

FCC CFR47 PART 22 SUBPART H FCC CFR47 PART 24 SUBPART E

CERTIFICATION TEST REPORT

FOR

CDMA Phone

MODEL NUMBER: LG109C

FCC ID: ZNF109C

REPORT NUMBER: 15I20516-E1

ISSUE DATE: MAY 8, 2015

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY, 07632, U.S.A

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date Revisions		Revised By
	05/8/15	Initial Issue	D. Coronia

Page 2 of 43

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS
2.	TEST METHODOLOGY
3.	FACILITIES AND ACCREDITATION
4.	CALIBRATION AND UNCERTAINTY 6
4.1.	MEASURING INSTRUMENT CALIBRATION 6
4.2.	SAMPLE CALCULATION
4.3.	MEASUREMENT UNCERTAINTY7
5.	EQUIPMENT UNDER TEST 8
5.1.	DESCRIPTION OF EUT
5.2.	MAXIMUM OUTPUT POWER 8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS
5.4.	DESCRIPTION OF TEST SETUP10
6.	TEST AND MEASUREMENT EQUIPMENT13
7.	SUMMARY TABLE14
8.	RF POWER OUTPUT VERIFICATION15
8.1.	CDMA200015
8.	1.1. 1xRTT15
8.	1.2. CDMA2000 OUTPUT POWER RESULT16
9.	PEAK TO AVERAGE RATIO17
9.1.	CONDUCTED PEAK TO AVERAGE RESULT18
10.	LIMITS AND CONDUCTED RESULTS19
10.1	. OCCUPIED BANDWIDTH19
10	0.1.1. OCCUPIED BANDWIDTH RESULTS
10	0.1.1. OCCUPIED BANDWIDTH PLOTS
10.2	. BAND EDGE EMISSIONS22
10	0.2.1. BAND EDGE PLOTS23
10.3	0UT OF BAND EMISSIONS24
10	0.3.1. OUT OF BAND EMISSIONS RESULT
10	0.3.2. OUT OF BAND EMISSIONS PLOTS
10.4	FREQUENCY STABILITY27
10	0.4.1. FREQUENCY STABILITY RESULTS
11.	RADIATED TEST RESULTS
	Page 3 of 43

12. SETUP PHOTOS	
11.2.1. SPURIOUS RADIATION PLOTS	35
11.2. FIELD STRENGTH OF SPURIOUS RADIATION	34
11.1.2. LTE ERP/EIRP RESULTS	32
11.1.1. ERP/EIRP RESULTS	31
11.1. RADIATED POWER (ERP & EIRP)	

Page 4 of 43

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	LG ELECTRONICS MOBILECOMM U.S.A., INC
EUT DESCRIPTION:	CDMA Phone
MODEL:	LG109C
SERIAL NUMBER:	504CQVV0000183 (Conducted), 504CQRN0000182 (Radiated)
DATE TESTED:	APRIL 21-27, 2015

APPLICABLE STANDARD	S
STANDARD	TEST RESULTS
FCC PART 22H and 24E	PASS

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

DAN CORONIA CONSUMER TECHNOLOGY DIVISION WISE PROJECT LEAD UL VERIFICATION SERVICES INC Tested By:

OREN STOELTING CONSUMER TECHNOLOGY DIVISION WISE LAB EMC TECHNICIAN UL VERIFICATION SERVICES INC

Page 5 of 43

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR 47 Part 22, FCC CFR Part 24.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi) ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

Page 6 of 43

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB
Radiated Disturbance, 1GHz to 40GHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 43

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a CDMA Phone

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted and radiated ERP / EIRP output powers as follows:

FCC Part 22/24						
Band	Frequency	Modulation	Conducted		Radiated	
	Range(MHz)	Peak	dBm	mW	dBm	mW
	824~849	1xRTT	24.7	295.12	22.33	171.00
BCO	824~849	EVDO REL. 0				
	824~849	EVDO REV. A				
	1850~1910	1xRTT	25.3	338.84	23.68	233.35
BC1	1850~1910	EVDO REL. 0				
	1850~1910	EVDO REV. A				

Page 8 of 43

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
BC0, 824~849MHz	-1.4
BC1, 1850~1910MHz	2.9

Page 9 of 43

5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description Manufacturer Model Serial Number FCC								
AC Adapter	LG	MCS-02WP	RB4Y2618606	N/A				
Headset	LG	N/A	N/A	N/A				

I/O CABLES (CONDUCTED SETUP)

