

FCC Radio Test Report

FCC ID: ZMOL860GL16G

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-6-2212T118 LTE Module L860-GL-16 Fibocom Fibocom Wireless Inc. 1101,Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, ShenZhen, China
Radio Function	: LTE Band 48
FCC Rule Part(s)	 FCC CFR Title 47, Part 96 ANSI C63.26-2015
Measurement	ANSI/TIA-603-E-2016
Procedure(s)	FCC KDB 971168 D01 Power Meas License Digital Systems v03r01
Date of Receipt	: 2022/12/30
Date of Test	: 2022/12/30 ~ 2023/2/17
Issued Date	: 2023/2/23

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Eric Lee, Engineer Testing Laboratory Approved by 0659 Jerry Chuang, Supervisor BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

		CONTENTS	
1	SUMMA	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
2	GENER	AL INFORMATION	7
2.1	DESC	CRIPTION OF EUT	7
2.2	TEST	MODES	8
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4	SUPF	PORT UNITS	10
3	AC POW	VER LINE CONDUCTED EMISSIONS TEST	11
3.1	LIMIT		11
3.2	TEST	PROCEDURE	11
3.3	DEVI	ATION FROM TEST STANDARD	11
3.4	TEST	SETUP	12
3.5	TEST	RESULT	12
4	EFFECT	IVE ISOTROPICAL RADIATED POWER MEASUREMENT	13
4.1	LIMIT		13
4.2	TEST	PROCEDURE	13
4.3	DEVI	ATION FROM TEST STANDARD	14
4.4	TEST	SETUP	14
4.5	EUIC	DPERATING CONDITIONS	14
4.6	IESI		14
5	RADIAT	ED SPURIOUS EMISSIONS MEASUREMENT	15
5.1			15
5.Z			15
5.3 E 1			15
5.4 5.5			10
5.5	TEST		10
5.0 6			10
7	FUT TES		10
7 8	FUT PH		10
0	LOTTIN		13
APPEND	A XIO	AC POWER LINE CONDUCTED EMISSIONS	20
APPEND	IX B	EFFECTIVE RADIATED POWER	25
APPEND	OIX C	RADIATED SPURIOUS EMISSIONS	36

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2212T118	R00	Original Report.	2023/2/23	Valid

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
2.1046 96.41(b)	Conducted Output Power Effective Isotropic Radiated Power	APPENDIX B	Pass	
2.1053 96.41(e)	Radiated Spurious Emissions	APPENDIX C	Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: ZMOL860GL16G) to be incorporated to the host device (Model number: TP00143B), Product name: Notebook Computer). Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

 \Box C06 \Box CB21 \Box CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Effective Isotropic Radiated Power and Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CP21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	18 °C, 65 %	AC 120V	Paul Shen
Conducted Output Power	23.62 °C, 53 %	AC 120V	Paul Shen
Effective Isotropic Radiated Power	Refer to data	AC 120V	Mark Wang
Radiated Spurious Emissions	Refer to data	AC 120V	Mark Wang

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	LTE Module				
Model Name	L860-GL-16				
Brand Name	Fibocom				
Model Difference	N/A				
Power Source	Supplied from host s	ystem.			
Power Rating	3.3 Vdc				
Host device information					
Equipment	Notebook Computer				
Model Name	TP00143B				
Brand Name	Lenovo				
Model Difference	N/A				
Power Source	DC voltage supplied	from External Powe	er Supply.		
Power Rating	I/P: 100-240V~2.5A 50-60Hz, O/P: 20.0V6.75A 135.0W For Lenovo / ADL230SLC3A, ADL230SDC3A, ADL230SCC3A: I/P: 100-240V~3.5A 50-60Hz, O/P: 20.0V 11.5A 230.0W For Lenovo / ADL170SLC3A, ADL170SDC3A, ADL170SCC3A:				
WI AN Module	Intel® Wi-Fi 6E AX21	1 / AX211D2W			
WWAN Module	Fibocom / L860-GL-1	16			
NFC Module	FOXCONN / T77H74	7			
	Band		(MHz)	DI Fr	requency (MHz)
Operation Frequency	LTE 48	3550 ~ 370)()		-
	Band	BW (MHz)	Mo	de	Power (W)
	20110	()	OPSK		0 119
		1.4	160AM		0.097
				SK	0.121
Maximum EIRP		3			0.121
	LTE 48				0.000
		5			0.122
					0.099
		10			0.125
Tost Model	1 860 CL 16		106		0.100
Somple Status	Engineering Semale				
EUT Modification(s)	IN/A				

