74	-29.38	200	Horz
3	8565.623	37.34	PK	35.7	-36	9.5	0.4	0	46.94	53.97	-7.03	74	-27.06	101	Horz
4	4567.622	36.91	PK.	33.9	-35.8	6.5	0.2	0	41.71	53.97	-12.26	74	-32.29	101	Hora
5	17235.51	35.34	PK	40.9	-34.3	14.1	0.5	0	56.54	53.97	2.57	74	-17.46	200	Horz
Vertical 1	000 - 18000N	AHZ													
7	1934.377	44,45	PK	31.8	-37.2	4	0.9	0	43.95	53.97	-10.02	74	-30.05	200	Vert
*8	2410.06	44.37	PK	32.2	-36.9	4.4	0.9	0	44.97	53.97	-9	74	-29.03	200	Vert
9	8707.195	36.75	PK	35.8	-36	9.6	0.4	0	46.55	53.97	-7.42	74	-27.45	200	Vert
10	17320,453	36,46	PK	41	34,4	14.1	0.6	0	57,76	53.97	3,79	74	-16.24	100	Vert
Horizonta	al 10000 - 180	000MHz												No.	
6	17232.384	27.54	PK.	40.9	-34.3	14.1	0.5	0	48.74	53.97	-5.23	74	-25.26	100	Horz
Vertical 1	0000 - 18000	MHz	202		20.5	Transport	000	11	Sauce	الا	Second of		Samuel Comment	2000	
11	17312.344	27,43	PK	41	-34,4	14.1	0.6	0	48.73	53.97	-5.24	74	-25.27	200	Vert
*: Fundar	mental														
	detector														

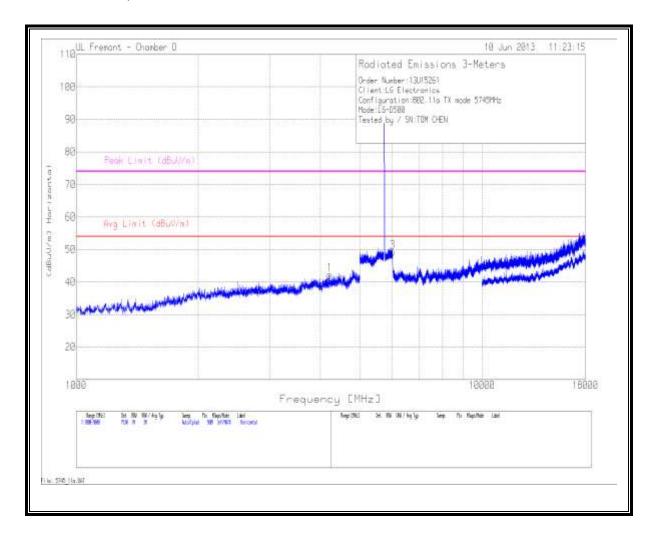
DATE: June 26.2013

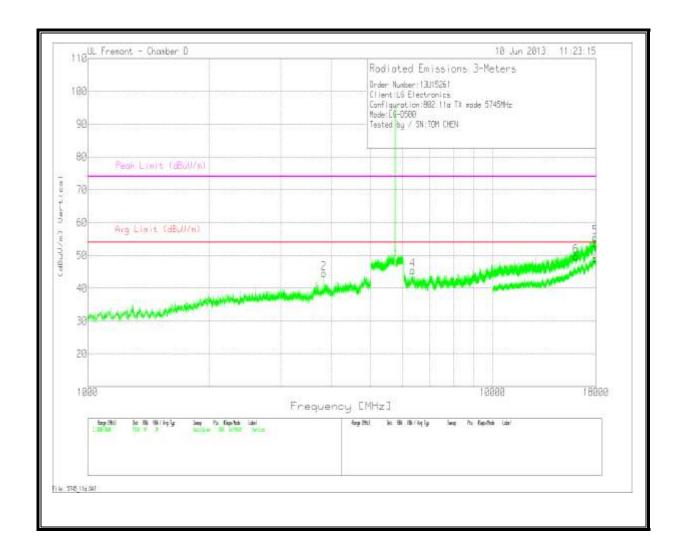

Mid Channel, Horizontal



and and the manufacturing	3U15216														
	Name:LG Ele														
	onfig:LG-D5														
Mode:802	2.11n HT20 TX	K mode 24	37 MHz												
Test By:To	OM CHEN														
langua di p															
	d 1000 - 1800		Conserva i		2020	V-1880			Transfer and the		Services.		Law Man	7.52.90.00	
Marker	1 A CONTRACTOR	Meter	Detector	T136 Ant	T144	Cable	T160 BRF	DC Corr	dB{uVoit	A DESCRIPTION OF THE PERSON OF	Margin	E-Fields	Margin	Height	Polari
No.	Frequency	Reading		Factor [dB/m]	Preamp Gain [dB]	Factor [dB]	[dB]	[d8]	s/meter)	[dBuV/m] - Avg	(dB)	[dBuV/m]- Peak	(dB)	[cm]	
*1	2438.374	44.19	PK	32,3	-36.9	4.5	0.9	0	44.99	53,97	-8.98	74	-29.01	200	Horz
2	2727.182	43.48	PK	32.7	-36.8	4.8	0.9	0	45.08	53.97	8.89	74	-28.92	200	Hora
3	8531.646	37.34	pK.	35.7	-36	9.5	0.3	0	46.84	53.97	-7.13	74	-27.16	200	Hora
4	17229.847	35.61	PK	40.9	-34.3	14.1	0.5	0	56.81	53.97	2.84	74	-17.19	200	Hora
Vertical 1	000 - 18000N	1Hz													
*6	2438.374	43.6	PK	32.3	-36.9	4.5	0.9	0	44.4	53.97	-9.57	74	-29.6	100	Vert
7	9352.765	36.57	PK	36.4	-36.2	10	0.5	0	47.27	53.97	-6.7	74	-26.73	200	Vert
8	16176.549	35.83	PK	40.7	-35.1	13.6	0.4	. 0	55.43	53,97	1.46	74	-18.57	200	Vert
Horizonta	l 10000 - 180	00MHz													
5	17232.384	27.5	ÞΚ	40.9	-34.3	14.1	0.5	,0,	48.7	53.97	-5.27	74	-25.3	100	Horz
Vertical 1	0000 - 180001	MHz								2					
9	16204.898	27.6	PK	40.7	-35.1	13.6	0.4	0	47.2	53.97	-6.77	74	-26.8	200	Vert
*: Fundan	nental														
PK - Peak	detector														

