

Nemko TEST REPORT

Date:	ESPOO 31.10.2012	Page: <u>1 (18)</u> Appendices
Number: No. 1 / 1	172279	Date of handing in: 25.10.2012 Tested by:
		Timo Hietala, Test Engineer
		Reviewed by:
		Janne Nyman, Compliance Specialist

SORT OF EQUIPMENT: RF ID reader

MARKETING NAME: FÖRSTER TECHNIK

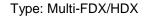
TYPE: Multi-FDX/HDX

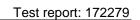
MANUFACTURER: Förster-Technik GmbH

CLIENT: Förster Technik GmbH, Germany

ADDRESS: Gerwigstrasse 25, Engen, D-78234, Germany

TELEPHONE: +49 7733 9406 23 / Norbert Seeburger


TEST LABORATORY: Nemko Oy


FCC REG. NO. 359859 October 20, 2011 IC FILE NO. 2040F-1 December 1, 2010

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 2 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Summary of performed tests and test results

Section in CFR 47		Result
15.209	Peak output power	PASS
15.209	Spurious radiated emissions	PASS
15.207	AC power line conducted emissions	PASS

Section in RSS Gen		Result
Issue 3		
7.2.5	Peak output power	PASS
7.2.5	Spurious radiated emissions	PASS
7.2.4	AC power line conducted emissions	PASS

Explanations:

PASS The EUT passed that particular test. FAIL The EUT failed that particular test.

X The measurement was done, but there is no applicable performance criteria.

Contents

Sι	ımmary of performed tests and test results	2
1.	EUT and Accessory Information	4
	1.1 EUT description	
	1.2 EUT and accessories	
2.	Test setups	5
3.	Standards and measurement methods	6
4.	Test results	6
	4.1 Fundamental output power.4.1.1 EUT operation mode.4.1.2 Test method and limit4.1.3 Test results.	6 6
	 4.2 Spurious radiated emission 4.2.1 EUT operation mode. 4.2.2 Test method and limit 4.2.3 Test results 4.2.4 Conducted disturbance at mains ports emission test 4.2.5 Test results 	10 10 11 13
5.	List of test equipment	16
6	Photographs	17

1. EUT and Accessory Information

1.1 EUT description

The EUT is an RF ID reader for animal detection.

Alignment range: 120-133.9 kHz

Channels: 3

Operating Voltage: 12-24 VDC

Antenna: loop antenna

1.2 EUT and accessories

Equipment under test (EUT):

• RF ID reader , type: Multi-FDX/HDX , S/N: -

Peripherals:

Main unit Control unit

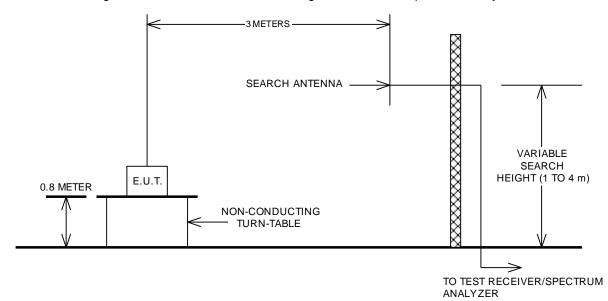
RFID tags: 120kHz, 130kHz and 133.9kHz

Cables:

From	То	Type	Length [m]
Mains supply network	Main unit	Mains cable, unshielded	1.2
Main unit	EUT	Signal/DC cable, shielded	3
Main unit	Control unit	Signal cable, shielded	2

Operating voltage of the EUT during the tests:

• Main unit: 230 V AC, 50 Hz / 240 V AC, 60 Hz


• RF ID reader: 12V DC

2. Test setups

Setup 1 (Radiated measurements)

The test was performed inside a semi anechoic shielded room. For the duration of the test the EUT was placed on a non-conductive support 0.8 m high standing on the turntable. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization and height. The measured signal was routed from the measuring antenna to the spectrum analyzer.

Page 5 (18) Date 31.10.2012

3. Standards and measurement methods

The test were performed in guidance of the CFR 47 Part 15, SUBPART B, Paragraph 15.209 (2010), ANSI C63.4 (2003), CISPR 22, RSS-210 Issue 8 and RSS-Gen Issue 3.