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Gain (dBi)	Note
Main	AWAN	DC33001WF00	PIFA	I-PEX	0.15	LTE Band 48
Aux	AWAN	DC33001WF10	PIFA	I-PEX	-	RX only
MIMO1	AWAN	DC33001WF30	PIFA	I-PEX	-	Rx only
MIMO2	AWAN	DC33001WF20	PIFA	I-PEX	0.79	LTE Band 48

The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Band	Test Mode	Note
AC Power Line Conducted Emissions	-	Normal/Idle	-
Conducted Output Power	LTE Band 48	Refer to APPENDIX B	-
Effective Isotropic Radiated Power	LTE Band 48	TX Mode (CH 55340/55990/56640)	-
Radiated Spurious Emissions	LTE Band 48	TX Mode (CH 55990)	-

NOTE:

(1) For Radiated Spurious Emissions both QPSK and 16QAM are evaluated, but only the worst case (QPSK) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	Lenovo	ADL230SLC3A	N/A	Supplied by test requester.
В	27" 4K Monitor	DELL	U2720Q	CN-083VF-WSL0 0-0B7-332L	Furnished by test lab.
С	USB K/B	DELL	KB216t	CN-0W33XP-L03 00-797-05TY-A03	Furnished by test lab.
D	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC 00-79E-01HA	Furnished by test lab.
E	EarPods	Apple	A1472	N/A	Furnished by test lab.
F	USB 3.0 HDD	WD	WDBC3C0010B SL-0B	WX81A88ALJUC	Furnished by test lab.
G	USB 3.0 HDD	LACIE	1TB Rugged Mini USB3	NL33NGNK	Furnished by test lab.
G*	USB 2.5" HDD	AKITIO	Neutrino U3.1	SK21D1621D003 F	Furnished by test lab.
Н	USB 2.5" HDD	AKITIO	Neutrino U3.1	SK21D1621D003 F	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.5m	Power Cable	Supplied by test requester.
2	N/A	N/A	1.7m	HDMI Cable	Furnished by test lab.
3	N/A	N/A	0.45m	Type C to Type C Cable	Furnished by test lab.
3*	N/A	N/A	1m	Type C to Type C Cable	Furnished by test lab.
4	N/A	N/A	1.5m	Type C to Type C Cable	Furnished by test lab.
4*	N/A	N/A	0.3m	Type C to Type C Cable	Furnished by test lab.
5	N/A	N/A	0.6m	Type C to Type C Cable	Furnished by test lab.

NOTE: Item "*" is only for radiated emissions test.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use) Margin Level = Measurement Value – Limit Value Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ш	41.67

Measurement Value		Limit Value		Margin Level
41.67	1	60	П	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 EFFECTIVE ISOTROPICAL RADIATED POWER MEASUREMENT

4.1 LIMIT

EIRP for CBRS equipment as below table:

	Device	Maximum EIRP (dBm/10 MHz)	Maximum PSD (dBm/10 MHz)
\boxtimes	End User Device	23	N/A
	Category A CBSD	30	20
	Category B CBSD	47	37

NOTE:

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
-29.66	+	34.26	=	4.60

Measurement Value		Limit Value		Margin Level
4.60	-	38.45	Ш	-33.85

4.2 TEST PROCEDURE

The testing follows ANSI C63.26-2015 Section 5.2.4.4.2

CONDUCTED OUTPUT POWER:

The EUT can operate with a constant duty cycle.

- a. Set span to 2 × to 3 × the OBW.
- b. Set RBW = 1% to 5% of the OBW.
- c. Set VBW \geq 3 × RBW.
- d. Set number of measurement points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- e. Sweep time:
 - Set = auto-couple, or

Set \geq [10 × (number of points in sweep) × (transmission symbol period)] for single sweep (automation-compatible) measurement.

- f. Detector = power averaging (rms).
- g. Set sweep trigger to "free run."
- h. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.
- i. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function with band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- j. Add 10 log (1/duty cycle) to the measured power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25%.