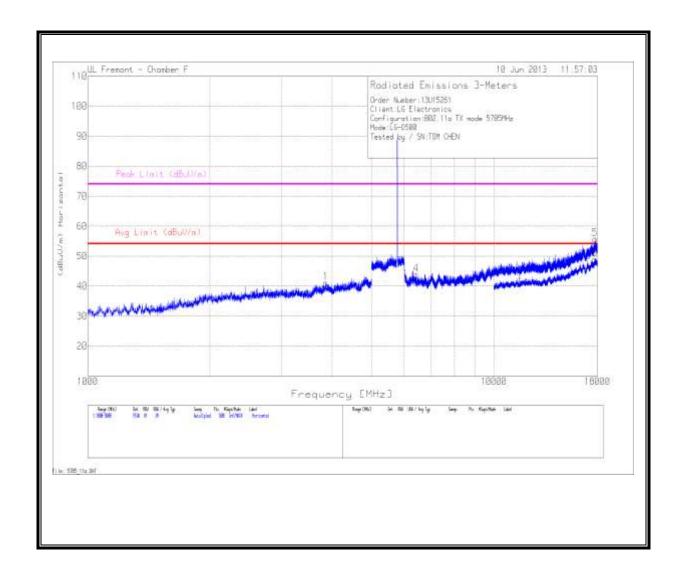
DATE: June 26.2013

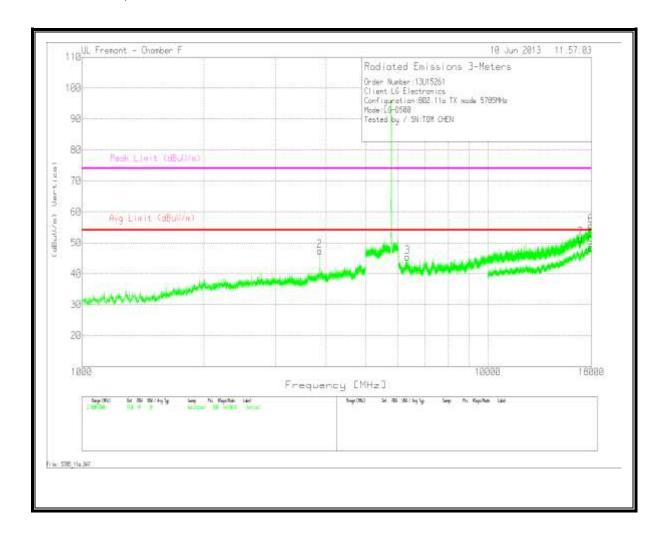

Project :1	3U15216														
Company	Name:LG Ele	ectronics													
Model / C	Config:LG-D5	.00													
Mode:807	2.11n HT20 T	X mode 24	462 MHz												
Test By:To	OM CHEN														
Horizonta	d 1000 - 1800	OMHz													
Marker No.	Test Frequency	Meter Reading		T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T160 BRF [dB]	DC Corr [dB]	d8(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (d8)	E-Fields [d8uV/m] Peak	Margin (dB)	Height [cm]	Polarity
*1	2455.363	43.23	PK.	32.4	-36.8	4.5	0.9	0	44.23	53.97	-9.74	74	-29.77	200	Horz
2	8724.184	36.64	PK	35.8	-36	9.6	0.4	0	46.44	53.97	-7.53	74	-27.56	200	Horz
3	17122-252	36.12	PK	40.9	-34.2	14	0.5	0	57.32	53.97	3.35	74	-16.68	101	Horz
Vertical 1	000 - 18000N	ЛНz													
*5	2455,363	42.4	PK.	32.4	-36.8	4.5	0.9	0	43.4	53,97	-10.57	74	-30.6	200	Vert
6	2732.845	42.68	PK	32.7	-36.8	4.8	0.9	0	44.28	53.97	-9.69	74	-29.72	200	Vert
7	9148.901	36.48	PK	36	-36.1	9.9	0.5	0	46.78	53.97	-7.15	74	-27.22	200	Vert
8	15729.181	37.15	₽K	40.4	-35.2	13.3	0.4	0	56.05	53.97	2.08	74	-17.95	200	Vert
Horizonta	I 10000 - 180	JOOMHz .													
4	17136.432	27,63	PK	40.9	-34.2	14	0.5	0	48.83	53.97	-5.14	74	-25.17	200	Horz
Vertical 1	0000 - 18000	MHz											=		
9	15717.141	27.89	ÞK	40.4	-35.2	13.3	0.4	8	46.79	53.97	-7.18	74	-27.21	100	Vert
*: Fundan															
	detector														