4. Test results

4.1 Fundamental output power

The test was performed as a compliance test. The test parameters concerned were as follows:

Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.209
IC	RSS Gen 7.2.5
Date of testing	29.10.2012
Test equipment	709, 98, 350
Test conditions	22 °C, 30 % RH
Test result	PASS

4.1.1 EUT operation mode

EUT operation mode	TX on with modulation
EUT channel	120, 130.4, 133.9 kHz
EUT TX power level	Nominal

4.1.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test distance from the EUT to the measuring antenna was 3.0 m. Measurements were made using a magnetic loop antenna and a receiver with a peak detector and 200 Hz bandwidth (9 - 120kHz), 9 kHz bandwidth (0.150 - 30MHz). Measurements of this device were carried while it was transmitting continuously.

The CFR 47 Part 15.209 limit of (2400/F) has been calculated to correspond 26.0 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

The 300 meter limit (2400/F)@120kHz of 20.0 μ V/m has been converted to 26.0 dB(μ V/m) and this limit has been calculated to correspond 106 dB(μ V/m) at 3 m measurement distance by using 40 dB per decade rule (2 decades).

As allowed by section 15.31(f)(2) measurements were made at 3 meter.

Limit (3m measuring distance)

Limit (om measuring distance)		
Frequency band kHz	Peak	
N 12	dB(μV/m)	
120	106.0	
130.4	105.3	
133.9	105.1	

4.1.3 Test results

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF$$

Where

 U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

TX on low channel

Frequency	Result PK	Limit	Margin
kHz	dB(μV/m)	dB(μV/m)	dB
120	94.1	106.0	11.9

TX on middle channel

Frequency	Result PK	Limit	Margin
kHz	dB(μV/m)	dB(μV/m)	dB
130.4	93.7	105.3	11.6

TX on high channel

Frequency	Result PK	Limit	Margin
kHz	dB(μV/m)	dB(μV/m)	dB
133.9	93.7	105.1	11.4

Page 7 (18) Date 31.10.2012

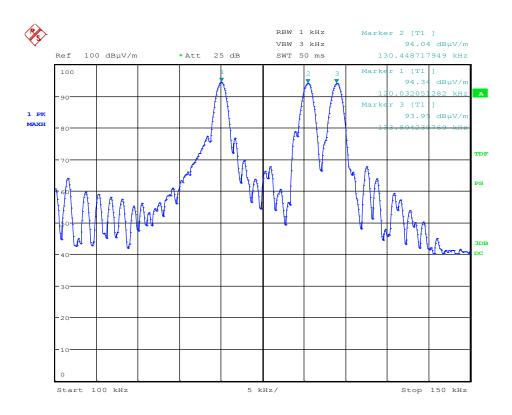


Figure 1. Fundamental output power, peak detector, channels 120-133.9 kHz

Figure 2. Fundamental output power, peak detector, channel 120 kHz

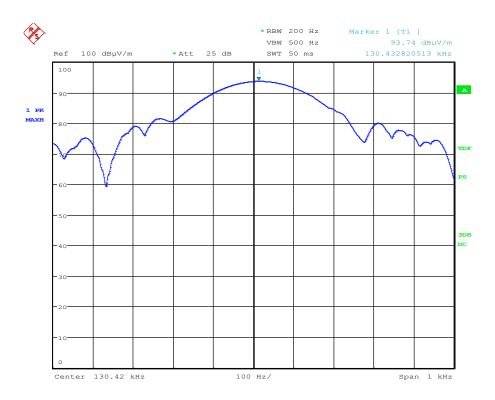


Figure 3. Fundamental output power, peak detector, channel 130.4 kHz

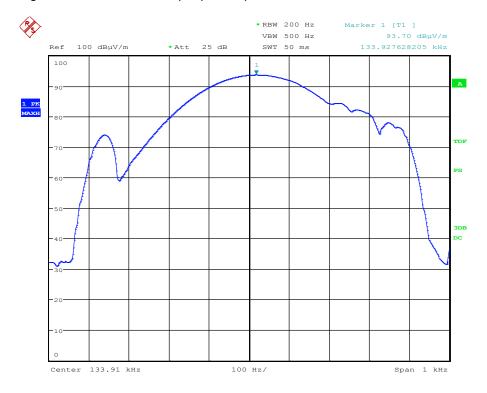


Figure 4. Fundamental output power, peak detector, channel 133.9 kHz

Test report: 172279

4.2 Spurious radiated emission

The test was performed as a compliance test. The test parameters concerned were as follows:

Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.209
IC	RSS Gen 7.2.5
Date of testing	29.10.2012
Test equipment	98, 319, 350, 544, 709
Test conditions	22 °C, 30 % RH
Test result	PASS

4.2.1 EUT operation mode

EUT operation mode	TX on with modulation
EUT TX power level	Nominal

4.2.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable (photograph 2). During the test in the frequency range 9 kHz-30 MHz the distance from the EUT to the measuring antenna was 3 m and measurements were made using a magnetic loop antenna and a receiver with 200 Hz bandwidth (9 - 150 kHz) and 9 kHz bandwidth (0.15 – 30 MHz). During the test in the frequency range 30 - 1000 MHz the distance from the EUT to the measuring antenna was 10 m. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed separately with the measuring antenna being both in horizontal and vertical polarizations.

As allowed by section 15.31(f)(2) measurements were made at 3 meter with the 300 meter limit (2400/F)@(9 – 490 kHz) being extrapolated by a factor of 80 dB (40dB per decade) and (2400/F)@(0.490-1.705MHz) being extrapolated by a factor of 40 dB.

The CFR 47 Part 15.209 limit of 500 μ V/m has been calculated to correspond 54 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

In the frequency range 30 – 1000 MHz the limit values defined for 3 m measuring distance have been converted to correspond limit values for 10 m measuring distance by using 20 dB per decade rule.

FCC Part 15,209 Limit values

COT are TOILEGO LITTIE VALUED							
Frequency band	Quasi-peak	Quasi-peak (3 m)	Quasi-peak (10 m)				
MHz	μV/m	dB(μV/m)	dB(μV/m)				
0.009-0.490	2400/F (kHz)@300m	128.5-93.8@3m					
0.490-1.705	2400/F (kHz)@30m	53.8-43@3m					
1.705–30	30@30m	69.5@3m					
30 - 88	100@3m	40.0@3m	30.0@10m				
88 - 216	150@3m	43.5@3m	33.5@10m				
216-960	200@3m	46.0@3m	36.0@10m				
960-1000	500@3m	54.0@3m	44.0@10m				

For the frequency bands 9 - 90 kHz and 110 - 490 kHz the radiated emission limits are based on measurements employing an average detector.

4.2.3 Test results

The measurement results were obtained as described below.

 $E[\mu V/m] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$

Where

 U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

 G_{PREAMP} gain of the preamplifier

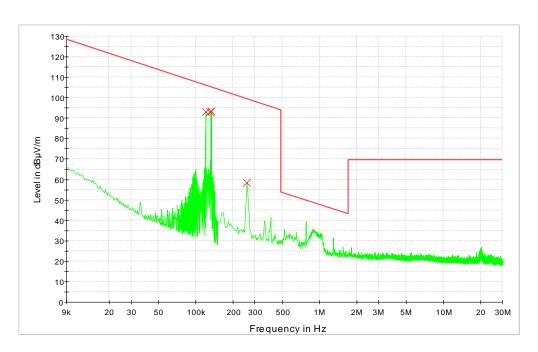



Figure 5. Spurious emissions, 9 kHz-30 MHz

Frequency	Average	Limit	Margin	Polarization	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(deg)
0.259	58.5	98.0	39.5	Н	180

Test report: 172279

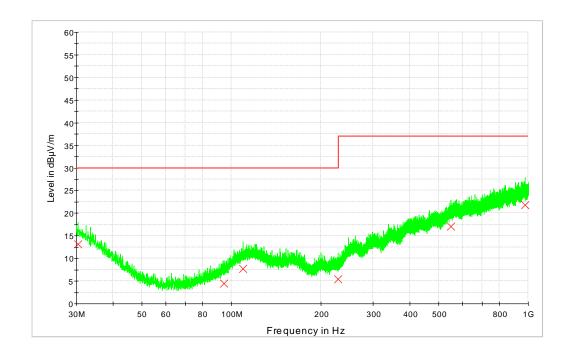
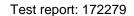



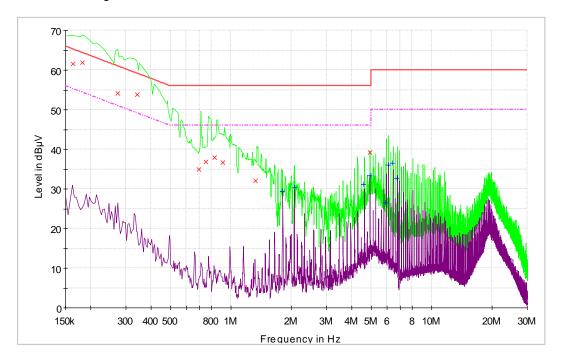
Figure 6. Spurious emissions, 30-1000 MHz, limit value as defined in CISPR 22 for 10 m measuring distance.