EIRP Power:

The testing follows ANSI C63.26-2015 Section 5.2.5.5 According to KDB 412172 D01 Power Approach, EIRP = PT + GT – LC, where PT = transmitter output power in dBm GT = gain of the transmitting antenna in dBi LC = signal attenuation in the connecting cable between the transmitter and antenna in dB

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT

Please refer to the APPENDIX B.

5 RADIATED SPURIOUS EMISSIONS MEASUREMENT

5.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges shall not exceed -40dBm/MHz.

NOTE:

- (1) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
- (2) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value	
-50.43	+	-2.11	=	-52.54	

Measurement Value		Limit Value		Margin Level
-52.54	-	-13	=	-39.54

5.2 TEST PROCEDURE

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi..
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27				
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2022/3/31	2023/3/30				
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15				
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

	Effective Isotropic Radiated Power and Radiated Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18				
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7				
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2022/9/28	2023/9/27				
4	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14				
5	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14				
6	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14				
7	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6				
8	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17				
9	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17				
10	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19				
11	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19				
12	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2022/3/15	2023/3/14				
13	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	44635	2023/3/14				
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				
15	WIRELESS COMMUNICATIO N TEST SET	Agilent	E5515C	GB47390193	44749	2023/7/6				
16	Radio Communication Test Station	ANRITSU	MT8821C	6262044728	44890	2023/11/24				

	Conducted Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2022/7/7	2023/7/6				
2	Radio Communication Analyzer	Anritsu	MT8820C	6201525878	2022/6/16	2023/6/15				
3	Radio Communication Analyzer	Anritsu	MT8821C	6262044728	2022/11/24	2023/11/23				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

7 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2212T118-FCCP-1 (APPENDIX-TEST PHOTOS).

8 EUT PHOTOS

Please refer to document Appendix No.: EP-2212T118-2 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

								T (15 (
lest Mode	;	Normal						Tested Date	2023/2/3
Γest Freqι	lency	-						Phase	Line
80.0	dBuV								
70									
60									
50	1 X								
40	2 X	3 X	5 X 7					11	
30		4 ×	6 6		9 X			12	
20			×		×				
0.0) E		641-)				20.000
0.150	,	Desilier			(MHZ)		5		30.000
No. Mk.	Freq.	Level	Factor	measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2333	34.52	10.35	44.87	62.33	-17.46	QP		
2 *	0.2333	25.33	10.35	35.68	52.33	-16.65	AVG		
3	0.3840	28.63	10.36	38.99	58.19	-19.20			
4	0.3840	16.05	10.36	20.41	48.19	-21.78			
5 	0.5100	22.49	10.30	32.85		-23.15			
7	0.5100	10.04	10.30	20.90	40.00	-25.10			
·	0.7050	7.60	10.58	29.09	46.00	-20.41			
0	1 0005	19.00	10.59	17.99	40.00 56.00	-20.01			
9 10	1.9990	7.80	10.44	18.22	46.00	-21.41			
10	9 7520	10.56	10.44	30.02	60.00	_27.07			
	0.7000	10.00	10.07	00.20	00.00	20.17	\301		

Test Mode	е	Normal						Tested Date	2023/2/3
Test Freq	uency	-						Phase	Neutral
80.0	dBuV								
70									
60									
50	1 X								
40	2 X	3 × 4	5 X X						
30		×	6 X X				9 X		
20							10 X	11 X 12	
10								×	
0.0									
0.15	0		0.5		(MHz)		5		30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2355	35.91	10.35	46.26	62.25	-15.99	QP		
2 *	0.2355	29.63	10.35	39.98	52.25	-12.27	AVG		
3	0.3930	28.99	10.37	39.36	58.00	-18.64	QP		
4	0.3930	22.37	10.37	32.74	48.00	-15.26	AVG		
5	0.5571	25.88	10.37	36.25	56.00	-19.75	QP		
6	0.5571	13 98	10.37	24.35	46.00	-21.65	AVG		

	6	0.5571	13.98	10.37	24.35	46.00	-21.65	AVG
	7	0.7080	27.63	10.40	38.03	56.00	-17.97	QP
	8	0.7080	15.83	10.40	26.23	46.00	-19.77	AVG
	9	5.5635	16.53	10.55	27.08	60.00	-32.92	QP
1	10	5.5635	9.16	10.55	19.71	50.00	-30.29	AVG
1	11	10.4078	9.22	10.67	19.89	60.00	-40.11	QP
1	12	10.4078	1.33	10.67	12.00	50.00	-38.00	AVG