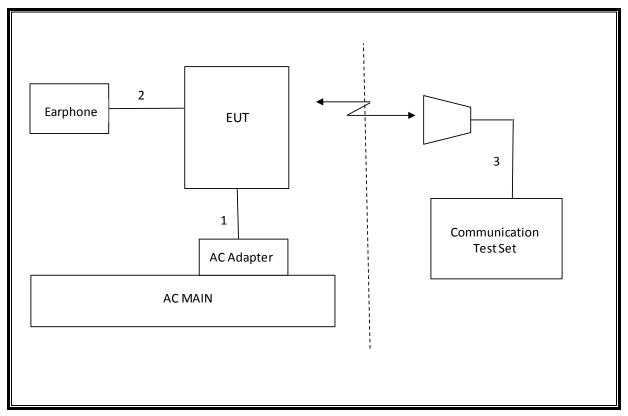
	I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	RF Out	1	Spectrum Analyzer	Shielded	None	NA		
2	Antenna Port	1	EUT	Shielded	0.1m	NA		
3	RF In/Out	1	Communication Test Set	Shielded	1m	NA		

I/O CABLES (RADIATED SETUP)

	I/O CABLE LIST								
Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks			
		Ports							
1	USB	1	AC Adapter	Un-shielded	1.2m	NA			
2	Jack	1	Headset	Shielded	1m	NA			
3	RF In/out	1	Communication Test Set	Un-shielded	2m	NA			

TEST SETUP

The EUT is continuously communicated to the call box during the tests.


Page 10 of 43

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

Page 11 of 43

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

Page 12 of 43

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01179	05/01/15		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	T43	03/06/16		
Antenna, Horn, 18 GHz	EMCO	3115	C00783	10/25/15		
Antenna, Horn, 18 GHz	EMCO	3115	C00784	10/25/15		
Highpass Filter, 2.7 GHz	Micro-Tronics	HPM13194	N02687	CNR		
Highpass Filter, 1.5 GHz	Micro-Tronics	HPM13193	N02688	CNR		
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	05/12/15		
Communications Test Set	R&S	CMW500	T159	07/02/15		
DC power supply, 8 V @ 3 A or 15 V	Agilent / HP	E3610A	None	CNR		
Vector signal generator, 6 GHz	Agilent / HP	E4438C	None	06/18/15		
Antenna, Tuned Dipole 400~1000	ETS	3121C DB4	C00993	02/11/16		
Directional Coupler	RF-Lambda	RFDC5M06G15	None	CNR		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	12/17/15		

Test Software List					
Description	Manufacturer	Model	Version		
Radiated Software	UL	UL EMC	Version 9.5, 07/22/14		
Conducted Software	UL	UL EMC	Version 9.5, 05/17/14		
CLT Software	UL	UL RF	Version 1.0, 02/02/15		
Antenna Port Software	UL	UL RF	Version 2.1.1.1, 1/20/15		

Page 13 of 43

7. SUMMARY TABLE

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
2.1049	N/A	Occupied Band width (99%)	N/A		Pass	1.2892MHz
22.917(a) 24.238(a)	RSS-132(4.5.1) RSS-133(6.5.1) RSS-139(6.5.1)	Band Edge / Conducted Spurious Emission	-13dBm	Conducted	Pass	-13.278dBm
2.1046	N/A	Conducted output power	N/A		Pass	24.70dBm
22.355 24.235	RSS-132(4.3) RSS-133(6.3)	Frequency Stability	2.5PPM		Pass	0.018PPM
22.913(a)(2)	RSS-132(4.4)	Effective Radiated Power	38.5 dBm		Pass	22.33dBm
24.232(c)	RSS-133(6.4)	Equivalent Isotropic Radiated Power	33dBm	Radiated	Pass	23.68dBm
22.917(a) 24.238(a)	RSS-132(4.5.1) RSS-133(6.5.1)	Radiated Spurious Emission	-13dBm		Pass	-42.60dBm

Page 14 of 43

8. RF POWER OUTPUT VERIFICATION

8.1. CDMA2000

8.1.1. 1xRTT

TEST PROCEDURE

This procedure assumes the Agilest 8960 Test Set has the following applications installed and with valid license.ApplicationRev, LicenseCDMA2000 Mobile TestB.13.08, L

LDMA2000 Mobile Test B.13.08

- Call Setup > Shift & Preset
- Cell Info > Cell Parameters > System ID (SID) > 7