DATE: June 26.2013

7.5. TX ABOVE 1 GHz 802.11a MODE IN THE 5.8 GHz BAND

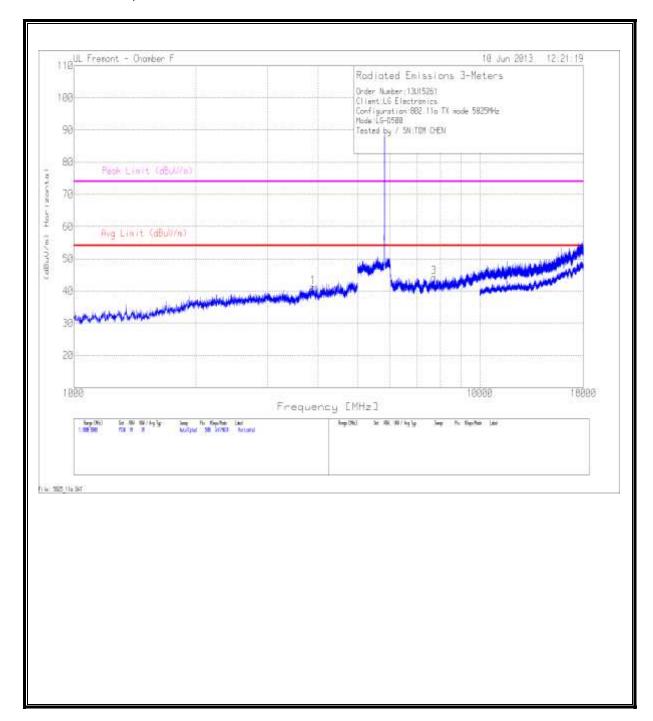
HARMONICS AND SPURIOUS EMISSIONS


LOW CHANNEL, HORIZONTAL

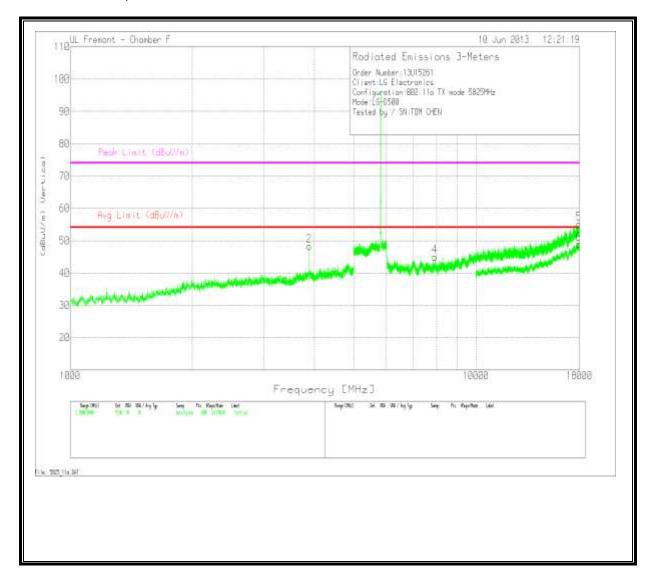


	Electronics												
	ation:802.11a	TX mode	≥ 5745MHz										
Mode:LG													
Tested by	y/sn:tom c	HEN											
Marker No.	Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF T346 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height [cm]	Po
Horizonta	al 1000 - 5000	MHz											
1	4211.2	40.49	PK	34	-32.3	0	42.19	53.97	-11.78	74	-31,81	100	
Vertical 1	1000 - 5000M	Hz											\vdash
2	3830.4	42.95	PK	33.7	-32.1	0	44.55	53.97	-9.42	74	-29.45	100	F
Horizonta	al 6015 - 1800	OMHz				-							H
3	6016.997	34.77	PK	35.8	-21.3	0	49.27	53.97	-4.7	74	-24.73	201	
Vertical 6	5015 - 18000M	ИНZ											
4	6350.552	38.66	PK	35.9	-29.1	0	45,46	53.97	-8.51	74	-28.54	100	
5	17901.132	34.2	PK	42.1	-20.8	0	55.5	53.97	1.53	74	-18.5	100	
6	16060.589	32.79	PK	41.3	-24.3	0	49,79	53.97	-4.18	74	-24.21	100	
Vertical 1	10000 - 18000	MHz											
7	17894.222	27.67	PK	42.1	-20.7	0	49.07	53.97	-4.9	74	-24.93	100	

DATE: June 26.2013


MID CHANNEL, VERTICAL

Clientus	Electronics												
	tion:802.11a	TV mode	5795MHz										
Mode:LG-		The Industry	3703181112										
	/SN:TOM C	UEM											
rested by	/ SN.TUM C	HEIN											
Horizonta	1000 - 5000	MHz											
Marker No.	Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF T346 (dB/m)	Amp/Cbl /Fltr/Pad (dB)		d Reading (dBuV/m	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height [cm]	Polarit
1	3857.6	38.8	PK	33.7	-31.5	0	41	53.97	-12.97	74	-33	201	Horz
Vertical 1	000 - 5000Mi	12				100	200						
2	3856.8	45.33	PK	33.7	-31.6	0	47.43	53.97	-6.54	74	-26.57	100	Vert
Horizonta	6015 - 1800	OMHz		10.0				11-12-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	1100				7,544
4	6441.431	38.27	PK	35.8	-30.3	0	43.77	53.97	-10.2	74	-30.23	100	Horz
5	17748.336	33.94	PK	42.2	-20.4	0	55.74	53.97	1.77	74	-18.26	201	Horz
Vertical 6	015 - 18000N	1Hz											
3	6337.569	38.82	PK	35.9	-29.3	0	45.42	53.97	-8.55	74	-28.58	100	Vert
6	17912.117	34.52	PK	42.1	-21	0	55.62	53.97	1.65	74	-18.38	200	Vert
7	16921,44	32.39	PK	41.3	-22.3	0	51.39	53.97	-2.58	74	-22.61	100	Vert
Horizonta	10000 - 180	SHM00		201-20	1 222			(F) -02/2/2/16	1		1000		
8	17742,222	27.26	PK	42.2	-20.5	0	48.96	53.97	-5.01	74	-25.04	201	Horz
Vertical 1	0000 - 18000	MHz	11100				in september 1	111 12-0-12-11					
9	17912	27.36	PK	42.1	-21	0	48.46	53.97	-5,51	74	-25.54	100	Vert
PK - Peak	detector												
QP - Quar	i-Peak detec	ctor											
LnAv - Lin	ear Average	detector											
LgAv - Los	Average de	tector											
Av - Aver	age detector	r											