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)
30.400	13.1	30	16.9	238	Н	315
94.480	4.5	30	25.5	174	Н	23
109.320	7.7	30	22.3	386	٧	79
228.920	5.4	30	24.6	186	V	0
548.480	17.1	37	19.9	100	Н	257
974.480	21.8	37	15.2	326	Н	248

4.2.4 Conducted disturbance at mains ports emission test

The test was performed as a compliance test. The test parameters concerned were as follows:

Parameter	Specification
Frequency range	0.150 – 30 MHz
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.207
IC	RSS Gen 7.2.4
Date of testing	30.10.2012
Test equipment	745, 338, 348
Test uncertainty U95	±3.5dB
Test conditions	24 °C, 45 % RH


The test was performed inside a shielded room where the floor and one of the walls of the test site comprised the reference ground plane (RGP). For the duration of the test the EUT was placed on a non-conductive table 0.8 m high 0.4 m apart from the vertical RGP (see photograph 3). The excess lengths of the cables of the EUT were made into bundles 30-40 cm in length. The power input cable of the EUT was connected to an artificial mains network. The test was performed separately on each phase and also on the neutral wire.

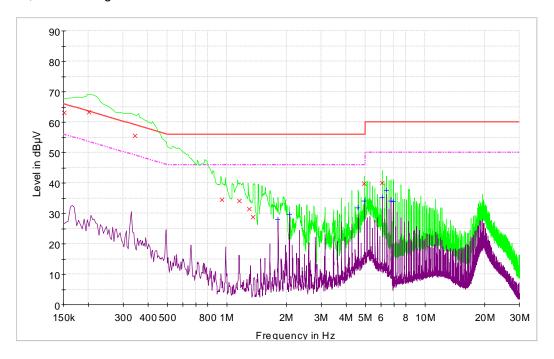
The disturbances were first examined by performing a spectrum scan by using a peak detector. The general procedure in the conducted disturbance emission test is that no further measurements are necessary if the disturbance levels measured by using the peak detector are below the limit value defined for the measurement performed by using an average detector. If not, then at the test frequencies concerned the measurement is performed also by using a quasi-peak detector. If the disturbance levels measured by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector, then measurements by using the average detector are not necessary.

4.2.5 Test results

Line L, Mains voltage 240VAC/60Hz

The graphs of the disturbances measured by using a peak and average detectors in the frequency range of 0.150 - 30 MHz.

Measurement results (QP):


Measurement	results (Qr	<i>)</i> ·			
Frequency	Level	Limit	Margin	Line	Conclusion
MHz	dΒμV	dΒμV	dB		Pass/Fail
0.164	61.6	65.3	3.6	L	Pass
0.182	61.8	64.4	2.6	L	Pass
0.274	54.1	61.0	6.9	L	Pass
0.341	53.7	59.2	5.4	L	Pass
0.693	34.9	56.0	21.1	L	Pass
0.748	36.9	56.0	19.1	L	Pass
0.831	37.9	56.0	18.1	L	Pass
0.910	36.7	56.0	19.3	L	Pass
1.330	32.0	56.0	24.0	L	Pass
4.937	39.2	56.0	16.8	L	Pass

Measurement results (Average):

Frequency MHz	Level dBμV	Limit dBμV	Margin dB	Line	Conclusion Pass/Fail
1.813	29.4	46.0	16.6	L	Pass
2.072	30.3	46.0	15.7	L	Pass
4.609	31.0	46.0	15.0	L	Pass
4.936	33.4	46.0	12.6	L	Pass
5.928	26.6	50.0	23.4	L	Pass
6.090	36.1	50.0	13.9	L	Pass
6.419	36.6	50.0	13.4	L	Pass
6.748	32.8	50.0	17.2	L	Pass

Line N, Mains voltage 240VAC/60Hz.