> Network ID (NID) > 1

- Protocol Rev > 6 (IS-2000-0)
- Radio Config (RC) > Please see following table or details
- FCH Service Option (SO) Setup > Please see following table or details
- Traffic Data Rate > Full
- TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps
 - > R-SCH Parameters > R-SCH Data Rate > 153.6 kbps
- Rvs Power Ctrl > Active bits
 - Rvs Power Ctrl > All Up bits (Maximum TxPout)

8.1.2. CDMA2000 OUTPUT POWER RESULT

Band	Mode	Ch	Freq. (MHz)	Avg Pwr (dBm)
	D04 0055	1013	824.70	24.7
	RC1, SO55 (Loopback)	384	836.52	24.7
	(LOOPDack)	777	848.31	24.7
	B00 0055	1013	824.70	24.7
BC0	RC3, SO55 (Loopback)	384	836.52	24.7
		777	848.31	24.7
	D 00 0000	1013	824.70	24.7
	RC3, SO32 (+F-SCH)	384	836.52	24.7
	(+301)	777	848.31	24.7

Band	Mode	Ch	Freq. (MHz)	Avg Pwr (dBm)
	D04 0055	25	1851.25	25.3
	RC1, SO55 (Loopback)	600	1880.00	25.1
		1175	1908.75	25.2
	D00 0055	25	1851.25	25.2
BC1	RC3, SO55 (Loopback)	600	1880.00	25.2
	(LOOPDACK)	1175	1908.75	25.2
	500.0000	25	1851.25	25.3
	RC3, SO32 (+F-SCH)	600	1880.00	25.1
	(+r-3CH)	1175	1908.75	25.2

Page 16 of 43

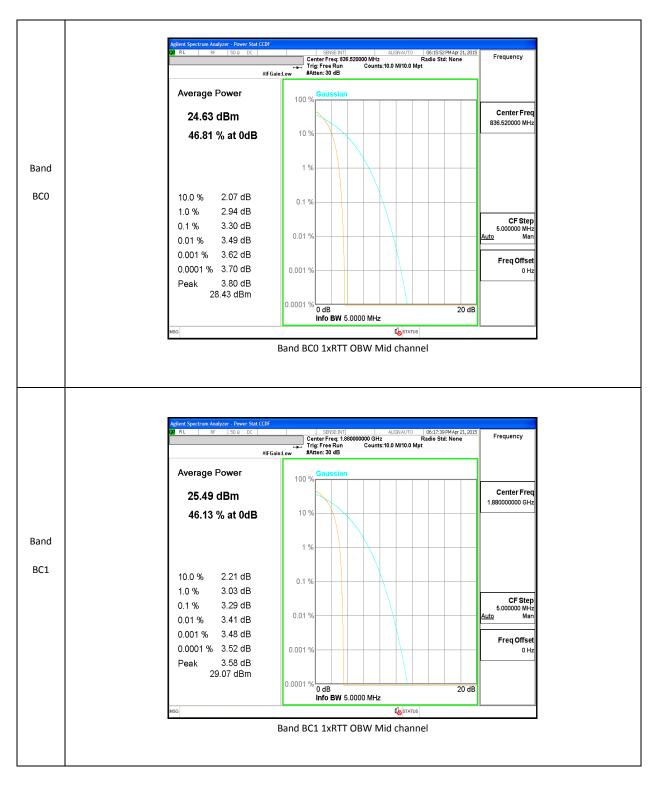
9. PEAK TO AVERAGE RATIO

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

TEST SPEC

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.