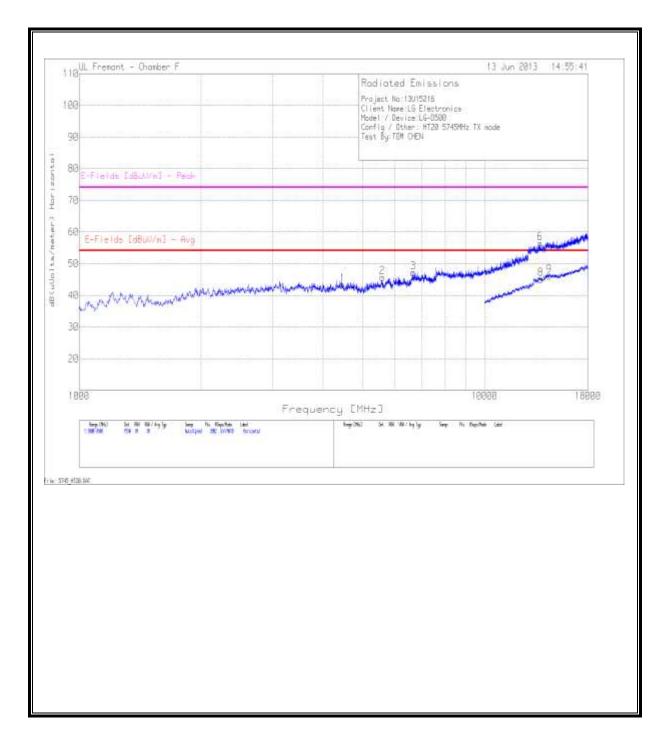

DATE: June 26.2013

HIGH CHANNEL, HORIZONTAL

DATE: June 26.2013

HIGH CHANNEL, VERTICAL

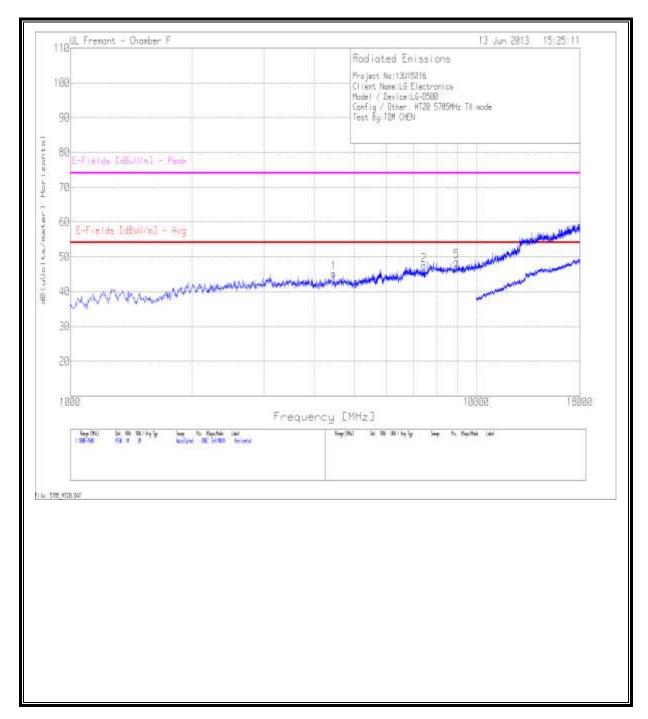
Order Nu	mber:13U152	261											
Client:LG	Electronics												
Configura	tion:802.11a	TX mode 58	25MHz										
Mode:LG-	-D500												
Tested by	/ SN:TOM C	HEN											
Horizonta	d 1000 - 5000	MHz											
Marker No.	Test Frequency (MHz)	Meter Reading(d BuV)	Detector	AF T346 (d8/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height [cm]	Polarit
1	3883.2	39.06	PK	33.8	-31.7	0	41.16	53.97	-12.81	74	-32.84	200	Horz
Vertical 1	000 - 5000MH	4z											
2	3884	46.26	PK	33.8	-31.7	0	48.36	53.97	-5.61	74	-25.64	100	Vert
Horizonta	d 6015 - 1800	OMHz											
3	7712.734	36.52	PK	36.2	-28.5	0	44.22	53.97	-9.75	74	+29.78	100	Horz
Vertical 6	015 - 18000M	Hz									100.00-		
4	7923.452	36.92	PK	36.2	-28.1	.0	45.02	53.97	-8.95	74	-28.98	201	Vert
5	17961.052	34.15	PK	42.1	-21	0	55.25	53.97	1.28	74	-18.75	201	Vert
Vertical 1	0000 - 18000	MHz		10000		- 65	2.000	5075000		1 200	50,000		4,000
- 6	17945.778	27.7	PK	42.1	-20.8	0	49	53,97	-4.97	74	-25	201	Vert
PK - Peak	detector												
QP - Quas	i-Peak detec	tor											
LnAv - Lin	ear Average	detector											
LgAv-Lop	Average de	tector											
	age detector												