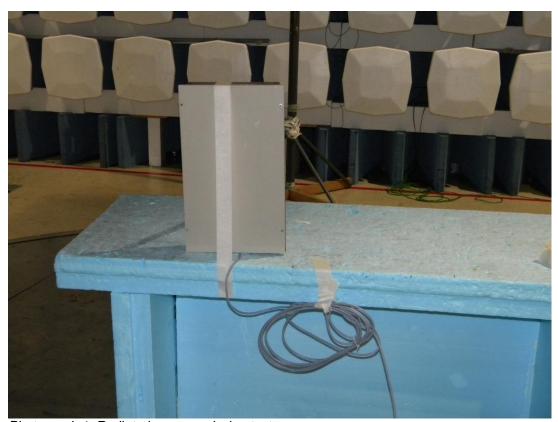
The graphs of the disturbances measured by using a peak and average detectors in the frequency range of 0.150 - 30 MHz.

Measurement results (QP):

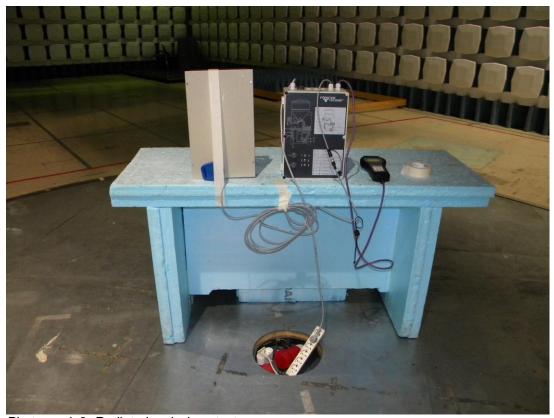
Measurement	1000110 (4.	<i>,</i> ·			
Frequency	Level	Limit	Margin	Line	Conclusion
MHz	dΒμV	dΒμV	dB		Pass/Fail
0.151	63.1	66.0	2.9	N	Pass
0.202	63.2	63.5	0.3	N	Pass
0.344	55.6	59.1	3.5	N	Pass
0.944	34.4	56.0	21.6	N	Pass
1.153	34.1	56.0	21.9	N	Pass
1.298	31.5	56.0	24.5	N	Pass
1.352	28.7	56.0	27.3	N	Pass
4.936	39.9	56.0	16.1	N	Pass
6.087	39.9	60.0	20.1	N	Pass

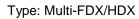
Measurement results (Average):

	Measurement results (Average).						
1	Frequency	Level	Limit	Margin	Line	Conclusion	
1	MHz	dΒμV	dΒμV	dB		Pass/Fail	
	1.813	28.0	46.0	18.0	N	Pass	
1	2.072	29.7	46.0	16.3	N	Pass	
1	4.606	31.8	46.0	14.2	N	Pass	
1	4.934	34.0	46.0	12.0	N	Pass	
1	6.088	35.2	50.0	14.8	N	Pass	
1	6.416	37.6	50.0	12.4	N	Pass	
1	6.745	34.0	50.0	16.0	N	Pass	
	6.908	33.8	50.0	16.2	N	Pass	


5. List of test equipment

Each active test equipment is calibrated once a year, antennas every 18 months and other passive equipment every 24 months.


Nr.	Equipment	Туре	Manufacturer	Serial number
338	Test receiver	ESS	Rohde & Schwarz	847151/009
98	Antenna	HFH2	Rohde & Schwarz	871336/45
319	Antenna	CBL6112	Chase	2018
348	Shielded room	RFSD-100	Euroshield Oy	1320
350	Semianechoic	RFD-F-100	Euroshield Oy	1327
	shielded room			
542	Double-Ridged Horn	3115	Emco	00023905
544	RF-amplifier	ZFL-2000VH2	Mini-Circuits	QA0749010
559	Highpass Filter	WHKX3.0/18G-	Wainwright Instruments	1
		10SS		
572	High Pass Filter	WHKX1.5/15G- 12SS	Wainwright Instruments	4
564	RF-amplifier	CA018-4010	CIAO Wireless	132
566	Spectrum analyzer	E4448A	Agilent	US42510236
709	EMI test receiver	ESU8	Rohde & Schwarz	100297
710	RF amplifier	ALS1826-41-12	ALC Microwave Inc.	0011
745	2-Line V-Network	ENV216	Rohde & Schwarz	101466


6. Photographs

Photograph 1, Radiated power emission test

Photograph 2, Radiated emissions test

Photograph 3, AC mains conducted emissions test