MODES TESTED

CDMA BC0, CDMA BC1

RESULTS

Page 17 of 43

9.1. CONDUCTED PEAK TO AVERAGE RESULT

Page 18 of 43

10. LIMITS AND CONDUCTED RESULTS

10.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

<u>LIMITS</u>

For reporting purposes only

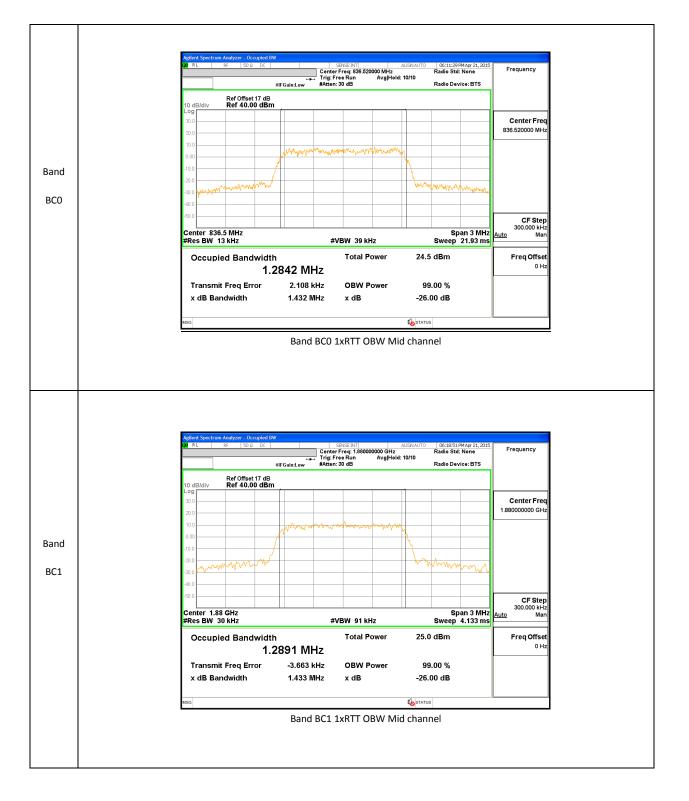
TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v02r01)

<u>MODES TESTED</u> CDMA BC0, CDMA BC1

RESULTS


Page 19 of 43

10.1.1. OCCUPIED BANDWIDTH RESULTS

Band	Mode	Channel	f (MHz)	99% BW (MHz)	-26dB BW (MHz)
		1013	824.7	1.28	1.41
	1xRTT	384	836.52	1.28	1.43
		777	848.31	1.28	1.42
		1013	824.7		
BCO	EVDO REL. 0	384	836.52		
		777	848.31		
		1013	824.7		
	EVDO REV. A	384	836.52		
		777	848.31		
		25	1851.25	1.28	1.44
	1xRTT	600	1880	1.29	1.43
		1175	1908.75	1.29	1.44
		25	1851.25		
BC1	EVDO REL. 0	600	1880		
		1175	1908.75		
		25	1851.25		
	EVDO REV. A	600	1880		
		1175	1908.75		

Page 20 of 43

10.1.1. OCCUPIED BANDWIDTH PLOTS

Page 21 of 43

UL VERIFICATION SERVICES INC.FORM NO: CCSUP4701147173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

10.2. BAND EDGE EMISSIONS

RULE PART(S)

FCC: §22.359, §24.238

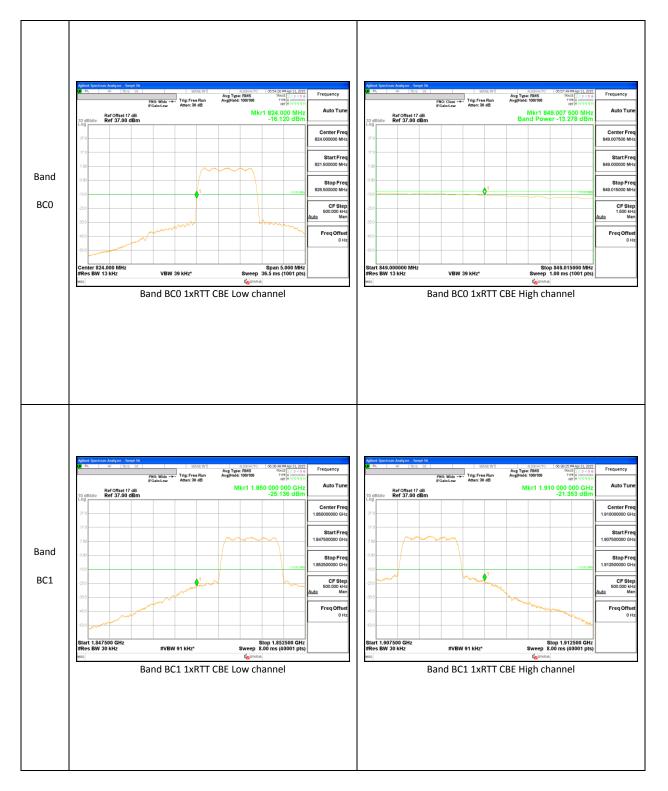
LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

The transmitter output was connected to an Agilent 8960 or a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.