BIL

est Mode	9	Idle						Tested Date	2023/2/
est Frequ	uency	-						Phase	Line
80.0	dBuV								
70									
60									
50	1								
	×	3							
40	x	×							
30		4		5		7 X		9 11 × ×	
				Â				10 12	
20				6 ×		X		×××	
10									
0.0	<u> </u>		05		(MH2)		5		30.000
0.10		Peading	Correct	Moacuro-	()				
No. Mk.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detecto	r Comment	
1	0.2288	35.13	10.35	45.48	62.49	-17.01	QP		
2 *	0.2288	27.63	10.35	37.98	52.49	-14.51	AVG		
3	0.3772	29.22	10.36	39.58	58.34	-18.76	QP		
4	0.3772	18.53	10.36	28.89	48.34	-19.45	AVG		
5	0.9487	17.88	10.41	28.29	56.00	-27.71	QP		
6	0.9487	6.40	10.41	16.81	46.00	-29.19	AVG		
(2.6475	19.70	10.47	30.17	56.00	-25.83	QP		
8	2.6475	8.80	10.47	19.27	46.00	-26.73	AVG		
9	6.5445	18.51	10.56	29.07	60.00	-30.93	QP		
10	6.5445	11.24	10.56	21.80	50.00	-28.20	AVG		
11	9.7530	18.70	10.67	29.37	60.00	-30.63	QΡ		
~	0.7500	10.10	40.07	0.1.00	50.00	00.01			

REMARKS:

Test Mode	Э	Idle						Tested Date	2023/2/3
Test Freq	uency	-						Phase	Neutral
80.0	dBuV								
70									
60									
50	1 X								
40	2 X	× ·	57 4 X						
30		4 X 6	5 8 5 8					11 ×	
20			~				<u> </u>	12 X	
10									
0.0	0		0.5		641-)				20.000
	U	Poading	Corroct	Moacuro	(MD2)		5		30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2288	35.63	10.35	45.98	62.49	-16.51	QP		
2 °	0.2288	28.64	10.35	38.99	52.49	-13.50	AVG		
 	0.3772	19.56	10.37	29.93	48.34	-18.41	AVG		
5	0.4897	24.06	10.37	34.43	56.17	-21.74	QP		
6	0.4897	13.30	10.37	23.67	46.17	-22.50	AVG		
7	0.5437	23.95	10.37	34.32	56.00	-21.68	QP		
8	0.5437	11.69	10.37	22.06	46.00	-23.94	AVG		
9	5.0438	19.69	10.53	30.22	60.00	-29.78	QP		
10	5.0438	12.05	10.53	22.58	50.00	-27.42	AVG		
11	9.9780	14.38	10.67	25.05	60.00	-34.95	QP		

9.9780

12

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

10.67

17.55

50.00 -32.45 AVG

6.88

APPENDIX B EFFECTIVE RADIATED POWER

Conducted Output Power and Calculated ERP:

LTE Band 48 Power:

Channel	Frequency	Mode	UL RB	UL RB	MPR	Average	EIRP power	EIRP power
Charmer	(MHz)	Wode	Allocation	Start		power	(dBm)	(W)
			1	0	0	20.12	20.27	0.106
			1	12	0	20.37	20.52	0.113
			1	24	0	20.29	20.44	0.111
		QPSK	12	0	1	19.23	19.38	0.087
			12	6	1	19.53	19.68	0.093
			12	11	1	19.43	19.58	0.091
55265	3552 5		25	0	1	19.23	19.38	0.087
55205	5552.5		1	0	1	19.21	19.36	0.086
			1	12	1	19.47	19.62	0.092
			1	24	1	19.40	19.55	0.090
		16QAM	12	0	2	18.34	18.49	0.071
			12	6	2	18.48	18.63	0.073
			12	11	2	18.43	18.58	0.072
			25	0	2	18.40	18.55	0.072
			1	0	0	20.34	20.49	0.112
			1	12	0	20.61	20.76	0.119
			1	24	0	20.37	20.52	0.113
		QPSK	12	0	1	19.45	19.60	0.091
			12	6	1	19.77	19.92	0.098
			12	11	1	19.51	19.66	0.092
50000	0040.0		25	0	1	19.45	19.60	0.091
56232	3649.2		1	0	1	19.43	19.58	0.091
			1	12	1	19.71	19.86	0.097
			1	24	1	19.48	19.63	0.092
		16QAM	12	0	2	18.42	18.57	0.072
			12	6	2	18.72	18.87	0.077
			12	11	2	18.67	18.82	0.076
			25	0	2	18.64	18.79	0.076
			1	0	0	20.04	20.19	0.104
			1	12	0	20.12	20.27	0.106
			1	24	0	20.23	20.38	0.109
		QPSK	12	0	1	19.15	19.30	0.085
			12	6	1	19.28	19.43	0.088
			12	11	1	19.37	19.52	0.090
E074E	2007 5		25	0	1	19.15	19.30	0.085
56/15	3697.5		1	0	1	19.13	19.28	0.085
			1	12	1	19.22	19.37	0.086
			1	24	1	19.34	19.49	0.089
		16QAM	12	0	2	18.28	18.43	0.070
			12	6	2	18.23	18.38	0.069
			12	11	2	18.18	18.33	0.068
			25	0	2	18.15	18.30	0.068