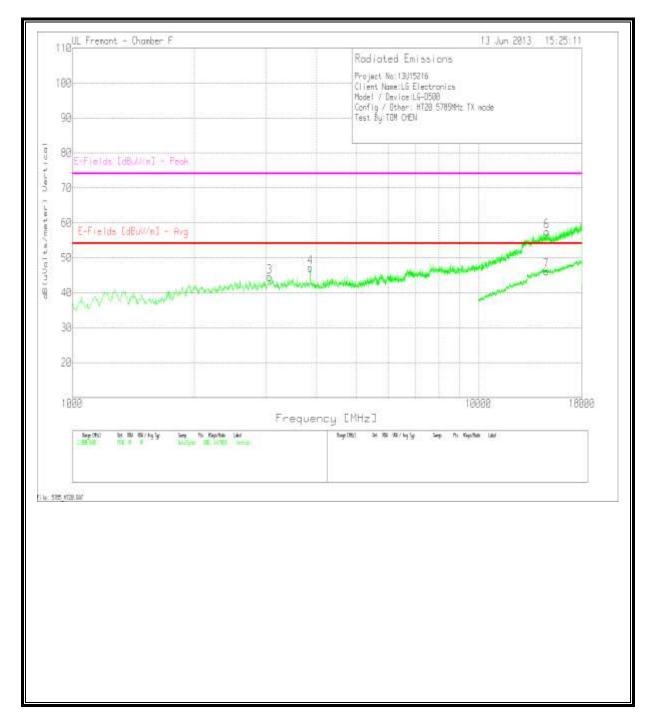

DATE: June 26.2013

7.6. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BAND

DATE: June 26.2013 FCC ID: ZNFD500

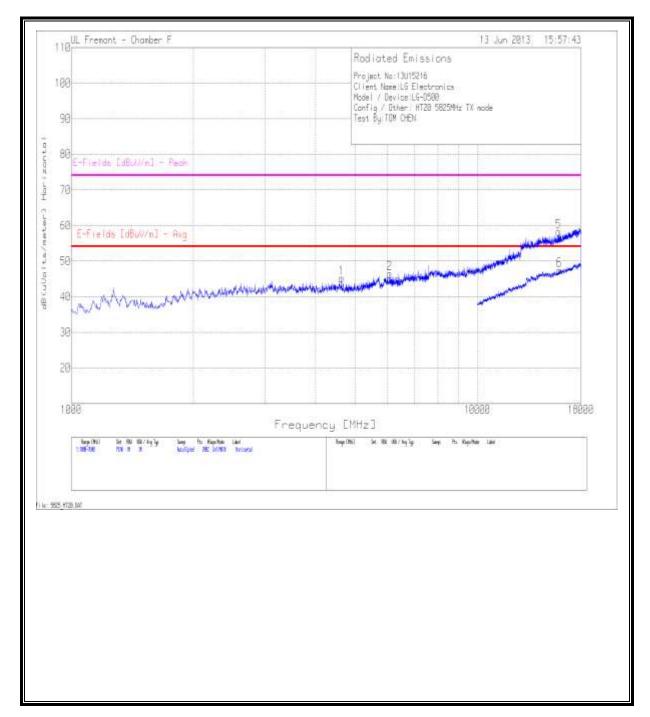
HARMONICS AND SPURIOUS EMISSIONS

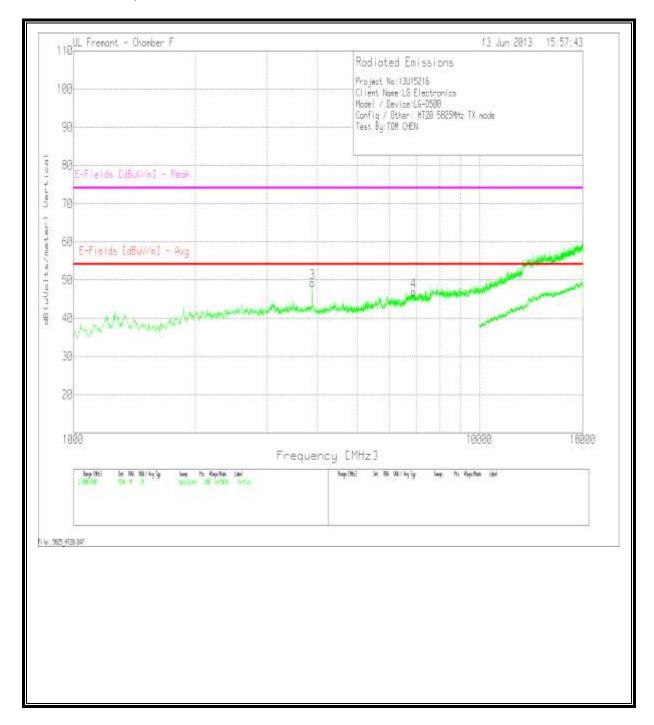

LOW CHANNEL, HORIZONTAL


Model / D	evice:LG-D5	600												
The state of the state of the state of	ther: HT20 5		TX mode											
Test By:TO		Manne	Street,											
Horizontal	1000 - 7600	IMHz												
	Test Frequency (MHz)	Meter Reading		T119 Ant Factor [d8/m]	100000	T163 BRF [dB]	DC Corr	Correcte d Reading	E-Fields [dBuV/m] - Avg	Margin (d8)	E-Fields [d8uV/m] - Peak	Margin (d8)	Height [cm]	Polarity
1	4463.268	34.99	PK	33.8	-25.7	0.2	0	43.29	53.97	-10.68	74	-30.71	99	Horz
2	5597.901	34.51	PK	34.7	-24.4	0,9	0	45.71	53.97	+8.26	74	-28.29	201	Horz
3	6673.163	34.83	PK	35.6	-23.4	0.2	0	47.23	53.97	-6.74	74	-26.77	201	Horz
Vertical 10	000 - 7600MH	HZ				7-0-03				-				
4	2609.595	41.41	PK	32.5	-29.2	0.1	0	44.81	53.97	-9.16	74	-29.19	99	Vert
5	3829,985	39.13	PK	33.2	-26,5	0,2	0	46.03	53,97	-7.94	74	-27.97	99	Vert
Horizontal	7600 - 1800	recovered the second	171	70-00-0	101-002	11-5-1		77.55	10010-0		3,144	-7762	0.	Sario
6	13717.341		PK	38.8	-16	0.4	0	56.42	53.97	2.45	74	-17.58	99	Horr
-	500 - 18000N	40000												_
7	14491.754	-	PK	39.6	-16	0.5	0	57.48	53.97	3.51	74	-16.52	201	Vert
Horizontal	10000 - 180	-												
8	13762.119	-	PK	38.8	-16	0.2	0	45.1	53.97	-8.87	74	-28.9	201	Horz
9	14433.783	22.32	PK	39.5	-15.9	0,2	0	45.12	53.97	-7.85	74	-27.88	201	Horz
Client Nan Model / De	o:13U15216 me:LG Electr evice:LG-D5	ronics 500												
Service Control of the Control of th	ther: HT20 5	745MHz 1	TX mode											