MODES TESTED

CDMA BCO, CDMA BC1

RESULTS

Page 22 of 43

10.2.1. BAND EDGE PLOTS

10.3. OUT OF BAND EMISSIONS

RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

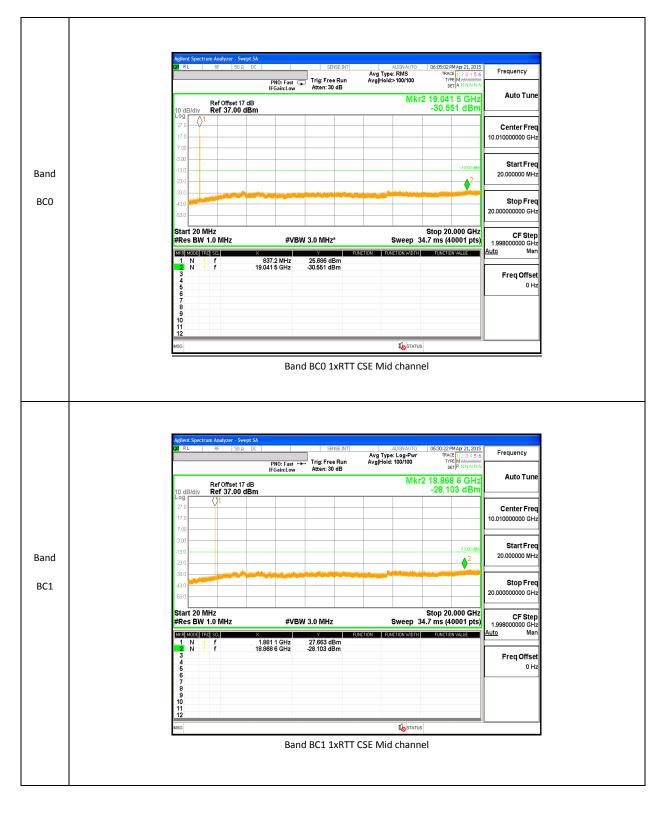
TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

MODES TESTED CDMA BC0, CDMA BC1

RESULTS


Page 24 of 43

10.3.1. OUT OF BAND EMISSIONS RESULT

Band	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
		824.7	-30.507	-13	-17.507
BCO	1xRTT	836.52	-30.551	-13	-17.551
		848.31	-29.646	-13	-16.646
		1851.25	-28.049	-13	-15.049
BC1	1xRTT	1880	-28.103	-13	-15.103
		1908.75	-27.992	-13	-14.992

Page 25 of 43

10.3.2. OUT OF BAND EMISSIONS PLOTS

Page 26 of 43

UL VERIFICATION SERVICES INC.FORM NO: CCSUP4701147173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

10.4. FREQUENCY STABILITY

RULE PART(S)

FCC: §2.1055, §22.355, §24.235

LIMITS

§22.355 - The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.

§24.235 - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

MODES TESTED CDMA BC0, CDMA BC1

RESULTS

See the following pages.

Page 27 of 43

10.4.1. FREQUENCY STABILITY RESULTS

Re	ference Frequency:	836.52	MHz @ 20°C	
	Limit: to	stay +- 2.5 ppm =	2091.300	Hz
Power Supply	Environment	Frequency Dev	iation Measureed wi	ith Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	50	836.519994	0.014	2.5
3.80	40	836.520004	0.002	2.5
3.80	30	836.520005	0.001	2.5
3.80	20	836.520006	0	2.5
3.80	10	836.519993	0.015	2.5
3.80	0	836.519994	0.014	2.5
3.80	-10	836.520004	0.002	2.5
3.80	-20	836.519991	0.018	2.5
3.80	-30	836.519996	0.012	2.5

BC0 CELL BAND, - MID CHANNEL 384, Frequency 836.52 MHz

Re	ference Frequency:	836.52	MHz @ 20°C	
	Limit: to	2091.300	Hz	
Power Supply	Environment	viation Measureed wi	th Time Elapse	
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	20	836.520006	0	2.5
4.30	20	836.5200123	-0.008	2.5
3.20	20	836.5199954	0.012	2.5

Page 28 of 43

BC1 CELL BAND, Mid Channel 600 Freq: 1880MHz

Re	ference Frequency:			MHz @ 20°C
	Limit: to	stay +- 2.5 ppm =	4700.000	Hz
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	50	1879.999990	-0.001	2.5
3.80	40	1879.999989	-0.001	2.5
3.80	30	1879.999990	-0.002	2.5
3.80	20	1879.999987	0	2.5
3.80	10	1879.999991	-0.002	2.5
3.80	0	1879.999989	-0.001	2.5
3.80	-10	1879.999989	-0.001	2.5
3.80	-20	1879.999989	-0.001	2.5
3.80	-30	1879.999991	-0.002	2.5

Re	Reference Frequency: PCS Mid Channel			MHz @ 20°C
	Limit: to	4700.000	Hz	
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	20	1879.999987	0	2.5
4.30	20	1879.999991	-0.002	2.5
3.20	20	1879.999991	-0.002	2.5