NOTE:

(1) EIRP = Average power + Antenna gain.

(2) ERP = EIRP - 2.15. (3) P(W) = 1 W \cdot 10^{(P(dBm) / 10)} / 1000

Channel	Frequency	Mode	UL RB	UL RB	MPR	Average	EIRP power	EIRP power
onannoi	(MHz)	Mode	Allocation	Start		power	(dBm)	(W)
			1	0	0	20.17	20.32	0.108
			1	24	0	20.42	20.57	0.114
			1	49	0	20.34	20.49	0.112
		QPSK	25	0	1	19.28	19.43	0.088
			25	12	1	19.58	19.73	0.094
			25	24	1	19.48	19.63	0.092
55200	3555.0		50	0	1	19.28	19.43	0.088
55290	3333.0		1	0	1	19.26	19.41	0.087
			1	24	1	19.52	19.67	0.093
			1	49	1	19.45	19.60	0.091
		16QAM	25	0	2	18.39	18.54	0.071
			25	12	2	18.53	18.68	0.074
			25	24	2	18.48	18.63	0.073
			50	0	2	18.45	18.60	0.072
			1	0	0	20.39	20.54	0.113
			1	24	0	20.66	20.81	0.121
			1	49	0	20.42	20.57	0.114
		QPSK	25	0	1	19.50	19.65	0.092
			25	12	1	19.82	19.97	0.099
			25	24	1	19.56	19.71	0.094
56000	2649.2		50	0	1	19.50	19.65	0.092
30223	3040.3		1	0	1	19.48	19.63	0.092
			1	24	1	19.76	19.91	0.098
			1	49	1	19.53	19.68	0.093
		16QAM	25	0	2	18.47	18.62	0.073
			25	12	2	18.77	18.92	0.078
			25	24	2	18.72	18.87	0.077
			50	0	2	18.69	18.84	0.077
			1	0	0	20.09	20.24	0.106
			1	24	0	20.17	20.32	0.108
			1	49	0	20.28	20.43	0.110
		QPSK	25	0	1	19.20	19.35	0.086
			25	12	1	19.33	19.48	0.089
			25	24	1	19.42	19.57	0.091
50000	2005.0		50	0	1	19.20	19.35	0.086
06090	0.2695		1	0	1	19.18	19.33	0.086
			1	24	1	19.27	19.42	0.087
			1	49	1	19.39	19.54	0.090
		16QAM	25	0	2	18.33	18.48	0.070
			25	12	2	18.28	18.43	0.070
			25	24	2	18.23	18.38	0.069
1			50	0	2	18.20	18.35	0.068

NOTE:

(1) EIRP = Average power + Antenna gain. (2) ERP = EIRP - 2.15. (3) P(W) = 1 W \cdot 10^{(P(dBm) / 10)} / 1000