DATE: June 26.2013

MID CHANNEL, HORIZONTAL


MID CHANNEL, VERTICAL

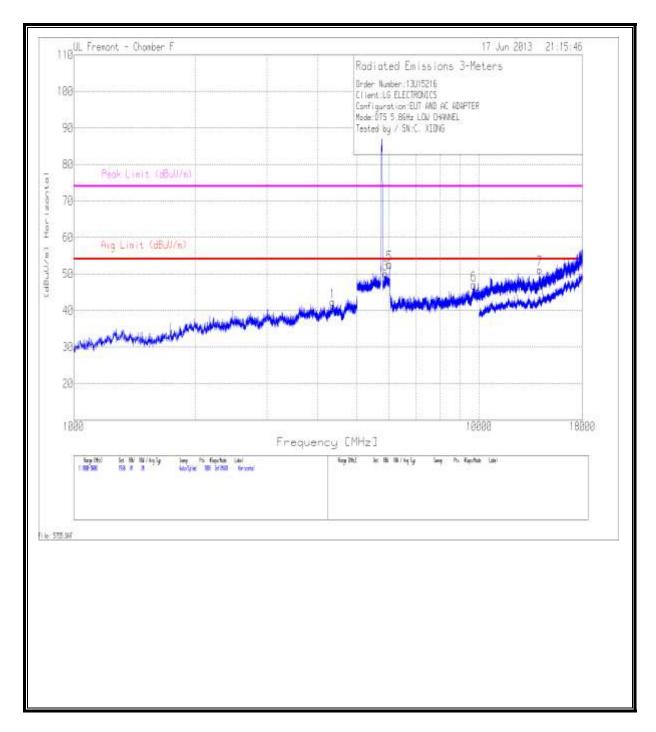

	medG Electr													
	evice:LG-D5													
	Other: HT205	785MHz 1	X mode											
Test By:T0	OM CHEN													
Horizonta	1000 - 7600	MHT												
e ici i con i ca	1000-7000	MICIE.						Corrected		Ī				
Marker	Test Frequency	Meter Reading	8	T119 Ant Factor	T34 Preamp/Cable	T163 BRF	DC Corr	Reading dB(uVolts/m	E-Fields [dBuV/m] -	Margin	E-Fields [dBuV/m]	Margin	Height	
No.	(MHz)	(dBuV)	Detector	[dB/m]	Loss [dB]	[dB]	[dB]	eter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
1	4450.075	36.94	bK	33.8	-25.7	0.2	0	45.24	53.97	-8.73	74	-28.76	99	Horz
2	7431.784		PK	35.7	-23	0.2	0	47,43	53.97	-6.54	74	-26.57	99	Horz
Vertical 1	000 - 7600MI	Hz		3										
3	3061,469	39,71	PK	33	-28.4	0.2	0	44,51	53.97	-9.46	74	-29.49	99	Vert
4	3856.372		PK	33.2	-26.5	0.1	0	47.17	53.97	-6.8	74	-26.83	99	Vert
	7600 - 1800		Chronic	11-100	22/10	2000		1 700000		-2.0	400			Total Office
5	8946,127		PK.	36.1	-22	0.4	0	48.64	53.97	-5.33	74	-25.36	201	Horz
	600 - 18000N													
6	14746.427		PK	39.7	-16	0.4	0	57.53	53.97	3.56	74	-16.47	201	Vert
	0000 - 18000		0.000	i de la constantina	1,000				I constant					Lan a
7	14713.643	22.32	PK	39.7	-16	0.1	0	46.12	53.97	-7.85	74	-27.88	99	Vert
	detector													
	ii-Peak dete													
	ear Average													
	Average de													
Av - Aver	age detecto	r:												