Page 29 of 43

11. RADIATED TEST RESULTS

11.1. RADIATED POWER (ERP & EIRP)

RULE PART(S)

FCC: §2.1046, §22.913, §24.232

LIMITS

22.913(a) - The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) - Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13dB.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17; PSA setting reference to 971168 D01 v02r01

For peak power measurement with a PSA:

a) Set the RBW \ge OBW; b) Set VBW \ge 3 × RBW; c) Set span \ge 2 x RBW; d) Sweep time = auto couple; e) Detector = peak; f) Ensure that the number of measurement points \ge span/RBW; g) Trace mode = max hold;

MODES TESTED

CDMA BCO, CDMA BC1

TEST RESULTS

UL VERIFICATION SERVICES INC.FORM NO: CCSUP4701147173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 30 of 43

11.1.1. ERP/EIRP RESULTS

CDMA BC0

Band	Mode	Channel	f(MHz)	ERP	
				dBm	mW
		1013	824.7	20.91	123.31
	1xRTT	384	836.52	22.33	171.00
		777	848.31	22.16	164.44
	EVDO REL. 0 EVDO REV. A	1013	824.7		
BCO		384	836.52		
		777	848.31		
		1013	824.7		
		384	836.52		
		777	848.31		

CDMA BC1

Band	Mode	Channel	f(MHz)	EI	RP
				dBm	mW
		25	1851.25	22.79	190.11
	1xRTT	600	1880	23.68	233.35
		1175	1908.75	22.79	190.11
		25	1851.25		
BC1	EVDO REL. 0	600	1880		
		1175	1908.75		
		25	1851.25		
	EVDO REV. A	600	1880		
		1175	1908.75		

Page 31 of 43

11.1.2. LTE ERP/EIRP RESULTS

				Substitution Me Services, Inc. C					
.									
Company:		LG 15/20516							
Project #: Date:		15/20516							
		4/27/2015							
Test Engineer:		O. Stoelting	L .						
Configuration:		X-pos EUT On							
Mode:		CDMA RTT BC	01						
Substituti f	g: Sunol T130, on: Dipole T4 SG reading	16, 6ft N-type Ant. Pol.	Cable Ware	house. Antenna Gain	ş	Limit	Margin	Note	
Receiving Substituti f MHz	g: Sunol T130, on: Dipole T4 ²	16, 6ft N-type	e Cable Ware	house.	ERP (dBm)	Limit (dBm)	Margin (dB)	Note	
Receiving Substituti f	g: Sunol T130, on: Dipole T4 SG reading	16, 6ft N-type Ant. Pol.	Cable Ware	house. Antenna Gain	ş	3		Notes	
Receiving Substituti f MHz Low Ch 824.70 824.70	y: Sunol T130, on: Dipole T4 ⁻ SG reading (dBm)	16, 6ft N-type Ant. Pol. (H/V)	e Cable Ware Cable Loss (dB)	house. Antenna Gain (dBd)	(dBm)	(dBm)	(dB)	Note	
Receiving Substituti f MHz Low Ch 824.70 824.70 Mid Ch	g: Sunol T130, on: Dipole T4 ⁻ SG reading (dBm) 13.91 21.80	16, 6ft N-type Ant. Pol. (H/V) V H	Cable Ware Cable Loss (dB) 0.9 0.9	house. Antenna Gain (dBd) 0.0 0.0	(dBm) 13.01 20.91	(dBm) 38.5 38.5	(dB) -25.4 -17.5	Note	
Receiving Substituti f MHz Low Ch 824.70 824.70 Mid Ch 836.52	g: Sunol T130, on: Dipole T4 ⁻ SG reading (dBm) 13.91 21.80 12.43	16, 6ft N-type Ant. Pol. (H/V) V H V	Cable Warel Cable Loss (dB) 0.9 0.9 0.9	house. Antenna Gain (dBd) 0.0 0.0 0.0	(dBm) 13.01 20.91 11.53	(dBm) 38.5 38.5 38.5	(dB) -25.4 -17.5 -26.9	Note	
Receiving Substituti f MHz Low Ch 824.70 824.70 Mid Ch 836.52 836.52	g: Sunol T130, on: Dipole T4 ⁻ SG reading (dBm) 13.91 21.80	16, 6ft N-type Ant. Pol. (H/V) V H	Cable Ware Cable Loss (dB) 0.9 0.9	house. Antenna Gain (dBd) 0.0 0.0	(dBm) 13.01 20.91	(dBm) 38.5 38.5	(dB) -25.4 -17.5	Note	
Receiving Substituti f MHz Low Ch 824.70 824.70 Mid Ch 836.52	g: Sunol T130, on: Dipole T4 ⁻ SG reading (dBm) 13.91 21.80 12.43	16, 6ft N-type Ant. Pol. (H/V) V H V	Cable Warel Cable Loss (dB) 0.9 0.9 0.9	house. Antenna Gain (dBd) 0.0 0.0 0.0	(dBm) 13.01 20.91 11.53	(dBm) 38.5 38.5 38.5	(dB) -25.4 -17.5 -26.9	Note	