Channel	Frequency	Mode	UL RB	UL RB	MDD	Average	EIRP power	EIRP powe
Channel	(MHz)	Mode	Allocation	Start		power	(dBm)	(W)
			1	0	0	20.22	20.37	0.109
			1	37	0	20.47	20.62	0.115
			1	74	0	20.39	20.54	0.113
		QPSK	36	0	1	19.33	19.48	0.089
			36	18	1	19.63	19.78	0.095
			36	35	1	19.53	19.68	0.093
55215	2557 5		75	0	1	19.33	19.48	0.089
00010	3007.0		1	0	1	19.31	19.46	0.088
			1	37	1	19.57	19.72	0.094
			1	74	1	19.50	19.65	0.092
		16QAM	36	0	2	18.44	18.59	0.072
			36	18	2	18.58	18.73	0.075
			36	35	2	18.53	18.68	0.074
			75	0	2	18.50	18.65	0.073
			1	0	0	20.44	20.59	0.115
			1	37	0	20.71	20.86	0.122
			1	74	0	20.47	20.62	0.115
		QPSK	36	0	1	19.55	19.70	0.093
			36	18	1	19.87	20.02	0.100
			36	35	1	19.61	19.76	0.095
E601E	2647 5		75	0	1	19.55	19.70	0.093
30215	3047.5		1	0	1	19.53	19.68	0.093
			1	37	1	19.81	19.96	0.099
			1	74	1	19.58	19.73	0.094
		16QAM	36	0	2	18.52	18.67	0.074
			36	18	2	18.82	18.97	0.079
			36	35	2	18.77	18.92	0.078
			75	0	2	18.74	18.89	0.077
			1	0	0	20.14	20.29	0.107
			1	37	0	20.22	20.37	0.109
			1	74	0	20.33	20.48	0.112
		QPSK	36	0	1	19.25	19.40	0.087
			36	18	1	19.38	19.53	0.090
			36	35	1	19.47	19.62	0.092
56665	3602 5		75	0	1	19.25	19.40	0.087
00000	3092.3		1	0	1	19.23	19.38	0.087
			1	37	1	19.32	19.47	0.089
			1	74	1	19.44	19.59	0.091
		16QAM	36	0	2	18.38	18.53	0.071
			36	18	2	18.33	18.48	0.070
			36	35	2	18.28	18.43	0.070
			75	0	2	18.25	18,40	0.069

NOTE:

(1) EIRP = Average power + Antenna gain.

(2) ERP = EIRP - 2.15. (3) P(W) = 1 W \cdot 10^{(P(dBm) / 10)} / 1000

Channel	Frequency	Mode	UL RB	UL RB	MPR	Average	EIRP power	EIRP power
onannor	(MHz)	mode	Allocation	Start		power	(dBm)	(W)
			1	0	0	20.27	20.42	0.110
			1	49	0	20.52	20.67	0.117
			1	99	0	20.44	20.59	0.115
		QPSK	50	0	1	19.38	19.53	0.090
			50	24	1	19.68	19.83	0.096
			50	49	1	19.58	19.73	0.094
55340	3560.0		100	0	1	19.38	19.53	0.090
00040	5500.0		1	0	1	19.36	19.51	0.089
			1	49	1	19.62	19.77	0.095
			1	99	1	19.55	19.70	0.093
		16QAM	50	0	2	18.49	18.64	0.073
			50	24	2	18.63	18.78	0.076
			50	49	2	18.58	18.73	0.075
			100	0	2	18.55	18.70	0.074
			1	0	0	20.49	20.64	0.116
			1	49	0	20.76	20.91	0.123
			1	99	0	20.52	20.67	0.117
		QPSK	50	0	1	19.60	19.75	0.094
			50	24	1	19.92	20.07	0.102
			50	49	1	19.66	19.81	0.096
50007	0040 7		100	0	1	19.60	19.75	0.094
56207	3646.7		1	0	1	19.58	19.73	0.094
			1	49	1	19.86	20.01	0.100
			1	99	1	19.63	19.78	0.095
		16QAM	50	0	2	18.57	18.72	0.074
			50	24	2	18.87	19.02	0.080
			50	49	2	18.82	18.97	0.079
			100	0	2	18.79	18.94	0.078
			1	0	0	20.19	20.34	0.108
			1	49	0	20.27	20.42	0.110
			1	99	0	20.38	20.53	0.113
		QPSK	50	0	1	19.30	19.45	0.088
			50	24	1	19.43	19.58	0.091
			50	49	1	19.52	19.67	0.093
500.40			100	0	1	19.30	19.45	0.088
56640	3690.0		1	0	1	19.28	19.43	0.088
			1	49	1	19.37	19.52	0.090
			1	99	1	19.49	19.64	0.092
		16QAM	50	0	2	18.43	18.58	0.072
			50	24	2	18.38	18.53	0.071
			50	49	2	18.33	18,48	0.070
			100	0	2	18.30	18.45	0.070