DATE: June 26.2013

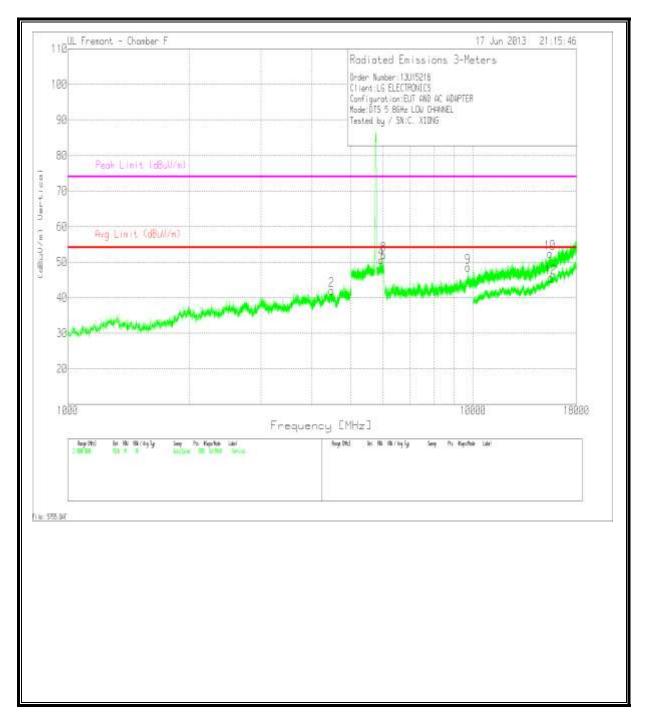
HIGH CHANNEL, HORIZONTAL

HIGH CHANNEL, VERTICAL

Client Na	o:13U15216 me:LG Electr													
	Device:LG-DS													
Config / C	Other: HT20 S	825MHz 1	X mode											
Test By:To	OM CHEN													
Horizonta	il 1000 - 7600	SHM												
Marker No.	Test Frequency (MHz)	THE RESIDENCE OF THE PARTY OF T	Detector	T119 Ant Factor (dB/m)	T34 Preamp/ Cable Loss [dB]	T163 BRF [dB]	DC Corr	Reading dB(uVolts /meter)	E-Fields (dBuV/m] - Avg	Margin (dB)	E-Fields (dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
1	4631,484	36.29	PK	34.1	-25.4	0.2	0	45.19	53.97	-8.78	74	-28.81	201	Horz
2	6086.057	34.54	PK	35.3	-24	0.6	0	46.44	53.97	-7.53	74	-27.56	100	Horz
Vertical 1	000 - 7600Mi	And in case of the last of the		1000				HOTHING.			01702			10000
3	3882.759		PK	33.2	-26.5	0.1	0	49.29	53.97	-4.68	74	-24.71	99	Vert
4	6890.855	CONTRACTOR STATEMENT	PK	35.6	-23.2	0.1	0	46.87	53.97	-7.1	74	-27.13	99	Vert
and the second of the second	l 7600 - 1800													
5	15843.078		PK	40.4	-16.4	0.3	0	58.25	53.97	4.28	74	-15.75	99	Horz
	10000 - 180	-										-		
- 6	15917.041	22.8	PK	40.5	-16.3	0.4	0	47,4	53.97	-6.57	74	-26.6	99	Horz
	ALC: U													
	detector	200												
	si-Peak dete													
	ear Average													
A THE PERSON NAMED IN	g Average de													
AV - AVE	rage detecto													