Page 32 of 43

		High Frequ	ency Substitu	tion Measurement					
		UL Verificati	on Services C	hamber A					
Company:		LG							
Project #:		15/20516							
Date:		4/27/2015							
Test Engi		O. Stoelting							
Configuration:		X-pos EUT Only							
Mode:		CDMA RTT BC1							
Substituti f	SG reading	Substitution, 6	ft N-type Cable Cable Loss	Antenna Gain	EIRP	Limit	Delta	Note	
Substituti f GHz	on: Horn T59 S	Substitution, 6	ift N-type Cable		EIRP (dBm)	Limit (dBm)	Delta (dB)	Note	
Substituti f	on: Horn T59 S	Substitution, 6	ft N-type Cable Cable Loss	Antenna Gain			1	Note	
f GHz Low Ch 1.8513 1.8513	on: Horn T59 S SG reading (dBm)	Substitution, 6 Ant. Pol. (H/V)	ft N-type Cable Cable Loss (dB)	Antenna Gain (dBi)	(dBm)	(dBm)	(dB)	Note	
f GHz Low Ch 1.8513 1.8513 Mid Ch	on: Horn T59 \$ SG reading (dBm) 12.9 15.6	Substitution, 6 Ant. Pol. (H/V) V H	t N-type Cable Cable Loss (dB) 0.85 0.85	Antenna Gain (dBi) 8.05 8.05	(dBm) 20.06 22.79	(dBm) 33.0 33.0	(dB) -12.9 -10.2	Note	
f GHz Low Ch 1.8513 1.8513 Mid Ch 1.8800	on: Horn T59 \$ SG reading (dBm) 12.9 15.6 10.4	Substitution, 6 Ant. Pol. (H/V) V H V	oft N-type Cable Cable Loss (dB) 0.85 0.85 0.85	Antenna Gain (dBi) 8.05 8.05 8.03	(dBm) 20.06 22.79 17.54	(dBm) 33.0 33.0 33.0 33.0	(dB) -12.9 -10.2 -15.5	Note	
f GHz Low Ch 1.8513 1.8513 Mid Ch 1.8800 1.8800	on: Horn T59 \$ SG reading (dBm) 12.9 15.6	Substitution, 6 Ant. Pol. (H/V) V H	t N-type Cable Cable Loss (dB) 0.85 0.85	Antenna Gain (dBi) 8.05 8.05	(dBm) 20.06 22.79	(dBm) 33.0 33.0	(dB) -12.9 -10.2	Note	
f GHz Low Ch 1.8513 1.8513 Mid Ch 1.8800	on: Horn T59 \$ SG reading (dBm) 12.9 15.6 10.4	Substitution, 6 Ant. Pol. (H/V) V H V	oft N-type Cable Cable Loss (dB) 0.85 0.85 0.85	Antenna Gain (dBi) 8.05 8.05 8.03	(dBm) 20.06 22.79 17.54	(dBm) 33.0 33.0 33.0 33.0	(dB) -12.9 -10.2 -15.5	Note	

Page 33 of 43

11.2. FIELD STRENGTH OF SPURIOUS RADIATION

RULE PART(S)