NOTE:

(1) EIRP = Average power + Antenna gain. (2) ERP = EIRP - 2.15. (3) P(W) = 1 W \cdot 10^{(P(dBm) / 10)} / 1000

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

APPENDIX C RADIATED SPURIOUS EMISSIONS

	Test Mo	de		LTE	Band	48			٦	est Dat	te		202	3/2/8	
	Test Cha	nnel		CH	15599	0			Po	olarizati	ion		Ver	tical	
	Temp)			23°C					Hum.			59	9%	
0.0	dBm														_
-10															
-20															-
-30 t															-
ř	_														
-40	× X	3 X	4 ×												1
-50								5 X	6 X						
-60															-
-70															-
-80															_
-90															
-100.0															
30.0	00 127.00) 224.	00	321.00	418	.00	515.	00	612	.00	709.0	00 806	.00	1000.00	 MHz
No.	Mk.	Freq		Reading Level	Co Fa	orrect actor	Me	easure ment	9-	Limit		Over			
		MHz	7	dBm		dB		dBm		dBm		dB	Detector	Comme	ent
1	*	37.598	82	-56.58	2	2.78	-	33.80		-13.00		-20.80	peak		
2		100.61	60	-58.96	1	6.78	-4	42.18		-13.00		-29.18	peak		
3		205.02	203	-56.08	1	2.16	-4	43.92		-13.00		-30.92	peak		
4		261.63	60	-56.73	1	1.48	-4	45.25		-13.00		-32.25	peak		
5		528.15	97	-64.58	ç	9.63	-;	54.95		-13.00		-41.95	peak		
6		594.02	27	-64.42	1	0.66	-	53.76		-13.00		-40.76	peak		

	Test Mo	ode		l	LTE I	Band	48			٦	est Da	ite		202	3/2/8	
	Test Cha	nnel			CH	5599	0			P	olarizat	tion		Horiz	zontal	
	Tem	0			2	3°C					Hum.			59	9%	
0.0	dBm															_
-10																
-20																-
-30																
-40	1 X															
-50		2 X	3 X										c			
-30									4 ×	5 X			×			
-60																1
-70																
-80																
-90																
-100.0																
30.00	0 127.0	0 224.	.00	321.0	0	418.	00	515.	00	612	.00	709.	00 806	.00	1000.00	
No.	Mk.	Freq	.	Read Lev	ding /el	Co Fa	rrect ictor	Me	easure ment	э-	Limit		Over			
		MHz	Z	dB	m	(βB		dBm		dBm		dB	Detector	Comme	ent
1	*	100.61	60	-52.	90	14	1.48	-3	38.42		-13.00)	-25.42	peak		
2		205.86	610	-51.	93	6	.33		45.60		-13.00)	-32.60	peak		
3		260.98	393	-53.	77	6	.95		46.82		-13.00)	-33.82	peak		
4		530.81	110	-64.	32	7	.41	-	56.91		-13.00)	-43.91	peak		
5		593.99	903	-65.	06	7	.51	-;	57.55		-13.00)	-44.55	peak		
6		730.40)47	-62.	23	9	.10	-	53.13		-13.00)	-40.13	peak		

	Test Mode Test Channel		LTE	Band 48		Test Date	;	202	3/2/7
	Test Cha	nnel	CH	55990		Polarizatio	n	Ver	tical
	Temp)	2	3°C		Hum.		59	9%
D.O	dBm		1	1	1				
-10									
20									
30 -									
40 -									
50			1×						
60 -									
70 -									
80 -									
90									
100.0									
1000).000 2900.0	00 4800.00	6700.00	8600.00	10500.00 1	2400.00 14	4300.00 162	200.00	20000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7232.000	-68.76	16.90	-51.86	-13.00	-38.86	peak	

Test Mode			LTE Band 48		Test Date		2023/2/7		
Test Channel			CH55990		Polarization		Horizontal		
Temp		23°C		Hum.		59%			
0.0	dBm								
10									
20									
30									
-40 -									
-50 -			1 X						
-60 -									
70 -									
80 -									
90 -									
100.0									
100	0.000 2900.0	0 4800.00	6700.00	8600.00	10500.00	12400.00	14300.00	16200.00	20000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over	-	
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7232.000	-67.79	16.53	-51.26	-13.00	-38.20	6 peak	

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

End of Test Report