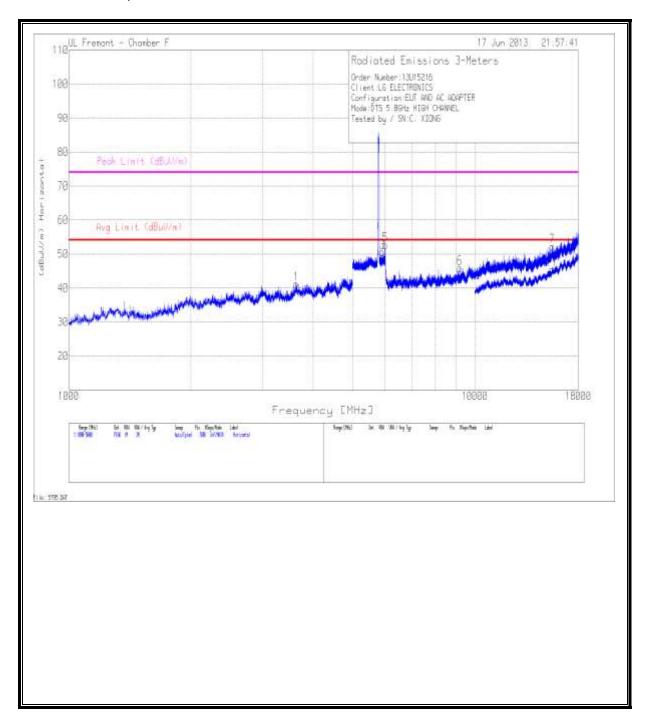

DATE: June 26.2013

7.7. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.8 GHz BAND

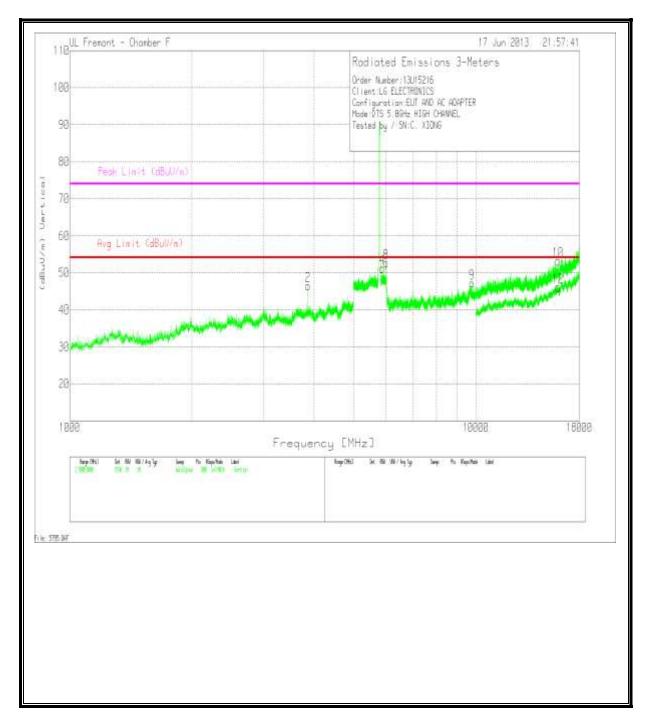

DATE: June 26.2013 FCC ID: ZNFD500

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL, HORIZONTAL



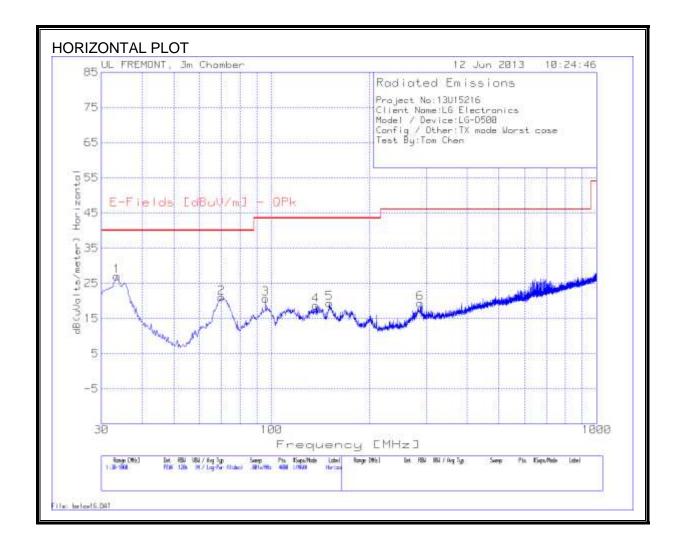
LOW CHANNEL, VERTICAL



DATE: June 26,2013

HIGH CHANNEL, HORIZONTAL

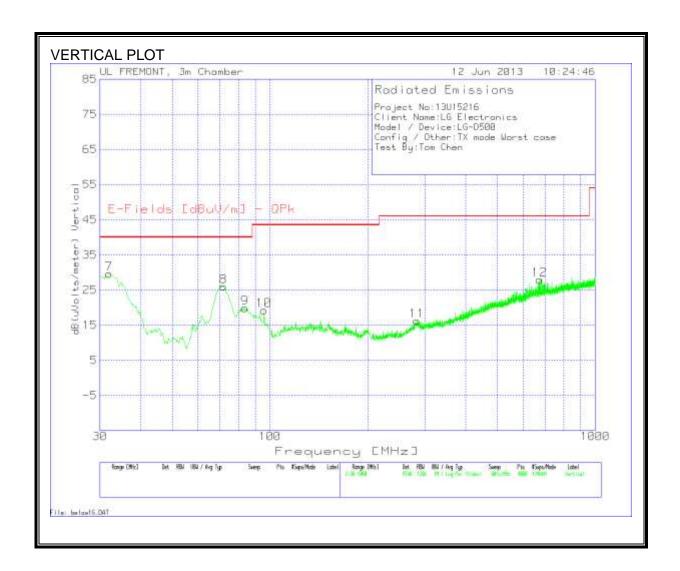
HIGH CHANNEL, VERTICAL



Client:LG El	ECTRONICS.											
Configurati	on:EUT AND	AC ADAP	TER									
Mode:DTS 5	.8GHz HIGH	CHANNEL	L									
Tested by /	SN:C. XION	G										
Horizontal :	L000 - 5000N	ИHz										
Marker	Test Frequency	_		AF T120	Amp/Cbl /Fltr/Pad	Reading	Avg Limit (dBuV/m	Margin	Peak Limit (dBuV/m	Margin	Height	
No.	(MHz)	(dBuV)	Detector	(dB/m)	(dB)	(dBuV/m))	(dB))	(dB)	[cm]	Polarity
1	3633.6	39.56	PK	33.7	-32.1	41.16	53.97	-12.81	74	-32.84	103	Horz
Vertical 100	0 - 5000MH	Z										
2	3864	44.64	PK	33.5	-31.6	46.54	53.97	-7.43	74	-27.46	100	Vert
Horizontal S	5000 - 6015N	ЛНz										
3	5919.083	36.33	PK	35.2	-20.9	50.63	53.97	-3.34	74	-23.37	199	Horz
Vertical 500	0 - 6015MH	Z										
4	5882.543	37.05	PK	35.2	-21	51.25	53.97	-2.72	74	-22.75	199	Vert
Horizontal (5015 - 18000	MHz										
5	6016.997	38.72	PK	35.3	-21.3	52.72	53.97	-1.25	74	-21.28	101	Horz
6	16286.288	34.64	PK	41.2	-22.9	52.94	53.97	-1.03	74	-21.06	199	Horz
Vertical 601	.5 - 18000MF	Iz										
7	6015	38.08	PK	35.3	-20.7	52.68	53.97	-1.29	74	-21.32	101	Vert
8	16582.892	33.63	PK	41.5	-22.1	53.03	53.97	-0.94	74	-20.97	199	Vert
Vertical 100	00 - 18000N	1Hz										
9	16234.667	28.89	PK	41.1	-23	46.99	53.97	-6.98	74	-27.01	199	Vert
10	16606.222	27.86	PK	41.5	-21.7	47.66	53.97	-6.31	74	-26.34	199	Vert
Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Correcte d Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
	5000 - 6015N									_		
5695.689	28.25	MAv1	34.8	-21.6	41.45	53.97	-12.52	74	-32.55	9	348	Horz
	0 - 6015MH									45-	45-	
5724.07	37.86	MAv1	34.9	-21.8	50.96	53.97	-3.01	74	-23.04	185	127	Vert
	5015 - 18000		25.7	20.7	24.55	F0.07	10.11	7.	20.47	250	455	
7387.4239	27.83	MAv1	35.7	-28.7	34.83	53.97	-19.14	74	-39.17	258	122	Horz
	5 - 18000MF		26.4	20.0	25.07	F2.07	10.0	7.	20.00	25	202	34
9012.3033	25.57	MAv1	36.4	-26.9	35.07	53.97	-18.9	74	-38.93	35	293	Vert
PK - Peak d												
	Peak detect											
	ar Average d											
LgAv - Log A	verage det	ector										
	e detector											

DATE: June 26.2013

7.8. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZO	ONTAL D	ATA								
Marker No.	Test Frequency	Meter Reading	Detector	T130 Ant Factor [dB/m]	T15 Chamber3 m Ampl ff	dB(uVolt s/meter)	E-Fields [dBuV/m] - QPk	Margin (dB)	Height [cm]	Polarity
Horizonta	I 30 - 1000M	Hz								
1	33.3925	36.08	PK	18.4	-27.5	26.98	40	-13.02	99	Horz
2	69.9825	39.98	PK	8.1	-27.1	20.98	40	-19.02	301	Horz
3	95.9106	38.49	PK	9.1	-26.9	20.69	43.52	-22.83	201	Horz
4	136.8624	31.8	PK	13.4	-26.5	18.7	43.52	-24.82	400	Horz
5	150.4322	33.22	PK	12.5	-26.4	19.32	43.52	-24.2	201	Horz
6	286.3727	31.13	PK	13.4	-25.2	19.33	46.02	-26.69	99	Horz

DATE: June 26.2013

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL DATA										
Vertical 30	0 - 1000MHz									
7	31.9385	37.78	PK	19.5	-27.7	29.58	40	-10.42	199	Vert
8	71.9211	45.19	PK	8	-27.2	25.99	40	-14.01	199	Vert
9	83.7947	39.82	PK	7.2	-27.1	19.92	40	-20.08	199	Vert
10	95.9106	37.18	PK	9.1	-27	19.28	43.52	-24.24	199	Vert
11	282.9803	28.7	PK	13.4	-25.9	16.2	46.02	-29.82	299	Vert
12	675.2935	31.45	PK	19.9	-23.4	27.95	46.02	-18.07	199	Vert

DATE: June 26.2013