FCC: §2.1053, §22.917, §24.238

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

MODES TESTED

CDMA BCO, CDMA BC1

RESULTS

UL VERIFICATION SERVICES INC.FORM NO: CCSUP4701147173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 43

11.2.1. SPURIOUS RADIATION PLOTS

		Abo	UL ve 1GHz Hig	Verificatio gh Frequen			asureme	nt	
Company	:	LG							
Project #:		15 20516							
Date:		4/27/2015							
Test Engi	neer:	O. Stoelting							
Configura		X-pos EUT, AC	Charger						
Location:		Chamber A	Charger						
Mode:			BC0 Harmonics						
f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes
MHz	(dBm)	(H/V)	<u>(m)</u>	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Ch, 82 1649.40	-21.6	v	3.0	37.4	1.0	-58.0	-13.0	-45.0	
2474.10	-21.0	v	3.0	36.4	1.0	-50.0	-13.0	-43.0 -48.7	
3298.80	-20.5	v	3.0	35.8	1.0	-57.5	-13.0	-40.7	
1649.40	-23.0	Н	3.0	37.4	1.0	-59.4	-13.0	-46.4	
2474.10	-24.9	H	3.0	36.4	1.0	-60.3	-13.0	-47.3	
3298.80	-22.1	H	3.0	35.8	1.0	-56.9	-13.0	-43.9	
Mid Ch, 83									
1673.04	-18.7	V	3.0	37.3	1.0	-55.0	-13.0	-42.0	
2509.56	-26.3	V	3.0	36.4	1.0	-61.7	-13.0	-48.7	
3346.08	-22.1	V	3.0	35.8	1.0	-56.9	-13.0	-43.9	
1673.04	-19.9	Н	3.0	37.3	1.0	-56.2	-13.0	-43.2	
2509.56	-23.8	Н	3.0	36.4	1.0	-59.2	-13.0	-46.2	
3346.08	-22.4	H	3.0	35.8	1.0	-57.2	-13.0	-44.2	
High Ch, 84		v	2.0	27.2	4.0	F4 2	42.0		
1696.62 2544.93	-18.0 -26.6	V V	3.0 3.0	37.3 36.3	1.0 1.0	-54.3 -61.9	-13.0 -13.0	-41.3 -48.9	
3393.24	-20.0 -22.4	V	3.0	30.3	1.0	-61.9	-13.0	-40.9 -44.1	
3333.24	-22.4	V H	3.0	37.3	1.0	-57.1	-13.0	-42.4	
1696 62	-13.1	H	3.0	36.3	1.0	-59.8	-13.0	-42.4	
1696.62 2544.93			3.0	35.7	1.0	-56.9	-13.0	-40.0	
1696.62 2544.93 3393.24	-22.2	H							

Page 35 of 43

UL Verification Services, Inc. Above 1GHz High Frequency Substitution Measurement										
		ADO	We IGHZ HI	gn Frequen	cy substi		asuremei	ur.		
Company	:	LG								
Project #		15 20516								
Date:		4/27/2015								
Test Eng	ineer:	O. Stoelting								
Configura		X-pos EUT, AC	Charger							
Location:		Chamber A								
Mode:			BC1 Harmonics							
			1							
f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes	
Low Ch, 1										
3702.50	-16.2	V	3.0	35.9	1.0	-51.1	-13.0	-38.1		
5553.75	-18.5	V	3.0	35.5	1.0	-53.0	-13.0	-40.0		
7405.00	-17.4	V	3.0	35.7	1.0	-52.1	-13.0	-39.1		
3702.50	-8.0	Н	3.0	35.9	1.0	-42.8	-13.0	-29.8		
5553.75	-17.9	Н	3.0	35.5	1.0	-52.4	-13.0	-39.4		
7405.00	-16.5	H	3.0	35.7	1.0	-51.3	-13.0	-38.3		
Mid Ch, 18		v	2.0	25.0	4.0	43.6	42.0	20.6		
3760.00 5640.00	-7.8 -18.2	V V	3.0 3.0	35.8 35.5	1.0 1.0	-42.6 -52.7	-13.0 -13.0	-29.6 -39.7		
7520.00	-16.9	V	3.0	35.5	1.0	-52.7	-13.0	-39.7 -38.6		
3760.00	-10.5	H	3.0	35.8	1.0	-44.7	-13.0	-31.7		
5640.00	-17.8	H	3.0	35.5	1.0	-52.2	-13.0	-39.2		
7520.00	-16.1	H	3.0	35.7	1.0	-50.8	-13.0	-37.8		
High Ch, 1										
3817.50	-12.7	V	3.0	35.8	1.0	-47.5	-13.0	-34.5		
E700 0E	-17.9	V	3.0	35.5	1.0	-52.4	-13.0	-39.4		
5726.25	-16.4	V	3.0	35.8	1.0	-51.1	-13.0	-38.1		
7635.00	-17.7	H	3.0	35.8	1.0	-52.5	-13.0	-39.5		
7635.00 3817.50		i u	3.0	35.5	1.0	-52.3 -50.4	-13.0 -13.0	-39.3		
5726.25 7635.00 3817.50 5726.25 7635.00	-17.8 -15.6	H	3.0	35.8	1.0			-37.4		

Page 36 of 43